WO2010017773A1 - 连铸机结晶器振动在线检测装置 - Google Patents

连铸机结晶器振动在线检测装置 Download PDF

Info

Publication number
WO2010017773A1
WO2010017773A1 PCT/CN2009/073230 CN2009073230W WO2010017773A1 WO 2010017773 A1 WO2010017773 A1 WO 2010017773A1 CN 2009073230 W CN2009073230 W CN 2009073230W WO 2010017773 A1 WO2010017773 A1 WO 2010017773A1
Authority
WO
WIPO (PCT)
Prior art keywords
isolation chamber
detecting device
sensor
vibration
crystallizer
Prior art date
Application number
PCT/CN2009/073230
Other languages
English (en)
French (fr)
Inventor
田志恒
Original Assignee
田立
田陆
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 田立, 田陆 filed Critical 田立
Priority to EP09806376A priority Critical patent/EP2324942A1/en
Publication of WO2010017773A1 publication Critical patent/WO2010017773A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D2/00Arrangement of indicating or measuring devices, e.g. for temperature or viscosity of the fused mass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/114Treating the molten metal by using agitating or vibrating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations

Definitions

  • the invention belongs to the field of crystallizer vibration detection, and particularly relates to a continuous casting machine crystallizer vibration online detecting device. Background of the invention
  • the amplitude, frequency and waveform vibration of the continuous casting machine crystallizer according to the steel grade, section and pulling speed of the drawn billet are essential to ensure the quality and output of the billet produced by the continuous casting machine.
  • it is necessary to perform on-line inspection of the vibration state of the crystallizer (such as amplitude, frequency and waveform, synchronism of vibration at different parts of the crystallizer, and whether there is yaw, etc.).
  • the sensor for detecting vibration selected by the current crystallizer vibration detection technology is sealed and isolated, and can work long-term under laboratory conditions while maintaining the original technical specifications. Used for vibration detection in the high temperature, high humidity, and oil mist atmosphere of the continuous casting machine crystallizer. Yes, but the technical indicators will not drop quickly after one month.
  • the stainless steel end cap of the sensor cable leading end of the eddy current type detecting vibration gradually rusts, the sensor measuring range is shortened, the linearity is deteriorated, and the sensitivity is lowered.
  • the socket of the piezoelectric acceleration sensor may fall off at a high temperature and stop working. Summary of the invention
  • the present invention provides an on-line vibration detecting device for a continuous casting machine mold to provide a continuous casting mold in-line inspection device capable of ensuring long-term, stable, and reliable operation.
  • the object of the invention is achieved in that the sensor for detecting vibration is placed in a dry, clean, temperature-friendly atmosphere.
  • an on-line detecting device for crystallizer vibration of a continuous casting machine which comprises a sensor for detecting vibration, a transmitter and a signal processor, and the sensor for detecting vibration is in a dry, clean and temperature-friendly manner isolated from the surrounding atmosphere.
  • the sensor can be in the isolation chamber. Gas may be circulated in the isolation chamber, and the gas is a dry, clean, and temperature-friendly gas.
  • the continuous casting machine crystallizer is fixed on the crystallizer vibrating device, and the crystallizer vibrating device comprises a vibrating member and a non-vibrating member.
  • the isolation chamber may be composed of an inner sleeve and an outer sleeve mounted on the non-vibrating member, the outer sleeve being mounted on the vibrating member, and the gas flowing into the inner sleeve through the intake pipe and passing through the inner sleeve The gap between the outer sleeves is discharged.
  • the isolation chamber may be comprised of a retractable sealing connection between the vibrating member and a mounting bracket for supporting the sensor, and the gas flows into the isolation chamber through the intake pipe and is exhausted through the exhaust pipe.
  • the exhaust pipe can be installed in a one-way wide.
  • the retractably sealed connector may be a flexible rubber connector.
  • the isolation chamber and the sensors therein can be mounted on the non-vibrating member, and the gas flows into the isolation chamber through the intake pipe and is discharged through the gap between the isolation chamber and the vibration member.
  • the isolation chamber and the sensors therein can be mounted on the vibrating member, and the gas flows into the isolation chamber through the intake pipe and is discharged through the air outlet holes on the side walls of the isolation chamber.
  • the gas can be nitrogen.
  • the gas can also be other gases that have been filtered, purified, dried, and temperature regulated.
  • the sensor for detecting vibration (including the connector) is placed in a dry, clean and temperature-friendly atmosphere, and the technical index of the sensor for detecting the vibration used can be kept unchanged for a long time, and the on-line detection of the vibration of the continuous casting machine crystallizer is satisfied. Requirements. BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic diagram of an on-line detecting device in which a sensor for detecting vibration is in a dry, clean, and temperature-friendly atmosphere;
  • Figure 2 is a schematic view of the on-line detecting device for crystallizer vibration composed of an inner and outer sleeve
  • Fig. 3 is a schematic diagram of an on-line vibration detecting device for a crystallizer composed of a flexible rubber joint
  • Figure 4 is a schematic view of the on-line detecting device for crystallizer vibration having a gap between the isolation chamber and the vibrating member of the crystallizer;
  • Fig. 5 is a schematic view of the on-line detecting device for crystallizer vibration of the side wall of the isolation chamber. Mode for carrying out the invention
  • an on-line vibration detecting device for a continuous casting machine crystallizer which comprises a sensor for detecting vibration, a transmitter and a signal processor, and a sensor for detecting vibration is in and around the sensor.
  • the atmosphere is isolated in a dry, clean, temperature-friendly atmosphere.
  • the sensor can be in the isolation chamber.
  • a gas may be circulated in the isolation chamber, and the gas is a dry, clean, and temperature-friendly gas.
  • a dry, clean, and temperature-friendly atmosphere means that the humidity of the gas around the sensor is less than 60%, and there are no particles in the gas with a diameter greater than 150 ⁇ m.
  • the temperature of the gas is within the operating temperature range of the sensor.
  • the continuous casting machine crystallizer is fixed on the crystallizer vibrating device, and the crystallizer vibrating device comprises a vibrating member and a non-vibrating member.
  • the isolation chamber may be composed of an inner sleeve and an outer sleeve mounted on the non-vibrating member, the outer sleeve being mounted on the vibrating member, and the gas flowing into the inner sleeve through the intake pipe and passing through the inner sleeve The gap between the outer sleeves is discharged.
  • the isolation chamber is composed of a retractable sealing connector that is connected between the vibrating member and a fixing bracket for supporting the sensor, and the gas flows into the isolation chamber through the intake pipe and is discharged through the exhaust pipe.
  • the exhaust pipe can be installed in a one-way wide.
  • the retractably sealed connector may be a flexible rubber connector.
  • the isolation chamber and the sensors therein can be mounted on the non-vibrating member, and the gas flows into the isolation chamber through the intake pipe and is discharged through the gap between the isolation chamber and the vibration member.
  • the isolation chamber and the sensors therein can be mounted on the vibrating member, and the gas flows into the isolation chamber through the intake pipe and is discharged through the air outlet holes on the side walls of the isolation chamber.
  • FIG. 1 is a schematic diagram of an in-line detection device for detecting vibration in a dry, clean, temperature-friendly atmosphere.
  • the eddy current sensor 101 and its end stainless steel end cap 102 are fixed to the non-vibrating member 106 of the crystallizer vibrating device by a fixing bracket 105, facing the vibration sensing plate of the eddy current sensor 101 (designed according to the selected sensor mounting technical requirements)
  • Manufactured 107 is fixed to the vibrating member 108 of the crystallizer vibrating device to detect the amplitude of vibration in the vertical direction of the crystal vibrating member 108.
  • the change in position of the vibration sensing plate 107 relative to the eddy current sensor 101 is converted into an electrical signal in the eddy current sensor 101.
  • the electrical signal is converted by the transmitter 103 and transmitted to the signal processor 104.
  • the signal processor 104 gives a crystallizer based on the received signal.
  • the amplitude of the vibration is subjected to differential operations such as the speed, acceleration, and vibration frequency, waveform, and slope of the crystallizer to evaluate the quality of the crystallizer vibration system.
  • the vortex sensor 101 has an intake pipe 110 and a nozzle 109a.
  • the dry, clean, temperature-adapted gas enters the nozzle through the intake pipe 110 to form a dry, clean, temperature-adapted gas atmosphere 109 around the sensor, thereby maintaining the eddy current.
  • the sensing 101 and the end cap 102 are in a dry, clean, and temperature-friendly atmosphere to ensure long-term stable and reliable operation of the in-line detector of the crystallizer.
  • FIG. 2 is a schematic view of a crystallizer vibration on-line detecting device composed of an inner and outer sleeve.
  • the eddy current sensor 201 and its end stainless steel end cap 202 are fixed on the non-vibrating member 206 of the crystallizer vibrating device by a fixing bracket 205, and the vibrating sensing plate facing the eddy current sensor 201 is designed and manufactured according to the selected sensor mounting technical requirements.
  • the 207 is fixed to the vibrating member 208 of the crystallizer vibrating device, thereby detecting the amplitude of vibration in the vertical direction of the crystal vibrating member 208.
  • the change in position of the vibration sensing plate 207 relative to the eddy current sensor 201 is converted into an electrical signal in the eddy current sensor 201.
  • the electrical signal is converted by the transmitter 203 and transmitted to the signal processor 204.
  • the signal processor 204 gives the crystallizer according to the received signal.
  • the amplitude of the vibration is subjected to differential operations such as the speed, acceleration, and vibration frequency, waveform, and slope of the crystallizer to evaluate the quality of the crystallizer vibration system.
  • the eddy current sensor 201 is in an isolation chamber 209 defined by the isolated chamber sleeve 209a and associated components, and the dry, clean, temperature-adapted gas passes through the intake manifold 210.
  • the gas is discharged from the gap 211 between the isolation chamber sleeve 209a and the vibration sensing plate 207 in the form of an outer sleeve, thereby keeping the eddy current sensor 201 and the end cover 202 in a dry, clean, and suitable temperature.
  • the atmosphere ensures the long-term stable and reliable operation of the on-line detector.
  • Fig. 3 is a schematic view of the on-line vibration detecting device of the crystallizer in which the isolation chamber is composed of a flexible rubber joint 309a.
  • the eddy current sensor 301 and its stainless steel end cap 302 are fixed to the non-vibrating member 306 of the crystallizer vibrating device by a fixing bracket 305, and the vibration sensing plate 307 facing the eddy current sensor 301 is fixed to the vibrating member 308 of the crystallizer vibrating device. In this way, the amplitude of vibration in the vertical direction of the crystal vibrating member 308 is detected.
  • the positional change of the vibration sensing plate 307 with respect to the eddy current sensor 301 is converted into an electrical signal in the eddy current sensor 301, which is converted by the transmitter 303 and transmitted to the signal processor 304, and the signal processor 304 gives the crystallizer according to the received signal.
  • the amplitude of the vibration is subjected to differential operations such as the speed, acceleration, and vibration frequency, waveform, and slope of the crystallizer to evaluate the quality of the crystallizer vibration system.
  • the eddy current sensor 301 is in an isolation chamber 309 defined by the flexible rubber joint 309a and associated components. A dry, clean, temperature-appropriate gas enters the isolation chamber 309 through the intake manifold 310. The gas is exhausted from the isolation chamber 309 by the exhaust pipe 311.
  • the exhaust pipe 311 is provided with a unidirectional width 312 which is closed when the air pressure in the isolation chamber 309 is low or the air supply is interrupted, so that the isolation chamber is kept dry and clean for a long time.
  • Figure 4 is a schematic view of the on-line detecting device for crystallizer vibration having a gap between the isolation chamber and the vibrating member of the crystallizer.
  • the eddy current sensor 401 and its stainless steel end cap 402 are fixed to the non-vibrating member 406 of the crystallizer vibrating device by a mounting bracket 405, and the vibrating sensing plate 407 facing the eddy current sensor 401 is fixed to the vibrating member 408 of the crystallizer vibrating device.
  • the monitored surface of the vibration sensing plate 407 is parallel to the vibration direction set by the crystallizer, thereby detecting the crystallizer (Fig. The yaw that is not shown in the middle.
  • the positional change of the vibration sensing plate 407 with respect to the eddy current sensor 401 is converted into an electrical signal in the eddy current sensor 401, and the electrical signal is converted by the transmitter 403 and sent to the signal processor 404, and the signal processor 404 gives the crystallizer according to the received signal.
  • the eddy current sensor 401 and its stainless steel end cap 402 are in the isolation chamber 409 defined by the isolation chamber wall 409a and associated components.
  • the dry, clean, temperature-appropriate gas enters the isolation chamber 409 through the inlet conduit 410, which is ventilated by the isolation chamber 409.
  • the gap 411 between the sensing plates 407 is discharged, thereby keeping the eddy current sensor 401 and the stainless steel end cap 402 in a dry, clean, and temperature-friendly atmosphere, and ensuring long-term stable and reliable operation of the on-line vibration detecting system of the crystallizer.
  • Fig. 5 is a schematic view of the on-line detecting device for crystallizer vibration of the side wall of the isolation chamber.
  • the acceleration sensor 501 is fixed on the vibrating member 504 of the crystallizer vibrating device.
  • the accelerometer 501 is provided with sensors for measuring accelerations in the up, down, left and right, and front and rear directions, and the acceleration signals detected in these directions are converted into electric signals.
  • the electric signal is converted by the transmitter 502 and sent to the signal processor 503.
  • the signal processor gives the vibration acceleration of the crystal vibrating unit vibrating member 504 based on the received signal and gives the vibration speed of the crystal vibrating member 504 by integration or the like.
  • the acceleration sensor 501 includes a connector mounted in the isolation chamber 505, and a dry, clean, temperature-appropriate gas enters the isolation chamber 505 defined by the isolation chamber wall 505a and associated components through the intake manifold 506, the gas being from the compartment 505 side
  • the air outlet 507 on the wall is discharged, thereby keeping the acceleration sensor 501 and its connector in a dry, clean, and temperature-friendly atmosphere, and ensuring long-term stable and reliable operation of the mold vibration on-line detecting device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

连铸机结晶器振动在线检测装置
技术领域
本发明属于结晶器振动检测领域,具体涉及连铸机结晶器振动在线 检测装置。 发明背景
连铸机结晶器按所拉钢坯的钢种、 断面和拉速等所设定的振幅、 频 率和波形振动, 对保证连铸机生产钢坯的质量和产量至关重要。 为了检 查结晶器振动系统的可靠性, 需要对结晶器的振动状况(如振幅、 频率 和波形, 结晶器不同部位振动的同步性, 以及是否存在偏摆, 等等)进 行在线检测。
现有结晶器振动检测技术(例如: 专利 CN1951604A; 中国优秀硕 士学位论文全文数据库 "基于 Lab VIEW的连铸结晶器超低频振动感应 系统的研究,,第 4章"振动感应分析系统硬件方案与设计";中国优秀硕士 学位论文全文数据库 "连铸机结晶器振动感应分析" 第 2章 "结晶器振 动系统的测试"; 中国优秀硕士学位论文全文数据库 "连铸结晶器振动 装置在线监测系统的研究与设计" 第 4章 "系统硬件设计") 的缺点在 于局限于检测振动的传感器及其安装方位的选择, 所选检测振动的传感 器的技术指标都是较高的, 但忽略了对传感器的保护, 检测振动的传感 器在结晶器高温、 水气及油雾氛围中原有技术指标不能持久保持, 不能 满足结晶器振动在线检测系统必须长期、 稳定、 可靠运行的要求。
当前结晶器振动检测技术所选检测振动的传感器是经过密封隔离 处理的, 在实验室条件下可以长期工作而保持原有技术指标不变。 在连 铸机结晶器的高温、 高湿、 多油雾的氛围中用于振动检测, 开始几天还 可以, 但是用不了一个月技术指标就快速下降。 例如, 涡流型检测振动 的传感器电缆引出端的不锈钢端盖逐渐生锈^动, 传感器测程缩短, 线 性变差, 灵敏度降低。 再如压电加速度传感器的插座在高温下有可能脱 落而停止工作。 发明内容
鉴于以上所述的一个或多个问题,本发明提出了一种连铸机结晶器 振动在线检测装置, 以提供一种能保证长期、 稳定、 可靠运行的连铸机 结晶器在线检测装置。
本发明的目的是这样实现的:使检测振动的传感器处于干燥、洁净、 温度适宜的氛围中。
根据本发明, 提出了一种连铸机结晶器振动在线检测装置, 它包括 检测振动的传感器、 变送器和信号处理机, 检测振动的传感器处于与周 围大气隔绝的干燥、 洁净、 温度适宜的氛围中。 其中, 传感器可以处于 隔离室中。 隔离室中可以流通有气体, 所述气体为干燥、 洁净、 温度适 宜的气体。
其中, 连铸机结晶器固定在结晶器振动装置上, 结晶器振动装置包 括振动部件和不振动部件。
隔离室可以由内套筒和外套筒组成, 内套筒及其中的传感器安装在 不振动部件上, 外套筒安装在振动部件上, 气体通过进气管流入内套筒 并通过内套筒与外套筒之间的间隙排出。
隔离室可以由可伸缩密封连接件组成,可伸缩密封连接件连接在振 动部件和用于支撑传感器的固定支架之间, 气体通过进气管流入隔离室 并通过排气管排出。 排气管可以装有单向阔。
可伸缩密封的连接件可以是可曲挠的橡胶连接件。 隔离室及其中的传感器可以安装在不振动部件上,气体通过进气管 流入隔离室并通过隔离室与振动部件之间的间隙排出。
隔离室及其中的传感器可以安装在振动部件上,气体通过进气管流 入隔离室并通过隔离室的侧壁上的出气孔排出。
气体可以是氮气。 气体也可以是经过过滤净化、 干燥、 和温度调节 的其他气体。
通过本发明,将检测振动的传感器(包括插接件)置于干燥、 洁净、 温度适宜的氛围中, 能保持所用检测振动的传感器的技术指标长期不 变, 满足连铸机结晶器振动在线检测的要求。 附图简要说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的 一部分, 本发明的示意性实施例及其说明用于解释本发明, 并不限定本 发明的保护范围。 在附图中:
图 1是检测振动的传感器处于干燥、 洁净、 温度适宜的氛围中的在 线检测装置示意图;
图 2是隔离室由内外套筒组成的结晶器振动在线检测装置示意图; 图 3 是隔离室由可曲挠橡胶接头组成的结晶器振动在线检测装置 示意图;
图 4是隔离室与结晶器可振动部件之间有间隙的结晶器振动在线 检测装置示意图; 以及
图 5是隔离室侧壁开出气孔的结晶器振动在线检测装置示意图。 实施本发明的方式
为使本发明的目的、 技术方案和优点更加清楚明白, 以下举具体实 施例并参照附图, 对本发明作进一步详细说明。
在本发明的实施例中, 提出了一种根据本发明实施例的连铸机结晶 器振动在线检测装置,它包括检测振动的传感器、变送器和信号处理机, 检测振动的传感器处于与周围大气隔绝的干燥、 洁净、 温度适宜的氛围 中。 其中, 传感器可以处于隔离室中。 隔离室中可以流通有气体, 所述 气体为干燥、 洁净、 温度适宜的气体。
一般情况下, 干燥、 洁净、 温度适宜的氛围是指传感器周围气体的 湿度小于 60%, 气体中没有直径大于 150 μ ηι的颗粒物, 气体的温度在传 感器工作温度范围之内。
其中, 连铸机结晶器固定在结晶器振动装置上, 结晶器振动装置包 括振动部件和不振动部件。
隔离室可以由内套筒和外套筒组成, 内套筒及其中的传感器安装在 不振动部件上, 外套筒安装在振动部件上, 气体通过进气管流入内套筒 并通过内套筒与外套筒之间的间隙排出。
隔离室由可伸缩密封连接件组成,可伸缩密封连接件连接在振动部 件和用于支撑传感器的固定支架之间, 气体通过进气管流入隔离室并通 过排气管排出。 排气管可以装有单向阔。
可伸缩密封的连接件可以是可曲挠的橡胶连接件。
隔离室及其中的传感器可以安装在不振动部件上,气体通过进气管 流入隔离室并通过隔离室与振动部件之间的间隙排出。
隔离室及其中的传感器可以安装在振动部件上,气体通过进气管流 入隔离室并通过隔离室的侧壁上的出气孔排出。
气体可以是氮气。 气体可以是经过过滤净化、 干燥、 和温度调节的 气体。 图 1是检测振动的传感器处于干燥、 洁净、 温度适宜的氛围中的在 线检测装置示意图。 图 1中涡流传感器 101及其端头的不锈钢端盖 102 通过固定支架 105固定在结晶器振动装置的不振动部件 106上, 面对涡 流传感器 101的振动感应板(按所选传感器安装技术要求设计制作 ) 107 固定在结晶器振动装置的振动部件 108上,以此检测结晶器振动部件 108 垂直方向的振动幅度。 振动感应板 107相对涡流传感器 101的位置变化 在涡流传感器 101中转变成电信号, 该电信号经变送器 103变换后传送 给信号处理机 104, 信号处理机 104根据接收的信号给出结晶器振动的 振幅并经过微分等运算给出结晶器振动的速度、 加速度以及振频、 波形 和偏斜率等评价结晶器振动系统质量的参数。 涡流传感器 101旁有进气 管 110和喷嘴 109a, 干燥、 洁净、 温度适应的气体通过进气管 110进入 由喷嘴喷出,在传感器周围形成干燥、洁净、温度适应的气体氛围区 109, 以此保持涡流传感 101及端盖 102处于干燥、洁净、温度适宜的氛围中, 保证结晶器在线检测装置长期稳定可靠的运行。
图 2是隔离室由内外套筒组成的结晶器振动在线检测装置示意图。 图 2中涡流传感器 201及其端头的不锈钢端盖 202通过固定支架 205固 定在结晶器振动装置的不振动部件 206上, 面对涡流传感器 201的振动 感应板按所选传感器安装技术要求设计制作 207固定在结晶器振动装置 的振动部件 208上,以此检测结晶器振动部件 208垂直方向的振动幅度。 振动感应板 207相对涡流传感器 201的位置变化在涡流传感器 201中转 变成电信号, 该电信号经变送器 203变换后传送给信号处理机 204, 信 号处理机 204根据接收的信号给出结晶器振动的振幅并经过微分等运算 给出结晶器振动的速度、 加速度以及振频、 波形和偏斜率等评价结晶器 振动系统质量的参数。涡流传感器 201处于由隔离室内套筒 209a及相关 部件限定的隔离室 209中,干燥、洁净、温度适应的气体通过进气管 210 进入隔离室 209中,该气体由隔离室内套筒 209a与作成外套筒形式的振 动感应板 207之间的间隙 211排出, 以此保持涡流传感 201及端盖 202 处于干燥、 洁净、 温度适宜的氛围中, 保证结晶器在线检测装置长期稳 定可靠的运行。
图 3是隔离室由可曲挠橡胶接头 309a组成的结晶器振动在线检测 装置示意图。 图 3中涡流传感器 301及其不锈钢端盖 302通过固定支架 305 固定在结晶器振动装置的不振动部件 306上, 面对涡流传感器 301 的振动感应板 307固定在结晶器振动装置的振动部件 308上, 以此检测 结晶器振动部件 308垂直方向的振动幅度。 振动感应板 307相对涡流传 感器 301的位置变化在涡流传感器 301中转换成电信号, 该电信号经变 送器 303变换后传送给信号处理机 304, 信号处理机 304根据接收的信 号给出结晶器振动的振幅并经过微分等运算给出结晶器振动的速度、 加 速度以及振频、 波形和偏斜率等评价结晶器振动系统质量的参数。 涡流 传感器 301处于由可曲挠橡胶接头 309a及相关部件限定的隔离室 309 中, 干燥、 洁净、 温度适宜的气体通过进气管 310进入隔离室 309中, 该气体由排气管 311从隔离室 309排出, 以此保持涡流传感器 301及其 不锈钢端盖 302处于干燥、 洁净、 温度适宜的氛围中, 保证结晶器振动 在线检测装置长期稳定可靠的运行。 排气管 311上设有单向阔 312, 该 单向阔 312在隔离室 309内的气压较低或供气中断时关闭, 使隔离室内 长期保持干燥、 洁净的状态。
图 4是隔离室与结晶器可振动部件之间有间隙的结晶器振动在线 检测装置示意图。 图中涡流传感器 401及其不锈钢端盖 402通过安装支 架 405固定在结晶器振动装置的不振动部件 406上,面对涡流传感器 401 的振动感应板 407固定在结晶器振动装置的振动部件 408上, 振动感应 板 407的被监视表面与结晶器设定的振动方向平行,以此检测结晶器(图 中未画出的)偏摆。 振动感应板 407相对涡流传感器 401的位置变化在 涡流传感器 401中转变成电信号, 该电信号经变送器 403变换后发送给 信号处理机 404, 信号处理机 404根据接收的信号给出结晶器的偏摆。 涡流传感器 401及其不锈钢端盖 402处于由隔离室壁 409a及相关部件限 定的隔离室 409中,干燥、 洁净、 温度适宜的气体通过进气管 410进入隔 离室 409,该气体由隔离室 409与振动感应板 407之间的间隙 411排出, 以此保持涡流传感器 401和不锈钢端盖 402处于干燥、 洁净、 温度适宜 的氛围中, 保证结晶器振动在线检测系统长期稳定可靠的运行。
图 5是隔离室侧壁开出气孔的结晶器振动在线检测装置示意图。 图 中加速度传感器 501固定在结晶器振动装置的振动部件 504上, 加速度 传感器 501内装有测量上下、 左右及前后三个方向加速度的传感器, 这 些传感器检测的各方向的加速度信号变换成电信号, 该电信号通过变送 器 502变换后传送给信号处理机 503 , 信号处理机根据接收的信号给出 结晶器振动装置振动部件 504的振动加速度并通过积分等运算给出结晶 器振动部件 504的振动速度、 振幅以及振频、 波形、 偏斜率和偏摆等评 价结晶器振动质量的参数。 加速度传感器 501包括插接件安装在隔离室 505内, 干燥、 洁净、 温度适宜的气体通过进气管 506进入由隔离室壁 505a及相关部件限定的隔离室 505内,该气体从隔萬室 505侧壁上的出 气孔 507排出,以此保持加速度传感器 501及其插接件处于干燥、洁净、 温度适宜的氛围中, 保证结晶器振动在线检测装置长期稳定可靠的运 行。
以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡 在本发明的精神和原则之内所做的任何修改、 等同替换和改进等, 均应 包含在本发明的保护范围之内。

Claims

权利要求书
1、 一种连铸机结晶器振动在线检测装置, 包括检测振动的传感器、 变送器和信号处理机, 其特征在于, 检测振动的传感器处于与周围大气 隔绝的干燥、 洁净、 温度适宜的氛围中。
2、如权利要求 1所述的在线检测装置, 其特征在于, 所述传感器处 于隔离室中。
3、如权利要求 2所述的在线检测装置, 其特征在于, 所述隔离室中 流通有气体, 所述气体为干燥、 洁净、 温度适宜的气体。
4、如权利要求 3所述的在线检测装置, 其特征在于, 所述连铸机结 晶器固定在结晶器振动装置上, 所述结晶器振动装置包括振动部件和不 振动部件。
5、如权利要求 4所述的在线检测装置, 其特征在于, 所述隔离室由 内套筒和外套筒组成, 所述内套筒及其中的所述传感器安装在所述不振 动部件上, 所述外套筒安装在所述振动部件上, 所述气体通过进气管流 入所述内套筒并通过所述内套筒与所述外套筒之间的间隙排出。
6、如权利要求 4所述的在线检测装置, 其特征在于, 所述隔离室由 可伸缩密封连接件组成, 所述可伸缩密封连接件连接在所述振动部件和 用于支撑所述传感器的固定支架之间, 所述气体通过进气管流入所述隔 离室并通过排气管排出。
7、如权利要求 6所述的在线检测装置, 其特征在于, 所述排气管装 有单向阔。
8、如权利要求 6所述的在线检测装置, 其特征在于, 所述可伸缩密 封的连接件为可曲挠的橡胶连接件。
9、如权利要求 4所述的在线检测装置, 其特征在于, 所述隔离室及 其中的所述传感器安装在所述不振动部件上, 所述气体通过进气管流入 所述隔离室并通过所述隔离室与所述振动部件之间的间隙排出。
10、 如权利要求 4所述的在线检测装置, 其特征在于, 所述隔离室 及其中的所述传感器安装在所述振动部件上, 所述气体通过进气管流入 所述隔离室并通过所述隔离室的侧壁上的出气孔排出。
11、如权利要求 1至 10中任一项所述的在线检测装置,其特征在于, 所述气体是氮气。
12、如权利要求 1至 10中任一项所述的在线检测装置,其特征在于, 所述气体是经过过滤净化、 干燥、 和温度调节的气体。
PCT/CN2009/073230 2008-08-13 2009-08-13 连铸机结晶器振动在线检测装置 WO2010017773A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP09806376A EP2324942A1 (en) 2008-08-13 2009-08-13 Online vibration detector for continuous caster crystallizer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810135183.2 2008-08-13
CN2008101351832A CN101337264B (zh) 2008-08-13 2008-08-13 连铸机结晶器振动在线检测装置

Publications (1)

Publication Number Publication Date
WO2010017773A1 true WO2010017773A1 (zh) 2010-02-18

Family

ID=40211517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/073230 WO2010017773A1 (zh) 2008-08-13 2009-08-13 连铸机结晶器振动在线检测装置

Country Status (3)

Country Link
EP (1) EP2324942A1 (zh)
CN (1) CN101337264B (zh)
WO (1) WO2010017773A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101337264B (zh) * 2008-08-13 2011-02-09 田志恒 连铸机结晶器振动在线检测装置
CN101722284A (zh) * 2009-09-17 2010-06-09 杭州谱诚泰迪实业有限公司 一种连铸结晶器振动检测装置及检测方法
CN102764863B (zh) * 2012-07-12 2014-01-15 东北大学 连铸结晶器振动工艺过程模拟检测试验装置
CN103121086B (zh) * 2013-02-20 2015-01-21 内蒙古科技大学 结晶器振动测量装置
CN105499519B (zh) * 2014-09-26 2018-02-16 宝钢工程技术集团有限公司 结晶器振动在线检测装置及其使用方法
CN104567761B (zh) * 2014-12-03 2017-11-07 田志恒 连铸机铸辊测量单元及具有其的连铸机测量仪
CN114653912B (zh) * 2022-02-14 2024-05-17 江阴兴澄特种钢铁有限公司 一种大直径高纯致密特殊钢连铸圆坯生产方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1182210A (zh) * 1996-11-12 1998-05-20 泰和电气(襄樊)有限公司 一种压力传感器
CN1197512A (zh) * 1996-07-17 1998-10-28 罗伯特·博施有限公司 气体传感器
CN1951604A (zh) 2006-11-13 2007-04-25 浙江大学 板坯连铸结晶器振动台振动检测控制方法
CN101337264A (zh) * 2008-08-13 2009-01-07 田志恒 连铸机结晶器振动在线检测装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1197512A (zh) * 1996-07-17 1998-10-28 罗伯特·博施有限公司 气体传感器
CN1182210A (zh) * 1996-11-12 1998-05-20 泰和电气(襄樊)有限公司 一种压力传感器
CN1951604A (zh) 2006-11-13 2007-04-25 浙江大学 板坯连铸结晶器振动台振动检测控制方法
CN101337264A (zh) * 2008-08-13 2009-01-07 田志恒 连铸机结晶器振动在线检测装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FULL-TEXT DATABASE. ENGINEERING SCIENCE AND TECHNOLOGY, vol. I, no. 6, 15 December 2007 (2007-12-15), pages 19 - 26, XP008167020 *
ZHU, QIKUN: "The Study on Ultra-low Frequency of Continuous Casting Mould Vibration Testing System Based on LabVIEW.", CHINESE MASTER'S THESES, XP008167020 *

Also Published As

Publication number Publication date
CN101337264A (zh) 2009-01-07
EP2324942A1 (en) 2011-05-25
CN101337264B (zh) 2011-02-09

Similar Documents

Publication Publication Date Title
WO2010017773A1 (zh) 连铸机结晶器振动在线检测装置
JP3201555U (ja) 粒子を監視する装置
CN105954176A (zh) 一种原位实时检测口罩滤料对不同粒径颗粒物过滤特性的方法和装置
MY162463A (en) Gas detector apparatus
JP2012529097A5 (zh)
CN102323005A (zh) 用于检测流体压力测量探头的的检测装置以及包含该检测装置的探头
JP3950578B2 (ja) 流量計測装置
WO2010059462A3 (en) Rigid particulate matter sensor
CN110285930A (zh) 单一组分连续检漏系统及其检漏方法
WO2018133494A1 (zh) 一种基于速度差的泄漏定位方法
CN107134106A (zh) 一种电子吸气式感烟火灾探测器
WO2022179585A1 (zh) 清洁装置及清洁装置的滤芯堵塞检测方法
CN109164027A (zh) 空气过滤器性能测试系统
CN206930439U (zh) 一种燃气轮机立式空气进气过滤测试装置
CN209102291U (zh) 一种单一组分连续检漏系统
CN101769832B (zh) 辐射环境碘自动采样器
KR100538187B1 (ko) 다이옥신 및 퓨란류 시료 채취장치 및 채취방법
CN109798452A (zh) 电容式燃气管道泄漏检测装置及检测方法
CN209638792U (zh) 电容式燃气管道泄漏检测装置
CN207864075U (zh) 一种滤清器快速测压差装置
CN103018146A (zh) 装有气溶胶湿度控制器的pm2.5监测仪
CN209356528U (zh) 一种小型化高温风速探杆
CN210741568U (zh) 一种新型温压流监测分析仪
CN209624540U (zh) 一种多功能气体传感器
KR20200001219U (ko) 입자 검출 센서

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09806376

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1733/CHENP/2011

Country of ref document: IN

Ref document number: 2009806376

Country of ref document: EP