WO2010016116A1 - Process for producing hydrogen gas from mixed gas containing hydrogen halide, hydrogen and silicon halide, process for producing silicon compound with use of the hydrogen gas, and plant for the processes - Google Patents

Process for producing hydrogen gas from mixed gas containing hydrogen halide, hydrogen and silicon halide, process for producing silicon compound with use of the hydrogen gas, and plant for the processes Download PDF

Info

Publication number
WO2010016116A1
WO2010016116A1 PCT/JP2008/064118 JP2008064118W WO2010016116A1 WO 2010016116 A1 WO2010016116 A1 WO 2010016116A1 JP 2008064118 W JP2008064118 W JP 2008064118W WO 2010016116 A1 WO2010016116 A1 WO 2010016116A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
hydrogen
halide
silicon
aqueous solvent
Prior art date
Application number
PCT/JP2008/064118
Other languages
French (fr)
Japanese (ja)
Inventor
和之 湯舟
義久 小林
山崎 正樹
裕介 和久田
Original Assignee
電気化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 電気化学工業株式会社 filed Critical 電気化学工業株式会社
Priority to PCT/JP2008/064118 priority Critical patent/WO2010016116A1/en
Priority to JP2010523675A priority patent/JP5566290B2/en
Publication of WO2010016116A1 publication Critical patent/WO2010016116A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/08Compounds containing halogen
    • C01B33/107Halogenated silanes
    • C01B33/1071Tetrachloride, trichlorosilane or silicochloroform, dichlorosilane, monochlorosilane or mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/065Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents from a hydride
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/52Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with liquids; Regeneration of used liquids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/08Compounds containing halogen
    • C01B33/107Halogenated silanes
    • C01B33/10773Halogenated silanes obtained by disproportionation and molecular rearrangement of halogenated silanes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/01Chlorine; Hydrogen chloride
    • C01B7/07Purification ; Separation
    • C01B7/0706Purification ; Separation of hydrogen chloride
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0415Purification by absorption in liquids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to a method for producing hydrogen gas from a mixed gas containing hydrogen halide, hydrogen and silicon halide, a method for producing a silicon compound using the hydrogen gas, and a plant for the method.
  • Silicon is an element that is abundant in the crust after oxygen, and is estimated to account for about 28% of the elements that make up the crust.
  • Metallic silicon has been used as a semiconductor material since the 1960s and has become the most important material in the electronics industry.
  • Monosilane (SiH 4 ), monochlorosilane (SiH 3 Cl), dichlorosilane (SiH 2 Cl 2 ), and trichlorosilane (SiHCl 3 ) are special material gases used for manufacturing such semiconductors, liquid crystal panels, solar cells, and the like. It is. In recent years, demand has been steadily expanding, and growth is expected as a CVD material widely used in the electronics field.
  • Tetrachlorosilane (silicon tetrachloride: SiCl 4 ) is a starting material for producing these monosilane, monochlorosilane, dichlorosilane, and trichlorosilane.
  • Patent Document 1 As a conventional method for producing tetrachlorosilane, for example, there is one described in Patent Document 1.
  • chlorine that is diluted 3 to 10 times (volume ratio) with an inert gas and supplied from the bottom of the reactor is reacted with metal silicon in a semi-fluid state (slagging) at a reaction temperature of 450 ° C. to 800 ° C.
  • a method for producing silicon tetrachloride is described.
  • Patent Document 2 As a conventional method for producing trichlorosilane, there is, for example, one described in Patent Document 2.
  • a gas mixture having a molar ratio of SiCl 4 and H 2 of 1: 1 to 1: 2 is introduced into a reactor heated to 1200 ° C. over 1200 ° C. and reacted to obtain a thermal equilibrium state.
  • the molar ratio of SiHCl 3 and HCl, which is an equilibrium mixture, is 1: 1 to 1: 4, and the mixture containing SiCl 2 and H 2 is rapidly cooled to 600 ° C. or less within 1 second to carry out the reaction.
  • a process for the production of SiHCl 3 is described which improves the yield and yield of SiHCl 3 by freezing.
  • Patent Document 3 Examples of conventional production methods for dichlorosilane, monochlorosilane, and monosilane are described in Patent Document 3, for example.
  • a method for continuously producing a silane compound such as monosilane, monochlorosilane or dichlorosilane while circulating in a column is described.
  • a silicon single crystal used for manufacturing a semiconductor device is produced from polycrystalline silicon by various growth methods.
  • polycrystalline silicon used as a starting material is required to have extremely high purity. Therefore, although the same process is described in Patent Document 1, polycrystalline silicon is usually charged with hydrogen chloride (HCl) in a layer (fixed bed, fluidized bed) filled with metal silicon having a purity of 95% or more.
  • HCl hydrogen chloride
  • SiCl 4 silicon tetrachloride
  • H 2 silicon tetrachloride
  • SiHCl 3 trichlorosilane
  • SiHCl 3 trichlorosilane
  • SiHCl 3 trichlorosilane
  • SiHCl 3 high-purity trichlorosilane
  • high-boiling substances generated by chlorination of (Al, Fe, etc.) are included.
  • halogen-based gases such as halogen and hydrogen halide have been conventionally used as etching gas or cleaning gas.
  • halogen-based gases are harmful to the human body and the environment, and it is indispensable to purify the exhaust gas containing these gases before discharging them outside the factory.
  • a method for purifying exhaust gas containing a halogen-based gas a dry purification method in which the exhaust gas is introduced into a processing cylinder filled with a solid purification agent and brought into contact with the purification agent to remove the halogen-based gas from the exhaust gas.
  • Many wet purification methods for removing halogen-based gas from exhaust gas by bringing it into contact with a halogen-based gas absorbing solution ejected from the upper part of the processing apparatus have been practiced.
  • Patent Document 5 As a processing method and a processing apparatus that can reduce the halogen-based gas concentration in the gas after processing without risk of fire.
  • an exhaust gas containing a halogen-based gas discharged from a semiconductor manufacturing process is brought into contact with an adsorbent to adsorb and remove the halogen-based gas from the exhaust gas, and a halogen-based gas absorption liquid is added to the adsorbent.
  • An exhaust gas treatment apparatus in which a halogen-based gas adsorbed by an adsorbent is absorbed in a halogen-based gas absorption liquid and desorbed from the adsorbent.
  • adsorbent cleaning agent
  • JP 2002-173313 A JP 60-81010 A Japanese Patent Publication No. 64-3804 JP 2004-256338 A JP 2006-130499 A
  • HCl gas is used separately from the target gas containing various chlorosilanes or monosilanes.
  • H 2 gas, chlorosilane gas, and the like are often discharged outside the reactor as unnecessary exhaust gas.
  • chlorosilane gases such as trichlorosilane, dichlorosilane, and monochlorosilane, or monosilane gas and H 2 gas, and oxygen in the air. Risk of explosion by reaction and fire.
  • HCl gas, chlorosilane gas, or monosilane gas is harmful to the human body and the environment, and it is indispensable to purify the exhaust gas containing these gases before discharging them outside the factory.
  • HCl gas and H 2 gas contained in such unnecessary exhaust gas may be reused as raw materials when producing various chlorosilanes or monosilanes such as tetrachlorosilane, trichlorosilane, dichlorosilane, and monochlorosilane. There is. Therefore, discarding these HCl gas and H 2 gas as unnecessary exhaust gas, or changing to another substance by chemical reaction for safe processing, HCl gas, which is a very useful raw material, H 2 gas is wasted.
  • Patent Document 4 removes high-boiling substances that cause clogging of pipes and the like when recovering chlorosilanes from an aggregate of chlorosilanes containing fine powder and high-boiling substances (impurities),
  • the purpose is to recover high-purity chlorosilanes with high yield, so it is particularly useful for safely treating unnecessary exhaust gas containing HCl gas, H 2 gas, chlorosilanes gas, etc. Can't stand.
  • Patent Document 5 uses sodium hydroxide (concentration 2 wt%), calcium hydroxide (concentration 2 wt%), sodium sulfite (concentration 5 wt%), sodium thiosulfate (concentration 20 wt%) as a halogen-based gas absorption solution. Since an aqueous solution containing sodium carbonate (concentration 5 wt%) and sodium hydrogen carbonate (concentration 5 wt%) is used, HCl gas is neutralized by the alkaline aqueous solution, and wasteful HCl gas, which is a useful raw material, is wasted. It will be thrown away. Further, even when water is used as the halogen-based gas absorbing solution, there is no mention of particularly recovering and reusing HCl gas.
  • chlorosilane gases such as trichlorosilane, dichlorosilane, and monochlorosilane, or monosilane gas
  • SiO 2 is precipitated or deposited in the sump or drain pipe of halogen gas absorbing liquid, and extravasation of halogen gas absorbing liquid from the reservoir, It may cause clogging of drainage pipes.
  • the present invention has been made in view of the above circumstances, and it is possible to stably remove hydrogen halide and silicon halide from a mixed gas containing hydrogen halide, hydrogen and silicon halide by a wet processing method.
  • An object of the present invention is to provide a technique for separating reusable hydrogen gas.
  • Another object of the present invention is to provide a technique for separating industrially reusable hydrogen halide gas from hydrogen halide removed by the wet processing method.
  • a method of producing hydrogen gas by separating hydrogen from a mixed gas containing hydrogen halide, hydrogen and silicon halide, and contacting the mixed gas and the first aqueous solvent, Reacting the silicon halide and the first aqueous solvent to obtain at least a part of the silicon halide from the mixed gas to obtain a first purified gas; and the first purified gas and the second aqueous solvent.
  • the silicon halide and the first aqueous solvent are reacted, and the design, operation, At least a portion of the silicon halide can be stably removed from the mixed gas by a wet processing method that is easy to maintain.
  • the hydrogen halide contained in the first purified gas is converted into the second aqueous solvent.
  • At least a part of the hydrogen halide can be stably removed from the first purified gas by a wet processing method that is absorbed in and easy to design, operate, and maintain.
  • At least a part of silicon halide and hydrogen halide is stably produced from a mixed gas containing hydrogen halide, hydrogen, and silicon halide by a wet processing method that is easy to design, operate, and maintain.
  • a wet processing method that is easy to design, operate, and maintain.
  • the hydrogen halide removed by the above wet processing method is merely absorbed in the second aqueous solvent, and is separated by another chemical reaction with other chemical substances. Since it is not changed to a chemical substance, it is possible to recover the hydrogen halide absorbed in the second aqueous solvent. Therefore, according to this method, the industrially reusable hydrogen halide gas can be separated.
  • a method of reducing silicon halide to produce a silicon compound having a lower halogenation degree than silicon halide wherein the silicon halide is reduced using hydrogen and silicon halide as raw materials.
  • the industrially reusable hydrogen gas thus separated is supplied again as a raw material to the step of reducing the silicon halide, thereby reducing the amount of dangerous exhaust gas emitted.
  • it enables efficient use of resources, improves the production efficiency of chemical processes that reduce silicon halide, and can also help solve environmental problems.
  • a plant for producing hydrogen gas by separating hydrogen from a mixed gas containing hydrogen halide, hydrogen and silicon halide, and contacting the mixed gas and the first aqueous solvent.
  • a first purified gas obtained by reacting silicon halide and the first aqueous solvent to remove at least a part of the silicon halide from a mixed gas, and a first purified gas
  • a second purified gas obtained by allowing hydrogen halide to be absorbed into the second aqueous solvent by contacting the second aqueous solvent and removing at least a part of the hydrogen halide from the first purified gas.
  • a hydrogen gas production plant comprising:
  • hydrogen halide, a mixed gas containing hydrogen and silicon halide, and the first aqueous solvent are brought into contact with each other, so that the silicon halide and the first aqueous solvent are first reacted to design, operate, At least a portion of the silicon halide can be stably removed from the mixed gas by a wet processing method that is easy to maintain.
  • the hydrogen halide contained in the first purified gas is converted into the second aqueous solvent.
  • At least a part of the hydrogen halide can be stably removed from the first purified gas by a wet processing method that is absorbed in and easy to design, operate, and maintain.
  • At least a part of silicon halide and hydrogen halide is stably produced from a mixed gas containing hydrogen halide, hydrogen and silicon halide by a wet processing method which is easy to design, operate and maintain.
  • a wet processing method which is easy to design, operate and maintain.
  • the hydrogen halide removed by the above wet processing method is merely absorbed in the second aqueous solvent, and is separated by another chemical reaction with other chemical substances. Since it is not changed to a chemical substance, it is possible to recover the hydrogen halide absorbed in the second aqueous solvent. Therefore, according to this plant, separation of industrially reusable hydrogen halide gas can be performed.
  • the above-described hydrogen gas production method, silicon compound production method, and hydrogen gas production plant are one embodiment of the present invention, and the hydrogen gas production method, silicon compound production method, and hydrogen gas production plant of the present invention. May be any combination of the above components.
  • the hydrogen gas separation method, hydrogen gas purification method, hydrogen gas recovery method, hydrogen gas recycling method, hydrogen gas treatment method, hydrogen halide gas production method, hydrogen halide gas separation method of the present invention Method, halogen gas purification method, halogen gas recovery method, halogen gas recycling method, halogen gas treatment method, silicon compound reduction method, hydrogen gas separation plant, hydrogen gas purification plant, hydrogen Gas recovery plant, hydrogen gas recycling plant, hydrogen gas processing plant, hydrogen halide gas production plant, hydrogen halide gas separation plant, halogenated gas purification plant, halogenated gas recovery plant, halogenated Gas recycling plants, halogenated gas processing plants, silicon compound reduction plants, etc. have the same configuration. And, the same effects.
  • high-purity hydrogen gas having a small content of silicon halide and hydrogen halide can be separated, and industrially reusable hydrogen gas can be separated. Further, according to the present invention, industrially reusable hydrogen halide gas can be separated.
  • FIG. 5 is a diagram for explaining a flow of a hydrogen gas production process according to the first embodiment.
  • FIG. 10 is a diagram for explaining equipment for a production process of trichlorosilane used in a modification of the second embodiment. It is a figure for demonstrating the equipment of the manufacturing process of dichlorosilane, monochlorosilane, and monosilane used in Embodiment 2.
  • reaction tower 2 reboiler 3: condenser 4: raw material supply conduit 5: control valve 6: condenser 7: collection storage tank 8: control valve 9: evaporation tank 10: pump 11: condenser 12: storage tank 13: replenishment Tube 21: SiCl 4 evaporator 22: heater 23: reactor 24: electric furnace 25: take-out tube 26: condenser 27: sample port 100: plant 102: washing tower 104: slurry storage tank 106: filter press 108: hydrochloric acid scrubber 110: diffusion tower 112: water washing tower 114; removal tower 116: moisture removal device
  • the expression “minimum value to maximum value” means a numerical range not less than the minimum value and not more than the maximum value. Further, the expression “%” means volume% (v / v) unless otherwise specified.
  • halogenated silicon means halogenated silicon and is a compound of chlorosilanes such as SiCl 4 , SiHCl 3 , SiH 2 Cl 2 , and SiH 3 Cl. It is a concept that includes In addition to chlorosilane compounds, SiF 4 , SiHF 3 , SiH 2 F 2 , SiH 3 F, SiBr 4 , SiHBr 3 , SiH 2 Br 2 , SiH 3 Br, SiI 4 , SiHI 3 , SiH 2 It is a concept including I 2 and SiH 3 I.
  • chlorosilane which is a kind of silicon halide, includes the following four types.
  • Material name Chemical formula Boiling point Tetrachlorosilane (silicon tetrachloride) SiCl 4 57 ° C Trichlorosilane SiHCl 3 32 ° C Dichlorosilane SiH 2 Cl 2 8 ° C Monochlorosilane SiH 3 Cl 30 ° C
  • said trichlorosilane is classified into the dangerous goods (class 3) of the Fire Service Act.
  • Monosilane Monosilane (SiH 4 ) is a compound having a boiling point of ⁇ 112 ° C., and is classified as a special high-pressure gas (pyrophoric).
  • Monosilane is a special material gas used for manufacturing semiconductors, liquid crystal panels, solar cells, and the like. In recent years, demand has been steadily expanding, and growth is expected as a CVD material widely used in the electronics field.
  • silicon compound means a compound containing silicon and other elements.
  • Silicon compounds include silicon halides (tetrachlorosilane, trichlorosilane, dichlorosilane, monochlorosilane) and monosilane.
  • reduction of silicon halide means that a reduction substance such as hydrogen gas is reacted with silicon halide to increase the degree of reduction (halogenation). It means that it is converted to a low-grade substance.
  • a reduction substance such as hydrogen gas
  • hydrogen halide means a hydride of a Group 17 element. Only a compound that is bonded one-to-one with hydrogen is known, and HX may be written as an abbreviation for hydrogen halide in general. For example, hydrogen fluoride (HF, boiling point 19.5 ° C.), hydrogen chloride (HCl, boiling point ⁇ 85.1 ° C.), hydrogen bromide (HBr, boiling point ⁇ 67.1 ° C.), hydrogen iodide (HI, boiling point ⁇ 35.1 ° C.). Although hydrogen halides other than hydrofluoric acid are completely ionized in water, they themselves are not very strong polar substances.
  • aqueous solutions of hydrogen chloride, hydrogen bromide, and hydrogen iodide are completely ionized and show strong acidity, and the strength of the acid is in the order of HCl ⁇ HBr ⁇ HI.
  • hydrochloric acid hydrogen chloride, HCl
  • HCl hydrochloric acid
  • hydrogen means hydrogen molecule (hydrogen gas) H 2 which is a simple substance of hydrogen. Hydrogen molecules are colorless and odorless gases at room temperature, have a boiling point of ⁇ 252.6 ° C., are light and extremely flammable.
  • the cheapest and cleanest reducing agents include trichlorosilane, dichlorosilane, monochlorosilane and monosilane production processes, as well as hydrochloric acid production, metal ore reduction, and oil and fat modification. It is used in many fields such as quality and desulfurization.
  • the aqueous solvent is a concept including water, an aqueous solution, and a polar solvent.
  • water is not limited to only 100% pure H 2 O, and may be an aqueous solution or a water suspension containing some impurities, It shall be described as water.
  • the polar solvent includes a protic polar solvent and an aprotic polar solvent. Examples of the protic solvent include water (H 2 O), ethanol (CH 3 CH 2 OH), methanol (CH 3 OH), acetic acid (CH 3 C ( ⁇ O) OH), and the like.
  • suspension means a mixture of particles and liquid that are at least 1 micrometer or larger and larger than a colloid. Unlike colloidal solutions, suspensions settle to a steady state over time.
  • An example of a suspension is a slurry containing silica and water (or aqueous hydrochloric acid). Suspended particles can be seen with a microscope, and when placed in a quiet place, they settle down over time.
  • a scrubber (cleaning dust collection device) is a kind of harmful substance removal device contained in exhaust gas, and a liquid such as water is used as a cleaning liquid to remove particles, etc. in the exhaust gas.
  • various devices have been devised for forming droplets, liquid films, and the like and cleaning methods.
  • a method of collecting dust by passing exhaust gas into the stored water (reservoir type), a method of injecting pressurized water into the flow of exhaust gas (pressurized water type), and a cleaning film sprayed on a filling material such as plastic and porcelain.
  • a method of collecting dust by contact packed layer type
  • a method of dispersing cleaning liquid with a rotating body and contacting exhaust gas rotary type
  • the filter press is a typical method for pressure filtration, and is a filter plate with a hole in the center with metal or resin unevenness.
  • This is a device in which a filter cloth is attached in series, and slurry (silica, sludge, excavated soil, cement, etc.) is pressed and pressed through a hole in the center of the filter plate with a pump. .
  • slurry sica, sludge, excavated soil, cement, etc.
  • a dehydrated cake is formed between the filter plates (actually between the filter cloth and the filter cloth). It is formed.
  • the filter plate is opened and the cake is discharged.
  • Most recent products are products that automate the discharge of cake.
  • FIG. 1 is a diagram for explaining the equipment of the hydrogen gas production process according to the present embodiment.
  • hydrogen gas is separated from a mixed gas containing hydrogen chloride, hydrogen and chlorosilane to produce hydrogen gas.
  • a plant 100 shown in FIG. 1 is a plant 100 that produces hydrogen gas by separating hydrogen from a mixed gas containing hydrogen chloride, hydrogen, and chlorosilane.
  • the mixed gas is supplied by recovering a gas discharged when reducing chlorosilane using hydrogen and chlorosilane as raw materials. That is, the plant 100 stably treats exhaust gas in the reduction reaction of chlorosilane so as not to adversely affect the environmental load and the human body, and separates hydrogen and hydrogen chloride for reuse as valuable raw materials. It is a plant for the purpose.
  • the hydrogen chloride concentration in the mixed gas is preferably 10 mol% or less, and for example, a gas within the range of 7 to 8 mol% can be suitably used.
  • the hydrogen chloride concentration contained in the exhaust gas in the reduction reaction of chlorosilane is 10 mol% or less, if the hydrogen chloride concentration in this exhaust gas is 10 mol% or less, the plant 100 described below can reasonably chlorinate. This is because hydrogen can be treated stably.
  • a mixed gas containing hydrogen chloride, hydrogen and chlorosilane and an aqueous solvent (silica hydrochloric acid circulating slurry) are brought into contact with each other, whereby chlorosilane and an aqueous solvent (silica hydrochloric acid silica) contained in the mixed gas are contacted.
  • chlorosilane and an aqueous solvent (silica hydrochloric acid silica) contained in the mixed gas are contacted.
  • the water contained in the circulating slurry is reacted.
  • a first purified gas (mixed gas containing hydrogen chloride, hydrogen and a small amount of residual chlorosilane) obtained by removing at least a part of chlorosilane from the mixed gas is obtained in the cleaning tower 102.
  • the washing tower 102 plays a role as a kind of reaction apparatus for reacting chlorosilane gas with water to produce silicon dioxide (SiO 2 ).
  • the chlorosilane gas contained in the mixed gas is absorbed (precisely suspended) as silica particles (SiO 2 particles) in the hydrochloric acid silica slurry circulating in the washing tower 102 and the slurry storage tank 104. It will be. A part of the silica particles (SiO 2 particles) stays as a suspension at the bottom of the slurry storage tank 104, and therefore a part of the retained silica particles (SiO 2 particles) is removed from the slurry storage tank 104. It is extracted and fed to the filter press 106.
  • the first purified gas (mixed gas containing hydrogen chloride, hydrogen and a slight amount of residual chlorosilane) is sent from the top exit of the cleaning tower 102 to the hydrochloric acid scrubber 108.
  • This hydrochloric acid scrubber 108 is contained in the first purified gas by contacting the first purified gas (mixed gas containing hydrogen chloride, hydrogen and a slight amount of residual chlorosilane) and an aqueous solvent (hydrochloric acid aqueous solution). Hydrogen chloride is absorbed into an aqueous solvent (aqueous hydrochloric acid).
  • a second purified gas (a slight residual hydrogen chloride, hydrogen obtained by removing at least a part of hydrogen chloride from the first purified gas (a mixed gas containing hydrogen chloride, hydrogen and a small amount of residual chlorosilane)). And a mixed gas containing a small amount of residual chlorosilane).
  • the hydrochloric acid scrubber 108 absorbs hydrogen chloride and chlorosilane contained in the first purified gas, which is the top outlet gas of the cleaning tower 102, with water contained in the aqueous hydrochloric acid solution (exactly, hydrogen chloride is absorbed with water). Chlorosilane reacts with water to produce silicon dioxide (SiO 2 ).
  • silica particles are generated by the reaction of chlorosilane and water, as in the case of the washing tower 102.
  • a small amount of silica particles (SiO 2 particles) generated in the hydrochloric acid scrubber 108 are sent into the cleaning tower 102 together with the hydrochloric acid aqueous solution, and then further slurried. Since it stays as a suspension at the bottom of the storage tank 104, some of the retained silica particles (SiO 2 particles) are extracted from the slurry storage tank 104 and fed to the filter press 106.
  • the plant 100 is a removal device (not shown) for removing silica particles (SiO 2 particles) generated by the reaction of chlorosilane and water in the washing tower 102 from the bottom suspension of the slurry storage tank 104.
  • This removal device (not shown) only needs to be able to discharge silica particles (SiO 2 particles) well from the bottom suspension of the slurry reservoir 104.
  • the removal device (not shown) may be scraped by a screw or may be sucked by a pump. .
  • the plant 100 performs solid-liquid separation on the suspension containing the silica particles (SiO 2 particles) thus removed, so that a liquid containing hydrogen chloride (
  • a filter press 106 for collecting (hydrochloric acid) is further provided. That is, the filter press 106 separates the silica particles suspension comprising (SiO 2 particles), and a solid component comprising silica particles (SiO 2 particles) predominantly, a liquid component comprising an aqueous solution of hydrochloric acid mainly in It will serve as a kind of solid-liquid separator.
  • the silica content is filtered by the filter press 106 in this way, and then the filtered liquid is sent to the stripping tower 110.
  • the plant 100 further includes a diffusion tower 110 for diffusing the liquid (hydrochloric acid aqueous solution) containing hydrogen halide recovered by the filter press 106 in this way.
  • the hydrochloric acid aqueous solution is diffused in the stripping tower 110, whereby gas-liquid separation is performed into hydrogen chloride gas having a hydrogen chloride concentration of 99% or more and a liquid (hydrochloric acid aqueous solution) containing hydrogen chloride.
  • the diffusion tower 110 plays a role as a kind of gas-liquid separator.
  • the liquid (hydrochloric acid aqueous solution) containing hydrogen halide recovered by the filter press 106 is released into the stripping tower 110, so that the pressure of the hydrogen chloride in the liquid (hydrochloric acid aqueous solution) is reduced. Since the saturation concentration is lowered and the contact area with the gas is increased, hydrogen chloride in the liquid (hydrochloric acid aqueous solution) is gasified to obtain high-purity hydrogen chloride gas having a hydrogen chloride concentration of 99% or more.
  • the stripping tower 110 the liquid after filtration by the filter press 106 is stripped, hydrogen chloride gas is obtained from the top of the stripping tower, and an aqueous hydrochloric acid solution having a concentration of about 20% is obtained from the bottom of the tower.
  • the bottom liquid of the stripping tower 110 (hydrochloric acid solution having a concentration of about 20%) is sent to the cleaning tower 102 and the hydrochloric acid scrubber 108.
  • hydrogen chloride is circulated in the plant 100 without being wasted and discarded, so that resource efficiency is improved and adverse effects on the environment are reduced.
  • the second purified gas (mixed gas containing a slight residual hydrogen chloride, hydrogen and a slight residual chlorosilane) obtained by the hydrochloric acid scrubber 108 is further sent to the washing tower 112.
  • the second purified gas (mixed gas containing a slight residual hydrogen chloride, hydrogen and a slight residual chlorosilane) and an aqueous solvent (aqueous hydrochloric acid solution) are brought into contact.
  • chlorosilane remaining in the second purified gas and water in the hydrochloric acid aqueous solution are reacted to generate silicon dioxide (SiO 2 ), so that it slightly remains in the second purified gas. At least a portion of the chlorosilane to be removed is removed. Further, in the water washing tower 112, hydrogen chloride remaining in the second purified gas is absorbed by the aqueous hydrochloric acid solution, so that at least a part of the hydrogen chloride remaining slightly in the second purified gas is removed. As a result, a third purified gas obtained by further removing at least part of the slightly remaining chlorosilane and slightly remaining hydrogen chloride from the second purified gas is obtained from the top of the water washing tower 112. become. This third purified gas is a mixed gas containing very little residual hydrogen chloride, hydrogen and very little residual chlorosilane.
  • the water washing tower 112 absorbs hydrogen chloride contained in the second purified gas sent from the tower top outlet of the hydrochloric acid scrubber 108 with water contained in the aqueous hydrochloric acid solution. Further, this water washing tower 112 absorbs chlorosilane contained in the second purified gas into water contained in the aqueous hydrochloric acid solution (more precisely, it reacts with water to produce silicon dioxide (SiO 2 )). Clearly play a role.
  • the third purified gas (including very little residual hydrogen chloride, hydrogen, and very little residual chlorosilane) obtained in the water washing tower 112 is sent to the removal tower 114 from the top outlet of the water washing tower 112.
  • a third purified gas (containing very little residual hydrogen chloride, hydrogen and very little residual chlorosilane) and an alkaline aqueous solvent (NaOH aqueous solution) are brought into contact with each other, thereby bringing the third purified gas into contact with the third purified gas. Is reacted with a slight remaining amount of hydrogen chloride and an alkaline aqueous solvent (aqueous NaOH solution).
  • a fourth purified gas (high-purity hydrogen gas having a purity of 99% or more) obtained by removing at least a part of hydrogen chloride from the third purified gas is obtained from the top of the removal tower 114. That is, the removal tower 114 serves as an acid-alkali reactor for washing and neutralizing a small amount of hydrogen chloride contained in the third purified gas obtained from the top outlet of the water washing tower 112 with an aqueous NaOH solution.
  • the fourth purified gas (high-purity hydrogen gas) obtained from the top of the removal tower 114 removes moisture from the fourth purified gas (high-purity hydrogen gas) and has a moisture content of 0. It is sent to a water removal device (not shown) for obtaining a fifth purified gas that is 5% or less.
  • the moisture removing device (not shown) is not particularly limited as long as moisture can be removed from the fourth purified gas (high purity hydrogen gas).
  • the moisture removing device is filled with a moisture adsorbing material.
  • An adsorption tower, a vacuum moisture removing device, a dry scrubber filled with a moisture absorbent capable of removing moisture can be preferably used.
  • hydrogen gas for example, newly purchased virgin H 2 gas
  • the moisture removing device serves as a kind of hydrogen purifier (not shown) that dehydrates the hydrogen separated in the hydrochloric acid recovery step and the supplemental hydrogen.
  • a hydrogen gas production plant 100 is a plant 100 that produces hydrogen gas by separating hydrogen from a mixed gas containing hydrogen chloride, hydrogen, and chlorosilane. And this production plant 100 makes the water contained in a chlorosilane and a hydrochloric acid silica slurry react by making a mixed gas and a hydrochloric acid silica slurry contact, The 1st refinement
  • a cleaning tower 102 for obtaining gas is provided.
  • the production plant 100 is configured to absorb hydrogen chloride in the aqueous hydrochloric acid solution by contacting the first purified gas and the aqueous hydrochloric acid solution, and remove at least a part of the hydrogen chloride from the first purified gas.
  • a hydrochloric acid scrubber 108 is provided to obtain a second purified gas.
  • this production plant 100 by contacting the mixed gas containing hydrogen chloride, hydrogen and chlorosilane and the silica hydrochloride slurry, first, the water contained in the chlorosilane and silica hydrochloride slurry is reacted to design, operate and maintain.
  • at least a part of chlorosilane can be stably removed from the mixed gas by the wet processing method.
  • hydrogen chloride contained in the first purified gas is absorbed in the second aqueous solvent and designed.
  • -At least a part of hydrogen chloride can be stably removed from the first purified gas by a wet processing method that is easy to operate and maintain.
  • the hydrogen chloride removed by the above wet processing method is merely absorbed in the hydrochloric acid aqueous solution, and is changed into another chemical substance by a chemical reaction with other chemical substances. Therefore, it is possible to recover the hydrogen chloride absorbed in the aqueous hydrochloric acid solution. Therefore, according to this method, separation of industrially reusable hydrogen chloride gas can be performed.
  • the hydrogen gas production plant 100 further includes a removal device for removing silicon dioxide generated by the reaction of water contained in the chlorosilane and silica hydrochloride slurry from the silica hydrochloride slurry. For this reason, it is possible to prevent silicon dioxide from staying and precipitating in the washing tower 102 and the slurry storage tank 104 and blocking the operation of the production plant 100, thereby improving the safety of the production plant 100 and further maintenance costs. Can be reduced.
  • the hydrogen gas production plant 100 further includes a filter press 106 for solid-liquid separation of the removed suspension containing silicon dioxide and recovering an aqueous hydrochloric acid solution from the suspension. Therefore, the hydrochloric acid aqueous solution can be recovered from the hydrochloric acid silica slurry removed from the cleaning tower 102 and the slurry storage tank 104, and can be reused as a valuable raw material. Therefore, in this production plant 100, the utilization efficiency of resources can be increased and adverse effects on the environment can be reduced.
  • the hydrogen gas production plant 100 dissipates the recovered hydrochloric acid aqueous solution, thereby separating the gas into a hydrogen chloride gas having a hydrogen chloride concentration of 99% or more and a hydrochloric acid aqueous solution.
  • industrially reusable hydrogen chloride gas having a hydrogen chloride concentration of 99% or more can be recovered from the hydrochloric acid aqueous solution, and can be reused as a valuable raw material.
  • this aqueous hydrochloric acid solution can also be recycled to the washing tower 102, the hydrochloric acid scrubber 108, and the water washing tower 112 separately. Therefore, in this production plant 100, the utilization efficiency of resources can be increased and adverse effects on the environment can be reduced.
  • the hydrogen gas production plant 100 causes the chlorsilane remaining in the second purified gas and the water contained in the aqueous hydrochloric acid solution to react with each other by bringing the second purified gas and the hydrochloric acid aqueous solution into contact with each other.
  • the hydrogen gas production plant 100 causes the hydrogen chloride and the NaOH aqueous solution remaining in the third purified gas to react with each other by bringing the third purified gas and the NaOH aqueous solution into contact with each other.
  • a removal tower 114 for obtaining a fourth purified gas obtained by removing at least a part of hydrogen chloride from the purified gas is further provided. For this reason, in this production plant 100, it is possible to remove at least part of the hydrogen chloride remaining in the third purified gas because it has been separately removed in the washing tower 112, so that hydrogen contained in the fourth purified gas The purity of the gas can be further increased.
  • the hydrogen gas production plant 100 removes moisture from the fourth purified gas to obtain a fifth purified gas having a moisture content of 0.5% or less. Is further provided. For this reason, in this production plant 100, since it has failed to be removed separately in the washing tower 102, the hydrochloric acid scrubber 108, and the water washing tower 112, at least part of the water remaining in the fourth purified gas can be removed. The purity of the hydrogen gas contained in the purified gas can be further increased.
  • the hydrogen gas production plant 100 according to Embodiment 1 can be suitably used by being incorporated in a manufacturing process of dichlorosilane, monochlorosilane, and monosilane. The contents already described in the first embodiment are not repeated in this embodiment.
  • FIG. 2 is a diagram for explaining equipment for manufacturing processes of dichlorosilane, monochlorosilane, and monosilane used in the second embodiment.
  • Silicon hydride chloride such as trichlorosilane or dichlorosilane is supplied to the middle upper stage of the reaction tower 1 through the raw material supply conduit 4.
  • the reaction tower 1 is a stainless steel distillation tower having a tower diameter of 83 mm, a height of 200 mm and 18 stages.
  • a stainless steel condenser 3 is provided at the top of the reaction tower 1 so that methanol dry ice can be passed through the jacket for cooling.
  • a reboiler 2 having a heater with a maximum output of 1 KW is provided at the lower part of the reaction tower 1.
  • the disproportionation reaction and separation by distillation occur at the same time, and the gas rich in the low-boiling components generated by the disproportionation reaction moves upward and is cooled in the condenser 3 to condense the accompanying high-boiling components. It is condensed in a stainless steel condenser 6 cooled with liquid nitrogen and collected in a collection storage tank 7 with liquid.
  • high-boiling components such as trichlorosilane and tetrachlorosilane generated by the disproportionation reaction move to the bottom of the column and are extracted together with the catalyst from the reboiler 2 to the evaporation tank 9 while adjusting the liquid level.
  • the evaporating tank 9 is made of a stainless steel container with a stirrer having an internal volume of 3 L, and is provided with a jacket. Heated heating medium oil is circulated through the heating tank to heat the evaporation tank.
  • This evaporation tank 9 was operated at a temperature higher than the boiling point of tetrachlorosilane generated by the disproportionation reaction and lower than the catalyst, and trichlorosilane and tetrachlorosilane extracted from the reboiler 2 were evaporated and cooled with methanol dry ice. It is collected by the condenser 11 and collected in the storage tank 12. The catalyst remaining in the evaporation tank 9 is extracted by the pump 10 and is circulated again to the top of the reaction tower 1. In this case, when the concentration of the hydrochloride of the tertiary aliphatic hydrocarbon-substituted amine in the catalyst is not a predetermined concentration, hydrogen chloride is supplied from the supply pipe 13 as necessary.
  • trichlorosilane and tetrachlorosilane can be condensed in the condenser 11 and recovered in the storage tank 12, and some of the trichlorosilane and tetrachlorosilane are directly discharged to the outside as exhaust gas.
  • the exhaust gas contains a small amount of hydrogen gas and hydrogen chloride gas. This is because hydrogen chloride is replenished from the replenishment pipe 13 as necessary, and part of the replenished hydrogen chloride gas may be contained in the exhaust gas.
  • 2SiHCl 3 ⁇ SiCl 4 + SiH 2 Cl 2 2SiH 2 Cl 2 ⁇ SiHCl 3 + SiH 3 Cl 2SiH 3 Cl ⁇ SiH 2 Cl 2 + SiH 4 This is because hydrogen gas may be generated due to the following hydrochloric acid elimination reaction.
  • hydrogen chloride hydrogen, tetrachlorosilane, and trichlorosilane are contained by recovering exhaust gas discharged when reducing trichlorosilane from the top of the storage tank 12.
  • the mixed gas is supplied to the cleaning tower 102 of the hydrogen gas production plant 100 in FIG.
  • the hydrogen chloride concentration in the mixed gas is preferably 5% or less.
  • the hydrogen chloride concentration contained in the exhaust gas in the production process of dichlorosilane, monochlorosilane, and monosilane is 5% or less, and if the hydrogen chloride concentration in the exhaust gas is 5% or less, the plant described later This is because 100 can reasonably treat hydrogen chloride.
  • the mixed gas supplied to the cleaning tower 102 of the plant 100 is recovered as high-purity hydrogen gas from the top of the removal tower 114 as a result of being processed in the plant 100.
  • the hydrogen gas production plant 100 can produce hydrogen gas by separating hydrogen from the mixed gas.
  • this high-purity hydrogen gas is used as a raw material for some other useful chemical process. Needless to say, it can be used.
  • hydrogen chloride gas with a purity of 99.9% or more recovered from the top of the stripping tower 110 of the plant 100 is supplied again to the evaporation tank 9 of the apparatus for producing dichlorosilane, monochlorosilane, and monosilane shown in FIG. can do.
  • dichlorosilane, monochlorosilane, and monosilane can be produced by reducing trichlorosilane using the high-purity hydrogen chloride gas again.
  • the gas production plant 100 can produce hydrogen gas by separating hydrogen from the mixed gas. Therefore, according to this plant 100, at least a part of chlorosilane and hydrogen chloride can be stably removed from a mixed gas containing hydrogen chloride, hydrogen, and chlorosilane by a wet processing method that is easy to design, operate, and maintain. it can.
  • high-purity hydrogen gas having a small content of chlorosilane and hydrogen chloride can be separated, and hydrogen gas and hydrogen chloride gas which can be industrially reused can be separated.
  • the industrially reusable hydrogen chloride gas separated in this way is supplied again to the evaporation tank 9 in the apparatus of FIG. At the same time, it enables efficient use of resources, improves the production efficiency of chemical processes that reduce trichlorosilane, and can also help solve environmental problems.
  • Embodiment 2 ⁇ Modification of Embodiment 2>
  • the hydrogen gas production plant 100 according to Embodiment 1 can be suitably used by being incorporated into a trichlorosilane production process. The contents already described in the first and second embodiments are not repeated in this modification.
  • FIG. 3 is a diagram for explaining the equipment for the production process of trichlorosilane used in the modification of the second embodiment.
  • the reactor 23 of the apparatus of FIG. 3 has an inner diameter of 5 cm and a length of 80 cm.
  • a take-out pipe 25 having an inner diameter of 2 mm is provided from the latter half of the heating section of the reactor 23 to the rear outlet, and the reaction gas passes through the take-out pipe 25. Then, it is taken out from the reactor 23 and rapidly cooled.
  • the temperature at the outlet of the reactor is 400 ° C. (quenching time 0.03 seconds).
  • the trichlorosilane manufacturing process equipment described in FIG. 3 is a laboratory-sized equipment. When actually operating as a commercial process, this laboratory-sized equipment is installed in the plant according to the production scale. Of course, you need to scale up to a size facility.
  • hydrogen chloride, hydrogen, and tetrachlorosilane are recovered by recovering exhaust gas discharged from the top of the condenser 26 using hydrogen and tetrachlorosilane as raw materials. 1 is supplied to the cleaning tower 102 of the hydrogen gas production plant 100 in FIG.
  • a mixed gas containing hydrogen chloride, hydrogen and tetrachlorosilane is obtained as exhaust gas.
  • the hydrogen chloride concentration in the mixed gas is preferably 5% or less.
  • the plant 100 to be described later does not have any difficulty. This is because hydrogen chloride can be treated stably.
  • the mixed gas supplied to the cleaning tower 102 of the plant 100 is recovered as high-purity hydrogen gas from the top of the removal tower 114 as a result of being processed in the plant 100.
  • the moisture removing device Through the moisture removing device, the moisture content is reduced to 0.5% or less.
  • the hydrogen gas production plant 100 separates hydrogen from the mixed gas to produce hydrogen gas, and the produced hydrogen gas is again supplied to the reactor 23 of the apparatus for reducing chlorosilane shown in FIG. It can be supplied as a raw material. By reusing hydrogen gas in this manner, tetrachlorosilane can be reduced again to produce trichlorosilane using the high purity hydrogen gas as a raw material.
  • this plant 100 after collecting the mixed gas containing hydrogen chloride, hydrogen and chlorosilane discharged from the top of the condenser 26 in the apparatus of FIG. 3 when reducing chlorosilane using hydrogen and chlorosilane as raw materials.
  • the hydrogen gas production plant 100 can separate hydrogen from the mixed gas to produce hydrogen gas. Therefore, according to this plant 100, at least a part of chlorosilane and hydrogen chloride can be stably removed from a mixed gas containing hydrogen chloride, hydrogen, and chlorosilane by a wet processing method that is easy to design, operate, and maintain. it can.
  • the industrially reusable hydrogen gas separated in this way is supplied again to the reactor 23 in the apparatus of FIG. 3 as a raw material for the step of reducing chlorosilane.
  • it enables efficient use of resources, improves the production efficiency of chemical processes that reduce chlorosilane, and helps to solve environmental problems.
  • the hydrogen chloride gas with a purity of 99.9% or more recovered from the top of the stripping tower 110 of the plant 100 is difficult to reuse in the apparatus for reducing chlorosilane shown in FIG. It goes without saying that hydrogen chloride gas having a purity of 99.9% or more can be used as a raw material for any useful chemical process.
  • the hydrogen halide is hydrogen chloride and the silicon halide is chlorosilane.
  • the present invention is not particularly limited.
  • the hydrogen halide is HBr
  • the silicon halide is SiBr 4 , SiHBr 3 , SiH 2 Br 2 , and SiH 3 Br may be used.
  • the hydrogen halide may be HI and the silicon halide may be SiI 4 , SiHI 3 , SiH 2 I 2 , SiH 3 I. Even if it does in this way, since all are the compounds regarding the same halogen element, the effect similar to said embodiment is show
  • silica hydrochloride slurry is used as the first aqueous solvent, but there is no particular limitation.
  • water, an aqueous solution, a polar solvent, or a slurry thereof may be used as the aqueous solvent. Good. Also in this case, the same action and effect can be achieved with an aqueous solvent.
  • an aqueous hydrochloric acid solution is used as the second aqueous solvent.
  • water, an aqueous solution, a polar solvent, or a slurry thereof may be used as the aqueous solvent.
  • the same action and effect can be achieved with an aqueous solvent.
  • the scrubber hydrochloric acid is used as the absorber, but there is no particular limitation, and liquid such as water is used as the cleaning liquid, and impurities such as particles in the exhaust gas are contained in the cleaning liquid droplets or the liquid film.
  • a filter press is used as the solid-liquid separation device.
  • the present invention is not particularly limited, and any device can be used as long as it can generally separate solids and liquids suitably. For example, even when a centrifugal separator, a sedimentation separator, a filtration separator, or the like is used, the same effect can be obtained.
  • the washing tower 112 and the removal tower 114 are separate facilities.
  • the washing tower 112 and the removal tower 114 may be integrated into a single equipment. In such a case, there is an advantage that the configuration of the plant 100 can be simplified, and the cost for construction, operation, and maintenance can be reduced.
  • a cleaning tower 102 also including a slurry storage tank 104
  • a hydrochloric acid scrubber 108 also including a filter press 106
  • a stripping tower 110 a water washing tower 112
  • a removal tower 114 moisture content
  • the plant 100 of the hydrogen gas production process using the removal device 116 is also constructed.
  • the inlet composition of the cleaning tower 102 and the outlet composition of the hydrochloric acid scrubber 108 under the normal operating conditions of the plant 100 were examined.
  • a mixed gas (the composition of the inlet of the cleaning tower 102 is hydrogen 84.7% (v / v), hydrogen chloride 15% (v / v), chlorosilane 0 .3% (v / v)) and 0% moisture were supplied to the washing tower 102.
  • the cleaning tower 102 was operated for 200 hours under the conditions of a flow rate of 10 Nm 3 / h and a pressure of 100 kPa, and then the gas collected from the top outlet of the hydrochloric acid scrubber 108 was analyzed by gas chromatography.
  • the outlet composition was 98.5% (v / v) or more of hydrogen, 20 ppm (v / v) of hydrogen chloride, less than 10 ppm (v / v) of chlorosilane, and 1.5% of water.
  • Example 2 In this example, the outlet composition of the stripping tower 110 under normal operating conditions of the plant 100 of Example 1 was studied.
  • the plant 100 shown in FIG. 1 described in the first embodiment is operated under the same conditions as in Example 1, and the gas collected from the top outlet of the stripping tower 110 is analyzed by gas chromatography.
  • the outlet composition of 110 was less than 10 pp of hydrogen, 99.99% (v / v) or more of hydrogen chloride, less than 10 ppm (v / v) of chlorosilane, and less than 10 ppm (v / v) of water.
  • Example 3 In this example, the outlet composition of the water washing tower 112 under the normal operating conditions of the plant 100 of Example 1 was studied.
  • the plant 100 shown in FIG. 1 described in the first embodiment is operated under the same conditions as in the first embodiment, and the gas collected from the top outlet of the rinsing tower 112 is analyzed by gas chromatography.
  • the outlet composition of 112 was 99.7% (v / v) or more of hydrogen, 10 ppm (v / v) of hydrogen chloride, less than 10 ppm (v / v) of chlorosilane, and 0.3% (v / v) of water.
  • the plant 100 shown in FIG. 1 described in the first embodiment is operated under the same conditions as in the first embodiment except that the hydrochloric acid scrubber 108 is removed, and the gas collected from the top outlet of the cleaning tower 102 is gas.
  • the outlet composition of the washing tower 102 is as follows: hydrogen 91.0% (v / v), hydrogen chloride 6.0% (v / v), chlorosilane 100 ppm (v / v), water 3% (V / v).
  • the cleaning tower 102 and the hydrochloric acid scrubber 108 are devices that can take up absorption of hydrogen chloride and trace amounts of chlorosilane. Moreover, it turns out that hydrogen chloride and a trace amount chlorosilane can be absorbed more efficiently by adding the stripping tower 110. Then, it can be seen that if the water washing tower 112 is added, hydrogen chloride and a small amount of chlorosilane can be absorbed even more efficiently.

Abstract

A plant (100) for producing hydrogen gas through separation of hydrogen from a mixed gas containing hydrogen chloride, hydrogen and chlorosilane. The plant (100) comprises a washing column (102) adapted to bring the mixed gas into contact with a hydrochloric acid silica slurry and a hydrochloric acid scrubber (108) adapted to bring the purified gas obtained from the washing column (102) into contact with an aqueous solution of hydrochloric acid.

Description

ハロゲン化水素、水素およびハロゲン化ケイ素を含む混合ガスから水素ガスを生産する方法、その水素ガスを用いたケイ素化合物の生産方法、およびその方法のためのプラントMethod for producing hydrogen gas from hydrogen halide, mixed gas containing hydrogen and silicon halide, method for producing silicon compound using the hydrogen gas, and plant for the method
 本発明は、ハロゲン化水素、水素およびハロゲン化ケイ素を含む混合ガスから水素ガスを生産する方法、その水素ガスを用いたケイ素化合物の生産方法、およびその方法のためのプラントに関する。 The present invention relates to a method for producing hydrogen gas from a mixed gas containing hydrogen halide, hydrogen and silicon halide, a method for producing a silicon compound using the hydrogen gas, and a plant for the method.
 シリコンは酸素に次いで地殻中に豊富にある元素で、推定では地殻を構成する元素中の約28%を占めると言われている。金属シリコンは、1960年代から半導体材料として利用されるようになり、エレクトロニクス産業の最重要素材となっている。 Silicon is an element that is abundant in the crust after oxygen, and is estimated to account for about 28% of the elements that make up the crust. Metallic silicon has been used as a semiconductor material since the 1960s and has become the most important material in the electronics industry.
 モノシラン(SiH)、モノクロルシラン(SiHCl)、ジクロルシラン(SiHCl)、トリクロルシラン(SiHCl)は、このような半導体、液晶パネル、太陽電池等の製造に用いられる、特殊材料ガスである。近年、需要は順調に拡大し、エレクトロニクス分野で広く使用されるCVD材料として、今後も伸びが期待されている。 Monosilane (SiH 4 ), monochlorosilane (SiH 3 Cl), dichlorosilane (SiH 2 Cl 2 ), and trichlorosilane (SiHCl 3 ) are special material gases used for manufacturing such semiconductors, liquid crystal panels, solar cells, and the like. It is. In recent years, demand has been steadily expanding, and growth is expected as a CVD material widely used in the electronics field.
 これらのモノシラン、モノクロルシラン、ジクロルシラン、トリクロルシランを製造する際の出発原料となるのが、テトラクロルシラン(四塩化ケイ素:SiCl)である。 Tetrachlorosilane (silicon tetrachloride: SiCl 4 ) is a starting material for producing these monosilane, monochlorosilane, dichlorosilane, and trichlorosilane.
 テトラクロルシランの従来の製造方法としては、例えば特許文献1に記載されたものがある。この文献には、不活性なガスで3~10倍(体積比)に希釈し反応器下部から供給する塩素と、金属珪素を半流動状態(スラッギング)で反応温度450℃から800℃で反応させる四塩化ケイ素の製造方法が記載されている。 As a conventional method for producing tetrachlorosilane, for example, there is one described in Patent Document 1. In this document, chlorine that is diluted 3 to 10 times (volume ratio) with an inert gas and supplied from the bottom of the reactor is reacted with metal silicon in a semi-fluid state (slagging) at a reaction temperature of 450 ° C. to 800 ° C. A method for producing silicon tetrachloride is described.
 トリクロルシランの従来の製造方法としては、例えば特許文献2に記載されたものがある。この文献には、温度1200℃をこえ1400℃以下に加熱した反応器にSiClとHとのモル比が1:1~1:2の混合ガスを導入して反応させ、熱平衡状態としその平衡状態の混合物であるSiHClとHClとのモル比が1:1~1:4であり、さらにSiClとH等を含有する混合物を1秒以内に600℃以下に急冷して反応を凍結させることによりSiHClの収率及び収量を向上させるSiHClの製造法が記載されている。 As a conventional method for producing trichlorosilane, there is, for example, one described in Patent Document 2. In this document, a gas mixture having a molar ratio of SiCl 4 and H 2 of 1: 1 to 1: 2 is introduced into a reactor heated to 1200 ° C. over 1200 ° C. and reacted to obtain a thermal equilibrium state. The molar ratio of SiHCl 3 and HCl, which is an equilibrium mixture, is 1: 1 to 1: 4, and the mixture containing SiCl 2 and H 2 is rapidly cooled to 600 ° C. or less within 1 second to carry out the reaction. A process for the production of SiHCl 3 is described which improves the yield and yield of SiHCl 3 by freezing.
 ジクロルシラン、モノクロルシラン、モノシランの従来の製造方法としては、例えば特許文献3に記載されたものがある。この文献には、原料水素化塩化珪素を反応塔に供給し、その塔内において不均斉化反応させながら蒸留効果により沸点の低いモノシラン、モノクロルシラン又はジクロルシラン等から選ばれた少なくとも1種のシラン化合物を反応塔の塔頂から取得し、一方、塔底から四塩化珪素およびトリクロルシランを含む触媒混合液を抜き取り、次いでその混合溶液からシラン化合物と触媒液とを分離し、さらにその触媒液を反応塔に循環させながらモノシラン、モノクロルシラン又はジクロルシラン等のシラン化合物を連続的に製造する方法が記載されている。 Examples of conventional production methods for dichlorosilane, monochlorosilane, and monosilane are described in Patent Document 3, for example. In this document, at least one silane compound selected from monosilane, monochlorosilane, dichlorosilane or the like having a low boiling point due to a distillation effect while supplying raw material silicon hydride chloride to a reaction tower and causing a disproportionation reaction in the tower Is obtained from the top of the reaction tower, while the catalyst mixed liquid containing silicon tetrachloride and trichlorosilane is withdrawn from the bottom of the tower, and then the silane compound and the catalyst liquid are separated from the mixed solution, and the catalyst liquid is further reacted. A method for continuously producing a silane compound such as monosilane, monochlorosilane or dichlorosilane while circulating in a column is described.
 ここで、半導体デバイスの製造に用いられるシリコン単結晶は、多結晶シリコンから種々の育成法によりつくられているが、このとき出発原料として用いられる多結晶シリコンは、極めて高い純度が要求される。そのため、特許文献1にも同様のプロセスが記載されているが、多結晶シリコンは、通常、純度95%以上の金属シリコンが充填された層(固定層、流動層)に塩化水素(HCl)、または、四塩化珪素(SiCl)とHを送気してトリクロルシラン(SiHCl)を生成させ、これを蒸留法により精製し、得られた高純度トリクロルシラン(SiHCl)をCVD炉内で高純度水素により還元する方法により製造されている。 Here, a silicon single crystal used for manufacturing a semiconductor device is produced from polycrystalline silicon by various growth methods. At this time, polycrystalline silicon used as a starting material is required to have extremely high purity. Therefore, although the same process is described in Patent Document 1, polycrystalline silicon is usually charged with hydrogen chloride (HCl) in a layer (fixed bed, fluidized bed) filled with metal silicon having a purity of 95% or more, Alternatively, silicon tetrachloride (SiCl 4 ) and H 2 are supplied to produce trichlorosilane (SiHCl 3 ), which is purified by distillation, and the resulting high-purity trichlorosilane (SiHCl 3 ) is added to the CVD furnace. And produced by a method of reducing with high purity hydrogen.
 上述の高純度トリクロルシラン(SiHCl)を製造するプロセスでは、先ず、反応炉で、金属シリコンに作用させるガスの違いに応じて、主に下記の化学式(1)および化学式(2)に示すような反応が起こる。 In the above-described process for producing high-purity trichlorosilane (SiHCl 3 ), first, as shown in the following chemical formula (1) and chemical formula (2), depending on the difference in the gas acting on the metal silicon in the reaction furnace. Reaction occurs.
 Si+3HCl→SiHCl+H・・・(1)
 Si+3SiCl+2H→4SiHCl・・・(2)
Si + 3HCl → SiHCl 3 + H 2 (1)
Si + 3SiCl 4 + 2H 2 → 4SiHCl 3 (2)
 上述の反応後のガス中には、生成したトリクロルシランや副生物としての四塩化珪素、水素、未反応ガス等の他、金属シリコンの微粉や、金属シリコンまたは金属シリコンに含まれるシリコン以外の物質(Al、Fe等)が塩素化されて発生する固体状およびガス状の高沸点物質(以下、単に「高沸点物質」ともいう)が含まれている。 In the above-mentioned gas after the reaction, in addition to the generated trichlorosilane, silicon tetrachloride as a by-product, hydrogen, unreacted gas, etc., metal silicon fine powder, metal silicon or substances other than silicon contained in metal silicon Solid and gaseous high-boiling substances (hereinafter also simply referred to as “high-boiling substances”) generated by chlorination of (Al, Fe, etc.) are included.
 そのため、微粉や高沸点物質(不純物)を含むクロルシラン類の凝集液からクロルシラン類を回収するに際し、配管等の閉塞を引き起こす原因となる高沸点物質等を除去し、高い収率で高純度のクロルシラン類を回収する技術として、特許文献4に記載されたものがある。この文献には、蒸留塔の底に塔底液として濃縮された微粉や高沸点物質の一定量を抜き出して、別容器で加熱し、有用成分であるトリクロルシランおよび四塩化珪素をガス化分離して蒸留塔に戻し、この別容器(再濃縮装置)の底部に濃縮した(すなわち、蒸留塔の底に濃縮された塔底液が再濃縮した)微粉や高沸点物質を系外へ抜き出す方法が記載されている。この文献によれば、この際に、蒸留塔の底に溜まる塔底液の抜き出し量、再濃縮装置から系外への抜き出し量を適正な範囲に設定すれば、微粉、高沸点物質を効率的に除去し、配管等の詰まりを発生させずに、高い収率で高純度のクロルシラン類を製造できる旨記載されている。 Therefore, when recovering chlorosilanes from the flocculated liquid of chlorosilanes containing fine powder and high-boiling substances (impurities), high-boiling substances that cause blockage of piping and the like are removed, and high-purity chlorosilane is obtained in a high yield. As a technique for recovering the kind, there is one described in Patent Document 4. In this document, a certain amount of fine powder and high-boiling substances concentrated as a bottom liquid at the bottom of the distillation column are extracted and heated in a separate container to gasify and separate the trichlorosilane and silicon tetrachloride, which are useful components. The method of extracting fine powder and high-boiling substances out of the system after returning to the distillation column and concentrating at the bottom of this separate container (reconcentration device) (that is, reconcentrating the bottom liquid concentrated at the bottom of the distillation column). Are listed. According to this document, fine powder and high-boiling substances can be efficiently obtained by setting the amount of the bottom liquid collected at the bottom of the distillation column and the amount of the liquid extracted from the reconcentrator to the outside of the system. It is described that high-purity chlorosilanes can be produced in a high yield without causing clogging of piping and the like.
 また、半導体分野においては、従来からエッチングガスあるいはクリーニングガスとして、ハロゲン、ハロゲン化水素等のハロゲン系ガスが多く使用されている。しかし、ハロゲン系ガスは人体及び環境にとって有害であり、これらのガスを含む排ガスは、工場外へ排出するに先立って浄化することが必須となっている。ハロゲン系ガスを含む排ガスを浄化する方法としては、排ガスを固体状の浄化剤が充填された処理筒に導入し、浄化剤と接触させて排ガスからハロゲン系ガスを除去する乾式浄化方法、排ガスを処理装置の上部から噴出するハロゲン系ガス吸収液と接触させて、排ガスからハロゲン系ガスを除去する湿式浄化方法が多く実施されている。 In the semiconductor field, halogen-based gases such as halogen and hydrogen halide have been conventionally used as etching gas or cleaning gas. However, halogen-based gases are harmful to the human body and the environment, and it is indispensable to purify the exhaust gas containing these gases before discharging them outside the factory. As a method for purifying exhaust gas containing a halogen-based gas, a dry purification method in which the exhaust gas is introduced into a processing cylinder filled with a solid purification agent and brought into contact with the purification agent to remove the halogen-based gas from the exhaust gas. Many wet purification methods for removing halogen-based gas from exhaust gas by bringing it into contact with a halogen-based gas absorbing solution ejected from the upper part of the processing apparatus have been practiced.
 例えば、半導体製造工程から排出されるハロゲン系ガスを含む排ガスの浄化処理において、頻繁に浄化剤を新しいものと交換することがなく、反応性が高いガスを含む乾燥排ガスを処理する場合であっても火災の危険性がなく、処理後のガス中のハロゲン系ガス濃度を容易に低くできる処理方法及び処理装置として、特許文献5に記載のものがある。この文献には、半導体製造工程から排出されるハロゲン系ガスを含む排ガスを、吸着剤と接触させて、排ガスからハロゲン系ガスを吸着除去するとともに、吸着剤にハロゲン系ガス吸収液を添加して、吸着剤に吸着されたハロゲン系ガスを、ハロゲン系ガス吸収液に吸収させて、吸着剤から脱着させる構成とする排ガスの処理装置が記載されている。この文献によれば、このような構成とすることにより、頻繁に吸着剤(浄化剤)を新しいものと交換する必要がなく、火災の危険性がなく、処理後のガス中のハロゲン系ガス濃度を容易に低くできる旨記載されている。 For example, in the purification treatment of exhaust gas containing halogen-based gas discharged from the semiconductor manufacturing process, it is a case where dry exhaust gas containing highly reactive gas is treated without frequently replacing the purification agent with a new one. However, there is one disclosed in Patent Document 5 as a processing method and a processing apparatus that can reduce the halogen-based gas concentration in the gas after processing without risk of fire. In this document, an exhaust gas containing a halogen-based gas discharged from a semiconductor manufacturing process is brought into contact with an adsorbent to adsorb and remove the halogen-based gas from the exhaust gas, and a halogen-based gas absorption liquid is added to the adsorbent. An exhaust gas treatment apparatus is described in which a halogen-based gas adsorbed by an adsorbent is absorbed in a halogen-based gas absorption liquid and desorbed from the adsorbent. According to this document, by adopting such a configuration, it is not necessary to frequently replace the adsorbent (cleaning agent) with a new one, there is no risk of fire, and the halogen-based gas concentration in the treated gas It is described that can be easily lowered.
特開2002-173313号公報JP 2002-173313 A 特開昭60-81010号公報JP 60-81010 A 特公昭64-3804号公報Japanese Patent Publication No. 64-3804 特開2004-256338号公報JP 2004-256338 A 特開2006-130499号公報JP 2006-130499 A
 しかしながら、特許文献1~3のテトラクロルシラン、トリクロルシラン、ジクロルシラン、モノクロルシランなどの各種クロルシランあるいはモノシランを製造する際には、目的とする主要な各種クロルシランあるいはモノシランを含むガスとは別に、HClガス、Hガス、クロルシラン類ガスなどを含む混合ガスが、不要な排ガスとして反応装置の外部に排出されることが多い。 However, in the production of various chlorosilanes or monosilanes such as tetrachlorosilane, trichlorosilane, dichlorosilane, and monochlorosilane described in Patent Documents 1 to 3, HCl gas is used separately from the target gas containing various chlorosilanes or monosilanes. , H 2 gas, chlorosilane gas, and the like are often discharged outside the reactor as unnecessary exhaust gas.
 そして、このような不要な排ガスをそのまま各種クロルシランの製造プラントの外部に放出してしまうと、トリクロルシラン、ジクロルシラン、モノクロルシランなどのクロルシラン類ガスあるいはモノシランガスとH2ガスとが、空気中の酸素と反応して爆発し火災を発生させる危険性がある。また、HClガス、クロルシラン類ガスあるいはモノシランガスは、人体及び環境にとって有害であり、これらのガスを含む排ガスは、工場外へ排出するに先立って浄化することが必須となっている。 Then, if such unnecessary exhaust gas is discharged as it is to the outside of the various chlorosilane production plants, chlorosilane gases such as trichlorosilane, dichlorosilane, and monochlorosilane, or monosilane gas and H 2 gas, and oxygen in the air. Risk of explosion by reaction and fire. In addition, HCl gas, chlorosilane gas, or monosilane gas is harmful to the human body and the environment, and it is indispensable to purify the exhaust gas containing these gases before discharging them outside the factory.
 さらに、このような不要な排ガス中に含まれるHClガス、Hガスは、テトラクロルシラン、トリクロルシラン、ジクロルシラン、モノクロルシランなどの各種クロルシランあるいはモノシランを製造する際に、原料として再利用できる可能性がある。そのため、これらのHClガス、Hガスを、不要な排ガスとして廃棄したり、安全に処理するために化学反応によって別の物質に変化させたりすることは、せっかくの有用な原料であるHClガス、Hガスを無駄に捨てていることになる。 Furthermore, HCl gas and H 2 gas contained in such unnecessary exhaust gas may be reused as raw materials when producing various chlorosilanes or monosilanes such as tetrachlorosilane, trichlorosilane, dichlorosilane, and monochlorosilane. There is. Therefore, discarding these HCl gas and H 2 gas as unnecessary exhaust gas, or changing to another substance by chemical reaction for safe processing, HCl gas, which is a very useful raw material, H 2 gas is wasted.
 ここで、特許文献4の技術は、微粉や高沸点物質(不純物)を含むクロルシラン類の凝集液からクロルシラン類を回収するに際し、配管等の閉塞を引き起こす原因となる高沸点物質等を除去し、高い収率で高純度のクロルシラン類を回収することを目的としているため、上記のようなHClガス、Hガス、クロルシラン類ガスなどを含む不要な排ガスを安全に処理する上では、特に役には立たない。 Here, the technique of Patent Document 4 removes high-boiling substances that cause clogging of pipes and the like when recovering chlorosilanes from an aggregate of chlorosilanes containing fine powder and high-boiling substances (impurities), The purpose is to recover high-purity chlorosilanes with high yield, so it is particularly useful for safely treating unnecessary exhaust gas containing HCl gas, H 2 gas, chlorosilanes gas, etc. Can't stand.
 また、特許文献5の技術は、ハロゲン系ガス吸収液として、水酸化ナトリウム(濃度2wt%)、水酸化カルシウム(濃度2wt%)、亜硫酸ナトリウム(濃度5wt%)、チオ硫酸ナトリウム(濃度20wt%)、炭酸ナトリウム(濃度5wt%)、炭酸水素ナトリウム(濃度5wt%)を含む水溶液を用いているため、HClガスがアルカリ性水溶液によって中和されてしまい、せっかくの有用な原料であるHClガスを無駄に捨てていることになる。また、ハロゲン系ガス吸収液として、水を用いる場合にも、特にHClガスを回収して再利用することについては触れられていない。 In addition, the technique of Patent Document 5 uses sodium hydroxide (concentration 2 wt%), calcium hydroxide (concentration 2 wt%), sodium sulfite (concentration 5 wt%), sodium thiosulfate (concentration 20 wt%) as a halogen-based gas absorption solution. Since an aqueous solution containing sodium carbonate (concentration 5 wt%) and sodium hydrogen carbonate (concentration 5 wt%) is used, HCl gas is neutralized by the alkaline aqueous solution, and wasteful HCl gas, which is a useful raw material, is wasted. It will be thrown away. Further, even when water is used as the halogen-based gas absorbing solution, there is no mention of particularly recovering and reusing HCl gas.
 さらには、仮にHClガス、Hガス、クロルシラン類ガスなどを含む混合ガスを、この特許文献5の技術で処理した場合には、トリクロルシラン、ジクロルシラン、モノクロルシランなどのクロルシラン類ガスあるいはモノシランガスが、水またはアルカリ性水溶液と反応してSiOが生成してしまい、SiOがハロゲン系ガス吸収液の溜り部または排水配管に沈殿または付着して、溜り部からのハロゲン系ガス吸収液の溢出や、排水配管の閉塞等を引き起こす原因となる。 Furthermore, if a mixed gas containing HCl gas, H 2 gas, chlorosilane gas, etc. is treated by the technique of this Patent Document 5, chlorosilane gases such as trichlorosilane, dichlorosilane, and monochlorosilane, or monosilane gas, reacts with water or an aqueous alkaline solution will be generated by the SiO 2, and SiO 2 is precipitated or deposited in the sump or drain pipe of halogen gas absorbing liquid, and extravasation of halogen gas absorbing liquid from the reservoir, It may cause clogging of drainage pipes.
 本発明は上記事情に鑑みてなされたものであり、ハロゲン化水素、水素およびハロゲン化ケイ素を含む混合ガスから、湿式の処理方法によって、安定的にハロゲン化水素およびハロゲン化ケイ素を除去し、工業的に再利用可能な水素ガスの分離を行う技術を提供することを目的とする。また、本発明の別の目的は、上記の湿式の処理方法によって除去されたハロゲン化水素から、工業的に再利用可能なハロゲン化水素ガスの分離を行う技術を提供することである。 The present invention has been made in view of the above circumstances, and it is possible to stably remove hydrogen halide and silicon halide from a mixed gas containing hydrogen halide, hydrogen and silicon halide by a wet processing method. An object of the present invention is to provide a technique for separating reusable hydrogen gas. Another object of the present invention is to provide a technique for separating industrially reusable hydrogen halide gas from hydrogen halide removed by the wet processing method.
 本発明によれば、ハロゲン化水素、水素およびハロゲン化ケイ素を含む混合ガスから水素を分離して、水素ガスを生産する方法であって、混合ガスおよび第一の水性溶媒を接触させることによって、ハロゲン化ケイ素および第一の水性溶媒を反応させ、混合ガスからハロゲン化ケイ素の少なくとも一部を除去してなる第一の精製ガスを得る工程と、第一の精製ガスおよび第二の水性溶媒を接触させることによって、ハロゲン化水素を第二の水性溶媒中に吸収させ、第一の精製ガスから前記ハロゲン化水素の少なくとも一部を除去してなる第二の精製ガスを得る工程と、を含む、水素ガスの生産方法が提供される。 According to the present invention, a method of producing hydrogen gas by separating hydrogen from a mixed gas containing hydrogen halide, hydrogen and silicon halide, and contacting the mixed gas and the first aqueous solvent, Reacting the silicon halide and the first aqueous solvent to obtain at least a part of the silicon halide from the mixed gas to obtain a first purified gas; and the first purified gas and the second aqueous solvent. Contacting the hydrogen halide into the second aqueous solvent to obtain a second purified gas obtained by removing at least a part of the hydrogen halide from the first purified gas. A method for producing hydrogen gas is provided.
 この方法によれば、ハロゲン化水素、水素およびハロゲン化ケイ素を含む混合ガスおよび第一の水性溶媒を接触させることによって、まずは、ハロゲン化ケイ素および第一の水性溶媒を反応させ、設計・運転・保守の容易な湿式の処理方法によって、混合ガス中から安定的にハロゲン化ケイ素の少なくとも一部を除去することができる。そして、このようにハロゲン化ケイ素の少なくとも一部が除去された第一の精製ガスおよび第二の水性溶媒を接触させることによって、第一の精製ガスに含まれるハロゲン化水素を第二の水性溶媒中に吸収させ、設計・運転・保守の容易な湿式の処理方法によって、第一の精製ガス中から安定的にハロゲン化水素の少なくとも一部を除去することができる。 According to this method, by contacting hydrogen halide, a mixed gas containing hydrogen and silicon halide, and the first aqueous solvent, first, the silicon halide and the first aqueous solvent are reacted, and the design, operation, At least a portion of the silicon halide can be stably removed from the mixed gas by a wet processing method that is easy to maintain. Then, by bringing the first purified gas from which at least a part of the silicon halide has been removed and the second aqueous solvent into contact with each other, the hydrogen halide contained in the first purified gas is converted into the second aqueous solvent. At least a part of the hydrogen halide can be stably removed from the first purified gas by a wet processing method that is absorbed in and easy to design, operate, and maintain.
 そのため、この方法によれば、設計・運転・保守の容易な湿式の処理方法によって、ハロゲン化水素、水素およびハロゲン化ケイ素を含む混合ガスから安定的にハロゲン化ケイ素およびハロゲン化水素の少なくとも一部を除去することによって、ハロゲン化ケイ素およびハロゲン化水素の含有量の少ない高純度な水素ガスを分離することができ、工業的に再利用可能な水素ガスの分離を行うことができる。 Therefore, according to this method, at least a part of silicon halide and hydrogen halide is stably produced from a mixed gas containing hydrogen halide, hydrogen, and silicon halide by a wet processing method that is easy to design, operate, and maintain. By removing, high-purity hydrogen gas having a small content of silicon halide and hydrogen halide can be separated, and industrially reusable hydrogen gas can be separated.
 また、この方法によれば、上記の湿式の処理方法によって除去されたハロゲン化水素は、単に第二の水性溶媒中に吸収されたに過ぎず、他の化学物質等との化学反応によって別の化学物質に変化していないため、第二の水性溶媒中に吸収されたハロゲン化水素を回収することが可能になる。そのため、この方法によれば、工業的に再利用可能なハロゲン化水素ガスの分離を行うこともできる。 Further, according to this method, the hydrogen halide removed by the above wet processing method is merely absorbed in the second aqueous solvent, and is separated by another chemical reaction with other chemical substances. Since it is not changed to a chemical substance, it is possible to recover the hydrogen halide absorbed in the second aqueous solvent. Therefore, according to this method, the industrially reusable hydrogen halide gas can be separated.
 また、本発明によれば、ハロゲン化ケイ素を還元して、ハロゲン化ケイ素よりもハロゲン化度の低いケイ素化合物を生産する方法であって、水素およびハロゲン化ケイ素を原料として、ハロゲン化ケイ素を還元する工程と、ハロゲン化ケイ素を還元する際に排出される上記の混合ガスを回収する工程と、上記の水素ガスの生産方法によって、混合ガスから水素を分離して、水素ガスを生産する工程と、生産された水素ガスを、再度、ハロゲン化ケイ素を還元する工程に原料として供給する工程と、を含む、ケイ素化合物の生産方法が提供される。 According to the present invention, there is also provided a method of reducing silicon halide to produce a silicon compound having a lower halogenation degree than silicon halide, wherein the silicon halide is reduced using hydrogen and silicon halide as raw materials. A step of recovering the mixed gas discharged when reducing the silicon halide, and a step of producing hydrogen gas by separating hydrogen from the mixed gas by the hydrogen gas production method. And a step of supplying the produced hydrogen gas as a raw material to the step of reducing the silicon halide again.
 この方法によれば、水素およびハロゲン化ケイ素を原料として、ハロゲン化ケイ素を還元する際に排出されるハロゲン化水素、水素およびハロゲン化ケイ素を含む混合ガスを回収した上で、上記の水素ガスの生産方法によって、混合ガスから水素を分離して、水素ガスを生産するため、設計・運転・保守の容易な湿式の処理方法によって、ハロゲン化水素、水素およびハロゲン化ケイ素を含む混合ガスから安定的にハロゲン化ケイ素およびハロゲン化水素の少なくとも一部を除去することができる。 According to this method, using hydrogen and silicon halide as raw materials, after recovering the mixed gas containing hydrogen halide, hydrogen and silicon halide discharged when reducing the silicon halide, Since hydrogen is separated from the mixed gas by the production method to produce hydrogen gas, it is stable from the mixed gas containing hydrogen halide, hydrogen and silicon halide by the wet processing method that is easy to design, operate and maintain. In addition, at least a part of the silicon halide and hydrogen halide can be removed.
 そのため、この方法によれば、ハロゲン化ケイ素およびハロゲン化水素の含有量の少ない高純度な水素ガスを分離することができ、工業的に再利用可能な水素ガスの分離を行うことができる。 Therefore, according to this method, it is possible to separate high-purity hydrogen gas having a small content of silicon halide and hydrogen halide, and it is possible to separate hydrogen gas that can be industrially reused.
 そして、この方法によれば、このようにして分離された工業的に再利用可能な水素ガスを再度、ハロゲン化ケイ素を還元する工程に原料として供給するため、危険な排ガスの放出量を削減するとともに資源の効率的な使用を可能にし、ハロゲン化ケイ素を還元する化学プロセスの生産効率を向上させ、さらに環境問題の解決にも役立てることができる。 According to this method, the industrially reusable hydrogen gas thus separated is supplied again as a raw material to the step of reducing the silicon halide, thereby reducing the amount of dangerous exhaust gas emitted. At the same time, it enables efficient use of resources, improves the production efficiency of chemical processes that reduce silicon halide, and can also help solve environmental problems.
 また、本発明によれば、ハロゲン化水素、水素およびハロゲン化ケイ素を含む混合ガスから水素を分離して、水素ガスを生産するプラントであって、混合ガスおよび第一の水性溶媒を接触させることによって、ハロゲン化ケイ素および前記第一の水性溶媒を反応させ、混合ガスから前記ハロゲン化ケイ素の少なくとも一部を除去してなる第一の精製ガスを得るための反応装置と、第一の精製ガスおよび第二の水性溶媒を接触させることによって、ハロゲン化水素を第二の水性溶媒中に吸収させ、第一の精製ガスから前記ハロゲン化水素の少なくとも一部を除去してなる第二の精製ガスを得るための吸収装置と、を備える、水素ガスの生産プラントが提供される。 According to the present invention, there is also provided a plant for producing hydrogen gas by separating hydrogen from a mixed gas containing hydrogen halide, hydrogen and silicon halide, and contacting the mixed gas and the first aqueous solvent. To obtain a first purified gas obtained by reacting silicon halide and the first aqueous solvent to remove at least a part of the silicon halide from a mixed gas, and a first purified gas And a second purified gas obtained by allowing hydrogen halide to be absorbed into the second aqueous solvent by contacting the second aqueous solvent and removing at least a part of the hydrogen halide from the first purified gas. And a hydrogen gas production plant comprising:
 このプラントによれば、ハロゲン化水素、水素およびハロゲン化ケイ素を含む混合ガスおよび第一の水性溶媒を接触させることによって、まずは、ハロゲン化ケイ素および第一の水性溶媒を反応させ、設計・運転・保守の容易な湿式の処理方法によって、混合ガス中から安定的にハロゲン化ケイ素の少なくとも一部を除去することができる。そして、このようにハロゲン化ケイ素の少なくとも一部が除去された第一の精製ガスおよび第二の水性溶媒を接触させることによって、第一の精製ガスに含まれるハロゲン化水素を第二の水性溶媒中に吸収させ、設計・運転・保守の容易な湿式の処理方法によって、第一の精製ガス中から安定的にハロゲン化水素の少なくとも一部を除去することができる。 According to this plant, hydrogen halide, a mixed gas containing hydrogen and silicon halide, and the first aqueous solvent are brought into contact with each other, so that the silicon halide and the first aqueous solvent are first reacted to design, operate, At least a portion of the silicon halide can be stably removed from the mixed gas by a wet processing method that is easy to maintain. Then, by bringing the first purified gas from which at least a part of the silicon halide has been removed and the second aqueous solvent into contact with each other, the hydrogen halide contained in the first purified gas is converted into the second aqueous solvent. At least a part of the hydrogen halide can be stably removed from the first purified gas by a wet processing method that is absorbed in and easy to design, operate, and maintain.
 そのため、このプラントによれば、設計・運転・保守の容易な湿式の処理方法によって、ハロゲン化水素、水素およびハロゲン化ケイ素を含む混合ガスから安定的にハロゲン化ケイ素およびハロゲン化水素の少なくとも一部を除去することによって、ハロゲン化ケイ素およびハロゲン化水素の含有量の少ない高純度な水素ガスを分離することができ、工業的に再利用可能な水素ガスの分離を行うことができる。 Therefore, according to this plant, at least a part of silicon halide and hydrogen halide is stably produced from a mixed gas containing hydrogen halide, hydrogen and silicon halide by a wet processing method which is easy to design, operate and maintain. By removing, high-purity hydrogen gas having a small content of silicon halide and hydrogen halide can be separated, and industrially reusable hydrogen gas can be separated.
 また、このプラントによれば、上記の湿式の処理方法によって除去されたハロゲン化水素は、単に第二の水性溶媒中に吸収されたに過ぎず、他の化学物質等との化学反応によって別の化学物質に変化していないため、第二の水性溶媒中に吸収されたハロゲン化水素を回収することが可能になる。そのため、このプラントによれば、工業的に再利用可能なハロゲン化水素ガスの分離を行うこともできる。 In addition, according to this plant, the hydrogen halide removed by the above wet processing method is merely absorbed in the second aqueous solvent, and is separated by another chemical reaction with other chemical substances. Since it is not changed to a chemical substance, it is possible to recover the hydrogen halide absorbed in the second aqueous solvent. Therefore, according to this plant, separation of industrially reusable hydrogen halide gas can be performed.
 なお、上記の水素ガスの生産方法、ケイ素化合物の生産方法および水素ガスの生産プラントは本発明の一態様であり、本発明の水素ガスの生産方法、ケイ素化合物の生産方法および水素ガスの生産プラントは、以上の構成要素の任意の組合せであってもよい。 The above-described hydrogen gas production method, silicon compound production method, and hydrogen gas production plant are one embodiment of the present invention, and the hydrogen gas production method, silicon compound production method, and hydrogen gas production plant of the present invention. May be any combination of the above components.
 また、本発明の水素ガスの分離方法、水素ガスの精製方法、水素ガスの回収方法、水素ガスの再利用方法、水素ガスの処理方法、ハロゲン化水素ガスの生産方法、ハロゲン化水素ガスの分離方法、ハロゲン化ガスの精製方法、ハロゲン化ガスの回収方法、ハロゲン化ガスの再利用方法、ハロゲン化ガスの処理方法、ケイ素化合物の還元方法、水素ガスの分離プラント、水素ガスの精製プラント、水素ガスの回収プラント、水素ガスの再利用プラント、水素ガスの処理プラント、ハロゲン化水素ガスの生産プラント、ハロゲン化水素ガスの分離プラント、ハロゲン化ガスの精製プラント、ハロゲン化ガスの回収プラント、ハロゲン化ガスの再利用プラント、ハロゲン化ガスの処理プラント、ケイ素化合物の還元プラントなども、同様の構成を有し、同様の作用効果を奏する。 Also, the hydrogen gas separation method, hydrogen gas purification method, hydrogen gas recovery method, hydrogen gas recycling method, hydrogen gas treatment method, hydrogen halide gas production method, hydrogen halide gas separation method of the present invention Method, halogen gas purification method, halogen gas recovery method, halogen gas recycling method, halogen gas treatment method, silicon compound reduction method, hydrogen gas separation plant, hydrogen gas purification plant, hydrogen Gas recovery plant, hydrogen gas recycling plant, hydrogen gas processing plant, hydrogen halide gas production plant, hydrogen halide gas separation plant, halogenated gas purification plant, halogenated gas recovery plant, halogenated Gas recycling plants, halogenated gas processing plants, silicon compound reduction plants, etc. have the same configuration. And, the same effects.
 本発明によれば、ハロゲン化ケイ素およびハロゲン化水素の含有量の少ない高純度な水素ガスを分離することができ、工業的に再利用可能な水素ガスの分離を行うことができる。また、本発明によれば、工業的に再利用可能なハロゲン化水素ガスの分離を行うこともできる。 According to the present invention, high-purity hydrogen gas having a small content of silicon halide and hydrogen halide can be separated, and industrially reusable hydrogen gas can be separated. Further, according to the present invention, industrially reusable hydrogen halide gas can be separated.
実施形態1に係る水素ガスの生産プロセスのフローについて説明するための図である。FIG. 5 is a diagram for explaining a flow of a hydrogen gas production process according to the first embodiment. 実施形態2の変形例で用いるトリクロルシランの製造プロセスの設備について説明するための図である。FIG. 10 is a diagram for explaining equipment for a production process of trichlorosilane used in a modification of the second embodiment. 実施形態2で用いるジクロルシラン、モノクロルシラン、モノシランの製造プロセスの設備について説明するための図である。It is a figure for demonstrating the equipment of the manufacturing process of dichlorosilane, monochlorosilane, and monosilane used in Embodiment 2.
符号の説明Explanation of symbols
1:反応塔
2:リボイラー
3:凝縮器
4:原料供給導管
5:調節弁
6:凝縮器
7:捕集貯槽
8:調節弁
9:蒸発槽
10:ポンプ
11:凝縮器
12:貯槽
13:補給管
21:SiCl蒸発器
22:ヒーター
23:反応器
24:電気炉
25:取り出し管
26:凝縮器
27:サンプル口
100:プラント
102:洗浄塔
104:スラリー貯留槽
106:フィルタープレス
108:塩酸スクラバー
110:放散塔
112:水洗塔
114;除去塔
116:水分除去装置
1: reaction tower 2: reboiler 3: condenser 4: raw material supply conduit 5: control valve 6: condenser 7: collection storage tank 8: control valve 9: evaporation tank 10: pump 11: condenser 12: storage tank 13: replenishment Tube 21: SiCl 4 evaporator 22: heater 23: reactor 24: electric furnace 25: take-out tube 26: condenser 27: sample port 100: plant 102: washing tower 104: slurry storage tank 106: filter press 108: hydrochloric acid scrubber 110: diffusion tower 112: water washing tower 114; removal tower 116: moisture removal device
 <用語の説明>
 本明細書および請求の範囲において、「最小値~最大値」という表記は、最小値以上かつ最大値以下の数値範囲を意味するものとする。また、「%」という表記は、特に断りのない限り、体積%(v/v)を意味するものとする。
<Explanation of terms>
In the present specification and claims, the expression “minimum value to maximum value” means a numerical range not less than the minimum value and not more than the maximum value. Further, the expression “%” means volume% (v / v) unless otherwise specified.
 (1)ハロゲン化ケイ素
 本明細書および請求の範囲において、ハロゲン化ケイ素とは、ハロゲン化されたケイ素を意味し、SiCl、SiHCl、SiHCl、SiHClなどのクロルシラン類の化合物を含む概念である。なお、クロルシラン類の化合物以外にも、SiF、SiHF、SiH、SiHFや、SiBr、SiHBr、SiHBr、SiHBrや、SiI、SiHI、SiH、SiHIも含む概念である。
(1) Silicon Halide In the present specification and claims, the term “halogenated silicon” means halogenated silicon and is a compound of chlorosilanes such as SiCl 4 , SiHCl 3 , SiH 2 Cl 2 , and SiH 3 Cl. It is a concept that includes In addition to chlorosilane compounds, SiF 4 , SiHF 3 , SiH 2 F 2 , SiH 3 F, SiBr 4 , SiHBr 3 , SiH 2 Br 2 , SiH 3 Br, SiI 4 , SiHI 3 , SiH 2 It is a concept including I 2 and SiH 3 I.
 なお、ハロゲン化ケイ素の一種である、クロルシランには、以下の4種類が含まれる。
 物質名                化学式      沸点
 テトラクロルシラン(四塩化ケイ素)  SiCl    57℃
 トリクロルシラン           SiHCl   32℃
 ジクロルシラン            SiHCl   8℃
 モノクロルシラン           SiHCl   30℃
 なお、上記のトリクロルシランは、消防法危険物(第三類)に分類されている。
Note that chlorosilane, which is a kind of silicon halide, includes the following four types.
Material name Chemical formula Boiling point Tetrachlorosilane (silicon tetrachloride) SiCl 4 57 ° C
Trichlorosilane SiHCl 3 32 ° C
Dichlorosilane SiH 2 Cl 2 8 ° C
Monochlorosilane SiH 3 Cl 30 ° C
In addition, said trichlorosilane is classified into the dangerous goods (class 3) of the Fire Service Act.
 (2)モノシラン
 モノシラン(SiH)は、沸点-112℃の化合物であり、特殊高圧ガス(自然発火性)に分類されている。モノシランは、半導体、液晶パネル、太陽電池等の製造に用いられる特殊材料ガスである。近年、需要は順調に拡大し、エレクトロニクス分野で広く使用されるCVD材料として、今後も伸びが期待されている。
(2) Monosilane Monosilane (SiH 4 ) is a compound having a boiling point of −112 ° C., and is classified as a special high-pressure gas (pyrophoric). Monosilane is a special material gas used for manufacturing semiconductors, liquid crystal panels, solar cells, and the like. In recent years, demand has been steadily expanding, and growth is expected as a CVD material widely used in the electronics field.
 (3)ケイ素化合物
 本明細書および請求の範囲において、ケイ素化合物とは、ケイ素および他の元素を含む化合物を意味する。ケイ素化合物には、ハロゲン化ケイ素(テトラクロルシラン、トリクロルシラン、ジクロルシラン、モノクロルシラン)およびモノシランが含まれる。
(3) Silicon compound In the present specification and claims, the silicon compound means a compound containing silicon and other elements. Silicon compounds include silicon halides (tetrachlorosilane, trichlorosilane, dichlorosilane, monochlorosilane) and monosilane.
 (4)ハロゲン化ケイ素の還元
 本明細書および請求の範囲において、ハロゲン化ケイ素を還元するとは、ハロゲン化ケイ素に水素ガスなどのような還元物質を反応させて、より還元度の高い(ハロゲン化度の低い)物質に変換することを意味する。例えば、クロルシラン類の化合物の還元の場合には、下記の順番でハロゲン化ケイ素を還元することを意味する。
SiCl→SiHCl→SiHCl→SiHCl→SiH
(4) Reduction of silicon halide In the present specification and claims, reduction of silicon halide means that a reduction substance such as hydrogen gas is reacted with silicon halide to increase the degree of reduction (halogenation). It means that it is converted to a low-grade substance. For example, in the case of reduction of a chlorosilane compound, it means that silicon halide is reduced in the following order.
SiCl 4 → SiHCl 3 → SiH 2 Cl 2 → SiH 3 Cl → SiH 4
 (5)ハロゲン化水素
 本明細書および請求の範囲において、ハロゲン化水素とは、第17族元素の水素化物を意味する。水素とは1対1で結合する化合物しか知られておらず、ハロゲン化水素一般を表す略号としてHXと書き表されることがある。例えば、フッ化水素(HF、沸点19.5℃)、塩化水素(HCl、沸点-85.1℃)、臭化水素(HBr、沸点-67.1℃)、ヨウ化水素(HI、沸点-35.1℃)が含まれる。フッ化水素酸以外のハロゲン化水素は水中では完全電離するものの、そのもの自体はそれほど強い極性物質ではない。そして塩化水素、臭化水素、ヨウ化水素の水溶液は完全電離して強酸性を示し、酸の強度はHCl<HBr<HIの順である。これらの中で、最も産業上よく用いられるのは、塩酸(塩化水素、HCl)である。
(5) Hydrogen halide In the present specification and claims, hydrogen halide means a hydride of a Group 17 element. Only a compound that is bonded one-to-one with hydrogen is known, and HX may be written as an abbreviation for hydrogen halide in general. For example, hydrogen fluoride (HF, boiling point 19.5 ° C.), hydrogen chloride (HCl, boiling point−85.1 ° C.), hydrogen bromide (HBr, boiling point−67.1 ° C.), hydrogen iodide (HI, boiling point− 35.1 ° C.). Although hydrogen halides other than hydrofluoric acid are completely ionized in water, they themselves are not very strong polar substances. The aqueous solutions of hydrogen chloride, hydrogen bromide, and hydrogen iodide are completely ionized and show strong acidity, and the strength of the acid is in the order of HCl <HBr <HI. Of these, hydrochloric acid (hydrogen chloride, HCl) is most frequently used in the industry.
 (6)水素
 本明細書および請求の範囲において、水素とは、水素の単体である水素分子(水素ガス)Hを示すものとする。水素分子は常温では無色無臭の気体で、沸点-252.6°Cであり、軽く、非常に燃えやすい。一般に、アンモニアの製造(ハーバー・ボッシュ法)の他、最も安価でクリーンな還元剤として、トリクロルシラン、ジクロルシラン、モノクロルシランおよびモノシランの製造プロセスをはじめ、塩酸の製造、金属鉱石の還元、油脂の改質、脱硫など、多方面に利用されている。
(6) Hydrogen In the present specification and claims, hydrogen means hydrogen molecule (hydrogen gas) H 2 which is a simple substance of hydrogen. Hydrogen molecules are colorless and odorless gases at room temperature, have a boiling point of −252.6 ° C., are light and extremely flammable. In general, in addition to the production of ammonia (Harbour-Bosch process), the cheapest and cleanest reducing agents include trichlorosilane, dichlorosilane, monochlorosilane and monosilane production processes, as well as hydrochloric acid production, metal ore reduction, and oil and fat modification. It is used in many fields such as quality and desulfurization.
 (7)水性溶媒
 本明細書および請求の範囲において、水性溶媒とは、水、水溶液、極性溶媒を含む概念であるとする。なお、本明細書および請求の範囲において、水とは、純度100%のHOのみからなるものに限定するわけではなく、多少の不純物等を含む水溶液、水懸濁液であっても、水と記載することとする。また、極性溶媒には、プロトン性極性溶媒と非プロトン性極性溶媒とが含まれる。プロトン性溶媒としては、例えば、水(HO)、エタノール(CHCHOH)、メタノール(CHOH)、酢酸(CHC(=O)OH)などが例として挙げられる。
(7) Aqueous solvent In the present specification and claims, the aqueous solvent is a concept including water, an aqueous solution, and a polar solvent. In the present specification and claims, water is not limited to only 100% pure H 2 O, and may be an aqueous solution or a water suspension containing some impurities, It shall be described as water. The polar solvent includes a protic polar solvent and an aprotic polar solvent. Examples of the protic solvent include water (H 2 O), ethanol (CH 3 CH 2 OH), methanol (CH 3 OH), acetic acid (CH 3 C (═O) OH), and the like.
 (8)懸濁液
 本明細書および請求の範囲において、懸濁液(Suspension)とは、少なくとも1マイクロメートル以上の、コロイドより大きい粒子と液体との混合物を意味する。コロイド溶液とは異なり、懸濁液は時間がたつと定常状態に落ち着く。懸濁液の一例は、シリカおよび水(または塩酸水溶液)を含むスラリーである。懸濁する粒子は顕微鏡で見ることができ、静かな場所に置くと時間の経過に連れて沈静化する。
(8) Suspension In the present specification and claims, the term “suspension” means a mixture of particles and liquid that are at least 1 micrometer or larger and larger than a colloid. Unlike colloidal solutions, suspensions settle to a steady state over time. An example of a suspension is a slurry containing silica and water (or aqueous hydrochloric acid). Suspended particles can be seen with a microscope, and when placed in a quiet place, they settle down over time.
 (9)スクラバー
 本明細書および請求の範囲において、スクラバー(洗浄集じん装置)とは、排ガスに含まれる有害物質除去装置の一種であり、水などの液体を洗浄液として、排ガス中の粒子等の不純物を洗浄液の液滴や液膜中に捕集して分離をする装置で、洗浄集じん装置(湿式スクラバー、ウェットスクラバー)を意味するものとする。この種の装置には、液滴によるダストの分離を有効にするため、液滴、液膜等の形成と洗浄方法に種々の工夫がされている。溜水中に排ガスをくぐらせることにより集じんする方法(溜水式)、排ガスの流れに加圧水を噴射する方法(加圧水式)、プラスチック・磁器などの充てん物に噴霧した洗浄液の水膜に排ガスを接触させて集じんする方法(充てん層式)、洗浄液を回転体で分散させて排ガスを接触させる方法(回転式)などがある。
(9) Scrubber In the present specification and claims, a scrubber (cleaning dust collection device) is a kind of harmful substance removal device contained in exhaust gas, and a liquid such as water is used as a cleaning liquid to remove particles, etc. in the exhaust gas. A device that collects and separates impurities in a droplet or a liquid film of a cleaning solution, and means a cleaning dust collection device (wet scrubber or wet scrubber). In order to make the separation of dust by droplets effective in this type of apparatus, various devices have been devised for forming droplets, liquid films, and the like and cleaning methods. A method of collecting dust by passing exhaust gas into the stored water (reservoir type), a method of injecting pressurized water into the flow of exhaust gas (pressurized water type), and a cleaning film sprayed on a filling material such as plastic and porcelain. There are a method of collecting dust by contact (packed layer type), a method of dispersing cleaning liquid with a rotating body and contacting exhaust gas (rotary type).
 (10)フィルタープレス
 本明細書および請求の範囲において、フィルタープレス(filter press)とは、加圧濾過を行う代表的な方法であり、金属や樹脂製の凹凸のある中心に穴のあいた濾板に濾布を張ったものを直列に密着させたもので、スラリー(シリカ、汚泥、掘削土、セメントなどが水中にまざったもの)をポンプでろ板中心の穴から加圧圧入する装置を意味する。圧入されたスラリーは、その圧力で、水分のみが2枚の濾板の隙間で濾布の目から外へ排出され、濾板間(実際には濾布と濾布の間)に脱水ケーキが形成される。脱水完了後、濾板を開板し、ケーキを排出する。最近の製品は、ケーキの排出を自動化したものが主流である。
(10) Filter press In the present specification and claims, the filter press is a typical method for pressure filtration, and is a filter plate with a hole in the center with metal or resin unevenness. This is a device in which a filter cloth is attached in series, and slurry (silica, sludge, excavated soil, cement, etc.) is pressed and pressed through a hole in the center of the filter plate with a pump. . With the pressure of the slurry that has been injected, only water is discharged from the filter cloth through the gap between the two filter plates, and a dehydrated cake is formed between the filter plates (actually between the filter cloth and the filter cloth). It is formed. After completion of dehydration, the filter plate is opened and the cake is discharged. Most recent products are products that automate the discharge of cake.
 以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate.
 <実施形態1>
 図1は、本実施形態に係る水素ガスの生産プロセスの設備について説明するための図である。図1に示す水素ガスの生産プロセスでは、塩化水素、水素およびクロルシランを含む混合ガスから水素を分離して、水素ガスを生産する。
<Embodiment 1>
FIG. 1 is a diagram for explaining the equipment of the hydrogen gas production process according to the present embodiment. In the hydrogen gas production process shown in FIG. 1, hydrogen gas is separated from a mixed gas containing hydrogen chloride, hydrogen and chlorosilane to produce hydrogen gas.
 図1に示したプラント100は、塩化水素、水素およびクロルシランを含む混合ガスから水素を分離して、水素ガスを生産するプラント100である。なお、この混合ガスは、水素およびクロルシランを原料として、クロルシランを還元する際に排出されるガスを回収することによって供給される。すなわち、このプラント100は、クロルシランの還元反応における排ガスを環境負荷および人体への悪影響を及ぼさないように安定的に処理するとともに、貴重な原料として再利用するために水素および塩化水素を分離することを目的とするプラントである。 A plant 100 shown in FIG. 1 is a plant 100 that produces hydrogen gas by separating hydrogen from a mixed gas containing hydrogen chloride, hydrogen, and chlorosilane. The mixed gas is supplied by recovering a gas discharged when reducing chlorosilane using hydrogen and chlorosilane as raw materials. That is, the plant 100 stably treats exhaust gas in the reduction reaction of chlorosilane so as not to adversely affect the environmental load and the human body, and separates hydrogen and hydrogen chloride for reuse as valuable raw materials. It is a plant for the purpose.
 なお、この混合ガス中の塩化水素濃度は10mol%以下であることが好ましく、例えば7~8mol%の範囲内のものを好適に使用できる。一般的に、クロルシランの還元反応における排ガスに含まれる塩化水素濃度は10mol%以下であることにくわえて、この排ガス中の塩化水素濃度が10mol%以下であれば、後述するプラント100によって無理なく塩化水素を安定的に処理することができるからである。 Note that the hydrogen chloride concentration in the mixed gas is preferably 10 mol% or less, and for example, a gas within the range of 7 to 8 mol% can be suitably used. Generally, in addition to the fact that the hydrogen chloride concentration contained in the exhaust gas in the reduction reaction of chlorosilane is 10 mol% or less, if the hydrogen chloride concentration in this exhaust gas is 10 mol% or less, the plant 100 described below can reasonably chlorinate. This is because hydrogen can be treated stably.
 このプラント100では、まず、洗浄塔102において、塩化水素、水素およびクロルシランを含む混合ガスおよび水性溶媒(塩酸シリカ循環スラリー)を接触させることによって、混合ガス中に含まれるクロルシランおよび水性溶媒(塩酸シリカ循環スラリー)に含まれる水を反応させる。そして、その結果、洗浄塔102において、混合ガスからクロルシランの少なくとも一部を除去してなる第一の精製ガス(塩化水素、水素およびわずかな残存クロルシランを含む混合ガス)が得られる。 In this plant 100, first, in a washing tower 102, a mixed gas containing hydrogen chloride, hydrogen and chlorosilane and an aqueous solvent (silica hydrochloric acid circulating slurry) are brought into contact with each other, whereby chlorosilane and an aqueous solvent (silica hydrochloric acid silica) contained in the mixed gas are contacted. The water contained in the circulating slurry is reacted. As a result, a first purified gas (mixed gas containing hydrogen chloride, hydrogen and a small amount of residual chlorosilane) obtained by removing at least a part of chlorosilane from the mixed gas is obtained in the cleaning tower 102.
 このとき、洗浄塔102は、クロルシランガスを水と反応させて、二酸化ケイ素(SiO)を生成するための一種の反応装置としての役割を果たしている。その結果、混合ガス中に含まれるクロルシランガスは、この洗浄塔102およびスラリー貯留槽104を循環する塩酸シリカスラリー中に、シリカ粒子(SiO粒子)としていわば吸収(正確には懸濁)されることになる。そして、このシリカ粒子(SiO粒子)の一部は、スラリー貯留槽104の底部に懸濁液として滞留するため、その滞留したシリカ粒子(SiO粒子)の一部は、スラリー貯留槽104から抜き出してフィルタープレス106に送液される。 At this time, the washing tower 102 plays a role as a kind of reaction apparatus for reacting chlorosilane gas with water to produce silicon dioxide (SiO 2 ). As a result, the chlorosilane gas contained in the mixed gas is absorbed (precisely suspended) as silica particles (SiO 2 particles) in the hydrochloric acid silica slurry circulating in the washing tower 102 and the slurry storage tank 104. It will be. A part of the silica particles (SiO 2 particles) stays as a suspension at the bottom of the slurry storage tank 104, and therefore a part of the retained silica particles (SiO 2 particles) is removed from the slurry storage tank 104. It is extracted and fed to the filter press 106.
 ここで、クロルシランおよび水の反応速度が大きいためにクロルシランの大部分は、この洗浄塔102でシリカ粒子(SiO粒子)になってしまうので、塩酸スクラバー108には移行しない。しかし、この洗浄塔102では、混合ガスに含まれる塩化水素の一部が塩酸シリカスラリーに含まれる水に吸収される。が、塩化水素の水による吸収速度はそれほど大きくないため、この洗浄塔102ではあまり多く吸収されず、塩化水素の多くは次の塩酸スクラバー108まで移行して、塩酸スクラバー108内の塩酸水溶液に吸収されることになる。 Here, since the reaction rate of chlorosilane and water is high, most of the chlorosilane is converted into silica particles (SiO 2 particles) in the washing tower 102 and therefore does not migrate to the hydrochloric acid scrubber 108. However, in this cleaning tower 102, part of the hydrogen chloride contained in the mixed gas is absorbed by the water contained in the hydrochloric acid silica slurry. However, since the absorption rate of hydrogen chloride by water is not so high, the washing tower 102 does not absorb much, and most of the hydrogen chloride moves to the next hydrochloric acid scrubber 108 and is absorbed by the hydrochloric acid aqueous solution in the hydrochloric acid scrubber 108. Will be.
 次いで、上記の第一の精製ガス(塩化水素、水素およびわずかな残存クロルシランを含む混合ガス)は、洗浄塔102の塔頂出口から塩酸スクラバー108に送られる。この塩酸スクラバー108では、上記の第一の精製ガス(塩化水素、水素およびわずかな残存クロルシランを含む混合ガス)および水性溶媒(塩酸水溶液)を接触させることによって、上記の第一の精製ガスに含まれる塩化水素を水性溶媒(塩酸水溶液)に吸収させる。その結果、上記の第一の精製ガス(塩化水素、水素およびわずかな残存クロルシランを含む混合ガス)から塩化水素の少なくとも一部を除去してなる第二の精製ガス(わずかな残存塩化水素、水素およびわずかな残存クロルシランを含む混合ガス)が得られる。 Next, the first purified gas (mixed gas containing hydrogen chloride, hydrogen and a slight amount of residual chlorosilane) is sent from the top exit of the cleaning tower 102 to the hydrochloric acid scrubber 108. This hydrochloric acid scrubber 108 is contained in the first purified gas by contacting the first purified gas (mixed gas containing hydrogen chloride, hydrogen and a slight amount of residual chlorosilane) and an aqueous solvent (hydrochloric acid aqueous solution). Hydrogen chloride is absorbed into an aqueous solvent (aqueous hydrochloric acid). As a result, a second purified gas (a slight residual hydrogen chloride, hydrogen obtained by removing at least a part of hydrogen chloride from the first purified gas (a mixed gas containing hydrogen chloride, hydrogen and a small amount of residual chlorosilane)). And a mixed gas containing a small amount of residual chlorosilane).
このとき、塩酸スクラバー108は、洗浄塔102の頭頂出口ガスである第一の精製ガスに含まれる塩化水素およびクロルシランを塩酸水溶液に含まれる水で吸収する(正確には塩化水素を水で吸収し、クロルシランを水と反応させて二酸化ケイ素(SiO)を生成する)ための吸収装置としての役割を果たしている。 At this time, the hydrochloric acid scrubber 108 absorbs hydrogen chloride and chlorosilane contained in the first purified gas, which is the top outlet gas of the cleaning tower 102, with water contained in the aqueous hydrochloric acid solution (exactly, hydrogen chloride is absorbed with water). Chlorosilane reacts with water to produce silicon dioxide (SiO 2 ).
 なお、この塩酸スクラバー108でも、クロルシランおよび水の反応によって、洗浄塔102の場合と同様に微量のシリカ粒子(SiO粒子)が生成するが、図1で示すように、塩酸スクラバー108の塩酸水溶液は、洗浄塔102との間で循環しているため、塩酸スクラバー108内で生じた微量のシリカ粒子(SiO粒子)は、塩酸水溶液と一緒に洗浄塔102内に送られた後に、さらにスラリー貯留槽104の底部に懸濁液として滞留するため、その滞留したシリカ粒子(SiO粒子)の一部は、スラリー貯留槽104から抜き出してフィルタープレス106に送液される。 In this hydrochloric acid scrubber 108, a small amount of silica particles (SiO 2 particles) are generated by the reaction of chlorosilane and water, as in the case of the washing tower 102. However, as shown in FIG. Is circulated between the cleaning tower 102 and a small amount of silica particles (SiO 2 particles) generated in the hydrochloric acid scrubber 108 are sent into the cleaning tower 102 together with the hydrochloric acid aqueous solution, and then further slurried. Since it stays as a suspension at the bottom of the storage tank 104, some of the retained silica particles (SiO 2 particles) are extracted from the slurry storage tank 104 and fed to the filter press 106.
 また、このプラント100は、洗浄塔102内でクロルシランおよび水の反応によって生成するシリカ粒子(SiO粒子)を、スラリー貯留槽104の底部懸濁液中から除去するための除去装置(不図示)をさらに備えている。この除去装置(不図示)は、スラリー貯留槽104の底部懸濁液中からシリカ粒子(SiO粒子)をうまく排出することができればよく、例えばスクリューによって掻き出してもよく、ポンプによって吸い出してもよい。 Further, the plant 100 is a removal device (not shown) for removing silica particles (SiO 2 particles) generated by the reaction of chlorosilane and water in the washing tower 102 from the bottom suspension of the slurry storage tank 104. Is further provided. This removal device (not shown) only needs to be able to discharge silica particles (SiO 2 particles) well from the bottom suspension of the slurry reservoir 104. For example, the removal device (not shown) may be scraped by a screw or may be sucked by a pump. .
 また、既に一部説明したが、このプラント100は、このようにして除去されたシリカ粒子(SiO粒子)を含む懸濁液を固液分離して、懸濁液から塩化水素を含む液体(塩酸)を回収するフィルタープレス106をさらに備える。すなわち、このフィルタープレス106は、シリカ粒子(SiO粒子)を含む懸濁液を、シリカ粒子(SiO粒子)を主に含む固体成分と、塩酸水溶液を主に含む液体成分と、に分離する一種の固液分離装置としての役割を果たすことになる。このプラント100では、このようにして、フィルタープレス106でシリカ分を濾過した後、濾過後の液を放散塔110に送る。 In addition, as already explained in part, the plant 100 performs solid-liquid separation on the suspension containing the silica particles (SiO 2 particles) thus removed, so that a liquid containing hydrogen chloride ( A filter press 106 for collecting (hydrochloric acid) is further provided. That is, the filter press 106 separates the silica particles suspension comprising (SiO 2 particles), and a solid component comprising silica particles (SiO 2 particles) predominantly, a liquid component comprising an aqueous solution of hydrochloric acid mainly in It will serve as a kind of solid-liquid separator. In this plant 100, the silica content is filtered by the filter press 106 in this way, and then the filtered liquid is sent to the stripping tower 110.
 このプラント100は、このようにしてフィルタープレス106で回収されたハロゲン化水素を含む液体(塩酸水溶液)を放散するための放散塔110をさらに備える。このように、このプラント100では、放散塔110において塩酸水溶液を放散することによって、塩化水素濃度99%以上の塩化水素ガスと、塩化水素を含む液体(塩酸水溶液)と、に気液分離することができる。すなわち、この放散塔110は、一種の気液分離装置としての役割を果たすことになる。この放散塔110では、フィルタープレス106で回収されたハロゲン化水素を含む液体(塩酸水溶液)が、放散塔110内に放散される際に圧力の減少によって、液体(塩酸水溶液)中の塩化水素の飽和濃度が下がり、さらに気体との接触面積が増大するために、液体(塩酸水溶液)中の塩化水素がガス化して塩化水素濃度99%以上の高純度の塩化水素ガスが得られる。 The plant 100 further includes a diffusion tower 110 for diffusing the liquid (hydrochloric acid aqueous solution) containing hydrogen halide recovered by the filter press 106 in this way. As described above, in this plant 100, the hydrochloric acid aqueous solution is diffused in the stripping tower 110, whereby gas-liquid separation is performed into hydrogen chloride gas having a hydrogen chloride concentration of 99% or more and a liquid (hydrochloric acid aqueous solution) containing hydrogen chloride. Can do. That is, the diffusion tower 110 plays a role as a kind of gas-liquid separator. In the stripping tower 110, the liquid (hydrochloric acid aqueous solution) containing hydrogen halide recovered by the filter press 106 is released into the stripping tower 110, so that the pressure of the hydrogen chloride in the liquid (hydrochloric acid aqueous solution) is reduced. Since the saturation concentration is lowered and the contact area with the gas is increased, hydrogen chloride in the liquid (hydrochloric acid aqueous solution) is gasified to obtain high-purity hydrogen chloride gas having a hydrogen chloride concentration of 99% or more.
 すなわち、この放散塔110では、フィルタープレス106の濾過後の液を放散し、放散塔の塔頂からは塩化水素ガスが得られ、塔底からは約20%の濃度の塩酸水溶液が得られる。この放散塔110の塔底液(約20%の濃度の塩酸水溶液)は、洗浄塔102、塩酸スクラバー108に送られる。このようにして、このプラント100では、塩化水素が無駄に排出・廃棄されることなく、プラント100内で循環しているため、資源効率を向上するととともに、環境に対する悪影響を軽減している。 That is, in the stripping tower 110, the liquid after filtration by the filter press 106 is stripped, hydrogen chloride gas is obtained from the top of the stripping tower, and an aqueous hydrochloric acid solution having a concentration of about 20% is obtained from the bottom of the tower. The bottom liquid of the stripping tower 110 (hydrochloric acid solution having a concentration of about 20%) is sent to the cleaning tower 102 and the hydrochloric acid scrubber 108. In this way, in the plant 100, hydrogen chloride is circulated in the plant 100 without being wasted and discarded, so that resource efficiency is improved and adverse effects on the environment are reduced.
 一方、塩酸スクラバー108で得られる第二の精製ガス(わずかな残存塩化水素、水素およびわずかな残存クロルシランを含む混合ガス)は、さらに水洗塔112に送られる。この水洗塔112では、第二の精製ガス(わずかな残存塩化水素、水素およびわずかな残存クロルシランを含む混合ガス)および水性溶媒(塩酸水溶液)を接触させる。 On the other hand, the second purified gas (mixed gas containing a slight residual hydrogen chloride, hydrogen and a slight residual chlorosilane) obtained by the hydrochloric acid scrubber 108 is further sent to the washing tower 112. In the washing tower 112, the second purified gas (mixed gas containing a slight residual hydrogen chloride, hydrogen and a slight residual chlorosilane) and an aqueous solvent (aqueous hydrochloric acid solution) are brought into contact.
 そのため、水洗塔112では、第二の精製ガス中に残存するクロルシランおよび塩酸水溶液中の水を反応させて二酸化ケイ素(SiO)を生成させることになるので、第二の精製ガスにわずかに残存するクロルシランの少なくとも一部が除去される。また、水洗塔112では、第二の精製ガス中に残存する塩化水素を塩酸水溶液に吸収させることになるので、第二の精製ガスにわずかに残存する塩化水素の少なくとも一部が除去される。その結果、水洗塔112の塔頂部からは、第二の精製ガスからわずかに残存するクロルシランおよびわずかに残存する塩化水素の少なくとも一部をさらに除去してなる、第三の精製ガスが得られることになる。この第三の精製ガスは、極わずかな残存塩化水素、水素および極わずかな残存クロルシランを含む混合ガスである。 Therefore, in the water washing tower 112, chlorosilane remaining in the second purified gas and water in the hydrochloric acid aqueous solution are reacted to generate silicon dioxide (SiO 2 ), so that it slightly remains in the second purified gas. At least a portion of the chlorosilane to be removed is removed. Further, in the water washing tower 112, hydrogen chloride remaining in the second purified gas is absorbed by the aqueous hydrochloric acid solution, so that at least a part of the hydrogen chloride remaining slightly in the second purified gas is removed. As a result, a third purified gas obtained by further removing at least part of the slightly remaining chlorosilane and slightly remaining hydrogen chloride from the second purified gas is obtained from the top of the water washing tower 112. become. This third purified gas is a mixed gas containing very little residual hydrogen chloride, hydrogen and very little residual chlorosilane.
 すなわち、この水洗塔112は、塩酸スクラバー108の塔頂部出口から送られる第二の精製ガスに含まれる塩化水素を塩酸水溶液に含まれる水で吸収しているということになる。また、この水洗塔112は、第二の精製ガスに含まれるクロルシランを塩酸水溶液に含まれる水に吸収(正確には水と反応させて二酸化ケイ素(SiO)を生成)しているということになる。言い換えれば、この水洗塔112は、クロルシランを塩酸水溶液に含まれる水と反応させて二酸化ケイ素(SiO)を生成し、さらに塩化水素を塩酸水溶液に含まれる水で吸収する、一種の反応吸収装置としての役割を果たすことになる。 That is, the water washing tower 112 absorbs hydrogen chloride contained in the second purified gas sent from the tower top outlet of the hydrochloric acid scrubber 108 with water contained in the aqueous hydrochloric acid solution. Further, this water washing tower 112 absorbs chlorosilane contained in the second purified gas into water contained in the aqueous hydrochloric acid solution (more precisely, it reacts with water to produce silicon dioxide (SiO 2 )). Become. In other words, the water washing tower 112 is a kind of reaction absorber that reacts chlorosilane with water contained in an aqueous hydrochloric acid solution to produce silicon dioxide (SiO 2 ), and further absorbs hydrogen chloride with water contained in the aqueous hydrochloric acid solution. Will play a role.
 そして、水洗塔112で得られる第三の精製ガス(極わずかな残存塩化水素、水素および極わずかな残存クロルシランを含む)は、水洗塔112の頭頂部出口から除去塔114に送られる。この除去塔114では、第三の精製ガス(極わずかな残存塩化水素、水素および極わずかな残存クロルシランを含む)およびアルカリ性の水性溶媒(NaOH水溶液)を接触させることによって、第三の精製ガス中に極わずかに残存する塩化水素およびアルカリ性の水性溶媒(NaOH水溶液)を反応させる。その結果、この除去塔114の頭頂部から、第三の精製ガスから塩化水素の少なくとも一部を除去してなる第四の精製ガス(純度99%以上の高純度の水素ガス)が得られる。すなわち、この除去塔114は、水洗塔112の塔頂部出口から得られる第三の精製ガスに含まれる微量の塩化水素をNaOH水溶液で水洗・中和する酸アルカリ反応装置としての役割を果たしている。 Then, the third purified gas (including very little residual hydrogen chloride, hydrogen, and very little residual chlorosilane) obtained in the water washing tower 112 is sent to the removal tower 114 from the top outlet of the water washing tower 112. In this removal tower 114, a third purified gas (containing very little residual hydrogen chloride, hydrogen and very little residual chlorosilane) and an alkaline aqueous solvent (NaOH aqueous solution) are brought into contact with each other, thereby bringing the third purified gas into contact with the third purified gas. Is reacted with a slight remaining amount of hydrogen chloride and an alkaline aqueous solvent (aqueous NaOH solution). As a result, a fourth purified gas (high-purity hydrogen gas having a purity of 99% or more) obtained by removing at least a part of hydrogen chloride from the third purified gas is obtained from the top of the removal tower 114. That is, the removal tower 114 serves as an acid-alkali reactor for washing and neutralizing a small amount of hydrogen chloride contained in the third purified gas obtained from the top outlet of the water washing tower 112 with an aqueous NaOH solution.
 そして、この除去塔114の塔頂部から得られる第四の精製ガス(高純度の水素ガス)は、第四の精製ガス(高純度の水素ガス)から水分を除去して、水分含有率が0.5%以下である第五の精製ガスを得るための水分除去装置(不図示)に送られる。この水分除去装置(不図示)は、第四の精製ガス(高純度の水素ガス)から水分を除去することができれば、特に限定されるものではないが、例えば、水分吸着性の材質を充填した吸着塔、真空水分除去装置、水分除去可能な吸湿材を充填した乾式スクラバーなどを好適に用いることができる。なお、この脱水を行う前に、さらに別のフローから水素ガス(例えば、新たに購入したバージンのHガス)を補給してやってもよい。すなわち、この水分除去装置(不図示)は、上記の塩酸回収工程で分離された水素および補給水素の脱水を行う一種の水素精製装置(不図示)としての役割を果たしている。 The fourth purified gas (high-purity hydrogen gas) obtained from the top of the removal tower 114 removes moisture from the fourth purified gas (high-purity hydrogen gas) and has a moisture content of 0. It is sent to a water removal device (not shown) for obtaining a fifth purified gas that is 5% or less. The moisture removing device (not shown) is not particularly limited as long as moisture can be removed from the fourth purified gas (high purity hydrogen gas). For example, the moisture removing device is filled with a moisture adsorbing material. An adsorption tower, a vacuum moisture removing device, a dry scrubber filled with a moisture absorbent capable of removing moisture can be preferably used. Note that hydrogen gas (for example, newly purchased virgin H 2 gas) may be supplied from another flow before the dehydration. That is, the moisture removing device (not shown) serves as a kind of hydrogen purifier (not shown) that dehydrates the hydrogen separated in the hydrochloric acid recovery step and the supplemental hydrogen.
 以下、本実施形態に係るプラント100の作用効果について説明する。
 本実施形態に係る水素ガスの生産プラント100は、塩化水素、水素およびクロルシランを含む混合ガスから水素を分離して、水素ガスを生産するプラント100である。そして、この生産プラント100は、混合ガスおよび塩酸シリカスラリーを接触させることによって、クロルシランおよび塩酸シリカスラリーに含まれる水を反応させ、混合ガスからクロルシランの少なくとも一部を除去してなる第一の精製ガスを得るための洗浄塔102を備える。また、この生産プラント100は、第一の精製ガスおよび塩酸水溶液を接触させることによって、塩化水素を塩酸水溶液中に吸収させ、第一の精製ガスから塩化水素の少なくとも一部を除去してなる第二の精製ガスを得るための塩酸スクラバー108を備える。
Hereinafter, the operation and effect of the plant 100 according to the present embodiment will be described.
A hydrogen gas production plant 100 according to this embodiment is a plant 100 that produces hydrogen gas by separating hydrogen from a mixed gas containing hydrogen chloride, hydrogen, and chlorosilane. And this production plant 100 makes the water contained in a chlorosilane and a hydrochloric acid silica slurry react by making a mixed gas and a hydrochloric acid silica slurry contact, The 1st refinement | purification formed by removing at least one part of a chlorosilane from a mixed gas A cleaning tower 102 for obtaining gas is provided. In addition, the production plant 100 is configured to absorb hydrogen chloride in the aqueous hydrochloric acid solution by contacting the first purified gas and the aqueous hydrochloric acid solution, and remove at least a part of the hydrogen chloride from the first purified gas. A hydrochloric acid scrubber 108 is provided to obtain a second purified gas.
 そのため、この生産プラント100によれば、塩化水素、水素およびクロルシランを含む混合ガスおよび塩酸シリカスラリーを接触させることによって、まずは、クロルシランおよび塩酸シリカスラリーに含まれる水を反応させ、設計・運転・保守の容易な湿式の処理方法によって、混合ガス中から安定的にクロルシランの少なくとも一部を除去することができる。そして、このようにクロルシランの少なくとも一部が除去された第一の精製ガスおよび塩酸水溶液を接触させることによって、第一の精製ガスに含まれる塩化水素を第二の水性溶媒中に吸収させ、設計・運転・保守の容易な湿式の処理方法によって、第一の精製ガス中から安定的に塩化水素の少なくとも一部を除去することができる。 For this reason, according to this production plant 100, by contacting the mixed gas containing hydrogen chloride, hydrogen and chlorosilane and the silica hydrochloride slurry, first, the water contained in the chlorosilane and silica hydrochloride slurry is reacted to design, operate and maintain. Thus, at least a part of chlorosilane can be stably removed from the mixed gas by the wet processing method. Then, by bringing the first purified gas from which at least a part of chlorosilane has been removed and the aqueous hydrochloric acid solution into contact with each other, hydrogen chloride contained in the first purified gas is absorbed in the second aqueous solvent and designed. -At least a part of hydrogen chloride can be stably removed from the first purified gas by a wet processing method that is easy to operate and maintain.
 そのため、この方法によれば、設計・運転・保守の容易な湿式の処理方法によって、塩化水素、水素およびクロルシランを含む混合ガスから安定的にクロルシランおよび塩化水素の少なくとも一部を除去することによって、クロルシランおよび塩化水素の含有量の少ない高純度な水素ガスを分離することができ、工業的に再利用可能な水素ガスの分離を行うことができる。また、この方法によれば、上記の湿式の処理方法によって除去された塩化水素は、単に塩酸水溶液中に吸収されたに過ぎず、他の化学物質等との化学反応によって別の化学物質に変化していないため、塩酸水溶液中に吸収された塩化水素を回収することが可能になる。そのため、この方法によれば、工業的に再利用可能な塩化水素ガスの分離を行うこともできる。 Therefore, according to this method, at least a part of chlorosilane and hydrogen chloride is stably removed from a mixed gas containing hydrogen chloride, hydrogen and chlorosilane by a wet processing method that is easy to design, operate and maintain. High-purity hydrogen gas having a small content of chlorosilane and hydrogen chloride can be separated, and industrially reusable hydrogen gas can be separated. Further, according to this method, the hydrogen chloride removed by the above wet processing method is merely absorbed in the hydrochloric acid aqueous solution, and is changed into another chemical substance by a chemical reaction with other chemical substances. Therefore, it is possible to recover the hydrogen chloride absorbed in the aqueous hydrochloric acid solution. Therefore, according to this method, separation of industrially reusable hydrogen chloride gas can be performed.
 また、本実施形態に係る水素ガスの生産プラント100は、クロルシランおよび塩酸シリカスラリーに含まれる水の反応によって生成する二酸化ケイ素を、塩酸シリカスラリー中から除去するための除去装置をさらに備える。そのため、洗浄塔102およびスラリー貯留槽104に二酸化ケイ素が滞留・沈殿して閉塞し、生産プラント100の動作が不安定になることを予防できるので、生産プラント100の安全性を高め、さらに保守コストを低減することができる。 Moreover, the hydrogen gas production plant 100 according to the present embodiment further includes a removal device for removing silicon dioxide generated by the reaction of water contained in the chlorosilane and silica hydrochloride slurry from the silica hydrochloride slurry. For this reason, it is possible to prevent silicon dioxide from staying and precipitating in the washing tower 102 and the slurry storage tank 104 and blocking the operation of the production plant 100, thereby improving the safety of the production plant 100 and further maintenance costs. Can be reduced.
 また、本実施形態に係る水素ガスの生産プラント100は、除去された二酸化ケイ素を含む懸濁液を固液分離して、懸濁液から塩酸水溶液を回収するフィルタープレス106をさらに備える。そのため、洗浄塔102およびスラリー貯留槽104から除去された塩酸シリカスラリーから塩酸水溶液を回収することができ、貴重な原料として再利用することができる。そのため、この生産プラント100では、資源の利用効率を高め、環境に対する悪影響を軽減できる。 Further, the hydrogen gas production plant 100 according to the present embodiment further includes a filter press 106 for solid-liquid separation of the removed suspension containing silicon dioxide and recovering an aqueous hydrochloric acid solution from the suspension. Therefore, the hydrochloric acid aqueous solution can be recovered from the hydrochloric acid silica slurry removed from the cleaning tower 102 and the slurry storage tank 104, and can be reused as a valuable raw material. Therefore, in this production plant 100, the utilization efficiency of resources can be increased and adverse effects on the environment can be reduced.
 また、本実施形態に係る水素ガスの生産プラント100は、回収された塩酸水溶液を放散することによって、塩化水素濃度99%以上の塩化水素ガスと、塩酸水溶液と、に気液分離する放散塔110をさらに備える。そのため、塩酸水溶液からさらに塩化水素濃度99%以上の工業的に再利用可能な塩化水素ガス回収することができ、貴重な原料として再利用することができる。また、この塩酸水溶液も別途洗浄塔102、塩酸スクラバー108および水洗塔112に循環させて再利用することができる。そのため、この生産プラント100では、資源の利用効率を高め、環境に対する悪影響を軽減できる。 In addition, the hydrogen gas production plant 100 according to the present embodiment dissipates the recovered hydrochloric acid aqueous solution, thereby separating the gas into a hydrogen chloride gas having a hydrogen chloride concentration of 99% or more and a hydrochloric acid aqueous solution. Is further provided. Therefore, industrially reusable hydrogen chloride gas having a hydrogen chloride concentration of 99% or more can be recovered from the hydrochloric acid aqueous solution, and can be reused as a valuable raw material. Further, this aqueous hydrochloric acid solution can also be recycled to the washing tower 102, the hydrochloric acid scrubber 108, and the water washing tower 112 separately. Therefore, in this production plant 100, the utilization efficiency of resources can be increased and adverse effects on the environment can be reduced.
 また、本実施形態に係る水素ガスの生産プラント100は、第二の精製ガスおよび塩酸水溶液を接触させることによって、第二の精製ガス中に残存するクロルシランおよび塩酸水溶液に含まれる水を反応させ、第二の精製ガス中に残存する塩化水素を塩酸水溶液中に吸収させ、第二の精製ガスからクロルシランおよび塩化水素の少なくとも一部を除去してなる、第三の精製ガスを得るための水洗塔112を、さらに備える。そのため、この生産プラント100では、別途洗浄塔102および塩酸スクラバー108において除去し損ねたために第二の精製ガス中に残存するクロルシランおよび塩化水素の少なくとも一部を除去することができるため、第三の精製ガスに含まれる水素ガスの純度をさらに高めることができる。 Further, the hydrogen gas production plant 100 according to the present embodiment causes the chlorsilane remaining in the second purified gas and the water contained in the aqueous hydrochloric acid solution to react with each other by bringing the second purified gas and the hydrochloric acid aqueous solution into contact with each other. A water washing tower for obtaining a third purified gas, wherein hydrogen chloride remaining in the second purified gas is absorbed in an aqueous hydrochloric acid solution and at least a part of chlorosilane and hydrogen chloride is removed from the second purified gas. 112 is further provided. For this reason, in this production plant 100, since the chlorsilane and hydrogen chloride remaining in the second purified gas can be removed because they have been separately removed in the cleaning tower 102 and the hydrochloric acid scrubber 108, the third The purity of the hydrogen gas contained in the purified gas can be further increased.
 また、本実施形態に係る水素ガスの生産プラント100は、第三の精製ガスおよびNaOH水溶液を接触させることによって、第三の精製ガス中に残存する塩化水素およびNaOH水溶液を反応させ、第三の精製ガスから塩化水素の少なくとも一部を除去してなる第四の精製ガスを得るための除去塔114を、さらに備える。そのため、この生産プラント100では、別途水洗塔112において除去し損ねたために第三の精製ガス中に残存する塩化水素の少なくとも一部を除去することができるため、第四の精製ガスに含まれる水素ガスの純度をさらに高めることができる。 Further, the hydrogen gas production plant 100 according to the present embodiment causes the hydrogen chloride and the NaOH aqueous solution remaining in the third purified gas to react with each other by bringing the third purified gas and the NaOH aqueous solution into contact with each other. A removal tower 114 for obtaining a fourth purified gas obtained by removing at least a part of hydrogen chloride from the purified gas is further provided. For this reason, in this production plant 100, it is possible to remove at least part of the hydrogen chloride remaining in the third purified gas because it has been separately removed in the washing tower 112, so that hydrogen contained in the fourth purified gas The purity of the gas can be further increased.
 また、本実施形態に係る水素ガスの生産プラント100は、第四の精製ガスから水分を除去して、水分含有率が0.5%以下である第五の精製ガスを得るための水分除去装置を、さらに備える。そのため、この生産プラント100では、別途洗浄塔102、塩酸スクラバー108および水洗塔112において除去し損ねたために第四の精製ガス中に残存する水分の少なくとも一部を除去することができるため、第五の精製ガスに含まれる水素ガスの純度をさらに高めることができる。 In addition, the hydrogen gas production plant 100 according to the present embodiment removes moisture from the fourth purified gas to obtain a fifth purified gas having a moisture content of 0.5% or less. Is further provided. For this reason, in this production plant 100, since it has failed to be removed separately in the washing tower 102, the hydrochloric acid scrubber 108, and the water washing tower 112, at least part of the water remaining in the fourth purified gas can be removed. The purity of the hydrogen gas contained in the purified gas can be further increased.
 <実施形態2>
 実施形態1に係る水素ガスの生産プラント100は、ジクロルシラン、モノクロルシラン、モノシランの製造プロセスに組み込んで好適に用いることができる。なお、既に実施形態1で説明した内容については、本実施形態では繰り返さない。
<Embodiment 2>
The hydrogen gas production plant 100 according to Embodiment 1 can be suitably used by being incorporated in a manufacturing process of dichlorosilane, monochlorosilane, and monosilane. The contents already described in the first embodiment are not repeated in this embodiment.
 図2は、実施形態2で用いるジクロルシラン、モノクロルシラン、モノシランの製造プロセスの設備について説明するための図である。トリクロルシランあるいはジクロルシラン等の水素化塩化珪素を原料供給導管4を通じて反応塔1の中上段部に供給する。反応塔1は塔径83mm、高さ200mmで18の段数を有するステンレス鋼製蒸留塔である。反応塔1の上部にはステンレス鋼製の凝縮器3を設けており、ジャケットにメタノールドライアイスを通して冷却できるようになっている。また、反応塔1の下部には最大出力1KWのヒーターを内蔵するリボイラー2が設けられている。 FIG. 2 is a diagram for explaining equipment for manufacturing processes of dichlorosilane, monochlorosilane, and monosilane used in the second embodiment. Silicon hydride chloride such as trichlorosilane or dichlorosilane is supplied to the middle upper stage of the reaction tower 1 through the raw material supply conduit 4. The reaction tower 1 is a stainless steel distillation tower having a tower diameter of 83 mm, a height of 200 mm and 18 stages. A stainless steel condenser 3 is provided at the top of the reaction tower 1 so that methanol dry ice can be passed through the jacket for cooling. A reboiler 2 having a heater with a maximum output of 1 KW is provided at the lower part of the reaction tower 1.
 反応塔1では不均斉化反応と蒸留による分離が同時に起こり不均斉化反応で生じた低沸点成分に富んだガスは上方に移動し凝縮器3で冷却され同伴する高沸点成分を凝縮した後、液体窒素で冷却されたステンレス製凝縮器6で凝縮させ、液体で捕集貯槽7に回収される。 In the reaction tower 1, the disproportionation reaction and separation by distillation occur at the same time, and the gas rich in the low-boiling components generated by the disproportionation reaction moves upward and is cooled in the condenser 3 to condense the accompanying high-boiling components. It is condensed in a stainless steel condenser 6 cooled with liquid nitrogen and collected in a collection storage tank 7 with liquid.
 一方、不均斉化反応で生じた、トリクロルシラン、テトラクロルシラン等の高沸点成分は塔底に移行し、触媒と共にリボイラー2よりその液面を調節しつつ蒸発槽9に抜き取られる。蒸発槽9は内容積3Lの攪拌機付ステンレス鋼製容器からなりこれにジャケットが設けられている。それに加熱された熱媒油を循環させ、蒸発槽が加温されるようになっている。この蒸発槽9は不均斉化反応で生じたテトラクロルシランの沸点より高く触媒より低い温度で操作され、リボイラー2より抜き取られたトリクロルシランおよびテトラクロルシランは蒸発し、メタノールドライアイスで冷却された凝縮器11で捕集され、貯槽12に回収される。蒸発槽9に残った触媒はポンプ10により抜き取られ、再び反応塔1の塔頂に循環される。この場合、触媒中の第3級脂肪族炭化水素置換アミンの塩酸塩の濃度が所定濃度になっていないときは、補給管13から塩化水素を必要に応じて補給する。 On the other hand, high-boiling components such as trichlorosilane and tetrachlorosilane generated by the disproportionation reaction move to the bottom of the column and are extracted together with the catalyst from the reboiler 2 to the evaporation tank 9 while adjusting the liquid level. The evaporating tank 9 is made of a stainless steel container with a stirrer having an internal volume of 3 L, and is provided with a jacket. Heated heating medium oil is circulated through the heating tank to heat the evaporation tank. This evaporation tank 9 was operated at a temperature higher than the boiling point of tetrachlorosilane generated by the disproportionation reaction and lower than the catalyst, and trichlorosilane and tetrachlorosilane extracted from the reboiler 2 were evaporated and cooled with methanol dry ice. It is collected by the condenser 11 and collected in the storage tank 12. The catalyst remaining in the evaporation tank 9 is extracted by the pump 10 and is circulated again to the top of the reaction tower 1. In this case, when the concentration of the hydrochloride of the tertiary aliphatic hydrocarbon-substituted amine in the catalyst is not a predetermined concentration, hydrogen chloride is supplied from the supply pipe 13 as necessary.
 この場合にも、原料としてのトリクロルシランおよびテトラクロルシランの全てが反応塔1内で消費されてしまうわけではなく、これらの原料の一部は塔底に移行し、触媒と共にリボイラー2よりその液面を調節しつつ蒸発槽9に抜き取られる。この蒸発槽9は不均斉化反応で生じたテトラクロルシランの沸点より高く触媒より低い温度で操作され、リボイラー2より抜き取られたトリクロルシランおよびテトラクロルシランは蒸発し、メタノールドライアイスで冷却された凝縮器11で捕集され、貯槽12に回収される。しかし、トリクロルシランおよびテトラクロルシランの全てを凝縮器11で凝縮して貯槽12に回収できるわけではなく、一部のトリクロルシランおよびテトラクロルシランについては、そのまま外部に排ガスとして排出されてしまう。 Also in this case, not all of the trichlorosilane and tetrachlorosilane as raw materials are consumed in the reaction tower 1, but some of these raw materials are transferred to the bottom of the tower and the liquid from the reboiler 2 together with the catalyst. The surface is adjusted and extracted to the evaporation tank 9. This evaporation tank 9 was operated at a temperature higher than the boiling point of tetrachlorosilane generated by the disproportionation reaction and lower than the catalyst, and trichlorosilane and tetrachlorosilane extracted from the reboiler 2 were evaporated and cooled with methanol dry ice. It is collected by the condenser 11 and collected in the storage tank 12. However, not all of the trichlorosilane and tetrachlorosilane can be condensed in the condenser 11 and recovered in the storage tank 12, and some of the trichlorosilane and tetrachlorosilane are directly discharged to the outside as exhaust gas.
 また、この排ガス中には微量ながら水素ガスおよび塩化水素ガスも含まれてしまう。なぜなら、補給管13から塩化水素を必要に応じて補給するため、補給された塩化水素ガスの一部が排ガスに含まれる可能性があるためである。また、本来であれば、下記の反応を起こすことが目的であるにもかかわらず、
2SiHCl⇔SiCl+SiHCl
2SiHCl⇔SiHCl+SiHCl
2SiHCl⇔SiHCl+SiH
下記のような塩酸の離脱反応が起きて水素ガスが発生する場合があるためである。
SiH+HCl→SiHCl+H
SiHCl+HCl→SiHCl+H
SiHCl+HCl→SiHCl+H
SiHCl+HCl→SiCl+H
In addition, the exhaust gas contains a small amount of hydrogen gas and hydrogen chloride gas. This is because hydrogen chloride is replenished from the replenishment pipe 13 as necessary, and part of the replenished hydrogen chloride gas may be contained in the exhaust gas. In addition, although originally intended to cause the following reactions,
2SiHCl 3 ⇔SiCl 4 + SiH 2 Cl 2
2SiH 2 Cl 2 ⇔SiHCl 3 + SiH 3 Cl
2SiH 3 Cl⇔SiH 2 Cl 2 + SiH 4
This is because hydrogen gas may be generated due to the following hydrochloric acid elimination reaction.
SiH 4 + HCl → SiH 3 Cl + H 2
SiH 3 Cl + HCl → SiH 2 Cl 2 + H 2
SiH 2 Cl 2 + HCl → SiHCl 3 + H 2
SiHCl 3 + HCl → SiCl 4 + H 2
 そのため、このジクロルシラン、モノクロルシラン、モノシランの製造プロセスにおいても、トリクロルシランを還元する際に排出される排ガスを貯槽12の頂部から回収することによって、塩化水素、水素およびテトラクロルシランおよびトリクロルシランを含む混合ガスが、図1における水素ガスの生産プラント100の洗浄塔102に供給される。この混合ガス中の塩化水素濃度は5%以下であることが好ましい。一般的に、ジクロルシラン、モノクロルシラン、モノシランの製造プロセスにおける排ガスに含まれる塩化水素濃度は5%以下であることにくわえて、この排ガス中の塩化水素濃度が5%以下であれば、後述するプラント100によって無理なく塩化水素を安定的に処理することができるからである。 Therefore, also in the manufacturing process of dichlorosilane, monochlorosilane, and monosilane, hydrogen chloride, hydrogen, tetrachlorosilane, and trichlorosilane are contained by recovering exhaust gas discharged when reducing trichlorosilane from the top of the storage tank 12. The mixed gas is supplied to the cleaning tower 102 of the hydrogen gas production plant 100 in FIG. The hydrogen chloride concentration in the mixed gas is preferably 5% or less. In general, the hydrogen chloride concentration contained in the exhaust gas in the production process of dichlorosilane, monochlorosilane, and monosilane is 5% or less, and if the hydrogen chloride concentration in the exhaust gas is 5% or less, the plant described later This is because 100 can reasonably treat hydrogen chloride.
 このプラント100の洗浄塔102に供給された混合ガスは、上述の実施形態1で説明したように、プラント100において処理された結果、除去塔114の塔頂部から高純度水素ガスとして回収され、さらに水分除去装置を通って、水分含有率が0.5%以下に低減される。そして、上記の水素ガスの生産プラント100によって、混合ガスから水素を分離して、水素ガスを生産することができる。こうして生産された水素ガスを、この図2に示すジクロルシラン、モノクロルシラン、モノシランを製造する装置においては再利用が困難であるが、別の何らかの有用な化学プロセスの原料としてこの高純度の水素ガスを用いることが可能であることは言うまでもない。 As described in Embodiment 1 above, the mixed gas supplied to the cleaning tower 102 of the plant 100 is recovered as high-purity hydrogen gas from the top of the removal tower 114 as a result of being processed in the plant 100. Through the moisture removing device, the moisture content is reduced to 0.5% or less. The hydrogen gas production plant 100 can produce hydrogen gas by separating hydrogen from the mixed gas. Although it is difficult to reuse the hydrogen gas thus produced in the apparatus for producing dichlorosilane, monochlorosilane, and monosilane shown in FIG. 2, this high-purity hydrogen gas is used as a raw material for some other useful chemical process. Needless to say, it can be used.
 一方、このプラント100の放散塔110の塔頂部から回収される純度99.9%以上の塩化水素ガスは、再度、図2に示すジクロルシラン、モノクロルシラン、モノシランを製造する装置の蒸発槽9に供給することができる。このように塩化水素ガスを再利用することによって、再びその高純度の塩化水素ガスを用いて、トリクロルシランを還元してジクロルシラン、モノクロルシラン、モノシランを生産することができる。 On the other hand, hydrogen chloride gas with a purity of 99.9% or more recovered from the top of the stripping tower 110 of the plant 100 is supplied again to the evaporation tank 9 of the apparatus for producing dichlorosilane, monochlorosilane, and monosilane shown in FIG. can do. By reusing hydrogen chloride gas in this way, dichlorosilane, monochlorosilane, and monosilane can be produced by reducing trichlorosilane using the high-purity hydrogen chloride gas again.
 すなわち、このプラント100によれば、図2の装置における貯槽12の頂部から、テトラクロルシランを還元する際に排出される塩化水素、水素およびクロルシランを含む混合ガスを回収した上で、上記の水素ガスの生産プラント100によって、混合ガスから水素を分離して、水素ガスを生産することができる。そのため、このプラント100によれば、設計・運転・保守の容易な湿式の処理方法によって、塩化水素、水素およびクロルシランを含む混合ガスから安定的にクロルシランおよび塩化水素の少なくとも一部を除去することができる。 That is, according to this plant 100, after recovering the mixed gas containing hydrogen chloride, hydrogen and chlorosilane discharged from the top of the storage tank 12 in the apparatus of FIG. The gas production plant 100 can produce hydrogen gas by separating hydrogen from the mixed gas. Therefore, according to this plant 100, at least a part of chlorosilane and hydrogen chloride can be stably removed from a mixed gas containing hydrogen chloride, hydrogen, and chlorosilane by a wet processing method that is easy to design, operate, and maintain. it can.
 そのため、この方法によれば、クロルシランおよび塩化水素の含有量の少ない高純度な水素ガスを分離することができ、工業的に再利用可能な水素ガスおよび塩化水素ガスの分離を行うことができる。そして、この方法によれば、このようにして分離された工業的に再利用可能な塩化水素ガスを再度、図2の装置における蒸発槽9に供給するため、危険な排ガスの放出量を削減するとともに資源の効率的な使用を可能にし、トリクロルシランを還元する化学プロセスの生産効率を向上させ、さらに環境問題の解決にも役立てることができる。 Therefore, according to this method, high-purity hydrogen gas having a small content of chlorosilane and hydrogen chloride can be separated, and hydrogen gas and hydrogen chloride gas which can be industrially reused can be separated. According to this method, the industrially reusable hydrogen chloride gas separated in this way is supplied again to the evaporation tank 9 in the apparatus of FIG. At the same time, it enables efficient use of resources, improves the production efficiency of chemical processes that reduce trichlorosilane, and can also help solve environmental problems.
 <実施形態2の変形例>
 実施形態1に係る水素ガスの生産プラント100は、トリクロルシランの製造プロセスに組み込んで好適に用いることができる。なお、既に実施形態1および2で説明した内容については、本変形例では繰り返さない。
<Modification of Embodiment 2>
The hydrogen gas production plant 100 according to Embodiment 1 can be suitably used by being incorporated into a trichlorosilane production process. The contents already described in the first and second embodiments are not repeated in this modification.
 図3は、実施形態2の変形例で用いるトリクロルシランの製造プロセスの設備について説明するための図である。図3の装置の反応器23は内径5cm、長さ80cmのもので、反応器23の灼熱部後半から後出口まで内径2mmの取り出し管25が設けられており、反応ガスが取り出し管25を介して反応器23より取り出され急冷されるようになっている。このような装置を用いて、水素流量400cc/分、四塩化珪素:水素=1:1.33、1250℃で反応させる。反応器出口の温度は400℃(急冷時間0.03秒)とする。もっとも、この図3で説明するトリクロルシランの製造プロセスの設備は、実験室サイズの設備であり、実際に商業プロセスとして稼働させる際には、生産規模に応じて、この実験室サイズの設備をプラントサイズの設備にスケールアップする必要があることは当然である。 FIG. 3 is a diagram for explaining the equipment for the production process of trichlorosilane used in the modification of the second embodiment. The reactor 23 of the apparatus of FIG. 3 has an inner diameter of 5 cm and a length of 80 cm. A take-out pipe 25 having an inner diameter of 2 mm is provided from the latter half of the heating section of the reactor 23 to the rear outlet, and the reaction gas passes through the take-out pipe 25. Then, it is taken out from the reactor 23 and rapidly cooled. Using such an apparatus, the reaction is carried out at a hydrogen flow rate of 400 cc / min, silicon tetrachloride: hydrogen = 1: 1.33, 1250 ° C. The temperature at the outlet of the reactor is 400 ° C. (quenching time 0.03 seconds). However, the trichlorosilane manufacturing process equipment described in FIG. 3 is a laboratory-sized equipment. When actually operating as a commercial process, this laboratory-sized equipment is installed in the plant according to the production scale. Of course, you need to scale up to a size facility.
 このトリクロルシランの製造プロセスにおいても、水素およびテトラクロルシランを原料として、テトラクロルシランを還元する際に排出される排ガスを凝縮器26の頂部から回収することによって、塩化水素、水素およびテトラクロルシランを含む混合ガスが、図1における水素ガスの生産プラント100の洗浄塔102に供給される。なお、一般に、クロルシランを還元して、そのクロルシランよりもハロゲン化度の低いケイ素化合物を生産する場合には、排ガスとして、塩化水素、水素およびテトラクロルシランを含む混合ガスが得られる。この混合ガス中の塩化水素濃度は5%以下であることが好ましい。一般的に、トリクロルシランの製造プロセスにおける排ガスに含まれる塩化水素濃度は5%以下であることにくわえて、この排ガス中の塩化水素濃度が5%以下であれば、後述するプラント100によって無理なく塩化水素を安定的に処理することができるからである。 Also in this trichlorosilane production process, hydrogen chloride, hydrogen, and tetrachlorosilane are recovered by recovering exhaust gas discharged from the top of the condenser 26 using hydrogen and tetrachlorosilane as raw materials. 1 is supplied to the cleaning tower 102 of the hydrogen gas production plant 100 in FIG. In general, when chlorosilane is reduced to produce a silicon compound having a halogenation degree lower than that of chlorosilane, a mixed gas containing hydrogen chloride, hydrogen and tetrachlorosilane is obtained as exhaust gas. The hydrogen chloride concentration in the mixed gas is preferably 5% or less. In general, in addition to the concentration of hydrogen chloride contained in the exhaust gas in the production process of trichlorosilane being 5% or less, if the hydrogen chloride concentration in the exhaust gas is 5% or less, the plant 100 to be described later does not have any difficulty. This is because hydrogen chloride can be treated stably.
 このプラント100の洗浄塔102に供給された混合ガスは、上述の実施形態1で説明したように、プラント100において処理された結果、除去塔114の塔頂部から高純度水素ガスとして回収され、さらに水分除去装置を通って、水分含有率が0.5%以下に低減される。そして、上記の水素ガスの生産プラント100によって、混合ガスから水素を分離して、水素ガスを生産し、生産された水素ガスを、再度、図3に示すクロルシランを還元する装置の反応器23に原料として供給することができる。このように水素ガスを再利用することによって、再びその高純度の水素ガスを原料として、テトラクロルシランを還元してトリクロルシランを生産することができる。 As described in Embodiment 1 above, the mixed gas supplied to the cleaning tower 102 of the plant 100 is recovered as high-purity hydrogen gas from the top of the removal tower 114 as a result of being processed in the plant 100. Through the moisture removing device, the moisture content is reduced to 0.5% or less. Then, the hydrogen gas production plant 100 separates hydrogen from the mixed gas to produce hydrogen gas, and the produced hydrogen gas is again supplied to the reactor 23 of the apparatus for reducing chlorosilane shown in FIG. It can be supplied as a raw material. By reusing hydrogen gas in this manner, tetrachlorosilane can be reduced again to produce trichlorosilane using the high purity hydrogen gas as a raw material.
 すなわち、このプラント100によれば、図3の装置における凝縮器26の頂部から、水素およびクロルシランを原料としてクロルシランを還元する際に排出される塩化水素、水素およびクロルシランを含む混合ガスを回収した上で、上記の水素ガスの生産プラント100によって、混合ガスから水素を分離して、水素ガスを生産することができる。そのため、このプラント100によれば、設計・運転・保守の容易な湿式の処理方法によって、塩化水素、水素およびクロルシランを含む混合ガスから安定的にクロルシランおよび塩化水素の少なくとも一部を除去することができる。 That is, according to this plant 100, after collecting the mixed gas containing hydrogen chloride, hydrogen and chlorosilane discharged from the top of the condenser 26 in the apparatus of FIG. 3 when reducing chlorosilane using hydrogen and chlorosilane as raw materials. Thus, the hydrogen gas production plant 100 can separate hydrogen from the mixed gas to produce hydrogen gas. Therefore, according to this plant 100, at least a part of chlorosilane and hydrogen chloride can be stably removed from a mixed gas containing hydrogen chloride, hydrogen, and chlorosilane by a wet processing method that is easy to design, operate, and maintain. it can.
 そのため、この方法によれば、クロルシランおよび塩化水素の含有量の少ない高純度な水素ガスを分離することができ、工業的に再利用可能な水素ガスの分離を行うことができる。そして、この方法によれば、このようにして分離された工業的に再利用可能な水素ガスを再度、図3の装置における反応器23に、クロルシランを還元する工程に原料として供給するため、危険な排ガスの放出量を削減するとともに資源の効率的な使用を可能にし、クロルシランを還元する化学プロセスの生産効率を向上させ、さらに環境問題の解決にも役立てることができる。 Therefore, according to this method, it is possible to separate high-purity hydrogen gas having a low content of chlorosilane and hydrogen chloride, and it is possible to separate hydrogen gas that can be industrially reused. According to this method, the industrially reusable hydrogen gas separated in this way is supplied again to the reactor 23 in the apparatus of FIG. 3 as a raw material for the step of reducing chlorosilane. In addition to reducing the amount of exhaust gas emitted, it enables efficient use of resources, improves the production efficiency of chemical processes that reduce chlorosilane, and helps to solve environmental problems.
 この場合、このプラント100の放散塔110の塔頂部から回収される純度99.9%以上の塩化水素ガスは、この図3に示すクロルシランを還元する装置においては再利用が困難であるが、別の何らかの有用な化学プロセスの原料としてこの純度99.9%以上の塩化水素ガスを用いることが可能であることは言うまでもない。 In this case, the hydrogen chloride gas with a purity of 99.9% or more recovered from the top of the stripping tower 110 of the plant 100 is difficult to reuse in the apparatus for reducing chlorosilane shown in FIG. It goes without saying that hydrogen chloride gas having a purity of 99.9% or more can be used as a raw material for any useful chemical process.
 以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。 As described above, the embodiments of the present invention have been described with reference to the drawings. However, these are exemplifications of the present invention, and various configurations other than the above can be adopted.
 例えば、上記の実施形態では、ハロゲン化水素が塩化水素であり、ハロゲン化ケイ素がクロルシランであるとしたが、特に限定する趣旨ではなく、例えばハロゲン化水素が、HBrであり、ハロゲン化ケイ素が、SiBr、SiHBr、SiHBr、SiHBrであるとしてもよい。あるいは、例えばハロゲン化水素が、HIであり、ハロゲン化ケイ素が、SiI、SiHI、SiH、SiHIであるとしてもよい。このようにしても、いずれも同じハロゲン元素に関する化合物であるため、上記の実施形態と同様の作用効果が奏される。 For example, in the above embodiment, the hydrogen halide is hydrogen chloride and the silicon halide is chlorosilane. However, the present invention is not particularly limited. For example, the hydrogen halide is HBr, and the silicon halide is SiBr 4 , SiHBr 3 , SiH 2 Br 2 , and SiH 3 Br may be used. Alternatively, for example, the hydrogen halide may be HI and the silicon halide may be SiI 4 , SiHI 3 , SiH 2 I 2 , SiH 3 I. Even if it does in this way, since all are the compounds regarding the same halogen element, the effect similar to said embodiment is show | played.
 また、上記の実施形態では、第一の水性溶媒として、塩酸シリカスラリーを用いたが、特に限定する趣旨ではなく、例えば水性溶媒として、水、水溶液、極性溶媒またはそれらのスラリーなどを用いてもよい。この場合にも、水性溶媒であれば、同様の作用効果が奏される。 Further, in the above embodiment, silica hydrochloride slurry is used as the first aqueous solvent, but there is no particular limitation. For example, water, an aqueous solution, a polar solvent, or a slurry thereof may be used as the aqueous solvent. Good. Also in this case, the same action and effect can be achieved with an aqueous solvent.
 また、上記の実施形態では、第二の水性溶媒として、塩酸水溶液を用いたが、特に限定する趣旨ではなく、例えば水性溶媒として、水、水溶液、極性溶媒またはそれらのスラリーなどを用いてもよい。この場合にも、水性溶媒であれば、同様の作用効果が奏される。 In the above embodiment, an aqueous hydrochloric acid solution is used as the second aqueous solvent. However, there is no particular limitation, and for example, water, an aqueous solution, a polar solvent, or a slurry thereof may be used as the aqueous solvent. . Also in this case, the same action and effect can be achieved with an aqueous solvent.
 また、上記の実施形態では、吸収装置として、塩酸スクラバーを用いたが、特に限定する趣旨ではなく、水などの液体を洗浄液として、排ガス中の粒子等の不純物を洗浄液の液滴や液膜中に捕集して分離をする装置であれば任意の吸収装置(溜水中に排ガスをくぐらせることにより集じんする方法(溜水式)、排ガスの流れに加圧水を噴射する方法(加圧水式)、プラスチック・磁器などの充てん物に噴霧した洗浄液の水膜に排ガスを接触させて集じんする方法(充てん層式)、洗浄液を回転体で分散させて排ガスを接触させる方法(回転式)など)を用いても、同様の作用効果が奏される。 Further, in the above embodiment, the scrubber hydrochloric acid is used as the absorber, but there is no particular limitation, and liquid such as water is used as the cleaning liquid, and impurities such as particles in the exhaust gas are contained in the cleaning liquid droplets or the liquid film. If it is a device that collects and separates it in an arbitrary absorption device (a method of collecting dust by passing exhaust gas in the stored water (reservoir type), a method of injecting pressurized water into the flow of exhaust gas (pressurized water type), A method of collecting exhaust gas in contact with the water film of the cleaning liquid sprayed on packing materials such as plastic and porcelain (packing layer type), a method of dispersing the cleaning liquid with a rotating body and contacting the exhaust gas (rotary type)) Even if it uses, the same effect is produced.
 また、上記の実施形態では、固液分離装置として、フィルタープレスを用いたが、特に限定する趣旨ではなく、一般的に固体と液体とを好適に分離できる装置であれば任意の装置を用いてもよく、例えば、遠心分離装置、沈降分離装置、濾過分離装置などを用いても、同様の作用効果が奏される。 In the above embodiment, a filter press is used as the solid-liquid separation device. However, the present invention is not particularly limited, and any device can be used as long as it can generally separate solids and liquids suitably. For example, even when a centrifugal separator, a sedimentation separator, a filtration separator, or the like is used, the same effect can be obtained.
 また、上記の実施形態では、水洗塔112および除去塔114を別の設備としたが、これらの水洗塔112および除去塔114が一体となって一つの設備からなる構成を採用しても良い。このような場合には、プラント100の構成を簡略化することができ、設備建設・運用・保守コストを低減できるメリットがある。 In the above embodiment, the washing tower 112 and the removal tower 114 are separate facilities. However, the washing tower 112 and the removal tower 114 may be integrated into a single equipment. In such a case, there is an advantage that the configuration of the plant 100 can be simplified, and the cost for construction, operation, and maintenance can be reduced.
 以下、本発明を実施例によりさらに説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be further described with reference to examples, but the present invention is not limited thereto.
 <実施例1>
 図1に示すように、洗浄塔102(スラリー貯留槽104も付属)、塩酸スクラバー108、フィルター除去装置(不図示、フィルタープレス106も付属)、放散塔110、水洗塔112、除去塔114(水分除去装置116も付属)を用いた水素ガスの生産プロセスのプラント100を構築した。そして、このプラント100の通常運転条件における洗浄塔102の入口組成および塩酸スクラバー108の出口組成について、本実施例では検討した。
<Example 1>
As shown in FIG. 1, a cleaning tower 102 (also including a slurry storage tank 104), a hydrochloric acid scrubber 108, a filter removing device (not shown, also including a filter press 106), a stripping tower 110, a water washing tower 112, a removal tower 114 (moisture content) The plant 100 of the hydrogen gas production process using the removal device 116 is also constructed. In this embodiment, the inlet composition of the cleaning tower 102 and the outlet composition of the hydrochloric acid scrubber 108 under the normal operating conditions of the plant 100 were examined.
 実施形態1で説明した図1に示すプラント100を用いて、混合ガス(洗浄塔102の入口組成は、水素84.7%(v/v)、塩化水素15%(v/v)、クロルシラン0.3%(v/v))、水分0%を洗浄塔102に供給した。そして、洗浄塔102について、流量10Nm/h、圧力100kPaという条件で運転を200時間継続した後に、塩酸スクラバー108の頂部出口から採取したガスをガスクロマトグラフィーにて分析したところ、塩酸スクラバー108の出口組成は、水素98.5%(v/v)以上、塩化水素20ppm(v/v)、クロルシラン10ppm(v/v)未満、水分1.5%であった。 Using the plant 100 shown in FIG. 1 described in the first embodiment, a mixed gas (the composition of the inlet of the cleaning tower 102 is hydrogen 84.7% (v / v), hydrogen chloride 15% (v / v), chlorosilane 0 .3% (v / v)) and 0% moisture were supplied to the washing tower 102. The cleaning tower 102 was operated for 200 hours under the conditions of a flow rate of 10 Nm 3 / h and a pressure of 100 kPa, and then the gas collected from the top outlet of the hydrochloric acid scrubber 108 was analyzed by gas chromatography. The outlet composition was 98.5% (v / v) or more of hydrogen, 20 ppm (v / v) of hydrogen chloride, less than 10 ppm (v / v) of chlorosilane, and 1.5% of water.
 <実施例2>
 実施例1のプラント100の通常運転条件における放散塔110の出口組成について、本実施例では検討した。
<Example 2>
In this example, the outlet composition of the stripping tower 110 under normal operating conditions of the plant 100 of Example 1 was studied.
 実施形態1で説明した図1に示すプラント100を用いて、実施例1と同様の条件で運転を行い、放散塔110の頂部出口から採取したガスをガスクロマトグラフィーにて分析したところ、放散塔110の出口組成は、水素10pp未満、塩化水素99.99%(v/v)以上、クロルシラン10ppm(v/v)未満、水分10ppm(v/v)未満であった。 The plant 100 shown in FIG. 1 described in the first embodiment is operated under the same conditions as in Example 1, and the gas collected from the top outlet of the stripping tower 110 is analyzed by gas chromatography. The outlet composition of 110 was less than 10 pp of hydrogen, 99.99% (v / v) or more of hydrogen chloride, less than 10 ppm (v / v) of chlorosilane, and less than 10 ppm (v / v) of water.
 <実施例3>
 実施例1のプラント100の通常運転条件における水洗塔112の出口組成について、本実施例では検討した。
<Example 3>
In this example, the outlet composition of the water washing tower 112 under the normal operating conditions of the plant 100 of Example 1 was studied.
 実施形態1で説明した図1に示すプラント100を用いて、実施例1と同様の条件で運転を行い、水洗塔112の頂部出口から採取したガスをガスクロマトグラフィーにて分析したところ、水洗塔112の出口組成は、水素99.7%(v/v)以上、塩化水素10ppm(v/v)、クロルシラン10ppm(v/v)未満、水分0.3%(v/v)であった。 The plant 100 shown in FIG. 1 described in the first embodiment is operated under the same conditions as in the first embodiment, and the gas collected from the top outlet of the rinsing tower 112 is analyzed by gas chromatography. The outlet composition of 112 was 99.7% (v / v) or more of hydrogen, 10 ppm (v / v) of hydrogen chloride, less than 10 ppm (v / v) of chlorosilane, and 0.3% (v / v) of water.
 <比較例1>
 実施例1から塩酸スクラバー108を除いた場合について、本実施例では検討した。
<Comparative Example 1>
The case where the scrubber 108 was removed from Example 1 was examined in this example.
 実施形態1で説明した図1に示すプラント100を用いて、塩酸スクラバー108を除いた点以外は、実施例1と同様の条件で運転を行い、洗浄塔102の頂部出口から採取したガスをガスクロマトグラフィーにて分析したところ、洗浄塔102の出口組成は、水素91.0%(v/v)、塩化水素6.0%(v/v)、クロルシラン100ppm(v/v)、水分3%(v/v)であった。 The plant 100 shown in FIG. 1 described in the first embodiment is operated under the same conditions as in the first embodiment except that the hydrochloric acid scrubber 108 is removed, and the gas collected from the top outlet of the cleaning tower 102 is gas. When analyzed by chromatography, the outlet composition of the washing tower 102 is as follows: hydrogen 91.0% (v / v), hydrogen chloride 6.0% (v / v), chlorosilane 100 ppm (v / v), water 3% (V / v).
 <考察>
 上記の実施例および比較例の実験結果から、洗浄塔102および塩酸スクラバー108は、塩化水素および微量クロルシランの吸収を担うことのできる装置であることがわかる。また、放散塔110を追加することによって、塩化水素および微量クロルシランをより効率よく吸収することができることがわかる。そして、水洗塔112を追加すれば、塩化水素および微量クロルシランをさらに一層効率よく吸収することができることがわかる。
<Discussion>
From the experimental results of the above-described Examples and Comparative Examples, it can be seen that the cleaning tower 102 and the hydrochloric acid scrubber 108 are devices that can take up absorption of hydrogen chloride and trace amounts of chlorosilane. Moreover, it turns out that hydrogen chloride and a trace amount chlorosilane can be absorbed more efficiently by adding the stripping tower 110. Then, it can be seen that if the water washing tower 112 is added, hydrogen chloride and a small amount of chlorosilane can be absorbed even more efficiently.
 すなわち、上記の結果を見れば、図1に示すようなプラント100を用いることによって、塩化水素、水素およびクロルシランを含む混合ガスから、クロルシランおよび塩化水素の含有量の少ない高純度な水素ガスを分離することができることが分かる。また、高純度な塩化水素ガスの分離も行うことができることがわかる。 That is, according to the above results, by using a plant 100 as shown in FIG. 1, high-purity hydrogen gas having a small content of chlorosilane and hydrogen chloride is separated from a mixed gas containing hydrogen chloride, hydrogen and chlorosilane. You can see that you can. It can also be seen that high purity hydrogen chloride gas can also be separated.
 以上、本発明を実施例に基づいて説明した。この実施例はあくまで例示であり、種々の変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。 In the above, this invention was demonstrated based on the Example. It is to be understood by those skilled in the art that this embodiment is merely an example, and that various modifications are possible and that such modifications are within the scope of the present invention.

Claims (20)

  1.  ハロゲン化水素、水素およびハロゲン化ケイ素を含む混合ガスから水素を分離して、水素ガスを生産する方法であって、
     前記混合ガスおよび第一の水性溶媒を接触させることによって、前記ハロゲン化ケイ素および前記第一の水性溶媒を反応させ、前記混合ガスから前記ハロゲン化ケイ素の少なくとも一部を除去してなる第一の精製ガスを得る工程と、
     前記第一の精製ガスおよび第二の水性溶媒を接触させることによって、前記ハロゲン化水素を前記第二の水性溶媒中に吸収させ、前記第一の精製ガスから前記ハロゲン化水素の少なくとも一部を除去してなる第二の精製ガスを得る工程と、
     を含む、水素ガスの生産方法。
    A method for producing hydrogen gas by separating hydrogen from a mixed gas containing hydrogen halide, hydrogen and silicon halide,
    A first gas obtained by bringing the mixed gas and the first aqueous solvent into contact with each other to react the silicon halide and the first aqueous solvent to remove at least a part of the silicon halide from the mixed gas. Obtaining a purified gas;
    By contacting the first purified gas and a second aqueous solvent, the hydrogen halide is absorbed into the second aqueous solvent, and at least a part of the hydrogen halide is absorbed from the first purified gas. Obtaining a second purified gas by removal;
    A method for producing hydrogen gas, including:
  2.  請求項1記載の水素ガスの生産方法において、
     ハロゲン化ケイ素の不均斉化反応によって、前記ハロゲン化ケイ素を還元する際に排出されるガスを、前記混合ガスとして回収する工程を、
     さらに含む、水素ガスの生産方法。
    The method for producing hydrogen gas according to claim 1,
    Recovering the gas discharged when reducing the silicon halide by the disproportionation reaction of silicon halide as the mixed gas,
    A method for producing hydrogen gas, further comprising:
  3.  請求項1記載の水素ガスの生産方法において、
     水素およびハロゲン化ケイ素を原料として、前記ハロゲン化ケイ素を還元する際に排出されるガスを、前記混合ガスとして回収する工程を、
     さらに含む、水素ガスの生産方法。
    The method for producing hydrogen gas according to claim 1,
    Using hydrogen and silicon halide as raw materials, a step of recovering the gas discharged when reducing the silicon halide as the mixed gas,
    A method for producing hydrogen gas, further comprising:
  4.  請求項1記載の水素ガスの生産方法において、
     前記ハロゲン化ケイ素および前記第一の水性溶媒の反応によって生成する二酸化ケイ素を、前記第一の水性溶媒中から除去する工程を、
     さらに含む、水素ガスの生産方法。
    The method for producing hydrogen gas according to claim 1,
    Removing silicon dioxide produced by the reaction of the silicon halide and the first aqueous solvent from the first aqueous solvent;
    A method for producing hydrogen gas, further comprising:
  5.  請求項4記載の水素ガスの生産方法において、
     前記除去された二酸化ケイ素を含む懸濁液を固液分離して、前記懸濁液から前記ハロゲン化水素を含む液体を回収する工程を、
     さらに含む、水素ガスの生産方法。
    The method for producing hydrogen gas according to claim 4,
    Separating the suspension containing the removed silicon dioxide by solid-liquid separation, and recovering the liquid containing the hydrogen halide from the suspension;
    A method for producing hydrogen gas, further comprising:
  6.  請求項5に記載の水素ガスの生産方法において、
     前記回収されたハロゲン化水素を含む液体を放散することによって、
      ハロゲン化水素濃度99%以上のハロゲン化水素ガスと、
      ハロゲン化水素を含む液体と、
     に気液分離する工程を、
     さらに含む、水素ガスの生産方法。
    The method for producing hydrogen gas according to claim 5,
    By dissipating the recovered liquid containing hydrogen halide,
    A hydrogen halide gas having a hydrogen halide concentration of 99% or more;
    A liquid containing hydrogen halide;
    The process of gas-liquid separation
    A method for producing hydrogen gas, further comprising:
  7.  請求項1記載の水素ガスの生産方法において、
     前記第二の精製ガスおよび第三の水性溶媒を接触させることによって、前記第二の精製ガス中に残存するハロゲン化ケイ素および前記第三の水性溶媒を反応させ、前記第二の精製ガス中に残存するハロゲン化水素を前記第三の水性溶媒中に吸収させ、前記第二の精製ガスから前記ハロゲン化ケイ素および前記ハロゲン化水素の少なくとも一部を除去してなる、第三の精製ガスを得る工程を、
     さらに含む、水素ガスの生産方法。
    The method for producing hydrogen gas according to claim 1,
    By bringing the second purified gas and the third aqueous solvent into contact with each other, the silicon halide remaining in the second purified gas and the third aqueous solvent are reacted with each other in the second purified gas. The remaining hydrogen halide is absorbed in the third aqueous solvent, and a third purified gas is obtained by removing at least a part of the silicon halide and the hydrogen halide from the second purified gas. Process
    A method for producing hydrogen gas, further comprising:
  8.  請求項7記載の水素ガスの生産方法において、
     前記第三の精製ガスおよびアルカリ性の水性溶媒を接触させることによって、前記第三の精製ガス中に残存するハロゲン化水素および前記アルカリ性の水性溶媒を反応させ、前記第三の精製ガスから前記ハロゲン化水素の少なくとも一部を除去してなる第四の精製ガスを得る工程を、
     さらに含む、水素ガスの生産方法。
    The method for producing hydrogen gas according to claim 7,
    By contacting the third purified gas with an alkaline aqueous solvent, the hydrogen halide remaining in the third purified gas and the alkaline aqueous solvent are reacted, and the halogenated from the third purified gas. Obtaining a fourth purified gas obtained by removing at least a part of hydrogen;
    A method for producing hydrogen gas, further comprising:
  9.  請求項8記載の水素ガスの生産方法において、
     前記第四の精製ガスから水分を除去して、水分含有率が0.5%以下である第五の精製ガスを得る工程を、
     さらに含む、水素ガスの生産方法。
    The method for producing hydrogen gas according to claim 8,
    Removing water from the fourth purified gas to obtain a fifth purified gas having a moisture content of 0.5% or less,
    A method for producing hydrogen gas, further comprising:
  10.  請求項1記載の水素ガスの生産方法において、
     前記ハロゲン化水素は、塩化水素であり、
     前記ハロゲン化ケイ素は、クロルシランである、
     水素ガスの生産方法。
    The method for producing hydrogen gas according to claim 1,
    The hydrogen halide is hydrogen chloride;
    The silicon halide is chlorosilane,
    Production method of hydrogen gas.
  11.  請求項10に記載の水素ガスの生産方法において、
     前記第一の水性溶媒は、塩酸シリカスラリーであり、
     前記第二の水性溶媒は、塩酸水溶液である、
     水素ガスの生産方法。
    The method for producing hydrogen gas according to claim 10,
    The first aqueous solvent is a hydrochloric acid silica slurry,
    The second aqueous solvent is an aqueous hydrochloric acid solution.
    Production method of hydrogen gas.
  12.  ハロゲン化ケイ素を還元して、前記ハロゲン化ケイ素よりもハロゲン化度の低いケイ素化合物を生産する方法であって、
     ハロゲン化水素ガスを用いたハロゲン化ケイ素の不均斉化反応によって、前記ハロゲン化ケイ素を還元する工程と、
     前記ハロゲン化ケイ素を還元する際に排出される混合ガスを回収する工程と、
     請求項6記載の水素ガスの生産方法によって、前記混合ガスからハロゲン化水素ガスを分離する工程と、
     前記分離されたハロゲン化水素ガスを、再度、前記ハロゲン化ケイ素を還元する工程に供給する工程と、
     を含む、ケイ素化合物の生産方法。
    A method of reducing a silicon halide to produce a silicon compound having a lower halogenation degree than the silicon halide,
    Reducing the silicon halide by a disproportionation reaction of the silicon halide using a hydrogen halide gas;
    Recovering the mixed gas discharged when reducing the silicon halide;
    Separating hydrogen halide gas from the mixed gas by the hydrogen gas production method according to claim 6;
    Supplying the separated hydrogen halide gas to the step of reducing the silicon halide again;
    A method for producing a silicon compound, comprising:
  13.  ハロゲン化ケイ素を還元して、前記ハロゲン化ケイ素よりもハロゲン化度の低いケイ素化合物を生産する方法であって、
     水素およびハロゲン化ケイ素を原料として、前記ハロゲン化ケイ素を還元する工程と、
     前記ハロゲン化ケイ素を還元する際に排出される混合ガスを回収する工程と、
     請求項1記載の水素ガスの生産方法によって、前記混合ガスから水素を分離して、水素ガスを生産する工程と、
     前記生産された水素ガスを、再度、前記ハロゲン化ケイ素を還元する工程に原料として供給する工程と、
     を含む、ケイ素化合物の生産方法。
    A method of reducing a silicon halide to produce a silicon compound having a lower halogenation degree than the silicon halide,
    A step of reducing the silicon halide using hydrogen and silicon halide as raw materials;
    Recovering the mixed gas discharged when reducing the silicon halide;
    A step of producing hydrogen gas by separating hydrogen from the mixed gas by the method for producing hydrogen gas according to claim 1;
    Supplying the produced hydrogen gas as a raw material to the step of reducing the silicon halide again;
    A method for producing a silicon compound, comprising:
  14.  ハロゲン化水素、水素およびハロゲン化ケイ素を含む混合ガスから水素を分離して、水素ガスを生産するプラントであって、
     前記混合ガスおよび第一の水性溶媒を接触させることによって、前記ハロゲン化ケイ素および前記第一の水性溶媒を反応させ、前記混合ガスから前記ハロゲン化ケイ素の少なくとも一部を除去してなる第一の精製ガスを得るための反応装置と、
     前記第一の精製ガスおよび第二の水性溶媒を接触させることによって、前記ハロゲン化水素を前記第二の水性溶媒中に吸収させ、前記第一の精製ガスから前記ハロゲン化水素の少なくとも一部を除去してなる第二の精製ガスを得るための吸収装置と、
     を備える、水素ガスの生産プラント。
    A plant for producing hydrogen gas by separating hydrogen from a mixed gas containing hydrogen halide, hydrogen and silicon halide,
    A first gas obtained by bringing the mixed gas and the first aqueous solvent into contact with each other to react the silicon halide and the first aqueous solvent to remove at least a part of the silicon halide from the mixed gas. A reactor for obtaining purified gas;
    By contacting the first purified gas and a second aqueous solvent, the hydrogen halide is absorbed into the second aqueous solvent, and at least a part of the hydrogen halide is absorbed from the first purified gas. An absorption device for obtaining a second purified gas to be removed;
    A hydrogen gas production plant.
  15.  請求項14記載の水素ガスの生産プラントにおいて、
     前記ハロゲン化ケイ素および前記第一の水性溶媒の反応によって生成する二酸化ケイ素を、前記第一の水性溶媒中から除去するための除去装置を、
     さらに備える、水素ガスの生産プラント。
    The hydrogen gas production plant according to claim 14,
    A removal device for removing silicon dioxide produced by the reaction of the silicon halide and the first aqueous solvent from the first aqueous solvent;
    A hydrogen gas production plant.
  16.  請求項15記載の水素ガスの生産プラントにおいて、
     前記除去された二酸化ケイ素を含む懸濁液を固液分離して、前記懸濁液から前記ハロゲン化水素を含む液体を回収する固液分離装置を、
     さらに備える、水素ガスの生産プラント。
    The hydrogen gas production plant according to claim 15,
    A solid-liquid separation device for solid-liquid separation of the suspension containing the removed silicon dioxide and recovering the liquid containing the hydrogen halide from the suspension;
    A hydrogen gas production plant.
  17.  請求項16に記載の水素ガスの生産プラントにおいて、
     前記回収されたハロゲン化水素を含む液体を放散することによって、
      ハロゲン化水素濃度99%以上のハロゲン化水素ガスと、
      ハロゲン化水素を含む液体と、
     に気液分離する気液分離装置を、
     さらに備える、水素ガスの生産プラント。
    The hydrogen gas production plant according to claim 16,
    By dissipating the recovered liquid containing hydrogen halide,
    A hydrogen halide gas having a hydrogen halide concentration of 99% or more;
    A liquid containing hydrogen halide;
    A gas-liquid separator that separates gas and liquid
    A hydrogen gas production plant.
  18.  請求項14記載の水素ガスの生産プラントにおいて、
     前記第二の精製ガスおよび第三の水性溶媒を接触させることによって、前記第二の精製ガス中に残存するハロゲン化ケイ素および前記第三の水性溶媒を反応させ、前記第二の精製ガス中に残存するハロゲン化水素を前記第三の水性溶媒中に吸収させ、前記第二の精製ガスから前記ハロゲン化ケイ素および前記ハロゲン化水素の少なくとも一部を除去してなる、第三の精製ガスを得るための反応吸収装置を、
     さらに備える、水素ガスの生産プラント。
    The hydrogen gas production plant according to claim 14,
    By bringing the second purified gas and the third aqueous solvent into contact with each other, the silicon halide remaining in the second purified gas and the third aqueous solvent are reacted with each other in the second purified gas. The remaining hydrogen halide is absorbed in the third aqueous solvent, and a third purified gas is obtained by removing at least a part of the silicon halide and the hydrogen halide from the second purified gas. Reaction absorber for
    A hydrogen gas production plant.
  19.  請求項18記載の水素ガスの生産プラントにおいて、
     前記第三の精製ガスおよびアルカリ性の水性溶媒を接触させることによって、前記第三の精製ガス中に残存するハロゲン化水素および前記アルカリ性の水性溶媒を反応させ、前記第三の精製ガスから前記ハロゲン化水素の少なくとも一部を除去してなる第四の精製ガスを得るための酸アルカリ反応装置を、
     さらに備える、水素ガスの生産プラント。
    The hydrogen gas production plant according to claim 18,
    By contacting the third purified gas with an alkaline aqueous solvent, the hydrogen halide remaining in the third purified gas and the alkaline aqueous solvent are reacted, and the halogenated from the third purified gas. An acid-alkali reactor for obtaining a fourth purified gas obtained by removing at least a part of hydrogen,
    A hydrogen gas production plant.
  20.  請求項19記載の水素ガスの生産プラントにおいて、
     前記第四の精製ガスから水分を除去して、水分含有率が0.5%以下である第五の精製ガスを得るための水分除去装置を、
     さらに備える、水素ガスの生産プラント。
    The hydrogen gas production plant according to claim 19,
    A moisture removing device for removing water from the fourth purified gas to obtain a fifth purified gas having a moisture content of 0.5% or less,
    A hydrogen gas production plant.
PCT/JP2008/064118 2008-08-06 2008-08-06 Process for producing hydrogen gas from mixed gas containing hydrogen halide, hydrogen and silicon halide, process for producing silicon compound with use of the hydrogen gas, and plant for the processes WO2010016116A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2008/064118 WO2010016116A1 (en) 2008-08-06 2008-08-06 Process for producing hydrogen gas from mixed gas containing hydrogen halide, hydrogen and silicon halide, process for producing silicon compound with use of the hydrogen gas, and plant for the processes
JP2010523675A JP5566290B2 (en) 2008-08-06 2008-08-06 Method for producing hydrogen gas from hydrogen halide, mixed gas containing hydrogen and silicon halide, method for producing silicon compound using the hydrogen gas, and plant for the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/064118 WO2010016116A1 (en) 2008-08-06 2008-08-06 Process for producing hydrogen gas from mixed gas containing hydrogen halide, hydrogen and silicon halide, process for producing silicon compound with use of the hydrogen gas, and plant for the processes

Publications (1)

Publication Number Publication Date
WO2010016116A1 true WO2010016116A1 (en) 2010-02-11

Family

ID=41663346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/064118 WO2010016116A1 (en) 2008-08-06 2008-08-06 Process for producing hydrogen gas from mixed gas containing hydrogen halide, hydrogen and silicon halide, process for producing silicon compound with use of the hydrogen gas, and plant for the processes

Country Status (2)

Country Link
JP (1) JP5566290B2 (en)
WO (1) WO2010016116A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106006648A (en) * 2016-05-17 2016-10-12 山东瑞川硅业有限公司 Method for preparing trichlorosilane
CN112777569A (en) * 2020-12-16 2021-05-11 四川天采科技有限责任公司 Fluorine-based SiC-CVD crystal and film growth process tail gas FTrPSA full-component recycling method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59121112A (en) * 1982-12-24 1984-07-13 デイナミ−ト・ノ−ベル・アクチエンゲゼルシヤフト Separation of chlorosilane from gaseous mixture comprising hydrogen chloride, hydrogen and chlorosilane
JPS6163519A (en) * 1984-09-04 1986-04-01 Denki Kagaku Kogyo Kk Production of monosilane
JP2006131491A (en) * 2004-10-05 2006-05-25 Tokuyama Corp Silicon production method
JP2008143776A (en) * 2006-11-14 2008-06-26 Mitsubishi Materials Corp Hydrogen purification/collection method and hydrogen purification/collection facility
JP2008143775A (en) * 2006-11-14 2008-06-26 Mitsubishi Materials Corp Hydrogen separation/collection method and hydrogen separation/collection facility

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001028916A1 (en) * 1999-10-21 2001-04-26 Ebara Corporation Method of producing hydrogen by gasification of combustibles and electric power generation using fuel cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59121112A (en) * 1982-12-24 1984-07-13 デイナミ−ト・ノ−ベル・アクチエンゲゼルシヤフト Separation of chlorosilane from gaseous mixture comprising hydrogen chloride, hydrogen and chlorosilane
JPS6163519A (en) * 1984-09-04 1986-04-01 Denki Kagaku Kogyo Kk Production of monosilane
JP2006131491A (en) * 2004-10-05 2006-05-25 Tokuyama Corp Silicon production method
JP2008143776A (en) * 2006-11-14 2008-06-26 Mitsubishi Materials Corp Hydrogen purification/collection method and hydrogen purification/collection facility
JP2008143775A (en) * 2006-11-14 2008-06-26 Mitsubishi Materials Corp Hydrogen separation/collection method and hydrogen separation/collection facility

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106006648A (en) * 2016-05-17 2016-10-12 山东瑞川硅业有限公司 Method for preparing trichlorosilane
CN112777569A (en) * 2020-12-16 2021-05-11 四川天采科技有限责任公司 Fluorine-based SiC-CVD crystal and film growth process tail gas FTrPSA full-component recycling method
CN112777569B (en) * 2020-12-16 2022-06-10 四川天采科技有限责任公司 Method for recycling FTrPSA (fluorine-based SiC-CVD) tail gas in film growth process

Also Published As

Publication number Publication date
JP5566290B2 (en) 2014-08-06
JPWO2010016116A1 (en) 2012-01-12

Similar Documents

Publication Publication Date Title
JP5511667B2 (en) Method for producing hydrogen gas from hydrogen halide, mixed gas containing hydrogen and silicon halide, method for producing silicon compound using the hydrogen gas, and plant for the method
US7790132B2 (en) Method for producing trichlorosilane and method for producing polycrystalline silicon
JP4576312B2 (en) Manufacturing method of silicon tetrafluoride and manufacturing apparatus used therefor
EP2484631B1 (en) Method for reusing hydrogen
US9669400B2 (en) Method for purifying silane compound or chlorosilane compound, method for producing polycrystalline silicon, and method for regenerating weakly basic ion-exchange resin
EP3061727B1 (en) Method for manufacturing polycrystalline silicon
JP2011139987A (en) Method for treating purged exhaust gas and use as hydrogen source
JP6506485B2 (en) Method of manufacturing polycrystalline silicon
JP5344113B2 (en) Hydrogen separation and recovery method and hydrogen separation and recovery equipment
JP5566290B2 (en) Method for producing hydrogen gas from hydrogen halide, mixed gas containing hydrogen and silicon halide, method for producing silicon compound using the hydrogen gas, and plant for the method
WO2014100705A1 (en) Conserved off gas recovery systems and processes
JP4014451B2 (en) Method for producing silicon tetrafluoride
CN109467089B (en) Polycrystalline silicon production method
KR20190057367A (en) Method for manufacturing polycrystalline silicon
WO2008059887A1 (en) Hydrogen separation/collection method and hydrogen separation/collection facility
CN103482573B (en) Method and device for drying hydrogen chloride gas in polysilicon production
JP2005119956A (en) Method of manufacturing tetrafluorosilane
RU2214362C1 (en) Method of production of high-purity monosilane
RU2525415C1 (en) Production of silicon and its compounds and production line to this end
CN103384640A (en) Methods and systems for producing silane

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08808730

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010523675

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08808730

Country of ref document: EP

Kind code of ref document: A1