WO2010016542A1 - Polyester film with light-diffusing surface - Google Patents
Polyester film with light-diffusing surface Download PDFInfo
- Publication number
- WO2010016542A1 WO2010016542A1 PCT/JP2009/063935 JP2009063935W WO2010016542A1 WO 2010016542 A1 WO2010016542 A1 WO 2010016542A1 JP 2009063935 W JP2009063935 W JP 2009063935W WO 2010016542 A1 WO2010016542 A1 WO 2010016542A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- film
- polyester
- layer
- diffusion layer
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/32—Layered products comprising a layer of synthetic resin comprising polyolefins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/36—Layered products comprising a layer of synthetic resin comprising polyesters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/0427—Coating with only one layer of a composition containing a polymer binder
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/043—Improving the adhesiveness of the coatings per se, e.g. forming primers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/046—Forming abrasion-resistant coatings; Forming surface-hardening coatings
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/02—Diffusing elements; Afocal elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/04—Prisms
- G02B5/045—Prism arrays
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/30—Properties of the layers or laminate having particular thermal properties
- B32B2307/306—Resistant to heat
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/40—Properties of the layers or laminate having particular optical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/40—Properties of the layers or laminate having particular optical properties
- B32B2307/406—Bright, glossy, shiny surface
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/514—Oriented
- B32B2307/518—Oriented bi-axially
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/704—Crystalline
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
- B32B2457/20—Displays, e.g. liquid crystal displays, plasma displays
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2367/00—Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
- C08J2367/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2467/00—Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/1336—Illuminating devices
- G02F1/133602—Direct backlight
- G02F1/133606—Direct backlight including a specially adapted diffusing, scattering or light controlling members
Definitions
- the present invention relates to a light diffusive film used for a backlight unit of a liquid crystal display having a large screen and a high luminance, a lighting device, and the like. More specifically, the present invention relates to a surface light diffusible polyester film that achieves both light diffusibility and light transmittance and is less likely to curl due to temperature changes.
- liquid crystal displays In recent years, technological advances in liquid crystal displays have been remarkable, and they are widely used as display devices for personal computers, televisions, mobile phones and the like. In particular, in recent years, high definition has been advanced for various uses of liquid crystal displays. Especially for television applications, with the widespread use of high-definition broadcasting, horizontal 1920 ⁇ vertical 1080 dots, which has traditionally been mainly used for large-screen liquid crystal televisions. The so-called full HD display liquid crystal panel has been adopted for a relatively small screen size LCD TV, and the demand for higher definition is increasing. Since these liquid crystal displays do not have a light emitting function by themselves, a liquid crystal display unit can be displayed by installing a backlight unit on the back surface thereof.
- backlight units There are various types of backlight units, but they are roughly divided into two types.
- the most common method is a method called a direct type, in which the light source is inside the illumination surface.
- a large number of light sources such as cold-cathode ray tubes can be arranged directly under the illumination surface, so that extremely high luminance is obtained and light loss is small. For this reason, it is often used for large liquid crystal displays such as large liquid crystal TVs that require high brightness.
- the other method is called an edge light type.
- the light source is arranged outside the illumination surface, and a fluorescent lamp (many of them are placed on one or two sides of a light guide plate made of a transparent acrylic resin plate or the like arranged on the illumination surface.
- a substantially linear light-emitting body such as a cold cathode discharge tube is closely attached and a lamp cover made of a reflector is provided to introduce light into the light guide plate.
- This method has the characteristics that power consumption is small, and that it can be reduced in size and thickness. For this reason, it is widely used in applications that require a reduction in thickness and weight, such as a small display such as a notebook personal computer.
- the functions required of the light guide plate of the edge light type backlight unit are a function of transmitting light incident from the end portion forward and a function of emitting the transmitted light to the liquid crystal display element side.
- the former function depends on the material used and the interface reflection characteristics.
- the latter function is determined according to the shape of the light guide plate surface that avoids the total reflection condition.
- a method of forming the shape of the surface of the light guide plate a method of applying a white diffusing material to the surface of the light guide plate and a method of providing a Fresnel shape of lenticular or prism to the surface of the light guide plate are known.
- the light emitted from the light guide plate having these surface shapes exhibits a non-uniform distribution due to the shape. Therefore, in order to obtain a high-quality image, a light diffusive film is installed on the light guide plate, and the light emitted from the light guide plate is diffused and scattered, and the brightness of the illumination surface is made uniform.
- a prism sheet or a sheet having a light collecting function called a lens sheet is used so as to collect the light transmitted through the light diffusing film in the front direction as much as possible.
- the surface of the sheet has a large number of minute irregularities such as a prism shape, a wave shape, and a pyramid shape, and the emitted light that has passed through the light diffusing film is refracted and collected in the front to improve the luminance of the illumination surface.
- a prism sheet is used by being arranged one or two on the surface side of the light diffusing film.
- a light diffusing film may be arranged on the surface side of the prism sheet.
- the light diffusing film used in the backlight unit as described above is obtained by coating a light diffusing layer made of a transparent resin containing fine particles on the surface of a biaxially stretched polyester film (for example, Patent Document 1). 2) is the mainstream.
- the light diffusion film since it is necessary to provide a light diffusion layer by coating on one side of the base film, the light diffusion film has a bimetallic structure due to the difference in the linear expansion coefficient between the light diffusion layer and the base film. There is a problem that curling is likely to occur due to heating. This problem is becoming an important problem particularly in a liquid crystal display employing a direct type backlight unit that requires a large size and extremely high luminance, such as a large liquid crystal TV in recent years. This is because the larger the area of the light diffusing film, the more the curling becomes more prominent, and the higher the brightness of the display, the greater the power consumption of the light source, that is, the amount of heat generated by the backlight unit. is there.
- a hard coat layer (non-light diffusible layer) is formed on the surface of the light diffusion layer of the base film with a thickness of several ⁇ m to several tens of ⁇ m, and linear expansion stress is formed on both sides of the light diffusion layer. The measures to balance are taken.
- the thickness of the hard coat layer is originally unnecessary, which causes an increase in thickness unnecessary for the light diffusing film and an increase in manufacturing cost. Furthermore, there is a limit to measures for balancing the linear expansion stresses on the front and back sides, and the above-described large screen and high brightness display can provide only an insufficient effect.
- a prism row is formed on the first surface side of a plate-shaped translucent base material having two main surfaces, the first surface and the second surface, and a large number of light transmitting surfaces are formed on the second surface side of the base material.
- a prism sheet see Patent Document 3, in which a light diffusion layer containing a light bead is formed.
- a light diffusing layer composed of a thermoplastic resin layer kneaded with a light diffusing agent and a prism shape forming layer having a prism shape formed on the surface of a thermoplastic resin layer not kneaded with the light diffusing agent are laminated.
- a lens sheet for a liquid crystal display device (see Patent Document 4) is disclosed.
- a light-scattering biaxially stretched polyester film for a prism sheet is disclosed (see Patent Document 5) in which light diffusibility is imparted by a light-scattering agent added inside the film and voids generated around the light-scattering agent.
- Patent Document 3 has a problem in that the translucent bead having a lens action is placed on the light incident surface side, so that a so-called reverse diffusion state occurs and the front luminance is greatly reduced. For this reason, this method cannot provide sufficient luminance and light diffusibility.
- any of the previously proposed proposals for imparting light diffusibility to the biaxially stretched polyester film itself is one of the inherent characteristics (heat resistance, mechanical strength, etc.) of the biaxially stretched polyester film. Or the characteristics that the light diffusive film should have such as light transmittance and light diffusibility are impaired, and it has not been put into practical use.
- the film disclosed in Patent Document 5 is presumed to have characteristics inherent to a biaxially stretched polyester film, such as excellent heat resistance, mechanical strength, and excellent thickness uniformity.
- characteristics inherent to a biaxially stretched polyester film such as excellent heat resistance, mechanical strength, and excellent thickness uniformity.
- Bubbles (voids) generated in the biaxial stretching process of the film have a flat plate shape parallel to the film surface. Therefore, when used as a light diffusive film in a backlight unit, most of the light emitted from the illumination surface is backscattered, and the light transmittance is impaired. In fact, the total light transmittance shown in the examples is only 85.3% at the highest.
- an internal light diffusion film using an amorphous polyester obtained by copolymerizing 25 mol% of an isophthalic acid component with polyethylene terephthalate (PET) is laminated on at least one surface thereof.
- PET polyethylene terephthalate
- the crystallinity of the constituent resin (PET homopolymer) of the base material layer and the constituent resin (amorphous polyester) of the light diffusion layer is remarkably different.
- the obtained biaxially stretched film itself has a bimetallic structure, and the biaxially stretched film itself is easily curled by heating. For this reason, curling may occur depending on the heat treatment in the post-processing step and the use environment (temperature) of the liquid crystal display.
- a light diffusing layer in which a melting point is 210 ° C. or less or amorphous polyester is used as a constituent resin, and a light diffusing additive composed of incompatible particles or thermoplastic resin is blended with the constituent resin is used as an intermediate layer.
- a film in which a crystalline polyester resin layer is laminated on both sides is disclosed (see Patent Documents 7 to 13).
- the film structure is the front and back object, the occurrence of curl due to the asymmetric structure is improved to some extent.
- Patent Document 14 discloses a film having a total light transmittance of 88% and a diffuse transmittance of 68% while using polyethylene terephthalate as a raw material for polyester. Furthermore, a film having a total light transmittance of 85% and a diffuse transmittance of 63% is disclosed.
- the basic properties such as heat resistance, mechanical strength, and thickness accuracy of these films are not disclosed, and heat resistance, mechanical strength, and high thickness accuracy, which are inherent characteristics of biaxially stretched polyethylene terephthalate films, are not disclosed. The probability of obtaining is not recognized at all.
- these films are obtained by stretching an unstretched film having a thickness of 200 ⁇ m by 3.0 times in the vertical, horizontal, and both directions, that is, by an area magnification of 9.0 times. Is 50 ⁇ m, and the actual area stretch ratio calculated from the thickness ratio before and after stretching is only 4.0 times.
- the setting ratio of the stretching equipment and the actual stretching ratio are significantly different. Conceivable.
- the actual area draw ratio is about 4 times, even if excellent light transmittance is obtained, the heat resistance, mechanical strength and high thickness accuracy which are the original characteristics of the biaxially stretched film are achieved. That is impossible.
- Patent Documents 1 and 2 it is desirable to use the actual stretched film itself.
- Patent Documents 3, 4, and 5 the method of imparting light diffusibility to the biaxially stretched film itself, generation of voids due to the light diffusing particles is unavoidable, and there is a problem that the total light transmittance is reduced.
- the biaxially stretched polyester film inherently has excellent heat resistance, mechanical strength, thickness accuracy, etc. by using a light diffusion layer mainly made of crystalline polyester, and mainly diffuses light by surface haze.
- a light diffusion layer mainly made of crystalline polyester, and mainly diffuses light by surface haze.
- the inventors of the present application have first proposed.
- the invention of the prior application (I) Japanese Patent Application No. 2007-316712 was conducted.
- the invention (I) of the prior application is a surface light diffusible polyester that suppresses the occurrence of curling by heating, has the original excellent mechanical properties of the biaxially stretched polyester film, and further achieves both total light transmittance and light diffusibility.
- a film is provided.
- the inventors of the present application have made extensive studies by paying particular attention to the plane orientation coefficient of the film and the relationship between the internal haze and the surface haze. As a result, the inventors of the present application have found that the above-mentioned contradictory characteristics can be achieved by taking the measures described in [1] to [7], which will be described later, and have arrived at the prior invention (I).
- JP-A-6-59108 Japanese Patent No. 3698978 specification JP-A-9-281310 Japanese Patent No. 3732253 JP 2005-181648 A JP 2001-272508 A Japanese Patent Laid-Open No. 2001-324606 JP 2002-162508 A JP 2002-182013 A JP 2002-196113 A JP 2002-372606 A JP 2004-219438 A JP 2004-354558 A Japanese Patent Laid-Open No. 2002-37898
- the support layer and the light diffusing layer both have a multilayer structure mainly composed of crystalline polyester, generation of heating curl derived from the bimetallic structure is suppressed.
- the biaxially stretched polyester film had excellent heat resistance, mechanical strength and thickness accuracy inherent to the biaxially stretched polyester film.
- the surface light diffusing polyester film of the invention (I) of the prior application uses crystalline polyester containing a copolymer component as the main raw material of the light diffusing layer, and the plane orientation coefficient of the entire film is controlled within a specific range.
- the voids are not substantially generated around the incompatible additive added in the light diffusion layer, and the surface of the light diffusion layer has an uneven structure. Therefore, it has both excellent surface light diffusibility and high light transmittance.
- the surface light diffusive film When the surface light diffusive film is used in combination with a lens sheet, a prism sheet, or a lens layer, not only the light diffusibility of the light diffusive film alone and the light transmittance are required, but the light diffusive film and the lens sheet or The front luminance exhibited when combined with the prism sheet is required.
- the front luminance may be lowered particularly in an environment-friendly low power consumption type liquid crystal display. It was. In the low power consumption type, the amount of irradiation required for the backlight is minimized. Therefore, when the surface light diffusing polyester film is used in combination with a lens sheet or a prism sheet, it is necessary to exhibit excellent front luminance even if it is a low power consumption type.
- the present invention makes it possible to utilize the excellent characteristics of the surface light diffusible polyester film of the invention (I) of the prior application in a wide variety of usage forms, particularly when used in combination with a lens sheet, a prism sheet, or a lens layer.
- An object of the present invention is to provide a surface light diffusing polyester film having excellent luminance characteristics even if it is a type.
- the surface light diffusing polyester film of the present invention capable of achieving the above-mentioned object has the following configuration.
- the structure of the first invention is a light diffusing polyester film made of a biaxially oriented polyester film, and is characterized by satisfying the following requirements (1) to (6).
- a support layer comprising a crystalline homopolyester or a crystalline polyester containing a copolymer component, and a copolymer component having a melting point of 235 to 255 ° C. laminated on at least one surface of the support layer by a co-extrusion method.
- a light diffusing layer comprising a blended composition of 50 to 99 parts by mass of the crystalline polyester contained and 1 to 50 parts by mass of an additive incompatible with the polyester.
- the plane orientation coefficient ⁇ P of the film defined by the following formula is 0.08 to 0.16.
- ⁇ P (nx + ny) / 2 ⁇ nz
- nx, ny, and nz represent the refractive index in the longitudinal direction, the refractive index in the width direction, and the refractive index in the thickness direction, respectively.
- the surface haze is 15% or more.
- the internal haze is less than the surface haze.
- the rate of dimensional change at 150 ° C. is 3% or less in both the vertical and horizontal directions, and the tensile strength is 100 MPa or higher in both the vertical and horizontal directions.
- the average inclination gradient ( ⁇ a) on the surface of the light diffusion layer is 0.03 or more.
- the structure of the second invention is characterized in that, in the above invention, the total light transmittance is 86% or more, and the image definition at a comb width of 2 mm is 50% or less.
- the main component is at least one or more of a copolyester resin, a polyurethane resin, or an acrylic resin provided on the surface of the light diffusion layer in the invention before completion of stretching and orientation of the film. It is characterized by having a coating layer.
- at least one or more of a copolyester resin, a polyurethane resin, or an acrylic resin is provided on both the light diffusing layer side and the support layer side of the light diffusing polyester film.
- the surface light diffusing polyester film is for a prism sheet, and at least one of a copolyester resin, a polyurethane resin, or an acrylic resin is mainly formed on the surface opposite to the light diffusing layer. It has a coating layer as a component.
- the surface light diffusing polyester film of the present invention has curling caused by heating achieved in the invention (I) of the prior application, has the original excellent mechanical properties of the biaxially stretched polyester film, and further has a total light transmittance.
- the effect of balancing light diffusivity by controlling the gradient of the surface irregularities of the light diffusing layer, it is also possible to achieve high brightness when combined with lens sheets, prism sheets, and lens layers. ing.
- the present invention suppresses the occurrence of curling due to heating, has the original excellent mechanical properties of the biaxially stretched polyester film, and further achieves both total light transmittance and light diffusibility, and also has excellent front luminance.
- the surface light diffusible polyester film which also realizes the effect of exhibiting the above is provided.
- the inventors of the present application pay particular attention to the surface unevenness structure of the light diffusion layer in addition to the relationship between the plane orientation coefficient of the film and the relationship between the internal haze and the surface haze. went.
- the light emitted from the light emitter passes through the light diffusing film and the lens sheet.
- the light rays diffused by the light diffusing film are emitted in the front direction after the focusing angle is adjusted mainly in the prism type lens provided on the lens sheet.
- the light diffusing film it is necessary for the light diffusing film to have an optical design that can provide a predetermined front luminance even when combined with a lens sheet in addition to the diffusibility.
- the ratio of the amount of light that is captured and collected by the lens sheet, prism sheet, and lens layer decreases, so that the brightness of the transmitted light emitted to the front surface decreases.
- the ratio of the amount of light captured and condensed by the lens sheet or lens layer is increased, but the diffused component is reduced. For this reason, the light diffusibility of the transmitted light is lowered, and the concealability by the diffusion film and the uniformity of the luminance on the entire irradiated surface are lowered. Therefore, it is necessary to attain a high level of compatibility between the brightness when combining lens sheets or lens layers and the diffusibility of the light diffusing film alone.
- the inventor of the present application is able to obtain the front luminance in the fine gradient gradient of the uneven structure on the surface of the light diffusion layer.
- the significance of optical design was discovered and the present invention was achieved. That is, the present inventor has designed an optical design that provides excellent front luminance when the diffusion distribution angle of light diffusion is combined with the lens sheet by controlling the average gradient ( ⁇ a) of the surface of the light diffusion layer. This led to the realization of a light diffusive film.
- the surface of the light diffusion layer has an uneven surface structure due to the light diffusing additive.
- a mountain-shaped fine unevenness profile is observed. Reflection of light occurs on the inclined surface formed by this mountain-shaped unevenness, but if this inclination gradient is more than a predetermined value, the light is efficiently captured and condensed by combining with the lens sheet, and the brightness is improved. is there.
- the average inclination gradient ( ⁇ a) is obtained from the surface unevenness profile observed on the micromap.
- the height (y) of the surface unevenness profile was measured at every predetermined pitch (x), and the difference in height (y n ⁇ y n + 1 ) at two consecutive measurement points was divided by the measurement pitch interval (x). This was measured as a slope, measured over a predetermined length in two directions perpendicular to the longitudinal direction (the longitudinal direction of the film) and the lateral direction (the width direction of the film), and the average was determined as the average slope gradient ( ⁇ a).
- the average gradient ( ⁇ a) expresses an average gradient (gradient) due to the uneven structure formed on the surface of the light diffusion layer.
- the average gradient ( ⁇ a) is a factor that governs the coexistence of the light diffusion caused by the uneven structure on the surface of the light diffusion layer and the luminance exhibited when combined with the lens sheet.
- the average slope gradient ( ⁇ a) of the light diffusing layer surface is 0.03 or more.
- ⁇ a is 0.03 or more, not only the light diffusibility necessary for concealing properties such as a cathode ray tube but also a sufficient luminance when combined with the lens film can be achieved even at a low irradiation amount.
- the lower limit of ⁇ a is preferably 0.04 or more, and more preferably 0.05 or more.
- the upper limit of ⁇ a is preferably 0.10 or less, more preferably 0.09 or less, and even more preferably 0.08 or less. When ⁇ a exceeds 0.10, depending on the lens sheet used, back reflection due to in-plane reflection may occur due to optical design, and front luminance may not be improved.
- the surface light diffusing polyester film of the present invention has a support layer (A) made of a crystalline homopolyester or a crystalline polyester containing a copolymer component.
- a light diffusion layer (B) comprising a blended composition of a crystalline polyester containing a polymerization component and the incompatible additive.
- crystalline polyester / crystalline homopolyester refers to polyester / homopolyester having a melting point.
- the melting point is the endothermic peak temperature at the time of melting detected at the time of primary temperature rise in so-called differential scanning calorimetry (DSC). Any polyester / homopolyester in which a clear crystal melting heat peak is observed as a melting point when measured using a differential scanning calorimeter is included in the crystalline polyester / crystalline homopolyester.
- the higher the melting point of the resin the better.
- the stretching stress generated during stretching increases. Therefore, if there are incompatible particles in the resin, voids (cavities) are easily generated, and the total light transmittance is reduced.
- the ease with which voids are generated is influenced by the stretching conditions as described later, but is strongly related to the plane orientation coefficient of the produced film.
- the plane orientation coefficient indicates the orientation state of the polymer chain formed in the stretched film. The higher the orientation state, the stronger the mechanical strength, but the more voids are generated in the film.
- the lower limit of the melting point of the crystalline polyester containing the copolymer component constituting the light diffusion layer (B) is preferably 235 ° C, more preferably 240 ° C.
- the upper limit of the melting point of the crystalline polyester containing the copolymer component constituting the light diffusion layer (B) is preferably 255 ° C. If melting
- the surface light diffusing polyester film of the present invention has a support layer (A) made of crystalline homopolyester or crystalline polyester containing a copolymer component.
- a support layer (A) made of crystalline homopolyester or crystalline polyester containing a copolymer component.
- the crystalline polyester / crystalline homopolyester constituting the support layer (A) has a higher melting point.
- the melting point difference between the resins constituting the two layers of the support layer (A) and the light diffusion layer (B) is large, curling due to the bimetal structure is likely to occur.
- the melting point difference between the crystalline polyester / crystalline homopolyester constituting the support layer (A) and the crystalline polyester constituting the light diffusion layer (B) is preferably within 25 ° C., and within 20 ° C. More preferably, it is more preferably within 10 ° C, particularly preferably within 5 ° C. If the melting point difference is within 25 ° C., the occurrence of curling due to the bimetallic structure can be suppressed within the practical range. Since the melting point of the resin constituting the light diffusion layer (B) is preferably within the above range, the upper limit of the melting point of the crystalline polyester / crystalline homopolyester constituting the support layer (A) is preferably 270 ° C.
- the melting point of the crystalline polyester constituting the support layer (A) and the light diffusion layer (B) can be controlled by introducing a copolymer component.
- a copolymer component it is desirable to introduce a predetermined amount of a copolymer component into the crystalline polyester constituting the light diffusion layer (B).
- the plane orientation coefficient of the biaxially stretched film can be controlled, and the light transmittance and the light diffusivity can be highly compatible.
- the copolymer component is excessively introduced, the melting point of the polyester is lowered, and the original excellent characteristics of the biaxially stretched polyester film cannot be obtained.
- the introduction amount of the copolymer component is preferably 3 mol% or more, more preferably 5 mol% or more, and particularly preferably 8 mol% or more with respect to the entire aromatic dicarboxylic component or the entire glycol component.
- the content of the copolymer component is larger than 3 mol%, it is preferable because generation of voids is suppressed and the light transmittance and the light diffusibility are highly compatible.
- the upper limit of the introduction amount of the copolymer component is preferably 20 mol% or less, more preferably 18 mol% or less, and particularly preferably 15 mol% or less with respect to the above components.
- the content of the copolymer component is 20 mol% or less, it is preferable because the melting point is such that the mechanical properties of the biaxially stretched polyester film are within the practical range.
- the composition of the copolymer component that can be used in the present invention will be described later.
- the surface light diffusing polyester film of the present invention is formed on at least one surface of the support layer (A) comprising the crystalline homopolyester or the crystalline polyester containing a copolymer component. It is important that the light diffusion layer (B) comprising a blended composition of a crystalline polyester containing the copolymer component and an additive incompatible with the polyester has a multilayer structure laminated by a coextrusion method. .
- the diffusion of light in the light diffusion layer (B) is divided into scattering caused by the surface structure of the film and scattering caused by the internal structure of the film.
- the scattering can be evaluated as surface haze, and the post-scattering can be evaluated as internal haze.
- Light scattering by internal structures such as voids is accompanied by backscattering, so that a high total light transmittance cannot be obtained.
- the light scattering by the surface structure can obtain high light diffusibility without greatly reducing the total light transmittance.
- the surface light diffusible polyester film of the present invention employs the multilayer structure described above, thereby imparting light diffusibility by the concavo-convex structure on the surface of the light diffusion layer (B) caused by the incompatible additive, and the film It is possible to achieve high total light transmittance by suppressing light scattering (internal haze) in the inside. Thereby, both high light transmittance and light diffusibility can be achieved.
- the surface light diffusing polyester film of the present invention When used as a prism sheet, a film obtained by laminating the light diffusing layer (B) on one side of the support layer (A) is used as a base material, and the surface opposite to the light diffusing layer (B) is used. It can use suitably by providing a prism structure.
- the layer structure of the surface light diffusible polyester film of the present invention may be a two-layer structure as described above, and may be a multilayer structure of three or more layers as necessary if the effects of the present invention can be obtained.
- a film having a flat surface not having a concavo-convex structure
- Newton rings are generated, and visibility may be lowered.
- the light diffusing layer (B) is formed on both sides of the support layer (A) in order to prevent Newton rings from being superimposed on the light guide plate or the prism sheet. ) Is preferably laminated.
- the composition of the incompatible additive that can be used in the present invention will be described later.
- the surface light diffusing polyester film of the present invention has a support layer (A) and a light diffusing layer (B), in order to obtain the surface light diffusing polyester film of the present invention.
- the thickness of the light diffusion layer (B) is important.
- the surface haze of the light diffusion layer (B) tends to increase as the surface irregularity increases. Therefore, it is desirable that the particle size of the additive in the light diffusion layer (B) is large.
- the lower limit of the thickness of the light diffusion layer (B) is preferably 3 ⁇ m, more preferably 4 ⁇ m, and particularly preferably 5 ⁇ m.
- the thickness of the light diffusing layer (B) exceeds the particle size of the incompatible additive to a considerable extent, it becomes difficult to form a surface uneven structure effectively. Therefore, when the thickness of the light diffusion layer (B) is increased, the formation of surface irregularities is reduced and the surface haze is reduced. Further, according to the thickness of the light diffusion layer (B), the internal haze due to the internal structure of the light diffusion layer (B) increases, and the total light transmittance decreases. In order to achieve both high total light transmittance and light diffusibility, it is desirable to control the thickness of the light diffusion layer (B) within a predetermined range. Therefore, the upper limit of the thickness of the light diffusion layer (B) is preferably 50 ⁇ m, more preferably 30 ⁇ m, and particularly preferably 20 ⁇ m.
- the ratio of the light diffusion layer (B) to the total film thickness (A + B) is increased, curling due to the bimetallic structure is likely to occur. Furthermore, since the ratio of the light diffusion layer (B) having a relatively low melting point as compared with the support layer (A) is increased, thickness unevenness tends to occur as a whole film, and the surface smoothness is impaired. Moreover, since a light-diffusion layer (B) contains many copolymerization components, an orientation coefficient falls as the whole film, and a mechanical characteristic falls. On the other hand, if the ratio of the light diffusion layer (B) to the total film thickness is small, the additive in the light diffusion layer (B) may bleed out on the surface of the film or may fall off.
- the ratio of the light diffusion layer (B) to the total film thickness is desirably controlled within a predetermined range, and preferably in the range of 2 to 50%.
- the lower limit of the ratio of the light diffusion layer (B) to the total film thickness is preferably 2%, more preferably 3%, and particularly preferably 4%.
- the upper limit of the ratio of the light diffusion layer (B) to the total film thickness is preferably 50%, more preferably 35%, and particularly preferably 20%.
- Control of intrinsic viscosity of light diffusion layer (B) constituting resin The present invention is characterized in that the light diffusion layer (B) is applied by a coextrusion method. Since the surface light diffusible polyester film of the present invention is intended for optical applications, it is preferable that there are few optical defects due to foreign matters, and when a resin is supplied by a coextrusion method, it is desirable to provide a foreign matter removing filter in the melt line. In order to allow the resin to pass through the foreign matter removal filter, a certain extrusion pressure is required. However, when the intrinsic viscosity of the resin is low, the ejection stability at the time of extrusion of the molten resin is lowered, so that stable film formation becomes difficult.
- the intrinsic viscosity of resin when the intrinsic viscosity of resin is low, the plane orientation coefficient of the obtained light-diffusion layer (B) becomes low, and the mechanical strength of a film falls. Therefore, it was considered that the intrinsic viscosity of the crystalline polyester containing the copolymer component constituting the light diffusion layer (B) is preferably higher.
- the present inventors have found the surprising relationship described below between the intrinsic viscosity of the polyester and the surface haze.
- the shearing force during melting and stirring is increased. Therefore, when the crystalline polyester and an incompatible additive are stirred and mixed in an extruder, the higher the intrinsic viscosity of the crystalline polyester, the higher the shearing force in melting and stirring, and the higher the dispersibility of the additive. Rise. This is thought to be due to the additive becoming finer due to the shearing force of the solvent. As a result, the particle size of the additive becomes small, and an effective dispersion diameter cannot be obtained to such an extent that a good uneven structure is imparted to the surface of the light diffusion layer (B), and the surface haze is lowered.
- the intrinsic viscosity of the crystalline polyester containing the copolymer component constituting the light diffusion layer can be controlled within a predetermined range. It turned out to be preferable.
- the lower limit of the intrinsic viscosity of the crystalline polyester is preferably 0.50 dl / g, more preferably 0.52 dl / g.
- the upper limit of the intrinsic viscosity of the crystalline polyester is preferably 0.61 dl / g, and more preferably 0.59 dl / g. When the intrinsic viscosity exceeds 0.61 dl / g, the dispersion diameter in the polyester of the additive becomes small, and the light diffusibility tends to decrease.
- the difference in melt viscosity between the crystalline polyester containing the copolymerization component constituting the light diffusion layer (B) and the incompatible additive is large.
- the difference in melt viscosity is preferably 35 Pa ⁇ s or more, and more preferably 40 Pa ⁇ s or more.
- the mechanical properties and optical properties of the film can also be controlled by the film forming conditions.
- the stretching temperature of the film is raised, the stretching stress is lowered, so the orientation coefficient is lowered and the generation of voids is suppressed.
- surface irregularities due to incompatible additives are easily formed, it is desirable to stretch at a high temperature from the viewpoint of achieving both total light transmittance and light diffusibility.
- the stretching temperature is increased, the thickness variation of the film increases, resulting in thickness unevenness and the like, and it is difficult to obtain the original mechanical characteristics of the film.
- the surface light diffusible polyester film of the present invention in order to achieve both excellent mechanical properties and total light transmittance and light diffusibility, film forming conditions according to the resin properties and required properties, particularly the temperature during stretching. It is desirable to control appropriately.
- the temperature during the transverse stretching is desirably in the temperature range of 120 ° C to 160 ° C.
- the concavo-convex structure having an average inclination gradient ( ⁇ a) to the extent that the concavo-convex structure is flattened in the subsequent film forming process and a predetermined luminance is generated when combined with the lens sheet.
- ⁇ a average inclination gradient
- the concavo-convex structure having an average inclination gradient ( ⁇ a) to the extent that the concavo-convex structure is flattened in the subsequent film forming process and a predetermined luminance is generated when combined with the lens sheet.
- heat treatment was performed at a high temperature of 235 to 250 ° C. in order to reduce voids inside the film.
- the crystalline polyester containing the copolymer component constituting the light diffusion layer (B) was softened by a high-temperature heat treatment, and the gradient formed by the concavo-convex structure was flattened.
- the average gradient ( ⁇ a) of the present invention it is desirable to increase the difference between the melting point of the resin constituting the light diffusion layer (B) and the heat treatment temperature.
- the difference between the melting point of the resin constituting the light diffusion layer and the heat treatment temperature is reduced, the light diffusion layer is softened in the heat treatment step, and as a result, a surface uneven structure having an average gradient ( ⁇ a) excellent in luminance is formed. Disappear.
- the difference between the melting point of the resin constituting the light diffusion layer (B) and the heat treatment temperature is increased, the heat treatment temperature is lowered, so that the thermal contraction rate of the film is deteriorated.
- the difference between the melting point of the light diffusion layer (B) and the heat treatment temperature is preferably controlled within a range of 9 ° C. or more and 25 ° C. or less, more preferably 11 ° C. or more and 23 ° C. or less, More preferably, it is 13 ° C. or more and 21 ° C. or less.
- the support layer (A) surface side and the light diffusion layer (B) surface side are aligned by stretching.
- the difference and controlling the difference between the linear expansion coefficients on both sides of the film it is possible to obtain a surface light diffusible polyester film that suppresses the occurrence of curling due to the bimetallic structure.
- the dispersion diameter of the additive can be controlled by controlling the shear force at the time of discharging the molten resin by controlling the slit interval of the T die.
- the dispersion diameter of the additive can be controlled by adding a flocculant having an effect of agglomerating the finely divided additive to the dissolved resin once dispersed in the polymer tube after kneading.
- a flocculant having an effect of agglomerating the finely divided additive to the dissolved resin once dispersed in the polymer tube after kneading.
- a polystyrene resin when a polystyrene resin is used as an additive, by adding an acrylic-styrene copolymer or the like as an aggregating agent, aggregation of the styrene resin is promoted and a dispersion diameter effective for light diffusion can be obtained.
- Such an acrylic-styrene copolymer can also be obtained by copolymerizing 1 mol of glycidyl methacrylate and 2 mol of styrene monomer.
- the crystalline homopolyester used as a film raw material in the present invention includes aromatic dicarboxylic acids or esters thereof such as terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, ethylene glycol, diethylene glycol, 1,3-propanediol, 1,4-butane. Polyester produced by polycondensation with glycols such as diol and neopentyl glycol.
- these polyesters can be transesterified by an alkyl ester of an aromatic dicarboxylic acid and a glycol and then subjected to a polycondensation, or an aromatic method. It can be produced by a method such as polycondensation of diglycol ester of dicarboxylic acid.
- polyesters include polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, and polyethylene-2,6-naphthalate.
- the polyester may be a homopolymer or may be a copolymer of the third component within a range that does not substantially impair the crystallinity thereof.
- a polyester having an ethylene terephthalate unit or an ethylene-2,6-naphthalate unit of 70 mol% or more, preferably 80 mol% or more, more preferably 90 mol% or more is preferable.
- the crystalline polyester containing a copolymerization component that can be used in the present invention is a polyester in which a third component (copolymerization component) is introduced into the main chain using the above crystalline homopolyester as a basic skeleton.
- the structure, molecular weight, and composition are not limited and are arbitrary.
- the surface light diffusing polyester film of the present invention comprises a copolyester composed of an aromatic dicarboxylic acid component and a glycol component containing ethylene glycol and at least one of a branched aliphatic glycol or alicyclic glycol. It is preferable to use it for some or all of the raw materials.
- Examples of branched aliphatic glycols include neopentyl glycol, 1,2-propanediol, and 1,2-butanediol.
- Examples of the alicyclic glycol include 1,4-cyclohexanedimethanol and tricyclodecane dimethylol.
- neopentyl glycol and 1,4-cyclohexanedimethanol are particularly preferable.
- 1,3-propanediol or 1,4-butanediol is used as a copolymerization component in addition to the glycol component.
- Introducing and using these glycols as copolymerization components in the above-mentioned range is suitable for imparting the above-mentioned characteristics, and further reduces voids in the light diffusion layer, and reduces light transmittance and light. It is also preferable from the viewpoint of achieving both high diffusibility.
- one or more dicarboxylic acid components and / or glycol components as described below may be used in combination with the polyester as a copolymerization component.
- dicarboxylic acid components that can be used in combination with terephthalic acid or its ester-forming derivatives include (1) isophthalic acid, 2,6-naphthalenedicarboxylic acid, diphenyl-4,4'-dicarboxylic acid, diphenoxyethanedicarboxylic acid Aromatic dicarboxylic acids such as acid, diphenylsulfone dicarboxylic acid, 5-sodium sulfoisophthalic acid, phthalic acid or their ester-forming derivatives, (2) oxalic acid, succinic acid, adipic acid, sebacic acid, dimer acid, maleic acid Aliphatic dicarboxylic acids such as fumaric acid and glutaric acid or ester-forming derivatives thereof, (3) alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid or ester-forming derivatives thereof, (4) p-oxybenzoic acid, Oxycarboxylic acids such as oxycaproic acid
- glycol components that can be used in combination with ethylene glycol and branched aliphatic glycol and / or alicyclic glycol include aliphatic glycols such as pentanediol and hexanediol, bisphenol A, bisphenol S, and the like. Aromatic glycols and their ethylene oxide adducts, diethylene glycol, triethylene glycol, dimer diol and the like can be mentioned.
- the polyester may be further copolymerized with a polyfunctional compound such as trimellitic acid, trimesic acid, or trimethylolpropane.
- a polyfunctional compound such as trimellitic acid, trimesic acid, or trimethylolpropane.
- Examples of the catalyst used for producing the polyester include alkaline earth metal compounds, manganese compounds, cobalt compounds, aluminum compounds, antimony compounds, titanium compounds, titanium / silicon composite oxides, and germanium compounds. Of these, titanium compounds, antimony compounds, germanium compounds, and aluminum compounds are preferred from the viewpoint of catalytic activity.
- a phosphorus compound as a heat stabilizer.
- phosphorus compound phosphoric acid, phosphorous acid, etc. are preferable, for example.
- the copolymerized polyester may be used as a raw material for the film as it is, or a copolymerized polyester having a large amount of copolymerized components is blended with a homopolyester (for example, polyethylene terephthalate) to copolymerize. You may adjust the amount.
- a homopolyester for example, polyethylene terephthalate
- a co-polymer having a high melting point (heat resistance) while achieving both the light diffusibility and the total light transmittance equivalent to the case of using only the copolyester can be prepared.
- a method may be employed in which two different kinds of crystalline polyesters are melt-mixed and a third component (copolymerization component) is introduced into the main chain by utilizing a transesterification reaction between them.
- the copolymer polyester, polyethylene terephthalate, and at least one homopolyester other than polyethylene terephthalate are blended and used as a raw material for the surface light diffusing polyester film of the present invention.
- the use is further preferable from the viewpoint of reducing voids.
- the polyester constituting the support layer (A) does not substantially contain particles.
- the crystalline copolyester constituting the light diffusion layer does not substantially contain particles other than the additive described later.
- the above-mentioned “substantially contain no particles” means, for example, in the case of inorganic particles, a content of 50 ppm or less, preferably 10 ppm or less, particularly preferably a detection limit or less when inorganic elements are quantified by fluorescent X-ray analysis. Means quantity.
- the additive in the present invention is added for the purpose of imparting unevenness to the surface of the light diffusion layer and exhibiting surface light diffusion performance. Light incident on the light diffusing layer (emitted from the light diffusing layer) is refracted and diffused in a random direction by the unevenness imparted to the film surface, and surface light diffusibility is exhibited.
- the additive is not particularly limited as long as it is a material incompatible with the polyester, but it is preferable to use the following materials.
- thermoplastic resin incompatible with polyester The most excellent additive that can be used in the present invention is a thermoplastic resin that is incompatible with the polyester. That is, by utilizing the incompatibility between polyester and thermoplastic resin, in the production process (melting / extrusion process) of the biaxially stretched film, the matrix made of polyester is made of a thermoplastic resin that is incompatible with the polyester. This is a technology that forms domains in a dispersed manner and uses them as surface irregularity forming agents. By using this technique, foreign matter can be filtered with a high-accuracy filter in the film melting / extrusion step, and the cleanliness required for a liquid crystal display film can be achieved.
- polyolefins such as polyethylene, polypropylene, polymethylpentene, various cyclic olefin polymers, polycarbonate, polystyrene such as atactic polystyrene, syndiotactic polystyrene, iso
- an amorphous transparent polymer in order to produce a film having a high light transmittance.
- a crystalline polymer when used as an additive, the crystalline polymer becomes cloudy, the internal haze of the film increases, and the light transmittance may decrease.
- amorphous transparent polymer examples include the following. That is, polystyrene (PS resin), acrylonitrile / styrene copolymer (AS resin), methyl methacrylate / styrene copolymer (MS resin), cyclic olefin polymer, methacrylic resin, PMMA, and the like are exemplified.
- an amorphous transparent polymer having a polymer surface tension close to that of a matrix made of polyester it is more preferable from the viewpoint of void reduction to select an amorphous transparent polymer having a polymer surface tension close to that of a matrix made of polyester.
- an amorphous transparent polymer having a surface tension close to that of polyester polystyrene (PS resin), PMMA and the like are particularly preferable.
- Non-melting polymer particles The non-melting polymer particles that can be used as the additive of the present invention are obtained when the temperature is raised from 30 ° C. to 350 ° C. at 10 ° C./min using a melting point measuring device (manufactured by Stanford Research Systems, MPA100 type).
- the composition of the particles is not limited as long as the particles do not undergo flow deformation due to melting. Examples thereof include acrylic resins, polystyrene resins, polyolefin resins, polyester resins, polyamide resins, polyimide resins, fluorine resins, urea resins, melamine resins, and organic silicone resins.
- the shape of the particles is preferably spherical or elliptical. The particles may or may not have pores. Furthermore, you may use both together.
- non-melting polymer particles are made of a polymer having a melting point of 350 ° C. or higher, non-cross-linked polymer particles may be used, but from the viewpoint of heat resistance, cross-linked polymer particles made of a polymer having a cross-linked structure are used. It is preferable.
- the average particle size of the non-melting polymer particles is preferably 0.1 to 50 ⁇ m.
- the lower limit of the average particle size of the non-melting polymer particles is more preferably 0.5 ⁇ m, and particularly preferably 5 ⁇ m.
- the average particle size of the non-melting polymer particles is preferably 0.1 ⁇ m or more.
- the upper limit of the average particle diameter of the non-melting polymer particles is more preferably 30 ⁇ m, and particularly preferably 20 ⁇ m.
- the non-melting polymer particles are preferably particles having a sharp particle size distribution as much as possible.
- the above non-melting polymer particles may be one kind or two or more kinds.
- grain is performed with the following method. Take a photograph of the particles with a scanning electron microscope (SEM), measure the maximum diameter of 300-500 particles at a magnification such that the size of one smallest particle is 2-5 mm, and calculate the average value. Average particle diameter. Moreover, when the particle
- SEM scanning electron microscope
- inorganic particles examples include silica, calcium carbonate, barium sulfate, calcium sulfate, alumina, kaolinite, talc and the like.
- the average particle size of the inorganic particles is usually preferably 0.1 to 50 ⁇ m. 0.5-30 ⁇ m is more preferable, and 1-20 ⁇ m is even more preferable. If the average particle size is less than 0.1 ⁇ m, a good light diffusion effect cannot be obtained. On the contrary, when it exceeds 50 ⁇ m, it is not preferable because it leads to a decrease in film strength and the like.
- the particle size distribution of the inorganic particles is preferably as sharp as possible. When it becomes necessary to widen the particle size distribution, it is preferable to mix a plurality of particles having a sharp particle size distribution. By the correspondence, mixing of particles having a large particle diameter, which is a defect of the film, can be suppressed.
- grain is performed with the following method. Take a photograph of the particles with a scanning electron microscope (SEM), measure the maximum diameter of 300-500 particles at a magnification such that the size of one smallest particle is 2-5 mm, and calculate the average value. Average particle diameter. Moreover, the maximum diameter of the particle
- SEM scanning electron microscope
- the shape of the above inorganic particles is not limited, but is preferably substantially spherical or true spherical.
- the particles may be non-porous or porous. Furthermore, you may use both together.
- the additive used in the present invention may be one of the above three types, or two or more types may be used in combination.
- the light diffusing layer in the surface light diffusing polyester film of the present invention comprises a blended composition of 50 to 99 parts by mass of the crystalline polyester containing the copolymer component and 1 to 50 parts by mass of an additive incompatible with the polyester. .
- a preferred blending ratio of both is a blend of 75 to 98 parts by weight of polyester and 2 to 25 parts by weight of additive, and more preferably a blend of 80 to 97 parts by weight of polyester and 3 to 20 parts by weight of additive.
- the mixing ratio of the additive When the mixing ratio of the additive is less than 1 part by mass, the film surface unevenness forming ability by the additive is insufficient, and sufficient surface light diffusion performance cannot be obtained.
- the mixing ratio of the additive exceeds 50 parts by mass, light scattering at the additive / polyester interface increases, and the stretching stress of the polyester increases to easily generate voids around the additive. As a result, the internal haze of the light diffusion layer increases, and the total light transmittance tends to decrease. Furthermore, the additive easily falls off during biaxial stretching of the film, and the fallout can cause foreign matter.
- Plane orientation coefficient It is important that the surface light diffusing polyester film of the present invention has a plane orientation coefficient ( ⁇ P) of 0.08 to 0.16.
- the lower limit of the plane orientation coefficient ( ⁇ P) is more preferably 0.09, and particularly preferably 0.10.
- the upper limit of the plane orientation coefficient ( ⁇ P) is more preferably 0.15, and particularly preferably 0.14.
- the surface orientation coefficient ( ⁇ P) is 0.16 or less because the unevenness on the surface of the light diffusion layer (B) is effectively formed and the light diffusion effect (surface haze) generated by the surface unevenness is exhibited.
- the plane orientation coefficient ( ⁇ P) exceeds 0.16, depending on the type of additive used, the number and size of voids generated around the additive tend to increase. Therefore, internal scattering (internal haze) increases, and the total light transmittance tends to decrease. In any case, when the plane orientation coefficient ( ⁇ P) is 0.16 or less, both the total light transmittance and the light diffusibility can be achieved.
- the plane orientation coefficient is 0.08 or more, the characteristics as a biaxially stretched film are exhibited, heat resistance, mechanical strength, thickness uniformity and the like are good, and the occurrence of heating curl is suppressed.
- the method for controlling the plane orientation coefficient within the above range is arbitrary, but can be controlled, for example, by adjusting the ratio of the copolymer component to the crystalline polyester containing the copolymer component. If the ratio of the copolymerization component in the light diffusion layer (B) or the support layer (A) is increased, the plane orientation coefficient is decreased, and if the ratio of the copolymerization component is decreased, the plane orientation coefficient is increased. be able to.
- the ratio of the preferable copolymerization component is as described above.
- the glass transition point of the crystalline polyester containing the copolymer component may be controlled by polymer blend or copolymerization. If the glass transition point is lowered, the orientation in the biaxial stretching step described later is lowered, and the plane orientation coefficient can be lowered. Moreover, the same effect is acquired even if the intrinsic viscosity of the raw material polyester used for a light-diffusion layer is reduced. A preferred intrinsic viscosity is as described above.
- the plane orientation coefficient can be controlled to some extent by adjusting the biaxial stretching conditions described later.
- the stretching temperature for longitudinal stretching or transverse stretching may be set high, the stretching ratio may be set low, or the heat treatment temperature may be set high.
- Preferred biaxial stretching conditions will be described later.
- the present invention is characterized in that the surface haze is 15% or more and the internal haze is less than the surface haze.
- the surface haze is a characteristic derived from surface irregularities of the light diffusion layer. Therefore, when light is emitted from the film surface, or when light is incident on the film surface, the surface haze is increased due to the light being refracted by the surface irregularities of the light diffusion layer. Therefore, surface haze and total light transmittance are basically irrelevant. Therefore, by increasing the surface haze, the light diffusibility can be enhanced in a state where the decrease in the total light transmittance is suppressed.
- the internal haze is a characteristic derived from light scattering inside the film. Therefore, the total light transmittance is reduced due to the influence of backscattering of incident light. Therefore, in order to produce a light diffusible polyester film having excellent light diffusibility and high total light transmittance, it is effective means to increase the surface haze and reduce the internal haze as much as possible.
- the surface haze of the surface light diffusible polyester film of the present invention is 15% or more, and the preferred lower limit is 20%. If the surface haze is 15% or more, an effective diffusing effect is exerted on the printed pattern of the light guide plate and the lamp image of the cold cathode tube, and light diffusing performance effective as a light diffusing film is obtained.
- the preferable upper limit of the surface haze is 60%, the more preferable upper limit is 70%, and the more preferable upper limit is 80%. If the surface haze is 60% or less, the internal haze is suppressed and the total light transmittance tends to increase.
- the internal haze is less than the surface haze.
- the upper limit of the internal haze is preferably 40%, more preferably 30%, still more preferably 20%, and particularly preferably 10%.
- the internal haze is responsible for the light diffusing function of the film, causing light scattering (with backscattering) inside the film and total light transmission. The rate is greatly reduced.
- the lower limit of the internal haze is preferably 1%. In a film having an internal haze of less than 1%, sufficient surface haze tends not to be obtained.
- the surface light diffusing polyester film of the present invention preferably has a total light transmittance of 86% or more. A more preferable lower limit of light transmittance is 87%, and a more preferable lower limit is 88%.
- the light diffusion performance of the light diffusing film can be quantitatively evaluated by, for example, the image definition.
- Image sharpness is an index indicating the sharpness when a light source such as a fluorescent lamp is viewed through a film, and is a normal method for measuring in accordance with JIS K 7105 “Plastic Optical Properties Test Method” image sharpness. This is the image definition evaluated in. The smaller the image definition, the better the concealing property and the better the light diffusion performance.
- the surface light diffusible polyester film of the present invention it is possible to obtain an image definition of 50% or less in a transmission method with an optical comb width of 2 mm.
- a more preferable upper limit of image definition is 40%, and a further preferable upper limit is 20%.
- the lower limit of the image definition is preferably 1%, more preferably 3%.
- the light diffusing performance of the light diffusing film can be further quantitatively evaluated by, for example, transmitted light intensity using a goniophotometer GP-200 manufactured by Murakami Color Research Laboratory.
- the transmitted light intensity the value of the light receiving angle 0 degree is I (0)
- the value of the light receiving angle N degree is I (N)
- the transmitted light intensity ratio obtained by the following formula is S (N).
- S (1) can obtain a value of 75% or more.
- the upper limit value of S (1) is preferably 99%, more preferably 95%, still more preferably 85%.
- the luminance is the luminance derived from the ratio of the parallel light transmittance and the total light transmittance when the light diffusing film and the lens sheet are superimposed and irradiated with light, with the ratio of the lens sheet alone being 100. Evaluated as a ratio. If the said brightness
- the dimensional change rate at 150 ° C. is preferably 3% or less in both the horizontal direction and the vertical direction, the more preferable upper limit is 2.5%, and the more preferable upper limit is 2%.
- a preferred upper limit is 1.5%, and a more particularly preferred upper limit is 1%.
- a smaller dimensional change rate in the horizontal and vertical directions at 150 ° C. is desirable, but 0% is considered the lower limit.
- the longitudinal direction refers to the film flow direction (winding direction) during film formation
- the lateral direction refers to a direction perpendicular thereto.
- the lower limit of the tensile strength of the film is preferably 100 MPa, more preferably 130 MPa, and particularly preferably 160 MPa.
- the tensile strength is 100 MPa or more, the mechanical strength of the biaxially stretched film is exhibited, and problems such as cracks, tears, breaks, and tears are less likely to occur in the film processing step.
- the surface light diffusible polyester film of the present invention preferably has a thickness unevenness of 5.0% or less.
- the thickness unevenness of the film is 5.0% or less, when the film is rolled up, wrinkles and bumps are hardly generated, and flatness is maintained. As a result, the luminance of the light emitting surface in the backlight unit becomes uniform, and the original purpose of the light diffusing film can be achieved.
- the surface light diffusing polyester film of the present invention preferably has a curl value of 5 mm or less after heat treatment at 100 ° C. for 30 minutes under no load.
- the curl value is 5 mm or less, for example, the handling property when working under no tension when incorporated into a final product as a light diffusing film is improved. Further, even when processing at a high temperature or use in a high temperature environment, the original purpose of the light diffusing film can be achieved, in which the distortion of the film is suppressed and the luminance of the light exit surface of the backlight unit is made uniform.
- curling can be controlled by controlling the difference in melting point between the support layer (A) and the light diffusion layer (B).
- the structural difference between the front and back of the film applied in each process such as preheating, stretching, cooling, winding, etc., including the crystallinity in the thickness direction, positively generate structural differences between the front and back of the film
- the degree of orientation of the film front and back is independently controlled by setting the temperature or heat quantity of the film front and back to different values.
- the structural difference between the front and back of the film during longitudinal stretching is controlled, and the lateral curl is controlled by controlling the structural difference between the front and back of the film during lateral stretching and heat setting. It is preferable to create an internal strain in the opposite direction, to make it compatible with the internal strain due to the structural difference between the front and back of the film, and to suppress curling.
- the thickness of the surface light diffusing polyester film of the present invention is arbitrary and is not particularly limited, but is preferably in the range of 25 to 500 ⁇ m, more preferably in the range of 75 to 350 ⁇ m.
- polyester a polyethylene terephthalate copolymer (hereinafter simply abbreviated as polyester) is used as a crystalline polyester containing a copolymer component that is a raw material of the light diffusion layer (B) for a preferable method for producing a surface light diffusible polyester film of the present invention.
- a typical example using the pellets of (sometimes) will be described in detail.
- polyester and a thermoplastic resin incompatible with the polyester are dried by vacuum drying or hot air drying so that the moisture content is less than 100 ppm.
- each raw material is weighed and mixed, supplied to an extruder, and melt extruded into a sheet. Further, the molten sheet is brought into close contact with a metal rotating roll (chill roll) controlled at a surface temperature of 10 to 50 ° C. by using an electrostatic application method to obtain an unstretched polyester sheet.
- the incompatible additive is used as a pre-kneading master pellet in which all or part of the base polymer and the incompatible additive are previously melt-mixed using an extruder. is important.
- the resin temperature up to the melting section, kneading section, polymer tube, gear pump, and filter of the extruder is controlled to 220 to 290 ° C.
- the resin temperature up to the subsequent polymer tube and die is controlled to 210 to 295 ° C.
- high-precision filtration is performed at any place where the molten resin is maintained at a constant temperature of 275 ° C. in order to remove foreign substances contained in the resin.
- the filter medium of stainless steel sintered body is capable of removing aggregates mainly composed of Si, Ti, Sb, Ge, Cu and high melting point organic substances in the resin. Excellent and suitable.
- the filter particle size (initial filtration efficiency 95%) of the filter medium is preferably 20 ⁇ m or less, particularly preferably 15 ⁇ m or less.
- the filter particle size (initial filtration efficiency 95%) of the filter medium exceeds 20 ⁇ m, it becomes difficult to sufficiently remove foreign matters having a size of 20 ⁇ m or more.
- Productivity may be reduced by performing high-precision filtration of molten resin using a filter medium having a filter particle size (initial filtration efficiency of 95%) of 20 ⁇ m or less.
- a film with less optical defects due to coarse particles may be used. It is an important process to obtain.
- high-accuracy filtration as described above can be performed by using an incompatible thermoplastic resin for the crystalline copolyester as an additive.
- the raw materials of each layer are extruded using two or more extruders, and a multi-layer feed block (for example, a confluence having a rectangular confluence)
- a multi-layer feed block for example, a confluence having a rectangular confluence
- the two layers are joined together using a block), extruded into a sheet from a slit die, and cooled and solidified on a casting roll to form an unstretched film.
- a multi-manifold die may be used instead of the multilayer feed block.
- the surface light diffusable polyester film of this invention it is preferable to have a coating layer on at least one surface, and also it is preferable to have a coating layer on both surfaces.
- a preferable coating amount is in the range of 0.005 to 0.20 g / m 2 .
- biaxial stretching is performed after an application layer is provided on the unstretched film obtained by the above method.
- the simultaneous biaxial stretching method or the sequential biaxial stretching method may be used.
- an easy-adhesion layer is provided on a film uniaxially stretched in the longitudinal or transverse direction, and then stretched in the orthogonal direction and biaxially stretched. I do.
- the method for applying the coating layer forming coating solution to an unstretched film or a uniaxially stretched film can be selected from known arbitrary methods, such as reverse roll coating, gravure coating, kiss coating, and die coater. Method, roll brush method, spray coating method, air knife coating method, wire bar coating method, pipe doctor method, impregnation coating method, curtain coating method, and the like. These methods are applied alone or in combination.
- the resin constituting the coating layer is a copolyester resin, polyurethane resin, or acrylic resin from the viewpoint of securing better adhesion to other optical functional layers in prism sheet applications and light diffusing film applications. It is preferable that at least one of these is a main component. These resins are also recommended from the viewpoint of suppressing the generation of reflected light on the surface of the light diffusion layer.
- the “main component” means that at least one of the resins is contained in an amount of 50% by mass or more with respect to 100% by mass of the resin constituting the coating layer. Means.
- the support layer (A) does not contain particles, or if it contains only a small amount to the extent that the transparency is not hindered, the slipperiness of the film becomes insufficient and handling properties are improved. It may get worse. Therefore, it is preferable to contain particles in the coating layer for the purpose of imparting slipperiness. For these particles, it is important to use particles having an extremely small average particle diameter equal to or smaller than the wavelength of visible light in order to ensure transparency.
- the particles include calcium carbonate, calcium phosphate, silica, kaolin, talc, titanium dioxide, alumina, barium sulfate, calcium fluoride, lithium fluoride, zeolite, molybdenum sulfide, and the like; crosslinked polymer particles; calcium oxalate And organic particles.
- Silica is particularly preferable when the coating layer is formed mainly of the copolymer polyester resin. Since silica has a relatively close refractive index to that of polyester, it is most preferable in that a light diffusible polyester film having more excellent transparency can be secured.
- the particles contained in the coating layer have an average particle diameter (average maximum diameter of number-based particles observed by SEM) of 0.005 to 1.0 ⁇ m, so that the transparency, handling properties, and scratch resistance of the film It is preferable from the viewpoint of securing.
- the upper limit of the average particle size of the particles is more preferably 0.5 ⁇ m, particularly preferably 0.2 ⁇ m, from the viewpoint of transparency.
- the lower limit of the average particle diameter of the particles is more preferably 0.01 ⁇ m, particularly preferably 0.03 ⁇ m from the viewpoints of handling properties and scratch resistance.
- grain is performed with the following method. Take a photograph of the particles with a scanning electron microscope (SEM), measure the maximum diameter of 300-500 particles at a magnification such that the size of one smallest particle is 2-5 mm, and calculate the average value. Average particle diameter.
- SEM scanning electron microscope
- the cross section of the coating film is measured using a transmission electron microscope (TEM) at a magnification such that the size of one smallest particle is 2 to 5 mm.
- TEM transmission electron microscope
- the maximum diameter of particles existing in the cross section of the coating layer is obtained.
- the average particle size of the aggregated particles is measured by taking 300 to 500 cross sections of the coated layer of the coated film using an optical microscope at a magnification of 200 times and measuring the maximum diameter.
- the content of the particles in the coating layer is 0.1 to 60% by mass with respect to the composition constituting the coating layer. It is preferable from the viewpoint of ensuring.
- the upper limit of the content of the particles is more preferably 50% by mass from the viewpoint of transparency and adhesion, and particularly preferably 40% by mass.
- the lower limit of the content of the particles is more preferably 1% by mass, particularly preferably 0.5% by mass from the viewpoints of handling properties and scratch resistance.
- Two or more kinds of the particles may be used in combination, and the same kind of particles having different particle sizes may be blended, but in any case, the average particle size of the whole particles and the total content are within the above range. Is preferably satisfied.
- the unstretched film obtained by the above method is simultaneously biaxially stretched or sequentially biaxially stretched, and then heat-treated.
- the draw ratio defined by this invention is the actual draw ratio by which the film was actually extended
- the draw ratio in either the machine direction or the transverse direction is less than 2.8 times, the thickness unevenness of the resulting film is lowered, and the original excellent heat resistance and mechanical strength of the biaxially stretched film cannot be obtained. . In addition, the film thickness uniformity is significantly deteriorated.
- the lower limit of the preferred draw ratio in the present invention is 3.0 times, and the more preferred lower limit is 3.2 times. Moreover, the preferable upper limit of a draw ratio is 5 times.
- the suitable stretching temperature conditions are as described above.
- Thickness unevenness is 5% or less
- the haze (cloudiness value) and total light transmittance of the film test piece were measured according to JIS K 7105 "Testing method for optical properties of plastics".
- the film test piece was placed with the longitudinal direction of the film in the vertical direction and the light diffusion layer (B) faced toward the light source, and measured using a NDH-300A type turbidimeter manufactured by Nippon Denshoku Industries Co., Ltd.
- the haze of the internal haze measurement sample and the blank sample was measured by the method described in (5). Then, the haze value of the blank sample was subtracted from the haze value of the sample for measuring internal haze to determine the internal haze. Moreover, the haze in the film test piece single piece measured by the method of (5) was made into the total haze, the internal haze value was subtracted from the total haze value, and the surface haze was calculated
- the film test piece was measured with the film longitudinal direction as the vertical direction and the surface of the light diffusion layer (B) facing the light source.
- As a measuring instrument an ICM-1T image clarity measuring instrument manufactured by Suga Test Instruments Co., Ltd. was used.
- the light diffusivity was measured using a Goniometer Photometer GP-200 manufactured by Murakami Color Research Laboratory.
- a halogen lamp (12V, 50W) was used as the light source, and the light emitted from the light source was extracted as horizontal parallel light through a condenser lens, pinhole, and collimator, and then dimmed with an ND filter having a transmittance of 1%.
- the light source beam stop was 10.5 mm, and the light receiving stop of the light receiver was 9.1 mm.
- the film test piece was set in the sample holder so that the surface of the light diffusing layer of the sample film was the light source side, the film main surface was perpendicular to the light source luminous flux, and the vertical direction of the film was up and down.
- the light incident on the sample film is transmitted to the opposite side of the film, reaches the light receiver, and the intensity is measured.
- the direction in which the light source light beam is coaxially extended is 0 degree, and the light receiver is rotated horizontally around the intersection of the optical axis of the light source light beam and the incident surface of the film, and from ⁇ 80 degrees to +80 in 0.1 degree steps.
- the transmitted light intensity was measured in the range of degrees.
- Transmitted light intensity ratio S (N) obtained by the following formula when the transmitted light intensity measured by the above method is I (0) and the transmitted light intensity of angle ⁇ N degrees is I (N). [%] was used as an index of light diffusivity.
- S (1) is used as a value that shows a correlation with the sharpness of the image observed through the light diffusing film. S (1) was evaluated as 75% or more as ⁇ , and S (1) as less than 75% as x.
- S (N) I (N) / I (0) ⁇ 100
- Curl value The film is cut into a sheet of 100 mm in the longitudinal direction and 50 mm in the width direction, heat-treated at 100 ° C. for 30 minutes under no load, and then a horizontal glass plate with the convex portion of the film facing down. The vertical distance between the glass plate and the lower end of the four corners of the rising film was measured using a ruler in units of a minimum scale of 0.5 mm, and the average value of the measured values at these four locations was determined. The same measurement was performed on the three film specimens, and the average value was taken as the curl value and evaluated according to the following criteria. ⁇ : Curl value is 5 mm or less ⁇ : Curl value is 5 mm or more
- the height (y) is measured continuously at a measurement length of 1.0 mm and an interval of 2.5 ⁇ m in each direction, and the respective heights y 1 , y 2 , y 3 , and the pitch at intervals of 2.5 ( ⁇ m) ,, y n a ( ⁇ m) was output to Excel file.
- the wave function of the analysis software (SX-Viewer, manufactured by Ryoka System Co., Ltd.) was used to output the protrusion height to an Excel file.
- ⁇ a was derived by calculating the following equation. For ⁇ a, an average slope gradient was derived for each of the vertical direction and the horizontal direction, and values obtained by averaging the values in the vertical direction and the horizontal direction were used.
- ⁇ a [(y 1 ⁇ 0) /2.5+ (y 2 ⁇ y 1 ) /2.5+ ⁇ + (y n ⁇ y n ⁇ 1 ) /2.5] / n
- Luminance ratio As a lens sheet to be combined with the luminance evaluation of the obtained surface light diffusive film, a lens sheet mounted on a liquid crystal television manufactured by Sharp Corporation (Aquos LC-37GS10, manufactured in 2007) was used. Two films were overlapped so as to overlap the support layer (A) surface of the cut light diffusing film piece and the lens back surface of the lens sheet. The light diffusive film piece was placed on the turbidimeter with the light diffusion layer (B) surface facing the light source so that the vertical direction of the light diffusive film piece (longitudinal direction of film formation) was the vertical direction. The NDH-300A type turbidimeter manufactured by Nippon Denshoku Industries Co., Ltd. was used as the turbidimeter.
- the measurement method was carried out in accordance with JIS K 7105 “Testing method for optical properties of plastics”. Deriving a value obtained by dividing the parallel light transmittance obtained by measurement by the total light transmittance, and a luminance ratio (%) to a value obtained by dividing the parallel light transmittance obtained by measuring the lens sheet alone by the total light transmittance ) was derived.
- Example 1 Production of crystalline homopolyester resin (M1) When the temperature of the esterification reaction can reached 200 ° C, from terephthalic acid (86.4 parts by mass) and ethylene glycol (64.4 parts by mass) The resulting slurry was added and antimony trioxide (0.017 parts by mass) and triethylamine (0.16 parts by mass) were added as catalysts while stirring. Next, the pressure was increased and the pressure esterification reaction was performed under the conditions of a gauge pressure of 3.5 kgf / cm 2 and 240 ° C. Thereafter, the inside of the esterification reaction vessel was returned to normal pressure, and magnesium acetate tetrahydrate (0.071 parts by mass) and then phosphoric acid (0.014 parts by mass) were added.
- M1 Production of crystalline homopolyester resin (M1) When the temperature of the esterification reaction can reached 200 ° C, from terephthalic acid (86.4 parts by mass) and ethylene glycol (64.4 parts by mass) The resulting slurry was added and antimony
- the temperature was raised to 260 ° C. over 15 minutes, and trimethyl phosphate (0.012 parts by mass) and then sodium acetate (0.0036 parts by mass) were added.
- the obtained esterification reaction product was transferred to a polycondensation reaction can, gradually heated from 260 ° C. to 280 ° C. under reduced pressure, and subjected to a polycondensation reaction at 285 ° C. until a predetermined intrinsic viscosity was reached. went.
- the obtained crystalline homopolyester resin (M1) has a crystal melting heat of 35 mJ / mg, a melting point of 256 ° C., an intrinsic viscosity of 0.56 dl / g, a melt viscosity of 91 Pa ⁇ s, an Sb content of 144 ppm, and an Mg content.
- the amount was 58 ppm, the P content was 40 ppm, the color L value was 56.2, and the color b value was 1.6. Further, inert particles and internally precipitated particles were not substantially contained.
- Polystyrene (M3) A polystyrene resin (PS) having a melt viscosity of 147 Pa ⁇ s was used.
- Extruder 2 and Extruder 1 Supplied from Extruder 2 and Extruder 1 with a set temperature of 275 ° C. up to the melting section, kneading section, polymer pipe, gear pump and filter of each extruder and 270 ° C. set temperature of the polymer pipe after the filter.
- Each raw material was laminated using a two-layer merging block and melt-extruded into a sheet form from the die.
- the thickness ratio of the (A) layer and the (B) layer was controlled using a gear pump of each layer so as to be 89:11.
- a stainless sintered body filter material nominal filtration accuracy: 95% cut of 10 ⁇ m particles was used for each of the filters. The temperature of the die was controlled so that the temperature of the extruded resin was 275 ° C.
- the extruded resin was brought into close contact with a cooling drum having a surface temperature of 30 ° C. using an electrostatic application method and solidified by cooling to produce an unstretched film.
- the layer surface (A) was a surface in contact with the cooling drum.
- the take-up speed of the unstretched film by the cooling drum was 12 m / min.
- the obtained unstretched film was heated to 79 ° C. using a preheating roll, and stretched 3.4 times in the flow direction between rolls having different peripheral speeds. At this time, the temperature of the film was monitored with an infrared radiation thermometer, and the heater temperature was controlled so that the maximum temperature of the film was 100 ° C.
- the obtained uniaxially stretched film was cooled to 50 ° C., and then the coating liquid (M4) was applied to both surfaces of the film.
- the coating amount of the solution was controlled so as to be about 15 g / m 2 on both sides. Thereafter, the coated surface was dried in a drying furnace.
- the both ends of the uniaxially stretched film having the coating layer are gripped by clips, guided to a tenter, preheated to 120 ° C, stretched 2.5 times in the width direction at 135 ° C, and then 1.6 times in the width direction at 140 ° C.
- the film was stretched twice, further heat treated at 231 ° C. for 10 seconds, and subjected to a relaxation treatment of 3.3% in the width direction in the process of cooling to 60 ° C., thereby producing a surface light diffusible polyester film having a total thickness of 188 ⁇ m.
- Example 1 Properties of Film The properties of the film obtained in Example 1 are shown in Table 1.
- Table 1 the surface light diffusible polyester film obtained in the present invention has excellent heat resistance, mechanical strength and thickness accuracy inherent to the biaxially stretched film. Also, the internal haze is small and the light transmittance is high. Further, it can be seen that most of the total haze is imparted by the surface haze, and the light diffusibility is also excellent. In addition, high brightness was obtained when combined with a lens sheet.
- Example 2 After stretching in the width direction, a surface light diffusible polyester film of Example 2 was produced in the same manner as shown in Example 1 except that heat treatment was performed at 222 ° C. for 10 seconds.
- Example 2 The characteristics of the film obtained in Example 2 are shown in Table 1. From Table 1, it can be seen that Example 2 has excellent characteristics as in Example 1.
- Example 3 As raw materials for the light diffusion layer (B), 51 parts by mass of crystalline homopolyester (M1) dried under reduced pressure (1 Torr) at 135 ° C. for 6 hours, and copolymer polyester (M2) dried under reduced pressure (1 Torr) at 70 ° C. for 12 hours. 46 parts by mass and 3 parts by mass of polystyrene (M3) were mixed and supplied to the extruder 2, and the drawing speed of the unstretched film by the cooling drum was adjusted so that the film thickness after stretching was 100 ⁇ m. The thickness ratio between the (A) layer and the (B) layer was controlled to be 80:20, the coating liquid (M4) was applied only to the (A) layer, and the width direction was 2.4 at 135 ° C.
- M1 crystalline homopolyester
- M2 copolymer polyester
- Example 1 To produce a surface light-diffusing polyester film of Example 3 having a thickness of 100 ⁇ m in the same manner as the the.
- Example 3 The properties of the film obtained in Example 3 are shown in Table 1. From Table 1, it can be seen that Example 3 has excellent characteristics as in Example 1.
- Example 4 As raw materials of the light diffusion layer (B), 69 parts by mass of crystalline homopolyester (M1) dried under reduced pressure (1 Torr) at 135 ° C. for 6 hours, and copolymer polyester (M2) dried under reduced pressure (1 Torr) at 70 ° C. for 12 hours. 21 parts by mass and 10 parts by mass of polystyrene (M3) were mixed and supplied to the extruder 2, heat treated at 232 ° C. for 17 seconds, adjusted to a thickness of 100 ⁇ m, layer (A) and ( B) A surface light diffusing polyester film of Example 4 was prepared in the same manner as shown in Example 3 except that the thickness ratio with the layer was 70:30.
- M1 crystalline homopolyester
- M2 copolymer polyester
- M3 polystyrene
- Example 4 The properties of the film obtained in Example 4 are shown in Table 1. From Table 1, it can be seen that Example 4 has excellent characteristics as in Example 1.
- Example 5 As raw materials for the light diffusion layer (B), 55 parts by mass of crystalline homopolyester (M1) dried under reduced pressure (1 Torr) at 135 ° C. for 6 hours, and copolymer polyester (M2) dried under reduced pressure (1 Torr) at 70 ° C. for 12 hours. 38 parts by weight and 7 parts by weight of polystyrene (M3) were mixed and supplied to the extruder 2, and the same method as shown in Example 1 was performed except that the heat treatment was performed at 224 ° C. for 10 seconds. The surface light diffusing polyester film of Example 5 was produced.
- M1 crystalline homopolyester
- M2 copolymer polyester
- Example 5 The properties of the film obtained in Example 5 are shown in Table 1. From Table 1, it can be seen that Example 5 has excellent characteristics as in Example 1.
- Comparative Example 1 As raw materials for the light diffusion layer (B), 58 parts by mass of crystalline homopolyester (M1) dried under reduced pressure (1 Torr) at 135 ° C. for 6 hours, and copolymer polyester (M2) dried under reduced pressure (1 Torr) for 12 hours at 70 ° C. 32 parts by weight and 10 parts by weight of polystyrene (M3) were mixed and supplied to the extruder 2. Heat treatment at 234 ° C. for 17 seconds and cooling to 60 ° C. 3.3% relaxation treatment in the width direction A surface light diffusible polyester film of Comparative Example 1 was prepared in the same manner as shown in Example 1 except that the above was performed.
- Comparative Example 2 A surface light diffusable polyester film of Comparative Example 2 was produced in the same manner as shown in Example 3 except that the film was heat treated at 233 ° C. after stretching in the width direction.
- Table 1 shows the characteristics of the film obtained in Comparative Example 2.
- the surface light diffusing polyester film of the present invention can be used as a light diffusing film used in a backlight unit of a liquid crystal display, a lighting device, or the like. Moreover, it can use as a base film for prism sheets. Therefore, it is important to contribute to the industry.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Elements Other Than Lenses (AREA)
- Liquid Crystal (AREA)
- Planar Illumination Modules (AREA)
- Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
- Laminated Bodies (AREA)
Abstract
A polyester film having a light-diffusing surface is provided which is excellent in heat resistance, mechanical strength, thickness precision, etc. The film reconciles total light transmittance with light-diffusing properties. The film is inhibited from suffering the thermal curling attributable to a bimetal structure. The film brings about satisfactory brightness.
Description
本発明は、大画面かつ高輝度の液晶ディスプレイのバックライトユニット、照明装置等に用いられる光拡散性フィルムに関する。さらに詳しくは、光拡散性と光線透過率を両立し、かつ温度変化に伴うカールの発生が小さい、表面光拡散性ポリエステルフィルムに関する。
The present invention relates to a light diffusive film used for a backlight unit of a liquid crystal display having a large screen and a high luminance, a lighting device, and the like. More specifically, the present invention relates to a surface light diffusible polyester film that achieves both light diffusibility and light transmittance and is less likely to curl due to temperature changes.
近年、液晶ディスプレイの技術進歩は目覚しく、パソコンやテレビ、携帯電話等の表示装置として広く用いられている。特に近年では、液晶ディスプレイの各種用途で高精細化が進んでおり、特にテレビ用途では、ハイビジョン放送の普及に伴い、従来は大画面液晶テレビでの採用が中心であった横1920×縦1080ドットのいわゆるフルHD表示が可能な液晶パネルが比較的小型の画面サイズの液晶テレビにも採用されるようになってきており、高精細化の要求がますます高まっている。これらの液晶ディスプレイは、液晶表示ユニット単独では発光機能を有していないため、その裏面にバックライトユニットを設置して表示が可能になっている。
In recent years, technological advances in liquid crystal displays have been remarkable, and they are widely used as display devices for personal computers, televisions, mobile phones and the like. In particular, in recent years, high definition has been advanced for various uses of liquid crystal displays. Especially for television applications, with the widespread use of high-definition broadcasting, horizontal 1920 × vertical 1080 dots, which has traditionally been mainly used for large-screen liquid crystal televisions. The so-called full HD display liquid crystal panel has been adopted for a relatively small screen size LCD TV, and the demand for higher definition is increasing. Since these liquid crystal displays do not have a light emitting function by themselves, a liquid crystal display unit can be displayed by installing a backlight unit on the back surface thereof.
バックライトユニットには種々の方式があるが、2種に大別される。一般的に最も多い方式は、直下型といわれる方式で、光源が照光面の内側にある方式である。この方式では多数の冷陰極線管等の光源を照光面の直下に配置することができるため、極めて高い輝度が得られ、また光損失が小さいという特徴を有している。そのため、大型液晶TVなど大型で、かつ高い輝度が必要な液晶ディスプレイに多く用いられている。
There are various types of backlight units, but they are roughly divided into two types. In general, the most common method is a method called a direct type, in which the light source is inside the illumination surface. In this system, a large number of light sources such as cold-cathode ray tubes can be arranged directly under the illumination surface, so that extremely high luminance is obtained and light loss is small. For this reason, it is often used for large liquid crystal displays such as large liquid crystal TVs that require high brightness.
もう一方の方式は、エッジライト型といわれる方式で、光源が照光面の外に配置され、照光面に配置された透明なアクリル樹脂板などからなる導光板の一辺あるいは二辺に蛍光ランプ(多くは冷陰極放電管)等の略線状発光体を密着させ、反射体からなるランプカバーを設けて導光板内に光を導入する方式である。この方式は、消費電力が小さく、小型・薄型化が可能であるという特徴を有している。そのため、ノートブック型パソコン等の小型ディスプレイ等、特に薄型化、軽量化が要求される用途に広く用いられている。
The other method is called an edge light type. The light source is arranged outside the illumination surface, and a fluorescent lamp (many of them are placed on one or two sides of a light guide plate made of a transparent acrylic resin plate or the like arranged on the illumination surface. Is a system in which a substantially linear light-emitting body such as a cold cathode discharge tube is closely attached and a lamp cover made of a reflector is provided to introduce light into the light guide plate. This method has the characteristics that power consumption is small, and that it can be reduced in size and thickness. For this reason, it is widely used in applications that require a reduction in thickness and weight, such as a small display such as a notebook personal computer.
エッジライト型バックライトユニットの導光板に求められる機能は、端部より入射した光を前方に送る機能と、送られた光を液晶表示素子側に出射する機能である。前者の機能は、使用する材料および界面反射特性に応じて決まる。また、後者の機能は、全反射条件を回避する導光板表面の形状に応じて決まる。この導光板表面の形状の形成方法として、導光板表面に白色の拡散材を付与する方法と導光板表面にレンチキュラーあるいはプリズムのフレネル形状を付与する方法が知られている。しかしながら、これらの表面形状を有する導光板から出射された光は、その形状に起因する不均一な分布を示す。したがって、高品位の画像を得るために導光板上に光拡散性フィルムを設置し、導光板から出射した光を拡散、散乱させ、照光面の輝度を均一にする工夫がなされている。
The functions required of the light guide plate of the edge light type backlight unit are a function of transmitting light incident from the end portion forward and a function of emitting the transmitted light to the liquid crystal display element side. The former function depends on the material used and the interface reflection characteristics. The latter function is determined according to the shape of the light guide plate surface that avoids the total reflection condition. As a method of forming the shape of the surface of the light guide plate, a method of applying a white diffusing material to the surface of the light guide plate and a method of providing a Fresnel shape of lenticular or prism to the surface of the light guide plate are known. However, the light emitted from the light guide plate having these surface shapes exhibits a non-uniform distribution due to the shape. Therefore, in order to obtain a high-quality image, a light diffusive film is installed on the light guide plate, and the light emitted from the light guide plate is diffused and scattered, and the brightness of the illumination surface is made uniform.
これらのバックライトユニットには、さらにその正面輝度を向上させるため、光拡散性フィルムを透過した光をできるだけ正面方向に集めるように、プリズムシート、あるいはレンズシートと呼ばれる集光機能を有するシートが用いられる場合がある。このシートの表面にはプリズム状やウェーブ状、ピラミッド状等の微小な凹凸が多数並んでおり、光拡散性フィルムを透過した出射光を屈折させて正面に集め、照光面の輝度を向上させる。この様なプリズムシートは、前記光拡散性フィルムの表面側に、1枚もしくは2枚重ねで配設され使用される。
In order to further improve the front luminance of these backlight units, a prism sheet or a sheet having a light collecting function called a lens sheet is used so as to collect the light transmitted through the light diffusing film in the front direction as much as possible. May be. The surface of the sheet has a large number of minute irregularities such as a prism shape, a wave shape, and a pyramid shape, and the emitted light that has passed through the light diffusing film is refracted and collected in the front to improve the luminance of the illumination surface. Such a prism sheet is used by being arranged one or two on the surface side of the light diffusing film.
さらに、上記プリズムシートの配設によって生じた輝度ムラやプリズムシートの欠陥を目立たなくする(隠蔽性を向上させる)ため、プリズムシートの表面側にも、光拡散性フィルムを配設する場合がある。
Furthermore, in order to make the luminance unevenness and the defect of the prism sheet caused by the arrangement of the prism sheet inconspicuous (improve concealment), a light diffusing film may be arranged on the surface side of the prism sheet. .
上記のようなバックライトユニットに用いられる光拡散性フィルムとしては、二軸延伸ポリエステルフィルムの表面に微粒子を含有した透明樹脂からなる光拡散層をコーティングして得られたもの(例えば、特許文献1、2を参照)が主流となっている。
The light diffusing film used in the backlight unit as described above is obtained by coating a light diffusing layer made of a transparent resin containing fine particles on the surface of a biaxially stretched polyester film (for example, Patent Document 1). 2) is the mainstream.
しかしながら、この方法では、基材フィルムの片面にコーティングにより光拡散層を設ける必要があるため、光拡散層と基材フィルムとの線膨張係数の違いにより、光拡散性フィルムがバイメタル状の構造となり、加熱によるカールを生じやすいという問題がある。この問題は特に近年の大型液晶TVなど、大型でかつ極めて高い輝度が必要な、直下型バックライトユニットを採用する液晶ディスプレイにおいて、重要な問題となりつつある。光拡散性フィルムが大面積化すればする程、カールが顕著になるからであり、さらにディスプレイが高輝度化すればする程、光源の消費電力、即ちバックライトユニットの発熱量が大きくなるからである。
However, in this method, since it is necessary to provide a light diffusion layer by coating on one side of the base film, the light diffusion film has a bimetallic structure due to the difference in the linear expansion coefficient between the light diffusion layer and the base film. There is a problem that curling is likely to occur due to heating. This problem is becoming an important problem particularly in a liquid crystal display employing a direct type backlight unit that requires a large size and extremely high luminance, such as a large liquid crystal TV in recent years. This is because the larger the area of the light diffusing film, the more the curling becomes more prominent, and the higher the brightness of the display, the greater the power consumption of the light source, that is, the amount of heat generated by the backlight unit. is there.
この問題を解決するためにはバイメタルの解消を図る必要がある。一般には、基材フィルムの光拡散層の表面に、数μmから数十μmの厚みでハードコート層(非光拡散性層)が形成されており、光拡散層を挟んだ両面で線膨張応力をバランスさせるという策がとられている。
¡To solve this problem, it is necessary to eliminate bimetal. Generally, a hard coat layer (non-light diffusible layer) is formed on the surface of the light diffusion layer of the base film with a thickness of several μm to several tens of μm, and linear expansion stress is formed on both sides of the light diffusion layer. The measures to balance are taken.
しかしながら、前記ハードコート層の厚みは本来不要なものであって、光拡散性フィルムに不要な厚みの増大と製造コストの増大を招く原因となっている。さらに、表裏の線膨張応力をバランスさせる対策にも限界があり、先に述べた大画面、高輝度ディスプレイにおいては、不十分な効果しか得られない。
However, the thickness of the hard coat layer is originally unnecessary, which causes an increase in thickness unnecessary for the light diffusing film and an increase in manufacturing cost. Furthermore, there is a limit to measures for balancing the linear expansion stresses on the front and back sides, and the above-described large screen and high brightness display can provide only an insufficient effect.
また、近年では、バックライトユニット部品点数の削減や製造工程の簡略化、低コスト化を目的として、光拡散性フィルムと他の光学機能性フィルムとを一体化する検討も多くなされている。
In recent years, many studies have been made to integrate a light diffusive film with another optical functional film in order to reduce the number of backlight unit parts, simplify the manufacturing process, and reduce the cost.
例えば、第1面及び第2面の2つの主表面を有する板状の透光性基材の第1面側にプリズム列が形成されており、上記基材の第2面側に多数の透光性ビーズを含む光拡散層が形成されていることを特徴とする、プリズムシート(特許文献3参照)が開示されている。
For example, a prism row is formed on the first surface side of a plate-shaped translucent base material having two main surfaces, the first surface and the second surface, and a large number of light transmitting surfaces are formed on the second surface side of the base material. There is disclosed a prism sheet (see Patent Document 3), in which a light diffusion layer containing a light bead is formed.
また、光拡散剤を混練した熱可塑性樹脂層から成る光拡散層と、光拡散剤を混練し無い熱可塑性樹脂層の表面にプリズム形状が形成されたプリズム形状形成層の少なくとも2層を積層して成る液晶表示装置用レンズシート(特許文献4参照)が開示されている。
Further, at least two layers of a light diffusing layer composed of a thermoplastic resin layer kneaded with a light diffusing agent and a prism shape forming layer having a prism shape formed on the surface of a thermoplastic resin layer not kneaded with the light diffusing agent are laminated. A lens sheet for a liquid crystal display device (see Patent Document 4) is disclosed.
さらに、フィルム内部に添加された光散乱剤と、その周りに発生したボイドにより光拡散性を付与した、プリズムシート用光散乱性二軸延伸ポリエステルフィルム(特許文献5参照)が開示されている。
Furthermore, a light-scattering biaxially stretched polyester film for a prism sheet is disclosed (see Patent Document 5) in which light diffusibility is imparted by a light-scattering agent added inside the film and voids generated around the light-scattering agent.
しかしながら、特許文献3に開示された方法では、レンズ作用を有する透光性ビーズが光の入射面側に設置されるため、いわゆる逆拡散状態となり、正面輝度が大きく低下するという問題がある。そのため、この方法では十分な輝度と光拡散性を付与することはできない。
However, the method disclosed in Patent Document 3 has a problem in that the translucent bead having a lens action is placed on the light incident surface side, so that a so-called reverse diffusion state occurs and the front luminance is greatly reduced. For this reason, this method cannot provide sufficient luminance and light diffusibility.
一方、特許文献4や特許文献5に開示された方法では、基材内部の光散乱物質により光拡散性が付与されているので、一部の入射光が後方散乱を生じ、光線透過率が低下するという問題がある。
On the other hand, in the methods disclosed in Patent Document 4 and Patent Document 5, since light diffusibility is imparted by the light scattering material inside the substrate, some incident light undergoes backscattering, and the light transmittance is reduced. There is a problem of doing.
また、近年では、優れた耐熱性、機械的強度、厚み均一性を併せ持つ二軸延伸ポリエステルフィルム自体に光拡散性を持たせようとするアプローチも多くなされている。本質的に単一の材料からなるポリエステルフィルムに光拡散性を持たせることは、前記加熱カールの問題解決や、拡散シートとプリズムシート機能の一体化にも道を開くものであり、その工業的価値は非常に大きい。
In recent years, many approaches have been made to impart light diffusivity to a biaxially stretched polyester film itself having excellent heat resistance, mechanical strength, and thickness uniformity. Providing light diffusibility to a polyester film consisting essentially of a single material opens the way for solving the above-mentioned heating curl problem and integrating the functions of the diffusion sheet and prism sheet. The value is very great.
しかしながら、これまでに提案されてきた二軸延伸ポリエステルフィルム自体に光拡散性を持たせる試みは何れも、二軸延伸ポリエステルフィルムが本来有している特長(耐熱性、機械的強度など)の何れかを損なうものであるか、光線透過率や光拡散性といった光拡散性フィルムが具備すべき特性を損なうものであり、実用化には至っていない。
However, any of the previously proposed proposals for imparting light diffusibility to the biaxially stretched polyester film itself is one of the inherent characteristics (heat resistance, mechanical strength, etc.) of the biaxially stretched polyester film. Or the characteristics that the light diffusive film should have such as light transmittance and light diffusibility are impaired, and it has not been put into practical use.
例えば、前記特許文献5に開示されたフィルムは、優れた耐熱性、機械的強度、優れた厚み均一性といった、二軸延伸ポリエステルフィルムが本来有している特長を有しているものと推定されるが、光拡散性が層の内部に存在する気泡により付与されているので、光線透過率が低いという問題がある。フィルムの二軸延伸工程において発生した気泡(ボイド)は、フィルム表面に対して平行な平板状の形態を有する。そのため、光拡散性フィルムとしてバックライトユニットに用いた場合には、照光面から出射した光の多くが後方散乱し、光線透過率が損なわれる。実際に、実施例で示されている全光線透過率は、最も高いものでも85.3%に過ぎない。
For example, the film disclosed in Patent Document 5 is presumed to have characteristics inherent to a biaxially stretched polyester film, such as excellent heat resistance, mechanical strength, and excellent thickness uniformity. However, since the light diffusibility is imparted by bubbles existing inside the layer, there is a problem that the light transmittance is low. Bubbles (voids) generated in the biaxial stretching process of the film have a flat plate shape parallel to the film surface. Therefore, when used as a light diffusive film in a backlight unit, most of the light emitted from the illumination surface is backscattered, and the light transmittance is impaired. In fact, the total light transmittance shown in the examples is only 85.3% at the highest.
また、微粒子を含む光拡散層の構成ポリエステル樹脂として、ポリエチレンテレフタレート(PET)にイソフタル酸成分を25mol%共重合させた非晶性ポリエステルを用いた内部光拡散性フィルムと、その少なくとも片面に積層されたPETフィルムからなる積層光拡散性フィルム(特許文献6参照)が開示されている。
Further, as a constituent polyester resin of a light diffusion layer containing fine particles, an internal light diffusion film using an amorphous polyester obtained by copolymerizing 25 mol% of an isophthalic acid component with polyethylene terephthalate (PET) is laminated on at least one surface thereof. A laminated light diffusing film made of PET film (see Patent Document 6) is disclosed.
上記方法においては、ボイドの消滅に配慮がなされているので、光線透過率が改善されている。しかしながら、この方法においても光拡散性がフィルム内部の光散乱によって付与されている点は同じであり、やはり入射光の後方散乱に伴う光線透過率の低下は避けられない。
In the above method, since the elimination of voids is considered, the light transmittance is improved. However, even in this method, the light diffusibility is imparted by light scattering inside the film, and a decrease in light transmittance accompanying backscattering of incident light is inevitable.
また、特許文献6のフィルムでは、基材層の構成樹脂(PETホモポリマー)と光拡散層の構成樹脂(非晶性ポリエステル)との結晶性が著しく異なる。その結果、得られた二軸延伸フィルム自体がバイメタル状の構造となり、加熱により二軸延伸フィルム自身がカールが生じ易い。そのため、後加工工程での熱処理や、液晶ディスプレイの使用環境(温度)によってカールが生じる場合がある。
In the film of Patent Document 6, the crystallinity of the constituent resin (PET homopolymer) of the base material layer and the constituent resin (amorphous polyester) of the light diffusion layer is remarkably different. As a result, the obtained biaxially stretched film itself has a bimetallic structure, and the biaxially stretched film itself is easily curled by heating. For this reason, curling may occur depending on the heat treatment in the post-processing step and the use environment (temperature) of the liquid crystal display.
また、融点が210℃以下、または非晶性のポリエステルを構成樹脂として、該構成樹脂に非相溶の粒子や熱可塑性樹脂よりなる光拡散性添加剤を配合した光拡散性層を中間層として、その両面に結晶性ポリエステル樹脂層を積層したフィルムが開示されている(特許文献7~13参照)。
In addition, a light diffusing layer in which a melting point is 210 ° C. or less or amorphous polyester is used as a constituent resin, and a light diffusing additive composed of incompatible particles or thermoplastic resin is blended with the constituent resin is used as an intermediate layer. A film in which a crystalline polyester resin layer is laminated on both sides is disclosed (see Patent Documents 7 to 13).
これらの方法では、フィルムの構造が表裏対象になっているので非対称構造によるカールの発生に関しては、ある程度改善されている。しかしながら光拡散性中間層と表面層との間に大きな結晶性の違いがあることに変わりはなく、若干の層厚み変動や表裏の物性変動等によって、温度変化時の平面性が著しく悪化する問題を内在している。
In these methods, since the film structure is the front and back object, the occurrence of curl due to the asymmetric structure is improved to some extent. However, there is no difference in crystallinity between the light diffusing intermediate layer and the surface layer, and the flatness during temperature changes is significantly deteriorated due to slight layer thickness fluctuations and physical properties fluctuations on both sides. Is inherent.
また、これらの方法では、フィルムの大部分が非晶性、あるいは著しく結晶性が乏しいポリエステルによって構成されているため、二軸延伸フィルム本来の優れた耐熱性、機械的強度および厚み均一性は得られない。
In these methods, most of the film is made of amorphous or extremely poorly crystalline polyester, so that the excellent heat resistance, mechanical strength and thickness uniformity inherent in the biaxially stretched film can be obtained. I can't.
また、特定粒子径の球状または凸レンズ状の粒子を配合した二軸延伸ポリエチレンテレフタレートフィルムが開示されている(特許文献14参照)。
Also, a biaxially stretched polyethylene terephthalate film containing spherical or convex lens-shaped particles having a specific particle diameter is disclosed (see Patent Document 14).
特許文献14には、ポリエステルの原料としてポリエチレンテレフタレートを用いつつ、88%の全光線透過率と68%の拡散透過率を有するフィルムが実施例に開示されている。さらに、85%の全光線透過率と63%の拡散透過率を有するフィルムが開示されている。しかし、これらのフィルムの耐熱性、機械的強度、厚み精度等の基本的な特性は何ら開示されておらず、二軸延伸ポリエチレンテレフタレートフィルム本来の特徴である耐熱性、機械的強度および高い厚み精度が得られる蓋然性も、全く認められない。
Patent Document 14 discloses a film having a total light transmittance of 88% and a diffuse transmittance of 68% while using polyethylene terephthalate as a raw material for polyester. Furthermore, a film having a total light transmittance of 85% and a diffuse transmittance of 63% is disclosed. However, the basic properties such as heat resistance, mechanical strength, and thickness accuracy of these films are not disclosed, and heat resistance, mechanical strength, and high thickness accuracy, which are inherent characteristics of biaxially stretched polyethylene terephthalate films, are not disclosed. The probability of obtaining is not recognized at all.
なぜなら、これらのフィルムは厚み200μmの未延伸フィルムを縦、横、両方向に3.0倍ずつ、すなわち面積倍率9.0倍で延伸することによって得られたフィルムであるにも関わらず、その厚みは50μmであり、延伸前後の厚み比率から計算される実際の面積延伸倍率は4.0倍に過ぎない。つまり、縦延伸時に生じる幅収縮や横延伸時に発生する延伸倍率分布、さらには熱処理時の寸法変化等の影響により、延伸設備の設定倍率と実際の延伸倍率とが著しく乖離してしまったものと考えられる。そして、実際の面積延伸倍率が4倍程度の延伸では、たとえ優れた光線透過率が得られたとしても、二軸延伸フィルム本来の特徴である耐熱性、機械的強度および高い厚み精度を達成することは、到底、不可能である。
This is because these films are obtained by stretching an unstretched film having a thickness of 200 μm by 3.0 times in the vertical, horizontal, and both directions, that is, by an area magnification of 9.0 times. Is 50 μm, and the actual area stretch ratio calculated from the thickness ratio before and after stretching is only 4.0 times. In other words, due to the influence of width shrinkage that occurs during longitudinal stretching, stretching ratio distribution that occurs during transverse stretching, and dimensional changes during heat treatment, the setting ratio of the stretching equipment and the actual stretching ratio are significantly different. Conceivable. And, when the actual area draw ratio is about 4 times, even if excellent light transmittance is obtained, the heat resistance, mechanical strength and high thickness accuracy which are the original characteristics of the biaxially stretched film are achieved. That is impossible.
上述のように、バイメタル状のフィルム基材は液晶ディスプレイ用バックライトユニットの大型化、高出力化に伴いカールが生じ易いという問題が顕在化しつつあり、上記問題を解決するにはオフラインコートによる方法によらずに実延伸フィルムそのものを用いることが望ましい(特許文献1、2)。しかし、二軸延伸フィルムそのものに光拡散性を持たせる方法では、光拡散性粒子によるボイドの発生が避けられず、全光線透過率が低下する問題があった(特許文献3、4、5)。ボイドの発生を回避する方法として、従来なされていた樹脂性状や延伸条件の変更ではカールの問題が解決せず(特許文献6)、あるいはフィルムの力学的強度が低下するという問題があった(特許文献7-14)。すなわち、二軸延伸フィルムの力学特性と光学特性とは二律背反の関係にあるため、いずれの特性も満足するフィルムは得られていなかった。そのため、総合品質において、透明基材フィルムに光拡散層を後加工により付与する従来の方法に及ばず、上記方法が実用化するには至っていなかった。
As described above, the problem that the bimetallic film base material is likely to be curled as the backlight unit for liquid crystal display is increased in size and output is increasing, and the offline coating method is used to solve the above problem. However, it is desirable to use the actual stretched film itself (Patent Documents 1 and 2). However, in the method of imparting light diffusibility to the biaxially stretched film itself, generation of voids due to the light diffusing particles is unavoidable, and there is a problem that the total light transmittance is reduced (Patent Documents 3, 4, and 5). . As a method for avoiding the generation of voids, there has been a problem that the problem of curling cannot be solved by changing the resin properties and stretching conditions that have been made conventionally (Patent Document 6) or the mechanical strength of the film is reduced (patent) References 7-14). That is, since the mechanical properties and optical properties of the biaxially stretched film are in a trade-off relationship, no film satisfying any of the properties has been obtained. For this reason, in terms of overall quality, the method has not been put into practical use, in comparison with the conventional method of applying a light diffusion layer to a transparent substrate film by post-processing.
上述のような問題に鑑み、主として結晶性ポリエステルからなる光拡散層を用いることで二軸延伸ポリエステルフィルム本来の優れた耐熱性、機械的強度および厚み精度等を有し、主として表面ヘーズにより光拡散性を付与することで全光線透過率と光拡散性を両立し、さらにバイメタル構造に由来する加熱カールの発生が抑制された表面光拡散性ポリエステルフィルムを提供することを目的に本願発明者らが先に行ったのが先願発明(I)(特願2007-316712号)である。
In view of the problems as described above, the biaxially stretched polyester film inherently has excellent heat resistance, mechanical strength, thickness accuracy, etc. by using a light diffusion layer mainly made of crystalline polyester, and mainly diffuses light by surface haze. In order to provide a surface light diffusible polyester film in which the total light transmittance and the light diffusibility are both achieved by imparting the property, and the generation of the heating curl derived from the bimetal structure is suppressed, the inventors of the present application have first proposed. The invention of the prior application (I) (Japanese Patent Application No. 2007-316712) was conducted.
先願発明(I)は、加熱によるカールの発生が抑制され、かつ二軸延伸ポリエステルフィルム本来の優れた力学的特性を有し、さらに全光線透過率と光拡散性を両立した表面光拡散性ポリエステルフィルムを提供するものである。上記特性の両立を図るために、本願発明者らは、特にフィルムの面配向係数と、内部ヘーズと表面ヘーズの関係に着目し、鋭意検討を行った。その結果、本願発明者らは後述する〔1〕~〔7〕に述べる手段を講じることで、かかる二律背反の特性が両立することを見出し、先願発明(I)に至った。
The invention (I) of the prior application is a surface light diffusible polyester that suppresses the occurrence of curling by heating, has the original excellent mechanical properties of the biaxially stretched polyester film, and further achieves both total light transmittance and light diffusibility. A film is provided. In order to achieve both of the above characteristics, the inventors of the present application have made extensive studies by paying particular attention to the plane orientation coefficient of the film and the relationship between the internal haze and the surface haze. As a result, the inventors of the present application have found that the above-mentioned contradictory characteristics can be achieved by taking the measures described in [1] to [7], which will be described later, and have arrived at the prior invention (I).
先願発明(I)の表面光拡散性ポリエステルフィルムは、支持層および光拡散層がいずれも結晶性ポリエステルを主原料とする多層構造よりなるので、バイメタル構造に由来する加熱カールの発生が抑制されているとともに、二軸延伸ポリエステルフィルム本来の優れた耐熱性、機械的強度および厚み精度を有していた。
In the surface light diffusible polyester film of the invention (I) of the prior application, since the support layer and the light diffusing layer both have a multilayer structure mainly composed of crystalline polyester, generation of heating curl derived from the bimetallic structure is suppressed. In addition, the biaxially stretched polyester film had excellent heat resistance, mechanical strength and thickness accuracy inherent to the biaxially stretched polyester film.
また、先願発明(I)の表面光拡散性ポリエステルフィルムは、共重合成分を含む結晶性ポリエステルを光拡散層の主原料とし、さらにフィルム全体の面配向係数が特定範囲内に制御されているので、光拡散層中に添加された非相溶性の添加剤の周囲に実質的にボイドが発生することなく、かつ、光拡散層表面に凹凸構造を有している。そのため、優れた表面光拡散性と高い光線透過率とを併せ持っていた。
The surface light diffusing polyester film of the invention (I) of the prior application uses crystalline polyester containing a copolymer component as the main raw material of the light diffusing layer, and the plane orientation coefficient of the entire film is controlled within a specific range. The voids are not substantially generated around the incompatible additive added in the light diffusion layer, and the surface of the light diffusion layer has an uneven structure. Therefore, it has both excellent surface light diffusibility and high light transmittance.
表面光拡散性フィルムは、レンズシートやプリズムシート、レンズ層と組み合わせて用いる場合、光拡散性フィルム単体の光拡散性と光線透過率の両立が求められるだけでなく、光拡散性フィルムとレンズシートまたはプリズムシートと組み合わせた際に奏される正面輝度が求められる。先願発明(I)の表面光拡散性ポリエステルフィルムの種々の利用形態を検討した結果、特に環境対応型の低消費電力タイプの液晶ディスプレイにおいては、正面輝度が低下する場合があることが明らかとなった。低消費電力タイプでは、バックライトに必要な照射量が最小限に抑えられている。よって、表面光拡散性ポリエステルフィルムをレンズシートやプリズムシートと組み合わせて用いる場合、低消費電力タイプであっても、優れた正面輝度に特性を奏することが必要であった。
When the surface light diffusive film is used in combination with a lens sheet, a prism sheet, or a lens layer, not only the light diffusibility of the light diffusive film alone and the light transmittance are required, but the light diffusive film and the lens sheet or The front luminance exhibited when combined with the prism sheet is required. As a result of studying various forms of use of the surface light diffusible polyester film of the invention (I) of the prior application, it becomes clear that the front luminance may be lowered particularly in an environment-friendly low power consumption type liquid crystal display. It was. In the low power consumption type, the amount of irradiation required for the backlight is minimized. Therefore, when the surface light diffusing polyester film is used in combination with a lens sheet or a prism sheet, it is necessary to exhibit excellent front luminance even if it is a low power consumption type.
本発明は、先願発明(I)の表面光拡散性ポリエステルフィルムの優れた特性を幅広い利用形態で活用できるようにすること、特にレンズシートやプリズムシート、レンズ層と組み合わせて用いる場合、低消費電力タイプであっても優れた輝度特性を有する表面光拡散性ポリエステルフィルムを提供することにある。
The present invention makes it possible to utilize the excellent characteristics of the surface light diffusible polyester film of the invention (I) of the prior application in a wide variety of usage forms, particularly when used in combination with a lens sheet, a prism sheet, or a lens layer. An object of the present invention is to provide a surface light diffusing polyester film having excellent luminance characteristics even if it is a type.
上記の目的を達成することができる本発明の表面光拡散性ポリエステルフィルムは、以下の構成からなる。
The surface light diffusing polyester film of the present invention capable of achieving the above-mentioned object has the following configuration.
すなわち、本発明の内、第1の発明の構成は、二軸配向ポリエステルフィルムよりなる光拡散性ポリエステルフィルムであって、下記要件(1)~(6)を満たすことを特徴とする。
(1)結晶性ホモポリエステル、または共重合成分を含む結晶性ポリエステルからなる支持層と、該支持層の少なくとも片面に共押出法で積層された、融点が235~255℃である共重合成分を含む結晶性ポリエステル50~99質量部と該ポリエステルに非相溶性の添加剤1~50質量部との配合組成物からなる光拡散層とを有すること。
(2)下記式で定義されるフィルムの面配向係数ΔPが0.08~0.16であること。
ΔP=(nx+ny)/2 - nz
ここで、nx、ny、nzはそれぞれ、長手方向の屈折率、幅方向の屈折率、厚み方向の屈折率を表す。
(3)表面ヘーズが15%以上であること。
(4)内部ヘーズが表面ヘーズ未満であること。
(5)150℃における寸法変化率が縦方向及び横方向とも3%以下、引張強さが縦方向及び横方向とも100MPa以上であること。
(6)光拡散層表面の平均傾斜勾配(Δa)が0.03以上であること。
第2の発明の構成は、前記発明において、全光線透過率が86%以上で、かつ、くし幅2mmにおける像鮮明度が50%以下であることを特徴とする。
第3の発明の構成は、前記発明において前記光拡散層の表面に、フィルムの延伸・配向完了前に設けられた共重合ポリエステル樹脂、ポリウレタン系樹脂、またはアクリル樹脂の少なくとも1種以上を主成分とする塗布層を有することを特徴とする。
第4の発明の構成は、前記発明において、前記光拡散性ポリエステルフィルムの光拡散層側と支持層側の両方の面に、共重合ポリエステル樹脂、ポリウレタン系樹脂、またはアクリル樹脂の少なくとも1種以上を主成分とする塗布層を有することを特徴とする。
第5の発明の構成は、前記表面光拡散性ポリエステルフィルムがプリズムシート用であって、光拡散層とは反対面に、共重合ポリエステル樹脂、ポリウレタン系樹脂、またはアクリル樹脂の少なくとも1種以上を主成分とする塗布層を有することを特徴とする。 That is, among the present inventions, the structure of the first invention is a light diffusing polyester film made of a biaxially oriented polyester film, and is characterized by satisfying the following requirements (1) to (6).
(1) A support layer comprising a crystalline homopolyester or a crystalline polyester containing a copolymer component, and a copolymer component having a melting point of 235 to 255 ° C. laminated on at least one surface of the support layer by a co-extrusion method. A light diffusing layer comprising a blended composition of 50 to 99 parts by mass of the crystalline polyester contained and 1 to 50 parts by mass of an additive incompatible with the polyester.
(2) The plane orientation coefficient ΔP of the film defined by the following formula is 0.08 to 0.16.
ΔP = (nx + ny) / 2−nz
Here, nx, ny, and nz represent the refractive index in the longitudinal direction, the refractive index in the width direction, and the refractive index in the thickness direction, respectively.
(3) The surface haze is 15% or more.
(4) The internal haze is less than the surface haze.
(5) The rate of dimensional change at 150 ° C. is 3% or less in both the vertical and horizontal directions, and the tensile strength is 100 MPa or higher in both the vertical and horizontal directions.
(6) The average inclination gradient (Δa) on the surface of the light diffusion layer is 0.03 or more.
The structure of the second invention is characterized in that, in the above invention, the total light transmittance is 86% or more, and the image definition at a comb width of 2 mm is 50% or less.
According to a third aspect of the present invention, the main component is at least one or more of a copolyester resin, a polyurethane resin, or an acrylic resin provided on the surface of the light diffusion layer in the invention before completion of stretching and orientation of the film. It is characterized by having a coating layer.
According to a fourth aspect of the present invention, in the above invention, at least one or more of a copolyester resin, a polyurethane resin, or an acrylic resin is provided on both the light diffusing layer side and the support layer side of the light diffusing polyester film. It has the coating layer which has as a main component.
According to a fifth aspect of the invention, the surface light diffusing polyester film is for a prism sheet, and at least one of a copolyester resin, a polyurethane resin, or an acrylic resin is mainly formed on the surface opposite to the light diffusing layer. It has a coating layer as a component.
(1)結晶性ホモポリエステル、または共重合成分を含む結晶性ポリエステルからなる支持層と、該支持層の少なくとも片面に共押出法で積層された、融点が235~255℃である共重合成分を含む結晶性ポリエステル50~99質量部と該ポリエステルに非相溶性の添加剤1~50質量部との配合組成物からなる光拡散層とを有すること。
(2)下記式で定義されるフィルムの面配向係数ΔPが0.08~0.16であること。
ΔP=(nx+ny)/2 - nz
ここで、nx、ny、nzはそれぞれ、長手方向の屈折率、幅方向の屈折率、厚み方向の屈折率を表す。
(3)表面ヘーズが15%以上であること。
(4)内部ヘーズが表面ヘーズ未満であること。
(5)150℃における寸法変化率が縦方向及び横方向とも3%以下、引張強さが縦方向及び横方向とも100MPa以上であること。
(6)光拡散層表面の平均傾斜勾配(Δa)が0.03以上であること。
第2の発明の構成は、前記発明において、全光線透過率が86%以上で、かつ、くし幅2mmにおける像鮮明度が50%以下であることを特徴とする。
第3の発明の構成は、前記発明において前記光拡散層の表面に、フィルムの延伸・配向完了前に設けられた共重合ポリエステル樹脂、ポリウレタン系樹脂、またはアクリル樹脂の少なくとも1種以上を主成分とする塗布層を有することを特徴とする。
第4の発明の構成は、前記発明において、前記光拡散性ポリエステルフィルムの光拡散層側と支持層側の両方の面に、共重合ポリエステル樹脂、ポリウレタン系樹脂、またはアクリル樹脂の少なくとも1種以上を主成分とする塗布層を有することを特徴とする。
第5の発明の構成は、前記表面光拡散性ポリエステルフィルムがプリズムシート用であって、光拡散層とは反対面に、共重合ポリエステル樹脂、ポリウレタン系樹脂、またはアクリル樹脂の少なくとも1種以上を主成分とする塗布層を有することを特徴とする。 That is, among the present inventions, the structure of the first invention is a light diffusing polyester film made of a biaxially oriented polyester film, and is characterized by satisfying the following requirements (1) to (6).
(1) A support layer comprising a crystalline homopolyester or a crystalline polyester containing a copolymer component, and a copolymer component having a melting point of 235 to 255 ° C. laminated on at least one surface of the support layer by a co-extrusion method. A light diffusing layer comprising a blended composition of 50 to 99 parts by mass of the crystalline polyester contained and 1 to 50 parts by mass of an additive incompatible with the polyester.
(2) The plane orientation coefficient ΔP of the film defined by the following formula is 0.08 to 0.16.
ΔP = (nx + ny) / 2−nz
Here, nx, ny, and nz represent the refractive index in the longitudinal direction, the refractive index in the width direction, and the refractive index in the thickness direction, respectively.
(3) The surface haze is 15% or more.
(4) The internal haze is less than the surface haze.
(5) The rate of dimensional change at 150 ° C. is 3% or less in both the vertical and horizontal directions, and the tensile strength is 100 MPa or higher in both the vertical and horizontal directions.
(6) The average inclination gradient (Δa) on the surface of the light diffusion layer is 0.03 or more.
The structure of the second invention is characterized in that, in the above invention, the total light transmittance is 86% or more, and the image definition at a comb width of 2 mm is 50% or less.
According to a third aspect of the present invention, the main component is at least one or more of a copolyester resin, a polyurethane resin, or an acrylic resin provided on the surface of the light diffusion layer in the invention before completion of stretching and orientation of the film. It is characterized by having a coating layer.
According to a fourth aspect of the present invention, in the above invention, at least one or more of a copolyester resin, a polyurethane resin, or an acrylic resin is provided on both the light diffusing layer side and the support layer side of the light diffusing polyester film. It has the coating layer which has as a main component.
According to a fifth aspect of the invention, the surface light diffusing polyester film is for a prism sheet, and at least one of a copolyester resin, a polyurethane resin, or an acrylic resin is mainly formed on the surface opposite to the light diffusing layer. It has a coating layer as a component.
本発明の表面光拡散性ポリエステルフィルムは、先願発明(I)で達成した加熱によるカールの発生が抑制され、かつ二軸延伸ポリエステルフィルム本来の優れた力学的特性を有し、さらに全光線透過率と光拡散性を両立するという効果に加え、さらに光拡散層表面凹凸の傾斜勾配を制御することにより、レンズシートやプリズムシート、レンズ層と組み合わせた際に高い輝度が得られるという効果も実現している。
The surface light diffusing polyester film of the present invention has curling caused by heating achieved in the invention (I) of the prior application, has the original excellent mechanical properties of the biaxially stretched polyester film, and further has a total light transmittance. In addition to the effect of balancing light diffusivity, by controlling the gradient of the surface irregularities of the light diffusing layer, it is also possible to achieve high brightness when combined with lens sheets, prism sheets, and lens layers. ing.
本発明は、加熱によるカールの発生が抑制され、かつ二軸延伸ポリエステルフィルム本来の優れた力学的特性を有し、さらに全光線透過率と光拡散性を両立し、加えて、優れた正面輝度を奏するという効果をも実現する表面光拡散性ポリエステルフィルムを提供するものである。上記課題の解決を図るために、本願発明者らは、特にフィルムの面配向係数と、内部ヘーズと表面ヘーズの関係に加えて、光拡散層の表面凹凸構造にまでも着目し、鋭意検討を行った。
The present invention suppresses the occurrence of curling due to heating, has the original excellent mechanical properties of the biaxially stretched polyester film, and further achieves both total light transmittance and light diffusibility, and also has excellent front luminance. The surface light diffusible polyester film which also realizes the effect of exhibiting the above is provided. In order to solve the above-mentioned problems, the inventors of the present application pay particular attention to the surface unevenness structure of the light diffusion layer in addition to the relationship between the plane orientation coefficient of the film and the relationship between the internal haze and the surface haze. went.
発光体(陰極管もしくは導光板)から射出した光は、光拡散性フィルムとレンズシートとを通過する。この場合、光拡散性フィルムで拡散された光線は、レンズシートに設けられた主としてプリズム型のレンズにおいて集光角度が合わせられ、正面方向へ射出される。このため、光拡散性フィルムには拡散性だけでなく、レンズシートと組み合わさった場合にも所定の正面輝度が得られるような光学設計を有することが必要である。
The light emitted from the light emitter (cathode tube or light guide plate) passes through the light diffusing film and the lens sheet. In this case, the light rays diffused by the light diffusing film are emitted in the front direction after the focusing angle is adjusted mainly in the prism type lens provided on the lens sheet. For this reason, it is necessary for the light diffusing film to have an optical design that can provide a predetermined front luminance even when combined with a lens sheet in addition to the diffusibility.
光拡散性フィルムにより光が広角に拡散した場合、レンズシートやプリズムシート,レンズ層で補足・集光する光量の割合が少なくなるため、正面へ射出する透過光の輝度が低くなる。一方、光拡散性フィルムにより光が狭角に拡散した場合、レンズシートもしくはレンズ層で補足・集光する光量の割合は多くなるものの、拡散される成分が少なくなる。そのため、透過光の光拡散性は低くなり、拡散フィルムによる隠蔽性や照射面全体における輝度の均一性が低下する。よって、レンズシートもしくはレンズ層を組み合わせた際の輝度と光拡散性フィルム単独での拡散性の両立を高度に図る必要がある。
When light is diffused at a wide angle by the light diffusing film, the ratio of the amount of light that is captured and collected by the lens sheet, prism sheet, and lens layer decreases, so that the brightness of the transmitted light emitted to the front surface decreases. On the other hand, when light is diffused at a narrow angle by the light diffusing film, the ratio of the amount of light captured and condensed by the lens sheet or lens layer is increased, but the diffused component is reduced. For this reason, the light diffusibility of the transmitted light is lowered, and the concealability by the diffusion film and the uniformity of the luminance on the entire irradiated surface are lowered. Therefore, it is necessary to attain a high level of compatibility between the brightness when combining lens sheets or lens layers and the diffusibility of the light diffusing film alone.
レンズシートの集光角度に合わせた最適な光学設計を持つフィルムを得る方策を鋭意検討した結果、本願発明者は光拡散層表面の凹凸構造が有する微細な傾斜勾配に、正面輝度を得るための光学設計上の意義を発見し、本発明に至ったものである。すなわち、本発明者は、光拡散層表面の平均傾斜勾配(Δa)を制御することにより、光拡散の拡散分布角度がレンズシートと組み合わさった場合に優れた正面輝度を奏するような光学設計を持つ光拡散性フィルムを実現するに至った。
As a result of earnestly examining measures to obtain a film having an optimal optical design that matches the light collection angle of the lens sheet, the inventor of the present application is able to obtain the front luminance in the fine gradient gradient of the uneven structure on the surface of the light diffusion layer. The significance of optical design was discovered and the present invention was achieved. That is, the present inventor has designed an optical design that provides excellent front luminance when the diffusion distribution angle of light diffusion is combined with the lens sheet by controlling the average gradient (Δa) of the surface of the light diffusion layer. This led to the realization of a light diffusive film.
光拡散層の表面には光拡散性添加剤に起因した表面凹凸構造を有する。光拡散層表面の表面凹凸プロファイルをマイクロマップを用いて観察すると、山型の微細な凹凸プロファイルが観察される。この山型の凹凸によって形成される傾斜面で光の反射が生じるが、この傾斜勾配が所定以上である場合、レンズシートとの組み合わせにより効率よく光が補足・集光され、輝度が向上するのである。
The surface of the light diffusion layer has an uneven surface structure due to the light diffusing additive. When the surface unevenness profile on the surface of the light diffusion layer is observed using a micromap, a mountain-shaped fine unevenness profile is observed. Reflection of light occurs on the inclined surface formed by this mountain-shaped unevenness, but if this inclination gradient is more than a predetermined value, the light is efficiently captured and condensed by combining with the lens sheet, and the brightness is improved. is there.
ここで平均傾斜勾配(Δa)とは、マイクロマップで観察した表面凹凸プロファイルから求めるものである。表面凹凸プロファイルを所定ピッチ(x)毎に高さ(y)を測定し、連続した2つの測定点での高さの差(yn-yn+1)を測定ピッチ間隔(x)で割りかえしたものを傾斜勾配とし、これを縦方向(フィルムの長手方向)と横方向(フィルムの幅方向)の直交する2方向において所定長さにわたって測定し、その平均を平均傾斜勾配(Δa)として求めた。すなわち、平均傾斜勾配(Δa)は光拡散層表面に形成される凹凸構造に起因する平均した勾配(傾き)を表現するものである。本願において平均傾斜勾配(Δa)は光拡散層表面の凹凸構造に起因する光の拡散と、レンズシートと組み合わせた際に奏する輝度との両立を支配する因子である。
Here, the average inclination gradient (Δa) is obtained from the surface unevenness profile observed on the micromap. The height (y) of the surface unevenness profile was measured at every predetermined pitch (x), and the difference in height (y n −y n + 1 ) at two consecutive measurement points was divided by the measurement pitch interval (x). This was measured as a slope, measured over a predetermined length in two directions perpendicular to the longitudinal direction (the longitudinal direction of the film) and the lateral direction (the width direction of the film), and the average was determined as the average slope gradient (Δa). . That is, the average gradient (Δa) expresses an average gradient (gradient) due to the uneven structure formed on the surface of the light diffusion layer. In the present application, the average gradient (Δa) is a factor that governs the coexistence of the light diffusion caused by the uneven structure on the surface of the light diffusion layer and the luminance exhibited when combined with the lens sheet.
本発明の表面光拡散性ポリエステルフィルムは、光拡散層表面の平均傾斜勾配(Δa)が0.03以上であることが重要である。当該Δaが0.03以上の場合、陰極管などの隠蔽性に必要な光拡散性を奏するだけでなく、低照射量であってもレンズフィルムと合わせた際の十分な輝度を奏することができる。当該Δaの下限は、好ましくは0.04以上であり、より好ましくは0.05以上である。当該Δaの上限は、0.10以下であることが好ましく、0.09以下であればより好ましく、0.08以下であればさらに好ましい。当該Δaが0.10を超える場合は、用いるレンズシートにもよっては、光学設計上、面内反射による背面反射が生じ、正面輝度の向上が見られない場合がある。
In the surface light diffusing polyester film of the present invention, it is important that the average slope gradient (Δa) of the light diffusing layer surface is 0.03 or more. When the Δa is 0.03 or more, not only the light diffusibility necessary for concealing properties such as a cathode ray tube but also a sufficient luminance when combined with the lens film can be achieved even at a low irradiation amount. . The lower limit of Δa is preferably 0.04 or more, and more preferably 0.05 or more. The upper limit of Δa is preferably 0.10 or less, more preferably 0.09 or less, and even more preferably 0.08 or less. When Δa exceeds 0.10, depending on the lens sheet used, back reflection due to in-plane reflection may occur due to optical design, and front luminance may not be improved.
上記構成要件を達成するため、本願発明者らは下記〔1〕~〔8〕に述べる手段を講じることで、かかる特性を実現することを見出し、本発明に至った。そこで、まずこれら達成手段の特徴について説明する。なお、上記特性を実現するためには下記〔1〕~〔8〕の手段の内の特定のいずれかのみが有効に寄与したというものではなく、〔1〕~〔8〕の手段を組み合わせて用いることにより初めて上記特性の実現が可能になったものと考えられる。
〔1〕光拡散層の樹脂融点の制御
〔2〕支持層と光拡散層の融点差の制御
〔3〕光拡散層の積層構成の制御
〔4〕光拡散層の厚みの制御
〔5〕光拡散層構成樹脂の固有粘度の制御
〔6〕基材ポリマーと非相溶樹脂の溶融粘度差の制御
〔7〕延伸温度の制御
〔8〕光拡散層の融点と熱処理温度条件の相互制御 In order to achieve the above structural requirements, the present inventors have found that such characteristics can be realized by taking the means described in [1] to [8] below, and have reached the present invention. First, the characteristics of these achievement means will be described. In order to realize the above characteristics, only one of the following means [1] to [8] does not contribute effectively, but the means [1] to [8] are combined. It is considered that the above characteristics can be realized for the first time by using it.
[1] Control of resin melting point of light diffusion layer [2] Control of difference in melting point between support layer and light diffusion layer [3] Control of laminated structure of light diffusion layer [4] Control of thickness of light diffusion layer [5] Light Control of intrinsic viscosity of diffusion layer constituent resin [6] Control of difference in melt viscosity between base polymer and incompatible resin [7] Control of stretching temperature [8] Mutual control of melting point and heat treatment temperature condition of light diffusion layer
〔1〕光拡散層の樹脂融点の制御
〔2〕支持層と光拡散層の融点差の制御
〔3〕光拡散層の積層構成の制御
〔4〕光拡散層の厚みの制御
〔5〕光拡散層構成樹脂の固有粘度の制御
〔6〕基材ポリマーと非相溶樹脂の溶融粘度差の制御
〔7〕延伸温度の制御
〔8〕光拡散層の融点と熱処理温度条件の相互制御 In order to achieve the above structural requirements, the present inventors have found that such characteristics can be realized by taking the means described in [1] to [8] below, and have reached the present invention. First, the characteristics of these achievement means will be described. In order to realize the above characteristics, only one of the following means [1] to [8] does not contribute effectively, but the means [1] to [8] are combined. It is considered that the above characteristics can be realized for the first time by using it.
[1] Control of resin melting point of light diffusion layer [2] Control of difference in melting point between support layer and light diffusion layer [3] Control of laminated structure of light diffusion layer [4] Control of thickness of light diffusion layer [5] Light Control of intrinsic viscosity of diffusion layer constituent resin [6] Control of difference in melt viscosity between base polymer and incompatible resin [7] Control of stretching temperature [8] Mutual control of melting point and heat treatment temperature condition of light diffusion layer
〔1〕光拡散層(B)の樹脂融点の制御
本発明の表面光拡散性ポリエステルフィルムは、結晶性ホモポリエステル、または共重合成分を含む結晶性ポリエステルからなる支持層(A)を有し、共重合成分を含む結晶性ポリエステルと該非相溶性の添加剤との配合組成物からなる光拡散層(B)とを有する。ここで、結晶性ポリエステル/結晶性ホモポリエステルとは融点を有するポリエステル/ホモポリエステルのことをいう。融点とは、いわゆる示差走査熱量測定(DSC)の1次昇温時に検出される融解時の吸熱ピーク温度のことである。示差走査型熱量計を用いて測定した場合に、融点として明確な結晶融解熱ピークが観測されるポリエステル/ホモポリエステルであれば、結晶性ポリエステル/結晶性ホモポリエステルに含まれる。 [1] Control of resin melting point of light diffusing layer (B) The surface light diffusing polyester film of the present invention has a support layer (A) made of a crystalline homopolyester or a crystalline polyester containing a copolymer component. A light diffusion layer (B) comprising a blended composition of a crystalline polyester containing a polymerization component and the incompatible additive. Here, crystalline polyester / crystalline homopolyester refers to polyester / homopolyester having a melting point. The melting point is the endothermic peak temperature at the time of melting detected at the time of primary temperature rise in so-called differential scanning calorimetry (DSC). Any polyester / homopolyester in which a clear crystal melting heat peak is observed as a melting point when measured using a differential scanning calorimeter is included in the crystalline polyester / crystalline homopolyester.
本発明の表面光拡散性ポリエステルフィルムは、結晶性ホモポリエステル、または共重合成分を含む結晶性ポリエステルからなる支持層(A)を有し、共重合成分を含む結晶性ポリエステルと該非相溶性の添加剤との配合組成物からなる光拡散層(B)とを有する。ここで、結晶性ポリエステル/結晶性ホモポリエステルとは融点を有するポリエステル/ホモポリエステルのことをいう。融点とは、いわゆる示差走査熱量測定(DSC)の1次昇温時に検出される融解時の吸熱ピーク温度のことである。示差走査型熱量計を用いて測定した場合に、融点として明確な結晶融解熱ピークが観測されるポリエステル/ホモポリエステルであれば、結晶性ポリエステル/結晶性ホモポリエステルに含まれる。 [1] Control of resin melting point of light diffusing layer (B) The surface light diffusing polyester film of the present invention has a support layer (A) made of a crystalline homopolyester or a crystalline polyester containing a copolymer component. A light diffusion layer (B) comprising a blended composition of a crystalline polyester containing a polymerization component and the incompatible additive. Here, crystalline polyester / crystalline homopolyester refers to polyester / homopolyester having a melting point. The melting point is the endothermic peak temperature at the time of melting detected at the time of primary temperature rise in so-called differential scanning calorimetry (DSC). Any polyester / homopolyester in which a clear crystal melting heat peak is observed as a melting point when measured using a differential scanning calorimeter is included in the crystalline polyester / crystalline homopolyester.
フィルムの耐熱性、機械的強度、厚み精度の点からすれば、樹脂の融点は高いほど望ましい。しかしながら、樹脂の融点が高い場合は、延伸時に伴い発生する延伸応力が増加するため、樹脂中に非相溶粒子があるとボイド(空洞)が発生しやすくなり、全光線透過率が低下する。ボイドの発生のし易さは、後述のように延伸条件によっても影響を受けるが、作製されたフィルムの面配向係数と強い関連性がある。面配向係数は延伸後のフィルムに形成された高分子鎖の配向状態を示し、かかる配向状態が高いほど力学的強度は強くなるが、フィルム内に発生するボイドも多くなる。そのため、フィルムの面配向度を低下させ、ボイドの発生を抑えるには、光拡散層(B)を構成する樹脂の融点は一定範囲内で制御することが望ましい。光拡散層(B)を構成する共重合成分を含む結晶性ポリエステルの融点の下限は235℃が好ましく、さらに好ましくは240℃が好ましい。融点が235℃以上であれば、望ましい耐熱性、機械的強度および厚み精度が発揮できる程度の配向係数を得ることができる。また、光拡散層(B)を構成する共重合成分を含む結晶性ポリエステルの融点の上限は255℃が好ましい。融点が255℃以下であれば、光拡散層(B)内でのボイドの発生が抑制されるため好ましい。
From the viewpoint of heat resistance, mechanical strength and thickness accuracy of the film, the higher the melting point of the resin, the better. However, when the melting point of the resin is high, the stretching stress generated during stretching increases. Therefore, if there are incompatible particles in the resin, voids (cavities) are easily generated, and the total light transmittance is reduced. The ease with which voids are generated is influenced by the stretching conditions as described later, but is strongly related to the plane orientation coefficient of the produced film. The plane orientation coefficient indicates the orientation state of the polymer chain formed in the stretched film. The higher the orientation state, the stronger the mechanical strength, but the more voids are generated in the film. Therefore, it is desirable to control the melting point of the resin constituting the light diffusion layer (B) within a certain range in order to reduce the degree of plane orientation of the film and suppress the generation of voids. The lower limit of the melting point of the crystalline polyester containing the copolymer component constituting the light diffusion layer (B) is preferably 235 ° C, more preferably 240 ° C. When the melting point is 235 ° C. or higher, an orientation coefficient that can exhibit desirable heat resistance, mechanical strength, and thickness accuracy can be obtained. Further, the upper limit of the melting point of the crystalline polyester containing the copolymer component constituting the light diffusion layer (B) is preferably 255 ° C. If melting | fusing point is 255 degrees C or less, since generation | occurrence | production of the void in a light-diffusion layer (B) is suppressed, it is preferable.
〔2〕融点差の制御
本発明の表面光拡散性ポリエステルフィルムは結晶性ホモポリエステル、または共重合成分を含む結晶性ポリエステルからなる支持層(A)を有する。フィルムとして所定の耐熱性、機械的強度、厚み精度を得るためには、支持層(A)を構成する結晶性ポリエステル/結晶性ホモポリエステルの融点は高い方が好ましい。しかし、支持層(A)と光拡散層(B)との2層を構成する樹脂の融点差が大きい場合は、バイメタル構造に起因するカールが生じ易くなる。そのため、支持層(A)を構成する結晶性ポリエステル/結晶性ホモポリエステルと光拡散層(B)を構成する結晶性ポリエステルとの融点差は、25℃以内であることが好ましく、20℃以内であることがより好ましく、10℃以内であることがさらに好ましく、5℃以内であることが特に好ましい。融点差が25℃以内であれば、バイメタル構造によるカールの発生を実用範囲以内に抑制することができる。なお、光拡散層(B)を構成する樹脂の融点が上記範囲が望ましいことから、支持層(A)を構成する結晶性ポリエステル/結晶性ホモポリエステルの融点の上限は、270℃が望ましい。 [2] Control of Difference in Melting Point The surface light diffusing polyester film of the present invention has a support layer (A) made of crystalline homopolyester or crystalline polyester containing a copolymer component. In order to obtain predetermined heat resistance, mechanical strength and thickness accuracy as a film, it is preferable that the crystalline polyester / crystalline homopolyester constituting the support layer (A) has a higher melting point. However, when the melting point difference between the resins constituting the two layers of the support layer (A) and the light diffusion layer (B) is large, curling due to the bimetal structure is likely to occur. Therefore, the melting point difference between the crystalline polyester / crystalline homopolyester constituting the support layer (A) and the crystalline polyester constituting the light diffusion layer (B) is preferably within 25 ° C., and within 20 ° C. More preferably, it is more preferably within 10 ° C, particularly preferably within 5 ° C. If the melting point difference is within 25 ° C., the occurrence of curling due to the bimetallic structure can be suppressed within the practical range. Since the melting point of the resin constituting the light diffusion layer (B) is preferably within the above range, the upper limit of the melting point of the crystalline polyester / crystalline homopolyester constituting the support layer (A) is preferably 270 ° C.
本発明の表面光拡散性ポリエステルフィルムは結晶性ホモポリエステル、または共重合成分を含む結晶性ポリエステルからなる支持層(A)を有する。フィルムとして所定の耐熱性、機械的強度、厚み精度を得るためには、支持層(A)を構成する結晶性ポリエステル/結晶性ホモポリエステルの融点は高い方が好ましい。しかし、支持層(A)と光拡散層(B)との2層を構成する樹脂の融点差が大きい場合は、バイメタル構造に起因するカールが生じ易くなる。そのため、支持層(A)を構成する結晶性ポリエステル/結晶性ホモポリエステルと光拡散層(B)を構成する結晶性ポリエステルとの融点差は、25℃以内であることが好ましく、20℃以内であることがより好ましく、10℃以内であることがさらに好ましく、5℃以内であることが特に好ましい。融点差が25℃以内であれば、バイメタル構造によるカールの発生を実用範囲以内に抑制することができる。なお、光拡散層(B)を構成する樹脂の融点が上記範囲が望ましいことから、支持層(A)を構成する結晶性ポリエステル/結晶性ホモポリエステルの融点の上限は、270℃が望ましい。 [2] Control of Difference in Melting Point The surface light diffusing polyester film of the present invention has a support layer (A) made of crystalline homopolyester or crystalline polyester containing a copolymer component. In order to obtain predetermined heat resistance, mechanical strength and thickness accuracy as a film, it is preferable that the crystalline polyester / crystalline homopolyester constituting the support layer (A) has a higher melting point. However, when the melting point difference between the resins constituting the two layers of the support layer (A) and the light diffusion layer (B) is large, curling due to the bimetal structure is likely to occur. Therefore, the melting point difference between the crystalline polyester / crystalline homopolyester constituting the support layer (A) and the crystalline polyester constituting the light diffusion layer (B) is preferably within 25 ° C., and within 20 ° C. More preferably, it is more preferably within 10 ° C, particularly preferably within 5 ° C. If the melting point difference is within 25 ° C., the occurrence of curling due to the bimetallic structure can be suppressed within the practical range. Since the melting point of the resin constituting the light diffusion layer (B) is preferably within the above range, the upper limit of the melting point of the crystalline polyester / crystalline homopolyester constituting the support layer (A) is preferably 270 ° C.
支持層(A)および光拡散層(B)を構成する結晶性ポリエステルの融点は、共重合成分を導入することにより制御することができる。特に、本発明では、光拡散層(B)を構成する結晶性ポリエステルに所定量の共重合成分を導入することが望ましい。共重合成分をポリエステル中に導入することにより、二軸延伸フィルムの面配向係数を制御することができ、光線透過率と光拡散性を高度に両立することが可能となる。しかしながら、共重合成分を過大に導入すると、ポリエステルの融点が低下し、二軸延伸ポリエステルフィルム本来の優れた特性が得られなくなるので、注意が必要である。共重合成分の導入量は、芳香族ジカルボン成分全体、あるいはグリコール成分全体に対し、3モル%以上であることが好ましく、さらに好ましくは5モル%以上、特に好ましくは8モル%以上である。共重合成分の含有量が3モル%より大きい場合には、ボイドの発生が抑制され、光線透過率と光拡散性を高度に両立しやすくなるので好ましい。一方、共重合成分の導入量の上限としては、上記成分に対して20モル%以下であることが好ましく、さらに好ましくは18モル%以下、特に好ましくは15モル%以下である。共重合成分の含有量が20モル%以下である場合は、二軸延伸ポリエステルフィルムの力学的特性が実用範囲になる程度の融点が得られるので好ましい。なお、本発明で使用可能な共重合成分の組成については、後述する。
The melting point of the crystalline polyester constituting the support layer (A) and the light diffusion layer (B) can be controlled by introducing a copolymer component. In particular, in the present invention, it is desirable to introduce a predetermined amount of a copolymer component into the crystalline polyester constituting the light diffusion layer (B). By introducing the copolymer component into the polyester, the plane orientation coefficient of the biaxially stretched film can be controlled, and the light transmittance and the light diffusivity can be highly compatible. However, if the copolymer component is excessively introduced, the melting point of the polyester is lowered, and the original excellent characteristics of the biaxially stretched polyester film cannot be obtained. The introduction amount of the copolymer component is preferably 3 mol% or more, more preferably 5 mol% or more, and particularly preferably 8 mol% or more with respect to the entire aromatic dicarboxylic component or the entire glycol component. When the content of the copolymer component is larger than 3 mol%, it is preferable because generation of voids is suppressed and the light transmittance and the light diffusibility are highly compatible. On the other hand, the upper limit of the introduction amount of the copolymer component is preferably 20 mol% or less, more preferably 18 mol% or less, and particularly preferably 15 mol% or less with respect to the above components. When the content of the copolymer component is 20 mol% or less, it is preferable because the melting point is such that the mechanical properties of the biaxially stretched polyester film are within the practical range. The composition of the copolymer component that can be used in the present invention will be described later.
〔3〕光拡散層(B)の積層構成の制御
本発明の表面光拡散性ポリエステルフィルムは、前記結晶性ホモポリエステルまたは、共重合成分を含む結晶性ポリエステルからなる支持層(A)の少なくとも片面に、前記共重合成分を含む結晶性ポリエステルと該ポリエステルに非相溶性の添加剤との配合組成物からなる光拡散層(B)が共押出し法で積層された多層構造よりなることが重要である。 [3] Control of laminated structure of light diffusing layer (B) The surface light diffusing polyester film of the present invention is formed on at least one surface of the support layer (A) comprising the crystalline homopolyester or the crystalline polyester containing a copolymer component. It is important that the light diffusion layer (B) comprising a blended composition of a crystalline polyester containing the copolymer component and an additive incompatible with the polyester has a multilayer structure laminated by a coextrusion method. .
本発明の表面光拡散性ポリエステルフィルムは、前記結晶性ホモポリエステルまたは、共重合成分を含む結晶性ポリエステルからなる支持層(A)の少なくとも片面に、前記共重合成分を含む結晶性ポリエステルと該ポリエステルに非相溶性の添加剤との配合組成物からなる光拡散層(B)が共押出し法で積層された多層構造よりなることが重要である。 [3] Control of laminated structure of light diffusing layer (B) The surface light diffusing polyester film of the present invention is formed on at least one surface of the support layer (A) comprising the crystalline homopolyester or the crystalline polyester containing a copolymer component. It is important that the light diffusion layer (B) comprising a blended composition of a crystalline polyester containing the copolymer component and an additive incompatible with the polyester has a multilayer structure laminated by a coextrusion method. .
光拡散層(B)での光の拡散は、フィルムの表面構造に起因する散乱と、フィルムの内部構造に起因する散乱に分かれる。前記散乱は表面ヘーズとして、後記散乱は内部ヘーズとして評価できる。ボイドなどの内部構造による光の散乱は後方散乱を伴う為、高い全光線透過率が得られない。一方、表面構造による光の散乱は、全光線透過率を大きく低下することなく、高い光拡散性を得ることができる。しかし、光拡散層(B)で有効な表面ヘーズを達成するためには、バイメタル状の構造に伴うカール発生を回避することは困難であった。本発明では、(1)から(7)に開示する手段をとることにより、加熱カールの発生を抑制しながら、かつ、表面ヘーズの高いフィルムを提供することが可能になった。すなわち、本発明の表面光拡散性ポリエステルフィルムは、上記の多層構造を採用することで、非相溶性添加剤に起因する光拡散層(B)表面の凹凸構造により光拡散性を付与するとともに、フィルムの内部での光散乱(内部ヘーズ)を抑制して高い全光線透過率を達成することができる。これにより、高い光透過性と光拡散性の両立をはかることができる。
The diffusion of light in the light diffusion layer (B) is divided into scattering caused by the surface structure of the film and scattering caused by the internal structure of the film. The scattering can be evaluated as surface haze, and the post-scattering can be evaluated as internal haze. Light scattering by internal structures such as voids is accompanied by backscattering, so that a high total light transmittance cannot be obtained. On the other hand, the light scattering by the surface structure can obtain high light diffusibility without greatly reducing the total light transmittance. However, in order to achieve an effective surface haze in the light diffusion layer (B), it is difficult to avoid the occurrence of curling due to the bimetallic structure. In the present invention, by taking the means disclosed in (1) to (7), it is possible to provide a film having a high surface haze while suppressing the occurrence of heating curl. That is, the surface light diffusible polyester film of the present invention employs the multilayer structure described above, thereby imparting light diffusibility by the concavo-convex structure on the surface of the light diffusion layer (B) caused by the incompatible additive, and the film It is possible to achieve high total light transmittance by suppressing light scattering (internal haze) in the inside. Thereby, both high light transmittance and light diffusibility can be achieved.
本発明の表面光拡散性ポリエステルフィルムをプリズムシートとして用いる場合には、支持層(A)の片面に光拡散層(B)を積層したフィルムを基材とし、光拡散層(B)の反対面にプリズム構造を付与することで好適に用いることができる。本発明の表面光拡散性ポリエステルフィルムの層構成は、上記のように2層構成であっても構わないし、本発明の効果が得られるならば、必要により3層以上の多層構成としても良い。平坦な透明部材に表面が平坦な(凹凸構造を有さない)フィルムを重ねると、ニュートンリングが発生し、視認性が低下することがある。そのため、本発明のフィルムを単独で光拡散性シートとして用いる場合には、導光板やプリズムシートと重ね合わせによるニュートンリングの発生を防止するため、支持層(A)の両面に光拡散層(B)を積層することが好ましい。なお、本発明で使用可能な非相溶の添加剤の組成については、後述する。
When the surface light diffusing polyester film of the present invention is used as a prism sheet, a film obtained by laminating the light diffusing layer (B) on one side of the support layer (A) is used as a base material, and the surface opposite to the light diffusing layer (B) is used. It can use suitably by providing a prism structure. The layer structure of the surface light diffusible polyester film of the present invention may be a two-layer structure as described above, and may be a multilayer structure of three or more layers as necessary if the effects of the present invention can be obtained. When a film having a flat surface (not having a concavo-convex structure) is stacked on a flat transparent member, Newton rings are generated, and visibility may be lowered. Therefore, when the film of the present invention is used alone as a light diffusing sheet, the light diffusing layer (B) is formed on both sides of the support layer (A) in order to prevent Newton rings from being superimposed on the light guide plate or the prism sheet. ) Is preferably laminated. The composition of the incompatible additive that can be used in the present invention will be described later.
〔4〕光拡散層(B)の厚みの制御
本発明の表面光拡散性ポリエステルフィルムは支持層(A)と光拡散層(B)を有するが、本発明の表面光拡散性ポリエステルフィルムを得るためには、光拡散層(B)の厚さが重要である。光拡散層(B)の表面ヘーズは表面凹凸が大きい程、高くなる傾向にある。そのため、光拡散層(B)の添加剤の粒径は大きい方が望ましい。表面ヘーズに有効な粒径を得るためには、光拡散層(B)の厚みの下限は3μmであることが好ましく、4μmがさらに好ましく、特に好ましくは5μmである。 [4] Control of thickness of light diffusing layer (B) The surface light diffusing polyester film of the present invention has a support layer (A) and a light diffusing layer (B), in order to obtain the surface light diffusing polyester film of the present invention. The thickness of the light diffusion layer (B) is important. The surface haze of the light diffusion layer (B) tends to increase as the surface irregularity increases. Therefore, it is desirable that the particle size of the additive in the light diffusion layer (B) is large. In order to obtain a particle size effective for surface haze, the lower limit of the thickness of the light diffusion layer (B) is preferably 3 μm, more preferably 4 μm, and particularly preferably 5 μm.
本発明の表面光拡散性ポリエステルフィルムは支持層(A)と光拡散層(B)を有するが、本発明の表面光拡散性ポリエステルフィルムを得るためには、光拡散層(B)の厚さが重要である。光拡散層(B)の表面ヘーズは表面凹凸が大きい程、高くなる傾向にある。そのため、光拡散層(B)の添加剤の粒径は大きい方が望ましい。表面ヘーズに有効な粒径を得るためには、光拡散層(B)の厚みの下限は3μmであることが好ましく、4μmがさらに好ましく、特に好ましくは5μmである。 [4] Control of thickness of light diffusing layer (B) The surface light diffusing polyester film of the present invention has a support layer (A) and a light diffusing layer (B), in order to obtain the surface light diffusing polyester film of the present invention. The thickness of the light diffusion layer (B) is important. The surface haze of the light diffusion layer (B) tends to increase as the surface irregularity increases. Therefore, it is desirable that the particle size of the additive in the light diffusion layer (B) is large. In order to obtain a particle size effective for surface haze, the lower limit of the thickness of the light diffusion layer (B) is preferably 3 μm, more preferably 4 μm, and particularly preferably 5 μm.
一方、光拡散層(B)の厚みが、非相溶の添加剤の粒径を相当程度上回ると、効果的に表面凹凸構造を形成しにくくなり。そのため、光拡散層(B)の厚みを厚くすると、表面凹凸形成が減少し、表面ヘーズが低下する。また、光拡散層(B)の厚みに従い、光拡散層(B)の内部構造に起因する内部ヘーズが高くなり、全光線透過率が低下する。高い全光線透過率と光拡散性の両立を図る為には、光拡散層(B)の厚みを所定以下の範囲に制御することが望ましい。そのため、光拡散層(B)の厚みの上限は、50μmが好ましく、30μmがさらに好ましく、特に好ましくは20μmである。
On the other hand, when the thickness of the light diffusing layer (B) exceeds the particle size of the incompatible additive to a considerable extent, it becomes difficult to form a surface uneven structure effectively. Therefore, when the thickness of the light diffusion layer (B) is increased, the formation of surface irregularities is reduced and the surface haze is reduced. Further, according to the thickness of the light diffusion layer (B), the internal haze due to the internal structure of the light diffusion layer (B) increases, and the total light transmittance decreases. In order to achieve both high total light transmittance and light diffusibility, it is desirable to control the thickness of the light diffusion layer (B) within a predetermined range. Therefore, the upper limit of the thickness of the light diffusion layer (B) is preferably 50 μm, more preferably 30 μm, and particularly preferably 20 μm.
また、光拡散層(B)のフィルム全体厚み(A+B)に対する比率が高くなると、バイメタル構造によるカールの発生が生じ易くなる。さらに、支持層(A)に比べて相対的に融点の低い光拡散層(B)の比率が増すため、フィルム全体として厚み斑が生じやすくなり、表面平滑性が損なわれる。また、光拡散層(B)は共重合成分を多く含むので、フィルム全体として配向係数が低下し、力学的特性が低下する。一方、光拡散層(B)のフィルム全体厚みに対する比率が小さいと、光拡散層(B)中の添加剤が、フィルムの表面にブリードアウトする場合や、脱落する場合がある。よって、光拡散層(B)のフィルム全体厚みに対する比率は所定の範囲に制御することが望ましく、2~50%の範囲が好ましい。光拡散層(B)のフィルム全体厚みに対する比率の下限は、2%が好ましく、3%がさらに好ましく、4%が特に好ましい。一方、光拡散層(B)のフィルム全体厚みに対する比率の上限は、50%が好ましく、35%がさらに好ましく、20%が特に好ましい。
Also, when the ratio of the light diffusion layer (B) to the total film thickness (A + B) is increased, curling due to the bimetallic structure is likely to occur. Furthermore, since the ratio of the light diffusion layer (B) having a relatively low melting point as compared with the support layer (A) is increased, thickness unevenness tends to occur as a whole film, and the surface smoothness is impaired. Moreover, since a light-diffusion layer (B) contains many copolymerization components, an orientation coefficient falls as the whole film, and a mechanical characteristic falls. On the other hand, if the ratio of the light diffusion layer (B) to the total film thickness is small, the additive in the light diffusion layer (B) may bleed out on the surface of the film or may fall off. Therefore, the ratio of the light diffusion layer (B) to the total film thickness is desirably controlled within a predetermined range, and preferably in the range of 2 to 50%. The lower limit of the ratio of the light diffusion layer (B) to the total film thickness is preferably 2%, more preferably 3%, and particularly preferably 4%. On the other hand, the upper limit of the ratio of the light diffusion layer (B) to the total film thickness is preferably 50%, more preferably 35%, and particularly preferably 20%.
〔5〕光拡散層(B)構成樹脂の固有粘度の制御
本発明では光拡散層(B)を共押出法により付与することを特徴とする。本発明の表面光拡散性ポリエステルフィルムは光学用途を目的とするので、異物による光学欠点は少ない方が好ましく、共押出法で樹脂を供給する場合はメルトラインに異物除去フィルターを設けることが望ましい。異物除去フィルターに樹脂を通過させるには、一定の押出圧を要するが、樹脂の固有粘度が低い場合は、溶融樹脂の押出時の吐出安定性が低下するため安定な製膜が難しくなる。また、樹脂の固有粘度が低い場合は、得られる光拡散層(B)の面配向係数が低くなり、フィルムの力学的強度が低下する。そのため、光拡散層(B)を構成する共重合成分を含む結晶性ポリエステルの固有粘度は高い方が好ましいと考えられた。ところが、本発明者は該ポリエステルの固有粘度と表面ヘーズとの間に以下に述べる驚くべき関連性を見出した。 [5] Control of intrinsic viscosity of light diffusion layer (B) constituting resin The present invention is characterized in that the light diffusion layer (B) is applied by a coextrusion method. Since the surface light diffusible polyester film of the present invention is intended for optical applications, it is preferable that there are few optical defects due to foreign matters, and when a resin is supplied by a coextrusion method, it is desirable to provide a foreign matter removing filter in the melt line. In order to allow the resin to pass through the foreign matter removal filter, a certain extrusion pressure is required. However, when the intrinsic viscosity of the resin is low, the ejection stability at the time of extrusion of the molten resin is lowered, so that stable film formation becomes difficult. Moreover, when the intrinsic viscosity of resin is low, the plane orientation coefficient of the obtained light-diffusion layer (B) becomes low, and the mechanical strength of a film falls. Therefore, it was considered that the intrinsic viscosity of the crystalline polyester containing the copolymer component constituting the light diffusion layer (B) is preferably higher. However, the present inventors have found the surprising relationship described below between the intrinsic viscosity of the polyester and the surface haze.
本発明では光拡散層(B)を共押出法により付与することを特徴とする。本発明の表面光拡散性ポリエステルフィルムは光学用途を目的とするので、異物による光学欠点は少ない方が好ましく、共押出法で樹脂を供給する場合はメルトラインに異物除去フィルターを設けることが望ましい。異物除去フィルターに樹脂を通過させるには、一定の押出圧を要するが、樹脂の固有粘度が低い場合は、溶融樹脂の押出時の吐出安定性が低下するため安定な製膜が難しくなる。また、樹脂の固有粘度が低い場合は、得られる光拡散層(B)の面配向係数が低くなり、フィルムの力学的強度が低下する。そのため、光拡散層(B)を構成する共重合成分を含む結晶性ポリエステルの固有粘度は高い方が好ましいと考えられた。ところが、本発明者は該ポリエステルの固有粘度と表面ヘーズとの間に以下に述べる驚くべき関連性を見出した。 [5] Control of intrinsic viscosity of light diffusion layer (B) constituting resin The present invention is characterized in that the light diffusion layer (B) is applied by a coextrusion method. Since the surface light diffusible polyester film of the present invention is intended for optical applications, it is preferable that there are few optical defects due to foreign matters, and when a resin is supplied by a coextrusion method, it is desirable to provide a foreign matter removing filter in the melt line. In order to allow the resin to pass through the foreign matter removal filter, a certain extrusion pressure is required. However, when the intrinsic viscosity of the resin is low, the ejection stability at the time of extrusion of the molten resin is lowered, so that stable film formation becomes difficult. Moreover, when the intrinsic viscosity of resin is low, the plane orientation coefficient of the obtained light-diffusion layer (B) becomes low, and the mechanical strength of a film falls. Therefore, it was considered that the intrinsic viscosity of the crystalline polyester containing the copolymer component constituting the light diffusion layer (B) is preferably higher. However, the present inventors have found the surprising relationship described below between the intrinsic viscosity of the polyester and the surface haze.
該結晶性ポリエステルの固有粘度が高くなると、溶融攪拌での剪断力が増加する。そのため、該結晶性ポリエステルとそれに非相溶の添加剤を押出機内で攪拌混合すると、該結晶性ポリエステルの固有粘度が高くなる程、溶融攪拌での剪断力が増加し、添加剤の分散性が高まる。これは、溶媒の剪断力により添加剤が細粒化することによるものと考えられる。すると、添加剤の粒径が小さくなり、光拡散層(B)表面に良好な凹凸構造を付与する程度に有効な分散径が得られず、表面ヘーズが低下する。そのため、光拡散層(B)の力学的強度と良好な光特性の両立を図るには、光拡散層を構成する共重合成分を含む結晶性ポリエステルの固有粘度は所定の範囲に制御することが好ましいことがわかった。
When the intrinsic viscosity of the crystalline polyester is increased, the shearing force during melting and stirring is increased. Therefore, when the crystalline polyester and an incompatible additive are stirred and mixed in an extruder, the higher the intrinsic viscosity of the crystalline polyester, the higher the shearing force in melting and stirring, and the higher the dispersibility of the additive. Rise. This is thought to be due to the additive becoming finer due to the shearing force of the solvent. As a result, the particle size of the additive becomes small, and an effective dispersion diameter cannot be obtained to such an extent that a good uneven structure is imparted to the surface of the light diffusion layer (B), and the surface haze is lowered. Therefore, in order to achieve both the mechanical strength of the light diffusion layer (B) and good light characteristics, the intrinsic viscosity of the crystalline polyester containing the copolymer component constituting the light diffusion layer can be controlled within a predetermined range. It turned out to be preferable.
該結晶性ポリエステルの固有粘度の下限としては、0.50dl/gが好ましく、0.52dl/gがさらに好ましい。固有粘度が0.50dl/g未満では、メルトラインに異物除去用フィルターを設けた場合、溶融樹脂の押出時における吐出安定性が低下する傾向がある。また、該結晶性ポリエステルの固有粘度の上限としては、0.61dl/gが好ましく、0.59dl/gがさらに好ましい。固有粘度が0.61dl/gを超える場合は、前記添加剤のポリエステル中の分散径が小さくなり、光拡散性が低下する傾向がある。
The lower limit of the intrinsic viscosity of the crystalline polyester is preferably 0.50 dl / g, more preferably 0.52 dl / g. When the intrinsic viscosity is less than 0.50 dl / g, when a foreign matter removing filter is provided in the melt line, the discharge stability during extrusion of the molten resin tends to be lowered. The upper limit of the intrinsic viscosity of the crystalline polyester is preferably 0.61 dl / g, and more preferably 0.59 dl / g. When the intrinsic viscosity exceeds 0.61 dl / g, the dispersion diameter in the polyester of the additive becomes small, and the light diffusibility tends to decrease.
〔6〕基材ポリマーと非相溶樹脂の溶融粘度差の制御
本発明者は光拡散層(B)を構成する該結晶性ポリエステルと非相溶性の添加剤との溶融粘度差と、フィルムの表面ヘーズとの間に以下に述べる関連性を有することを見出した。本発明では光拡散層(B)中の非相溶の添加剤により表面凹凸が形成され、所定の表面ヘーズが得られる。光拡散層(B)を構成する共重合成分を含む結晶性ポリエステルと非相溶の添加剤とは、押出機内で攪拌混合される。非相溶性の添加剤の態様としては熱可塑性樹脂が好ましいが、該結晶性ポリエステルの溶融粘度と該添加剤の溶融粘度が同程度の場合、二成分は容易に分散し、該添加剤は細粒化する。該添加剤の分散径が小さくなると、光拡散層(B)表面に良好な凹凸構造が得られず、表面ヘーズが低下する。そのため、本発明では、光拡散層(B)を構成する共重合成分を含む結晶性ポリエステルと非相溶の添加剤との溶融粘度差が大きい方が好ましい。該溶融粘度差は、35Pa・s以上が好ましく、40Pa・s以上がさらに好ましい。溶融粘度差が35Pa・s以上では、添加剤のポリエステル中の添加剤が良好な分散径を有し、良好な光拡散性が得られる。 [6] Control of the difference in melt viscosity between the base polymer and the incompatible resin The inventor of the present invention describes the difference in melt viscosity between the crystalline polyester constituting the light diffusion layer (B) and the incompatible additive, It has been found that it has the following relationship with the surface haze. In the present invention, surface irregularities are formed by the incompatible additive in the light diffusion layer (B), and a predetermined surface haze is obtained. The crystalline polyester containing the copolymer component constituting the light diffusion layer (B) and the incompatible additive are stirred and mixed in the extruder. As an aspect of the incompatible additive, a thermoplastic resin is preferable. However, when the melt viscosity of the crystalline polyester and the melt viscosity of the additive are approximately the same, the two components are easily dispersed, and the additive is a fine additive. Granulate. When the dispersion diameter of the additive is reduced, a good uneven structure cannot be obtained on the surface of the light diffusion layer (B), and the surface haze is lowered. Therefore, in the present invention, it is preferable that the difference in melt viscosity between the crystalline polyester containing the copolymerization component constituting the light diffusion layer (B) and the incompatible additive is large. The difference in melt viscosity is preferably 35 Pa · s or more, and more preferably 40 Pa · s or more. When the difference in melt viscosity is 35 Pa · s or more, the additive in the polyester as an additive has a good dispersion diameter, and good light diffusibility is obtained.
本発明者は光拡散層(B)を構成する該結晶性ポリエステルと非相溶性の添加剤との溶融粘度差と、フィルムの表面ヘーズとの間に以下に述べる関連性を有することを見出した。本発明では光拡散層(B)中の非相溶の添加剤により表面凹凸が形成され、所定の表面ヘーズが得られる。光拡散層(B)を構成する共重合成分を含む結晶性ポリエステルと非相溶の添加剤とは、押出機内で攪拌混合される。非相溶性の添加剤の態様としては熱可塑性樹脂が好ましいが、該結晶性ポリエステルの溶融粘度と該添加剤の溶融粘度が同程度の場合、二成分は容易に分散し、該添加剤は細粒化する。該添加剤の分散径が小さくなると、光拡散層(B)表面に良好な凹凸構造が得られず、表面ヘーズが低下する。そのため、本発明では、光拡散層(B)を構成する共重合成分を含む結晶性ポリエステルと非相溶の添加剤との溶融粘度差が大きい方が好ましい。該溶融粘度差は、35Pa・s以上が好ましく、40Pa・s以上がさらに好ましい。溶融粘度差が35Pa・s以上では、添加剤のポリエステル中の添加剤が良好な分散径を有し、良好な光拡散性が得られる。 [6] Control of the difference in melt viscosity between the base polymer and the incompatible resin The inventor of the present invention describes the difference in melt viscosity between the crystalline polyester constituting the light diffusion layer (B) and the incompatible additive, It has been found that it has the following relationship with the surface haze. In the present invention, surface irregularities are formed by the incompatible additive in the light diffusion layer (B), and a predetermined surface haze is obtained. The crystalline polyester containing the copolymer component constituting the light diffusion layer (B) and the incompatible additive are stirred and mixed in the extruder. As an aspect of the incompatible additive, a thermoplastic resin is preferable. However, when the melt viscosity of the crystalline polyester and the melt viscosity of the additive are approximately the same, the two components are easily dispersed, and the additive is a fine additive. Granulate. When the dispersion diameter of the additive is reduced, a good uneven structure cannot be obtained on the surface of the light diffusion layer (B), and the surface haze is lowered. Therefore, in the present invention, it is preferable that the difference in melt viscosity between the crystalline polyester containing the copolymerization component constituting the light diffusion layer (B) and the incompatible additive is large. The difference in melt viscosity is preferably 35 Pa · s or more, and more preferably 40 Pa · s or more. When the difference in melt viscosity is 35 Pa · s or more, the additive in the polyester as an additive has a good dispersion diameter, and good light diffusibility is obtained.
〔7〕延伸温度の制御
フィルムの力学的特性や光学特性は製膜条件によっても制御することができる。フィルムの延伸温度を高くすると、延伸応力が低下するので、配向係数が低くなり、ボイドの発生が抑制される。また、非相溶性の添加剤による表面凹凸も形成されやくなるので、全光線透過率と光拡散性の両立の点からは、高温で延伸することが望ましい。しかしながら、延伸温度を高くすると、フィルムの厚み変動が大きくなり、厚み斑などが発生して、フィルム本来の力学的特性が得られ難い。本発明の表面光拡散性ポリエステルフィルムにおいて、優れた力学的特性と、全光線透過率と光拡散性の両立を図る為には、樹脂特性や要求特性に応じた製膜条件、特に延伸時の温度を適宜に制御することが望ましい。本発明の表面光拡散性ポリエステルフィルムを、ポリエステル樹脂を延伸して作製する場合、その横延伸時の温度は120℃から160℃の温度範囲内が望ましい。 [7] Control of stretching temperature The mechanical properties and optical properties of the film can also be controlled by the film forming conditions. When the stretching temperature of the film is raised, the stretching stress is lowered, so the orientation coefficient is lowered and the generation of voids is suppressed. In addition, since surface irregularities due to incompatible additives are easily formed, it is desirable to stretch at a high temperature from the viewpoint of achieving both total light transmittance and light diffusibility. However, when the stretching temperature is increased, the thickness variation of the film increases, resulting in thickness unevenness and the like, and it is difficult to obtain the original mechanical characteristics of the film. In the surface light diffusible polyester film of the present invention, in order to achieve both excellent mechanical properties and total light transmittance and light diffusibility, film forming conditions according to the resin properties and required properties, particularly the temperature during stretching. It is desirable to control appropriately. When the surface light diffusible polyester film of the present invention is produced by stretching a polyester resin, the temperature during the transverse stretching is desirably in the temperature range of 120 ° C to 160 ° C.
フィルムの力学的特性や光学特性は製膜条件によっても制御することができる。フィルムの延伸温度を高くすると、延伸応力が低下するので、配向係数が低くなり、ボイドの発生が抑制される。また、非相溶性の添加剤による表面凹凸も形成されやくなるので、全光線透過率と光拡散性の両立の点からは、高温で延伸することが望ましい。しかしながら、延伸温度を高くすると、フィルムの厚み変動が大きくなり、厚み斑などが発生して、フィルム本来の力学的特性が得られ難い。本発明の表面光拡散性ポリエステルフィルムにおいて、優れた力学的特性と、全光線透過率と光拡散性の両立を図る為には、樹脂特性や要求特性に応じた製膜条件、特に延伸時の温度を適宜に制御することが望ましい。本発明の表面光拡散性ポリエステルフィルムを、ポリエステル樹脂を延伸して作製する場合、その横延伸時の温度は120℃から160℃の温度範囲内が望ましい。 [7] Control of stretching temperature The mechanical properties and optical properties of the film can also be controlled by the film forming conditions. When the stretching temperature of the film is raised, the stretching stress is lowered, so the orientation coefficient is lowered and the generation of voids is suppressed. In addition, since surface irregularities due to incompatible additives are easily formed, it is desirable to stretch at a high temperature from the viewpoint of achieving both total light transmittance and light diffusibility. However, when the stretching temperature is increased, the thickness variation of the film increases, resulting in thickness unevenness and the like, and it is difficult to obtain the original mechanical characteristics of the film. In the surface light diffusible polyester film of the present invention, in order to achieve both excellent mechanical properties and total light transmittance and light diffusibility, film forming conditions according to the resin properties and required properties, particularly the temperature during stretching. It is desirable to control appropriately. When the surface light diffusible polyester film of the present invention is produced by stretching a polyester resin, the temperature during the transverse stretching is desirably in the temperature range of 120 ° C to 160 ° C.
〔8〕光拡散層の融点と熱処理温度条件の相互制御
先願発明(I)の表面光拡散性ポリエステルフィルムは上記手段〔1〕~〔7〕が相互に関連することにより達成された。しかしながら、本発明では優れた輝度特性を奏するために、光拡散層(B)表面の凹凸構造において、平均傾斜勾配(Δa)は0.03以上にすることが重要である。このためには、上記〔5〕、〔6〕などの手段により光拡散層(B)表面に凹凸構造を設けることが望ましい。特に、延伸工程は、有効な凹凸形成に寄与する。これは、フィルム内部に生じる延伸応力により非相溶な添加剤が外側へ押し出され、有効な凹凸構造を形成することによると考えられる。 [8] Mutual Control of Melting Point of Light Diffusing Layer and Heat Treatment Temperature Conditions The surface light diffusing polyester film of the invention (I) of the prior application was achieved by relating the above means [1] to [7]. However, in order to achieve excellent luminance characteristics in the present invention, it is important that the average gradient (Δa) is 0.03 or more in the uneven structure on the surface of the light diffusion layer (B). For this purpose, it is desirable to provide a concavo-convex structure on the surface of the light diffusion layer (B) by means such as the above [5], [6]. In particular, the stretching step contributes to effective formation of unevenness. This is considered to be due to the fact that the incompatible additive is pushed outward by the stretching stress generated inside the film, and an effective uneven structure is formed.
先願発明(I)の表面光拡散性ポリエステルフィルムは上記手段〔1〕~〔7〕が相互に関連することにより達成された。しかしながら、本発明では優れた輝度特性を奏するために、光拡散層(B)表面の凹凸構造において、平均傾斜勾配(Δa)は0.03以上にすることが重要である。このためには、上記〔5〕、〔6〕などの手段により光拡散層(B)表面に凹凸構造を設けることが望ましい。特に、延伸工程は、有効な凹凸形成に寄与する。これは、フィルム内部に生じる延伸応力により非相溶な添加剤が外側へ押し出され、有効な凹凸構造を形成することによると考えられる。 [8] Mutual Control of Melting Point of Light Diffusing Layer and Heat Treatment Temperature Conditions The surface light diffusing polyester film of the invention (I) of the prior application was achieved by relating the above means [1] to [7]. However, in order to achieve excellent luminance characteristics in the present invention, it is important that the average gradient (Δa) is 0.03 or more in the uneven structure on the surface of the light diffusion layer (B). For this purpose, it is desirable to provide a concavo-convex structure on the surface of the light diffusion layer (B) by means such as the above [5], [6]. In particular, the stretching step contributes to effective formation of unevenness. This is considered to be due to the fact that the incompatible additive is pushed outward by the stretching stress generated inside the film, and an effective uneven structure is formed.
ただ、製膜工程初期において凹凸構造を設けても、その後の製膜工程において凹凸構造が平坦化し、レンズシートと組み合わせた場合に所定の輝度が生じる程度の平均傾斜勾配(Δa)を有する凹凸構造が保持されない。たとえば、先願発明(I)では、熱処理工程において、フィルム内部のボイドを減少させるため、235から250℃の高温での熱処理が施されていた。この場合、光拡散層(B)を構成する共重合成分を含む結晶性ポリエステルが高温の熱処理により軟化し、凹凸構造により形成された傾斜勾配が平坦化することが生じていた。
However, even if the concavo-convex structure is provided at the initial stage of the film forming process, the concavo-convex structure having an average inclination gradient (Δa) to the extent that the concavo-convex structure is flattened in the subsequent film forming process and a predetermined luminance is generated when combined with the lens sheet. Is not retained. For example, in the prior invention (I), in the heat treatment step, heat treatment was performed at a high temperature of 235 to 250 ° C. in order to reduce voids inside the film. In this case, the crystalline polyester containing the copolymer component constituting the light diffusion layer (B) was softened by a high-temperature heat treatment, and the gradient formed by the concavo-convex structure was flattened.
そこで、本願発明の平均傾斜勾配(Δa)を達成する方法として、光拡散層(B)を構成する樹脂の融点と熱処理温度の差を大きくすることが望ましい。光拡散層を構成する樹脂の融点と熱処理温度の差が小さくなると、熱処理工程において光拡散層が軟化してしまい、結果として輝度に優れた平均傾斜勾配(Δa)を有する表面凹凸構造が形成されなくなる。ただし、光拡散層(B)を構成する樹脂の融点と熱処理温度の差が大きくなると熱処理温度が低下するため、フィルムの熱収縮率が悪化する。また、光拡散層を構成する樹脂の融点が高くなると、光拡散層に含まれる非相溶樹脂の周りに生じたボイドが熱処理によっても消失せず、残存してしまう。ボイドの発生したフィルムは、内部ヘーズが上昇することにより全光線透過率が低下するため好ましくない。そこで、光拡散層(B)の融点と熱処理温度の差は、9℃以上25℃以下の範囲内で制御することが好ましい実施の形態であり、11℃以上23℃以下であればより好ましく、13℃以上21℃以下であれば更に好ましい。
Therefore, as a method for achieving the average gradient (Δa) of the present invention, it is desirable to increase the difference between the melting point of the resin constituting the light diffusion layer (B) and the heat treatment temperature. When the difference between the melting point of the resin constituting the light diffusion layer and the heat treatment temperature is reduced, the light diffusion layer is softened in the heat treatment step, and as a result, a surface uneven structure having an average gradient (Δa) excellent in luminance is formed. Disappear. However, when the difference between the melting point of the resin constituting the light diffusion layer (B) and the heat treatment temperature is increased, the heat treatment temperature is lowered, so that the thermal contraction rate of the film is deteriorated. Further, when the melting point of the resin constituting the light diffusion layer is increased, voids generated around the incompatible resin contained in the light diffusion layer are not lost even by heat treatment and remain. A film in which voids are generated is not preferable because the total light transmittance is reduced due to an increase in internal haze. Therefore, the difference between the melting point of the light diffusion layer (B) and the heat treatment temperature is preferably controlled within a range of 9 ° C. or more and 25 ° C. or less, more preferably 11 ° C. or more and 23 ° C. or less, More preferably, it is 13 ° C. or more and 21 ° C. or less.
請求項1記載の要件(1)を達成するためには、上記手段〔1〕~〔3〕の条件制御を実施することにより達成することが可能である。
請求項1記載の要件(2)を達成するためには、上記手段〔4〕~〔7〕の条件制御を実施することにより達成することが可能である。
請求項1記載の要件(3)を達成するためには、上記手段〔3〕~〔7〕の条件制御を実施することにより達成することが可能である。
請求項1記載の要件(4)を達成するためには、上記手段〔3〕~〔7〕の条件制御を実施することにより達成することが可能である。
請求項1記載の要件(5)を達成するためには、上記手段〔1〕~〔4〕、〔7〕の条件制御を実施することにより達成することが可能である。
請求項1記載の要件(6)を達成するためには、上記手段〔1〕、〔5〕~〔8〕の条件制御を実施することにより達成することが可能である。
本発明では、上記〔1〕~〔8〕の手段が相互に関連して、所定の効果が得られると考える。しかし、本発明の趣旨を逸脱しない範囲であれば、上述した方法と異なった方法で達成することも可能である。具体的には以下のような手段があげられる。 In order to achieve the requirement (1) described in claim 1, it is possible to achieve it by executing the condition control of the means [1] to [3].
In order to achieve the requirement (2) described in claim 1, it is possible to achieve it by executing the condition control of the means [4] to [7].
In order to achieve the requirement (3) described in claim 1, it is possible to achieve it by executing the condition control of the means [3] to [7].
In order to achieve the requirement (4) described in claim 1, it is possible to achieve it by executing the condition control of the means [3] to [7].
In order to achieve the requirement (5) described in claim 1, it is possible to achieve the condition control of the means [1] to [4] and [7].
In order to achieve the requirement (6) described in claim 1, it is possible to achieve the condition control of the means [1], [5] to [8].
In the present invention, it is considered that the above means [1] to [8] are related to each other to obtain a predetermined effect. However, it can be achieved by a method different from the method described above as long as it does not depart from the spirit of the present invention. Specifically, the following means can be mentioned.
請求項1記載の要件(2)を達成するためには、上記手段〔4〕~〔7〕の条件制御を実施することにより達成することが可能である。
請求項1記載の要件(3)を達成するためには、上記手段〔3〕~〔7〕の条件制御を実施することにより達成することが可能である。
請求項1記載の要件(4)を達成するためには、上記手段〔3〕~〔7〕の条件制御を実施することにより達成することが可能である。
請求項1記載の要件(5)を達成するためには、上記手段〔1〕~〔4〕、〔7〕の条件制御を実施することにより達成することが可能である。
請求項1記載の要件(6)を達成するためには、上記手段〔1〕、〔5〕~〔8〕の条件制御を実施することにより達成することが可能である。
本発明では、上記〔1〕~〔8〕の手段が相互に関連して、所定の効果が得られると考える。しかし、本発明の趣旨を逸脱しない範囲であれば、上述した方法と異なった方法で達成することも可能である。具体的には以下のような手段があげられる。 In order to achieve the requirement (1) described in claim 1, it is possible to achieve it by executing the condition control of the means [1] to [3].
In order to achieve the requirement (2) described in claim 1, it is possible to achieve it by executing the condition control of the means [4] to [7].
In order to achieve the requirement (3) described in claim 1, it is possible to achieve it by executing the condition control of the means [3] to [7].
In order to achieve the requirement (4) described in claim 1, it is possible to achieve it by executing the condition control of the means [3] to [7].
In order to achieve the requirement (5) described in claim 1, it is possible to achieve the condition control of the means [1] to [4] and [7].
In order to achieve the requirement (6) described in claim 1, it is possible to achieve the condition control of the means [1], [5] to [8].
In the present invention, it is considered that the above means [1] to [8] are related to each other to obtain a predetermined effect. However, it can be achieved by a method different from the method described above as long as it does not depart from the spirit of the present invention. Specifically, the following means can be mentioned.
上記〔2〕では、バイメタル構造に起因するカールの発生を抑制する方法を示した。上記の説明は、光線透過率と光拡散性を高度に両立した上で、光拡散層(B)と支持層(A)の線膨張係数の差を、如何にして小さくすれば、本発明の表面光拡散性ポリエステルフィルムを得られるか、という技術的思想を開示したものであるが、当業者であれば、かかる技術的思想を上述した方法と異なった方法により容易に実施することが可能でき、異なった方法で本発明の表面光拡散性ポリエステルフィルムを得ることができる。
In [2] above, a method for suppressing the occurrence of curling due to the bimetal structure was shown. In the above description, the light transmittance and the light diffusivity are both highly compatible, and if the difference between the linear expansion coefficients of the light diffusion layer (B) and the support layer (A) is reduced, Although the technical idea that a surface light diffusible polyester film can be obtained is disclosed, those skilled in the art can easily implement such a technical idea by a method different from the method described above, The surface light diffusing polyester film of the present invention can be obtained by different methods.
すなわち、支持層(A)を構成する結晶性ポリエステル/結晶性ホモポリエステルと光拡散層(B)を構成する結晶性ポリエステルとの融点差が、25℃より大きい場合であっても、延伸工程において支持層(A)と光拡散層(B)のそれぞれの面の延伸温度に差を付与することによって、支持層(A)面側と光拡散層(B)面側とで延伸による配向状態に差を設け、フィルム両面の線膨張係数の差を制御することにより、バイメタル構造に起因するカールの発生を抑制した表面光拡散性ポリエステルフィルムを得ることができる。
That is, even when the difference in melting point between the crystalline polyester / crystalline homopolyester constituting the support layer (A) and the crystalline polyester constituting the light diffusion layer (B) is greater than 25 ° C., By providing a difference in the stretching temperature of each surface of the support layer (A) and the light diffusion layer (B), the support layer (A) surface side and the light diffusion layer (B) surface side are aligned by stretching. By providing the difference and controlling the difference between the linear expansion coefficients on both sides of the film, it is possible to obtain a surface light diffusible polyester film that suppresses the occurrence of curling due to the bimetallic structure.
また、上記〔5〕では、分散した添加剤により形成された表面凹凸により表面ヘーズを制御する方法を示した。上記の説明では、添加剤の分散径を如何にして制御すれば良いか、という技術的思想を開示したものであるが、当業者であれば、かかる技術的思想を上述した方法と異なった方法により容易に実施することが可能である。
In [5] above, a method for controlling the surface haze by the surface irregularities formed by the dispersed additive was shown. In the above description, the technical idea of how to control the dispersion diameter of the additive is disclosed. However, those skilled in the art will consider such a technical idea as a method different from the method described above. Can be implemented more easily.
すなわち、光拡散層(B)を構成する共重合成分を含む結晶ポリエステルの固有粘度が0.61dl/gを超える場合であっても、押出機内の混練り部後のポリマー管からダイ出口までの添加剤の滞留時間を制御することにより、細粒化した添加剤が凝集する時間を確保し、添加剤の分散径を制御することにより形成された表面凹凸による表面ヘーズを得ることができる。また、Tダイのスリット間隔を制御することにより、溶融樹脂吐出時の剪断力を制御することにより、添加剤の分散径を制御することができる。さらに、一旦分散した溶解樹脂に対し、混練り後のポリマー管内において、細粒化した添加剤を凝集させる効果のある凝集剤を添加することにより、添加剤の分散径を制御することができる。例えば、添加剤としてポリスチレン樹脂を用いた場合、凝集剤としてアクリルースチレン共重合体などを添加することにより、スチレン樹脂の凝集が促進され、光拡散に有効な分散径を得ることができる。このようなアクリルースチレン共重合体は、1モルのグリシジルメタクリレートと2モルのスチレンモノマーを共重合させること等によっても得ることができる。
That is, even when the intrinsic viscosity of the crystalline polyester containing the copolymerization component constituting the light diffusion layer (B) exceeds 0.61 dl / g, from the polymer tube after the kneading part in the extruder to the die exit. By controlling the retention time of the additive, it is possible to secure a time for the finely divided additive to agglomerate, and to obtain a surface haze due to surface irregularities formed by controlling the dispersion diameter of the additive. Moreover, the dispersion diameter of the additive can be controlled by controlling the shear force at the time of discharging the molten resin by controlling the slit interval of the T die. Further, the dispersion diameter of the additive can be controlled by adding a flocculant having an effect of agglomerating the finely divided additive to the dissolved resin once dispersed in the polymer tube after kneading. For example, when a polystyrene resin is used as an additive, by adding an acrylic-styrene copolymer or the like as an aggregating agent, aggregation of the styrene resin is promoted and a dispersion diameter effective for light diffusion can be obtained. Such an acrylic-styrene copolymer can also be obtained by copolymerizing 1 mol of glycidyl methacrylate and 2 mol of styrene monomer.
また、上記〔7〕の説明においては、フィルムの延伸温度を高くすることにより、延伸応力を制御し、ボイド発生を抑制する方法を示した。上記の説明では、如何にして、延伸応力を小さくすれば良いか、という技術的思想を示したものであるが、当業者であれば、かかる技術的思想を上述した方法と異なった方法により容易に実施することが可能である。すなわち、フィルム延伸温度が低い場合であっても、同時二軸延伸機を用いることによって、延伸速度を低速にすることにより、延伸応力を制御し、ボイド発生を抑制することができる。
In the description of [7] above, a method of controlling the stretching stress and suppressing the generation of voids by increasing the stretching temperature of the film was shown. In the above description, the technical idea of how to reduce the stretching stress is shown. However, those skilled in the art can easily perform the technical idea by a method different from the method described above. Can be implemented. That is, even when the film stretching temperature is low, by using a simultaneous biaxial stretching machine, the stretching speed can be lowered to control the stretching stress and suppress the generation of voids.
また、上記〔8〕の説明においては、光拡散層の融点と熱処理温度との差を制御することにより、光拡散層(B)表面の平均傾斜勾配(Δa)を制御する方法を示した。上記説明では、如何にして、光拡散層(B)表面の凹凸構造を熱処理工程で保持すればよいか、という技術思想を示したものであるが、当業者であればかかる技術思想を上述した方法と異なった方法であっても実施することが可能である。すわなち、(i)光拡散性添加剤として耐熱強度に優れた素材を用いたり、(ii)熱処理工程で表裏の温度差を設け、光拡散層(B)面の処理温度を低温にし、支持層(A)面の処理温度を高温にすること、などによっても光拡散層(B)表面の平均傾斜勾配(Δa)を制御することができる。
In the description of [8] above, the method of controlling the average gradient (Δa) of the surface of the light diffusion layer (B) by controlling the difference between the melting point of the light diffusion layer and the heat treatment temperature is shown. In the above description, the technical idea of how to maintain the uneven structure on the surface of the light diffusion layer (B) in the heat treatment step is shown. However, those skilled in the art described the technical idea above. Even a method different from the method can be implemented. In other words, (i) using a material excellent in heat resistance strength as a light diffusing additive, or (ii) providing a temperature difference between the front and back in the heat treatment step, lowering the processing temperature of the light diffusion layer (B) surface, The average gradient (Δa) on the surface of the light diffusion layer (B) can also be controlled by increasing the processing temperature of the surface of the support layer (A).
さらに、本発明の表面光拡散性ポリエステルフィルムを得るための構成、および特性について、以下に詳述する。
(原料)
本発明でフィルム原料として用いる結晶性ホモポリエステルは、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸などの芳香族ジカルボン酸又はそのエステルと、エチレングリコール、ジエチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、ネオペンチルグリコールなどのグリコールとを重縮合させて製造されるポリエステルである。これらのポリエステルは芳香族ジカルボン酸とグリコールとを直接反応させる直重法のほか、芳香族ジカルボン酸のアルキルエステルとグリコールとをエステル交換反応させた後、重縮合させるエステル交換法か、あるいは芳香族ジカルボン酸のジグリコールエステルを重縮合させるなどの方法によって製造することができる。 Furthermore, the structure for obtaining the surface light diffusable polyester film of the present invention and the characteristics will be described in detail below.
(material)
The crystalline homopolyester used as a film raw material in the present invention includes aromatic dicarboxylic acids or esters thereof such as terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, ethylene glycol, diethylene glycol, 1,3-propanediol, 1,4-butane. Polyester produced by polycondensation with glycols such as diol and neopentyl glycol. In addition to the direct weight method in which an aromatic dicarboxylic acid and a glycol are directly reacted, these polyesters can be transesterified by an alkyl ester of an aromatic dicarboxylic acid and a glycol and then subjected to a polycondensation, or an aromatic method. It can be produced by a method such as polycondensation of diglycol ester of dicarboxylic acid.
(原料)
本発明でフィルム原料として用いる結晶性ホモポリエステルは、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸などの芳香族ジカルボン酸又はそのエステルと、エチレングリコール、ジエチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、ネオペンチルグリコールなどのグリコールとを重縮合させて製造されるポリエステルである。これらのポリエステルは芳香族ジカルボン酸とグリコールとを直接反応させる直重法のほか、芳香族ジカルボン酸のアルキルエステルとグリコールとをエステル交換反応させた後、重縮合させるエステル交換法か、あるいは芳香族ジカルボン酸のジグリコールエステルを重縮合させるなどの方法によって製造することができる。 Furthermore, the structure for obtaining the surface light diffusable polyester film of the present invention and the characteristics will be described in detail below.
(material)
The crystalline homopolyester used as a film raw material in the present invention includes aromatic dicarboxylic acids or esters thereof such as terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, ethylene glycol, diethylene glycol, 1,3-propanediol, 1,4-butane. Polyester produced by polycondensation with glycols such as diol and neopentyl glycol. In addition to the direct weight method in which an aromatic dicarboxylic acid and a glycol are directly reacted, these polyesters can be transesterified by an alkyl ester of an aromatic dicarboxylic acid and a glycol and then subjected to a polycondensation, or an aromatic method. It can be produced by a method such as polycondensation of diglycol ester of dicarboxylic acid.
前記のポリエステルの代表例として、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレートあるいはポリエチレン-2,6-ナフタレートが挙げられる。前記のポリエステルはホモポリマーであってもよく、実質的にその結晶性を阻害しない範囲で、第三成分を共重合したものであってもよい。これらのポリエステルの中でも、エチレンテレフタレート単位、あるいはエチレン-2,6-ナフタレート単位が70モル%以上、好ましくは80モル%以上、さらに好ましくは90モル%以上であるポリエステルが好ましい。
Representative examples of the polyester include polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, and polyethylene-2,6-naphthalate. The polyester may be a homopolymer or may be a copolymer of the third component within a range that does not substantially impair the crystallinity thereof. Among these polyesters, a polyester having an ethylene terephthalate unit or an ethylene-2,6-naphthalate unit of 70 mol% or more, preferably 80 mol% or more, more preferably 90 mol% or more is preferable.
また、本発明に用いることができる共重合成分を含む結晶性ポリエステルとは、上記の結晶性ホモポリエステルを基本骨格として、第3成分(共重合成分)が主鎖中に導入されたポリエステルのことであり、その構造、分子量、及び組成は限定されず任意である。
The crystalline polyester containing a copolymerization component that can be used in the present invention is a polyester in which a third component (copolymerization component) is introduced into the main chain using the above crystalline homopolyester as a basic skeleton. The structure, molecular weight, and composition are not limited and are arbitrary.
また、本発明の表面光拡散性ポリエステルフィルムは、芳香族ジカルボン酸成分と、エチレングリコール及び、分岐状脂肪族グリコール又は脂環族グリコールの少なくとも1種を含むグリコール成分とから構成される共重合ポリエステルを、原料の一部あるいは全部に用いることが好ましい。
Further, the surface light diffusing polyester film of the present invention comprises a copolyester composed of an aromatic dicarboxylic acid component and a glycol component containing ethylene glycol and at least one of a branched aliphatic glycol or alicyclic glycol. It is preferable to use it for some or all of the raw materials.
分岐状脂肪族グリコールとしては、例えば、ネオペンチルグリコール、1,2-プロパンジオール、1,2-ブタンジオールなどが例示される。また、脂環族グリコールとしては、1,4-シクロヘキサンジメタノール、トリシクロデカンジメチロールなどが例示される。
Examples of branched aliphatic glycols include neopentyl glycol, 1,2-propanediol, and 1,2-butanediol. Examples of the alicyclic glycol include 1,4-cyclohexanedimethanol and tricyclodecane dimethylol.
これらのなかでも、ネオペンチルグリコールや1,4-シクロヘキサンジメタノールが特に好ましい。さらに、本発明においては、上記のグリコール成分に加えて1,3-プロパンジオールや1,4-ブタンジオールを共重合成分とすることが、より好ましい実施態様である。これらのグリコールを共重合成分として、前述の範囲で導入し、使用することは、前記の特性を付与するために好適であり、さらに、光拡散層内のボイドを低減させ、光線透過率と光拡散性を高度に両立させる点からも好ましい。
Of these, neopentyl glycol and 1,4-cyclohexanedimethanol are particularly preferable. Furthermore, in the present invention, it is a more preferred embodiment that 1,3-propanediol or 1,4-butanediol is used as a copolymerization component in addition to the glycol component. Introducing and using these glycols as copolymerization components in the above-mentioned range is suitable for imparting the above-mentioned characteristics, and further reduces voids in the light diffusion layer, and reduces light transmittance and light. It is also preferable from the viewpoint of achieving both high diffusibility.
さらに、必要に応じて、前記のポリエステルに下記のようなジカルボン酸成分及び/又はグリコール成分を1種又は2種以上を共重合成分として併用してもよい。
Furthermore, if necessary, one or more dicarboxylic acid components and / or glycol components as described below may be used in combination with the polyester as a copolymerization component.
テレフタル酸又はそのエステル形成性誘導体とともに併用することができる他のジカルボン酸成分としては、(1)イソフタル酸、2,6-ナフタレンジカルボン酸、ジフェニル-4,4′-ジカルボン酸、ジフェノキシエタンジカルボン酸、ジフェニルスルホンジカルボン酸、5-ナトリウムスルホイソフタル酸、フタル酸等の芳香族ジカルボン酸又はそれらのエステル形成性誘導体、(2)シュウ酸、コハク酸、アジピン酸、セバシン酸、ダイマー酸、マレイン酸、フマル酸、グルタル酸等の脂肪族ジカルボン酸又はそれらのエステル形成性誘導体、(3)シクロヘキサンジカルボン酸等の脂環族ジカルボン酸又はそれらのエステル形成性誘導体、(4)p-オキシ安息香酸、オキシカプロン酸等のオキシカルボン酸又はそれらのエステル形成性誘導体等が挙げられる。
Other dicarboxylic acid components that can be used in combination with terephthalic acid or its ester-forming derivatives include (1) isophthalic acid, 2,6-naphthalenedicarboxylic acid, diphenyl-4,4'-dicarboxylic acid, diphenoxyethanedicarboxylic acid Aromatic dicarboxylic acids such as acid, diphenylsulfone dicarboxylic acid, 5-sodium sulfoisophthalic acid, phthalic acid or their ester-forming derivatives, (2) oxalic acid, succinic acid, adipic acid, sebacic acid, dimer acid, maleic acid Aliphatic dicarboxylic acids such as fumaric acid and glutaric acid or ester-forming derivatives thereof, (3) alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid or ester-forming derivatives thereof, (4) p-oxybenzoic acid, Oxycarboxylic acids such as oxycaproic acid or their Le forming derivatives, and the like.
一方、エチレングリコール及び、分岐状脂肪族グリコール及び/又は脂環族グリコールとともに併用することができる他のグリコール成分としては、例えばペンタンジオール、ヘキサンジオール等の脂肪族グリコール、ビスフェノールA、ビスフェノールSなどの芳香族グリコール及びそれらのエチレンオキサイド付加物、ジエチレングリコール、トリエチレングリコール、ダイマージオール等が挙げられる。
On the other hand, other glycol components that can be used in combination with ethylene glycol and branched aliphatic glycol and / or alicyclic glycol include aliphatic glycols such as pentanediol and hexanediol, bisphenol A, bisphenol S, and the like. Aromatic glycols and their ethylene oxide adducts, diethylene glycol, triethylene glycol, dimer diol and the like can be mentioned.
さらに、必要に応じて、前記ポリエステルに、さらにトリメリット酸、トリメシン酸、トリメチロールプロパン等の多官能化合物を共重合させることもできる。
Furthermore, if necessary, the polyester may be further copolymerized with a polyfunctional compound such as trimellitic acid, trimesic acid, or trimethylolpropane.
前記ポリエステルを製造する際に用いる触媒としては、例えば、アルカリ土類金属化合物、マンガン化合物、コバルト化合物、アルミニウム化合物、アンチモン化合物、チタン化合物、チタン/ケイ素複合酸化物、ゲルマニウム化合物などが使用できる。これらのなかでも、チタン化合物、アンチモン化合物、ゲルマニウム化合物、アルミニウム化合物が触媒活性の点から好ましい。
Examples of the catalyst used for producing the polyester include alkaline earth metal compounds, manganese compounds, cobalt compounds, aluminum compounds, antimony compounds, titanium compounds, titanium / silicon composite oxides, and germanium compounds. Of these, titanium compounds, antimony compounds, germanium compounds, and aluminum compounds are preferred from the viewpoint of catalytic activity.
前記ポリエステルを製造する際に、熱安定剤としてリン化合物を添加することが好ましい。前記リン化合物としては、例えばリン酸、亜リン酸などが好ましい。
When producing the polyester, it is preferable to add a phosphorus compound as a heat stabilizer. As said phosphorus compound, phosphoric acid, phosphorous acid, etc. are preferable, for example.
本発明の表面光拡散性ポリエステルフィルムは、前記共重合ポリエステルをそのままフィルム原料として用いてもよいし、共重合成分が多い共重合ポリエステルをホモポリエステル(例えば、ポリエチレンテレフタレート)とブレンドして、共重合成分量を調整しても構わない。
In the surface light diffusing polyester film of the present invention, the copolymerized polyester may be used as a raw material for the film as it is, or a copolymerized polyester having a large amount of copolymerized components is blended with a homopolyester (for example, polyethylene terephthalate) to copolymerize. You may adjust the amount.
特に、後者のブレンド法を用いてフィルムを製造することによって、共重合ポリエステルのみを用いた場合と同等の光拡散性と全光線透過率を両立しながら、高融点(耐熱性)を有する、共重合成分を含む結晶性ポリエステルを調整することができる。
In particular, by producing a film using the latter blending method, a co-polymer having a high melting point (heat resistance) while achieving both the light diffusibility and the total light transmittance equivalent to the case of using only the copolyester. A crystalline polyester containing a polymerization component can be prepared.
また、異なる2種類の結晶性ポリエステルを溶融混合して、両者のエステル交換反応を利用して、主鎖中に第3成分(共重合成分)を導入する方法を採用しても良い。特に、前記共重合ポリエステルと、ポリエチレンテレフタレート、及びポリエチレンテレフタレート以外のホモポリエステル(例えば、ポリテトラメチレンテレフタレートやポリブチレンテレフタレート)を少なくとも1種以上ブレンドして、本発明の表面光拡散性ポリエステルフィルムの原料として使用することは、ボイド低減の点からもさらに好ましい。
Alternatively, a method may be employed in which two different kinds of crystalline polyesters are melt-mixed and a third component (copolymerization component) is introduced into the main chain by utilizing a transesterification reaction between them. In particular, the copolymer polyester, polyethylene terephthalate, and at least one homopolyester other than polyethylene terephthalate (for example, polytetramethylene terephthalate or polybutylene terephthalate) are blended and used as a raw material for the surface light diffusing polyester film of the present invention. The use is further preferable from the viewpoint of reducing voids.
なお、前記支持層(A)を構成するポリエステルには、実質的に粒子を含有させないことが好ましい。また、光拡散層を構成する結晶性共重合ポリエステルには、後述する添加剤以外の粒子を実質的に含有させないことが好ましい。上記の「粒子を実質的に含有させない」とは、例えば無機粒子の場合、ケイ光X線分析で無機元素を定量した場合に50ppm以下、好ましくは10ppm以下、特に好ましくは検出限界以下となる含有量を意味する。このように不純物の無い、クリーンなポリエステル原料を用いることで、液晶ディスプレイにおける光学欠点の発生を抑制することができる。
In addition, it is preferable that the polyester constituting the support layer (A) does not substantially contain particles. Moreover, it is preferable that the crystalline copolyester constituting the light diffusion layer does not substantially contain particles other than the additive described later. The above-mentioned “substantially contain no particles” means, for example, in the case of inorganic particles, a content of 50 ppm or less, preferably 10 ppm or less, particularly preferably a detection limit or less when inorganic elements are quantified by fluorescent X-ray analysis. Means quantity. By using a clean polyester raw material free from impurities, the occurrence of optical defects in the liquid crystal display can be suppressed.
(添加剤<表面凹凸付与剤>)
本発明における添加剤は、光拡散層表面に凹凸を付与し、表面光拡散性能を発現させる目的で添加される。光拡散層に入射(光拡散層からの出射)する光は、フィルム表面に付与された凹凸によって、ランダムな方向に屈折・拡散され、表面光拡散性が発現する。上記添加剤は、ポリエステルに非相溶性の材料であれば何ら制限されるものではなく任意であるが、下記のような材料を使用することが好ましい。 (Additive <surface irregularity imparting agent>)
The additive in the present invention is added for the purpose of imparting unevenness to the surface of the light diffusion layer and exhibiting surface light diffusion performance. Light incident on the light diffusing layer (emitted from the light diffusing layer) is refracted and diffused in a random direction by the unevenness imparted to the film surface, and surface light diffusibility is exhibited. The additive is not particularly limited as long as it is a material incompatible with the polyester, but it is preferable to use the following materials.
本発明における添加剤は、光拡散層表面に凹凸を付与し、表面光拡散性能を発現させる目的で添加される。光拡散層に入射(光拡散層からの出射)する光は、フィルム表面に付与された凹凸によって、ランダムな方向に屈折・拡散され、表面光拡散性が発現する。上記添加剤は、ポリエステルに非相溶性の材料であれば何ら制限されるものではなく任意であるが、下記のような材料を使用することが好ましい。 (Additive <surface irregularity imparting agent>)
The additive in the present invention is added for the purpose of imparting unevenness to the surface of the light diffusion layer and exhibiting surface light diffusion performance. Light incident on the light diffusing layer (emitted from the light diffusing layer) is refracted and diffused in a random direction by the unevenness imparted to the film surface, and surface light diffusibility is exhibited. The additive is not particularly limited as long as it is a material incompatible with the polyester, but it is preferable to use the following materials.
(ポリエステルに非相溶性の熱可塑性樹脂)
本発明において用いることができる最も優れた添加剤は、前記ポリエステルに非相溶性の熱可塑性樹脂である。すなわち、ポリエステルと熱可塑性樹脂との非相溶性を活用して、二軸延伸フィルムの製造工程(溶融・押し出し工程)において、ポリエステルからなるマトリックス中に該ポリエステルに非相溶性の熱可塑性樹脂からなるドメインを分散形成させ、表面凹凸形成剤として活用する技術である。この技術を用いることにより、フィルムの溶融・押し出し工程において高精度のフィルターで異物を濾過し、液晶ディスプレイ用フィルムとして必要なクリーン度を達成することができる。 (Thermoplastic resin incompatible with polyester)
The most excellent additive that can be used in the present invention is a thermoplastic resin that is incompatible with the polyester. That is, by utilizing the incompatibility between polyester and thermoplastic resin, in the production process (melting / extrusion process) of the biaxially stretched film, the matrix made of polyester is made of a thermoplastic resin that is incompatible with the polyester. This is a technology that forms domains in a dispersed manner and uses them as surface irregularity forming agents. By using this technique, foreign matter can be filtered with a high-accuracy filter in the film melting / extrusion step, and the cleanliness required for a liquid crystal display film can be achieved.
本発明において用いることができる最も優れた添加剤は、前記ポリエステルに非相溶性の熱可塑性樹脂である。すなわち、ポリエステルと熱可塑性樹脂との非相溶性を活用して、二軸延伸フィルムの製造工程(溶融・押し出し工程)において、ポリエステルからなるマトリックス中に該ポリエステルに非相溶性の熱可塑性樹脂からなるドメインを分散形成させ、表面凹凸形成剤として活用する技術である。この技術を用いることにより、フィルムの溶融・押し出し工程において高精度のフィルターで異物を濾過し、液晶ディスプレイ用フィルムとして必要なクリーン度を達成することができる。 (Thermoplastic resin incompatible with polyester)
The most excellent additive that can be used in the present invention is a thermoplastic resin that is incompatible with the polyester. That is, by utilizing the incompatibility between polyester and thermoplastic resin, in the production process (melting / extrusion process) of the biaxially stretched film, the matrix made of polyester is made of a thermoplastic resin that is incompatible with the polyester. This is a technology that forms domains in a dispersed manner and uses them as surface irregularity forming agents. By using this technique, foreign matter can be filtered with a high-accuracy filter in the film melting / extrusion step, and the cleanliness required for a liquid crystal display film can be achieved.
これに対し、後述する非溶融性のポリマー粒子や無機粒子を添加剤として用いる場合には、フィルムの製造工程において使用できるフィルターの目開きの細かさに限界があり、高精度で異物を除去することが困難となる。さらに、ポリマー粒子や無機粒子を用いた場合には、粒子とポリエステルとの界面にボイドを発生しやすく、光拡散性と全光線透過率を高度に両立することが困難である。
On the other hand, when using non-melting polymer particles and inorganic particles, which will be described later, as an additive, there is a limit to the fineness of filter openings that can be used in the film manufacturing process, and foreign substances are removed with high accuracy. It becomes difficult. Furthermore, when polymer particles or inorganic particles are used, voids are likely to be generated at the interface between the particles and the polyester, and it is difficult to achieve a high balance between light diffusibility and total light transmittance.
前記添加剤として用いることができるポリエステルに非相溶性の熱可塑性樹脂としては、例えば以下の材料が挙げられる。即ち、ポリエチレン、ポリプロピレン、ポリメチルペンテン、各種環状オレフィン系ポリマー等のポリオレフィン、ポリカーボネート、アタクティックポリスチレン、シンジオタクティックポリスチレン、アイソタクティックポリスチレン等のポリスチレン、ポリアミド、ポリエーテル、ポリエステルアミド、ポリフェニレンスルフィド、ポリフェニレンエーテル、ポリエーテルエステル、ポリ塩化ビニル、ポリメタクリル酸エステル等のアクリル樹脂、及びこれらを主たる成分とする共重合体、またはこれらの樹脂の混合物等である。
Examples of thermoplastic resins that are incompatible with polyester that can be used as the additive include the following materials. That is, polyolefins such as polyethylene, polypropylene, polymethylpentene, various cyclic olefin polymers, polycarbonate, polystyrene such as atactic polystyrene, syndiotactic polystyrene, isotactic polystyrene, polyamide, polyether, polyesteramide, polyphenylene sulfide, polyphenylene Examples thereof include acrylic resins such as ether, polyether ester, polyvinyl chloride, and polymethacrylic acid ester, copolymers having these as main components, or mixtures of these resins.
その中でも特に、非晶性の透明ポリマーを用いることが、高い光線透過率を有するフィルムを製造するために好ましい。これに対し、結晶性ポリマーを添加剤として用いた場合には、結晶性ポリマーが白濁してフィルムの内部ヘーズが大きくなり、光線透過率が低下する恐れがある。
Among them, it is particularly preferable to use an amorphous transparent polymer in order to produce a film having a high light transmittance. On the other hand, when a crystalline polymer is used as an additive, the crystalline polymer becomes cloudy, the internal haze of the film increases, and the light transmittance may decrease.
本発明に用いることができる非晶性の透明ポリマーとしては、例えば以下のものが挙げられる。即ち、ポリスチレン(PS樹脂)、アクリロニトリル・スチレン共重合体(AS樹脂)、メタクリル酸メチル・スチレン共重合体(MS樹脂)、環状オレフィン系ポリマー、メタクリル樹脂、PMMA、等が例示される。
Examples of the amorphous transparent polymer that can be used in the present invention include the following. That is, polystyrene (PS resin), acrylonitrile / styrene copolymer (AS resin), methyl methacrylate / styrene copolymer (MS resin), cyclic olefin polymer, methacrylic resin, PMMA, and the like are exemplified.
これらの中でも、ポリエステルからなるマトリックスに対して、ポリマーの表面張力が近い非晶性の透明ポリマーを選択することが、ボイド低減の点からも、さらに好ましい。このような表面張力がポリエステルに近い非晶性の透明ポリマーとしては、ポリスチレン(PS樹脂)、PMMA等が特に好ましい。
Among these, it is more preferable from the viewpoint of void reduction to select an amorphous transparent polymer having a polymer surface tension close to that of a matrix made of polyester. As such an amorphous transparent polymer having a surface tension close to that of polyester, polystyrene (PS resin), PMMA and the like are particularly preferable.
(非溶融性ポリマー粒子)
本発明の添加剤として用いることができる非溶融性ポリマー粒子は、融点測定装置(Stanford Research Systems社製、MPA100型)を用いて、30℃から350℃まで10℃/分で昇温した際に、融解による流動変形が起こらない粒子であれば、その組成は限定されない。例えば、アクリル系樹脂、ポリスチレン系樹脂、ポリオレフィン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、フッ素系樹脂、尿素系樹脂、メラミン系樹脂および有機シリコーン系樹脂等が挙げられる。粒子の形状は、球状もしくは楕円状が好ましい。また、該粒子は細孔を有していてもよいし、無くてもよい。さらに、両者を併用してもよい。 (Non-melting polymer particles)
The non-melting polymer particles that can be used as the additive of the present invention are obtained when the temperature is raised from 30 ° C. to 350 ° C. at 10 ° C./min using a melting point measuring device (manufactured by Stanford Research Systems, MPA100 type). The composition of the particles is not limited as long as the particles do not undergo flow deformation due to melting. Examples thereof include acrylic resins, polystyrene resins, polyolefin resins, polyester resins, polyamide resins, polyimide resins, fluorine resins, urea resins, melamine resins, and organic silicone resins. The shape of the particles is preferably spherical or elliptical. The particles may or may not have pores. Furthermore, you may use both together.
本発明の添加剤として用いることができる非溶融性ポリマー粒子は、融点測定装置(Stanford Research Systems社製、MPA100型)を用いて、30℃から350℃まで10℃/分で昇温した際に、融解による流動変形が起こらない粒子であれば、その組成は限定されない。例えば、アクリル系樹脂、ポリスチレン系樹脂、ポリオレフィン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、フッ素系樹脂、尿素系樹脂、メラミン系樹脂および有機シリコーン系樹脂等が挙げられる。粒子の形状は、球状もしくは楕円状が好ましい。また、該粒子は細孔を有していてもよいし、無くてもよい。さらに、両者を併用してもよい。 (Non-melting polymer particles)
The non-melting polymer particles that can be used as the additive of the present invention are obtained when the temperature is raised from 30 ° C. to 350 ° C. at 10 ° C./min using a melting point measuring device (manufactured by Stanford Research Systems, MPA100 type). The composition of the particles is not limited as long as the particles do not undergo flow deformation due to melting. Examples thereof include acrylic resins, polystyrene resins, polyolefin resins, polyester resins, polyamide resins, polyimide resins, fluorine resins, urea resins, melamine resins, and organic silicone resins. The shape of the particles is preferably spherical or elliptical. The particles may or may not have pores. Furthermore, you may use both together.
上記の非溶融性ポリマー粒子が350℃以上の融点を有するポリマーよりなる場合は、非架橋ポリマー粒子を用いてもよいが、耐熱性の点から、架橋構造を有するポリマーよりなる架橋ポリマー粒子を用いることが好ましい。
When the non-melting polymer particles are made of a polymer having a melting point of 350 ° C. or higher, non-cross-linked polymer particles may be used, but from the viewpoint of heat resistance, cross-linked polymer particles made of a polymer having a cross-linked structure are used. It is preferable.
上記の非溶融性ポリマー粒子の平均粒径は、0.1~50μmが好ましい。上記の非溶融性ポリマー粒子の平均粒径の下限は、0.5μmがより好ましく、特に好ましくは5μmである。良好な光拡散効果を発揮するには、上記の非溶融性ポリマー粒子の平均粒径が0.1μm以上であることが好ましい。
The average particle size of the non-melting polymer particles is preferably 0.1 to 50 μm. The lower limit of the average particle size of the non-melting polymer particles is more preferably 0.5 μm, and particularly preferably 5 μm. In order to exhibit a good light diffusion effect, the average particle size of the non-melting polymer particles is preferably 0.1 μm or more.
一方、上記の非溶融性ポリマー粒子の平均粒径の上限は、30μmがより好ましく、特に好ましくは20μmである。上記の非溶融性ポリマー粒子の平均粒径が50μmを超える場合、フィルム強度や全光線透過率が低下しやすくなる。該非溶融性ポリマー粒子は、できる限りシャープな粒度分布を有する粒子を用いることが好ましい。
On the other hand, the upper limit of the average particle diameter of the non-melting polymer particles is more preferably 30 μm, and particularly preferably 20 μm. When the average particle diameter of the non-melting polymer particles exceeds 50 μm, the film strength and the total light transmittance are likely to decrease. The non-melting polymer particles are preferably particles having a sharp particle size distribution as much as possible.
上記の非溶融性ポリマー粒子は、1種類でもよいし、2種類以上使用してもよい。シャープな粒度分布を有し(粒子の粒径が均一であることを意味する)、かつ平均粒径の異なる複数の非溶融性ポリマー粒子を併用することは、フィルムの欠点となる粗大粒子の混入が抑制できるので、好ましい実施形態である。
The above non-melting polymer particles may be one kind or two or more kinds. Use of a plurality of non-melting polymer particles having a sharp particle size distribution (meaning that the particle size of the particles is uniform) and different average particle sizes is mixed with coarse particles, which is a film defect. Is a preferred embodiment.
なお、上記の粒子の平均粒径の測定は下記方法により行う。
粒子を走査型電子顕微鏡(SEM)で写真を撮り、最も小さい粒子1個の大きさが2~5mmとなるような倍率で、300~500個の粒子の最大径を測定し、その平均値を平均粒径とする。また、フィルム中に含有する粒子が単独の場合は、個々の粒子の最大径を測定し、その平均値を平均粒径とする。 In addition, the measurement of the average particle diameter of said particle | grain is performed with the following method.
Take a photograph of the particles with a scanning electron microscope (SEM), measure the maximum diameter of 300-500 particles at a magnification such that the size of one smallest particle is 2-5 mm, and calculate the average value. Average particle diameter. Moreover, when the particle | grains contained in a film are individual, the largest diameter of each particle | grain is measured and let the average value be an average particle diameter.
粒子を走査型電子顕微鏡(SEM)で写真を撮り、最も小さい粒子1個の大きさが2~5mmとなるような倍率で、300~500個の粒子の最大径を測定し、その平均値を平均粒径とする。また、フィルム中に含有する粒子が単独の場合は、個々の粒子の最大径を測定し、その平均値を平均粒径とする。 In addition, the measurement of the average particle diameter of said particle | grain is performed with the following method.
Take a photograph of the particles with a scanning electron microscope (SEM), measure the maximum diameter of 300-500 particles at a magnification such that the size of one smallest particle is 2-5 mm, and calculate the average value. Average particle diameter. Moreover, when the particle | grains contained in a film are individual, the largest diameter of each particle | grain is measured and let the average value be an average particle diameter.
(無機粒子)
添加剤として用いることができる無機粒子としては、シリカ、炭酸カルシウム、硫酸バリウム、硫酸カルシウム、アルミナ、カオリナイト、タルク等が挙げられる。 (Inorganic particles)
Examples of inorganic particles that can be used as an additive include silica, calcium carbonate, barium sulfate, calcium sulfate, alumina, kaolinite, talc and the like.
添加剤として用いることができる無機粒子としては、シリカ、炭酸カルシウム、硫酸バリウム、硫酸カルシウム、アルミナ、カオリナイト、タルク等が挙げられる。 (Inorganic particles)
Examples of inorganic particles that can be used as an additive include silica, calcium carbonate, barium sulfate, calcium sulfate, alumina, kaolinite, talc and the like.
上記無機粒子の平均粒子径は、通常0.1~50μmが好ましい。0.5~30μmがより好ましく、1~20μmがさらに好ましい。平均粒径が0.1μm未満では良好な光拡散効果が得られない。逆に、50μmを超える場合はフィルム強度の低下等に繋がるので好ましくない。該無機粒子の粒度分布はできる限りシャープなものを用いることが好ましい。粒度分布を広げる必要が生じた場合は、シャープな粒度分布の粒子を複数配合して対応することが好ましい。該対応によりフィルムの欠点となる粗大粒子径の粒子の混入を抑制することができる。
The average particle size of the inorganic particles is usually preferably 0.1 to 50 μm. 0.5-30 μm is more preferable, and 1-20 μm is even more preferable. If the average particle size is less than 0.1 μm, a good light diffusion effect cannot be obtained. On the contrary, when it exceeds 50 μm, it is not preferable because it leads to a decrease in film strength and the like. The particle size distribution of the inorganic particles is preferably as sharp as possible. When it becomes necessary to widen the particle size distribution, it is preferable to mix a plurality of particles having a sharp particle size distribution. By the correspondence, mixing of particles having a large particle diameter, which is a defect of the film, can be suppressed.
なお、上記の粒子の平均粒径の測定は下記方法により行う。
粒子を走査型電子顕微鏡(SEM)で写真を撮り、最も小さい粒子1個の大きさが2~5mmとなるような倍率で、300~500個の粒子の最大径を測定し、その平均値を平均粒径とする。また、フィルム中に含有する粒子の最大径を測定し、その平均値を平均粒径とする。 In addition, the measurement of the average particle diameter of said particle | grain is performed with the following method.
Take a photograph of the particles with a scanning electron microscope (SEM), measure the maximum diameter of 300-500 particles at a magnification such that the size of one smallest particle is 2-5 mm, and calculate the average value. Average particle diameter. Moreover, the maximum diameter of the particle | grains contained in a film is measured, and let the average value be an average particle diameter.
粒子を走査型電子顕微鏡(SEM)で写真を撮り、最も小さい粒子1個の大きさが2~5mmとなるような倍率で、300~500個の粒子の最大径を測定し、その平均値を平均粒径とする。また、フィルム中に含有する粒子の最大径を測定し、その平均値を平均粒径とする。 In addition, the measurement of the average particle diameter of said particle | grain is performed with the following method.
Take a photograph of the particles with a scanning electron microscope (SEM), measure the maximum diameter of 300-500 particles at a magnification such that the size of one smallest particle is 2-5 mm, and calculate the average value. Average particle diameter. Moreover, the maximum diameter of the particle | grains contained in a film is measured, and let the average value be an average particle diameter.
上記の無機粒子の形状は限定されないが、実質的に球状あるいは真球状が好ましい。また、該粒子は無孔または多孔タイプのいずれでもよい。さらに、両者を併用してもよい。
The shape of the above inorganic particles is not limited, but is preferably substantially spherical or true spherical. The particles may be non-porous or porous. Furthermore, you may use both together.
本発明に用いる添加剤は、上記の3種の中の1種を用いてもよいし、2種以上を併用してもよい。
The additive used in the present invention may be one of the above three types, or two or more types may be used in combination.
(添加剤の混合比率)
本発明の表面光拡散性ポリエステルフィルムにおける光拡散層は、前記共重合成分を含む結晶性ポリエステル50~99質量部と該ポリエステルに非相溶性の添加剤1~50質量部との配合組成物からなる。両者の好ましい配合比率は、ポリエステル75~98質量部と添加剤2~25質量部との配合であり、さらに好ましくはポリエステル80~97質量部と添加剤3~20質量部との配合である。 (Mixing ratio of additives)
The light diffusing layer in the surface light diffusing polyester film of the present invention comprises a blended composition of 50 to 99 parts by mass of the crystalline polyester containing the copolymer component and 1 to 50 parts by mass of an additive incompatible with the polyester. . A preferred blending ratio of both is a blend of 75 to 98 parts by weight of polyester and 2 to 25 parts by weight of additive, and more preferably a blend of 80 to 97 parts by weight of polyester and 3 to 20 parts by weight of additive.
本発明の表面光拡散性ポリエステルフィルムにおける光拡散層は、前記共重合成分を含む結晶性ポリエステル50~99質量部と該ポリエステルに非相溶性の添加剤1~50質量部との配合組成物からなる。両者の好ましい配合比率は、ポリエステル75~98質量部と添加剤2~25質量部との配合であり、さらに好ましくはポリエステル80~97質量部と添加剤3~20質量部との配合である。 (Mixing ratio of additives)
The light diffusing layer in the surface light diffusing polyester film of the present invention comprises a blended composition of 50 to 99 parts by mass of the crystalline polyester containing the copolymer component and 1 to 50 parts by mass of an additive incompatible with the polyester. . A preferred blending ratio of both is a blend of 75 to 98 parts by weight of polyester and 2 to 25 parts by weight of additive, and more preferably a blend of 80 to 97 parts by weight of polyester and 3 to 20 parts by weight of additive.
そして、上記添加剤の混合比率が1質量部未満の場合には、添加剤によるフィルム表面の凹凸形成能力が不足し、十分な表面光拡散性能が得られない。一方、添加剤の混合比率が50質量部を超える場合には、添加剤/ポリエステル界面での光散乱が増大するとともに、ポリエステルの延伸応力が増大して添加剤の周りにボイドを生じやすくなる。その結果、光拡散層の内部ヘーズが大きくなり、全光線透過率が低下する傾向にある。さらに、フィルムの二軸延伸時に添加剤が脱落しやすく、該脱落物が異物の原因となりうる。
When the mixing ratio of the additive is less than 1 part by mass, the film surface unevenness forming ability by the additive is insufficient, and sufficient surface light diffusion performance cannot be obtained. On the other hand, when the mixing ratio of the additive exceeds 50 parts by mass, light scattering at the additive / polyester interface increases, and the stretching stress of the polyester increases to easily generate voids around the additive. As a result, the internal haze of the light diffusion layer increases, and the total light transmittance tends to decrease. Furthermore, the additive easily falls off during biaxial stretching of the film, and the fallout can cause foreign matter.
[光拡散性ポリエステルフィルムの特性]
(面配向係数)
本発明の表面光拡散性ポリエステルフィルムは、面配向係数(ΔP)が0.08~0.16であることが重要である。面配向係数(ΔP)の下限は、0.09がより好ましく、特に好ましくは0.10である。一方、面配向係数(ΔP)の上限は、0.15がより好ましく、特に好ましくは0.14である。 [Characteristics of light diffusing polyester film]
(Plane orientation coefficient)
It is important that the surface light diffusing polyester film of the present invention has a plane orientation coefficient (ΔP) of 0.08 to 0.16. The lower limit of the plane orientation coefficient (ΔP) is more preferably 0.09, and particularly preferably 0.10. On the other hand, the upper limit of the plane orientation coefficient (ΔP) is more preferably 0.15, and particularly preferably 0.14.
(面配向係数)
本発明の表面光拡散性ポリエステルフィルムは、面配向係数(ΔP)が0.08~0.16であることが重要である。面配向係数(ΔP)の下限は、0.09がより好ましく、特に好ましくは0.10である。一方、面配向係数(ΔP)の上限は、0.15がより好ましく、特に好ましくは0.14である。 [Characteristics of light diffusing polyester film]
(Plane orientation coefficient)
It is important that the surface light diffusing polyester film of the present invention has a plane orientation coefficient (ΔP) of 0.08 to 0.16. The lower limit of the plane orientation coefficient (ΔP) is more preferably 0.09, and particularly preferably 0.10. On the other hand, the upper limit of the plane orientation coefficient (ΔP) is more preferably 0.15, and particularly preferably 0.14.
面配向係数(ΔP)が0.16以下では、光拡散層(B)表面の凹凸が有効に形成され、表面凹凸によって生じる光拡散効果(表面ヘーズ)が発揮されるので望ましい。
It is desirable that the surface orientation coefficient (ΔP) is 0.16 or less because the unevenness on the surface of the light diffusion layer (B) is effectively formed and the light diffusion effect (surface haze) generated by the surface unevenness is exhibited.
また、面配向係数(ΔP)が0.16を超える場合、用いる添加剤の種類にもよるが、添加剤の周りに発生するボイドの数や大きさが増加する傾向にある。そのため、内部散乱(内部ヘーズ)が大きくなり、全光線透過率が低下する傾向にある。何れにしろ、面配向係数(ΔP)が0.16以下の場合では、全光線透過率と光拡散性の両立が図れる。
Also, when the plane orientation coefficient (ΔP) exceeds 0.16, depending on the type of additive used, the number and size of voids generated around the additive tend to increase. Therefore, internal scattering (internal haze) increases, and the total light transmittance tends to decrease. In any case, when the plane orientation coefficient (ΔP) is 0.16 or less, both the total light transmittance and the light diffusibility can be achieved.
一方、面配向係数が0.08以上では、二軸延伸フィルムとしての特徴が発揮され、耐熱性、機械的強度、厚み均一性などが良好であり、加熱カールの発生が抑制される。
On the other hand, when the plane orientation coefficient is 0.08 or more, the characteristics as a biaxially stretched film are exhibited, heat resistance, mechanical strength, thickness uniformity and the like are good, and the occurrence of heating curl is suppressed.
面配向係数を上記範囲内に制御する方法は任意であるが、例えば、前記共重合成分を含む結晶性ポリエステル中への共重合成分の比率を調整することにより制御することが可能である。光拡散層(B)中、または支持層(A)中の共重合成分の比率を多くすれば、面配向係数は低下する、また、共重合成分の比率を小さくすれば面配向係数を上昇させることができる。好ましい共重合成分の比率は、前記の通りである。
The method for controlling the plane orientation coefficient within the above range is arbitrary, but can be controlled, for example, by adjusting the ratio of the copolymer component to the crystalline polyester containing the copolymer component. If the ratio of the copolymerization component in the light diffusion layer (B) or the support layer (A) is increased, the plane orientation coefficient is decreased, and if the ratio of the copolymerization component is decreased, the plane orientation coefficient is increased. be able to. The ratio of the preferable copolymerization component is as described above.
また、ポリマーブレンド、あるいは共重合によって、前記共重合成分を含む結晶性ポリエステルのガラス転移点を制御してもかまわない。ガラス転移点を低下させれば、後述する二軸延伸工程での配向が低下し、面配向係数を低下させることができる。また、光拡散層に用いる原料ポリエステルの固有粘度を低下させても、同様の効果が得られる。好ましい固有粘度は、前記の通りである。
Further, the glass transition point of the crystalline polyester containing the copolymer component may be controlled by polymer blend or copolymerization. If the glass transition point is lowered, the orientation in the biaxial stretching step described later is lowered, and the plane orientation coefficient can be lowered. Moreover, the same effect is acquired even if the intrinsic viscosity of the raw material polyester used for a light-diffusion layer is reduced. A preferred intrinsic viscosity is as described above.
さらに、後述する二軸延伸条件の調整によっても、ある程度、面配向係数を制御することが可能である。面配向係数を低下させるためには、縦延伸または横延伸の延伸温度を高く設定するか、延伸倍率を低く設定する、あるいは熱処理温度を高めに設定すればよい。好ましい二軸延伸条件については後述する。
Further, the plane orientation coefficient can be controlled to some extent by adjusting the biaxial stretching conditions described later. In order to reduce the plane orientation coefficient, the stretching temperature for longitudinal stretching or transverse stretching may be set high, the stretching ratio may be set low, or the heat treatment temperature may be set high. Preferred biaxial stretching conditions will be described later.
(光学的特性)
次に、本発明においては、表面ヘーズが15%以上、かつ内部ヘーズが表面ヘーズ未満であることを特徴とする。表面ヘーズは、光拡散層の表面凹凸に由来する特性である。そのため、フィルム表面から光が出射する際に、またはフィルム表面に光が入射する際に、光拡散層の表面凹凸で光が屈折することにより表面ヘーズが高くなる。したがって、表面ヘーズと全光線透過率とは基本的に無関係である。そのため、表面ヘーズを高くすることにより、全光線透過率の低下を抑制した状態で、光拡散性を高めることができる。 (Optical characteristics)
Next, the present invention is characterized in that the surface haze is 15% or more and the internal haze is less than the surface haze. The surface haze is a characteristic derived from surface irregularities of the light diffusion layer. Therefore, when light is emitted from the film surface, or when light is incident on the film surface, the surface haze is increased due to the light being refracted by the surface irregularities of the light diffusion layer. Therefore, surface haze and total light transmittance are basically irrelevant. Therefore, by increasing the surface haze, the light diffusibility can be enhanced in a state where the decrease in the total light transmittance is suppressed.
次に、本発明においては、表面ヘーズが15%以上、かつ内部ヘーズが表面ヘーズ未満であることを特徴とする。表面ヘーズは、光拡散層の表面凹凸に由来する特性である。そのため、フィルム表面から光が出射する際に、またはフィルム表面に光が入射する際に、光拡散層の表面凹凸で光が屈折することにより表面ヘーズが高くなる。したがって、表面ヘーズと全光線透過率とは基本的に無関係である。そのため、表面ヘーズを高くすることにより、全光線透過率の低下を抑制した状態で、光拡散性を高めることができる。 (Optical characteristics)
Next, the present invention is characterized in that the surface haze is 15% or more and the internal haze is less than the surface haze. The surface haze is a characteristic derived from surface irregularities of the light diffusion layer. Therefore, when light is emitted from the film surface, or when light is incident on the film surface, the surface haze is increased due to the light being refracted by the surface irregularities of the light diffusion layer. Therefore, surface haze and total light transmittance are basically irrelevant. Therefore, by increasing the surface haze, the light diffusibility can be enhanced in a state where the decrease in the total light transmittance is suppressed.
一方、内部ヘーズは、フィルム内部での光散乱に由来する特性である。そのため、入射光の後方散乱の影響により全光線透過率が低下する。したがって、優れた光拡散性と、高い全光線透過率を有する光拡散性ポリエステルフィルムを製造するためには、表面ヘーズを高くするとともに、内部ヘーズを極力小さくすることが有効な手段である。
On the other hand, the internal haze is a characteristic derived from light scattering inside the film. Therefore, the total light transmittance is reduced due to the influence of backscattering of incident light. Therefore, in order to produce a light diffusible polyester film having excellent light diffusibility and high total light transmittance, it is effective means to increase the surface haze and reduce the internal haze as much as possible.
本発明の表面光拡散性ポリエステルフィルムの表面ヘーズは15%以上であり、好ましい下限は20%である。表面ヘーズが15%以上であれば、導光板の印刷柄や、冷陰極管のランプ像に対して有効な拡散効果が発揮され、光拡散性フィルムとして有効な光拡散性能が得られる。
The surface haze of the surface light diffusible polyester film of the present invention is 15% or more, and the preferred lower limit is 20%. If the surface haze is 15% or more, an effective diffusing effect is exerted on the printed pattern of the light guide plate and the lamp image of the cold cathode tube, and light diffusing performance effective as a light diffusing film is obtained.
一方、表面ヘーズの好ましい上限値は60%であり、より好ましい上限値は70%、さらに好ましい上限は80%である。表面へーズが60%以下であれば、内部ヘーズが抑制され、全光線透過率が高くなる傾向がある。
On the other hand, the preferable upper limit of the surface haze is 60%, the more preferable upper limit is 70%, and the more preferable upper limit is 80%. If the surface haze is 60% or less, the internal haze is suppressed and the total light transmittance tends to increase.
また、内部ヘーズは、表面ヘーズ未満であることが重要である。内部ヘーズの上限値は、好ましくは40%、より好ましくは30%、さらに好ましくは20%、特に好ましくは10%である。
Also, it is important that the internal haze is less than the surface haze. The upper limit of the internal haze is preferably 40%, more preferably 30%, still more preferably 20%, and particularly preferably 10%.
内部ヘーズが表面ヘーズと同じ、もしくは表面ヘーズを超える場合には、フィルムの光拡散機能の主体を内部ヘーズが担うこととなり、フィルム内部で、(後方散乱を伴う)光散乱を生じ、全光線透過率が大きく低下する。一方、内部ヘーズの下限は1%が好ましい。内部ヘーズが1%未満のフィルムでは、十分な表面ヘーズが得られない傾向がある。
If the internal haze is the same as or exceeds the surface haze, the internal haze is responsible for the light diffusing function of the film, causing light scattering (with backscattering) inside the film and total light transmission. The rate is greatly reduced. On the other hand, the lower limit of the internal haze is preferably 1%. In a film having an internal haze of less than 1%, sufficient surface haze tends not to be obtained.
また、本発明の表面光拡散性ポリエステルフィルムは、86%以上の全光線透過率であることが望ましい。より好ましい光線透過率の下限値は87%であり、さらに好ましい下限値は88%である。
The surface light diffusing polyester film of the present invention preferably has a total light transmittance of 86% or more. A more preferable lower limit of light transmittance is 87%, and a more preferable lower limit is 88%.
また、光拡散性フィルムの光拡散性能は、例えば像鮮明度によって定量的に評価することができる。像鮮明度とは、フィルムを通して蛍光ランプなどの光源を見た場合の鮮明さを示す指標であり、JIS K 7105「プラスチックの光学的特性試験方法」像鮮明度に準拠して測定する通常の方法で評価された像鮮明度である。像鮮明度が小さい程、隠蔽性が良好であり、光拡散性能が優れていることを表す。
Further, the light diffusion performance of the light diffusing film can be quantitatively evaluated by, for example, the image definition. Image sharpness is an index indicating the sharpness when a light source such as a fluorescent lamp is viewed through a film, and is a normal method for measuring in accordance with JIS K 7105 “Plastic Optical Properties Test Method” image sharpness. This is the image definition evaluated in. The smaller the image definition, the better the concealing property and the better the light diffusion performance.
本発明の表面光拡散性ポリエステルフィルムでは、光学くし幅が2mmの透過法において、50%以下の像鮮明度を得ることが可能である。より好ましい像鮮明度の上限値は40%であり、さらに好ましい上限値は20%である。なお、像鮮明度は小さければ小さいほど良いが、必要以上に像鮮明度を低下させようとすると、内部ヘーズが高くなり、全光線透過率が低下する。本発明において、像鮮明度の下限値は1%が好ましく、より好ましくは3%である。
In the surface light diffusible polyester film of the present invention, it is possible to obtain an image definition of 50% or less in a transmission method with an optical comb width of 2 mm. A more preferable upper limit of image definition is 40%, and a further preferable upper limit is 20%. The smaller the image definition is, the better. However, if the image definition is reduced more than necessary, the internal haze increases and the total light transmittance decreases. In the present invention, the lower limit of the image definition is preferably 1%, more preferably 3%.
また、光拡散性フィルムの光拡散性能は、例えば村上色彩技術研究所製ゴニオフォトメーターGP-200を用いた透過光強度によってさらに定量的に評価することができる。透過光強度のうち受光角度0度の値をI(0)、受光角度N度の値をI(N)とし、下記の計算式で求められる透過光強度比をS(N)としたとき、例えばN=1度のときのS(1)の値が大きいと、0度の透過光の周辺に拡散された透過光が多くなるため、フィルムを通して見える像の鮮明性を低下することができ、良好な隠蔽性が得られる。本発明の表面光拡散性ポリエステルフィルムではS(1)が75%以上の値を得ることが可能である。透過光強度比が大きいほど、隠蔽性が良好であり、光拡散性が優れていることを表す。S(1)の値が75%よりも小さいと、光拡散性が低下し、良好な隠蔽性が得られないため好ましくない。
S(N)=I(N)/I(0)×100 The light diffusing performance of the light diffusing film can be further quantitatively evaluated by, for example, transmitted light intensity using a goniophotometer GP-200 manufactured by Murakami Color Research Laboratory. Of the transmitted light intensity, the value of the light receiving angle 0 degree is I (0), the value of the light receiving angle N degree is I (N), and the transmitted light intensity ratio obtained by the following formula is S (N). For example, when the value of S (1) when N = 1 degree is large, the transmitted light diffused around the transmitted light at 0 degree increases, so that the sharpness of the image seen through the film can be reduced. Good concealability can be obtained. In the surface light diffusing polyester film of the present invention, S (1) can obtain a value of 75% or more. The larger the transmitted light intensity ratio, the better the concealing property and the better the light diffusing property. If the value of S (1) is less than 75%, the light diffusibility is lowered and good concealability cannot be obtained.
S (N) = I (N) / I (0) × 100
S(N)=I(N)/I(0)×100 The light diffusing performance of the light diffusing film can be further quantitatively evaluated by, for example, transmitted light intensity using a goniophotometer GP-200 manufactured by Murakami Color Research Laboratory. Of the transmitted light intensity, the value of the light receiving angle 0 degree is I (0), the value of the light receiving angle N degree is I (N), and the transmitted light intensity ratio obtained by the following formula is S (N). For example, when the value of S (1) when N = 1 degree is large, the transmitted light diffused around the transmitted light at 0 degree increases, so that the sharpness of the image seen through the film can be reduced. Good concealability can be obtained. In the surface light diffusing polyester film of the present invention, S (1) can obtain a value of 75% or more. The larger the transmitted light intensity ratio, the better the concealing property and the better the light diffusing property. If the value of S (1) is less than 75%, the light diffusibility is lowered and good concealability cannot be obtained.
S (N) = I (N) / I (0) × 100
なお、透過光強度比は大きければ大きいほど光拡散性に優れるが、必要以上に透過光強度比を大きくしようとするとI(0)が低下する場合が多く、その結果バックライトユニットにおける正面輝度は低下してしまう。本発明の表面光拡散性ポリエステルフィルムにおいてはS(1)の上限値は99%が好ましく、より好ましくは95%である、さらに好ましくは85%である。
The larger the transmitted light intensity ratio, the better the light diffusibility. However, if the transmitted light intensity ratio is increased more than necessary, I (0) often decreases, and as a result, the front luminance in the backlight unit is It will decline. In the surface light diffusing polyester film of the present invention, the upper limit value of S (1) is preferably 99%, more preferably 95%, still more preferably 85%.
本願発明において輝度は、光拡散性フィルムとレンズシートを重ね合わせて光を照射した際の平行線透過率と全光線透過率との比率を、レンズシート単独での前記比率を100として導出した輝度比率として評価した。前記輝度比率が101%以上であれば光拡散性フィルムがない場合に比べて高い輝度を確保することができる。本発明では、前記輝度比率は高い方が好ましく、具体的には103%以上であることが好ましく、105%以上であることがさらに好ましい。前記輝度比率が、103%以上であれば、光量が低い場合でも高い輝度を確保することができる。
In the present invention, the luminance is the luminance derived from the ratio of the parallel light transmittance and the total light transmittance when the light diffusing film and the lens sheet are superimposed and irradiated with light, with the ratio of the lens sheet alone being 100. Evaluated as a ratio. If the said brightness | luminance ratio is 101% or more, high brightness | luminance can be ensured compared with the case where there is no light diffusable film. In the present invention, the luminance ratio is preferably high, specifically 103% or more, and more preferably 105% or more. When the luminance ratio is 103% or higher, high luminance can be ensured even when the amount of light is low.
(力学的特性)
また、本発明において、フィルムの原料として結晶性ポリエステルを用いているので、二軸延伸フィルム本来の優れた耐熱性、機械的強度、及び優れた厚み精度を得ることができる。 (Mechanical characteristics)
In the present invention, since crystalline polyester is used as the raw material for the film, the inherently excellent heat resistance, mechanical strength, and excellent thickness accuracy of the biaxially stretched film can be obtained.
また、本発明において、フィルムの原料として結晶性ポリエステルを用いているので、二軸延伸フィルム本来の優れた耐熱性、機械的強度、及び優れた厚み精度を得ることができる。 (Mechanical characteristics)
In the present invention, since crystalline polyester is used as the raw material for the film, the inherently excellent heat resistance, mechanical strength, and excellent thickness accuracy of the biaxially stretched film can be obtained.
耐熱性に関して、150℃における寸法変化率が横方向、縦方向のいずれにおいても3%以下であることが好ましく、より好ましい上限は2.5%であり、さらに好ましい上限は2%であり、特に好ましい上限は1.5%であり、より特に好ましい上限は1%である。一方、150℃における横方向、縦方向の寸法変化率は小さい方が望ましいが、0%が下限と考える。寸法変化率が3%以下の場合は、高温での加工や高温環境での使用において、寸法変化や平面性が悪化せず、良好な平面性が保たれる。その結果、バックライトユニットにおける光出射面の輝度を均一にするという、光拡散性フィルムの本来目的が達成できる。なお、本発明で縦方向とは製膜時におけるフィルムの流れ方向(巻き取り方向)をいい、横方向とはそれに垂直な方向をいう。
Regarding the heat resistance, the dimensional change rate at 150 ° C. is preferably 3% or less in both the horizontal direction and the vertical direction, the more preferable upper limit is 2.5%, and the more preferable upper limit is 2%. A preferred upper limit is 1.5%, and a more particularly preferred upper limit is 1%. On the other hand, a smaller dimensional change rate in the horizontal and vertical directions at 150 ° C. is desirable, but 0% is considered the lower limit. When the dimensional change rate is 3% or less, the dimensional change and flatness are not deteriorated in processing at a high temperature and use in a high temperature environment, and good flatness is maintained. As a result, it is possible to achieve the original purpose of the light diffusing film, which is to uniform the luminance of the light emitting surface in the backlight unit. In the present invention, the longitudinal direction refers to the film flow direction (winding direction) during film formation, and the lateral direction refers to a direction perpendicular thereto.
また、フィルムの引張強さの下限は、好ましくは100MPa、さらに好ましくは130MPa、特に好ましくは160MPaである。引張強さが100MPa以上では、二軸延伸フィルムの力学的強度が発揮され、フィルムの加工工程で割れ、破れ、折れ、裂け等の不具合を生じ難くなる。
Further, the lower limit of the tensile strength of the film is preferably 100 MPa, more preferably 130 MPa, and particularly preferably 160 MPa. When the tensile strength is 100 MPa or more, the mechanical strength of the biaxially stretched film is exhibited, and problems such as cracks, tears, breaks, and tears are less likely to occur in the film processing step.
また、本発明の表面光拡散性ポリエステルフィルムは、厚み斑が5.0%以下であることが好ましい。
The surface light diffusible polyester film of the present invention preferably has a thickness unevenness of 5.0% or less.
フィルムの厚み斑が5.0%以下の場合は、フィルムをロール状に巻き上げた時に、シワやコブを生じ難く、平面性が保持される。その結果、バックライトユニットにおける光出射面の輝度が均一になり、光拡散性フィルムの本来の目的が達成できる。
When the thickness unevenness of the film is 5.0% or less, when the film is rolled up, wrinkles and bumps are hardly generated, and flatness is maintained. As a result, the luminance of the light emitting surface in the backlight unit becomes uniform, and the original purpose of the light diffusing film can be achieved.
また、本発明の表面光拡散性ポリエステルフィルムは、無荷重の状態で、100℃で30分間加熱処理した後のカール値が5mm以下であることが好ましい。
The surface light diffusing polyester film of the present invention preferably has a curl value of 5 mm or less after heat treatment at 100 ° C. for 30 minutes under no load.
カール値が5mm以下の場合は、例えば、光拡散性フィルムとして最終製品に組み込む場合の無緊張下での作業時のハンドリング性が良好になる。また、高温での加工や高温環境での使用においても、フィルムの歪発生が抑制され、バックライトユニットにおける光出射面の輝度を均一にするという、光拡散性フィルムの本来の目的が達成できる。
When the curl value is 5 mm or less, for example, the handling property when working under no tension when incorporated into a final product as a light diffusing film is improved. Further, even when processing at a high temperature or use in a high temperature environment, the original purpose of the light diffusing film can be achieved, in which the distortion of the film is suppressed and the luminance of the light exit surface of the backlight unit is made uniform.
カールの抑制に関しては、前述の通り、支持層(A)と光拡散層(B)との融点差を制御することによって調整可能であるが、さらに、押し出し時の表裏冷却の冷却速度差によるフィルム厚み方向の結晶化度を始め、予熱、延伸、冷却、巻き取り等の各工程で付与されるフィルム表裏の構造差に起因するカールを制御するために、積極的にフィルム表裏の構造差を発生させ、必然的な構造差と補完しあってカール値をゼロに近づける方法等を適用することが好ましい。
As described above, curling can be controlled by controlling the difference in melting point between the support layer (A) and the light diffusion layer (B). In order to control the curl due to the structural difference between the front and back of the film applied in each process such as preheating, stretching, cooling, winding, etc., including the crystallinity in the thickness direction, positively generate structural differences between the front and back of the film It is preferable to apply a method of making the curl value close to zero by complementing the necessary structural difference.
具体的には、縦延伸や横延伸などの延伸工程及び熱処理工程で、フィルム表裏の温度又は熱量を異なる値とすることによって、フィルム表裏の配向度を独立して制御し、フィルム表裏の構造や物性が両立する条件を採用することにより、ゼロカールの製膜が実現する。
Specifically, in the stretching process such as longitudinal stretching and lateral stretching, and the heat treatment process, the degree of orientation of the film front and back is independently controlled by setting the temperature or heat quantity of the film front and back to different values. By adopting conditions that achieve both physical properties, zero curl film formation is realized.
また、カールが全幅にわたって低い状態で安定的に生産されるための基本的要件として、厚み斑の少ない延伸処方を用いることも重要である。
Also, as a basic requirement for stable production of curls in a low state over the entire width, it is also important to use a stretch recipe with less thickness unevenness.
より具体的には、製膜直後の縦方向カールについては、縦延伸時のフィルム裏表の構造差を制御し、横方向のカールは横延伸及び熱固定時にフィルム裏表の構造差を制御することで、逆方向の内部歪を作りこみ、必然的に発生するフィルム表裏の構造差による内部歪と両立させ、カールを抑制することが好ましい。
More specifically, for the longitudinal curl immediately after film formation, the structural difference between the front and back of the film during longitudinal stretching is controlled, and the lateral curl is controlled by controlling the structural difference between the front and back of the film during lateral stretching and heat setting. It is preferable to create an internal strain in the opposite direction, to make it compatible with the internal strain due to the structural difference between the front and back of the film, and to suppress curling.
また、本発明の表面光拡散性ポリエステルフィルムの厚みは任意であり、特に制限されないが、25~500μmの範囲であることが好ましく、さらに好ましくは75~350μmの範囲である。
The thickness of the surface light diffusing polyester film of the present invention is arbitrary and is not particularly limited, but is preferably in the range of 25 to 500 μm, more preferably in the range of 75 to 350 μm.
(二軸延伸フィルムの製造)
本発明において、前記の特性を満足させる方法として、例えば、以下の製造方法を用いることが好ましい。 (Manufacture of biaxially stretched film)
In the present invention, as a method for satisfying the above characteristics, for example, the following production method is preferably used.
本発明において、前記の特性を満足させる方法として、例えば、以下の製造方法を用いることが好ましい。 (Manufacture of biaxially stretched film)
In the present invention, as a method for satisfying the above characteristics, for example, the following production method is preferably used.
以下、本発明の表面光拡散性ポリエステルフィルムの好適な製造方法について、光拡散層(B)の原料である共重合成分を含む結晶性ポリエステルとして、ポリエチレンテレフタレート共重合体(以下、単にポリエステルと略称することもある)のペレットを用いた代表例について詳しく説明する。
Hereinafter, a polyethylene terephthalate copolymer (hereinafter simply abbreviated as polyester) is used as a crystalline polyester containing a copolymer component that is a raw material of the light diffusion layer (B) for a preferable method for producing a surface light diffusible polyester film of the present invention. A typical example using the pellets of (sometimes) will be described in detail.
まず、フィルム原料として、ポリエステルと、ポリエステルに非相溶性の熱可塑性樹脂をそれぞれ、真空乾燥あるいは熱風乾燥によって、水分率が100ppm未満となるように乾燥する。次いで、各原料を計量、混合して押し出し機に供給し、シート状に溶融押出を行う。さらに、溶融状態のシートを、静電印加法を用いて、表面温度10~50℃に制御された金属製の回転ロール(チルロール)に密着させ、未延伸ポリエステルシートを得る。本発明においては、各原料のうち、非相溶添加剤については、基材ポリマーの全部または一部と、非相溶性添加剤をあらかじめ押出機を用いて溶融混合した予備混練マスターペレットとして用いることが重要である。
First, as a film raw material, polyester and a thermoplastic resin incompatible with the polyester are dried by vacuum drying or hot air drying so that the moisture content is less than 100 ppm. Next, each raw material is weighed and mixed, supplied to an extruder, and melt extruded into a sheet. Further, the molten sheet is brought into close contact with a metal rotating roll (chill roll) controlled at a surface temperature of 10 to 50 ° C. by using an electrostatic application method to obtain an unstretched polyester sheet. In the present invention, among the raw materials, the incompatible additive is used as a pre-kneading master pellet in which all or part of the base polymer and the incompatible additive are previously melt-mixed using an extruder. is important.
この際、押出機の溶融部、混練り部、ポリマー管、ギアポンプ、フィルターまでの樹脂温度を220~290℃、その後のポリマー管、ダイまでの樹脂温度を210~295℃に制御することが、劣化物等の異物の発生を抑制するために好ましい。
At this time, the resin temperature up to the melting section, kneading section, polymer tube, gear pump, and filter of the extruder is controlled to 220 to 290 ° C., and the resin temperature up to the subsequent polymer tube and die is controlled to 210 to 295 ° C., This is preferable in order to suppress the generation of foreign matters such as deteriorated products.
また、溶融樹脂が一定温度275℃に保たれた任意の場所で、樹脂中に含まれる異物を除去するために高精度濾過を行う。溶融樹脂の高精度濾過に用いられる濾材としては、ステンレス焼結体の濾材が、樹脂中のSi、Ti、Sb、Ge、Cuを主成分とする凝集物や高融点の有機物を除去する性能に優れ好適である。高精度濾過を行う際に、溶融樹脂の温度が275℃よりも低い場合には濾圧が上昇するため、原料樹脂の吐出量を低くするなどの操作を行う。
Also, high-precision filtration is performed at any place where the molten resin is maintained at a constant temperature of 275 ° C. in order to remove foreign substances contained in the resin. As a filter medium used for high-precision filtration of molten resin, the filter medium of stainless steel sintered body is capable of removing aggregates mainly composed of Si, Ti, Sb, Ge, Cu and high melting point organic substances in the resin. Excellent and suitable. When performing high-precision filtration, if the temperature of the molten resin is lower than 275 ° C., the filtration pressure rises, so an operation such as reducing the discharge amount of the raw material resin is performed.
さらに、濾材の濾過粒子サイズ(初期濾過効率95%)は、20μm以下、特に15μm以下が好ましい。濾材の濾過粒子サイズ(初期濾過効率95%)が20μmを超えると、20μm以上の大きさの異物を十分に除去することが困難になる。濾材の濾過粒子サイズ(初期濾過効率95%)が20μm以下の濾材を用いて溶融樹脂の高精度濾過を行うことにより、生産性が低下する場合があるが、粗大粒子による光学欠点の少ないフィルムを得るためには重要な工程である。なお、本発明では、添加剤として結晶性共重合ポリエステルに非相溶性の熱可塑性樹脂を用いることで、上記のような高精度濾過が可能となる。
Furthermore, the filter particle size (initial filtration efficiency 95%) of the filter medium is preferably 20 μm or less, particularly preferably 15 μm or less. When the filter particle size (initial filtration efficiency 95%) of the filter medium exceeds 20 μm, it becomes difficult to sufficiently remove foreign matters having a size of 20 μm or more. Productivity may be reduced by performing high-precision filtration of molten resin using a filter medium having a filter particle size (initial filtration efficiency of 95%) of 20 μm or less. However, a film with less optical defects due to coarse particles may be used. It is an important process to obtain. In the present invention, high-accuracy filtration as described above can be performed by using an incompatible thermoplastic resin for the crystalline copolyester as an additive.
光拡散層(B)と支持層(A)とを共押出し積層するためには、2台以上の押出し機を用いて、各層の原料を押出し、多層フィードブロック(例えば角型合流部を有する合流ブロック)を用いて両層を合流させ、スリット状のダイからシート状に押出し、キャスティングロール上で冷却固化せしめて未延伸フィルムを作る。あるいは多層フィードブロックを用いる代わりにマルチマニホールドダイを用いても良い。
In order to coextrude and laminate the light diffusion layer (B) and the support layer (A), the raw materials of each layer are extruded using two or more extruders, and a multi-layer feed block (for example, a confluence having a rectangular confluence) The two layers are joined together using a block), extruded into a sheet from a slit die, and cooled and solidified on a casting roll to form an unstretched film. Alternatively, a multi-manifold die may be used instead of the multilayer feed block.
また、本発明の表面光拡散性ポリエステルフィルムにおいては、少なくとも一方の表面に塗布層を有していることが好ましく、さらには両面に塗布層を有していることが好ましい。好ましい塗布量は、0.005~0.20g/m2の範囲である。光拡散層の表面に塗布層を設けることによって、フィルム表面での反射光の発生を抑制して、全光線透過率をさらに高めることができる。また、光拡散層とは反対面に塗布層を設け、該塗布層の表面にプリズムシート加工やハードコート加工を施す場合には、易接着性を付与することができる。
Moreover, in the surface light diffusable polyester film of this invention, it is preferable to have a coating layer on at least one surface, and also it is preferable to have a coating layer on both surfaces. A preferable coating amount is in the range of 0.005 to 0.20 g / m 2 . By providing the coating layer on the surface of the light diffusion layer, generation of reflected light on the film surface can be suppressed and the total light transmittance can be further increased. In addition, when an application layer is provided on the surface opposite to the light diffusion layer and the surface of the application layer is subjected to prism sheet processing or hard coat processing, easy adhesion can be imparted.
この場合、前記の方法によって得られた未延伸フィルムに塗布層を設けた後、二軸延伸を行う。同時二軸延伸法でも逐次二軸延伸法によっても良いが、逐次延伸法で行う場合、縦または横方向に一軸延伸したフィルムに易接着層を設けた後、直交方向に延伸し、二軸延伸を行う。
In this case, after an application layer is provided on the unstretched film obtained by the above method, biaxial stretching is performed. The simultaneous biaxial stretching method or the sequential biaxial stretching method may be used. However, when the sequential stretching method is performed, an easy-adhesion layer is provided on a film uniaxially stretched in the longitudinal or transverse direction, and then stretched in the orthogonal direction and biaxially stretched. I do.
塗布層形成用塗布液を未延伸フィルムまたは一軸延伸フィルムに塗布するための方法は、公知の任意の方法から選択することが出来、例えば、リバースロールコート法、グラビアコート法、キスコート法、ダイコーター法、ロールブラッシュ法、スプレーコート法、エアナイフコート法、ワイヤーバーコート法、パイプドクター法、含浸コート法、カーテンコート法、などが挙げられ、これらの方法を単独で、あるいは組み合わせて塗工する。
The method for applying the coating layer forming coating solution to an unstretched film or a uniaxially stretched film can be selected from known arbitrary methods, such as reverse roll coating, gravure coating, kiss coating, and die coater. Method, roll brush method, spray coating method, air knife coating method, wire bar coating method, pipe doctor method, impregnation coating method, curtain coating method, and the like. These methods are applied alone or in combination.
塗布層を構成する樹脂は、プリズムシート用途や光拡散性フィルム用途において、他の光学機能層とのより優れた密着性を確保する観点から、共重合ポリエステル樹脂、ポリウレタン系樹脂、またはアクリル系樹脂の少なくとも1種以上を主成分とすることが好ましい。また、これらの樹脂は、光拡散層の表面における反射光の発生を抑制するという観点からも推奨される。なお、塗布層を構成する樹脂において、前記の「主成分」とは、該塗布層を構成する樹脂100質量%に対して、前記の樹脂の少なくとも1種が50質量%以上含まれていることを意味する。
The resin constituting the coating layer is a copolyester resin, polyurethane resin, or acrylic resin from the viewpoint of securing better adhesion to other optical functional layers in prism sheet applications and light diffusing film applications. It is preferable that at least one of these is a main component. These resins are also recommended from the viewpoint of suppressing the generation of reflected light on the surface of the light diffusion layer. In the resin constituting the coating layer, the “main component” means that at least one of the resins is contained in an amount of 50% by mass or more with respect to 100% by mass of the resin constituting the coating layer. Means.
なお、フィルムの透明性を高くするために、支持層(A)中に粒子を含有させないか、透明性を阻害しない程度に少量しか含有させないと、フィルムの易滑性が不十分となりハンドリング性が悪化する場合がある。そのため、上記の塗布層には、易滑性の付与を目的に、粒子を含有させることが好ましい。これらの粒子には、透明性を確保するために可視光線の波長以下の極めて平均粒径が小さい粒子を用いることが重要である。
In order to increase the transparency of the film, if the support layer (A) does not contain particles, or if it contains only a small amount to the extent that the transparency is not hindered, the slipperiness of the film becomes insufficient and handling properties are improved. It may get worse. Therefore, it is preferable to contain particles in the coating layer for the purpose of imparting slipperiness. For these particles, it is important to use particles having an extremely small average particle diameter equal to or smaller than the wavelength of visible light in order to ensure transparency.
上記の粒子としては、炭酸カルシウム、リン酸カルシウム、シリカ、カオリン、タルク、二酸化チタン、アルミナ、硫酸バリウム、フッ化カルシウム、フッ化リチウム、ゼオライト、硫化モリブデンなどの無機粒子;架橋高分子粒子;シュウ酸カルシウムなどの有機粒子などが挙げられる。塗布層を、上記共重合ポリエステル樹脂を主体として形成する場合には、シリカが特に好ましい。シリカは、ポリエステルと屈折率が比較的近いため、より透明性に優れた光拡散性ポリエステルフィルムを確保し得る点で最も好適である。
Examples of the particles include calcium carbonate, calcium phosphate, silica, kaolin, talc, titanium dioxide, alumina, barium sulfate, calcium fluoride, lithium fluoride, zeolite, molybdenum sulfide, and the like; crosslinked polymer particles; calcium oxalate And organic particles. Silica is particularly preferable when the coating layer is formed mainly of the copolymer polyester resin. Since silica has a relatively close refractive index to that of polyester, it is most preferable in that a light diffusible polyester film having more excellent transparency can be secured.
塗布層に含有させる粒子は、平均粒径(SEMにより観察される個数基準の粒子の平均最大径)が0.005~1.0μmであることが、フィルムの透明性、ハンドリング性、耐スクラッチ性確保の点から好ましい。粒子の平均粒径の上限は、透明性の点から、0.5μmであることがさらに好ましく、特に好ましくは0.2μmである。また、粒子の平均粒径の下限は、ハンドリング性と耐スクラッチ性の点から、0.01μmであることがさらに好ましく、特に好ましくは0.03μmである。
The particles contained in the coating layer have an average particle diameter (average maximum diameter of number-based particles observed by SEM) of 0.005 to 1.0 μm, so that the transparency, handling properties, and scratch resistance of the film It is preferable from the viewpoint of securing. The upper limit of the average particle size of the particles is more preferably 0.5 μm, particularly preferably 0.2 μm, from the viewpoint of transparency. Further, the lower limit of the average particle diameter of the particles is more preferably 0.01 μm, particularly preferably 0.03 μm from the viewpoints of handling properties and scratch resistance.
なお、上記の粒子の平均粒径の測定は下記方法により行う。
粒子を走査型電子顕微鏡(SEM)で写真を撮り、最も小さい粒子1個の大きさが2~5mmとなるような倍率で、300~500個の粒子の最大径を測定し、その平均値を平均粒径とする。また、塗布層に含有する粒子の平均粒径を求める場合は、透過型電子顕微鏡(TEM)を用いて、最も小さい粒子1個の大きさが2~5mmとなるような倍率で塗布フィルムの断面を撮影し、塗布層の断面に存在する粒子の最大径を求める。凝集体からなる粒子の平均粒径は、塗布フィルムの塗布層の断面を、光学顕微鏡を用いて倍率200倍で300~500個撮影し、その最大径を測定する。 In addition, the measurement of the average particle diameter of said particle | grain is performed with the following method.
Take a photograph of the particles with a scanning electron microscope (SEM), measure the maximum diameter of 300-500 particles at a magnification such that the size of one smallest particle is 2-5 mm, and calculate the average value. Average particle diameter. When determining the average particle size of the particles contained in the coating layer, the cross section of the coating film is measured using a transmission electron microscope (TEM) at a magnification such that the size of one smallest particle is 2 to 5 mm. The maximum diameter of particles existing in the cross section of the coating layer is obtained. The average particle size of the aggregated particles is measured by taking 300 to 500 cross sections of the coated layer of the coated film using an optical microscope at a magnification of 200 times and measuring the maximum diameter.
粒子を走査型電子顕微鏡(SEM)で写真を撮り、最も小さい粒子1個の大きさが2~5mmとなるような倍率で、300~500個の粒子の最大径を測定し、その平均値を平均粒径とする。また、塗布層に含有する粒子の平均粒径を求める場合は、透過型電子顕微鏡(TEM)を用いて、最も小さい粒子1個の大きさが2~5mmとなるような倍率で塗布フィルムの断面を撮影し、塗布層の断面に存在する粒子の最大径を求める。凝集体からなる粒子の平均粒径は、塗布フィルムの塗布層の断面を、光学顕微鏡を用いて倍率200倍で300~500個撮影し、その最大径を測定する。 In addition, the measurement of the average particle diameter of said particle | grain is performed with the following method.
Take a photograph of the particles with a scanning electron microscope (SEM), measure the maximum diameter of 300-500 particles at a magnification such that the size of one smallest particle is 2-5 mm, and calculate the average value. Average particle diameter. When determining the average particle size of the particles contained in the coating layer, the cross section of the coating film is measured using a transmission electron microscope (TEM) at a magnification such that the size of one smallest particle is 2 to 5 mm. The maximum diameter of particles existing in the cross section of the coating layer is obtained. The average particle size of the aggregated particles is measured by taking 300 to 500 cross sections of the coated layer of the coated film using an optical microscope at a magnification of 200 times and measuring the maximum diameter.
塗布層中の粒子の含有量は、塗布層を構成する組成物に対して、0.1~60質量%であることが、光学用積層フィルムの透明性、密着性、ハンドリング性、耐スクラッチ性を確保する点から好ましい。粒子の含有量の上限は、透明性と密着性の点から50質量%であることがさらに好ましく、特に好ましくは40質量%である。また、粒子の含有量の下限は、ハンドリング性と耐スクラッチ性の点から1質量%がさらに好ましく、特に好ましくは0.5質量%である。
The content of the particles in the coating layer is 0.1 to 60% by mass with respect to the composition constituting the coating layer. It is preferable from the viewpoint of ensuring. The upper limit of the content of the particles is more preferably 50% by mass from the viewpoint of transparency and adhesion, and particularly preferably 40% by mass. Further, the lower limit of the content of the particles is more preferably 1% by mass, particularly preferably 0.5% by mass from the viewpoints of handling properties and scratch resistance.
上記粒子は2種類以上を併用してもよく、同種の粒子で粒径の異なるものを配合してもよいが、いずれにしても、粒子全体の平均粒径、および合計の含有量が上記範囲を満足することが好ましい。
Two or more kinds of the particles may be used in combination, and the same kind of particles having different particle sizes may be blended, but in any case, the average particle size of the whole particles and the total content are within the above range. Is preferably satisfied.
次に、上記の方法で得られた未延伸フィルムを同時二軸延伸または逐次二軸延伸し、次いで熱処理を行う。
Next, the unstretched film obtained by the above method is simultaneously biaxially stretched or sequentially biaxially stretched, and then heat-treated.
上記の二軸延伸は、縦、横、両方向に2.8倍以上の延伸倍率で行うことが重要である。なお、本発明で定義する延伸倍率とは、フィルムが実際に延伸された実延伸倍率のことである。この延伸倍率は各延伸工程前後での単位面積あたりの質量変化率や、格子状の倍率マーカーを未延伸フィルムに記入することによって把握することができる。
It is important to perform the above biaxial stretching at a stretching ratio of 2.8 times or more in both the vertical, horizontal and both directions. In addition, the draw ratio defined by this invention is the actual draw ratio by which the film was actually extended | stretched. This stretch ratio can be grasped by writing a mass change rate per unit area before and after each stretching step and a lattice-shaped magnification marker on an unstretched film.
縦方向または横方向のいずれかの延伸倍率が2.8倍未満の場合は、得られるフィルムの厚み斑が低下すると共に、二軸延伸フィルム本来の優れた耐熱性と機械的強度が得られない。また、フィルムの厚み均一性が著しく悪化する。本発明における好ましい延伸倍率の下限は3.0倍、より好ましい下限は3.2倍である。また、延伸倍率の好ましい上限は5倍である。なお、好適な延伸温度条件については、前述のとおりである。
When the draw ratio in either the machine direction or the transverse direction is less than 2.8 times, the thickness unevenness of the resulting film is lowered, and the original excellent heat resistance and mechanical strength of the biaxially stretched film cannot be obtained. . In addition, the film thickness uniformity is significantly deteriorated. The lower limit of the preferred draw ratio in the present invention is 3.0 times, and the more preferred lower limit is 3.2 times. Moreover, the preferable upper limit of a draw ratio is 5 times. The suitable stretching temperature conditions are as described above.
次に実施例及び比較例を用いて、本発明を具体的に説明する。まず、本発明で使用した特性値の評価方法を下記に示す。
Next, the present invention will be specifically described using examples and comparative examples. First, the evaluation method of the characteristic values used in the present invention is shown below.
[評価方法]
(1)固有粘度
JIS K 7367-5に準拠し、溶媒としてフェノール(60質量%)と1,1,2,2-テトラクロロエタン(40質量%)の混合溶媒を用い、30℃で測定した。 [Evaluation methods]
(1) Intrinsic viscosity Based on JIS K 7367-5, a mixed solvent of phenol (60% by mass) and 1,1,2,2-tetrachloroethane (40% by mass) was used as a solvent and measured at 30 ° C.
(1)固有粘度
JIS K 7367-5に準拠し、溶媒としてフェノール(60質量%)と1,1,2,2-テトラクロロエタン(40質量%)の混合溶媒を用い、30℃で測定した。 [Evaluation methods]
(1) Intrinsic viscosity Based on JIS K 7367-5, a mixed solvent of phenol (60% by mass) and 1,1,2,2-tetrachloroethane (40% by mass) was used as a solvent and measured at 30 ° C.
(2)結晶融解熱量、融点およびガラス転移温度
エスアイアイ・ナノテクノロジー社製DSC6220型示差走査型熱量計を用いて求める。窒素雰囲気下、樹脂サンプルを300℃で5分間加熱溶融した後、液体窒素で急冷し、粉砕した樹脂サンプル10mgを20℃/分の速度で昇温させ、示差熱分析を行った。結晶融解熱量は、JIS-K7121-1987、9・1項に定義される融解ピーク温度(Tpm)、補外融解開始温度(Tim)および補外融解終了温度(Tem)とを囲むDSC曲線を積分して求めた。また、該融解ピーク温度(Tpm)を融点とした。さらに、JIS-K7121-1987、9・3項に基づいて、ガラス転移温度(Tg)を求めた。 (2) Calorie melting calorie, melting point and glass transition temperature It is determined using a DSC 6220 type differential scanning calorimeter manufactured by SII Nanotechnology. In a nitrogen atmosphere, the resin sample was heated and melted at 300 ° C. for 5 minutes, then rapidly cooled with liquid nitrogen, and 10 mg of the pulverized resin sample was heated at a rate of 20 ° C./min, and differential thermal analysis was performed. The amount of heat of crystal fusion is obtained by integrating the DSC curve surrounding the melting peak temperature (Tpm), extrapolation melting start temperature (Tim) and extrapolation melting end temperature (Tem) as defined in JIS-K7121-1987, Section 9.1. And asked. The melting peak temperature (Tpm) was taken as the melting point. Further, the glass transition temperature (Tg) was determined based on JIS-K7121-1987, Section 9/3.
エスアイアイ・ナノテクノロジー社製DSC6220型示差走査型熱量計を用いて求める。窒素雰囲気下、樹脂サンプルを300℃で5分間加熱溶融した後、液体窒素で急冷し、粉砕した樹脂サンプル10mgを20℃/分の速度で昇温させ、示差熱分析を行った。結晶融解熱量は、JIS-K7121-1987、9・1項に定義される融解ピーク温度(Tpm)、補外融解開始温度(Tim)および補外融解終了温度(Tem)とを囲むDSC曲線を積分して求めた。また、該融解ピーク温度(Tpm)を融点とした。さらに、JIS-K7121-1987、9・3項に基づいて、ガラス転移温度(Tg)を求めた。 (2) Calorie melting calorie, melting point and glass transition temperature It is determined using a DSC 6220 type differential scanning calorimeter manufactured by SII Nanotechnology. In a nitrogen atmosphere, the resin sample was heated and melted at 300 ° C. for 5 minutes, then rapidly cooled with liquid nitrogen, and 10 mg of the pulverized resin sample was heated at a rate of 20 ° C./min, and differential thermal analysis was performed. The amount of heat of crystal fusion is obtained by integrating the DSC curve surrounding the melting peak temperature (Tpm), extrapolation melting start temperature (Tim) and extrapolation melting end temperature (Tem) as defined in JIS-K7121-1987, Section 9.1. And asked. The melting peak temperature (Tpm) was taken as the melting point. Further, the glass transition temperature (Tg) was determined based on JIS-K7121-1987, Section 9/3.
(3)溶融粘度
樹脂サンプルの粘度は、JIS K 7199「プラスチック-キャピラリーレオメータ及びスリットダイレオメータによるプラスチックの流れの特性試験方法」、5.1.3項の方法A(キャピラリーダイ)に準拠して測定した。東洋精機製キャピログラフ1Bにて、φ1mm、L/D=10のキャピラリーダイを用い、270℃に保ったシリンダ内に、乾燥した樹脂サンプルを充填し、約1分間溶融した後、せん断速度608.0sec-1下で溶融粘度を測定した。なお、複数の樹脂を基材ポリマーとして用いる場合、前記基材ポリマーの溶融粘度は、予め複数の樹脂サンプルを十分に混合した後、シリンダに充填し、上記と同様の方法にて溶融粘度を測定した。 (3) Melt viscosity The viscosity of the resin sample is in accordance with JIS K 7199 “Plastic-capillary rheometer and slit flow rheometer test method for plastic flow”, method A (capillary die) in 5.1.3. It was measured. Using a capillary die with a diameter of 1 mm and L / D = 10 in a Capillograph 1B manufactured by Toyo Seiki Co., Ltd., a dried resin sample was filled into a cylinder maintained at 270 ° C., melted for about 1 minute, and then a shear rate of 608.0 sec. The melt viscosity was measured under -1 . When a plurality of resins are used as the base polymer, the melt viscosity of the base polymer is measured by the same method as described above after thoroughly mixing a plurality of resin samples and filling the cylinder. did.
樹脂サンプルの粘度は、JIS K 7199「プラスチック-キャピラリーレオメータ及びスリットダイレオメータによるプラスチックの流れの特性試験方法」、5.1.3項の方法A(キャピラリーダイ)に準拠して測定した。東洋精機製キャピログラフ1Bにて、φ1mm、L/D=10のキャピラリーダイを用い、270℃に保ったシリンダ内に、乾燥した樹脂サンプルを充填し、約1分間溶融した後、せん断速度608.0sec-1下で溶融粘度を測定した。なお、複数の樹脂を基材ポリマーとして用いる場合、前記基材ポリマーの溶融粘度は、予め複数の樹脂サンプルを十分に混合した後、シリンダに充填し、上記と同様の方法にて溶融粘度を測定した。 (3) Melt viscosity The viscosity of the resin sample is in accordance with JIS K 7199 “Plastic-capillary rheometer and slit flow rheometer test method for plastic flow”, method A (capillary die) in 5.1.3. It was measured. Using a capillary die with a diameter of 1 mm and L / D = 10 in a Capillograph 1B manufactured by Toyo Seiki Co., Ltd., a dried resin sample was filled into a cylinder maintained at 270 ° C., melted for about 1 minute, and then a shear rate of 608.0 sec. The melt viscosity was measured under -1 . When a plurality of resins are used as the base polymer, the melt viscosity of the base polymer is measured by the same method as described above after thoroughly mixing a plurality of resin samples and filling the cylinder. did.
(4)フィルムの厚み斑
横延伸方向に3m、縦延伸方向に5cmの長さの連続したテープ状サンプルを巻き取り、フィルム厚み連続測定機(アンリツ株式会社製)にてフィルムの厚みを測定し、レコーダーに記録する。チャートより、厚みの最大値(dmax)、最小値(dmin)、平均値(d)を求め、下記式にて厚み斑(%)を算出した。なお、横延伸方向の長さが3mに満たない場合は、つなぎ合せて行う。なお、つないだ部分については上記データ解析からは削除する。
厚み斑(%)=((dmax-dmin)/d)×100 (4) Thickness unevenness of film A continuous tape-shaped sample having a length of 3 m in the transverse stretching direction and a length of 5 cm in the longitudinal stretching direction is taken up, and the thickness of the film is measured with a continuous film thickness measuring machine (manufactured by Anritsu Corporation). Record on the recorder. From the chart, the maximum value (dmax), minimum value (dmin), and average value (d) of the thickness were obtained, and the thickness unevenness (%) was calculated by the following formula. In addition, when the length of a horizontal extending direction is less than 3 m, it joins and performs. The connected part is deleted from the data analysis.
Thickness unevenness (%) = ((dmax−dmin) / d) × 100
横延伸方向に3m、縦延伸方向に5cmの長さの連続したテープ状サンプルを巻き取り、フィルム厚み連続測定機(アンリツ株式会社製)にてフィルムの厚みを測定し、レコーダーに記録する。チャートより、厚みの最大値(dmax)、最小値(dmin)、平均値(d)を求め、下記式にて厚み斑(%)を算出した。なお、横延伸方向の長さが3mに満たない場合は、つなぎ合せて行う。なお、つないだ部分については上記データ解析からは削除する。
厚み斑(%)=((dmax-dmin)/d)×100 (4) Thickness unevenness of film A continuous tape-shaped sample having a length of 3 m in the transverse stretching direction and a length of 5 cm in the longitudinal stretching direction is taken up, and the thickness of the film is measured with a continuous film thickness measuring machine (manufactured by Anritsu Corporation). Record on the recorder. From the chart, the maximum value (dmax), minimum value (dmin), and average value (d) of the thickness were obtained, and the thickness unevenness (%) was calculated by the following formula. In addition, when the length of a horizontal extending direction is less than 3 m, it joins and performs. The connected part is deleted from the data analysis.
Thickness unevenness (%) = ((dmax−dmin) / d) × 100
測定は3回行い、その平均値を求め、下記の基準により評価した。
○:厚み斑が5%以下
×:厚み斑が5%を超える The measurement was performed 3 times, the average value was calculated | required, and the following reference | standard evaluated.
○: Thickness unevenness is 5% or less ×: Thickness unevenness exceeds 5%
○:厚み斑が5%以下
×:厚み斑が5%を超える The measurement was performed 3 times, the average value was calculated | required, and the following reference | standard evaluated.
○: Thickness unevenness is 5% or less ×: Thickness unevenness exceeds 5%
(5)ヘーズ、全光線透過率
フィルム試験片のヘーズ(曇価)および全光線透過率はJIS K 7105「プラスチックの光学的特性試験方法」に準拠して測定した。フィルム試験片のフィルム長手方向を鉛直方向に、光拡散層(B)面を光源側に向けて設置し、日本電色工業社製NDH-300A型濁度計を用いて測定した。 (5) Haze and total light transmittance The haze (cloudiness value) and total light transmittance of the film test piece were measured according to JIS K 7105 "Testing method for optical properties of plastics". The film test piece was placed with the longitudinal direction of the film in the vertical direction and the light diffusion layer (B) faced toward the light source, and measured using a NDH-300A type turbidimeter manufactured by Nippon Denshoku Industries Co., Ltd.
フィルム試験片のヘーズ(曇価)および全光線透過率はJIS K 7105「プラスチックの光学的特性試験方法」に準拠して測定した。フィルム試験片のフィルム長手方向を鉛直方向に、光拡散層(B)面を光源側に向けて設置し、日本電色工業社製NDH-300A型濁度計を用いて測定した。 (5) Haze and total light transmittance The haze (cloudiness value) and total light transmittance of the film test piece were measured according to JIS K 7105 "Testing method for optical properties of plastics". The film test piece was placed with the longitudinal direction of the film in the vertical direction and the light diffusion layer (B) faced toward the light source, and measured using a NDH-300A type turbidimeter manufactured by Nippon Denshoku Industries Co., Ltd.
(6)内部ヘーズ、全ヘーズ、表面ヘーズ
フィルム試験片の両面にセダー油を塗布し(塗布量:片面につき20±10g/m2)、ヘーズが1.0%未満の高透明ポリエチレンテレフタレートフィルム(例えば、東洋紡績社製、A4300、厚さ100μm)2枚で挟み合わせたものを、内部ヘーズ測定用試料とした。また、該高透明ポリエチレンテレフタレートフィルム2枚を、セダー油を介して重ね合わせたものを、ブランク試料とした。 (6) Internal haze, all hazes, surface haze A highly transparent polyethylene terephthalate film having a haze of less than 1.0% (coating amount: 20 ± 10 g / m 2 per side) is applied to both sides of the film test piece. For example, a sample sandwiched between two sheets (Toyobo Co., Ltd., A4300, thickness: 100 μm) was used as a sample for measuring internal haze. In addition, a blank sample was obtained by superposing the two highly transparent polyethylene terephthalate films with cedar oil.
フィルム試験片の両面にセダー油を塗布し(塗布量:片面につき20±10g/m2)、ヘーズが1.0%未満の高透明ポリエチレンテレフタレートフィルム(例えば、東洋紡績社製、A4300、厚さ100μm)2枚で挟み合わせたものを、内部ヘーズ測定用試料とした。また、該高透明ポリエチレンテレフタレートフィルム2枚を、セダー油を介して重ね合わせたものを、ブランク試料とした。 (6) Internal haze, all hazes, surface haze A highly transparent polyethylene terephthalate film having a haze of less than 1.0% (coating amount: 20 ± 10 g / m 2 per side) is applied to both sides of the film test piece. For example, a sample sandwiched between two sheets (Toyobo Co., Ltd., A4300, thickness: 100 μm) was used as a sample for measuring internal haze. In addition, a blank sample was obtained by superposing the two highly transparent polyethylene terephthalate films with cedar oil.
次いで、内部ヘーズ測定用試料と、ブランク試料のヘーズを、(5)記載の方法によって測定した。そして、内部ヘーズ測定用試料のヘーズ値から、ブランク試料のヘーズ値を差し引き、内部ヘーズを求めた。また、(5)記載の方法により測定したフィルム試験片単体でのヘーズを全ヘーズとし、全ヘーズ値から内部ヘーズ値を差し引き、表面ヘーズを求めた。
Next, the haze of the internal haze measurement sample and the blank sample was measured by the method described in (5). Then, the haze value of the blank sample was subtracted from the haze value of the sample for measuring internal haze to determine the internal haze. Moreover, the haze in the film test piece single piece measured by the method of (5) was made into the total haze, the internal haze value was subtracted from the total haze value, and the surface haze was calculated | required.
(7)像鮮明度
JIS K 7105「プラスチックの光学的特性試験方法」像鮮明度に準拠して透過法により測定した。フィルム試験片はフィルム長手方向を鉛直方向とし、光拡散層(B)の面を光源側に向けて測定した。測定器には、スガ試験機社製ICM‐1T型写像性測定器を用いた。 (7) Image Sharpness Measured by the transmission method according to JIS K 7105 “Testing method for optical properties of plastic” image sharpness. The film test piece was measured with the film longitudinal direction as the vertical direction and the surface of the light diffusion layer (B) facing the light source. As a measuring instrument, an ICM-1T image clarity measuring instrument manufactured by Suga Test Instruments Co., Ltd. was used.
JIS K 7105「プラスチックの光学的特性試験方法」像鮮明度に準拠して透過法により測定した。フィルム試験片はフィルム長手方向を鉛直方向とし、光拡散層(B)の面を光源側に向けて測定した。測定器には、スガ試験機社製ICM‐1T型写像性測定器を用いた。 (7) Image Sharpness Measured by the transmission method according to JIS K 7105 “Testing method for optical properties of plastic” image sharpness. The film test piece was measured with the film longitudinal direction as the vertical direction and the surface of the light diffusion layer (B) facing the light source. As a measuring instrument, an ICM-1T image clarity measuring instrument manufactured by Suga Test Instruments Co., Ltd. was used.
(8)光拡散性
光拡散性は村上色彩技術研究所製ゴニオフォトメーターGP-200を用いて測定した。光源はハロゲンランプ(12V,50W)を用い、光源を出た光はコンデンサーレンズ、ピンホール、コリメーターを通じて水平な平行光として取り出した後、透過率1%のNDフィルターで減光して使用した。光源光束絞りは10.5mm、受光器の受光絞りは9.1mmとした。試料のフィルムの光拡散層の面を光源側とし、フィルム主面が光源光束と垂直になるように、かつ、フィルムの縦方向が上下となるようにフィルム試験片を試料ホルダーにセットした。試料フィルムに入射した光はフィルムの反対側に透過し、受光器に達して強度が測定される。光源光束を同軸上に延長した方向を0度とし、受光器を光源光束の光軸とフィルムの入射面の交点を中心として水平方向に回転させて、0.1度ステップで-80度から+80度の範囲で透過光強度を測定した。
上記方法で測定した角度0度の透過光強度をI(0)、角度±N度の透過光強度をI(N)とした場合に下記の計算式で求められる透過光強度比S(N)〔%〕を光拡散性の指標とした。本発明では、光拡散性フィルムを通して観察される像の鮮明性との相関が認められる値としてS(1)を用いた。
S(1)は75%以上を○とし、S(1)は75%未満を×として評価した。
S(N)=I(N)/I(0)×100 (8) Light diffusivity The light diffusivity was measured using a Goniometer Photometer GP-200 manufactured by Murakami Color Research Laboratory. A halogen lamp (12V, 50W) was used as the light source, and the light emitted from the light source was extracted as horizontal parallel light through a condenser lens, pinhole, and collimator, and then dimmed with an ND filter having a transmittance of 1%. . The light source beam stop was 10.5 mm, and the light receiving stop of the light receiver was 9.1 mm. The film test piece was set in the sample holder so that the surface of the light diffusing layer of the sample film was the light source side, the film main surface was perpendicular to the light source luminous flux, and the vertical direction of the film was up and down. The light incident on the sample film is transmitted to the opposite side of the film, reaches the light receiver, and the intensity is measured. The direction in which the light source light beam is coaxially extended is 0 degree, and the light receiver is rotated horizontally around the intersection of the optical axis of the light source light beam and the incident surface of the film, and from −80 degrees to +80 in 0.1 degree steps. The transmitted light intensity was measured in the range of degrees.
Transmitted light intensity ratio S (N) obtained by the following formula when the transmitted light intensity measured by the above method is I (0) and the transmitted light intensity of angle ± N degrees is I (N). [%] Was used as an index of light diffusivity. In the present invention, S (1) is used as a value that shows a correlation with the sharpness of the image observed through the light diffusing film.
S (1) was evaluated as 75% or more as ◯, and S (1) as less than 75% as x.
S (N) = I (N) / I (0) × 100
光拡散性は村上色彩技術研究所製ゴニオフォトメーターGP-200を用いて測定した。光源はハロゲンランプ(12V,50W)を用い、光源を出た光はコンデンサーレンズ、ピンホール、コリメーターを通じて水平な平行光として取り出した後、透過率1%のNDフィルターで減光して使用した。光源光束絞りは10.5mm、受光器の受光絞りは9.1mmとした。試料のフィルムの光拡散層の面を光源側とし、フィルム主面が光源光束と垂直になるように、かつ、フィルムの縦方向が上下となるようにフィルム試験片を試料ホルダーにセットした。試料フィルムに入射した光はフィルムの反対側に透過し、受光器に達して強度が測定される。光源光束を同軸上に延長した方向を0度とし、受光器を光源光束の光軸とフィルムの入射面の交点を中心として水平方向に回転させて、0.1度ステップで-80度から+80度の範囲で透過光強度を測定した。
上記方法で測定した角度0度の透過光強度をI(0)、角度±N度の透過光強度をI(N)とした場合に下記の計算式で求められる透過光強度比S(N)〔%〕を光拡散性の指標とした。本発明では、光拡散性フィルムを通して観察される像の鮮明性との相関が認められる値としてS(1)を用いた。
S(1)は75%以上を○とし、S(1)は75%未満を×として評価した。
S(N)=I(N)/I(0)×100 (8) Light diffusivity The light diffusivity was measured using a Goniometer Photometer GP-200 manufactured by Murakami Color Research Laboratory. A halogen lamp (12V, 50W) was used as the light source, and the light emitted from the light source was extracted as horizontal parallel light through a condenser lens, pinhole, and collimator, and then dimmed with an ND filter having a transmittance of 1%. . The light source beam stop was 10.5 mm, and the light receiving stop of the light receiver was 9.1 mm. The film test piece was set in the sample holder so that the surface of the light diffusing layer of the sample film was the light source side, the film main surface was perpendicular to the light source luminous flux, and the vertical direction of the film was up and down. The light incident on the sample film is transmitted to the opposite side of the film, reaches the light receiver, and the intensity is measured. The direction in which the light source light beam is coaxially extended is 0 degree, and the light receiver is rotated horizontally around the intersection of the optical axis of the light source light beam and the incident surface of the film, and from −80 degrees to +80 in 0.1 degree steps. The transmitted light intensity was measured in the range of degrees.
Transmitted light intensity ratio S (N) obtained by the following formula when the transmitted light intensity measured by the above method is I (0) and the transmitted light intensity of angle ± N degrees is I (N). [%] Was used as an index of light diffusivity. In the present invention, S (1) is used as a value that shows a correlation with the sharpness of the image observed through the light diffusing film.
S (1) was evaluated as 75% or more as ◯, and S (1) as less than 75% as x.
S (N) = I (N) / I (0) × 100
(9)引張強さ
JIS C 2318-1997 5.3.3(引張強さ及び伸び率)に準拠して測定した。 (9) Tensile strength Measured according to JIS C 2318-1997 5.3.3 (tensile strength and elongation).
JIS C 2318-1997 5.3.3(引張強さ及び伸び率)に準拠して測定した。 (9) Tensile strength Measured according to JIS C 2318-1997 5.3.3 (tensile strength and elongation).
(10)寸法変化率
JIS C 2318-1997 5.3.4(寸法変化)に準拠して測定した。 (10) Dimensional change rate Measured according to JIS C 2318-1997 5.3.4 (dimensional change).
JIS C 2318-1997 5.3.4(寸法変化)に準拠して測定した。 (10) Dimensional change rate Measured according to JIS C 2318-1997 5.3.4 (dimensional change).
(11)面配向係数(ΔP)
JIS K 7142-1996 5.1(A法)により、ナトリウムD線を光源としてアッベ屈折計によりフィルム長手方向の屈折率(nx)、幅方向の屈折率(ny)、厚み方向の屈折率(nz)を測定し、下記式によって面配向係数(ΔP)を算出した。
ΔP=(nx+ny)/2-nz (11) Plane orientation coefficient (ΔP)
According to JIS K 7142-1996 5.1 (Method A), the refractive index in the film longitudinal direction (nx), the refractive index in the width direction (ny), and the refractive index in the thickness direction (nz) using an Abbe refractometer with the sodium D line as the light source ) And the plane orientation coefficient (ΔP) was calculated by the following formula.
ΔP = (nx + ny) / 2−nz
JIS K 7142-1996 5.1(A法)により、ナトリウムD線を光源としてアッベ屈折計によりフィルム長手方向の屈折率(nx)、幅方向の屈折率(ny)、厚み方向の屈折率(nz)を測定し、下記式によって面配向係数(ΔP)を算出した。
ΔP=(nx+ny)/2-nz (11) Plane orientation coefficient (ΔP)
According to JIS K 7142-1996 5.1 (Method A), the refractive index in the film longitudinal direction (nx), the refractive index in the width direction (ny), and the refractive index in the thickness direction (nz) using an Abbe refractometer with the sodium D line as the light source ) And the plane orientation coefficient (ΔP) was calculated by the following formula.
ΔP = (nx + ny) / 2−nz
(12)カール値
フィルムを長手方向に100mm、幅方向に50mmに枚葉状に切り出し、無荷重の状態で、100℃で30分間加熱処理した後、フィルムの凸部を下にして水平なガラス板上に静置し、ガラス板と立ち上がったフィルム4隅の下端との垂直距離を最小目盛り0.5mm単位で定規を用いて測定し、この4箇所の測定値の平均値を求めた。3つのフィルム試験片について同様の測定を行い、この平均値をカール値とし、下記の基準により評価した。
○:カール値が5mm以下
×:カール値が5mm以上 (12) Curl value The film is cut into a sheet of 100 mm in the longitudinal direction and 50 mm in the width direction, heat-treated at 100 ° C. for 30 minutes under no load, and then a horizontal glass plate with the convex portion of the film facing down. The vertical distance between the glass plate and the lower end of the four corners of the rising film was measured using a ruler in units of a minimum scale of 0.5 mm, and the average value of the measured values at these four locations was determined. The same measurement was performed on the three film specimens, and the average value was taken as the curl value and evaluated according to the following criteria.
○: Curl value is 5 mm or less ×: Curl value is 5 mm or more
フィルムを長手方向に100mm、幅方向に50mmに枚葉状に切り出し、無荷重の状態で、100℃で30分間加熱処理した後、フィルムの凸部を下にして水平なガラス板上に静置し、ガラス板と立ち上がったフィルム4隅の下端との垂直距離を最小目盛り0.5mm単位で定規を用いて測定し、この4箇所の測定値の平均値を求めた。3つのフィルム試験片について同様の測定を行い、この平均値をカール値とし、下記の基準により評価した。
○:カール値が5mm以下
×:カール値が5mm以上 (12) Curl value The film is cut into a sheet of 100 mm in the longitudinal direction and 50 mm in the width direction, heat-treated at 100 ° C. for 30 minutes under no load, and then a horizontal glass plate with the convex portion of the film facing down. The vertical distance between the glass plate and the lower end of the four corners of the rising film was measured using a ruler in units of a minimum scale of 0.5 mm, and the average value of the measured values at these four locations was determined. The same measurement was performed on the three film specimens, and the average value was taken as the curl value and evaluated according to the following criteria.
○: Curl value is 5 mm or less ×: Curl value is 5 mm or more
(13)平均傾斜勾配(Δa)
フィルムの光拡散層(B)を上向きにして、三次元形状測定装置(菱化システム社製、マイクロマップTYPE550、対物レンズ10倍)を用いて光拡散層(B)表面の表面凹凸プロファイルを測定した。測定したプロファイルからフィルムの縦方向(長手方向)、横方向(幅方向)の直交する2軸において断面プロファイルを切り出した。各方向について測定長さ1.0mm、2.5μm間隔で連続的に高さ(y)を測定し、ピッチ間隔2.5(μm)毎のそれぞれの高さy1,y2,y3,,,yn(μm)をエクセルファイルに出力した。突起高さのエクセルファイルへの出力は、解析ソフトウェア(菱化システム社製、SX-Viewer)のWave機能を使用した。さらに下記式を計算することにより、Δaを導出した。Δaは縦方向、横方向についてそれぞれ平均傾斜勾配を導出し、縦方向と横方向の値を平均したものを採用した。
Δa=[(y1-0)/2.5+(y2-y1)/2.5+・・+(yn-yn-1)/2.5]/n (13) Average slope (Δa)
With the light diffusion layer (B) of the film facing upward, the surface unevenness profile of the surface of the light diffusion layer (B) is measured using a three-dimensional shape measuring device (manufactured by Ryoka System Co., Ltd., Micromap TYPE 550, objective lens 10 times) did. From the measured profile, a cross-sectional profile was cut out along two axes perpendicular to the longitudinal direction (longitudinal direction) and lateral direction (width direction) of the film. The height (y) is measured continuously at a measurement length of 1.0 mm and an interval of 2.5 μm in each direction, and the respective heights y 1 , y 2 , y 3 , and the pitch at intervals of 2.5 (μm) ,, y n a (μm) was output to Excel file. The wave function of the analysis software (SX-Viewer, manufactured by Ryoka System Co., Ltd.) was used to output the protrusion height to an Excel file. Further, Δa was derived by calculating the following equation. For Δa, an average slope gradient was derived for each of the vertical direction and the horizontal direction, and values obtained by averaging the values in the vertical direction and the horizontal direction were used.
Δa = [(y 1 −0) /2.5+ (y 2 −y 1 ) /2.5+··+ (y n −y n−1 ) /2.5] / n
フィルムの光拡散層(B)を上向きにして、三次元形状測定装置(菱化システム社製、マイクロマップTYPE550、対物レンズ10倍)を用いて光拡散層(B)表面の表面凹凸プロファイルを測定した。測定したプロファイルからフィルムの縦方向(長手方向)、横方向(幅方向)の直交する2軸において断面プロファイルを切り出した。各方向について測定長さ1.0mm、2.5μm間隔で連続的に高さ(y)を測定し、ピッチ間隔2.5(μm)毎のそれぞれの高さy1,y2,y3,,,yn(μm)をエクセルファイルに出力した。突起高さのエクセルファイルへの出力は、解析ソフトウェア(菱化システム社製、SX-Viewer)のWave機能を使用した。さらに下記式を計算することにより、Δaを導出した。Δaは縦方向、横方向についてそれぞれ平均傾斜勾配を導出し、縦方向と横方向の値を平均したものを採用した。
Δa=[(y1-0)/2.5+(y2-y1)/2.5+・・+(yn-yn-1)/2.5]/n (13) Average slope (Δa)
With the light diffusion layer (B) of the film facing upward, the surface unevenness profile of the surface of the light diffusion layer (B) is measured using a three-dimensional shape measuring device (manufactured by Ryoka System Co., Ltd., Micromap TYPE 550, objective lens 10 times) did. From the measured profile, a cross-sectional profile was cut out along two axes perpendicular to the longitudinal direction (longitudinal direction) and lateral direction (width direction) of the film. The height (y) is measured continuously at a measurement length of 1.0 mm and an interval of 2.5 μm in each direction, and the respective heights y 1 , y 2 , y 3 , and the pitch at intervals of 2.5 (μm) ,, y n a (μm) was output to Excel file. The wave function of the analysis software (SX-Viewer, manufactured by Ryoka System Co., Ltd.) was used to output the protrusion height to an Excel file. Further, Δa was derived by calculating the following equation. For Δa, an average slope gradient was derived for each of the vertical direction and the horizontal direction, and values obtained by averaging the values in the vertical direction and the horizontal direction were used.
Δa = [(y 1 −0) /2.5+ (y 2 −y 1 ) /2.5+··+ (y n −y n−1 ) /2.5] / n
(14)輝度比率
得られた表面光拡散性フィルムの輝度評価に組み合わせるレンズシートとしてはシャープ社製液晶テレビ(アクオスLC-37GS10、2007年製)に搭載のレンズシートを用いた。切り出した光拡散性フィルム片の支持層(A)面と、レンズシートのレンズ裏面と重なるように二枚のフィルムを重ねあわせた。光拡散性フィルム片の縦方向(フィルム製膜の長手方向)が鉛直方向になるように、光拡散性フィルムの光拡散層(B)面を光源側に向けて濁度計に設置した。濁度計は日本電色工業社製NDH-300A型濁度計を用いた。測定方法は、JIS K 7105「プラスチックの光学的特性試験方法」に準拠して実施した。測定により得られた平行線透過率を全光線透過率で除した値を導出し、レンズシート単体を測定することにより得られる平行線透過率を全光線透過率で除した値に対する輝度比率(%)を導出した。 (14) Luminance ratio As a lens sheet to be combined with the luminance evaluation of the obtained surface light diffusive film, a lens sheet mounted on a liquid crystal television manufactured by Sharp Corporation (Aquos LC-37GS10, manufactured in 2007) was used. Two films were overlapped so as to overlap the support layer (A) surface of the cut light diffusing film piece and the lens back surface of the lens sheet. The light diffusive film piece was placed on the turbidimeter with the light diffusion layer (B) surface facing the light source so that the vertical direction of the light diffusive film piece (longitudinal direction of film formation) was the vertical direction. The NDH-300A type turbidimeter manufactured by Nippon Denshoku Industries Co., Ltd. was used as the turbidimeter. The measurement method was carried out in accordance with JIS K 7105 “Testing method for optical properties of plastics”. Deriving a value obtained by dividing the parallel light transmittance obtained by measurement by the total light transmittance, and a luminance ratio (%) to a value obtained by dividing the parallel light transmittance obtained by measuring the lens sheet alone by the total light transmittance ) Was derived.
得られた表面光拡散性フィルムの輝度評価に組み合わせるレンズシートとしてはシャープ社製液晶テレビ(アクオスLC-37GS10、2007年製)に搭載のレンズシートを用いた。切り出した光拡散性フィルム片の支持層(A)面と、レンズシートのレンズ裏面と重なるように二枚のフィルムを重ねあわせた。光拡散性フィルム片の縦方向(フィルム製膜の長手方向)が鉛直方向になるように、光拡散性フィルムの光拡散層(B)面を光源側に向けて濁度計に設置した。濁度計は日本電色工業社製NDH-300A型濁度計を用いた。測定方法は、JIS K 7105「プラスチックの光学的特性試験方法」に準拠して実施した。測定により得られた平行線透過率を全光線透過率で除した値を導出し、レンズシート単体を測定することにより得られる平行線透過率を全光線透過率で除した値に対する輝度比率(%)を導出した。 (14) Luminance ratio As a lens sheet to be combined with the luminance evaluation of the obtained surface light diffusive film, a lens sheet mounted on a liquid crystal television manufactured by Sharp Corporation (Aquos LC-37GS10, manufactured in 2007) was used. Two films were overlapped so as to overlap the support layer (A) surface of the cut light diffusing film piece and the lens back surface of the lens sheet. The light diffusive film piece was placed on the turbidimeter with the light diffusion layer (B) surface facing the light source so that the vertical direction of the light diffusive film piece (longitudinal direction of film formation) was the vertical direction. The NDH-300A type turbidimeter manufactured by Nippon Denshoku Industries Co., Ltd. was used as the turbidimeter. The measurement method was carried out in accordance with JIS K 7105 “Testing method for optical properties of plastics”. Deriving a value obtained by dividing the parallel light transmittance obtained by measurement by the total light transmittance, and a luminance ratio (%) to a value obtained by dividing the parallel light transmittance obtained by measuring the lens sheet alone by the total light transmittance ) Was derived.
実施例1
(1)結晶性ホモポリエステル樹脂(M1)の製造
エステル化反応缶を昇温し、200℃に到達した時点で、テレフタル酸(86.4質量部)及びエチレングリコール(64.4質量部)からなるスラリーを仕込み、攪拌しながら触媒として三酸化アンチモン(0.017質量部)及びトリエチルアミン(0.16質量部)を添加した。次いで、加圧昇温を行いゲージ圧3.5kgf/cm2、240℃の条件で、加圧エステル化反応を行った。その後、エステル化反応缶内を常圧に戻し、酢酸マグネシウム4水和物(0.071質量部)、次いでリン酸(0.014質量部)を添加した。さらに、15分かけて260℃に昇温し、リン酸トリメチル(0.012質量部)、次いで酢酸ナトリウム(0.0036質量部)を添加した。15分後、得られたエステル化反応生成物を重縮合反応缶に移送し、減圧下260℃から280℃へ徐々に昇温し、所定の固有粘度になるまで、285℃で重縮合反応を行った。 Example 1
(1) Production of crystalline homopolyester resin (M1) When the temperature of the esterification reaction can reached 200 ° C, from terephthalic acid (86.4 parts by mass) and ethylene glycol (64.4 parts by mass) The resulting slurry was added and antimony trioxide (0.017 parts by mass) and triethylamine (0.16 parts by mass) were added as catalysts while stirring. Next, the pressure was increased and the pressure esterification reaction was performed under the conditions of a gauge pressure of 3.5 kgf / cm 2 and 240 ° C. Thereafter, the inside of the esterification reaction vessel was returned to normal pressure, and magnesium acetate tetrahydrate (0.071 parts by mass) and then phosphoric acid (0.014 parts by mass) were added. Further, the temperature was raised to 260 ° C. over 15 minutes, and trimethyl phosphate (0.012 parts by mass) and then sodium acetate (0.0036 parts by mass) were added. After 15 minutes, the obtained esterification reaction product was transferred to a polycondensation reaction can, gradually heated from 260 ° C. to 280 ° C. under reduced pressure, and subjected to a polycondensation reaction at 285 ° C. until a predetermined intrinsic viscosity was reached. went.
(1)結晶性ホモポリエステル樹脂(M1)の製造
エステル化反応缶を昇温し、200℃に到達した時点で、テレフタル酸(86.4質量部)及びエチレングリコール(64.4質量部)からなるスラリーを仕込み、攪拌しながら触媒として三酸化アンチモン(0.017質量部)及びトリエチルアミン(0.16質量部)を添加した。次いで、加圧昇温を行いゲージ圧3.5kgf/cm2、240℃の条件で、加圧エステル化反応を行った。その後、エステル化反応缶内を常圧に戻し、酢酸マグネシウム4水和物(0.071質量部)、次いでリン酸(0.014質量部)を添加した。さらに、15分かけて260℃に昇温し、リン酸トリメチル(0.012質量部)、次いで酢酸ナトリウム(0.0036質量部)を添加した。15分後、得られたエステル化反応生成物を重縮合反応缶に移送し、減圧下260℃から280℃へ徐々に昇温し、所定の固有粘度になるまで、285℃で重縮合反応を行った。 Example 1
(1) Production of crystalline homopolyester resin (M1) When the temperature of the esterification reaction can reached 200 ° C, from terephthalic acid (86.4 parts by mass) and ethylene glycol (64.4 parts by mass) The resulting slurry was added and antimony trioxide (0.017 parts by mass) and triethylamine (0.16 parts by mass) were added as catalysts while stirring. Next, the pressure was increased and the pressure esterification reaction was performed under the conditions of a gauge pressure of 3.5 kgf / cm 2 and 240 ° C. Thereafter, the inside of the esterification reaction vessel was returned to normal pressure, and magnesium acetate tetrahydrate (0.071 parts by mass) and then phosphoric acid (0.014 parts by mass) were added. Further, the temperature was raised to 260 ° C. over 15 minutes, and trimethyl phosphate (0.012 parts by mass) and then sodium acetate (0.0036 parts by mass) were added. After 15 minutes, the obtained esterification reaction product was transferred to a polycondensation reaction can, gradually heated from 260 ° C. to 280 ° C. under reduced pressure, and subjected to a polycondensation reaction at 285 ° C. until a predetermined intrinsic viscosity was reached. went.
重縮合反応終了後、濾過粒子サイズ5μm(初期濾過効率:95%)のナスロン製フィルターで濾過処理を行い、ノズルからストランド状に押出し、予め濾過処理(孔径:1μm以下)を行った冷却水を用いて冷却、固化させ、ペレット状にカットした。得られた結晶性ホモポリエステル樹脂(M1)は、結晶融解熱が35mJ/mg、融点が256℃、固有粘度が0.56dl/g、溶融粘度が91Pa・s、Sb含有量が144ppm、Mg含有量が58ppm、P含有量が40ppm、カラーL値が56.2、カラーb値が1.6であった。また、不活性粒子及び内部析出粒子は実質上含有していなかった。
After completion of the polycondensation reaction, filtered with a NASRON filter with a filtration particle size of 5 μm (initial filtration efficiency: 95%), extruded into a strand from a nozzle, and preliminarily filtered (pore size: 1 μm or less) It was cooled and solidified, and cut into pellets. The obtained crystalline homopolyester resin (M1) has a crystal melting heat of 35 mJ / mg, a melting point of 256 ° C., an intrinsic viscosity of 0.56 dl / g, a melt viscosity of 91 Pa · s, an Sb content of 144 ppm, and an Mg content. The amount was 58 ppm, the P content was 40 ppm, the color L value was 56.2, and the color b value was 1.6. Further, inert particles and internally precipitated particles were not substantially contained.
(2)共重合ポリエステル樹脂(M2)の製造
芳香族ジカルボン酸成分としてテレフタル酸単位100モル%、ジオール成分としてエチレングリコール単位70モル%及びネオペンチルグリコール単位30モル%を構成成分とする、固有粘度が0.59dl/g、溶融粘度が121Pa・s、の共重合ポリエステル樹脂(M2)を(M1)の作製方法に準じて作製した。 (2) Production of copolymer polyester resin (M2) Intrinsic viscosity comprising 100 mol% terephthalic acid unit as the aromatic dicarboxylic acid component, 70 mol% ethylene glycol unit and 30 mol% neopentylglycol unit as the diol component Of 0.59 dl / g and a melt viscosity of 121 Pa · s were produced in accordance with the production method of (M1).
芳香族ジカルボン酸成分としてテレフタル酸単位100モル%、ジオール成分としてエチレングリコール単位70モル%及びネオペンチルグリコール単位30モル%を構成成分とする、固有粘度が0.59dl/g、溶融粘度が121Pa・s、の共重合ポリエステル樹脂(M2)を(M1)の作製方法に準じて作製した。 (2) Production of copolymer polyester resin (M2) Intrinsic viscosity comprising 100 mol% terephthalic acid unit as the aromatic dicarboxylic acid component, 70 mol% ethylene glycol unit and 30 mol% neopentylglycol unit as the diol component Of 0.59 dl / g and a melt viscosity of 121 Pa · s were produced in accordance with the production method of (M1).
(3)ポリスチレン(M3)
溶融粘度が147Pa・sのポリスチレン樹脂(PS)を使用した。 (3) Polystyrene (M3)
A polystyrene resin (PS) having a melt viscosity of 147 Pa · s was used.
溶融粘度が147Pa・sのポリスチレン樹脂(PS)を使用した。 (3) Polystyrene (M3)
A polystyrene resin (PS) having a melt viscosity of 147 Pa · s was used.
(4)塗布液(M4)の調製
ジメチルテレフタレート(95質量部)、ジメチルイソフタレート(95質量部)、エチレングリコール(35質量部)、ネオペンチルグリコール(145質量部)、酢酸亜鉛(0.1質量部)および三酸化アンチモン(0.1質量部)を反応容器に仕込み、180℃で3時間かけてエステル交換反応を行った。次に、5-ナトリウムスルホイソフタル酸(6.0質量部)を添加し、240℃で1時間かけてエステル化反応を行った後、250℃で減圧下(10~0.2mmHg)、2時間かけて重縮合反応を行い、数平均分子量19,500の共重合ポリエステル系樹脂を得た。 (4) Preparation of coating solution (M4) Dimethyl terephthalate (95 parts by mass), dimethyl isophthalate (95 parts by mass), ethylene glycol (35 parts by mass), neopentyl glycol (145 parts by mass), zinc acetate (0.1 Parts by mass) and antimony trioxide (0.1 parts by mass) were charged into a reaction vessel, and a transesterification reaction was performed at 180 ° C. over 3 hours. Next, 5-sodium sulfoisophthalic acid (6.0 parts by mass) was added and the esterification reaction was performed at 240 ° C. over 1 hour, and then at 250 ° C. under reduced pressure (10 to 0.2 mmHg) for 2 hours. The polycondensation reaction was carried out to obtain a copolyester resin having a number average molecular weight of 19,500.
ジメチルテレフタレート(95質量部)、ジメチルイソフタレート(95質量部)、エチレングリコール(35質量部)、ネオペンチルグリコール(145質量部)、酢酸亜鉛(0.1質量部)および三酸化アンチモン(0.1質量部)を反応容器に仕込み、180℃で3時間かけてエステル交換反応を行った。次に、5-ナトリウムスルホイソフタル酸(6.0質量部)を添加し、240℃で1時間かけてエステル化反応を行った後、250℃で減圧下(10~0.2mmHg)、2時間かけて重縮合反応を行い、数平均分子量19,500の共重合ポリエステル系樹脂を得た。 (4) Preparation of coating solution (M4) Dimethyl terephthalate (95 parts by mass), dimethyl isophthalate (95 parts by mass), ethylene glycol (35 parts by mass), neopentyl glycol (145 parts by mass), zinc acetate (0.1 Parts by mass) and antimony trioxide (0.1 parts by mass) were charged into a reaction vessel, and a transesterification reaction was performed at 180 ° C. over 3 hours. Next, 5-sodium sulfoisophthalic acid (6.0 parts by mass) was added and the esterification reaction was performed at 240 ° C. over 1 hour, and then at 250 ° C. under reduced pressure (10 to 0.2 mmHg) for 2 hours. The polycondensation reaction was carried out to obtain a copolyester resin having a number average molecular weight of 19,500.
得られた共重合ポリエステル系樹脂の30質量%水分散液を7.5質量部、重亜硫酸ソーダでブロックしたイソシアネート基を含有する自己架橋型ポリウレタン系樹脂の20質量%水溶液を11.3質量部、有機スズ系触媒を0.3質量部、水を39.8質量部およびイソプロピルアルコールを37.4質量部、それぞれ混合した。
7.5 parts by mass of a 30% by mass aqueous dispersion of the obtained copolyester resin and 11.3 parts by mass of a 20% by mass aqueous solution of a self-crosslinking polyurethane resin containing an isocyanate group blocked with sodium bisulfite. The organic tin catalyst was mixed in an amount of 0.3 parts by weight, 39.8 parts by weight of water and 37.4 parts by weight of isopropyl alcohol.
さらに、フッ素系ノニオン型界面活性剤の10質量%水溶液を0.6質量部、粒子Aとしてコロイダルシリカ(平均粒径40nm)の20質量%水分散液を2.3質量部、粒子Bとして乾式法シリカ(平均粒径200nm、平均一次粒径40nm)の3.5質量%水分散液を0.5質量部添加した。次いで、5質量%の重曹水溶液で塗布液のpHを6.2に調整し、濾過粒子サイズ(初期濾過効率:95%)が10μmのフェルト型ポリプロピレン製フィルターで精密濾過し、塗布液(M4)を調製した。
Furthermore, 0.6 parts by mass of a 10% by mass aqueous solution of a fluorine-based nonionic surfactant, 2.3 parts by mass of a 20% by mass aqueous dispersion of colloidal silica (average particle size 40 nm) as particles A, and dry as particles B 0.5 parts by mass of a 3.5% by mass aqueous dispersion of method silica (average particle size 200 nm, average primary particle size 40 nm) was added. Next, the pH of the coating solution is adjusted to 6.2 with a 5% by weight aqueous sodium bicarbonate solution, and the solution is precisely filtered with a felt type polypropylene filter having a filtration particle size (initial filtration efficiency: 95%) of 10 μm. Was prepared.
(5)表面光拡散性ポリエステルフィルムの製造
光拡散層(B)の原料として、135℃で6時間減圧乾燥(1Torr)した結晶性ホモポリエステル(M1)74質量部と、70℃で12時間減圧乾燥(1Torr)した共重合ポリエステル(M2)23質量部と、ポリスチレン(M3)3質量部とを混合し、押出機2に供給した。また、支持層(A)の原料として135℃で6時間減圧乾燥(1Torr)した結晶性ホモポリエステル(M1)を押出機1に供給した。 (5) Production of surface light diffusing polyester film As raw materials for the light diffusing layer (B), 74 parts by mass of crystalline homopolyester (M1) dried at 135 ° C. for 6 hours under reduced pressure (1 Torr), and dried under reduced pressure at 70 ° C. for 12 hours. 23 parts by mass of (1 Torr) copolymerized polyester (M2) and 3 parts by mass of polystyrene (M3) were mixed and supplied to the extruder 2. Further, a crystalline homopolyester (M1) dried under reduced pressure (1 Torr) at 135 ° C. for 6 hours as a raw material for the support layer (A) was supplied to the extruder 1.
光拡散層(B)の原料として、135℃で6時間減圧乾燥(1Torr)した結晶性ホモポリエステル(M1)74質量部と、70℃で12時間減圧乾燥(1Torr)した共重合ポリエステル(M2)23質量部と、ポリスチレン(M3)3質量部とを混合し、押出機2に供給した。また、支持層(A)の原料として135℃で6時間減圧乾燥(1Torr)した結晶性ホモポリエステル(M1)を押出機1に供給した。 (5) Production of surface light diffusing polyester film As raw materials for the light diffusing layer (B), 74 parts by mass of crystalline homopolyester (M1) dried at 135 ° C. for 6 hours under reduced pressure (1 Torr), and dried under reduced pressure at 70 ° C. for 12 hours. 23 parts by mass of (1 Torr) copolymerized polyester (M2) and 3 parts by mass of polystyrene (M3) were mixed and supplied to the extruder 2. Further, a crystalline homopolyester (M1) dried under reduced pressure (1 Torr) at 135 ° C. for 6 hours as a raw material for the support layer (A) was supplied to the extruder 1.
各押出機の溶融部、混練り部、ポリマー管、ギアポンプ、フィルターまでの設定温度を275℃、フィルターの後のポリマー管の設定温度を270℃とし、押出機2、及び押出機1から供給された各原料を、2層合流ブロックを用いて積層し、口金よりシート状に溶融押し出した。
Supplied from Extruder 2 and Extruder 1 with a set temperature of 275 ° C. up to the melting section, kneading section, polymer pipe, gear pump and filter of each extruder and 270 ° C. set temperature of the polymer pipe after the filter. Each raw material was laminated using a two-layer merging block and melt-extruded into a sheet form from the die.
なお、(A)層と(B)層との厚み比率は、89対11となるように、各層のギアポンプを用いて制御した。また、上記のフィルターには、いずれもステンレス焼結体の濾材(公称濾過精度:10μm粒子を95%カット)を用いた。また、口金の温度は、押出された樹脂温度が275℃になるように制御した。
In addition, the thickness ratio of the (A) layer and the (B) layer was controlled using a gear pump of each layer so as to be 89:11. In addition, a stainless sintered body filter material (nominal filtration accuracy: 95% cut of 10 μm particles) was used for each of the filters. The temperature of the die was controlled so that the temperature of the extruded resin was 275 ° C.
押し出した樹脂を、表面温度30℃の冷却ドラムに静電印加法を用いて密着させて冷却固化し、未延伸フィルムを作製した。このとき、(A)層面を冷却ドラムに接する面とした。また、冷却ドラムによる未延伸フィルムの引き取り速度は、12m/分とした。
The extruded resin was brought into close contact with a cooling drum having a surface temperature of 30 ° C. using an electrostatic application method and solidified by cooling to produce an unstretched film. At this time, the layer surface (A) was a surface in contact with the cooling drum. The take-up speed of the unstretched film by the cooling drum was 12 m / min.
得られた未延伸フィルムを、予熱ロールを用いて79℃に加熱し、周速が異なるロール間で、流れ方向に3.4倍に延伸した。このとき、赤外線放射温度計にてフィルムの温度をモニターし、フィルムの最高温度が100℃になるように、ヒーター温度を制御した。
The obtained unstretched film was heated to 79 ° C. using a preheating roll, and stretched 3.4 times in the flow direction between rolls having different peripheral speeds. At this time, the temperature of the film was monitored with an infrared radiation thermometer, and the heater temperature was controlled so that the maximum temperature of the film was 100 ° C.
縦延伸完了後、得られた一軸延伸フィルムを50℃まで冷却した後、フィルムの両面に塗布液(M4)を塗布した。溶液塗布量は、両面ともそれぞれ約15g/m2となるように制御した。その後、乾燥炉にて塗布面を乾燥した。
After completion of the longitudinal stretching, the obtained uniaxially stretched film was cooled to 50 ° C., and then the coating liquid (M4) was applied to both surfaces of the film. The coating amount of the solution was controlled so as to be about 15 g / m 2 on both sides. Thereafter, the coated surface was dried in a drying furnace.
塗布層を有する一軸延伸フィルムの両端をクリップで把持して、テンターに導き、120℃に予熱した後、135℃で幅方向に2.5倍延伸したのち、140℃で幅方向に1.6倍延伸し、さらに231℃で10秒間熱処理し、60℃まで冷却する過程で幅方向に3.3%の緩和処理を行い、全厚み188μmの表面光拡散性ポリエステルフィルムを作製した。
The both ends of the uniaxially stretched film having the coating layer are gripped by clips, guided to a tenter, preheated to 120 ° C, stretched 2.5 times in the width direction at 135 ° C, and then 1.6 times in the width direction at 140 ° C. The film was stretched twice, further heat treated at 231 ° C. for 10 seconds, and subjected to a relaxation treatment of 3.3% in the width direction in the process of cooling to 60 ° C., thereby producing a surface light diffusible polyester film having a total thickness of 188 μm.
なお、各層のポリエステルの融点および固有粘度を測定するため、(B)層の吐出を一時的に停止して(A)層単独の未延伸フィルムを採取した。同様に、(A)層の吐出を一時的に停止し、(B)層単独の未延伸フィルムを採取した。
In addition, in order to measure the melting point and intrinsic viscosity of the polyester of each layer, the discharge of the (B) layer was temporarily stopped, and an unstretched film of the (A) layer alone was collected. Similarly, the discharge of the (A) layer was temporarily stopped, and an unstretched film of the (B) layer alone was collected.
(6)フィルムの特性
本実施例1で得られたフィルムの特性を表1に示す。表1から分かる通り、本発明で得られる表面光拡散性ポリエステルフィルムは、二軸延伸フィルム本来の優れた耐熱性と機械的強度、厚み精度を有している。また、内部ヘーズが小さく、高い光線透過率を有している。さらに、全ヘーズの大半が表面ヘーズによって付与されており、その光拡散性も優れていることが分かる。加えて、レンズシートと組み合わせた際に高い輝度が得られた。 (6) Properties of Film The properties of the film obtained in Example 1 are shown in Table 1. As can be seen from Table 1, the surface light diffusible polyester film obtained in the present invention has excellent heat resistance, mechanical strength and thickness accuracy inherent to the biaxially stretched film. Also, the internal haze is small and the light transmittance is high. Further, it can be seen that most of the total haze is imparted by the surface haze, and the light diffusibility is also excellent. In addition, high brightness was obtained when combined with a lens sheet.
本実施例1で得られたフィルムの特性を表1に示す。表1から分かる通り、本発明で得られる表面光拡散性ポリエステルフィルムは、二軸延伸フィルム本来の優れた耐熱性と機械的強度、厚み精度を有している。また、内部ヘーズが小さく、高い光線透過率を有している。さらに、全ヘーズの大半が表面ヘーズによって付与されており、その光拡散性も優れていることが分かる。加えて、レンズシートと組み合わせた際に高い輝度が得られた。 (6) Properties of Film The properties of the film obtained in Example 1 are shown in Table 1. As can be seen from Table 1, the surface light diffusible polyester film obtained in the present invention has excellent heat resistance, mechanical strength and thickness accuracy inherent to the biaxially stretched film. Also, the internal haze is small and the light transmittance is high. Further, it can be seen that most of the total haze is imparted by the surface haze, and the light diffusibility is also excellent. In addition, high brightness was obtained when combined with a lens sheet.
実施例2
幅方向の延伸後、222℃で10秒間熱処理したことを除いては実施例1に示したのと同じ方法にて実施例2の表面光拡散性ポリエステルフィルムを作製した。 Example 2
After stretching in the width direction, a surface light diffusible polyester film of Example 2 was produced in the same manner as shown in Example 1 except that heat treatment was performed at 222 ° C. for 10 seconds.
幅方向の延伸後、222℃で10秒間熱処理したことを除いては実施例1に示したのと同じ方法にて実施例2の表面光拡散性ポリエステルフィルムを作製した。 Example 2
After stretching in the width direction, a surface light diffusible polyester film of Example 2 was produced in the same manner as shown in Example 1 except that heat treatment was performed at 222 ° C. for 10 seconds.
本実施例2で得られたフィルムの特性を表1に示す。表1から、本実施例2は実施例1と同様に優れた特性を有していることが分かる。
The characteristics of the film obtained in Example 2 are shown in Table 1. From Table 1, it can be seen that Example 2 has excellent characteristics as in Example 1.
実施例3
光拡散層(B)の原料として、135℃で6時間減圧乾燥(1Torr)した結晶性ホモポリエステル(M1)51質量部と、70℃で12時間減圧乾燥(1Torr)した共重合ポリエステル(M2)46質量部と、ポリスチレン(M3)3質量部とを混合し、押出機2に供給したこと、延伸後のフィルム厚みが100μmとなるように冷却ドラムによる未延伸フィルムの引き取り速度を調整したこと、(A)層と(B)層との厚み比率を80対20となるように制御したこと、塗布液(M4)を(A)層のみに塗布したこと、135℃で幅方向に2.4倍延伸したのち、140℃で幅方向に1.6倍延伸し、さらに223℃で17秒間熱処理し、60℃まで冷却する過程で幅方向に1.0%の緩和処理を行ったことを除いては実施例1に示したのと同じ方法にて厚み100μmの実施例3の表面光拡散性ポリエステルフィルムを作製した。 Example 3
As raw materials for the light diffusion layer (B), 51 parts by mass of crystalline homopolyester (M1) dried under reduced pressure (1 Torr) at 135 ° C. for 6 hours, and copolymer polyester (M2) dried under reduced pressure (1 Torr) at 70 ° C. for 12 hours. 46 parts by mass and 3 parts by mass of polystyrene (M3) were mixed and supplied to the extruder 2, and the drawing speed of the unstretched film by the cooling drum was adjusted so that the film thickness after stretching was 100 μm. The thickness ratio between the (A) layer and the (B) layer was controlled to be 80:20, the coating liquid (M4) was applied only to the (A) layer, and the width direction was 2.4 at 135 ° C. After stretching twice, stretched 1.6 times in the width direction at 140 ° C, further heat treated at 223 ° C for 17 seconds, and cooled to 60 ° C, except that 1.0% relaxation treatment was performed in the width direction. In Example 1 To produce a surface light-diffusing polyester film of Example 3 having a thickness of 100μm in the same manner as the the.
光拡散層(B)の原料として、135℃で6時間減圧乾燥(1Torr)した結晶性ホモポリエステル(M1)51質量部と、70℃で12時間減圧乾燥(1Torr)した共重合ポリエステル(M2)46質量部と、ポリスチレン(M3)3質量部とを混合し、押出機2に供給したこと、延伸後のフィルム厚みが100μmとなるように冷却ドラムによる未延伸フィルムの引き取り速度を調整したこと、(A)層と(B)層との厚み比率を80対20となるように制御したこと、塗布液(M4)を(A)層のみに塗布したこと、135℃で幅方向に2.4倍延伸したのち、140℃で幅方向に1.6倍延伸し、さらに223℃で17秒間熱処理し、60℃まで冷却する過程で幅方向に1.0%の緩和処理を行ったことを除いては実施例1に示したのと同じ方法にて厚み100μmの実施例3の表面光拡散性ポリエステルフィルムを作製した。 Example 3
As raw materials for the light diffusion layer (B), 51 parts by mass of crystalline homopolyester (M1) dried under reduced pressure (1 Torr) at 135 ° C. for 6 hours, and copolymer polyester (M2) dried under reduced pressure (1 Torr) at 70 ° C. for 12 hours. 46 parts by mass and 3 parts by mass of polystyrene (M3) were mixed and supplied to the extruder 2, and the drawing speed of the unstretched film by the cooling drum was adjusted so that the film thickness after stretching was 100 μm. The thickness ratio between the (A) layer and the (B) layer was controlled to be 80:20, the coating liquid (M4) was applied only to the (A) layer, and the width direction was 2.4 at 135 ° C. After stretching twice, stretched 1.6 times in the width direction at 140 ° C, further heat treated at 223 ° C for 17 seconds, and cooled to 60 ° C, except that 1.0% relaxation treatment was performed in the width direction. In Example 1 To produce a surface light-diffusing polyester film of Example 3 having a thickness of 100μm in the same manner as the the.
本実施例3で得られたフィルムの特性を表1に示す。表1から、本実施例3は実施例1と同様に優れた特性を有していることが分かる。
The properties of the film obtained in Example 3 are shown in Table 1. From Table 1, it can be seen that Example 3 has excellent characteristics as in Example 1.
実施例4
光拡散層(B)の原料として、135℃で6時間減圧乾燥(1Torr)した結晶性ホモポリエステル(M1)69質量部と、70℃で12時間減圧乾燥(1Torr)した共重合ポリエステル(M2)21質量部と、ポリスチレン(M3)10質量部とを混合し、押出機2に供給したこと、232℃で17秒間熱処理したこと、厚み100μmとなるように調整したこと、(A)層と(B)層との厚み比率を70対30としたことを除いては実施例3に示したのと同じ方法にて実施例4の表面光拡散性ポリエステルフィルムを作製した。 Example 4
As raw materials of the light diffusion layer (B), 69 parts by mass of crystalline homopolyester (M1) dried under reduced pressure (1 Torr) at 135 ° C. for 6 hours, and copolymer polyester (M2) dried under reduced pressure (1 Torr) at 70 ° C. for 12 hours. 21 parts by mass and 10 parts by mass of polystyrene (M3) were mixed and supplied to the extruder 2, heat treated at 232 ° C. for 17 seconds, adjusted to a thickness of 100 μm, layer (A) and ( B) A surface light diffusing polyester film of Example 4 was prepared in the same manner as shown in Example 3 except that the thickness ratio with the layer was 70:30.
光拡散層(B)の原料として、135℃で6時間減圧乾燥(1Torr)した結晶性ホモポリエステル(M1)69質量部と、70℃で12時間減圧乾燥(1Torr)した共重合ポリエステル(M2)21質量部と、ポリスチレン(M3)10質量部とを混合し、押出機2に供給したこと、232℃で17秒間熱処理したこと、厚み100μmとなるように調整したこと、(A)層と(B)層との厚み比率を70対30としたことを除いては実施例3に示したのと同じ方法にて実施例4の表面光拡散性ポリエステルフィルムを作製した。 Example 4
As raw materials of the light diffusion layer (B), 69 parts by mass of crystalline homopolyester (M1) dried under reduced pressure (1 Torr) at 135 ° C. for 6 hours, and copolymer polyester (M2) dried under reduced pressure (1 Torr) at 70 ° C. for 12 hours. 21 parts by mass and 10 parts by mass of polystyrene (M3) were mixed and supplied to the extruder 2, heat treated at 232 ° C. for 17 seconds, adjusted to a thickness of 100 μm, layer (A) and ( B) A surface light diffusing polyester film of Example 4 was prepared in the same manner as shown in Example 3 except that the thickness ratio with the layer was 70:30.
本実施例4で得られたフィルムの特性を表1に示す。表1から、本実施例4は実施例1と同様に優れた特性を有していることが分かる。
The properties of the film obtained in Example 4 are shown in Table 1. From Table 1, it can be seen that Example 4 has excellent characteristics as in Example 1.
実施例5
光拡散層(B)の原料として、135℃で6時間減圧乾燥(1Torr)した結晶性ホモポリエステル(M1)55質量部と、70℃で12時間減圧乾燥(1Torr)した共重合ポリエステル(M2)38質量部と、ポリスチレン(M3)7質量部とを混合し、押出機2に供給したこと、224℃で10秒間熱処理したことを除いては実施例1に示したのと同じ方法にて実施例5の表面光拡散性ポリエステルフィルムを作製した。 Example 5
As raw materials for the light diffusion layer (B), 55 parts by mass of crystalline homopolyester (M1) dried under reduced pressure (1 Torr) at 135 ° C. for 6 hours, and copolymer polyester (M2) dried under reduced pressure (1 Torr) at 70 ° C. for 12 hours. 38 parts by weight and 7 parts by weight of polystyrene (M3) were mixed and supplied to the extruder 2, and the same method as shown in Example 1 was performed except that the heat treatment was performed at 224 ° C. for 10 seconds. The surface light diffusing polyester film of Example 5 was produced.
光拡散層(B)の原料として、135℃で6時間減圧乾燥(1Torr)した結晶性ホモポリエステル(M1)55質量部と、70℃で12時間減圧乾燥(1Torr)した共重合ポリエステル(M2)38質量部と、ポリスチレン(M3)7質量部とを混合し、押出機2に供給したこと、224℃で10秒間熱処理したことを除いては実施例1に示したのと同じ方法にて実施例5の表面光拡散性ポリエステルフィルムを作製した。 Example 5
As raw materials for the light diffusion layer (B), 55 parts by mass of crystalline homopolyester (M1) dried under reduced pressure (1 Torr) at 135 ° C. for 6 hours, and copolymer polyester (M2) dried under reduced pressure (1 Torr) at 70 ° C. for 12 hours. 38 parts by weight and 7 parts by weight of polystyrene (M3) were mixed and supplied to the extruder 2, and the same method as shown in Example 1 was performed except that the heat treatment was performed at 224 ° C. for 10 seconds. The surface light diffusing polyester film of Example 5 was produced.
本実施例5で得られたフィルムの特性を表1に示す。表1から、本実施例5は実施例1と同様に優れた特性を有していることが分かる。
The properties of the film obtained in Example 5 are shown in Table 1. From Table 1, it can be seen that Example 5 has excellent characteristics as in Example 1.
比較例1
光拡散層(B)の原料として、135℃で6時間減圧乾燥(1Torr)した結晶性ホモポリエステル(M1)58質量部と、70℃で12時間減圧乾燥(1Torr)した共重合ポリエステル(M2)32質量部と、ポリスチレン(M3)10質量部とを混合し、押出機2に供給したこと、234℃で17秒間熱処理し、60℃まで冷却する過程で幅方向に3.3%の緩和処理を行ったことを除いては実施例1に示したのと同じ方法にて比較例1の表面光拡散性ポリエステルフィルムを作製した。 Comparative Example 1
As raw materials for the light diffusion layer (B), 58 parts by mass of crystalline homopolyester (M1) dried under reduced pressure (1 Torr) at 135 ° C. for 6 hours, and copolymer polyester (M2) dried under reduced pressure (1 Torr) for 12 hours at 70 ° C. 32 parts by weight and 10 parts by weight of polystyrene (M3) were mixed and supplied to the extruder 2. Heat treatment at 234 ° C. for 17 seconds and cooling to 60 ° C. 3.3% relaxation treatment in the width direction A surface light diffusible polyester film of Comparative Example 1 was prepared in the same manner as shown in Example 1 except that the above was performed.
光拡散層(B)の原料として、135℃で6時間減圧乾燥(1Torr)した結晶性ホモポリエステル(M1)58質量部と、70℃で12時間減圧乾燥(1Torr)した共重合ポリエステル(M2)32質量部と、ポリスチレン(M3)10質量部とを混合し、押出機2に供給したこと、234℃で17秒間熱処理し、60℃まで冷却する過程で幅方向に3.3%の緩和処理を行ったことを除いては実施例1に示したのと同じ方法にて比較例1の表面光拡散性ポリエステルフィルムを作製した。 Comparative Example 1
As raw materials for the light diffusion layer (B), 58 parts by mass of crystalline homopolyester (M1) dried under reduced pressure (1 Torr) at 135 ° C. for 6 hours, and copolymer polyester (M2) dried under reduced pressure (1 Torr) for 12 hours at 70 ° C. 32 parts by weight and 10 parts by weight of polystyrene (M3) were mixed and supplied to the extruder 2. Heat treatment at 234 ° C. for 17 seconds and cooling to 60 ° C. 3.3% relaxation treatment in the width direction A surface light diffusible polyester film of Comparative Example 1 was prepared in the same manner as shown in Example 1 except that the above was performed.
本比較例1で得られたフィルムの特性を表1に示す。
The characteristics of the film obtained in Comparative Example 1 are shown in Table 1.
比較例2
幅方向の延伸後、233℃で熱処理したことを除いては実施例3に示したのと同じ方法にて比較例2の表面光拡散性ポリエステルフィルムを作製した。 Comparative Example 2
A surface light diffusable polyester film of Comparative Example 2 was produced in the same manner as shown in Example 3 except that the film was heat treated at 233 ° C. after stretching in the width direction.
幅方向の延伸後、233℃で熱処理したことを除いては実施例3に示したのと同じ方法にて比較例2の表面光拡散性ポリエステルフィルムを作製した。 Comparative Example 2
A surface light diffusable polyester film of Comparative Example 2 was produced in the same manner as shown in Example 3 except that the film was heat treated at 233 ° C. after stretching in the width direction.
本比較例2で得られたフィルムの特性を表1に示す。
Table 1 shows the characteristics of the film obtained in Comparative Example 2.
比較例3
Comparative example 3
光拡散層(B)の原料として、135℃で6時間減圧乾燥(1Torr)した結晶性ホモポリエステル(M1)63質量部と、70℃で12時間減圧乾燥(1Torr)した共重合ポリエステル(M2)34質量部と、ポリスチレン(M3)3質量部とを混合し、押出機2に供給したこと、縦方向の延伸倍率を3.3倍としたこと、横延伸後240℃で17秒間熱処理し、60℃まで冷却する過程で幅方向に1.3%の緩和処理を行ったことを除いては実施例1に示したのと同じ方法にて比較例3の表面光拡散性フィルムを作製した。
As raw materials for the light diffusion layer (B), 63 parts by mass of crystalline homopolyester (M1) dried under reduced pressure (1 Torr) at 135 ° C. for 6 hours, and copolymer polyester (M2) dried under reduced pressure (1 Torr) at 70 ° C. for 12 hours. 34 parts by weight and 3 parts by weight of polystyrene (M3) were mixed and supplied to the extruder 2, the longitudinal draw ratio was 3.3 times, heat-treated at 240 ° C. for 17 seconds after transverse stretching, A surface light diffusive film of Comparative Example 3 was produced in the same manner as shown in Example 1 except that 1.3% relaxation treatment was performed in the width direction in the course of cooling to 60 ° C.
本発明の表面光拡散性ポリエステルフィルムは、液晶ディスプレイのバックライトユニット、照明装置等に用いられる光拡散性フィルムとして用いることができる。また、プリズムシート用基材フィルムとして用いることができる。したがって、産業界に寄与することが大である。
The surface light diffusing polyester film of the present invention can be used as a light diffusing film used in a backlight unit of a liquid crystal display, a lighting device, or the like. Moreover, it can use as a base film for prism sheets. Therefore, it is important to contribute to the industry.
Claims (5)
- 二軸配向ポリエステルフィルムよりなる光拡散性ポリエステルフィルムであって、下記要件(1)~(6)を満たすことを特徴とする表面光拡散性ポリエステルフィルム。
(1)結晶性ホモポリエステル、または共重合成分を含む結晶性ポリエステルからなる支持層と、該支持層の少なくとも片面に共押出法で積層された、融点が235~255℃である共重合成分を含む結晶性ポリエステル50~99質量部と該ポリエステルに非相溶性の添加剤1~50質量部との配合組成物からなる光拡散層とを有すること
(2)下記式で定義されるフィルムの面配向係数ΔPが0.08~0.16であること
ΔP=(nx+ny)/2 - nz
ここで、nx、ny、nzはそれぞれ、長手方向の屈折率、幅方向の屈折率、厚み方向の屈折率を表す。
(3)表面ヘーズが15%以上であること
(4)内部ヘーズが表面ヘーズ未満であること
(5)150℃における寸法変化率が縦方向及び横方向とも3%以下、引張強さが縦方向及び横方向とも100MPa以上であること
(6)光拡散層表面の平均傾斜勾配(Δa)が0.03以上であること A light diffusing polyester film comprising a biaxially oriented polyester film, which satisfies the following requirements (1) to (6):
(1) A support layer comprising a crystalline homopolyester or a crystalline polyester containing a copolymer component, and a copolymer component having a melting point of 235 to 255 ° C. laminated on at least one surface of the support layer by a co-extrusion method. And (2) a film surface defined by the following formula: having a light diffusing layer comprising a blended composition of 50 to 99 parts by mass of a crystalline polyester and 1 to 50 parts by mass of an additive incompatible with the polyester The orientation coefficient ΔP is 0.08 to 0.16 ΔP = (nx + ny) / 2 −nz
Here, nx, ny, and nz represent the refractive index in the longitudinal direction, the refractive index in the width direction, and the refractive index in the thickness direction, respectively.
(3) The surface haze is 15% or more. (4) The internal haze is less than the surface haze. (5) The dimensional change rate at 150 ° C. is 3% or less in both the longitudinal direction and the transverse direction, and the tensile strength is the longitudinal direction. (6) The average slope gradient (Δa) of the light diffusion layer surface is 0.03 or more. - 全光線透過率が86%以上で、かつ、くし幅2mmにおける像鮮明度が50%以下であることを特徴とする請求項1記載の表面光拡散性ポリエステルフィルム。 2. The surface light diffusing polyester film according to claim 1, wherein the total light transmittance is 86% or more and the image sharpness at a comb width of 2 mm is 50% or less.
- 前記光拡散層の表面に、フィルムの延伸・配向完了前に設けられた共重合ポリエステル樹脂、ポリウレタン系樹脂、またはアクリル樹脂の少なくとも1種以上を主成分とする塗布層を有することを特徴とする請求項1記載の表面光拡散性ポリエステルフィルム。 A coating layer mainly comprising at least one of a copolyester resin, a polyurethane resin, or an acrylic resin provided before completion of stretching and orientation of the film is provided on the surface of the light diffusion layer. The surface light diffusable polyester film according to claim 1.
- 前記光拡散性ポリエステルフィルムの光拡散層側と支持層側の両方の面に、共重合ポリエステル樹脂、ポリウレタン系樹脂、またはアクリル樹脂の少なくとも1種以上を主成分とする塗布層を有することを特徴とする請求項1記載の表面光拡散性ポリエステルフィルム。 The light diffusing polyester film has a coating layer mainly composed of at least one of a copolyester resin, a polyurethane resin, or an acrylic resin on both the light diffusing layer side and the support layer side. The surface light diffusable polyester film according to claim 1.
- 請求項1記載の表面光拡散性ポリエステルフィルムの光拡散層とは反対面に、共重合ポリエステル樹脂、ポリウレタン系樹脂、またはアクリル樹脂の少なくとも1種以上を主成分とする塗布層を有することを特徴とするプリズムシート用表面光拡散性ポリエステルフィルム。 It has the coating layer which has at least 1 sort (s) of a copolyester resin, a polyurethane-type resin, or an acrylic resin as a main component on the opposite surface to the light-diffusion layer of the surface light diffusable polyester film of Claim 1. Surface light diffusing polyester film for prism sheet.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-202916 | 2008-08-06 | ||
JP2008202916A JP4370538B1 (en) | 2008-08-06 | 2008-08-06 | Surface light diffusing polyester film |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010016542A1 true WO2010016542A1 (en) | 2010-02-11 |
Family
ID=41443816
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/063935 WO2010016542A1 (en) | 2008-08-06 | 2009-08-06 | Polyester film with light-diffusing surface |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4370538B1 (en) |
WO (1) | WO2010016542A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102045055B1 (en) * | 2017-06-30 | 2019-11-14 | 주식회사 엘지화학 | Visibility improvement film for display panel and display device comprising the same |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004198733A (en) * | 2002-12-18 | 2004-07-15 | Keiwa Inc | Optical sheet and back light unit using the same |
JP2006010724A (en) * | 2004-06-22 | 2006-01-12 | Nitto Denko Corp | Light-diffusive antiglare film |
WO2007074853A1 (en) * | 2005-12-28 | 2007-07-05 | Toyo Boseki Kabushiki Kaisha | Process for producing light-diffusing film and light-diffusing film |
JP2007196682A (en) * | 2005-12-28 | 2007-08-09 | Toyobo Co Ltd | Manufacturing method of optical diffusion film, and optical diffusion film |
JP2007293316A (en) * | 2006-03-31 | 2007-11-08 | Toyobo Co Ltd | Light diffusion film |
WO2008093478A1 (en) * | 2007-01-31 | 2008-08-07 | Toyo Boseki Kabushiki Kaisha | Surface light-diffusing polyester film |
JP2009048156A (en) * | 2007-01-31 | 2009-03-05 | Toyobo Co Ltd | Surface light-diffusing polyester film |
-
2008
- 2008-08-06 JP JP2008202916A patent/JP4370538B1/en active Active
-
2009
- 2009-08-06 WO PCT/JP2009/063935 patent/WO2010016542A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004198733A (en) * | 2002-12-18 | 2004-07-15 | Keiwa Inc | Optical sheet and back light unit using the same |
JP2006010724A (en) * | 2004-06-22 | 2006-01-12 | Nitto Denko Corp | Light-diffusive antiglare film |
WO2007074853A1 (en) * | 2005-12-28 | 2007-07-05 | Toyo Boseki Kabushiki Kaisha | Process for producing light-diffusing film and light-diffusing film |
JP2007196682A (en) * | 2005-12-28 | 2007-08-09 | Toyobo Co Ltd | Manufacturing method of optical diffusion film, and optical diffusion film |
JP2007293316A (en) * | 2006-03-31 | 2007-11-08 | Toyobo Co Ltd | Light diffusion film |
WO2008093478A1 (en) * | 2007-01-31 | 2008-08-07 | Toyo Boseki Kabushiki Kaisha | Surface light-diffusing polyester film |
JP2009048156A (en) * | 2007-01-31 | 2009-03-05 | Toyobo Co Ltd | Surface light-diffusing polyester film |
Also Published As
Publication number | Publication date |
---|---|
JP2010036486A (en) | 2010-02-18 |
JP4370538B1 (en) | 2009-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4257619B2 (en) | Surface light diffusing polyester film | |
KR101084903B1 (en) | Light diffusion film | |
JP4196306B2 (en) | Light diffusion film | |
JP4702280B2 (en) | Light diffusion film | |
JP4352348B2 (en) | Surface light diffusing polyester film | |
JP4780242B2 (en) | Light diffusing polyester film | |
JP4370539B1 (en) | Surface light diffusing polyester film | |
JP5163085B2 (en) | Surface light diffusing polyester film | |
JP5076791B2 (en) | Light diffusion film | |
JP4715510B2 (en) | Light diffusion film | |
JP5157724B2 (en) | Light diffusion film | |
JP2009139890A (en) | Surface light-diffusing polyester film | |
JP5696356B2 (en) | Light diffusing polyester film | |
JP4370538B1 (en) | Surface light diffusing polyester film | |
JP2011133872A (en) | Surface light-diffusing polyester film | |
JP2009143040A (en) | Surface light diffusive polyester film | |
JP4370537B2 (en) | Surface light diffusing polyester film | |
TWI451973B (en) | Light diffusion polyester film | |
JP2009139889A (en) | Surface light-diffusing polyester film | |
JP2007178789A (en) | Method for manufacturing light diffusion film, and the light diffusion film | |
JP2011133871A (en) | Light diffusing polyester film | |
JP5114661B2 (en) | Light diffusing film and method for producing the same | |
JP2009143039A (en) | Surface light diffusive polyester film | |
JP2010032863A (en) | Light diffusing film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09805025 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09805025 Country of ref document: EP Kind code of ref document: A1 |