WO2010016276A1 - Base station device, mobile station device, wireless communication system, and parameter acquisition method - Google Patents

Base station device, mobile station device, wireless communication system, and parameter acquisition method Download PDF

Info

Publication number
WO2010016276A1
WO2010016276A1 PCT/JP2009/003809 JP2009003809W WO2010016276A1 WO 2010016276 A1 WO2010016276 A1 WO 2010016276A1 JP 2009003809 W JP2009003809 W JP 2009003809W WO 2010016276 A1 WO2010016276 A1 WO 2010016276A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
unit
base station
synchronization channel
station apparatus
Prior art date
Application number
PCT/JP2009/003809
Other languages
French (fr)
Japanese (ja)
Inventor
坪井秀和
上村克成
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2010016276A1 publication Critical patent/WO2010016276A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/10Access point devices adapted for operation in multiple networks, e.g. multi-mode access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/10Interfaces between hierarchically different network devices between terminal device and access point, i.e. wireless air interface

Definitions

  • the present invention relates to a base station device, a mobile station device, a wireless communication system, and a parameter acquisition method.
  • EUTRA Evolved Universal Terrestrial Radio Access
  • 3rd generation evolution hereafter referred to as “EUTRA”
  • EUTRA employs an OFDMA (Orthogonal Frequency Division Multiplexing Access) method that is resistant to multipath interference and suitable for high-speed transmission as a communication method.
  • OFDMA Orthogonal Frequency Division Multiplexing Access
  • the base station since the mobile station needs to be wirelessly synchronized with the base station in advance in the cell or sector that is the communication area of the base station, the base station has a synchronization channel (Synchronization) having a predetermined configuration. (Channel; SCH) is transmitted, and the mobile station detects the synchronization channel SCH and synchronizes with the base station. When the mobile station detects the synchronization channel SCH and acquires information (parameters) on the cell, it is called cell search. The cell search is classified into an initial cell search and a neighboring cell search.
  • the initial cell search is a cell search that is performed in order for the mobile station to search for the nearest cell after the power is turned on and is located in that cell, and the neighboring cell search is a candidate cell to which the mobile station is a handover destination after the initial cell search. This is a cell search performed for searching.
  • FIG. 12 is a diagram illustrating an example of a configuration of a radio frame in EUTRA.
  • the horizontal axis is the time axis
  • the vertical axis is the frequency axis.
  • a radio frame is configured with a frequency axis as 12 subcarriers (sc) and a time axis as a unit of a slot which is a set of a plurality of OFDM symbols, and an area divided by 12 subcarriers and 1 slot length is called a resource block.
  • sc subcarriers
  • a time axis as a unit of a slot which is a set of a plurality of OFDM symbols
  • an area divided by 12 subcarriers and 1 slot length is called a resource block.
  • Non-patent document 2 A group of two slots is called a subframe, and a group of ten subframes is called a frame.
  • the synchronization channel SCH includes a primary synchronization channel P-SCH (Primary Synchronization Channel) and a secondary synchronization channel S-SCH (S-SCH; Secondary Synchronization Channel; second synchronization channel).
  • P-SCH Primary Synchronization Channel
  • S-SCH Secondary Synchronization Channel
  • the positions of the primary synchronization channel P-SCH and the secondary synchronization channel S-SCH in EUTRA will be described.
  • the primary synchronization channel P-SCH is arranged in the last OFDM symbol of the first slot of subframe numbers # 0 and # 5 in the 6 resource blocks at the center of the system bandwidth, and performs slot synchronization. Used to acquire part of cell information.
  • the secondary synchronization channel S-SCH is arranged on the OFDM symbol immediately before the primary synchronization channel P-SCH, and is used for frame synchronization with the rest of the cell information. Note that in Non-Patent Document 2, the synchronization channel SCH is described as a synchronization signal, but the meaning is the same.
  • a code (Primary Synchronization Code) in which a part of the Zadoff-Chu sequence of length 63 (the 32nd value from the head) is indispensable is described below.
  • PSC Primary Synchronization Code
  • 31 subcarriers on both sides sandwiching one subcarrier at the center of the system band are arranged on a total of 62 subcarriers.
  • EUTRA prepares three Zadoff-Chu sequences used for PSC, and indicates part of the cell information depending on which sequence is used for PSC.
  • three scrambling codes to be multiplied by a secondary synchronization channel S-SCH which will be described later, are prepared and associated with three PSCs, thereby reducing the identification error of the secondary synchronization channel S-SCH.
  • the secondary synchronization channel S-SCH uses two codes of length 31.
  • An M code that is a binary code is used as an assigned code (SSC: Secondary Synchronization Code).
  • SSC Secondary Synchronization Code
  • the subcarriers used in the SSC arrangement are a total of 62 subcarriers, with 31 subcarriers on both sides sandwiching one subcarrier at the center of the system band.
  • Two 62 SSCs having a length of 31 (SSC1 and SSC2) are combined with these 62 subcarriers and arranged on the real axis.
  • the mapping of SSC1 and SSC2 to the frequency axis takes an interleaved arrangement in which SSC1 and SSC2 are alternately arranged corresponding to the arranged subframe positions.
  • the secondary synchronization channel S-SCH of subframe # 0 is alternately placed on the subcarriers in the order of SSC1 and SSC2, and at that time, SSC2 is multiplied by a scramble code corresponding to SSC1.
  • the secondary synchronization channel S-SCH of subframe # 5 is alternately arranged on the subcarriers in the order of SSC2 and SSC1, and at that time, SSC1 is multiplied by a scramble code corresponding to SSC2.
  • physical cell ID information is acquired from a combination of a PSC type (one of three types) and two types of SSCs (SSC1 and SSC2), and the frame timing (from the arrangement order of the two types of SSCs) The position of the subframe in the frame) can be acquired.
  • FIG. 16 shows an example of the cell configuration.
  • Each of the cells a, b, and c is composed of three sectors (sectors 1 to 3).
  • Base stations a, b, and c in the center of each cell transmit radio waves having the frame structure to each sector of each cell.
  • FIG. 16 a case will be described where three orthogonal PSCs are used properly in three sectors in the same cell as described above. (The same PSC is used for sectors with the same sector number between different cells.)
  • the mobile station 1 that performs the initial cell search receives a signal transmitted from the base station a to the sector 2, a signal transmitted from the base station b to the sector 3, and a signal transmitted from the base station c to the sector 1.
  • the mobile station 1 in the sector 2 of the cell a determines the correlation between the received signals and the replicas of the three types of primary synchronization channel P-SCH signals held in the own station, that is, the three types of PSCs, for a certain period. Observe and obtain the sector number (sector 2 in this case) and slot timing to be synchronized with the own station from the time when the correlation peak becomes maximum and the type of PSC (step 1).
  • the mobile station 1 performs propagation path estimation from the difference between the replica having the maximum correlation peak, that is, the replica of the primary synchronization channel P-SCH signal in sector 2 and the received primary synchronization channel P-SCH signal. Do. Further, the position of the secondary synchronization channel S-SCH is identified from the acquired slot timing, and the signal of the secondary synchronization channel S-SCH is propagated using the propagation path estimation result of the primary synchronization channel P-SCH described above. Perform road compensation. Then, descrambling processing is performed on the signal of the secondary synchronization channel S-SCH subjected to propagation path compensation.
  • the secondary synchronization channel S-SCH is multiplied by a scramble code corresponding to the type (three types) of PSC, and the scramble is released.
  • the combination and arrangement order of SSC1 and SSC2 are identified, and information for identifying a base station from the combination is obtained.
  • the acquired physical cell ID is identified by the sector number acquired by the primary synchronization channel P-SCH and the information for identifying the base station.
  • frame timing is acquired from the arrangement order (step 2).
  • the present invention is not limited to this, and the PSC number only needs to represent a part of the physical cell ID.
  • a sector may be used as a communication range, and the same PSC number may be used for a plurality of sectors, and a signal generated using a different SSC number for each sector may be transmitted.
  • the processing of step 2 is performed for the remaining two PSCs that did not take the maximum value in the correlation observation in step 1 in the above procedure, and the physical cell ID and frame timing are acquired. Thus, the surrounding cells are detected.
  • the mobile station performs a neighbor cell search and measures the received power of the detected downlink reference signal (unique code corresponding to the physical cell ID) of each cell. To do.
  • the mobile station notifies the base station apparatus of the connected cell of the measurement result, and the base station performs handover of the mobile station based on the reported power information of the cell, access restriction information of the cell, etc. Determine the destination.
  • Advanced-EUTRA a development of the third generation evolution
  • the EUTRA mobile station can access the Advanced-EUTRA base station, that is, backward compatibility is required, resources that can be used by the EUTRA mobile station by means of frequency division or time division. It has been considered to ensure.
  • the Advanced-EUTRA base station is directed to the EUTRA mobile station for the EUTRA primary synchronization channel so that the EUTRA mobile station can perform cell search and synchronize with the Advanced-EUTRA base station. It is necessary to arrange the P-SCH and the secondary synchronization channel S-SCH. Further, it has been proposed to arrange a dedicated synchronization channel different from the primary synchronization channel P-SCH and secondary synchronization channel S-SCH of EUTRA for the mobile station of Advanced-EUTRA (Non-patent Document 3). ).
  • Non-Patent Document 3 in the method of separately arranging a dedicated synchronization channel for an Advanced-EUTRA mobile station, synchronization channels of two wireless communication schemes, Advanced-EUTRA and EUTRA, are provided. Therefore, there is a problem that the bandwidth is compressed by these synchronization channels and the transmission efficiency is deteriorated. Also, the synchronization channel for EUTRA mobile stations is commonly used in two wireless communication systems, Advanced-EUTRA and EUTRA, and which wireless communication system is the base station through the broadcast channel, not the synchronization channel It is also conceivable to notify the mobile station. However, in such a method, the mobile station cannot determine which wireless communication system is the base station without acquiring the broadcast channel during the peripheral cell search. There is.
  • the present invention has been made in view of such circumstances, and its purpose is to determine which wireless communication system the base station of the transmission source is based on only the synchronization channel without degrading the transmission efficiency. It is an object of the present invention to provide a base station device, a mobile station device, a wireless communication system, and a parameter acquisition method that can be determined by the mobile station device.
  • a base station apparatus is a base station apparatus that communicates in two different wireless communication systems, and transmits a synchronization channel signal representing a parameter of one of the two wireless communication systems.
  • a signal obtained by arranging the synchronization channel signal representing the parameters of the real axis and the other wireless communication system on the imaginary axis and performing quadrature modulation is arranged on the synchronization channel and transmitted.
  • the base station apparatus of this invention is the above-mentioned base station apparatus, Comprising:
  • positioned to a synchronous channel includes the 1st synchronizing signal for taking time synchronization, the said base station apparatus, And a second synchronization signal that specifies a parameter for communication, and the signal of the synchronization channel that is orthogonally modulated is the second synchronization signal.
  • the base station apparatus of the present invention is the above-described base station apparatus, wherein the code sequence of the signal arranged on the real axis and the code sequence of the signal arranged on the imaginary axis are low-correlation sequences. It is characterized by being.
  • the base station apparatus of the present invention is the above-described base station apparatus, wherein the code sequence of the signal arranged on the real axis and the code sequence of the signal arranged on the imaginary axis are part of the sequence. Are the same, and the remaining part of the sequence is a sequence having a low correlation with each other.
  • the base station apparatus of the present invention is the above-described base station apparatus, wherein the code sequence of the signal arranged on the imaginary axis is obtained by multiplying the code sequence of the signal arranged on the real axis by a predetermined code. It is characterized by being a series.
  • the base station apparatus of this invention is the above-mentioned base station apparatus
  • positioned to the said imaginary axis is the said code sequence candidate of the signal arrange
  • the base station apparatus of the present invention is the above-described base station apparatus, wherein the two wireless communication schemes have at least a part of the parameters as a common value, It transmits by the signal arrange
  • the base station apparatus of this invention is the above-mentioned base station apparatus, Comprising:
  • the parameter with the said common value is the information which identifies a base station apparatus.
  • the mobile station apparatus of the present invention includes a receiving unit that receives a synchronization channel transmitted from a base station apparatus, and a received synchronization channel signal that is a real-axis signal and an imaginary-axis signal.
  • a complex signal separation unit that separates a signal into an imaginary part signal, and parameters represented by each of the real part signal and the imaginary part signal, and parameters of a wireless communication method used by the mobile station device for communication are acquired. And a parameter acquisition unit.
  • the wireless communication system of the present invention includes a base station device that communicates using two different wireless communication methods, and the base station device that uses at least one wireless communication method of the two wireless communication methods.
  • a wireless communication system comprising a mobile station device for communication, wherein the base station device uses a synchronization channel signal representing a parameter of one of the two wireless communication methods as a real axis, and the other wireless communication method.
  • a signal obtained by arranging a synchronization channel signal representing a communication method parameter on the imaginary axis and orthogonally modulating the signal is arranged on the synchronization channel and transmitted, and the mobile station apparatus receives the synchronization channel and the reception unit.
  • a complex signal separation unit that separates a synchronization channel signal into a real part signal that is a real axis signal and an imaginary part signal that is an imaginary axis signal, and parameters represented by each of the real part signal and the imaginary part signal.
  • a parameter acquisition section that the mobile station apparatus acquires the parameters of a wireless communication system using in the communication.
  • the parameter acquisition method of the present invention includes a base station device that communicates with two different wireless communication methods, and the base station device that uses at least one wireless communication method of the two wireless communication methods.
  • a parameter acquisition method in a wireless communication system including a mobile station device for communication, wherein the base station device uses a real channel for a synchronization channel signal representing a parameter of one of the two wireless communication methods.
  • a synchronization channel signal received by the mobile station apparatus in the first step a real part signal that is a real axis signal and an imaginary axis signal that is an imaginary axis signal.
  • a real part signal that is a real axis signal and an imaginary axis signal that is an imaginary axis signal.
  • the base station apparatus performs quadrature modulation by arranging a synchronization channel signal representing one radio communication system parameter on the real axis and a synchronization channel signal representing the other radio communication system parameter on the imaginary axis.
  • the mobile station apparatus determines which radio communication system the base station of the transmission source is based on only the synchronization channel without degrading the transmission efficiency. be able to.
  • FIG. 1 It is a schematic block diagram which shows the structure of the base station apparatus 1 by 1st Embodiment of this invention. It is a schematic block diagram which shows the internal structure of the synchronizing signal generation part 132 in the embodiment. It is a schematic block diagram which shows the structure of the mobile station apparatus 2 in the embodiment. It is a schematic block diagram which shows the structure of the synchronizer 23 in the embodiment. It is a schematic block diagram which shows the structure of the demodulation / decoding part 28 in the embodiment. 3 is a schematic block diagram showing a configuration of an S-SCH demodulator / decoder 283 in the same embodiment.
  • FIG. 1 shows the structure of the base station apparatus 1 by 1st Embodiment of this invention. It is a schematic block diagram which shows the internal structure of the synchronizing signal generation part 132 in the embodiment. It is a schematic block diagram which shows the structure of the mobile station apparatus 2 in the embodiment. It is a schematic block diagram which shows the structure of the synchronizer 23 in the embodiment. It is
  • FIG. 3 is a schematic block diagram showing a configuration of an S-SCH demodulation / decoding unit 283a of the mobile station device 2a in the same embodiment. It is a schematic block diagram which shows the structure of the synchronizing signal generation part 132b of the base station apparatus 1b in 3rd Embodiment of this invention.
  • FIG. 4 is a schematic block diagram showing a configuration of an S-SCH demodulation / decoding unit 283b of the mobile station device 2b in the same embodiment. It is a schematic block diagram which shows the structure of the correlation part 292b in the same embodiment.
  • FIG. 7 is a diagram illustrating an arrangement of a primary synchronization channel P-SCH and a secondary synchronization channel S-SCH in conventional EUTRA.
  • FIG. 6 is a diagram showing an arrangement of primary synchronization channels P-SCH in conventional EUTRA. It is a figure which shows arrangement
  • the radio communication system uses a base station apparatus 1 that communicates in two different radio communication schemes (in this embodiment, EUTRA and Advanced-EUTRA), and Advanced-EUTRA as the radio communication scheme.
  • Mobile station apparatus 2 communicating with each other.
  • a communication service provider provides a communication service by EUTRA using a base station device that communicates with EUTRA, and a communication service user owns a mobile station device of EUTRA and enjoys a communication service by EUTRA
  • the communication service provider replaces the EUTRA base station device with the base station device 1 which is an advanced-EUTRA base station device
  • the communication service provider provides the EUTRA communication service and newly provides the Advanced-EUTRA communication service. Is done.
  • the advanced-EUTRA base station apparatus 1 is recognized as an EUTRA base station apparatus by the existing EUTRA mobile station apparatus, provides a communication service by EUTRA, and the advanced-EUTRA mobile station apparatus 2 provides an advanced service.
  • -It is necessary to be recognized as a base station apparatus 1 of EUTRA and to be able to provide a communication service by Advanced-EUTRA.
  • FIG. 1 is a schematic block diagram showing the configuration of the base station apparatus 1 in the present embodiment.
  • the base station apparatus 1 includes a control unit 10, a reception unit 12, and a transmission unit 13, and a reception antenna unit 11 that receives radio waves from each mobile station device 2 is connected to the reception unit 12.
  • the transmitting unit 13 is connected to a transmitting antenna unit 14 for transmitting radio waves to each mobile station device 2.
  • the base station apparatus 1 uses the secondary synchronization channel S-SCH signal indicating parameters of one of the two wireless communication systems (EUTRA) as a real axis and the other wireless communication system (Advanced-EUTRA).
  • EUTRA two wireless communication systems
  • Advanced-EUTRA Advanced-EUTRA
  • a signal obtained by arranging the signal of the secondary synchronization channel S-SCH representing the parameter on the imaginary axis and performing quadrature modulation is arranged on the secondary synchronization channel S-SCH and transmitted.
  • the parameters include a physical cell ID that is information for identifying the base station apparatus, a subframe number indicating a position in a frame of the subframe in which the synchronization channel SCH is arranged, and the like.
  • the control unit 10 controls the reception unit 12 and the transmission unit 13. Regarding transmission of the synchronization channel SCH by the transmission unit 13, the control unit 10 determines a PSC number (details will be described later) based on a transmission target sector, and a physical cell ID and a sector, which are information for identifying the base station apparatus 1. SSC number (details will be described later) is determined, and in addition to the PSC number and the SSC number, the subframe number indicating the position in the frame of the subframe in which the synchronization channel SCH is arranged is notified to the transmission unit 13 To do.
  • the receiving unit 12 receives a signal from the mobile station apparatus 2 via the receiving antenna unit 11, and outputs data detected from the signal to the outside.
  • the transmission unit 13 generates a transmission signal of data to the mobile station apparatus 2 input from the outside, and transmits it via the transmission antenna unit 14.
  • the reception unit 12 includes a reception analog circuit unit 120, an A / D (Analogue / Digital) conversion unit 121, and a demodulation processing unit 122.
  • the reception analog circuit unit 120 outputs an analog signal obtained by converting a signal received via the reception antenna unit 11 into a frequency that can be demodulated.
  • the A / D conversion unit 121 converts the analog signal processed by the reception analog circuit unit 120 into a digital signal.
  • the demodulation processing unit 122 demodulates the digital signal converted by the A / D conversion unit 121 and outputs the detected data to the outside.
  • the transmission unit 13 includes a data modulation unit 130, a control signal modulation unit 131, a synchronization signal generation unit 132, a multiplexing / modulation processing unit 133, a D / A (Digital / Analogue) conversion unit 134, and a transmission analog circuit unit 135.
  • the data modulation unit 130 modulates transmission data (including broadcast information) to the mobile station apparatus 2 input from the outside, and generates a data signal.
  • the control signal modulation unit 131 modulates control information for the mobile station apparatus 2 and generates a control signal.
  • the synchronization signal generation unit 132 generates a synchronization signal that is a signal of a synchronization channel.
  • the synchronization channel includes a primary synchronization channel P-SCH and a secondary synchronization channel S-SCH. Therefore, a signal arranged in the synchronization channel SCH includes a primary synchronization channel P-SCH for time synchronization. Including a signal (first synchronization signal) and a signal (second synchronization signal) of a secondary synchronization channel S-SCH that specifies parameters for communication with the base station apparatus 1 and is orthogonally modulated.
  • the signal of channel SCH is the signal of secondary synchronization channel S-SCH among these.
  • the multiplexing / modulation processing unit 133 performs multiplexing / modulation processing on the synchronization signal, the control signal, and the data signal as frames to be transmitted.
  • the D / A conversion unit 134 converts the frame signal modulated by the multiplexing / modulation processing unit 133 into an analog signal.
  • the transmission analog circuit unit 135 converts the D / A converted analog signal into a frequency necessary for transmission, and transmits the frequency via the transmission antenna unit 14.
  • FIG. 2 is a schematic block diagram illustrating the internal configuration of the synchronization signal generation unit 132.
  • the synchronization signal generation unit 132 includes a PSC1 holding unit 1320, a PSC2 holding unit 1321, a PSC3 holding unit 1322, a selector 1323, a first code holding unit 1324, a first code selection unit 1325, a second code holding unit 1326, 2 code selector 1327 and quadrature modulator 1328.
  • the orthogonal modulation unit 1328 includes a multiplication unit 1329, a multiplication unit 1330, and an addition unit 1331.
  • the PSC1 holding unit 1320 holds the first code (hereinafter referred to as “code PSC1”) out of the three codes of length 62 used for the primary synchronization channel P-SCH of EUTRA.
  • PSC2 holding section 1321 holds the second code (hereinafter referred to as “code PSC2”) out of the three codes of length 62 used for EUTRA primary synchronization channel P-SCH.
  • PSC3 holding section 1322 holds the third code (hereinafter referred to as “code PSC3”) out of the three codes of length 62 used for EUTRA primary synchronization channel P-SCH.
  • the selector 1323 selects a code according to the PSC number designated by the control unit 10 from the codes PSC1, PSC2, and PSC3 held by the PSC1 holding unit 1320, the PSC2 holding unit 1321, and the PSC3 holding unit 1322, and outputs the selected code.
  • a cell that is a communication range of one base where the base station apparatus 1 is installed is divided into three sectors, and PSC numbers 1 to 3 are associated with these three sectors. .
  • the association between these three sectors and the PSC numbers 1 to 3 is the same in EUTRA and Advanced-EUTRA. Further, in the present embodiment, the PSC number is associated with the sector.
  • the present invention is not limited to this, and the PSC number only needs to represent a part of the physical cell ID.
  • a sector may be used as a communication range, and the same PSC number may be used for a plurality of sectors, and a signal generated using a different SSC number for each sector may be transmitted.
  • the first code selection unit 1325 uses the code SSC of length 62 used for the secondary synchronization channel S-SCH of EUTRA based on the SSC number, the PSC number, and the subframe number designated by the control unit 10. Is read from the first code holding unit 1324 and output to the multiplication unit 1329.
  • the first code holding unit 1324 performs arrangement (including interleaving) of code SSC1 and code SSC2 of length 31 corresponding to the SSC number, corresponding to each subframe number (# 0, # 5).
  • a code of length 62 is generated, and a code SSC of length 62 obtained by multiplying the scramble code corresponding to the PSC number is held.
  • the first code holding unit 1324 holds all combinations. However, when the SSC number is fixed or several types In the case of only candidates, the necessary number of candidates may be held, or only one type (or three types according to the type of PSC number) is held, and when the SSC number is changed The stored series may be updated.
  • the multiplication unit 1329 multiplies the code SSC output from the first code selection unit 1325 by “1” and outputs the result as a sequence 1. Further, the adding unit 1331 adds up the series 1 and the series 2 described later, and outputs the result as the series 3.
  • an Advanced SSC number corresponding to Advanced-EUTRA information is input from the control unit 10 to the second code selection unit 1327.
  • the Advanced-EUTRA information includes information to be acquired by the mobile station apparatus 2 during the initial cell search and the neighboring cell search, such as cell frequency band information, the number of antennas used, and the cell type. May be.
  • the second code selection unit 1327 reads the code Advanced SSC having a length of 62 corresponding to the Advanced SSC number designated by the control unit 10 from the second code holding unit 1326 and outputs the read code to the multiplication unit 1330.
  • the code Advanced SSC stored in the second code holding unit 1326 has been described as a code of length 62 corresponding to the Advanced SSC number, but the code SSC held by the first code holding unit 1324 is described.
  • a code corresponding to each subframe number or three types of PSC numbers may be held. That is, the second code selection unit 1327 may output a code corresponding to the subframe number and the PSC number as well as the Advanced SSC number, similarly to the EUTRA code SSC.
  • the multiplication unit 1330 multiplies the code Advanced SSC output from the second code selection unit 1327 by the imaginary unit j. That is, the series 3 in which the adding unit 1331 adds the series 1 and the series 2 is a complex series.
  • each value of the code PSC is the primary synchronization channel P-SCH of EUTRA, and each value of the sequence 3 is EUTRA.
  • each value of the code PSC or the sequence 3 is arranged, for example, if the code PSC is “1, ⁇ 1,...”, The signal “1”, that is, the phase is “0” and the amplitude is “0”.
  • each value takes one of the four values “1 + j”, “1-j”, “ ⁇ 1 + j”, and “ ⁇ 1 ⁇ j”, so that the phase is “ ⁇ / 4”. ”,“ 3 ⁇ / 4 ”,“ 5 ⁇ / 4 ”,“ 7 ⁇ / 4 ”, and a signal having an amplitude of ⁇ 2 (square root of 2) is arranged.
  • the primary synchronization channel P-SCH is arranged in the last OFDM symbol of the first slot of subframe numbers # 0 and # 5, and is 6 in the center of the system bandwidth, and 2 in the immediately preceding OFDM symbol.
  • a next synchronization channel S-SCH is arranged. Since code PSC and sequence 3 are sequences of length 62, both sides of the above-described primary synchronization channel P-SCH and secondary synchronization channel S-SCH except for the subcarrier at the center of the system bandwidth. Each of the 31 subcarriers is arranged.
  • FIG. 3 is a schematic block diagram showing the configuration of the mobile station apparatus 2 in the present embodiment.
  • the mobile station apparatus 2 includes a reception analog circuit unit 21, an A / D conversion unit 22, a synchronization unit 23, a GI removal unit 24, and an S / P (Serial to Parallel) conversion unit 25.
  • FFT Fast Fourier Transform
  • MAC Media Access Control; media access control
  • IFFT Inverse Fast Fourier
  • a transform inverse fast Fourier transform
  • P / S Parallel to Serial
  • GI addition unit 33 a D / A conversion unit 34
  • D / A conversion unit 34 a transmission analog circuit unit 35
  • the reception analog circuit unit (reception unit) 21 receives a signal transmitted from the base station apparatus 1 including the primary synchronization channel P-SCH and the secondary synchronization channel S-SCH via the reception antenna unit 20, and receives the signals.
  • the converted analog signal is converted into a signal having a frequency that can be demodulated.
  • the A / D conversion unit 22 converts the analog signal processed by the reception analog circuit unit 21 into a digital signal.
  • the synchronization unit 23 performs time synchronization with the base station apparatus 1 and sector identification based on the received digital signal.
  • the GI removal unit 24 removes a guard interval determined based on time synchronization by the synchronization unit 23.
  • the S / P converter 25 converts the serial signal from which the guard interval is removed into a parallel signal.
  • the FFT unit 26 converts the time domain signal converted into the parallel signal into a frequency domain signal by performing a fast Fourier transform.
  • the propagation path estimation / compensation unit 27 selects a signal to be used for propagation path estimation from the signal converted to the frequency domain and estimates the propagation path. Based on the propagation path estimation result, the propagation path compensation is performed on the frequency domain signal. I do.
  • the demodulator / decoder 28 demodulates and decodes a control signal, a data signal, a secondary synchronization channel S-SCH signal, etc. in the propagation path compensated signal.
  • the MAC unit 29 controls each unit of the mobile station device 2.
  • the MAC unit 29 receives the demodulated and decoded data signal, control signal, and secondary synchronization channel S-SCH signal from the demodulation / decoding unit 28, and outputs the data signal to the outside. Further, the MAC unit 29 generates control information according to the demodulation / decoding result of the control signal and the secondary synchronization channel S-SCH signal, and sends the control information to the modulation unit 30 together with the data to the base station apparatus 1 inputted from the outside. Output.
  • the modulation unit 30 modulates data and control information to the base station apparatus 1 received from the MAC unit 29, and generates a data signal and a control signal that are frequency domain signals.
  • the IFFT unit 31 converts the modulated frequency domain signal into a time domain signal.
  • the P / S converter 32 converts the time domain parallel signal converted by the IFFT unit 31 into a serial signal.
  • the GI adding unit 33 adds a guard interval to the P / S converted signal.
  • the D / A converter 34 converts the digital signal to which the guard interval is added into an analog signal.
  • the transmission analog circuit unit 35 converts the analog signal that has been D / A converted into a frequency necessary for transmission, and transmits the analog signal to the base station apparatus 1 via the transmission antenna unit 36.
  • FIG. 4 is a schematic block diagram illustrating the configuration of the synchronization unit 23.
  • the synchronization unit 23 includes a first correlator 230, a second correlator 231, a third correlator 232, a first buffer 233, a second buffer 234, a third buffer 235, and a sector timing detector 236.
  • the first correlator 230, the second correlator 231, and the third correlator 232 hold one corresponding replica of the three types of code PSCs in advance, and obtain a correlation between the replica and the received signal.
  • the first buffer 233, the second buffer 234, and the third buffer 235 respectively hold the correlation results of the corresponding correlators 230 to 232 for a certain period.
  • the sector timing detector 236 detects the type and timing of the code PSC to be synchronized from the correlation results held in the buffers 233 to 235.
  • FIG. 5 is a schematic block diagram showing the configuration of the demodulator / decoder 28.
  • the demodulation / decoding unit 28 includes an input selector 280, a control signal demodulation / decoding unit 281, a plurality of data signal demodulation / decoding units 282, an S-SCH demodulation / decoding unit 283, and an output selector 284.
  • the input selector 280 receives a received signal that has been subjected to propagation path compensation from the propagation path estimation / compensation unit 27, and performs demodulation / decoding processing on the control signal according to the type of the received signal.
  • the received signal is distributed to the data signal demodulation / decoding unit 282 that performs demodulation / decoding processing on the S-SCH demodulation / decoding unit 283 that performs demodulation processing on the signal of the secondary synchronization channel S-SCH.
  • the output selector 284 acquires the demodulation / decoding processing result by switching according to the type of the received signal from each unit to which the input selector 280 has distributed the received signal, and outputs the result to the MAC unit 29.
  • FIG. 6 is a schematic block diagram showing the configuration of the S-SCH demodulator / decoder 283.
  • the S-SCH demodulation / decoding unit 283 includes a complex signal separation unit 290, a first replica holding unit 291, a real part correlation unit 292, a first SSC identification unit 293, and a second replica holding unit. 294, an imaginary part correlation unit 295, and a second SSC identification unit 296.
  • the complex signal separation unit 290 converts the complex signal (secondary synchronization channel S-SCH signal) input from the input selector 280 into a real part signal that is a real axis signal and an imaginary part signal that is an imaginary axis signal. To separate.
  • the complex signal is “a1 + b1j, a2 + b2j, a3 + b3j,...”
  • the real part signal “a1, a2, a3,...”
  • the imaginary part signal “b1, b2, b3,.
  • the first replica holding unit 291 holds all EUTRA code SSC replicas.
  • the real part correlation unit 292 correlates the real part signal output from the complex signal separation unit 290 with all code SSC replicas corresponding to the PSC numbers input from the synchronization unit 23 to the first replica holding unit 291.
  • the first SSC identification unit 293 identifies the replica having the maximum correlation among all the replicas subjected to the correlation processing by the real part correlation unit 292, and the SSC number and subframe number corresponding to the replica, that is, EUTRA. The SSC number and the subframe number are identified.
  • the second replica holding unit 294 holds all the codes Advanced SSC replicas.
  • the imaginary part correlation unit 295 performs correlation processing between the imaginary part signal output from the complex signal separation unit 290 and all replicas held by the second replica holding unit 294.
  • the second SSC identification unit 296 identifies the replica having the maximum correlation among the replicas that the imaginary part correlation unit 295 has performed correlation processing, and compares the correlation value with a predetermined threshold value. When the correlation value is less than the threshold value as a result of this comparison, the second SSC identification unit 296 does not detect the Advanced-EUTRA secondary synchronization channel S-SCH, and the cell of the sector can communicate only with EUTRA. It is determined that the cell is an EUTRA cell.
  • the second SSC identification unit 296 determines that the Advanced-EUTRA secondary synchronization channel S-SCH is greater when the correlation value is the same as the predetermined threshold or larger than the predetermined threshold as a result of the previous comparison.
  • the detected cell of the sector is determined to be an Advanced-EUTRA cell communicable by Advanced-EUTRA, and the Advanced SSC number corresponding to the replica having the maximum correlation is identified.
  • the first SSC identification unit 293 and the second SSC identification unit 296 function as parameter acquisition units, and are EUTRA parameters that are represented by each of the real part signal and the imaginary part signal.
  • the SSC number, subframe number, and advanced SSC number are acquired.
  • all parameters represented by the real part signal and the imaginary part signal are acquired.
  • only the parameters of the radio communication scheme used by the mobile station apparatus for communication may be acquired. .
  • the synchronization unit 23 uses the received signal after A / D conversion. Detects the primary synchronization channel P-SCH and acquires the synchronization timing and sector information (PSC number). Furthermore, the mobile station apparatus 2 removes the guard interval from the received signal based on the detected synchronization timing, undergoes S / P conversion, and then performs fast Fourier transform processing to convert the signal from the time domain to the frequency domain.
  • the propagation path estimation / compensation unit 27 of the mobile station apparatus 2 performs the phase between the primary synchronization channel P-SCH signal in the received signal converted into the frequency domain and the known primary synchronization channel P-SCH replica. • Perform propagation path estimation by looking at the amplitude difference, and obtain propagation path estimation values. Subsequently, the propagation path estimation / compensation unit 27 performs propagation path compensation on the secondary synchronization channel S-SCH signal in the received signal converted to the frequency domain, using this propagation path estimated value.
  • the input selector 280 of the demodulation / decoding unit 28 inputs the signal of the secondary synchronization channel S-SCH in the frequency domain that has undergone propagation path compensation to the S-SCH demodulation / decoding unit 283.
  • the complex signal separation unit 290 separates the received signal input to the S-SCH demodulation / decoding unit 283 into a real part and an imaginary part, and inputs the real part and the imaginary part correlation unit 295.
  • the real part correlation unit 292 that has received the real part performs correlation processing between the replica corresponding to the PSC number received from the synchronization unit 23 among the replicas held by the first replica holding unit 291 and the received real part.
  • the imaginary part correlation unit 295 that has received the imaginary part performs correlation processing between all replicas held by the second replica holding unit 294 and the received imaginary part.
  • the first SSC identification unit 293 identifies the SSC number and the subframe number
  • the second SSC identification unit 296 includes information indicating whether the cell of the base station apparatus that has transmitted the received signal is an Advanced-EUTRA cell. And Advanced-EUTRA, the Advanced SSC number is identified. If it is not an Advanced-EUTRA cell, the Advanced SSC number becomes invalid and is discarded.
  • the information corresponding to the Advanced SSC number that is, the Advanced-EUTRA parameters include cell ID dedicated to Advanced-EUTRA, cell frequency band information, transmission antenna information, etc., but communication is performed using Advanced-EUTRA.
  • the parameters common to Advanced-EUTRA and EUTRA for example, physical cell ID
  • a parameter having a common value is not necessarily included. You may make it transmit with a SSC number, ie, the signal arrange
  • the code Advanced SSC may be a combination of a plurality of types of binary codes as in the case of the EUTRA code SSC, or may be a single type of code. Further, as the code advanced SSC scrambling, a code corresponding to the PSC number may be multiplied, or a scrambling code corresponding to the EUTRA code SSC may be multiplied.
  • the code used for the code Advanced SSC is a sequence different from the code used for the EUTRA code SSC (a sequence with low correlation).
  • a code whose correlation value with the EUTRA code SSC is smaller than the threshold value compared with the correlation value calculated by the imaginary part correlation unit 295 in the second SSC identification unit 296, that is, a code with a low correlation is encoded Used for Advanced SSC.
  • the signal of the secondary synchronization channel S-SCH is converted into a real part (EUTRA code SSC) and an imaginary part (Advanced- It is impossible to accurately separate the EUTRA code Advanced SSC). Then, when calculating the correlation value for the EUTRA code SSC, the signal of the Advanced-EUTRA code Advanced SSC is also included, and vice versa.
  • the code Advanced SSC as described above, it is possible to suppress the influence on the correlation value and prevent the occurrence of identification errors in the first SSC identification unit 293 and the second SSC identification unit 296.
  • a sequence that is a M-sequence preferred pair of length 31 used in EUTRA (a sequence in which the value of the cross-correlation takes only a fixed ternary value) is used. It can be used. Further, in Advanced-EUTRA, when using the Advanced SSC having the same structure as EUTRA composed of SSC1 and SSC2, either one of SSC1 and SSC2 (for example, SSC1) is set as the same signal as EUTRA.
  • the remaining sequence (for example, SSC2) is an M sequence that is not used in EUTRA, or an M sequence that is the preferred pair, that is, a signal sequence that is arranged on the real axis and a signal that is arranged on the imaginary axis.
  • These code sequences may be the same for a part of the sequence, and the remaining portions of the sequence may be sequences having a low correlation with each other.
  • the low correlation is the same as the low correlation in the relationship between the code used for the above-mentioned code Advanced SSC and the code used for the EUTRA code SSC.
  • the mobile station device 2 can communicate with the advanced base station in the advanced-EUTRA without using dedicated frequency resources and without affecting the operation of the existing EUTRA mobile station device. It is possible to arrange synchronization channels that can be identified. Since no dedicated frequency resource is required, the transmission efficiency is not deteriorated, and Advanced-EUTRA can be identified using only the synchronization channel. For this reason, when performing measurement of neighboring cells in the communication state of the Advanced-EUTRA mobile station apparatus 2, a desired communication is performed such as preferentially measuring and reporting the cells of the Advanced-EUTRA based on the result of the neighboring cell search. It is possible to prioritize the cells of the system, and it is possible to improve the efficiency of measurement.
  • information for identifying Advanced-EUTRA is arranged using the frequency resource of the secondary synchronization channel S-SCH, but the sequence used in the P-SCH is added to the Advanced- Compared with the method of arranging EUTRA identification information, there is an advantage that it is not necessary to perform correlation processing in the time domain that causes an increase in circuit scale.
  • the base station apparatus 1a in the present embodiment is different from the base station apparatus 1 of FIG. 1 in that a synchronization signal generation unit 132a is provided instead of the synchronization signal generation unit 132, and other parts are the same.
  • the mobile station apparatus 2a in the present embodiment is different from the mobile station apparatus 2 in FIG.
  • the S-SCH demodulation / decoding section 283a is replaced with the S-SCH demodulation / decoding section 283 in the demodulation / decoding section 28 (FIG. 4).
  • the other parts are the same. Therefore, in the description of the present embodiment, the description of each unit other than the synchronization signal generation unit 132a and the S-SCH demodulation / decoding unit 283a is omitted.
  • the demodulation / decoding unit 28a of the mobile station apparatus 2a is different from the demodulation / decoding unit 28 of the mobile station apparatus 2 of FIG. 3 in place of the S-SCH demodulation / decoding unit 283. The only difference is that
  • FIG. 7 is a schematic block diagram illustrating a configuration of the synchronization signal generation unit 132a of the base station device 1a in the present embodiment.
  • the synchronization signal generation unit 132a includes a PSC1 holding unit 1320, a PSC2 holding unit 1321, a PSC3 holding unit 1322, a selector 1323, a first code holding unit 1324, a first code selection unit 1325, an orthogonal modulation unit 1328, a multiplication unit 1332a, A binary code Ca holding unit 1333a is provided.
  • the same reference numerals (1320 to 1325, 1328 to 1331) are assigned to the portions corresponding to the respective portions in FIG.
  • the binary code Ca holding unit 1333a holds a predetermined binary code Ca having a length of 62.
  • the multiplication unit 1332a multiplies the code SSC output from the first code selection unit 1325 by the binary code Ca held by the binary code Ca holding unit 1333a, and the multiplication result is sent to the multiplication unit 1330 of the orthogonal modulation unit 1328. Output.
  • the code sequence of the signal arranged by the orthogonal modulation unit 1328 on the imaginary axis of the sequence 3 is the code that is the default code for the code SSC output from the first code selection unit 1325 that is the code sequence of the signal arranged on the real axis.
  • the sequence 2 is multiplied by the binary code Ca.
  • the code PSC and the sequence 3 generated by the synchronization signal generation unit 132 are transmitted by the multiplexing / modulation processing unit 133, as in the first embodiment, the code PSC is the primary synchronization channel P-SCH of EUTRA, Sequence 3 is allocated to the EUTRA secondary synchronization channel S-SCH.
  • the base station apparatus 1a Since the signal of the secondary synchronization channel S-SCH is generated in this way, as information about the Advanced-EUTRA transmitted on the secondary synchronization channel S-SCH, the base station apparatus 1a uses the advanced-EUTRA communication. It becomes only the information indicating that is possible. That is, the mobile station apparatus 2a uses a sequence obtained by multiplying a sequence detected in the real part of the secondary synchronization channel S-SCH signal by a predetermined binary code Ca in the imaginary part of the secondary synchronization channel S-SCH signal. When detected, the base station apparatus transmitting the secondary synchronization channel S-SCH determines that communication using the Advanced-EUTRA is possible, and when not detected, the Advanced-EUTRA is used. It can be determined that the communication that has been performed cannot be performed.
  • FIG. 8 is a schematic block diagram showing a configuration of the S-SCH demodulation / decoding unit 283a of the mobile station device 2a in the present embodiment.
  • the S-SCH demodulation / decoding unit 283a includes a complex signal separation unit 290, a first replica holding unit 291, a real part correlation unit 292, a first SSC identification unit 293, an imaginary part correlation unit 295a, and a binary code Ca holding unit 297a. , A multiplication unit 298a and a determination unit 299a.
  • the same reference numerals (290 to 293) are assigned to portions corresponding to the respective portions in FIG. 6, and the description thereof is omitted.
  • the binary code Ca holding unit 297a holds a predetermined binary code Ca having a length of 62, that is, the same binary code as the binary code Ca holding unit 1333a of the base station apparatus 1a.
  • the multiplication unit 298a multiplies the imaginary part signal output from the complex signal separation unit 290 and the binary code Ca held by the binary code Ca holding unit 297a.
  • the imaginary part correlation unit 295a calculates a correlation value between the real part signal output from the complex signal separation unit 290 and the multiplication result of the multiplication unit 298a.
  • the determination unit 299a determines that the base station apparatus is an EUTRA cell that communicates using only EUTRA, and when the same as the predetermined threshold, or If the threshold is larger than the predetermined threshold, the base station apparatus determines that the cell is an Advanced-EUTRA cell that can communicate using Advanced-EUTRA, and outputs the determination result to the output selector 284.
  • whether or not the base station apparatus that has identified the SSC number and subframe number in the first SSC identification unit 293 and transmitted the reception signal in the determination unit 299a can communicate using Advanced-EUTRA. That is, it is identified whether or not the cell in the service area is an Advanced-EUTRA cell. Therefore, in this case, EUTRA information based on the SSC number and subframe number identified by the first SSC identification unit 293 is also used for information (physical cell ID, frame timing, etc.) regarding the cell of Advanced-EUTRA.
  • the two radio communication schemes of EUTRA and Advanced-EUTRA have all parameters including the physical cell ID transmitted on the synchronization channel SCH as common values, and the base station apparatus 1a
  • the parameter is transmitted as a signal placed on the real axis.
  • the two wireless communication systems have at least a part of the parameters as a common value, and a parameter having a common value is a signal placed on the real axis and a signal placed on the imaginary axis. You may enable it to transmit only in any one.
  • one type of binary code Ca is used.
  • the cell type is a Home eNB cell ( (Cells using base stations that can be easily installed and operated at the individual level or small business level) and MBMS (Multimedia Broadcast / Multicast Service) dedicated cells) It is also possible to do.
  • the first replica holding unit 291 holds all sequences for correlation processing. However, as in the first embodiment, a sequence is calculated and used every time correlation processing is performed. Of course it is also possible. In this way, a sequence indicating that the cell is an Advanced-EUTRA cell, that is, the base station apparatus can communicate with the Advanced-EUTRA, is arranged in the imaginary part of the signal of the secondary synchronization channel S-SCH. By doing so, it is possible to arrange a synchronization channel capable of identifying Advanced-EUTRA without preparing a dedicated frequency resource and without affecting the operation of an existing EUTRA mobile station apparatus.
  • the imaginary part of the signal of the secondary synchronization channel S-SCH is a signal obtained by multiplying the real part signal by a predetermined binary code Ca, so that the correlation for Advanced-EUTRA identification is made as compared with the first embodiment.
  • the configuration of the S-SCH demodulator / decoder 283a that performs processing is suppressed from being complicated, and can be easily implemented.
  • the third embodiment of the present invention will be described below with reference to the drawings.
  • a sequence different from those in the first and second embodiments is used as a sequence arranged in the imaginary part of the signal of the secondary synchronization channel S-SCH. Therefore, the base station apparatus 1b in the present embodiment is different from the base station apparatus 1 of FIG. 1 in that a synchronization signal generation unit 132b is provided instead of the synchronization signal generation unit 132, and other parts are the same.
  • the mobile station apparatus 2b in this embodiment is different from the mobile station apparatus 2 of FIG.
  • the S-SCH demodulation / decoding section 283b is replaced with the S-SCH demodulation / decoding section 283 in the demodulation / decoding section 28 (FIG. 4).
  • the other parts are the same. Therefore, in the description of the present embodiment, the description of each unit other than the synchronization signal generation unit 132b and the S-SCH demodulation / decoding unit 283b is omitted.
  • the demodulator / decoder 28b of the mobile station apparatus 2b is different from the demodulator / decoder 28 of the mobile station apparatus 2 of FIG. 3 in place of the S-SCH demodulator / decoder 283. The only difference is that
  • FIG. 9 is a schematic block diagram illustrating a configuration of the synchronization signal generation unit 132b of the base station device 1b in the present embodiment.
  • the signal of the secondary synchronization channel S-SCH generated by the synchronization signal generation unit 132b includes the information of Advanced-UTRA among the code sequence candidates of the signal arranged on the imaginary axis.
  • the code sequence corresponding to the parameter of the other wireless communication system is multiplied by a binary code Cb which is a predetermined code.
  • the synchronization signal generation unit 132b includes a PSC1 holding unit 1320, a PSC2 holding unit 1321, a PSC3 holding unit 1322, a selector 1323, a first code holding unit 1324, a first code selection unit 1325, an orthogonal modulation unit 1328, and a second code.
  • a selection unit 1327b, a multiplication unit 1332b, and a binary code Cb holding unit 1333b are provided.
  • the same reference numerals (1320 to 1325, 1328 to 1331) are assigned to the portions corresponding to the respective portions in FIG.
  • the second code selection unit 1327b reads the code SSC corresponding to the PSC number and the advanced SSC number designated by the control unit 10 from the first code holding unit 1324 and outputs the code SSC to the multiplication unit 1332b.
  • the binary code Cb holding unit 1333b holds a predetermined binary code Cb having a length of 62.
  • the multiplication unit 1332b multiplies the code SSC output from the second code selection unit 1327b and the binary code Cb held by the binary code Cb holding unit 1333b, and the multiplication result is sent to the multiplication unit 1330 of the orthogonal modulation unit 1328. Output.
  • the multiplication of the code SSC and the binary code Cb by the multiplication unit 1332b represents the multiplication of each value of each series.
  • the number of Advanced-SSC numbers (Advanced-EUTRA information) is scrambled for each PSC number, the number of code SSCs held in the first code holding unit 1324 (168 in the above example)
  • the second code selection unit 1327b reads out and outputs the sequence corresponding to the Advanced SSC number and the PSC number from the first code holding unit 1324.
  • the code PSC and the sequence 3 generated by the synchronization signal generation unit 132b are converted into the EUTRA primary synchronization channel P ⁇ by the multiplexing / modulation processing unit 133 as in the first and second embodiments.
  • the SCH, sequence 3, is arranged in the EUTRA secondary synchronization channel S-SCH.
  • FIG. 10 is a schematic block diagram showing the configuration of the S-SCH demodulation / decoding unit 283b of the mobile station device 2b in the present embodiment.
  • the S-SCH demodulation / decoding unit 283b includes a complex signal separation unit 290b, a first replica holding unit 291, a correlation unit 292b, a first SSC identification unit 293, and a second SSC identification unit 296b.
  • the same reference numerals (291, 293) are assigned to portions corresponding to the respective portions in FIG. 6, and the description thereof is omitted.
  • the complex signal separation unit 290b separates the complex signal (secondary synchronization channel S-SCH signal after propagation path compensation) input from the input selector 280 into a real part signal and an imaginary part signal. Part signals are output sequentially. When outputting the real part signal and the imaginary part signal, the complex signal separation unit 290b also outputs a selection signal indicating whether the output signal is a real part signal or an imaginary part signal.
  • the correlation unit 292b includes a real part signal, an imaginary part signal, a selection signal output from the complex signal separation unit 290b, a replica of the code SSC held by the first replica holding unit 291 and the synchronization unit 23. Based on the input PSC number, correlation processing described later is performed.
  • the correlation unit 292b and the second SSC identification unit 296b identify the sequence that has the maximum correlation from the correlation values that the correlation unit 292b performs the correlation process on the imaginary part signal, and the correlation value is less than a predetermined threshold value. Are determined to be EUTRA cells. Also, the second SSC identification unit 296b determines that the correlation value is the same as the predetermined threshold value or is larger than the predetermined threshold value, and determines the Advanced-EUTRA cell, and sets the Advanced SSC number from the sequence having the maximum correlation value. Identify.
  • FIG. 11 is a schematic block diagram showing the configuration of the correlation unit 292b in the present embodiment.
  • the correlation unit 292b includes a first selector 300b, a first S / P (Serial / Parallel) conversion unit 301b, a second selector 302b, a second S / P conversion unit 304b, a multiplication unit 305b, and a first addition.
  • 306b a second adder 307b, a third adder 308b, a subtractor 309b, and a third selector 310b.
  • the first selector 300b selects and outputs the real part signal and the imaginary part signal based on the selection signal.
  • the first S / P converter 301b performs serial / parallel conversion on the output of the first selector 300b.
  • the second selector 302b sequentially selects and outputs all code SSC candidates assumed by the PSC number based on the input PSC number.
  • the second S / P converter 304b performs parallel conversion on the signal from the second selector 302b.
  • Multiplier 305b multiplies the output of first S / P converter 301b and the output of second S / P converter 304b.
  • the first adder 306b adds signals (bits) where the value of the binary code Cb is 1 among the signals multiplied by the multiplier 305b.
  • the second adder 307b adds signals at locations (bits) where the value of the binary code Cb is -1.
  • the third adder 308b adds the output of the first adder 306b and the output of the second adder 307b.
  • the subtractor 309b subtracts the output of the second adder 307b from the output of the first adder 306b.
  • the third selector 310b selects and outputs the output of the third adder 308b and the output of the subtractor 309b based on the selection signal.
  • the reception signal of a total of 62 subcarriers on both sides of 31 subcarriers sandwiching one subcarrier at the center of the system band of the secondary synchronization channel S-SCH input to the S-SCH demodulation / decoding unit 283b is a complex signal separation unit At 290b, the real part and the imaginary part are separated.
  • the first S / P converter 301b performs serial / parallel conversion on the real part signal or the imaginary part signal input from the first selector 300b, and consists of 62 real part signals or 62 imaginary part signals. Output parallel signals.
  • the second selector 302b includes 168 ⁇ 2 types of corresponding 168 ⁇ 2 ⁇ 3 types of replicas of the SSC code of 168 ⁇ 2 ⁇ 3 by the first replica holding unit 291 based on the PSC number input from the synchronization unit 23. Candidate replicas are sequentially read and output to the complex conjugate calculator 303b.
  • the complex conjugate calculation unit 303b calculates the complex conjugate of the replica of the code SSC input from the second selector 302b, and outputs it to the second S / P conversion unit 304b.
  • the second S / P converter 304b performs serial / parallel conversion on the complex conjugate of the input replica, and outputs 62 parallel signals.
  • the multiplier 305b multiplies the parallel signal output from the first S / P converter 301b and the parallel signal output from the second S / P converter 304b.
  • the multiplication unit 305 uses the binary code Cb code for each value of the multiplied parallel signal, the value at the position where the binary code Cb is “1” is sent to the first adder 306b, and the binary code Cb is “ ⁇ 1”.
  • the position value is distributed to the second adder 307b and output.
  • the first adder 306b and the second adder 307b add the values input to each, calculate the sum of the values input to each, and output the result.
  • the third adder 308b adds the output of the first adder 306b and the output of the second adder 307b and outputs the result. This is the processing itself for obtaining the correlation value between the signal input to the first S / P converter 301b and the signal input to the second S / P converter 304b.
  • the subtractor 309b subtracts the output of the second adder 307b from the output of the first adder 306b and outputs the result. This is a process for obtaining a correlation value between a signal input to the first S / P converter 301b and a signal obtained by multiplying the signal input to the second S / P converter 304b by a binary code Cb. .
  • the correlation value of the real part output from the third selector 310b is input to the first SSC identification unit 293, and the correlation value of the imaginary part is input to the second SSC identification unit 296b.
  • the first SSC identification unit 293 identifies the SSC number and the subframe number, and information indicating whether or not the base station apparatus that has transmitted the received signal in the second SSC identification unit 296b is an Advanced-EUTRA cell and Advanced Identify the SSC number. If it is not an Advanced-EUTRA cell, the Advanced SSC number becomes invalid and is discarded.
  • the base station apparatus can perform Advanced-EUTRA communication without preparing a dedicated frequency resource and without affecting the operation of the existing EUTRA mobile station apparatus.
  • a synchronization channel that can be used can be arranged. Since no dedicated frequency resource is required, it becomes possible to identify whether or not the base station apparatus can communicate with the Advanced-EUTRA using the synchronization channel without degrading the frequency utilization efficiency.
  • With measurement in the communication state of the mobile station apparatus 2b of EUTRA it is possible to preferentially measure and report an Advanced-EUTRA cell, thereby improving the efficiency of measurement.
  • Unit 132b and a program for realizing the functions of S-SCH demodulation / decoding unit 283b in FIG. 10 are recorded on a computer-readable recording medium, and the recording medium
  • the recorded program read into the computer system may be subjected to a treatment of each part by executing the processing of each unit or may be implemented by dedicated hardware.
  • the “computer system” includes an OS and hardware such as peripheral devices.
  • the “computer-readable recording medium” means a storage device such as a flexible disk, a magneto-optical disk, a portable medium such as a ROM and a CD-ROM, and a hard disk incorporated in a computer system. Furthermore, the “computer-readable recording medium” dynamically holds a program for a short time like a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line. In this case, a volatile memory in a computer system serving as a server or a client in that case is also used to hold a program for a certain period of time.
  • the program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system.
  • the present invention is suitable for use in a base station apparatus and a mobile station apparatus of a mobile communication network using Advanced-EUTRA, but is not limited to this.
  • second code selecting unit 1328 ... orthogonal modulation unit 1329 ... multiplication Unit 1330 ... Multiplier 1331 ... Adder 1332a, 1332b ... Multiplier 1333a ... Binary code Ca holding unit 1333b ... Binary code Cb holding unit 2, 2a, 2b ... Mobile station apparatus 20 ... Reception antenna unit 21 ... Reception analog circuit unit 22 ... A / D conversion unit 23 ... Synchronization unit 24 ... GI removal unit 25 ... S / P conversion unit 26 ... FFT unit 27 ... propagation path estimation / compensation unit 28, 28a, 28b ... demodulation / decoding unit 29 ... MAC unit 30 ... modulation unit 31 ... IFFT unit 32 ... P / S conversion unit 33 ...
  • GI addition unit 34 ... D / A conversion section 35 ... transmission analog circuit section 36 ... transmission antenna section 230 ... first correlator 231 ... second correlator 232 ... third correlator 233 ... first buffer 234 ... second buffer 235 ... third buffer 236 ... Sector timing detector 280 ... Input selector 281 ... Control signal demodulation / decoding unit 282 ... Data signal demodulation / decoding unit 283, 283a, 283b ... SS H demodulation / decoding unit 284 ... output selector 290, 290b ... complex signal separation unit 291 ... first replica holding unit 292 ... real part correlation unit 292b ... correlation unit 293 ... first SSC identification unit 294 ...

Abstract

Disclosed is a base station device that communicates by two different wireless communication methods and that transmits, using the two wireless communication methods, a synchronization channel signal for one wireless communication method on the real axis and a synchronization channel signal for the other wireless communication method orthogonally modulated and disposed on the imaginary axis, thus enabling a mobile station device to determine the wireless communication method of the base station which is the transmission source using only the synchronization channel and without a deterioration of transmission efficiency.

Description

基地局装置、移動局装置、無線通信システムおよびパラメータ取得方法Base station apparatus, mobile station apparatus, radio communication system, and parameter acquisition method
 本発明は、基地局装置、移動局装置、無線通信システムおよびパラメータ取得方法に関する。
 本願は、2008年8月8日に、日本に出願された特願2008-206152号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a base station device, a mobile station device, a wireless communication system, and a parameter acquisition method.
This application claims priority based on Japanese Patent Application No. 2008-206152 filed in Japan on August 8, 2008, the contents of which are incorporated herein by reference.
 現在、第3世代の移動体通信システムに使用されている周波数帯に第4世代向けに検討されていた技術の一部を導入することによって、通信速度を高速化することを目的とした無線通信方式であるEvolved Universal Terrestrial Radio Access(第3世代の進化、以降、「EUTRA」と称する)が標準化団体3GPP(3rd Generation Partnership Project;第3世代パートナーシッププロジェクト)にて検討されている(非特許文献1)。EUTRAでは、通信方式として、マルチパス干渉に強く、高速伝送に適したOFDMA(Orthogonal Frequency Division Multiplexing Access;直交周波数分割多元接続)方式を採用する。 Wireless communication aimed at speeding up communication speed by introducing some of the technologies that have been studied for the 4th generation in the frequency band currently used in the 3rd generation mobile communication systems Evolved Universal Terrestrial Radio Access (3rd generation evolution, hereafter referred to as “EUTRA”), which is the system, is being studied by the standardization organization 3GPP (3rd Generation Partnership Project; 3rd Generation Partnership Project) (non-patent literature 1) ). EUTRA employs an OFDMA (Orthogonal Frequency Division Multiplexing Access) method that is resistant to multipath interference and suitable for high-speed transmission as a communication method.
 セルラ移動通信方式では、移動局が基地局の通信エリアであるセルまたはセクタ内において、事前に基地局と無線同期している必要があることから、基地局では所定の構成から成る同期チャネル(Synchronization Channel;SCH)を送信し、移動局にて同期チャネルSCHを検出することで基地局と同期を取る。移動局が、同期チャネルSCHを検出し、セルに関する情報(パラメータ)を取得することをセルサーチと呼ぶ。
 セルサーチは、初期セルサーチと周辺セルサーチとに分類される。初期セルサーチとは移動局が電源オン後に最も近いセルを検索し、そのセルに在圏するために行うセルサーチであり、周辺セルサーチとは初期セルサーチ後に、移動局がハンドオーバ先の候補セルを検索するために行うセルサーチのことである。
In the cellular mobile communication system, since the mobile station needs to be wirelessly synchronized with the base station in advance in the cell or sector that is the communication area of the base station, the base station has a synchronization channel (Synchronization) having a predetermined configuration. (Channel; SCH) is transmitted, and the mobile station detects the synchronization channel SCH and synchronizes with the base station. When the mobile station detects the synchronization channel SCH and acquires information (parameters) on the cell, it is called cell search.
The cell search is classified into an initial cell search and a neighboring cell search. The initial cell search is a cell search that is performed in order for the mobile station to search for the nearest cell after the power is turned on and is located in that cell, and the neighboring cell search is a candidate cell to which the mobile station is a handover destination after the initial cell search. This is a cell search performed for searching.
 図12は、EUTRAにおける無線フレームの構成の一例を示す図である。図12では、横軸に時間軸をとっており、縦軸に周波数軸をとっている。無線フレームは、周波数軸を12サブキャリア(sc)、時間軸を複数のOFDMシンボルの集合であるスロットを一単位として構成され、12サブキャリアと1スロット長で区切られた領域をリソースブロックと呼ぶ(非特許文献2)。2つのスロットをまとめたものをサブフレームと呼び、更に10個のサブフレームをまとめたものをフレームと呼ぶ。 FIG. 12 is a diagram illustrating an example of a configuration of a radio frame in EUTRA. In FIG. 12, the horizontal axis is the time axis, and the vertical axis is the frequency axis. A radio frame is configured with a frequency axis as 12 subcarriers (sc) and a time axis as a unit of a slot which is a set of a plurality of OFDM symbols, and an area divided by 12 subcarriers and 1 slot length is called a resource block. (Non-patent document 2). A group of two slots is called a subframe, and a group of ten subframes is called a frame.
 同期チャネルSCHには、1次同期チャネルP-SCH(Primary Synchronization Channel)と、2次同期チャネルS-SCH(S-SCH;Secondary Synchronization Channel;第2同期チャネル)とがある。EUTRAにおける1次同期チャネルP-SCH、2次同期チャネルS-SCHのフレーム内の位置について説明する。
 図13に示すように1次同期チャネルP-SCHは、システム帯域幅の中心の6リソースブロックにおいて、サブフレーム番号#0及び#5の先頭スロットの最終OFDMシンボルに配置され、スロット同期をとり、セル情報の一部を取得するために用いられる。
 2次同期チャネルS-SCHは、1次同期チャネルP-SCHの直前のOFDMシンボル上に配置され、セル情報の残りの部分と、フレーム同期をとるために用いられる。
 なお、非特許文献2においては、同期チャネルSCHのことをSynchronization Signalと記載してあるが、意味は同じである。
The synchronization channel SCH includes a primary synchronization channel P-SCH (Primary Synchronization Channel) and a secondary synchronization channel S-SCH (S-SCH; Secondary Synchronization Channel; second synchronization channel). The positions of the primary synchronization channel P-SCH and the secondary synchronization channel S-SCH in EUTRA will be described.
As shown in FIG. 13, the primary synchronization channel P-SCH is arranged in the last OFDM symbol of the first slot of subframe numbers # 0 and # 5 in the 6 resource blocks at the center of the system bandwidth, and performs slot synchronization. Used to acquire part of cell information.
The secondary synchronization channel S-SCH is arranged on the OFDM symbol immediately before the primary synchronization channel P-SCH, and is used for frame synchronization with the rest of the cell information.
Note that in Non-Patent Document 2, the synchronization channel SCH is described as a synchronization signal, but the meaning is the same.
 図14に示すように、EUTRAでは1次同期チャネルP-SCHの信号として、長さ63のZadoff-Chuシーケンスの一部(先頭から32番目の値)を欠かせた符号(Primary Synchronization Code、以下、「PSC」という)を用い、システム帯域の中心の1サブキャリアを挟んだ両側31サブキャリアずつ、合計62サブキャリアに配置する。EUTRAではPSCに用いるZadoff-Chuシーケンスを3つ用意し、いずれのシーケンスを用いたPSCを配置しているかにより、セル情報の一部を示す。また、後述する2次同期チャネルS-SCHに乗ずるスクランブル符号を3つ用意し、PSCの3つと対応させることで、2次同期チャネルS-SCHの同定誤りを低減している。 As shown in FIG. 14, in EUTRA, as a signal of the primary synchronization channel P-SCH, a code (Primary Synchronization Code) in which a part of the Zadoff-Chu sequence of length 63 (the 32nd value from the head) is indispensable is described below. , Referred to as “PSC”), 31 subcarriers on both sides sandwiching one subcarrier at the center of the system band are arranged on a total of 62 subcarriers. EUTRA prepares three Zadoff-Chu sequences used for PSC, and indicates part of the cell information depending on which sequence is used for PSC. Also, three scrambling codes to be multiplied by a secondary synchronization channel S-SCH, which will be described later, are prepared and associated with three PSCs, thereby reducing the identification error of the secondary synchronization channel S-SCH.
 2次同期チャネルS-SCHは、長さ31の符号が2つ使用される。割り当てられる符号(SSC:Secondly Synchronization Code)は、バイナリ符号であるM系列が用いられる。図15に示すように、SSCの配置に用いられるサブキャリアは、システム帯域の中心の1サブキャリアを挟んだ両側31サブキャリアずつ、合計62サブキャリアである。この62サブキャリアに、長さ31のSSCを2つ(SSC1およびSSC2)組み合わせて実軸に配置する。SSC1およびSSC2の周波数軸へのマッピングは、配置されるサブフレーム位置に対応させてSSC1とSSC2とを交互に配置するインターリーブ型配置をとる。 The secondary synchronization channel S-SCH uses two codes of length 31. An M code that is a binary code is used as an assigned code (SSC: Secondary Synchronization Code). As shown in FIG. 15, the subcarriers used in the SSC arrangement are a total of 62 subcarriers, with 31 subcarriers on both sides sandwiching one subcarrier at the center of the system band. Two 62 SSCs having a length of 31 (SSC1 and SSC2) are combined with these 62 subcarriers and arranged on the real axis. The mapping of SSC1 and SSC2 to the frequency axis takes an interleaved arrangement in which SSC1 and SSC2 are alternately arranged corresponding to the arranged subframe positions.
 具体的にはサブフレーム#0の2次同期チャネルS-SCHには、SSC1、SSC2の順に交互にサブキャリア上に配置され、そのときSSC2にはSSC1に対応するスクランブル符号が乗ぜられる。サブフレーム#5の2次同期チャネルS-SCHにはSSC2、SSC1の順に交互にサブキャリア上に配置され、そのときSSC1にはSSC2に対応するスクランブル符号が乗ぜられる。
 移動局装置では、PSCの種類(3種類のうちの1種類)と2種類のSSC(SSC1とSSC2)の組み合わせから物理セルID情報を取得し、2種類のSSCの配置の順番からフレームタイミング(当該サブフレームのフレーム中の位置)を取得することができる。
Specifically, the secondary synchronization channel S-SCH of subframe # 0 is alternately placed on the subcarriers in the order of SSC1 and SSC2, and at that time, SSC2 is multiplied by a scramble code corresponding to SSC1. The secondary synchronization channel S-SCH of subframe # 5 is alternately arranged on the subcarriers in the order of SSC2 and SSC1, and at that time, SSC1 is multiplied by a scramble code corresponding to SSC2.
In the mobile station apparatus, physical cell ID information is acquired from a combination of a PSC type (one of three types) and two types of SSCs (SSC1 and SSC2), and the frame timing (from the arrangement order of the two types of SSCs) The position of the subframe in the frame) can be acquired.
 次に図16にセル構成の一例を示す。セルa、b、cの各々は3つのセクタ(セクタ1~3)から構成されている。各セルの中心にある基地局a、b、cは、各セルの各セクタに対して前記フレーム構造の電波を送信する。図16において、前述のように同一セル内の3つのセクタで3つのそれぞれ直交するPSCを使い分ける場合を説明する。(異なるセル間において、同一セクタ番号のセクタには、同一のPSCを用いる。) Next, FIG. 16 shows an example of the cell configuration. Each of the cells a, b, and c is composed of three sectors (sectors 1 to 3). Base stations a, b, and c in the center of each cell transmit radio waves having the frame structure to each sector of each cell. In FIG. 16, a case will be described where three orthogonal PSCs are used properly in three sectors in the same cell as described above. (The same PSC is used for sectors with the same sector number between different cells.)
 初期セルサーチを行う移動局1は、基地局aがセクタ2へ送信した信号と、基地局bがセクタ3へ送信した信号と、基地局cがセクタ1へ送信した信号とを受信する。セルaのセクタ2にある移動局1は、自局内で保持している3種類の1次同期チャネルP-SCHの信号のレプリカ、すなわち3種類のPSCと、受信した信号との相関を一定期間観測し、相関ピークが最大となる時刻とPSCの種類とから、自局が同期する対象となるセクタ番号(ここではセクタ2)とスロットのタイミングを取得する(ステップ1)。 The mobile station 1 that performs the initial cell search receives a signal transmitted from the base station a to the sector 2, a signal transmitted from the base station b to the sector 3, and a signal transmitted from the base station c to the sector 1. The mobile station 1 in the sector 2 of the cell a determines the correlation between the received signals and the replicas of the three types of primary synchronization channel P-SCH signals held in the own station, that is, the three types of PSCs, for a certain period. Observe and obtain the sector number (sector 2 in this case) and slot timing to be synchronized with the own station from the time when the correlation peak becomes maximum and the type of PSC (step 1).
 次に移動局1は、相関ピークが最大となったレプリカ、すなわちセクタ2の1次同期チャネルP-SCHの信号のレプリカと受信した1次同期チャネルP-SCH信号との差から伝搬路推定を行う。さらに取得したスロットタイミングから2次同期チャネルS-SCHの位置を同定し、2次同期チャネルS-SCHの信号に対して、前述の1次同期チャネルP-SCHの伝搬路推定結果を用いて伝搬路補償を行う。そして伝搬路補償された2次同期チャネルS-SCHの信号に対して、デスクランブル処理を行う。2次同期チャネルS-SCHにはPSCの種類(3種類)に対応するスクランブル符号が乗ぜられており、そのスクランブルを解除する。
 次にSSC1とSSC2のすべての組み合わせに対する(送信側のスクランブル後の信号に対する)相関処理を行うなどにより、SSC1、SSC2の組み合わせおよび配置の順番を同定し、前記組み合わせから基地局を識別する情報を取得し、1次同期チャネルP-SCHによって取得した前記セクタ番号と、前記基地局を識別する情報とで構成される物理セルIDを同定する。また、配置の順番からフレームタイミングを取得する(ステップ2)。
 上述のステップ1とステップ2との処理を行うことにより2ステップでのセルサーチを行うことができる。
 なお、前記説明ではPSC番号をセクタ番号に対応させているが、これに限定されるものではなく、PSC番号は物理セルIDの一部を表していればよく、1つの基地局装置が複数のセクタを通信範囲とし、複数のセクタに対して同一のPSC番号を用い、セクタ毎に異なるSSC番号を用いて生成した信号を送信してもよい。
Next, the mobile station 1 performs propagation path estimation from the difference between the replica having the maximum correlation peak, that is, the replica of the primary synchronization channel P-SCH signal in sector 2 and the received primary synchronization channel P-SCH signal. Do. Further, the position of the secondary synchronization channel S-SCH is identified from the acquired slot timing, and the signal of the secondary synchronization channel S-SCH is propagated using the propagation path estimation result of the primary synchronization channel P-SCH described above. Perform road compensation. Then, descrambling processing is performed on the signal of the secondary synchronization channel S-SCH subjected to propagation path compensation. The secondary synchronization channel S-SCH is multiplied by a scramble code corresponding to the type (three types) of PSC, and the scramble is released.
Next, by performing correlation processing (for the scrambled signal on the transmission side) for all combinations of SSC1 and SSC2, the combination and arrangement order of SSC1 and SSC2 are identified, and information for identifying a base station from the combination is obtained. The acquired physical cell ID is identified by the sector number acquired by the primary synchronization channel P-SCH and the information for identifying the base station. Also, frame timing is acquired from the arrangement order (step 2).
By performing the processing of Step 1 and Step 2 described above, cell search can be performed in two steps.
In the above description, the PSC number corresponds to the sector number. However, the present invention is not limited to this, and the PSC number only needs to represent a part of the physical cell ID. A sector may be used as a communication range, and the same PSC number may be used for a plurality of sectors, and a signal generated using a different SSC number for each sector may be transmitted.
 また、周辺セルサーチについては、上記の手順において、ステップ1における相関の観測で最大値をとらなかった残りの2つのPSCについても、ステップ2の処理を行い、物理セルIDとフレームタイミングを取得することで周辺のセルを検出する。移動局は、接続しているセルの受信電力が低下した場合に、周辺セルサーチを実行し、検出された各セルの下りリファレンス信号(物理セルIDに対応した固有の符号)の受信電力を測定する。移動局は、この測定結果を、接続しているセルの基地局装置に通知し、基地局は、報告されたセルの電力情報や、当該セルのアクセス制限情報などに基づいて、移動局のハンドオーバ先を決定する。 As for the neighboring cell search, the processing of step 2 is performed for the remaining two PSCs that did not take the maximum value in the correlation observation in step 1 in the above procedure, and the physical cell ID and frame timing are acquired. Thus, the surrounding cells are detected. When the received power of the connected cell decreases, the mobile station performs a neighbor cell search and measures the received power of the detected downlink reference signal (unique code corresponding to the physical cell ID) of each cell. To do. The mobile station notifies the base station apparatus of the connected cell of the measurement result, and the base station performs handover of the mobile station based on the reported power information of the cell, access restriction information of the cell, etc. Determine the destination.
 更に第4世代の通信技術としてEUTRAを発展させた無線通信方式であるAdvanced-EUTRA(第3世代の進化の発展)の検討も3GPPにて行われている。Advanced-EUTRAでは、Advanced-EUTRAの基地局に、EUTRAの移動局がアクセスできること、すなわち後方互換性が要求されているため、周波数分割や時分割などの手法により、EUTRAの移動局が利用できるリソースを確保することが検討されている。この場合、EUTRAの移動局がセルサーチを行い、Advanced-EUTRAの基地局と同期をとることができるように、Advanced-EUTRAの基地局は、EUTRAの移動局向けに、EUTRAの1次同期チャネルP-SCH、2次同期チャネルS-SCHを配置する必要がある。さらに、Advanced-EUTRAの移動局に対して、EUTRAの1次同期チャネルP-SCH、2次同期チャネルS-SCHとは異なる専用の同期チャネルを配置することが提案されている(非特許文献3)。 Further, 3GPP is also studying Advanced-EUTRA (a development of the third generation evolution), which is a wireless communication system developed from EUTRA as a fourth generation communication technology. In Advanced-EUTRA, since the EUTRA mobile station can access the Advanced-EUTRA base station, that is, backward compatibility is required, resources that can be used by the EUTRA mobile station by means of frequency division or time division. It has been considered to ensure. In this case, the Advanced-EUTRA base station is directed to the EUTRA mobile station for the EUTRA primary synchronization channel so that the EUTRA mobile station can perform cell search and synchronize with the Advanced-EUTRA base station. It is necessary to arrange the P-SCH and the secondary synchronization channel S-SCH. Further, it has been proposed to arrange a dedicated synchronization channel different from the primary synchronization channel P-SCH and secondary synchronization channel S-SCH of EUTRA for the mobile station of Advanced-EUTRA (Non-patent Document 3). ).
 しかしながら、非特許文献3に提案されているように、Advanced-EUTRAの移動局向けに専用の同期チャネルを別途配置する方法にあっては、Advanced-EUTRAとEUTRAという2つの無線通信方式の同期チャネルが配置されるため、これらの同期チャネルに帯域が圧迫され、伝送効率が劣化するという問題がある。
 また、EUTRAの移動局向けの同期チャネルを、Advanced-EUTRAとEUTRAという2つの無線通信方式で共通して使用し、同期チャネルではなく、報知チャネル等を通じて、どの無線通信方式の基地局であるかを移動局に通知する方法も考えられる。しかし、そのような方法にあっては、移動局は、周辺セルサーチの際に、報知チャネルを取得しなければ、その周辺基地局がどの無線通信方式の基地局であるかを判定できないという問題がある。
However, as proposed in Non-Patent Document 3, in the method of separately arranging a dedicated synchronization channel for an Advanced-EUTRA mobile station, synchronization channels of two wireless communication schemes, Advanced-EUTRA and EUTRA, are provided. Therefore, there is a problem that the bandwidth is compressed by these synchronization channels and the transmission efficiency is deteriorated.
Also, the synchronization channel for EUTRA mobile stations is commonly used in two wireless communication systems, Advanced-EUTRA and EUTRA, and which wireless communication system is the base station through the broadcast channel, not the synchronization channel It is also conceivable to notify the mobile station. However, in such a method, the mobile station cannot determine which wireless communication system is the base station without acquiring the broadcast channel during the peripheral cell search. There is.
 本発明は、このような事情に鑑みてなされたもので、その目的は、伝送効率を劣化させることなく、同期チャネルのみで送信元の基地局がどの無線通信方式の基地局であるかを、移動局装置が判定可能とすることができる基地局装置、移動局装置、無線通信システムおよびパラメータ取得方法を提供することにある。 The present invention has been made in view of such circumstances, and its purpose is to determine which wireless communication system the base station of the transmission source is based on only the synchronization channel without degrading the transmission efficiency. It is an object of the present invention to provide a base station device, a mobile station device, a wireless communication system, and a parameter acquisition method that can be determined by the mobile station device.
(1)本発明の基地局装置は、2つの異なる無線通信方式で通信する基地局装置であって、前記2つの無線通信方式のうち、一方の無線通信方式のパラメータを表す同期チャネルの信号を実軸、他方の無線通信方式のパラメータを表す同期チャネルの信号を虚軸に配置して直交変調した信号を、同期チャネルに配置して送信することを特徴とする。 (1) A base station apparatus according to the present invention is a base station apparatus that communicates in two different wireless communication systems, and transmits a synchronization channel signal representing a parameter of one of the two wireless communication systems. A signal obtained by arranging the synchronization channel signal representing the parameters of the real axis and the other wireless communication system on the imaginary axis and performing quadrature modulation is arranged on the synchronization channel and transmitted.
(2)また、本発明の基地局装置は、上述の基地局装置であって、同期チャネルに配置される信号には、時間同期をとるための第1の同期信号と、当該基地局装置と通信する際のパラメータを指定する第2の同期信号とが含まれ、直交変調される前記同期チャネルの信号は、前記第2の同期信号であることを特徴とする。 (2) Moreover, the base station apparatus of this invention is the above-mentioned base station apparatus, Comprising: The signal arrange | positioned to a synchronous channel includes the 1st synchronizing signal for taking time synchronization, the said base station apparatus, And a second synchronization signal that specifies a parameter for communication, and the signal of the synchronization channel that is orthogonally modulated is the second synchronization signal.
(3)また、本発明の基地局装置は、上述の基地局装置であって、前記実軸に配置する信号の符号系列と虚軸に配置する信号の符号系列とが、互いに低相関の系列であることを特徴とする。 (3) Further, the base station apparatus of the present invention is the above-described base station apparatus, wherein the code sequence of the signal arranged on the real axis and the code sequence of the signal arranged on the imaginary axis are low-correlation sequences. It is characterized by being.
(4)また、本発明の基地局装置は、上述の基地局装置であって、前記実軸に配置する信号の符号系列と虚軸に配置する信号の符号系列とが、系列の一部については同一であり、系列の残りの部分については、互いに低相関の系列であることを特徴とする。 (4) Moreover, the base station apparatus of the present invention is the above-described base station apparatus, wherein the code sequence of the signal arranged on the real axis and the code sequence of the signal arranged on the imaginary axis are part of the sequence. Are the same, and the remaining part of the sequence is a sequence having a low correlation with each other.
(5)また、本発明の基地局装置は、上述の基地局装置であって、前記虚軸に配置する信号の符号系列は、前記実軸に配置する信号の符号系列に既定の符号が乗じられた系列であることを特徴とする。 (5) Further, the base station apparatus of the present invention is the above-described base station apparatus, wherein the code sequence of the signal arranged on the imaginary axis is obtained by multiplying the code sequence of the signal arranged on the real axis by a predetermined code. It is characterized by being a series.
(6)また、本発明の基地局装置は、上述の基地局装置であって、前記虚軸に配置する信号の符号系列は、前記実軸に配置する信号の符号系列の候補のうち、前記他方の無線通信方式のパラメータに対応する符号系列に既定の符号が乗じられた系列であることを特徴とする。 (6) Moreover, the base station apparatus of this invention is the above-mentioned base station apparatus, The code sequence of the signal arrange | positioned to the said imaginary axis is the said code sequence candidate of the signal arrange | positioned to the said real axis. It is a sequence obtained by multiplying a code sequence corresponding to a parameter of the other wireless communication system by a predetermined code.
(7)また、本発明の基地局装置は、上述の基地局装置であって、前記2つの無線通信方式は、前記パラメータの少なくとも一部を共通の値とし、値が共通のパラメータを、前記実軸に配置する信号にて送信することを特徴とする。 (7) Moreover, the base station apparatus of the present invention is the above-described base station apparatus, wherein the two wireless communication schemes have at least a part of the parameters as a common value, It transmits by the signal arrange | positioned to a real axis.
(8)また、本発明の基地局装置は、上述の基地局装置であって、前記値が共通のパラメータは、基地局装置を識別する情報であることを特徴とする。 (8) Moreover, the base station apparatus of this invention is the above-mentioned base station apparatus, Comprising: The parameter with the said common value is the information which identifies a base station apparatus.
(9)また、本発明の移動局装置は、基地局装置から送信された同期チャネルを受信する受信部と、 受信した同期チャネルの信号を、実軸の信号である実部信号と虚軸の信号である虚部信号とに分離する複素信号分離部と、前記実部信号と前記虚部信号との各々が表すパラメータのうち、当該移動局装置が通信にて用いる無線通信方式のパラメータを取得するパラメータ取得部とを具備することを特徴とする。 (9) Further, the mobile station apparatus of the present invention includes a receiving unit that receives a synchronization channel transmitted from a base station apparatus, and a received synchronization channel signal that is a real-axis signal and an imaginary-axis signal. A complex signal separation unit that separates a signal into an imaginary part signal, and parameters represented by each of the real part signal and the imaginary part signal, and parameters of a wireless communication method used by the mobile station device for communication are acquired. And a parameter acquisition unit.
(10)また、本発明の無線通信システムは、2つの異なる無線通信方式で通信する基地局装置と、前記2つの無線通信方式のうちの少なくとも一つの無線通信方式を用いて前記基地局装置と通信する移動局装置とを備える無線通信システムであって、前記基地局装置は、前記2つの無線通信方式のうち、一方の無線通信方式のパラメータを表す同期チャネルの信号を実軸、他方の無線通信方式のパラメータを表す同期チャネルの信号を虚軸に配置して直交変調した信号を、同期チャネルに配置して送信し、前記移動局装置は、前記同期チャネルを受信する受信部と、受信した同期チャネルの信号を、実軸の信号である実部信号と虚軸の信号である虚部信号とに分離する複素信号分離部と、前記実部信号と前記虚部信号との各々が表すパラメータのうち、当該移動局装置が通信にて用いる無線通信方式のパラメータを取得するパラメータ取得部とを具備することを特徴とする。 (10) Further, the wireless communication system of the present invention includes a base station device that communicates using two different wireless communication methods, and the base station device that uses at least one wireless communication method of the two wireless communication methods. A wireless communication system comprising a mobile station device for communication, wherein the base station device uses a synchronization channel signal representing a parameter of one of the two wireless communication methods as a real axis, and the other wireless communication method. A signal obtained by arranging a synchronization channel signal representing a communication method parameter on the imaginary axis and orthogonally modulating the signal is arranged on the synchronization channel and transmitted, and the mobile station apparatus receives the synchronization channel and the reception unit. A complex signal separation unit that separates a synchronization channel signal into a real part signal that is a real axis signal and an imaginary part signal that is an imaginary axis signal, and parameters represented by each of the real part signal and the imaginary part signal. Of data, characterized by comprising a parameter acquisition section that the mobile station apparatus acquires the parameters of a wireless communication system using in the communication.
(11)また、本発明のパラメータ取得方法は、2つの異なる無線通信方式で通信する基地局装置と、前記2つの無線通信方式のうちの少なくとも一つの無線通信方式を用いて前記基地局装置と通信する移動局装置とを備える無線通信システムにおけるパラメータ取得方法であって、前記基地局装置が、前記2つの無線通信方式のうち、一方の無線通信方式のパラメータを表す同期チャネルの信号を実軸、他方の無線通信方式のパラメータを表す同期チャネルの信号を虚軸に配置して直交変調した信号を、同期チャネルに配置して送信する第1に過程と、前記移動局装置が、前記同期チャネルを受信する第2の過程と、前記移動局装置が、前記第1の過程にて受信した同期チャネルの信号を、実軸の信号である実部信号と虚軸の信号である虚部信号とに分離する第3の過程と、前記移動局装置が、前記実部信号と前記虚部信号との各々が表すパラメータのうち、当該移動局装置が通信にて用いる無線通信方式のパラメータを取得する第4の過程とを備えることを特徴とする。 (11) Further, the parameter acquisition method of the present invention includes a base station device that communicates with two different wireless communication methods, and the base station device that uses at least one wireless communication method of the two wireless communication methods. A parameter acquisition method in a wireless communication system including a mobile station device for communication, wherein the base station device uses a real channel for a synchronization channel signal representing a parameter of one of the two wireless communication methods. A first step of transmitting a signal obtained by arranging a synchronization channel signal representing a parameter of the other wireless communication system on the imaginary axis and performing orthogonal modulation on the synchronization channel, and transmitting the synchronization channel signal to the synchronization channel. And a synchronization channel signal received by the mobile station apparatus in the first step, a real part signal that is a real axis signal and an imaginary axis signal that is an imaginary axis signal. Among the parameters represented by each of the real part signal and the imaginary part signal, and a parameter of a radio communication scheme used by the mobile station apparatus for communication, And a fourth process to be acquired.
 この発明によれば、基地局装置が、一方の無線通信方式のパラメータを表す同期チャネルの信号を実軸、他方の無線通信方式のパラメータを表す同期チャネルの信号を虚軸に配置して直交変調した信号を、同期チャネルに配置して送信するので、伝送効率を劣化させることなく、同期チャネルのみで送信元の基地局が、どの無線通信方式の基地局であるかを移動局装置が判定することができる。 According to the present invention, the base station apparatus performs quadrature modulation by arranging a synchronization channel signal representing one radio communication system parameter on the real axis and a synchronization channel signal representing the other radio communication system parameter on the imaginary axis. The mobile station apparatus determines which radio communication system the base station of the transmission source is based on only the synchronization channel without degrading the transmission efficiency. be able to.
この発明の第1の実施形態による基地局装置1の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the base station apparatus 1 by 1st Embodiment of this invention. 同実施形態における同期信号生成部132の内部構成を示す概略ブロック図である。It is a schematic block diagram which shows the internal structure of the synchronizing signal generation part 132 in the embodiment. 同実施形態における移動局装置2の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the mobile station apparatus 2 in the embodiment. 同実施形態における同期部23の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the synchronizer 23 in the embodiment. 同実施形態における復調・復号部28の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the demodulation / decoding part 28 in the embodiment. 同実施形態におけるS-SCH復調・復号部283の構成を示す概略ブロック図である。3 is a schematic block diagram showing a configuration of an S-SCH demodulator / decoder 283 in the same embodiment. FIG. この発明の第2の実施形態における基地局装置1aの同期信号生成部132aの構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the synchronizing signal generation part 132a of the base station apparatus 1a in 2nd Embodiment of this invention. 同実施形態における移動局装置2aのS-SCH復調・復号部283aの構成を示す概略ブロック図である。FIG. 3 is a schematic block diagram showing a configuration of an S-SCH demodulation / decoding unit 283a of the mobile station device 2a in the same embodiment. この発明の第3の実施形態における基地局装置1bの同期信号生成部132bの構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the synchronizing signal generation part 132b of the base station apparatus 1b in 3rd Embodiment of this invention. 同実施形態における移動局装置2bのS-SCH復調・復号部283bの構成を示す概略ブロック図である。FIG. 4 is a schematic block diagram showing a configuration of an S-SCH demodulation / decoding unit 283b of the mobile station device 2b in the same embodiment. 同実施形態における相関部292bの構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the correlation part 292b in the same embodiment. 従来のEUTRAにおける無線フレームの構成の一例を示す図である。It is a figure which shows an example of the structure of the radio | wireless frame in the conventional EUTRA. 従来のEUTRAにおける1次同期チャネルP-SCHおよび2次同期チャネルS-SCHの配置を示す図である。FIG. 7 is a diagram illustrating an arrangement of a primary synchronization channel P-SCH and a secondary synchronization channel S-SCH in conventional EUTRA. 従来のEUTRAにおける1次同期チャネルP-SCHの配置を示す図である。FIG. 6 is a diagram showing an arrangement of primary synchronization channels P-SCH in conventional EUTRA. 従来のEUTRAにおける2次同期チャネルS-SCHの配置を示す図である。It is a figure which shows arrangement | positioning of the secondary synchronization channel S-SCH in the conventional EUTRA. 従来のEUTRAにおけるセル構成の一例を示す図である。It is a figure which shows an example of the cell structure in the conventional EUTRA.
(第1の実施形態)
 以下、図面を参照して、本発明の第1の実施形態について説明する。この発明の第1の実施形態による無線通信システムは、2つの異なる無線通信方式(本実施形態では、EUTRAとAdvanced-EUTRA)で通信する基地局装置1と、無線通信方式としてAdvanced-EUTRAを用いて通信する移動局装置2とを有する。なお、通信サービス業者がEUTRAで通信する基地局装置を用いてEUTRAによる通信サービスを提供し、通信サービス利用者がEUTRAの移動局装置を所有してEUTRAによる通信サービスを享受している状態から、通信サービス業者がEUTRAの基地局装置をAdvanced-EUTRAの基地局装置である基地局装置1に置き換えていく過程において、EUTRAによる通信サービスを提供しつつ、新たにAdvanced-EUTRAの通信サービスを提供することが行われる。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. The radio communication system according to the first embodiment of the present invention uses a base station apparatus 1 that communicates in two different radio communication schemes (in this embodiment, EUTRA and Advanced-EUTRA), and Advanced-EUTRA as the radio communication scheme. Mobile station apparatus 2 communicating with each other. From a state where a communication service provider provides a communication service by EUTRA using a base station device that communicates with EUTRA, and a communication service user owns a mobile station device of EUTRA and enjoys a communication service by EUTRA, In the process in which the communication service provider replaces the EUTRA base station device with the base station device 1 which is an advanced-EUTRA base station device, the communication service provider provides the EUTRA communication service and newly provides the Advanced-EUTRA communication service. Is done.
 このため、Advanced-EUTRAの基地局装置1は、既存のEUTRAの移動局装置からはEUTRAの基地局装置として認識され、EUTRAによる通信サービスを提供し、Advanced-EUTRAの移動局装置2からはAdvanced-EUTRAの基地局装置1として認識され、Advanced-EUTRAによる通信サービスを提供することができるようにする必要がある。 For this reason, the advanced-EUTRA base station apparatus 1 is recognized as an EUTRA base station apparatus by the existing EUTRA mobile station apparatus, provides a communication service by EUTRA, and the advanced-EUTRA mobile station apparatus 2 provides an advanced service. -It is necessary to be recognized as a base station apparatus 1 of EUTRA and to be able to provide a communication service by Advanced-EUTRA.
 図1は、本実施形態における基地局装置1の構成を示す概略ブロック図である。図1に示すように基地局装置1は、制御部10、受信部12、送信部13を具備し、受信部12には各移動局装置2からの電波を受信する受信アンテナ部11が接続され、送信部13には各移動局装置2へ電波を送信するための送信アンテナ部14が接続される。
 基地局装置1は、2つの無線通信方式のうち、一方の無線通信方式(EUTRA)のパラメータを表す2次同期チャネルS-SCHの信号を実軸、他方の無線通信方式(Advanced-EUTRA)のパラメータを表す2次同期チャネルS-SCHの信号を虚軸に配置して直交変調した信号を、2次同期チャネルS-SCHに配置して送信する。なお、パラメータとしては、基地局装置を識別する情報である物理セルID、当該同期チャネルSCHが配置されたサブフレームのフレーム中の位置を表すサブフレーム番号などがある。
FIG. 1 is a schematic block diagram showing the configuration of the base station apparatus 1 in the present embodiment. As shown in FIG. 1, the base station apparatus 1 includes a control unit 10, a reception unit 12, and a transmission unit 13, and a reception antenna unit 11 that receives radio waves from each mobile station device 2 is connected to the reception unit 12. The transmitting unit 13 is connected to a transmitting antenna unit 14 for transmitting radio waves to each mobile station device 2.
The base station apparatus 1 uses the secondary synchronization channel S-SCH signal indicating parameters of one of the two wireless communication systems (EUTRA) as a real axis and the other wireless communication system (Advanced-EUTRA). A signal obtained by arranging the signal of the secondary synchronization channel S-SCH representing the parameter on the imaginary axis and performing quadrature modulation is arranged on the secondary synchronization channel S-SCH and transmitted. The parameters include a physical cell ID that is information for identifying the base station apparatus, a subframe number indicating a position in a frame of the subframe in which the synchronization channel SCH is arranged, and the like.
 制御部10は、受信部12および送信部13を制御する。送信部13による同期チャネルSCHの送信に関しては、制御部10は、送信対象のセクタに基づきPSC番号(詳細は後述)を決定し、基地局装置1を識別する情報である物理セルIDとセクタとからSSC番号(詳細は後述)を決定し、これらPSC番号とSSC番号とに加えて、その同期チャネルSCHを配置するサブフレームのフレーム中での位置を表すサブフレーム番号を、送信部13に通知する。受信部12は、受信アンテナ部11を介して移動局装置2からの信号を受信し、該信号から検出したデータを外部に出力する。送信部13は、外部から入力された移動局装置2へのデータの送信信号を生成し、送信アンテナ部14を介して送信する。
 受信部12は、受信アナログ回路部120と、A/D(Analogue/Digital)変換部121、復調処理部122を具備する。受信アナログ回路部120は、受信アンテナ部11を介して受信した信号を復調可能な周波数に変換したアナログ信号を出力する。A/D変換部121は、受信アナログ回路部120で処理されたアナログ信号をデジタル信号に変換する。復調処理部122は、A/D変換部121で変換されたデジタル信号を復調処理して、検出したデータを外部に出力する。
The control unit 10 controls the reception unit 12 and the transmission unit 13. Regarding transmission of the synchronization channel SCH by the transmission unit 13, the control unit 10 determines a PSC number (details will be described later) based on a transmission target sector, and a physical cell ID and a sector, which are information for identifying the base station apparatus 1. SSC number (details will be described later) is determined, and in addition to the PSC number and the SSC number, the subframe number indicating the position in the frame of the subframe in which the synchronization channel SCH is arranged is notified to the transmission unit 13 To do. The receiving unit 12 receives a signal from the mobile station apparatus 2 via the receiving antenna unit 11, and outputs data detected from the signal to the outside. The transmission unit 13 generates a transmission signal of data to the mobile station apparatus 2 input from the outside, and transmits it via the transmission antenna unit 14.
The reception unit 12 includes a reception analog circuit unit 120, an A / D (Analogue / Digital) conversion unit 121, and a demodulation processing unit 122. The reception analog circuit unit 120 outputs an analog signal obtained by converting a signal received via the reception antenna unit 11 into a frequency that can be demodulated. The A / D conversion unit 121 converts the analog signal processed by the reception analog circuit unit 120 into a digital signal. The demodulation processing unit 122 demodulates the digital signal converted by the A / D conversion unit 121 and outputs the detected data to the outside.
 送信部13は、データ変調部130、制御信号変調部131、同期信号生成部132、多重・変調処理部133、D/A(Digital/Analogue)変換部134、送信アナログ回路部135を具備する。データ変調部130は、外部から入力された移動局装置2への(報知情報などを含む)送信データを変調し、データ信号を生成する。制御信号変調部131は、移動局装置2への制御情報を変調し、制御信号を生成する。同期信号生成部132は、同期チャネルの信号である同期信号を生成する。同期チャネルには、1次同期チャネルP-SCHと2次同期チャネルS-SCHとがあり、従って同期チャネルSCHに配置される信号には、時間同期をとるための1次同期チャネルP-SCHの信号(第1の同期信号)と、当該基地局装置1と通信する際のパラメータを指定する2次同期チャネルS-SCHの信号(第2の同期信号)とが含まれ、直交変調される同期チャネルSCHの信号は、これらのうちの2次同期チャネルS-SCHの信号である。多重・変調処理部133は、同期信号と制御信号とデータ信号とを、送信するフレームとして多重・変調処理を行う。D/A変換部134は、多重・変調処理部133により変調されたフレームの信号をアナログ信号に変換する。送信アナログ回路部135は、D/A変換されたアナログ信号を送信に必要な周波数に変換し、送信アンテナ部14を介して送信する。 The transmission unit 13 includes a data modulation unit 130, a control signal modulation unit 131, a synchronization signal generation unit 132, a multiplexing / modulation processing unit 133, a D / A (Digital / Analogue) conversion unit 134, and a transmission analog circuit unit 135. The data modulation unit 130 modulates transmission data (including broadcast information) to the mobile station apparatus 2 input from the outside, and generates a data signal. The control signal modulation unit 131 modulates control information for the mobile station apparatus 2 and generates a control signal. The synchronization signal generation unit 132 generates a synchronization signal that is a signal of a synchronization channel. The synchronization channel includes a primary synchronization channel P-SCH and a secondary synchronization channel S-SCH. Therefore, a signal arranged in the synchronization channel SCH includes a primary synchronization channel P-SCH for time synchronization. Including a signal (first synchronization signal) and a signal (second synchronization signal) of a secondary synchronization channel S-SCH that specifies parameters for communication with the base station apparatus 1 and is orthogonally modulated. The signal of channel SCH is the signal of secondary synchronization channel S-SCH among these. The multiplexing / modulation processing unit 133 performs multiplexing / modulation processing on the synchronization signal, the control signal, and the data signal as frames to be transmitted. The D / A conversion unit 134 converts the frame signal modulated by the multiplexing / modulation processing unit 133 into an analog signal. The transmission analog circuit unit 135 converts the D / A converted analog signal into a frequency necessary for transmission, and transmits the frequency via the transmission antenna unit 14.
 図2は、同期信号生成部132の内部構成を示す概略ブロック図である。同期信号生成部132は、PSC1保持部1320、PSC2保持部1321、PSC3保持部1322、セレクタ1323、第1の符号保持部1324、第1の符号選択部1325、第2の符号保持部1326、第2の符号選択部1327、直交変調部1328を有する。直交変調部1328は、乗算部1329、乗算部1330、加算部1331を備える。 FIG. 2 is a schematic block diagram illustrating the internal configuration of the synchronization signal generation unit 132. The synchronization signal generation unit 132 includes a PSC1 holding unit 1320, a PSC2 holding unit 1321, a PSC3 holding unit 1322, a selector 1323, a first code holding unit 1324, a first code selection unit 1325, a second code holding unit 1326, 2 code selector 1327 and quadrature modulator 1328. The orthogonal modulation unit 1328 includes a multiplication unit 1329, a multiplication unit 1330, and an addition unit 1331.
 PSC1保持部1320は、EUTRAの1次同期チャネルP-SCHに使用される長さ62の符号3つのうちの1つ目の符号(以下、「符号PSC1」という)を保持する。
 PSC2保持部1321は、EUTRAの1次同期チャネルP-SCHに使用される長さ62の符号3つのうちの2つ目の符号(以下、「符号PSC2」という)を保持する。PSC3保持部1322は、EUTRAの1次同期チャネルP-SCHに使用される長さ62の符号3つのうちの3つ目の符号(以下、「符号PSC3」という)を保持する。セレクタ1323は、PSC1保持部1320、PSC2保持部1321、PSC3保持部1322が保持する符号PSC1、PSC2、PSC3の中から、制御部10から指定されたPSC番号に従った符号を選択し、出力する。なお、本実施形態において、基地局装置1が設置された1つの拠点の通信範囲であるセルは、3つのセクタに分割され、この3つのセクタに1~3のPSC番号が対応付けられている。本実施形態において、これら3つのセクタと1~3のPSC番号との対応付けは、EUTRAとAdvanced-EUTRAとで同じである。
 また、本実施形態ではPSC番号をセクタに対応させているが、これに限定されるものではなく、PSC番号は物理セルIDの一部を表していればよく、1つの基地局装置が複数のセクタを通信範囲とし、複数のセクタに対して同一のPSC番号を用い、セクタ毎に異なるSSC番号を用いて生成した信号を送信してもよい。
The PSC1 holding unit 1320 holds the first code (hereinafter referred to as “code PSC1”) out of the three codes of length 62 used for the primary synchronization channel P-SCH of EUTRA.
PSC2 holding section 1321 holds the second code (hereinafter referred to as “code PSC2”) out of the three codes of length 62 used for EUTRA primary synchronization channel P-SCH. PSC3 holding section 1322 holds the third code (hereinafter referred to as “code PSC3”) out of the three codes of length 62 used for EUTRA primary synchronization channel P-SCH. The selector 1323 selects a code according to the PSC number designated by the control unit 10 from the codes PSC1, PSC2, and PSC3 held by the PSC1 holding unit 1320, the PSC2 holding unit 1321, and the PSC3 holding unit 1322, and outputs the selected code. . In the present embodiment, a cell that is a communication range of one base where the base station apparatus 1 is installed is divided into three sectors, and PSC numbers 1 to 3 are associated with these three sectors. . In this embodiment, the association between these three sectors and the PSC numbers 1 to 3 is the same in EUTRA and Advanced-EUTRA.
Further, in the present embodiment, the PSC number is associated with the sector. However, the present invention is not limited to this, and the PSC number only needs to represent a part of the physical cell ID. A sector may be used as a communication range, and the same PSC number may be used for a plurality of sectors, and a signal generated using a different SSC number for each sector may be transmitted.
 また、第1の符号選択部1325は、制御部10から指定されたSSC番号とPSC番号とサブフレーム番号に基づいて、EUTRAの2次同期チャネルS-SCHに使用される長さ62の符号SSCを第1の符号保持部1324から読み込み、乗算部1329に出力する。第1の符号保持部1324は、SSC番号に対応した2つの長さ31の符号SSC1と符号SSC2とを、各サブフレーム番号(#0、#5)に対応した配置(インターリーブを含む)を行い長さ62の符号を生成し、更にPSC番号に対応するスクランブル符号を乗じた長さ62の符号SSCを保持する。すなわちSSC番号が168種類である場合、サブフレーム位置は#0または#5の2種類であり、PSC番号は3種類なので、第1の符号保持部1324は、168×2×3=1008種類の系列を保持する。 Further, the first code selection unit 1325 uses the code SSC of length 62 used for the secondary synchronization channel S-SCH of EUTRA based on the SSC number, the PSC number, and the subframe number designated by the control unit 10. Is read from the first code holding unit 1324 and output to the multiplication unit 1329. The first code holding unit 1324 performs arrangement (including interleaving) of code SSC1 and code SSC2 of length 31 corresponding to the SSC number, corresponding to each subframe number (# 0, # 5). A code of length 62 is generated, and a code SSC of length 62 obtained by multiplying the scramble code corresponding to the PSC number is held. That is, when there are 168 types of SSC numbers, there are two types of subframe positions, # 0 or # 5, and there are three types of PSC numbers. Therefore, the first code holding unit 1324 has 168 × 2 × 3 = 1008 types. Hold series.
 なお、本実施形態ではSSC番号が変更されることを考慮しているため、第1の符号保持部1324は、すべての組み合わせを保持しているが、SSC番号が固定である場合、あるいは数種類の候補のみの場合は必要な数だけの候補を保持してもよいし、1種類のみの(あるいはPSC番号の種類にあわせて3種類の)系列を保持し、SSC番号が変更された場合には保持している系列を更新してもよい。
 第1の符号選択部1325から出力された符号SSCに、乗算部1329が、「1」を乗じて系列1として出力する。さらに加算部1331は、系列1と後述する系列2とを足し合わせて、系列3として出力する。なお、ここで乗算部1329が符号SSCに「1」を乗じるとは、符号SSCの各値に「1」を乗じることを表す。例えば、符号SSCが「1、-1、・・・-1、-1」であるときは、これに「1」を乗じると、「1×1=1、1×-1・・・1×-1、1×-1=-1」となる。
In this embodiment, since the SSC number is considered to be changed, the first code holding unit 1324 holds all combinations. However, when the SSC number is fixed or several types In the case of only candidates, the necessary number of candidates may be held, or only one type (or three types according to the type of PSC number) is held, and when the SSC number is changed The stored series may be updated.
The multiplication unit 1329 multiplies the code SSC output from the first code selection unit 1325 by “1” and outputs the result as a sequence 1. Further, the adding unit 1331 adds up the series 1 and the series 2 described later, and outputs the result as the series 3. Here, the multiplication unit 1329 multiplying the code SSC by “1” indicates that each value of the code SSC is multiplied by “1”. For example, when the code SSC is “1, −1,... −1, −1”, by multiplying this by “1”, “1 × 1 = 1, 1 × −1. −1, 1 × −1 = −1 ”.
 また、Advanced-EUTRAの情報(パラメータ)に応じたAdvanced SSC番号が、制御部10から第2の符号選択部1327に入力される。このAdvanced-EUTRAの情報としては、初期セルサーチおよび周辺セルサーチ時に移動局装置2が取得すべき情報、例えばセルの周波数帯域情報、使用アンテナ数、セルの種別などがあり、これらの組合せであってもよい。 Also, an Advanced SSC number corresponding to Advanced-EUTRA information (parameters) is input from the control unit 10 to the second code selection unit 1327. The Advanced-EUTRA information includes information to be acquired by the mobile station apparatus 2 during the initial cell search and the neighboring cell search, such as cell frequency band information, the number of antennas used, and the cell type. May be.
 第2の符号選択部1327は、制御部10から指定されたAdvanced SSC番号に対応した長さ62の符号Advanced SSCを第2の符号保持部1326から読み込み、乗算部1330に出力する。なお、ここで、第2の符号保持部1326が記憶する符号Advanced SSCは、Advanced SSC番号に対応した長さ62の符号であるとして説明したが、第1の符号保持部1324が保持する符号SSCと同様に、AdvancedSSC番号に加えて、各サブフレーム番号や3種類のPSC番号に対応する符号を保持してもよい。すなわち第2の符号選択部1327は、EUTRAの符号SSCと同様に、Advanced SSC番号だけでなく、サブフレーム番号やPSC番号に対応した符号を出力してもよい。 The second code selection unit 1327 reads the code Advanced SSC having a length of 62 corresponding to the Advanced SSC number designated by the control unit 10 from the second code holding unit 1326 and outputs the read code to the multiplication unit 1330. Here, the code Advanced SSC stored in the second code holding unit 1326 has been described as a code of length 62 corresponding to the Advanced SSC number, but the code SSC held by the first code holding unit 1324 is described. Similarly to the above, in addition to the Advanced SSC number, a code corresponding to each subframe number or three types of PSC numbers may be held. That is, the second code selection unit 1327 may output a code corresponding to the subframe number and the PSC number as well as the Advanced SSC number, similarly to the EUTRA code SSC.
 乗算部1330は、第2の符号選択部1327から出力された符号Advanced SSCと、虚数単位jとを、乗算する。すなわち加算部1331が、系列1と系列2とを足し合わした系列3は、複素数の系列である。なお、ここで乗算部1330が符号Advanced SSCと虚数単位jとを乗算するとは、符号Advanced SSCの各値に「j」を乗じることを表す。例えば、符号Advanced SSCが「1、-1、・・・-1、-1」であるときは、これに「j」を乗じると、「1×j=j、-1×j=-j・・・-1×j=-j、-1×j=-j」となる。 The multiplication unit 1330 multiplies the code Advanced SSC output from the second code selection unit 1327 by the imaginary unit j. That is, the series 3 in which the adding unit 1331 adds the series 1 and the series 2 is a complex series. Here, the multiplication unit 1330 multiplying the code Advanced SSC and the imaginary unit j indicates that each value of the code Advanced SSC is multiplied by “j”. For example, when the code Advanced SSC is “1, −1,... −1, −1”, when this is multiplied by “j”, “1 × j = j, −1 × j = −j · ... −1 × j = −j, −1 × j = −j ”.
 このように同期信号生成部132で生成された符号PSCと系列3は、多重・変調処理部133により、符号PSCの各値はEUTRAの1次同期チャネルP-SCH、系列3の各値はEUTRAの2次同期チャネルS-SCHに配置される。ここで、符号PSCまたは系列3の各値を配置するとは、例えば符号PSCが「1、-1、・・・」であれば、「1」の信号、すなわち位相が「0」で振幅が「1」の信号を1次同期チャネルP-SCHの一つ目のサブキャリアに配置し、「-1」の信号、すなわち位相が「π」で振幅が「1」の信号を二つ目のサブキャリアに配置することを表す。系列3の場合は、各値が、「1+j」、「1-j」、「-1+j」、「-1-j」の4つのうち、いずれかの値をとるので、位相が「π/4」、「3π/4」、「5π/4」、「7π/4」のいずれかであり、振幅が√2(2の平方根)の信号を配置する。 In this way, the code PSC and the sequence 3 generated by the synchronization signal generation unit 132 are processed by the multiplexing / modulation processing unit 133 so that each value of the code PSC is the primary synchronization channel P-SCH of EUTRA, and each value of the sequence 3 is EUTRA. Of the secondary synchronization channel S-SCH. Here, each value of the code PSC or the sequence 3 is arranged, for example, if the code PSC is “1, −1,...”, The signal “1”, that is, the phase is “0” and the amplitude is “0”. 1 ”signal is arranged on the first subcarrier of the primary synchronization channel P-SCH, and the signal“ −1 ”, that is, the signal with phase“ π ”and amplitude“ 1 ”is assigned to the second subcarrier. Represents placement on a carrier. In the case of series 3, each value takes one of the four values “1 + j”, “1-j”, “−1 + j”, and “−1−j”, so that the phase is “π / 4”. ”,“ 3π / 4 ”,“ 5π / 4 ”,“ 7π / 4 ”, and a signal having an amplitude of √2 (square root of 2) is arranged.
 なお、システム帯域幅の中心の6リソースブロックであり、かつ、サブフレーム番号#0及び#5の先頭スロットの最終OFDMシンボルに1次同期チャネルP-SCHが配置され、その直前のOFDMシンボルに2次同期チャネルS-SCHが配置される。なお、符号PSCおよび系列3は、それぞれ長さ62の系列なので、上述の1次同期チャネルP-SCHと2次同期チャネルS-SCHのうち、システム帯域幅の中心のサブキャリアを除き、その両側31サブキャリアずつに配置される。 Note that the primary synchronization channel P-SCH is arranged in the last OFDM symbol of the first slot of subframe numbers # 0 and # 5, and is 6 in the center of the system bandwidth, and 2 in the immediately preceding OFDM symbol. A next synchronization channel S-SCH is arranged. Since code PSC and sequence 3 are sequences of length 62, both sides of the above-described primary synchronization channel P-SCH and secondary synchronization channel S-SCH except for the subcarrier at the center of the system bandwidth. Each of the 31 subcarriers is arranged.
 次に移動局装置2について説明する。図3は、本実施形態における移動局装置2の構成を示す概略ブロック図である。移動局装置2は、図3に示すように、受信アナログ回路部21、A/D変換部22、同期部23、GI除去部24、S/P(Serial to Parallel;シリアル/パラレル)変換部25、FFT(Fast Fourier Transform;高速フーリエ変換)部26、伝搬路推定・補償部27、復調・復号部28、MAC(Media Access Control;メディアアクセス制御)部29、変調部30、IFFT(Inverse Fast Fourier Transform;逆高速フーリエ変換)31、P/S(Parallel to Serial;パラレル/シリアル)変換部32、GI付加部33、D/A変換部34、送信アナログ回路部35を具備する。また、受信アンテナ部20が受信アナログ回路部21に接続され、送信アンテナ部36が送信アナログ回路部35に接続される。 Next, the mobile station apparatus 2 will be described. FIG. 3 is a schematic block diagram showing the configuration of the mobile station apparatus 2 in the present embodiment. As shown in FIG. 3, the mobile station apparatus 2 includes a reception analog circuit unit 21, an A / D conversion unit 22, a synchronization unit 23, a GI removal unit 24, and an S / P (Serial to Parallel) conversion unit 25. , FFT (Fast Fourier Transform) unit 26, propagation path estimation / compensation unit 27, demodulation / decoding unit 28, MAC (Media Access Control; media access control) unit 29, modulation unit 30, IFFT (Inverse Fast Fourier) A transform (inverse fast Fourier transform) 31, a P / S (Parallel to Serial) conversion unit 32, a GI addition unit 33, a D / A conversion unit 34, and a transmission analog circuit unit 35 are provided. Further, the reception antenna unit 20 is connected to the reception analog circuit unit 21, and the transmission antenna unit 36 is connected to the transmission analog circuit unit 35.
 受信アナログ回路部(受信部)21は、1次同期チャネルP-SCHおよび2次同期チャネルS-SCHを含む基地局装置1から送信される信号を、受信アンテナ部20を介して受信し、受信したアナログ信号を復調処理が可能な周波数の信号へ変換する。A/D変換部22は、受信アナログ回路部21で処理されたアナログ信号をデジタル信号に変換する。同期部23は、受信したデジタル信号を元に基地局装置1との時間同期、およびセクタの同定を行う。GI除去部24は、同期部23による時間同期に基づき判定したガードインターバルの区間を除去する。S/P変換部25は、ガードインターバルを除去したシリアル信号をパラレル信号に変換する。 The reception analog circuit unit (reception unit) 21 receives a signal transmitted from the base station apparatus 1 including the primary synchronization channel P-SCH and the secondary synchronization channel S-SCH via the reception antenna unit 20, and receives the signals. The converted analog signal is converted into a signal having a frequency that can be demodulated. The A / D conversion unit 22 converts the analog signal processed by the reception analog circuit unit 21 into a digital signal. The synchronization unit 23 performs time synchronization with the base station apparatus 1 and sector identification based on the received digital signal. The GI removal unit 24 removes a guard interval determined based on time synchronization by the synchronization unit 23. The S / P converter 25 converts the serial signal from which the guard interval is removed into a parallel signal.
 FFT部26は、パラレル信号に変換された時間領域の信号を、高速フーリエ変換を行うことにより周波数領域の信号に変換する。伝搬路推定・補償部27は、周波数領域に変換された信号から伝搬路推定に用いる信号を選択して伝搬路推定し、その伝搬路推定結果に基づき、周波数領域の信号に対して伝搬路補償を行う。復調・復号部28は、伝搬路補償された信号中の制御信号、データ信号、2次同期チャネルS-SCH信号などの復調および復号を行う。MAC部29は、移動局装置2の各部の制御を行なう。例えば、MAC部29は、復調および復号されたデータ信号、制御信号、2次同期チャネルS-SCH信号を復調・復号部28から受けて、これらのうち、データ信号を外部に出力する。また、MAC部29は、制御信号、2次同期チャネルS-SCH信号の復調・復号結果に応じた制御情報を生成し、外部から入力された基地局装置1へのデータとともに、変調部30に出力する。 The FFT unit 26 converts the time domain signal converted into the parallel signal into a frequency domain signal by performing a fast Fourier transform. The propagation path estimation / compensation unit 27 selects a signal to be used for propagation path estimation from the signal converted to the frequency domain and estimates the propagation path. Based on the propagation path estimation result, the propagation path compensation is performed on the frequency domain signal. I do. The demodulator / decoder 28 demodulates and decodes a control signal, a data signal, a secondary synchronization channel S-SCH signal, etc. in the propagation path compensated signal. The MAC unit 29 controls each unit of the mobile station device 2. For example, the MAC unit 29 receives the demodulated and decoded data signal, control signal, and secondary synchronization channel S-SCH signal from the demodulation / decoding unit 28, and outputs the data signal to the outside. Further, the MAC unit 29 generates control information according to the demodulation / decoding result of the control signal and the secondary synchronization channel S-SCH signal, and sends the control information to the modulation unit 30 together with the data to the base station apparatus 1 inputted from the outside. Output.
 変調部30は、MAC部29から受けた基地局装置1へのデータ、制御情報を変調し、周波数領域の信号であるデータ信号および制御信号を生成する。IFFT部31は、変調された周波数領域の信号を時間領域の信号に変換する。P/S変換部32は、IFFT部31で変換された時間領域のパラレル信号をシリアル信号に変換する。GI付加部33は、P/S変換された信号にガードインターバルを付加する。D/A変換部34は、ガードインターバルが付加されたデジタル信号をアナログ信号に変換する。送信アナログ回路部35は、D/A変換されたアナログ信号を送信に必要な周波数に変換し、送信アンテナ部36を介して基地局装置1へ送信する。 The modulation unit 30 modulates data and control information to the base station apparatus 1 received from the MAC unit 29, and generates a data signal and a control signal that are frequency domain signals. The IFFT unit 31 converts the modulated frequency domain signal into a time domain signal. The P / S converter 32 converts the time domain parallel signal converted by the IFFT unit 31 into a serial signal. The GI adding unit 33 adds a guard interval to the P / S converted signal. The D / A converter 34 converts the digital signal to which the guard interval is added into an analog signal. The transmission analog circuit unit 35 converts the analog signal that has been D / A converted into a frequency necessary for transmission, and transmits the analog signal to the base station apparatus 1 via the transmission antenna unit 36.
 図4は、同期部23の構成を示す概略ブロック図である。同期部23は、第1相関器230、第2相関器231、第3相関器232、第1バッファ233、第2バッファ234、第3バッファ235、セクタ・タイミング検出器236を具備する。第1相関器230、第2相関器231、第3相関器232は、3種類の符号PSCのうちの対応する一つのレプリカを予め保持しており、該レプリカと受信信号との相関をとる。第1バッファ233、第2バッファ234、第3バッファ235は、それぞれ対応する相関器230~232の相関結果を一定期間保持する。セクタ・タイミング検出器236は、各バッファ233~235に保持された相関結果から、同期を行う符号PSCの種類、タイミングを検出する。 FIG. 4 is a schematic block diagram illustrating the configuration of the synchronization unit 23. The synchronization unit 23 includes a first correlator 230, a second correlator 231, a third correlator 232, a first buffer 233, a second buffer 234, a third buffer 235, and a sector timing detector 236. The first correlator 230, the second correlator 231, and the third correlator 232 hold one corresponding replica of the three types of code PSCs in advance, and obtain a correlation between the replica and the received signal. The first buffer 233, the second buffer 234, and the third buffer 235 respectively hold the correlation results of the corresponding correlators 230 to 232 for a certain period. The sector timing detector 236 detects the type and timing of the code PSC to be synchronized from the correlation results held in the buffers 233 to 235.
 図5は、復調・復号部28の構成を示す概略ブロック図である。復調・復号部28は、入力セレクタ280、制御信号復調・復号部281、複数のデータ信号復調・復号部282、S-SCH復調・復号部283、出力セレクタ284を具備する。入力セレクタ280は、伝搬路推定・補償部27から伝搬路補償された受信信号を受け、その受信信号の種類に応じて制御信号に対する復調・復号処理を行う制御信号復調・復号部281、データ信号に対する復調・復号処理を行うデータ信号復調・復号部282、2次同期チャネルS-SCHの信号に対する復調処理を行うS-SCH復調・復号部283に受信信号を振り分ける。出力セレクタ284は、入力セレクタ280が受信信号を振り分けた各部から、受信信号の種類に応じて切り替えて復調・復号処理結果を取得し、MAC部29へ出力する。 FIG. 5 is a schematic block diagram showing the configuration of the demodulator / decoder 28. The demodulation / decoding unit 28 includes an input selector 280, a control signal demodulation / decoding unit 281, a plurality of data signal demodulation / decoding units 282, an S-SCH demodulation / decoding unit 283, and an output selector 284. The input selector 280 receives a received signal that has been subjected to propagation path compensation from the propagation path estimation / compensation unit 27, and performs demodulation / decoding processing on the control signal according to the type of the received signal. The received signal is distributed to the data signal demodulation / decoding unit 282 that performs demodulation / decoding processing on the S-SCH demodulation / decoding unit 283 that performs demodulation processing on the signal of the secondary synchronization channel S-SCH. The output selector 284 acquires the demodulation / decoding processing result by switching according to the type of the received signal from each unit to which the input selector 280 has distributed the received signal, and outputs the result to the MAC unit 29.
 図6は、S-SCH復調・復号部283の構成を示す概略ブロック図である。S-SCH復調・復号部283は図6に示すように、複素信号分離部290、第1のレプリカ保持部291、実部相関部292、第1のSSC同定部293、第2のレプリカ保持部294、虚部相関部295、第2のSSC同定部296を具備する。複素信号分離部290は、入力セレクタ280から入力された複素信号(2次同期チャネルS-SCHの信号)を、実軸の信号である実部信号と虚軸の信号である虚部信号とに分離する。例えば、複素信号が「a1+b1j、a2+b2j、a3+b3j、・・・」であれば、実部信号「a1、a2、a3、・・・」と虚部信号「b1、b2、b3、・・・」とに分離する。 FIG. 6 is a schematic block diagram showing the configuration of the S-SCH demodulator / decoder 283. As shown in FIG. 6, the S-SCH demodulation / decoding unit 283 includes a complex signal separation unit 290, a first replica holding unit 291, a real part correlation unit 292, a first SSC identification unit 293, and a second replica holding unit. 294, an imaginary part correlation unit 295, and a second SSC identification unit 296. The complex signal separation unit 290 converts the complex signal (secondary synchronization channel S-SCH signal) input from the input selector 280 into a real part signal that is a real axis signal and an imaginary part signal that is an imaginary axis signal. To separate. For example, if the complex signal is “a1 + b1j, a2 + b2j, a3 + b3j,...”, The real part signal “a1, a2, a3,...” And the imaginary part signal “b1, b2, b3,. To separate.
 第1のレプリカ保持部291は、全てのEUTRAの符号SSCのレプリカを保持する。実部相関部292は、複素信号分離部290から出力された実部信号と、第1のレプリカ保持部291に同期部23から入力されたPSC番号に対応する全ての符号SSCのレプリカとの相関処理を行う。第1のSSC同定部293は、実部相関部292が相関処理を行った全てのレプリカのうち、最大の相関となるレプリカを同定し、そのレプリカに対応するSSC番号とサブフレーム番号、すなわちEUTRAのSSC番号とサブフレーム番号とを同定する。 The first replica holding unit 291 holds all EUTRA code SSC replicas. The real part correlation unit 292 correlates the real part signal output from the complex signal separation unit 290 with all code SSC replicas corresponding to the PSC numbers input from the synchronization unit 23 to the first replica holding unit 291. Process. The first SSC identification unit 293 identifies the replica having the maximum correlation among all the replicas subjected to the correlation processing by the real part correlation unit 292, and the SSC number and subframe number corresponding to the replica, that is, EUTRA. The SSC number and the subframe number are identified.
 第2のレプリカ保持部294は、すべての符号Advanced SSCのレプリカを保持する。虚部相関部295は、複素信号分離部290から出力された虚部信号と、第2のレプリカ保持部294で保持する全てのレプリカとの相関処理を行う。第2のSSC同定部296は、虚部相関部295が相関処理を行ったレプリカのうち、最大の相関となるレプリカを同定し、その相関値と既定の閾値とを比較する。第2のSSC同定部296は、この比較の結果、相関値が閾値未満のときは、Advanced-EUTRAの2次同期チャネルS-SCHは検出されず、当該セクタのセルは、EUTRAのみで通信可能なEUTRAセルであると判定する。また、第2のSSC同定部296は、先の比較の結果、相関値が、既定の閾値と同じとき、または、規定の閾値より大きいときは、Advanced-EUTRAの2次同期チャネルS-SCHが検出され、当該セクタのセルは、Advanced-EUTRAにて通信可能なAdvanced-EUTRAセルであると判定し、最大の相関となるレプリカに対応するAdvanced SSC番号を同定する。 The second replica holding unit 294 holds all the codes Advanced SSC replicas. The imaginary part correlation unit 295 performs correlation processing between the imaginary part signal output from the complex signal separation unit 290 and all replicas held by the second replica holding unit 294. The second SSC identification unit 296 identifies the replica having the maximum correlation among the replicas that the imaginary part correlation unit 295 has performed correlation processing, and compares the correlation value with a predetermined threshold value. When the correlation value is less than the threshold value as a result of this comparison, the second SSC identification unit 296 does not detect the Advanced-EUTRA secondary synchronization channel S-SCH, and the cell of the sector can communicate only with EUTRA. It is determined that the cell is an EUTRA cell. The second SSC identification unit 296 determines that the Advanced-EUTRA secondary synchronization channel S-SCH is greater when the correlation value is the same as the predetermined threshold or larger than the predetermined threshold as a result of the previous comparison. The detected cell of the sector is determined to be an Advanced-EUTRA cell communicable by Advanced-EUTRA, and the Advanced SSC number corresponding to the replica having the maximum correlation is identified.
 このように、本実施形態では、第1のSSC同定部293と第2のSSC同定部296とで、パラメータ取得部として機能し、実部信号と虚部信号との各々が表すパラメータであるEUTRAのSSC番号とサブフレーム番号とAdvanced SSC番号とを取得する。なお、本実施形態では、実部信号と虚部信号とが表す全てのパラメータを取得しているが、当該移動局装置が通信にて用いる無線通信方式のパラメータのみを取得するようにしてもよい。 Thus, in the present embodiment, the first SSC identification unit 293 and the second SSC identification unit 296 function as parameter acquisition units, and are EUTRA parameters that are represented by each of the real part signal and the imaginary part signal. The SSC number, subframe number, and advanced SSC number are acquired. In this embodiment, all parameters represented by the real part signal and the imaginary part signal are acquired. However, only the parameters of the radio communication scheme used by the mobile station apparatus for communication may be acquired. .
 移動局装置2によるセルサーチ手順を説明する。基地局装置1から送信された1次同期チャネルP-SCH、2次同期チャネルS-SCHを含む信号を受信した移動局装置2では、A/D変換後の受信信号を用いて、同期部23が1次同期チャネルP-SCHを検出し、同期タイミングと、セクタ情報(PSC番号)を取得する。さらに、移動局装置2は、検出した同期タイミングに基づいて、受信信号からガードインターバルを除去し、S/P変換を経た後、高速フーリエ変換処理して時間領域から周波数領域の信号に変換する。 The cell search procedure by the mobile station device 2 will be described. In the mobile station apparatus 2 that has received the signal including the primary synchronization channel P-SCH and the secondary synchronization channel S-SCH transmitted from the base station apparatus 1, the synchronization unit 23 uses the received signal after A / D conversion. Detects the primary synchronization channel P-SCH and acquires the synchronization timing and sector information (PSC number). Furthermore, the mobile station apparatus 2 removes the guard interval from the received signal based on the detected synchronization timing, undergoes S / P conversion, and then performs fast Fourier transform processing to convert the signal from the time domain to the frequency domain.
 移動局装置2の伝搬路推定・補償部27は、周波数領域に変換された受信信号の中の1次同期チャネルP-SCHの信号と、既知の1次同期チャネルP-SCHのレプリカとの位相・振幅差をみることで伝搬路推定を行い、伝搬路推定値を得る。続いて、伝搬路推定・補償部27は、周波数領域に変換された受信信号の中の2次同期チャネルS-SCHの信号に対して、この伝搬路推定値を用いて伝搬路補償を行う。復調・復号部28の入力セレクタ280は、伝搬路補償された周波数領域の2次同期チャネルS-SCHの信号を、S-SCH復調・復号部283に入力する。 The propagation path estimation / compensation unit 27 of the mobile station apparatus 2 performs the phase between the primary synchronization channel P-SCH signal in the received signal converted into the frequency domain and the known primary synchronization channel P-SCH replica. • Perform propagation path estimation by looking at the amplitude difference, and obtain propagation path estimation values. Subsequently, the propagation path estimation / compensation unit 27 performs propagation path compensation on the secondary synchronization channel S-SCH signal in the received signal converted to the frequency domain, using this propagation path estimated value. The input selector 280 of the demodulation / decoding unit 28 inputs the signal of the secondary synchronization channel S-SCH in the frequency domain that has undergone propagation path compensation to the S-SCH demodulation / decoding unit 283.
 S-SCH復調・復号部283に入力された受信信号を、複素信号分離部290は、実部と虚部に分離し、実部相関部292と虚部相関部295に入力する。実部を受けた実部相関部292は、第1のレプリカ保持部291が保持するレプリカのうち、同期部23から受けたPSC番号に対応するレプリカと、受けた実部との相関処理を行う。虚部を受けた虚部相関部295は、第2のレプリカ保持部294が保持する全てのレプリカと、受けた虚部との相関処理を行う。その後、第1のSSC同定部293はSSC番号、サブフレーム番号を同定し、第2のSSC同定部296は受信信号を送信した基地局装置のセルがAdvanced-EUTRAのセルか否かの情報と、Advanced-EUTRAのときは、Advanced SSC番号とを同定する。Advanced-EUTRAセルでない場合、Advanced SSC番号は無効となり破棄される。 The complex signal separation unit 290 separates the received signal input to the S-SCH demodulation / decoding unit 283 into a real part and an imaginary part, and inputs the real part and the imaginary part correlation unit 295. The real part correlation unit 292 that has received the real part performs correlation processing between the replica corresponding to the PSC number received from the synchronization unit 23 among the replicas held by the first replica holding unit 291 and the received real part. . The imaginary part correlation unit 295 that has received the imaginary part performs correlation processing between all replicas held by the second replica holding unit 294 and the received imaginary part. Thereafter, the first SSC identification unit 293 identifies the SSC number and the subframe number, and the second SSC identification unit 296 includes information indicating whether the cell of the base station apparatus that has transmitted the received signal is an Advanced-EUTRA cell. And Advanced-EUTRA, the Advanced SSC number is identified. If it is not an Advanced-EUTRA cell, the Advanced SSC number becomes invalid and is discarded.
 なお、Advanced SSC番号に対応する情報、すなわちAdvanced-EUTRAのパラメータとしては、Advanced-EUTRA専用のセルIDやセルの周波数帯域情報や、送信アンテナ情報などがあるが、Advanced-EUTRAを用いて通信する際に必要なパラメータが全て含まれていなくともよく、Advanced-EUTRAとEUTRAとで共通のパラメータの少なくとも一部(例えば、物理セルIDなど、)を共通の値とし、値が共通のパラメータを、SSC番号、すなわち実軸に配置する信号にて送信するようにしてもよい。 The information corresponding to the Advanced SSC number, that is, the Advanced-EUTRA parameters include cell ID dedicated to Advanced-EUTRA, cell frequency band information, transmission antenna information, etc., but communication is performed using Advanced-EUTRA. In this case, at least a part of parameters common to Advanced-EUTRA and EUTRA (for example, physical cell ID) is a common value, and a parameter having a common value is not necessarily included. You may make it transmit with a SSC number, ie, the signal arrange | positioned to a real axis.
 また、本実施形態では第2のレプリカ保持部294に相関処理のためのすべてのレプリカを保持しているが、相関処理の度にレプリカを算出して用いるようにしてもよい。
 また、符号Advanced SSCは、EUTRAの符号SSCと同様に複数種類のバイナリ符号の組合せとしてもよいし、1種類の符号であってもよい。また符号Advanced SSCのスクランブルとしては、PSC番号に対応した符号を乗じてもよいし、EUTRAの符号SSCに対応したスクランブル符号を乗じてもよい。
In the present embodiment, all replicas for correlation processing are held in the second replica holding unit 294. However, replicas may be calculated and used every time correlation processing is performed.
Further, the code Advanced SSC may be a combination of a plurality of types of binary codes as in the case of the EUTRA code SSC, or may be a single type of code. Further, as the code advanced SSC scrambling, a code corresponding to the PSC number may be multiplied, or a scrambling code corresponding to the EUTRA code SSC may be multiplied.
 ただし、符号Advanced SSCに用いる符号はEUTRAの符号SSCで用いられる符号とは異なる系列(相関が低い系列)であることが望ましい。例えば、第2のSSC同定部296において虚部相関部295が算出した相関値と比較する閾値よりも、EUTRAの符号SSCとの相関値が小さくなる系列、すなわち相関が低い系列の符号を、符号Advanced SSCに用いる。 However, it is desirable that the code used for the code Advanced SSC is a sequence different from the code used for the EUTRA code SSC (a sequence with low correlation). For example, a code whose correlation value with the EUTRA code SSC is smaller than the threshold value compared with the correlation value calculated by the imaginary part correlation unit 295 in the second SSC identification unit 296, that is, a code with a low correlation is encoded Used for Advanced SSC.
 1次同期チャネルP-SCHによる2次同期チャネルS-SCHの伝搬路補償が正確にできない場合に、2次同期チャネルS-SCHの信号を実部(EUTRAの符号SSC)と虚部(Advanced-EUTRAの符号Advanced SSC)に正確に分離することができなくなる。すると、EUTRAの符号SSCに対する相関値を算出する際に、Advanced-EUTRAの符号Advanced SSCの信号も含まれ、また、その逆も発生する。しかし、上述のような符号Advanced SSCとしておくことで、相関値への影響を抑えて、第1のSSC同定部293および第2のSSC同定部296における同定誤りの発生を防ぐことができる。 When channel compensation of the secondary synchronization channel S-SCH by the primary synchronization channel P-SCH cannot be performed accurately, the signal of the secondary synchronization channel S-SCH is converted into a real part (EUTRA code SSC) and an imaginary part (Advanced- It is impossible to accurately separate the EUTRA code Advanced SSC). Then, when calculating the correlation value for the EUTRA code SSC, the signal of the Advanced-EUTRA code Advanced SSC is also included, and vice versa. However, by setting the code Advanced SSC as described above, it is possible to suppress the influence on the correlation value and prevent the occurrence of identification errors in the first SSC identification unit 293 and the second SSC identification unit 296.
 ここで、Advanced-EUTRAの符号Advanced SSCに用いる符号の一例としては、EUTRAで用いられる長さ31のM系列のプリファードペアとなる系列(相互相関の値が一定の3値だけを取る系列)を用いることなどが挙げられる。
 また、Advanced-EUTRAにおいて、SSC1とSSC2から構成されるEUTRAと同じ構造の符号Advanced SSCを使用する場合、SSC1とSSC2のうち、何れか片方の系列(例えばSSC1)をEUTRAと同一の信号として、残りの系列(例えばSSC2)を、EUTRAで使用されていない組み合わせとなるM系列、あるいは前記プリファードペアとなるM系列などとする、すなわち実軸に配置する信号の符号系列と虚軸に配置する信号の符号系列とが、系列の一部については同一であり、系列の残りの部分については、互いに相関が低い系列となるようにしてもよい。ここでの、相関が低いとは、上述の符号Advanced SSCに用いられる符号とEUTRAの符号SSCに用いられる符号との関係における相関が低いことと同様である。
Here, as an example of a code used in the Advanced-EUTRA code Advanced SSC, a sequence that is a M-sequence preferred pair of length 31 used in EUTRA (a sequence in which the value of the cross-correlation takes only a fixed ternary value) is used. It can be used.
Further, in Advanced-EUTRA, when using the Advanced SSC having the same structure as EUTRA composed of SSC1 and SSC2, either one of SSC1 and SSC2 (for example, SSC1) is set as the same signal as EUTRA. The remaining sequence (for example, SSC2) is an M sequence that is not used in EUTRA, or an M sequence that is the preferred pair, that is, a signal sequence that is arranged on the real axis and a signal that is arranged on the imaginary axis. These code sequences may be the same for a part of the sequence, and the remaining portions of the sequence may be sequences having a low correlation with each other. Here, the low correlation is the same as the low correlation in the relationship between the code used for the above-mentioned code Advanced SSC and the code used for the EUTRA code SSC.
 本実施の形態により、専用の周波数リソースを使用することなく、また既存のEUTRAの移動局装置の動作に影響を及ぼすことなく、移動局装置2において、相手基地局がAdvanced-EUTRAにて通信可能か否かの識別が可能な同期チャネルを配置することができる。専用の周波数リソースが不要であるため、伝送効率を劣化させることがなく、かつ同期チャネルのみでAdvanced-EUTRAの識別が可能となる。このため、Advanced-EUTRAの移動局装置2の通信状態における周辺セルの測定を行う際に、周辺セルサーチの結果に基づき、Advanced-EUTRAのセルを優先的に測定、報告するなど、希望する通信方式のセルを優先させることが可能となり、測定の効率化を図ることができる。
 また、本実施の形態においてはAdvanced-EUTRAの識別のための情報を、2次同期チャネルS-SCHの周波数リソースを用いて配置しているが、P-SCHで用いる系列を追加してAdvanced-EUTRAの識別情報を配置する方法と比較して、回路規模の増大を招く時間領域での相関処理を行わなくてすむ利点がある。
According to the present embodiment, the mobile station device 2 can communicate with the advanced base station in the advanced-EUTRA without using dedicated frequency resources and without affecting the operation of the existing EUTRA mobile station device. It is possible to arrange synchronization channels that can be identified. Since no dedicated frequency resource is required, the transmission efficiency is not deteriorated, and Advanced-EUTRA can be identified using only the synchronization channel. For this reason, when performing measurement of neighboring cells in the communication state of the Advanced-EUTRA mobile station apparatus 2, a desired communication is performed such as preferentially measuring and reporting the cells of the Advanced-EUTRA based on the result of the neighboring cell search. It is possible to prioritize the cells of the system, and it is possible to improve the efficiency of measurement.
Also, in this embodiment, information for identifying Advanced-EUTRA is arranged using the frequency resource of the secondary synchronization channel S-SCH, but the sequence used in the P-SCH is added to the Advanced- Compared with the method of arranging EUTRA identification information, there is an advantage that it is not necessary to perform correlation processing in the time domain that causes an increase in circuit scale.
(第2の実施形態)
 以下、図面を参照して、本発明の第2の実施形態について説明する。第2の実施形態は、2次同期チャネルS-SCHの信号の虚部に配置する系列として、第1の実施形態の符号Advanced SSCとは異なる系列を用いる形態である。そのため、本実施形態における基地局装置1aは、図1の基地局装置1とは同期信号生成部132に替えて同期信号生成部132aを備える点が異なり、その他の各部は同一である。また、本実施形態における移動局装置2aは、図3の移動局装置2とは復調・復号部28(図4)におけるS-SCH復調・復号部283に替えてS-SCH復調・復号部283aを備える点が異なり、その他の各部は同一である。よって、本実施形態の説明では、同期信号生成部132a、S-SCH復調・復号部283a以外の各部に関する説明は省略する。なお、移動局装置2aの復調・復号部28aは、図3の移動局装置2の復調・復号部28とは、S-SCH復調・復号部283に替えて、S-SCH復調・復号部283aを具備する点のみが異なる。
(Second Embodiment)
The second embodiment of the present invention will be described below with reference to the drawings. In the second embodiment, a sequence different from the code Advanced SSC of the first embodiment is used as a sequence arranged in the imaginary part of the signal of the secondary synchronization channel S-SCH. Therefore, the base station apparatus 1a in the present embodiment is different from the base station apparatus 1 of FIG. 1 in that a synchronization signal generation unit 132a is provided instead of the synchronization signal generation unit 132, and other parts are the same. Further, the mobile station apparatus 2a in the present embodiment is different from the mobile station apparatus 2 in FIG. 3 in that the S-SCH demodulation / decoding section 283a is replaced with the S-SCH demodulation / decoding section 283 in the demodulation / decoding section 28 (FIG. 4). The other parts are the same. Therefore, in the description of the present embodiment, the description of each unit other than the synchronization signal generation unit 132a and the S-SCH demodulation / decoding unit 283a is omitted. The demodulation / decoding unit 28a of the mobile station apparatus 2a is different from the demodulation / decoding unit 28 of the mobile station apparatus 2 of FIG. 3 in place of the S-SCH demodulation / decoding unit 283. The only difference is that
 図7は、本実施形態における基地局装置1aの同期信号生成部132aの構成を示す概略ブロック図である。同期信号生成部132aは、PSC1保持部1320、PSC2保持部1321、PSC3保持部1322、セレクタ1323、第1の符号保持部1324、第1の符号選択部1325、直交変調部1328、乗算部1332a、バイナリ符号Ca保持部1333aを具備する。同図において図2の各部に対応する部分には同一の符号(1320~1325、1328~1331)を付け、その説明を省略する。 FIG. 7 is a schematic block diagram illustrating a configuration of the synchronization signal generation unit 132a of the base station device 1a in the present embodiment. The synchronization signal generation unit 132a includes a PSC1 holding unit 1320, a PSC2 holding unit 1321, a PSC3 holding unit 1322, a selector 1323, a first code holding unit 1324, a first code selection unit 1325, an orthogonal modulation unit 1328, a multiplication unit 1332a, A binary code Ca holding unit 1333a is provided. In the figure, the same reference numerals (1320 to 1325, 1328 to 1331) are assigned to the portions corresponding to the respective portions in FIG.
 バイナリ符号Ca保持部1333aは、長さ62の既定のバイナリ符号Caを保持する。乗算部1332aは、第1の符号選択部1325から出力された符号SSCと、バイナリ符号Ca保持部1333aが保持するバイナリ符号Caとを乗算し、その乗算結果を直交変調部1328の乗算部1330に出力する。これにより、直交変調部1328が系列3の虚軸に配置する信号の符号系列は、実軸に配置する信号の符号系列である第1の符号選択部1325から出力された符号SSCに既定の符号であるバイナリ符号Caが乗じられた系列2となる。
 なお、ここで、乗算部1332aによる符号SSCとバイナリ符号Caとの乗算とは、各々の系列の各値同士を乗じることを表す。例えば、符号SSCが「1、-1、1、・・・-1、-1」であり、バイナリ符号Caが「-1、-1、1、・・・1、-1」であれば、これらの乗算結果は、「1×-1=-1、-1×-1=1、1×1=1、・・・-1×1=-1、-1×-1=1」、すなわち「-1、1、1、・・・-1、1」となる。
 このように同期信号生成部132で生成された符号PSCと系列3とは、多重・変調処理部133により、第1の実施形態と同様に、符号PSCはEUTRAの1次同期チャネルP-SCH、系列3はEUTRAの2次同期チャネルS-SCHに配置される。
The binary code Ca holding unit 1333a holds a predetermined binary code Ca having a length of 62. The multiplication unit 1332a multiplies the code SSC output from the first code selection unit 1325 by the binary code Ca held by the binary code Ca holding unit 1333a, and the multiplication result is sent to the multiplication unit 1330 of the orthogonal modulation unit 1328. Output. As a result, the code sequence of the signal arranged by the orthogonal modulation unit 1328 on the imaginary axis of the sequence 3 is the code that is the default code for the code SSC output from the first code selection unit 1325 that is the code sequence of the signal arranged on the real axis. The sequence 2 is multiplied by the binary code Ca.
Here, the multiplication of the code SSC and the binary code Ca by the multiplication unit 1332a represents the multiplication of each value of each series. For example, if the code SSC is "1, -1, 1, ... -1, -1" and the binary code Ca is "-1, -1, 1, ... 1, -1", These multiplication results are “1 × −1 = −1, −1 × −1 = 1, 1 × 1 = 1,... −1 × 1 = −1, −1 × −1 = 1”, that is, “−1, 1, 1,... −1, 1”.
In this way, the code PSC and the sequence 3 generated by the synchronization signal generation unit 132 are transmitted by the multiplexing / modulation processing unit 133, as in the first embodiment, the code PSC is the primary synchronization channel P-SCH of EUTRA, Sequence 3 is allocated to the EUTRA secondary synchronization channel S-SCH.
 2次同期チャネルS-SCHの信号を、このように生成するので、2次同期チャネルS-SCHにて伝送するAdvanced-EUTRAの情報としては、当該基地局装置1aがAdvanced-EUTRAを用いた通信が可能であることを示す情報のみとなる。すなわち、移動局装置2aは、2次同期チャネルS-SCHの信号の実部で検出した系列に、既定のバイナリ符号Caを乗じた系列を、2次同期チャネルS-SCHの信号の虚部において検出したときは、該2次同期チャネルS-SCHを送信している基地局装置は、Advanced-EUTRAを用いた通信が可能であると判定し、検出されなかったときは、Advanced-EUTRAを用いた通信が行えないと判定することができる。 Since the signal of the secondary synchronization channel S-SCH is generated in this way, as information about the Advanced-EUTRA transmitted on the secondary synchronization channel S-SCH, the base station apparatus 1a uses the advanced-EUTRA communication. It becomes only the information indicating that is possible. That is, the mobile station apparatus 2a uses a sequence obtained by multiplying a sequence detected in the real part of the secondary synchronization channel S-SCH signal by a predetermined binary code Ca in the imaginary part of the secondary synchronization channel S-SCH signal. When detected, the base station apparatus transmitting the secondary synchronization channel S-SCH determines that communication using the Advanced-EUTRA is possible, and when not detected, the Advanced-EUTRA is used. It can be determined that the communication that has been performed cannot be performed.
 図8は、本実施形態における移動局装置2aのS-SCH復調・復号部283aの構成を示す概略ブロック図である。S-SCH復調・復号部283aは、複素信号分離部290、第1のレプリカ保持部291、実部相関部292、第1のSSC同定部293、虚部相関部295a、バイナリ符号Ca保持部297a、乗算部298a、判定部299aを具備する。同図において図6の各部に対応する部分には同一の符号(290~293)を付け、その説明を省略する。 FIG. 8 is a schematic block diagram showing a configuration of the S-SCH demodulation / decoding unit 283a of the mobile station device 2a in the present embodiment. The S-SCH demodulation / decoding unit 283a includes a complex signal separation unit 290, a first replica holding unit 291, a real part correlation unit 292, a first SSC identification unit 293, an imaginary part correlation unit 295a, and a binary code Ca holding unit 297a. , A multiplication unit 298a and a determination unit 299a. In the figure, the same reference numerals (290 to 293) are assigned to portions corresponding to the respective portions in FIG. 6, and the description thereof is omitted.
 バイナリ符号Ca保持部297aは、長さ62の既定のバイナリ符号Ca、すなわち基地局装置1aのバイナリ符号Ca保持部1333aと同じバイナリ符号を保持する。乗算部298aは、複素信号分離部290から出力された虚部信号と、バイナリ符号Ca保持部297aが保持するバイナリ符号Caとを乗算する。虚部相関部295aは、複素信号分離部290から出力された実部信号と、乗算部298aの乗算結果との相関値を算出する。判定部299aは、虚部相関部295が算出した相関値が既定の閾値未満の場合は基地局装置がEUTRAのみを用いて通信するEUTRAセルであると判定し、既定の閾値と同じ場合、または、既定の閾値より大きい場合は、基地局装置がAdvanced-EUTRAを用いて通信可能なAdvanced-EUTRAセルと判定し、判定結果を出力セレクタ284に出力する。 The binary code Ca holding unit 297a holds a predetermined binary code Ca having a length of 62, that is, the same binary code as the binary code Ca holding unit 1333a of the base station apparatus 1a. The multiplication unit 298a multiplies the imaginary part signal output from the complex signal separation unit 290 and the binary code Ca held by the binary code Ca holding unit 297a. The imaginary part correlation unit 295a calculates a correlation value between the real part signal output from the complex signal separation unit 290 and the multiplication result of the multiplication unit 298a. When the correlation value calculated by the imaginary part correlation unit 295 is less than a predetermined threshold, the determination unit 299a determines that the base station apparatus is an EUTRA cell that communicates using only EUTRA, and when the same as the predetermined threshold, or If the threshold is larger than the predetermined threshold, the base station apparatus determines that the cell is an Advanced-EUTRA cell that can communicate using Advanced-EUTRA, and outputs the determination result to the output selector 284.
 このように、本実施形態では、第1のSSC同定部293においてSSC番号、サブフレーム番号を同定し、判定部299aにおいて受信信号を送信した基地局装置がAdvanced-EUTRAを用いて通信可能か否か、すなわち在圏しているセルがAdvanced-EUTRAのセルか否かを同定する。したがって、この場合、Advanced-EUTRAのセルに関する情報(物理セルID、フレームタイミングなど)についても、第1のSSC同定部293が同定したSSC番号、サブフレーム番号に基づくEUTRAの情報を流用する。 Thus, in the present embodiment, whether or not the base station apparatus that has identified the SSC number and subframe number in the first SSC identification unit 293 and transmitted the reception signal in the determination unit 299a can communicate using Advanced-EUTRA. That is, it is identified whether or not the cell in the service area is an Advanced-EUTRA cell. Therefore, in this case, EUTRA information based on the SSC number and subframe number identified by the first SSC identification unit 293 is also used for information (physical cell ID, frame timing, etc.) regarding the cell of Advanced-EUTRA.
 本実施形態では、このように、EUTRAとAdvanced-EUTRAの2つの無線通信方式は、同期チャネルSCHにて送信する物理セルIDを含むパラメータを全て共通の値とし、基地局装置1aは、これらのパラメータを実軸に配置する信号にて送信している。このような態様に限らず、2つの無線通信方式が、パラメータの少なくとも一部を共通の値とし、値が共通のパラメータを、実軸に配置する信号と虚軸に配置する信号とのうち、いずれか一方のみにて送信することができるようにしてもよい。 In this embodiment, as described above, the two radio communication schemes of EUTRA and Advanced-EUTRA have all parameters including the physical cell ID transmitted on the synchronization channel SCH as common values, and the base station apparatus 1a The parameter is transmitted as a signal placed on the real axis. Not limited to such an aspect, the two wireless communication systems have at least a part of the parameters as a common value, and a parameter having a common value is a signal placed on the real axis and a signal placed on the imaginary axis. You may enable it to transmit only in any one.
 本実施形態においては、バイナリ符号Caを1種類としているが、バイナリ符号Caを複数種類用意し、移動局装置2aにおいて相関処理を行うことで、基地局装置1aがいずれのバイナリ符号Caを用いたかを判定することにより、2次同期チャネルS-SCHの信号の虚部で、当該セルがAdvanced-EUTRAのセルか否かの情報だけでなく、その他の情報(例えばセルの種類がHome eNBセル(個人レベルや小企業レベルでの簡易な設置と運用が可能な基地局を用いたセル)やMBMS(Multimedia Broadcast Multicast Service;マルチメディアブロードキャスト/マルチキャストサービス)専用セルなどであるか否かなど)を付加することも可能となる。 In the present embodiment, one type of binary code Ca is used. However, by preparing a plurality of types of binary code Ca and performing correlation processing in the mobile station device 2a, which binary code Ca is used by the base station device 1a. In the imaginary part of the signal of the secondary synchronization channel S-SCH, not only information on whether the cell is an Advanced-EUTRA cell but also other information (for example, the cell type is a Home eNB cell ( (Cells using base stations that can be easily installed and operated at the individual level or small business level) and MBMS (Multimedia Broadcast / Multicast Service) dedicated cells) It is also possible to do.
 なお、本実施形態では、第1のレプリカ保持部291は、相関処理のためのすべての系列を保持しているが、第1の実施形態と同様に相関処理の度に系列を算出して用いることももちろん可能である。
 このように、当該セルがAvanced-EUTRAのセルであること、すなわち基地局装置がAdvanced-EUTRAにて通信可能であることを表す系列を、2次同期チャネルS-SCHの信号の虚部に配置することで、専用の周波数リソースを用意することなく、また既存のEUTRAの移動局装置の動作に影響を及ぼすことなく、Advanced-EUTRAの識別が可能な同期チャネルを配置することができる。
In the present embodiment, the first replica holding unit 291 holds all sequences for correlation processing. However, as in the first embodiment, a sequence is calculated and used every time correlation processing is performed. Of course it is also possible.
In this way, a sequence indicating that the cell is an Advanced-EUTRA cell, that is, the base station apparatus can communicate with the Advanced-EUTRA, is arranged in the imaginary part of the signal of the secondary synchronization channel S-SCH. By doing so, it is possible to arrange a synchronization channel capable of identifying Advanced-EUTRA without preparing a dedicated frequency resource and without affecting the operation of an existing EUTRA mobile station apparatus.
 専用の周波数リソースが不要であるため、周波数利用効率を劣化させることなく、かつ同期チャネルを用いたAdvanced-EUTRAの識別が可能となるため、Advanced-EUTRAの移動局装置2aの通信状態における測定で、Advanced-EUTRAのセルを優先的に測定、報告することが可能となり、測定の効率化を図ることができる。また、2次同期チャネルS-SCHの信号の虚部を、実部の信号に既定のバイナリ符号Caを乗じた信号とすることにより、第1の実施形態に比べ、Advanced-EUTRA識別用の相関処理を行うS-SCH復調・復号部283aの構成が複雑な構成となることを抑制しており、容易に実装することが可能である。 Since no dedicated frequency resource is required, it is possible to identify Advanced-EUTRA using a synchronization channel without degrading frequency utilization efficiency. Therefore, in the measurement in the communication state of the mobile station apparatus 2a of Advanced-EUTRA Therefore, it is possible to preferentially measure and report the Advanced-EUTRA cell, and to improve the efficiency of measurement. Further, the imaginary part of the signal of the secondary synchronization channel S-SCH is a signal obtained by multiplying the real part signal by a predetermined binary code Ca, so that the correlation for Advanced-EUTRA identification is made as compared with the first embodiment. The configuration of the S-SCH demodulator / decoder 283a that performs processing is suppressed from being complicated, and can be easily implemented.
(第3の実施形態)
 以下、図面を参照して、本発明の第3の実施形態について説明する。第3の実施形態は、2次同期チャネルS-SCHの信号の虚部に配置する系列として、第1、第2の実施形態とは異なる系列を用いる形態である。そのため、本実施形態における基地局装置1bは、図1の基地局装置1とは同期信号生成部132に替えて同期信号生成部132bを備える点が異なり、その他の各部は同一である。また、本実施形態における移動局装置2bは、図3の移動局装置2とは復調・復号部28(図4)におけるS-SCH復調・復号部283に替えてS-SCH復調・復号部283bを備える点が異なり、その他の各部は同一である。よって、本実施形態の説明では、同期信号生成部132b、S-SCH復調・復号部283b以外の各部に関する説明は省略する。なお、移動局装置2bの復調・復号部28bは、図3の移動局装置2の復調・復号部28とは、S-SCH復調・復号部283に替えて、S-SCH復調・復号部283bを具備する点のみが異なる。
(Third embodiment)
The third embodiment of the present invention will be described below with reference to the drawings. In the third embodiment, a sequence different from those in the first and second embodiments is used as a sequence arranged in the imaginary part of the signal of the secondary synchronization channel S-SCH. Therefore, the base station apparatus 1b in the present embodiment is different from the base station apparatus 1 of FIG. 1 in that a synchronization signal generation unit 132b is provided instead of the synchronization signal generation unit 132, and other parts are the same. Further, the mobile station apparatus 2b in this embodiment is different from the mobile station apparatus 2 of FIG. 3 in that the S-SCH demodulation / decoding section 283b is replaced with the S-SCH demodulation / decoding section 283 in the demodulation / decoding section 28 (FIG. 4). The other parts are the same. Therefore, in the description of the present embodiment, the description of each unit other than the synchronization signal generation unit 132b and the S-SCH demodulation / decoding unit 283b is omitted. Note that the demodulator / decoder 28b of the mobile station apparatus 2b is different from the demodulator / decoder 28 of the mobile station apparatus 2 of FIG. 3 in place of the S-SCH demodulator / decoder 283. The only difference is that
 図9は、本実施形態における基地局装置1bの同期信号生成部132bの構成を示す概略ブロック図である。同期信号生成部132bが生成する2次同期チャネルS-SCHの信号は、虚軸に配置する信号の符号系列が、実軸に配置する信号の符号系列の候補のうち、Advanced-UTRAの情報(他方の無線通信方式のパラメータ)に対応する符号系列に、既定の符号であるバイナリ符号Cbが乗じられた系列となっている。同期信号生成部132bは、PSC1保持部1320、PSC2保持部1321、PSC3保持部1322、セレクタ1323、第1の符号保持部1324、第1の符号選択部1325、直交変調部1328、第2の符号選択部1327b、乗算部1332b、バイナリ符号Cb保持部1333bを具備する。同図において図2の各部に対応する部分には同一の符号(1320~1325、1328~1331)を付け、その説明を省略する。 FIG. 9 is a schematic block diagram illustrating a configuration of the synchronization signal generation unit 132b of the base station device 1b in the present embodiment. The signal of the secondary synchronization channel S-SCH generated by the synchronization signal generation unit 132b includes the information of Advanced-UTRA among the code sequence candidates of the signal arranged on the imaginary axis. The code sequence corresponding to the parameter of the other wireless communication system is multiplied by a binary code Cb which is a predetermined code. The synchronization signal generation unit 132b includes a PSC1 holding unit 1320, a PSC2 holding unit 1321, a PSC3 holding unit 1322, a selector 1323, a first code holding unit 1324, a first code selection unit 1325, an orthogonal modulation unit 1328, and a second code. A selection unit 1327b, a multiplication unit 1332b, and a binary code Cb holding unit 1333b are provided. In the figure, the same reference numerals (1320 to 1325, 1328 to 1331) are assigned to the portions corresponding to the respective portions in FIG.
 第2の符号選択部1327bは、制御部10から指定されたPSC番号とAdvanced SSC番号とに対応する符号SSCを第1の符号保持部1324から読み出して、乗算部1332bに出力する。バイナリ符号Cb保持部1333bは、長さ62の既定のバイナリ符号Cbを保持する。乗算部1332bは、第2の符号選択部1327bから出力された符号SSCと、バイナリ符号Cb保持部1333bが保持するバイナリ符号Cbとを乗算し、その乗算結果を直交変調部1328の乗算部1330に出力する。
 なお、ここで、乗算部1332bによる符号SSCとバイナリ符号Cbとの乗算とは、各々の系列の各値同士を乗じることを表す。例えば、符号SSCが「1、-1、1、・・・-1、-1」であり、バイナリ符号Cbが「-1、-1、1、・・・1、-1」であれば、これらの乗算結果は、「1×-1=-1、-1×-1=1、1×1=1、・・・-1×1=-1、-1×-1=1」、すなわち「-1、1、1、・・・-1、1」となる。
The second code selection unit 1327b reads the code SSC corresponding to the PSC number and the advanced SSC number designated by the control unit 10 from the first code holding unit 1324 and outputs the code SSC to the multiplication unit 1332b. The binary code Cb holding unit 1333b holds a predetermined binary code Cb having a length of 62. The multiplication unit 1332b multiplies the code SSC output from the second code selection unit 1327b and the binary code Cb held by the binary code Cb holding unit 1333b, and the multiplication result is sent to the multiplication unit 1330 of the orthogonal modulation unit 1328. Output.
Here, the multiplication of the code SSC and the binary code Cb by the multiplication unit 1332b represents the multiplication of each value of each series. For example, if the code SSC is "1, -1, 1, ... -1, -1" and the binary code Cb is "-1, -1, 1, ... 1, -1", These multiplication results are “1 × −1 = −1, −1 × −1 = 1, 1 × 1 = 1,... −1 × 1 = −1, −1 × −1 = 1”, that is, “−1, 1, 1,... −1, 1”.
 また、Advanced-SSC番号(Advanced-EUTRAの情報)の数は、PSC番号毎にスクランブルされたものとするため、第1の符号保持部1324で保持されている符号SSCの数(前記例では168×2×3種類)のうち168×2種類とし、Advanced SSC番号とPSC番号とに対応した系列を第2の符号選択部1327bが第1の符号保持部1324より読み出し出力する。
 このように同期信号生成部132bで生成された符号PSC、系列3は、多重・変調処理部133により、第1および第2の実施形態と同様に、符号PSCはEUTRAの1次同期チャネルP-SCH、系列3はEUTRAの2次同期チャネルS-SCHに配置される。
Also, since the number of Advanced-SSC numbers (Advanced-EUTRA information) is scrambled for each PSC number, the number of code SSCs held in the first code holding unit 1324 (168 in the above example) The second code selection unit 1327b reads out and outputs the sequence corresponding to the Advanced SSC number and the PSC number from the first code holding unit 1324.
In this way, the code PSC and the sequence 3 generated by the synchronization signal generation unit 132b are converted into the EUTRA primary synchronization channel P− by the multiplexing / modulation processing unit 133 as in the first and second embodiments. The SCH, sequence 3, is arranged in the EUTRA secondary synchronization channel S-SCH.
 図10は、本実施形態における移動局装置2bのS-SCH復調・復号部283bの構成を示す概略ブロック図である。S-SCH復調・復号部283bは、複素信号分離部290b、第1のレプリカ保持部291、相関部292b、第1のSSC同定部293、第2のSSC同定部296bを具備する。同図において図6の各部に対応する部分には同一の符号(291、293)を付け、その説明を省略する。 FIG. 10 is a schematic block diagram showing the configuration of the S-SCH demodulation / decoding unit 283b of the mobile station device 2b in the present embodiment. The S-SCH demodulation / decoding unit 283b includes a complex signal separation unit 290b, a first replica holding unit 291, a correlation unit 292b, a first SSC identification unit 293, and a second SSC identification unit 296b. In the figure, the same reference numerals (291, 293) are assigned to portions corresponding to the respective portions in FIG. 6, and the description thereof is omitted.
 複素信号分離部290bは、入力セレクタ280から入力された複素信号(伝搬路補償後の2次同期チャネルS-SCHの信号)を実部信号と虚部信号とに分離し、実部信号と虚部信号とを順次出力する。複素信号分離部290bは、実部信号および虚部信号を出力する際に、出力している信号が実部信号であるか虚部信号であるかを示す選択信号も出力する。相関部292bは、複素信号分離部290bから出力された実部信号と、虚部信号と、選択信号と、第1のレプリカ保持部291で保持されている符号SSCのレプリカと、同期部23から入力されたPSC番号とをもとに、後述する相関処理を行う。
 なお、相関部292b第2のSSC同定部296bは、相関部292bが虚部信号について相関処理を行った相関値から最大の相関となる系列を同定し、その相関値が既定の閾値未満の場合はEUTRAセルであると判定する。また、第2のSSC同定部296bは、相関値が既定の閾値と同じ、または、規定の閾値より大きい場合はAdvanced-EUTRAセルと判定して、最大の相関値をとる系列からAdvanced SSC番号を同定する。
The complex signal separation unit 290b separates the complex signal (secondary synchronization channel S-SCH signal after propagation path compensation) input from the input selector 280 into a real part signal and an imaginary part signal. Part signals are output sequentially. When outputting the real part signal and the imaginary part signal, the complex signal separation unit 290b also outputs a selection signal indicating whether the output signal is a real part signal or an imaginary part signal. The correlation unit 292b includes a real part signal, an imaginary part signal, a selection signal output from the complex signal separation unit 290b, a replica of the code SSC held by the first replica holding unit 291 and the synchronization unit 23. Based on the input PSC number, correlation processing described later is performed.
The correlation unit 292b and the second SSC identification unit 296b identify the sequence that has the maximum correlation from the correlation values that the correlation unit 292b performs the correlation process on the imaginary part signal, and the correlation value is less than a predetermined threshold value. Are determined to be EUTRA cells. Also, the second SSC identification unit 296b determines that the correlation value is the same as the predetermined threshold value or is larger than the predetermined threshold value, and determines the Advanced-EUTRA cell, and sets the Advanced SSC number from the sequence having the maximum correlation value. Identify.
 図11は、本実施形態における相関部292bの構成を示す概略ブロック図である。相関部292bは、第1のセレクタ300b、第1のS/P(Serial/Parallel)変換部301b、第2のセレクタ302b、第2のS/P変換部304b、乗算部305b、第1の加算器306b、第2の加算器307b、第3の加算器308b、減算器309b、第3のセレクタ310bを具備する。 FIG. 11 is a schematic block diagram showing the configuration of the correlation unit 292b in the present embodiment. The correlation unit 292b includes a first selector 300b, a first S / P (Serial / Parallel) conversion unit 301b, a second selector 302b, a second S / P conversion unit 304b, a multiplication unit 305b, and a first addition. 306b, a second adder 307b, a third adder 308b, a subtractor 309b, and a third selector 310b.
 第1のセレクタ300bは、実部信号と虚部信号とを選択信号に基づいて選択し出力する。第1のS/P変換部301bは、第1のセレクタ300bの出力をシリアル/パラレル変換する。第2のセレクタ302bは、入力されたPSC番号をもとに、PSC番号で想定されるすべての符号SSCの候補を順次選択し出力する。第2のS/P変換部304bは、第2のセレクタ302bからの信号をパラレル変換する。乗算部305bは、第1のS/P変換部301bの出力と第2のS/P変換部304bの出力を乗ずる。 The first selector 300b selects and outputs the real part signal and the imaginary part signal based on the selection signal. The first S / P converter 301b performs serial / parallel conversion on the output of the first selector 300b. The second selector 302b sequentially selects and outputs all code SSC candidates assumed by the PSC number based on the input PSC number. The second S / P converter 304b performs parallel conversion on the signal from the second selector 302b. Multiplier 305b multiplies the output of first S / P converter 301b and the output of second S / P converter 304b.
 第1の加算器306bは、乗算部305bにより乗算された信号のうち、バイナリ符号Cbの値が1の箇所(ビット)の信号を加算する。第2の加算器307bは、バイナリ符号Cbの値が-1の箇所(ビット)の信号を加算する。第3の加算器308bは、第1の加算器306bの出力と第2の加算器307bの出力とを加算する。減算器309bは、第1の加算器306bの出力から第2の加算器307bの出力を減算する。第3のセレクタ310bは、第3の加算器308bの出力と減算器309bの出力を選択信号に基づいて選択し出力する。 The first adder 306b adds signals (bits) where the value of the binary code Cb is 1 among the signals multiplied by the multiplier 305b. The second adder 307b adds signals at locations (bits) where the value of the binary code Cb is -1. The third adder 308b adds the output of the first adder 306b and the output of the second adder 307b. The subtractor 309b subtracts the output of the second adder 307b from the output of the first adder 306b. The third selector 310b selects and outputs the output of the third adder 308b and the output of the subtractor 309b based on the selection signal.
 S-SCH復調・復号部283bに入力された2次同期チャネルS-SCHのシステム帯域の中心の1サブキャリアを挟んだ両側31サブキャリアずつ、合計62サブキャリアの受信信号は、複素信号分離部290bで実部と虚部に分離される。S-SCH復調・復号部283bは、分離した62サブキャリアの実部信号と虚部信号とのうち、まず62個の実部信号を選択信号(選択信号=実部)とともに、相関部292bに入力する。続いて、S-SCH復調・復号部283bは、62個の虚部信号を選択信号(選択信号=虚部)とともに相関部292bに入力する。相関部292bでは、第1のセレクタ300bが、入力された選択信号をもとに、選択信号=「実部」であれば実部信号を第1のS/P変換部301bに出力し、選択信号=「虚部」であれば虚部信号を第1のS/P変換部301bに出力する。 The reception signal of a total of 62 subcarriers on both sides of 31 subcarriers sandwiching one subcarrier at the center of the system band of the secondary synchronization channel S-SCH input to the S-SCH demodulation / decoding unit 283b is a complex signal separation unit At 290b, the real part and the imaginary part are separated. The S-SCH demodulating / decoding section 283b first selects 62 real part signals out of the separated 62 subcarrier real part signals and imaginary part signals, together with a selection signal (selection signal = real part), to the correlation part 292b. input. Subsequently, the S-SCH demodulation / decoding unit 283b inputs the 62 imaginary part signals together with the selection signal (selection signal = imaginary part) to the correlation unit 292b. In the correlation unit 292b, the first selector 300b outputs the real part signal to the first S / P conversion unit 301b based on the input selection signal, if the selection signal = “real part”, and selects it. If signal = “imaginary part”, the imaginary part signal is output to the first S / P converter 301b.
 第1のS/P変換部301bは、第1のセレクタ300bから入力された実部信号または虚部信号を、シリアル/パラレル変換し、62個の実部信号または62個の虚部信号からなるパラレル信号を出力する。また、第2のセレクタ302bは、第1のレプリカ保持部291が168×2×3の符号SSCのレプリカのうち、同期部23から入力されたPSC番号をもとに対応する168×2種類の候補のレプリカを順次読み出し、複素共役算出部303bに出力する。複素共役算出部303bは、第2のセレクタ302bから入力された符号SSCのレプリカの複素共役を算出し、第2のS/P変換部304bに出力する。第2のS/P変換部304bは、入力されたレプリカの複素共役をシリアル/パラレル変換し、62個並列のパラレル信号を出力する。 The first S / P converter 301b performs serial / parallel conversion on the real part signal or the imaginary part signal input from the first selector 300b, and consists of 62 real part signals or 62 imaginary part signals. Output parallel signals. In addition, the second selector 302b includes 168 × 2 types of corresponding 168 × 2 × 3 types of replicas of the SSC code of 168 × 2 × 3 by the first replica holding unit 291 based on the PSC number input from the synchronization unit 23. Candidate replicas are sequentially read and output to the complex conjugate calculator 303b. The complex conjugate calculation unit 303b calculates the complex conjugate of the replica of the code SSC input from the second selector 302b, and outputs it to the second S / P conversion unit 304b. The second S / P converter 304b performs serial / parallel conversion on the complex conjugate of the input replica, and outputs 62 parallel signals.
 次に、乗算部305bは、第1のS/P変換部301bが出力したパラレル信号と第2のS/P変換部304bが出力したパラレル信号とを、乗算する。乗算部305は、乗算したパラレル信号のそれぞれの値をバイナリ符号Cbの符号によって、バイナリ符号Cbが「1」の位置の値は第1の加算器306bに、バイナリ符号Cbが「-1」の位置の値は第2の加算器307bに振り分け、出力する。第1の加算器306bおよび第2の加算器307bは、各々に入力された値を加算し、各々に入力された値の合計値を算出して出力する。 Next, the multiplier 305b multiplies the parallel signal output from the first S / P converter 301b and the parallel signal output from the second S / P converter 304b. The multiplication unit 305 uses the binary code Cb code for each value of the multiplied parallel signal, the value at the position where the binary code Cb is “1” is sent to the first adder 306b, and the binary code Cb is “−1”. The position value is distributed to the second adder 307b and output. The first adder 306b and the second adder 307b add the values input to each, calculate the sum of the values input to each, and output the result.
 第3の加算器308bは、第1の加算器306bの出力と第2の加算器307bの出力を加算して、出力する。これは第1のS/P変換部301bに入力された信号と、第2のS/P変換部304bに入力された信号との相関値を求める処理そのものである。また、減算器309bは、第1の加算器306bの出力から第2の加算器307bの出力を減算して、出力する。これは第1のS/P変換部301bに入力された信号と、第2のS/P変換部304bに入力された信号にバイナリ符号Cbが乗ぜられた信号との相関値を求める処理である。第3のセレクタ310bは、入力された選択信号をもとに、選択信号=「実部」であれば第3の加算器308bからの入力(実部の相関値)を出力し、選択信号=「虚部」であれば減算器309bからの入力(虚部の相関値)を出力する。 The third adder 308b adds the output of the first adder 306b and the output of the second adder 307b and outputs the result. This is the processing itself for obtaining the correlation value between the signal input to the first S / P converter 301b and the signal input to the second S / P converter 304b. The subtractor 309b subtracts the output of the second adder 307b from the output of the first adder 306b and outputs the result. This is a process for obtaining a correlation value between a signal input to the first S / P converter 301b and a signal obtained by multiplying the signal input to the second S / P converter 304b by a binary code Cb. . The third selector 310b outputs the input (correlation value of the real part) from the third adder 308b based on the input selection signal, if the selection signal = “real part”, and the selection signal = If it is “imaginary part”, the input (correlation value of the imaginary part) from the subtractor 309b is output.
 第3のセレクタ310bが出力した実部の相関値は、第1のSSC同定部293に入力され、虚部の相関値は、第2のSSC同定部296bに入力される。その後、第1のSSC同定部293は、SSC番号、サブフレーム番号を同定し、第2のSSC同定部296bにおいて受信信号を送信した基地局装置がAdvanced-EUTRAのセルか否かの情報とAdvanced SSC番号とを同定する。Advanced-EUTRAセルでない場合、Advanced SSC番号は無効となり破棄される。 The correlation value of the real part output from the third selector 310b is input to the first SSC identification unit 293, and the correlation value of the imaginary part is input to the second SSC identification unit 296b. Thereafter, the first SSC identification unit 293 identifies the SSC number and the subframe number, and information indicating whether or not the base station apparatus that has transmitted the received signal in the second SSC identification unit 296b is an Advanced-EUTRA cell and Advanced Identify the SSC number. If it is not an Advanced-EUTRA cell, the Advanced SSC number becomes invalid and is discarded.
 本実施の形態により、専用の周波数リソースを用意することなく、また既存のEUTRAの移動局装置の動作に影響を及ぼすことなく、基地局装置がAdvanced-EUTRAでの通信が可能か否かの識別が可能な同期チャネルを配置することができる。専用の周波数リソースが不要であるため、周波数利用効率を劣化させることなく、かつ同期チャネルを用いて基地局装置がAdvanced-EUTRAでの通信が可能か否かの識別が可能となるため、Advanced-EUTRAの移動局装置2bの通信状態における測定で、Advanced-EUTRAのセルを優先的に測定、報告することが可能となり、測定の効率化を図ることができる。 According to the present embodiment, it is possible to identify whether or not the base station apparatus can perform Advanced-EUTRA communication without preparing a dedicated frequency resource and without affecting the operation of the existing EUTRA mobile station apparatus. A synchronization channel that can be used can be arranged. Since no dedicated frequency resource is required, it becomes possible to identify whether or not the base station apparatus can communicate with the Advanced-EUTRA using the synchronization channel without degrading the frequency utilization efficiency. With measurement in the communication state of the mobile station apparatus 2b of EUTRA, it is possible to preferentially measure and report an Advanced-EUTRA cell, thereby improving the efficiency of measurement.
 また、Advanced SSCとして、EUTRAのSSCの符号系列を規定のバイナリ符号にて変換した系列を用いることにより、第1の実施形態と同様、Advanced-EUTRAのSSCに用いる符号とEUTRAのSSCで用いる符号との相関を低く保ちつつ、第1の実施形態に比べ、相関器を少ない回路で実装することが可能となる。 Further, by using a sequence obtained by converting an EUTRA SSC code sequence with a specified binary code as an Advanced-SSC, a code used for an Advanced-EUTRA SSC and a code used for an EUTRA SSC, as in the first embodiment. As compared with the first embodiment, it is possible to mount the correlator with a smaller number of circuits while keeping the correlation with the low correlation.
 また、図1におけるA/D変換部121、復調処理部122、制御部10、データ変調部130、制御信号変調部131、同期信号生成部132、多重・変調処理部133、D/A変換部134、および図3におけるA/D変換部22、同期部23、GI除去部24、S/P変換部25、FFT部26、伝搬路推定・補償部27 復調・復号部28、MAC部29、変調部30、IFFT部31、P/S変換部32、GI付加部33、および図7における同期信号生成部132a、および図8におけるS-SCH復調・復号部283a、および図9における同期信号生成部132b、および図10におけるS-SCH復調・復号部283bの機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより各部の処理を行ってもよいし、各部の処理を専用のハードウェアにより実現されるものであってもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。 1, A / D converter 121, demodulation processor 122, controller 10, data modulator 130, control signal modulator 131, synchronization signal generator 132, multiplexing / modulation processor 133, D / A converter 134, and A / D conversion unit 22, synchronization unit 23, GI removal unit 24, S / P conversion unit 25, FFT unit 26, propagation path estimation / compensation unit 27, demodulation / decoding unit 28, MAC unit 29 in FIG. Modulation unit 30, IFFT unit 31, P / S conversion unit 32, GI addition unit 33, synchronization signal generation unit 132a in FIG. 7, S-SCH demodulation / decoding unit 283a in FIG. 8, and synchronization signal generation in FIG. Unit 132b and a program for realizing the functions of S-SCH demodulation / decoding unit 283b in FIG. 10 are recorded on a computer-readable recording medium, and the recording medium The recorded program read into the computer system, may be subjected to a treatment of each part by executing the processing of each unit or may be implemented by dedicated hardware. Here, the “computer system” includes an OS and hardware such as peripheral devices.
 また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含むものとする。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであっても良い。 Further, the “computer-readable recording medium” means a storage device such as a flexible disk, a magneto-optical disk, a portable medium such as a ROM and a CD-ROM, and a hard disk incorporated in a computer system. Furthermore, the “computer-readable recording medium” dynamically holds a program for a short time like a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line. In this case, a volatile memory in a computer system serving as a server or a client in that case is also used to hold a program for a certain period of time. The program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system.
 以上、この発明の実施形態を図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。 As described above, the embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and includes design changes and the like without departing from the gist of the present invention.
 本発明は、Advanced-EUTRAを用いた移動体通信網の基地局装置および移動局装置に用いて好適であるが、これに限定されない。 The present invention is suitable for use in a base station apparatus and a mobile station apparatus of a mobile communication network using Advanced-EUTRA, but is not limited to this.
 1、1a、1b…基地局装置
 10…制御部
 11…受信アンテナ部
 12…受信部
 13…送信部
 14…送信アンテナ部
 120…受信アナログ回路部
 121…A/D変換部
 122…復調処理部
 130…データ変調部
 131…制御信号変調部
 132、132a、132b…同期信号生成部
 133…多重・変調処理部
 134…D/A変換部
 135…送信アナログ回路部
 1320…PSC1保持部
 1321…PSC2保持部
 1322…PSC3保持部
 1323…セレクタ
 1324…第1の符号保持部
 1325…第1の符号選択部
 1326…第2の符号保持部
 1327、1327b…第2の符号選択部
 1328…直交変調部
 1329…乗算部
 1330…乗算部
 1331…加算部
 1332a、1332b…乗算部
 1333a…バイナリ符号Ca保持部
 1333b…バイナリ符号Cb保持部
 2、2a、2b…移動局装置
 20…受信アンテナ部
 21…受信アナログ回路部
 22…A/D変換部
 23…同期部
 24…GI除去部
 25…S/P変換部
 26…FFT部
 27…伝搬路推定・補償部
 28、28a、28b…復調・復号部
 29…MAC部
 30…変調部
 31…IFFT部
 32…P/S変換部
 33…GI付加部
 34…D/A変換部
 35…送信アナログ回路部
 36…送信アンテナ部
 230…第1相関器
 231…第2相関器
 232…第3相関器
 233…第1バッファ
 234…第2バッファ
 235…第3バッファ
 236…セクタ・タイミング検出器
 280…入力セレクタ
 281…制御信号復調・復号部
 282…データ信号復調・復号部
 283、283a、283b…S-SCH復調・復号部
 284…出力セレクタ
 290、290b…複素信号分離部
 291…第1のレプリカ保持部
 292…実部相関部
 292b…相関部
 293…第1のSSC同定部
 294…第2のレプリカ保持部
 295、295a…虚部相関部
 296、296b…第2のSSC同定部
 297a…バイナリ符号Ca保持部
 298a…乗算部
 299a…判定部
 300b…第1のセレクタ
 301b…第1のS/P変換部
 302b…第2のセレクタ
 303b…複素共役算出部
 304b…第2のS/P変換部
 305b…乗算部
 306b…第1の加算器
 307b…第2の加算器
 308b…第3の加算器
 309b…減算器
 310b…第3のセレクタ
DESCRIPTION OF SYMBOLS 1, 1a, 1b ... Base station apparatus 10 ... Control part 11 ... Reception antenna part 12 ... Reception part 13 ... Transmission part 14 ... Transmission antenna part 120 ... Reception analog circuit part 121 ... A / D conversion part 122 ... Demodulation processing part 130 Data modulation unit 131 Control signal modulation unit 132, 132a, 132b Synchronization signal generation unit 133 Multiplexing / modulation processing unit 134 D / A conversion unit 135 Transmission analog circuit unit 1320 PSC1 holding unit 1321 PSC2 holding unit 1322 ... PSC3 holding unit 1323 ... selector 1324 ... first code holding unit 1325 ... first code selecting unit 1326 ... second code holding unit 1327, 1327b ... second code selecting unit 1328 ... orthogonal modulation unit 1329 ... multiplication Unit 1330 ... Multiplier 1331 ... Adder 1332a, 1332b ... Multiplier 1333a ... Binary code Ca holding unit 1333b ... Binary code Cb holding unit 2, 2a, 2b ... Mobile station apparatus 20 ... Reception antenna unit 21 ... Reception analog circuit unit 22 ... A / D conversion unit 23 ... Synchronization unit 24 ... GI removal unit 25 ... S / P conversion unit 26 ... FFT unit 27 ... propagation path estimation / compensation unit 28, 28a, 28b ... demodulation / decoding unit 29 ... MAC unit 30 ... modulation unit 31 ... IFFT unit 32 ... P / S conversion unit 33 ... GI addition unit 34 ... D / A conversion section 35 ... transmission analog circuit section 36 ... transmission antenna section 230 ... first correlator 231 ... second correlator 232 ... third correlator 233 ... first buffer 234 ... second buffer 235 ... third buffer 236 ... Sector timing detector 280 ... Input selector 281 ... Control signal demodulation / decoding unit 282 ... Data signal demodulation / decoding unit 283, 283a, 283b ... SS H demodulation / decoding unit 284 ... output selector 290, 290b ... complex signal separation unit 291 ... first replica holding unit 292 ... real part correlation unit 292b ... correlation unit 293 ... first SSC identification unit 294 ... second replica holding Unit 295, 295a ... imaginary part correlation unit 296, 296b ... second SSC identification unit 297a ... binary code Ca holding unit 298a ... multiplication unit 299a ... determination unit 300b ... first selector 301b ... first S / P conversion unit 302b ... second selector 303b ... complex conjugate calculation unit 304b ... second S / P conversion unit 305b ... multiplication unit 306b ... first adder 307b ... second adder 308b ... third adder 309b ... subtraction 310b ... Third selector

Claims (11)

  1.  2つの異なる無線通信方式で通信する基地局装置であって、
     前記2つの無線通信方式のうち、一方の無線通信方式のパラメータを表す同期チャネルの信号を実軸、他方の無線通信方式のパラメータを表す同期チャネルの信号を虚軸に配置して直交変調した信号を、同期チャネルに配置して送信することを特徴とする基地局装置。
    A base station apparatus that communicates with two different wireless communication methods,
    Of the two wireless communication systems, a signal obtained by orthogonal modulation by arranging a synchronization channel signal representing a parameter of one wireless communication system on a real axis and a synchronization channel signal representing a parameter of the other wireless communication system on an imaginary axis Is transmitted in a synchronization channel.
  2.  同期チャネルに配置される信号には、時間同期をとるための第1の同期信号と、当該基地局装置と通信する際のパラメータを指定する第2の同期信号とが含まれ、
     直交変調される前記同期チャネルの信号は、前記第2の同期信号であることを特徴とする請求項1に記載の基地局装置。
    The signal arranged in the synchronization channel includes a first synchronization signal for time synchronization and a second synchronization signal for specifying a parameter when communicating with the base station apparatus,
    The base station apparatus according to claim 1, wherein the signal of the synchronization channel that is orthogonally modulated is the second synchronization signal.
  3.  前記実軸に配置する信号の符号系列と虚軸に配置する信号の符号系列とが、互いに低相関の系列であることを特徴とする請求項1に記載の基地局装置。 2. The base station apparatus according to claim 1, wherein the code sequence of the signal arranged on the real axis and the code sequence of the signal arranged on the imaginary axis are low-correlation sequences.
  4.  前記実軸に配置する信号の符号系列と虚軸に配置する信号の符号系列とが、系列の一部については同一であり、系列の残りの部分については、互いに低相関の系列であることを特徴とする請求項1に記載の基地局装置。 The code sequence of the signal arranged on the real axis and the code sequence of the signal arranged on the imaginary axis are the same for a part of the series, and the remaining parts of the series are low-correlation series. The base station apparatus according to claim 1, wherein:
  5.  前記虚軸に配置する信号の符号系列は、前記実軸に配置する信号の符号系列に既定の符号が乗じられた系列であることを特徴とする請求項1記載の基地局装置。 The base station apparatus according to claim 1, wherein the code sequence of the signal arranged on the imaginary axis is a sequence obtained by multiplying the code sequence of the signal arranged on the real axis by a predetermined code.
  6.  前記虚軸に配置する信号の符号系列は、前記実軸に配置する信号の符号系列の候補のうち、前記他方の無線通信方式のパラメータに対応する符号系列に既定の符号が乗じられた系列であることを特徴とする請求項1記載の基地局装置。 The code sequence of the signal arranged on the imaginary axis is a sequence obtained by multiplying a code sequence corresponding to the parameter of the other radio communication scheme by a predetermined code among the code sequence candidates of the signal arranged on the real axis. The base station apparatus according to claim 1, wherein the base station apparatus is provided.
  7.  前記2つの無線通信方式は、前記パラメータの少なくとも一部を共通の値とし、値が共通のパラメータを、前記実軸に配置する信号にて送信することを特徴とする請求項1に記載の基地局装置。 2. The base according to claim 1, wherein the two wireless communication systems use at least a part of the parameters as a common value, and transmit a parameter having a common value as a signal arranged on the real axis. Station equipment.
  8.  前記値が共通のパラメータは、基地局装置を識別する情報であることを特徴とする請求項7に記載の基地局装置。 The base station apparatus according to claim 7, wherein the parameter having a common value is information for identifying a base station apparatus.
  9.  基地局装置から送信された同期チャネルを受信する受信部と、
     受信した同期チャネルの信号を、実軸の信号である実部信号と虚軸の信号である虚部信号とに分離する複素信号分離部と、
     前記実部信号と前記虚部信号との各々が表すパラメータのうち、当該移動局装置が通信にて用いる無線通信方式のパラメータを取得するパラメータ取得部と
     を具備することを特徴とする移動局装置。
    A receiving unit for receiving a synchronization channel transmitted from the base station device;
    A complex signal separation unit that separates the received synchronization channel signal into a real part signal that is a real axis signal and an imaginary part signal that is an imaginary axis signal;
    A mobile station apparatus comprising: a parameter acquisition unit that acquires a parameter of a wireless communication scheme used by the mobile station apparatus for communication among parameters represented by each of the real part signal and the imaginary part signal; .
  10.  2つの異なる無線通信方式で通信する基地局装置と、前記2つの無線通信方式のうちの少なくとも一つの無線通信方式を用いて前記基地局装置と通信する移動局装置とを備える無線通信システムであって、
     前記基地局装置は、前記2つの無線通信方式のうち、一方の無線通信方式のパラメータを表す同期チャネルの信号を実軸、他方の無線通信方式のパラメータを表す同期チャネルの信号を虚軸に配置して直交変調した信号を、同期チャネルに配置して送信し、
     前記移動局装置は、
     前記同期チャネルを受信する受信部と、
     受信した同期チャネルの信号を、実軸の信号である実部信号と虚軸の信号である虚部信号とに分離する複素信号分離部と、
     前記実部信号と前記虚部信号との各々が表すパラメータのうち、当該移動局装置が通信にて用いる無線通信方式のパラメータを取得するパラメータ取得部と
     を具備すること
     を特徴とする無線通信システム。
    A wireless communication system comprising: a base station device that communicates with two different wireless communication methods; and a mobile station device that communicates with the base station device using at least one of the two wireless communication methods. And
    The base station apparatus arranges a synchronization channel signal representing a parameter of one of the two wireless communication systems on a real axis and a synchronization channel signal representing a parameter of the other wireless communication system on an imaginary axis. The quadrature-modulated signal is placed in the synchronization channel and transmitted,
    The mobile station device
    A receiver for receiving the synchronization channel;
    A complex signal separation unit that separates the received synchronization channel signal into a real part signal that is a real axis signal and an imaginary part signal that is an imaginary axis signal;
    A wireless communication system comprising: a parameter acquisition unit that acquires a parameter of a wireless communication method used by the mobile station device for communication among parameters represented by each of the real part signal and the imaginary part signal .
  11.  2つの異なる無線通信方式で通信する基地局装置と、前記2つの無線通信方式のうちの少なくとも一つの無線通信方式を用いて前記基地局装置と通信する移動局装置とを備える無線通信システムにおけるパラメータ取得方法であって、
     前記基地局装置が、前記2つの無線通信方式のうち、一方の無線通信方式のパラメータを表す同期チャネルの信号を実軸、他方の無線通信方式のパラメータを表す同期チャネルの信号を虚軸に配置して直交変調した信号を、同期チャネルに配置して送信する第1に過程と、
     前記移動局装置が、前記同期チャネルを受信する第2の過程と、
     前記移動局装置が、前記第1の過程にて受信した同期チャネルの信号を、実軸の信号である実部信号と虚軸の信号である虚部信号とに分離する第3の過程と、
     前記移動局装置が、前記実部信号と前記虚部信号との各々が表すパラメータのうち、当該移動局装置が通信にて用いる無線通信方式のパラメータを取得する第4の過程と
     を備えることを特徴とするパラメータ取得方法。
    Parameters in a wireless communication system comprising: a base station device that communicates with two different wireless communication methods; and a mobile station device that communicates with the base station device using at least one of the two wireless communication methods An acquisition method,
    The base station apparatus places a synchronization channel signal representing a parameter of one of the two wireless communication systems on a real axis and a synchronization channel signal representing a parameter of the other wireless communication system on an imaginary axis. A first process of transmitting a quadrature modulated signal arranged in a synchronization channel;
    A second process in which the mobile station apparatus receives the synchronization channel;
    A third process in which the mobile station apparatus separates the synchronization channel signal received in the first process into a real part signal that is a real axis signal and an imaginary part signal that is an imaginary axis signal;
    The mobile station apparatus includes a fourth step of acquiring a parameter of a wireless communication method used by the mobile station apparatus for communication among parameters represented by each of the real part signal and the imaginary part signal. Characteristic parameter acquisition method.
PCT/JP2009/003809 2008-08-08 2009-08-07 Base station device, mobile station device, wireless communication system, and parameter acquisition method WO2010016276A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-206152 2008-08-08
JP2008206152 2008-08-08

Publications (1)

Publication Number Publication Date
WO2010016276A1 true WO2010016276A1 (en) 2010-02-11

Family

ID=41663504

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/003809 WO2010016276A1 (en) 2008-08-08 2009-08-07 Base station device, mobile station device, wireless communication system, and parameter acquisition method

Country Status (1)

Country Link
WO (1) WO2010016276A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016517659A (en) * 2013-03-11 2016-06-16 クアルコム,インコーポレイテッド Effective use of cyclic prefix in OFDM system under good channel condition

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009038786A (en) * 2007-07-10 2009-02-19 Sharp Corp Communication system, base station device and communication method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009038786A (en) * 2007-07-10 2009-02-19 Sharp Corp Communication system, base station device and communication method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZTE CORPORATION: "Technical points for LTE-advanced", 3GPP TSG RANI 53 MEETING RL-081773, - 5 May 2008 (2008-05-05), Retrieved from the Internet <URL:www.3gpp.org/TSG_RAN/WG1_RL1/> *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016517659A (en) * 2013-03-11 2016-06-16 クアルコム,インコーポレイテッド Effective use of cyclic prefix in OFDM system under good channel condition
US10348467B2 (en) 2013-03-11 2019-07-09 Qualcomm Incorporated Effective utilization of cyclic prefix in OFDM systems under benign channel conditions

Similar Documents

Publication Publication Date Title
EP2624488B1 (en) Data generation apparatus, data generation method, base station, mobile station, synchronization detection method, sector identification method, information detection method and mobile communication system
US8149686B2 (en) Base station apparatus, mobile station apparatus and synchronization channel transmission method
RU2515288C2 (en) Base station, terminal, band allocation method and downlink data communication method
WO2010018787A1 (en) User device and cell search method
US20110206032A1 (en) Base station apparatus, mobile station apparatus, communication system, and communication method
JP4960059B2 (en) OFDM transmitter, OFDM receiver, base station, mobile station, OFDM communication system, and cell search method
KR20100083789A (en) User device and verification method
JP2008124832A (en) Base station device, mobile station, radio communication system, cell search method and program
KR20110052669A (en) User device and cell search method
JP2008236383A (en) Radio communication system
WO2008032357A1 (en) Ofdm transmitter and ofdm receiver
JP5102842B2 (en) Base station apparatus, mobile station apparatus, communication system, and cell search method
US10177904B2 (en) Leveraging secondary synchronization signal properties to improve synchronization signal detection
JP2008283528A (en) Mobile communication system, radio controller and communication terminal device
JP5045127B2 (en) Wireless communication system
WO2010016276A1 (en) Base station device, mobile station device, wireless communication system, and parameter acquisition method
KR100957210B1 (en) Method for transmitting signal and method for receiving signal
KR100903868B1 (en) Method for transmitting signal and method for receiving signal
KR100881421B1 (en) Method for transmitting signal, method for manufacuring downlink frame and method for receiving signal
JP2009005060A (en) Mobile communication system, radio control unit, and communication terminal device
JP2008167304A (en) Receiver, mobile station and base station
JP2009065557A (en) Base station device, mobile station device, communication system and communication method
JP2008311738A (en) Radio transmitter, radio receiver, radio communication system, program, and radio communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09804763

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09804763

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP