WO2001028916A1 - Method of producing hydrogen by gasification of combustibles and electric power generation using fuel cell - Google Patents

Method of producing hydrogen by gasification of combustibles and electric power generation using fuel cell Download PDF

Info

Publication number
WO2001028916A1
WO2001028916A1 PCT/JP2000/007366 JP0007366W WO0128916A1 WO 2001028916 A1 WO2001028916 A1 WO 2001028916A1 JP 0007366 W JP0007366 W JP 0007366W WO 0128916 A1 WO0128916 A1 WO 0128916A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
hydrogen
gasification
temperature
fuel cell
Prior art date
Application number
PCT/JP2000/007366
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroyuki Fujimura
Takahiro Oshita
Qingquan Su
Kazuo Kinoshita
Norihisa Miyoshi
Katsutoshi Naruse
Original Assignee
Ebara Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corporation filed Critical Ebara Corporation
Priority to AU79535/00A priority Critical patent/AU7953500A/en
Publication of WO2001028916A1 publication Critical patent/WO2001028916A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/36Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using oxygen or mixtures containing oxygen as gasifying agents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/001Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/164Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
    • C10J2300/1643Conversion of synthesis gas to energy
    • C10J2300/1646Conversion of synthesis gas to energy integrated with a fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • H01M8/0631Reactor construction specially adapted for combination reactor/fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0643Gasification of solid fuel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a technology for recovering the chemical energy of combustibles in the form of hydrogen gas, and further to an energy conversion technology for converting the energy into electrical energy with high efficiency.
  • the present invention relates to combustibles such as combustible waste and coal.
  • the present invention relates to a method for producing hydrogen gas from gas produced by gasification or reforming, and a method for generating electricity by supplying the produced hydrogen gas to a fuel cell.
  • flammable waste includes municipal waste, solidified fuel, slurry fuel, waste paper, waste plastic, waste FRP, biomass waste, automobile waste, industrial waste such as waste wood, and low-grade coal. , Organic waste liquid, waste oil, etc. Background art
  • the above-mentioned combined cycle power generation method is disadvantageous in that it is difficult to apply to low-calorie gas, and because it is a power generation method involving combustion, pollution that adversely affects the environment, such as nitrogen oxides, sulfur oxides, and dioxins. May generate substances and cause an increase in environmental load.
  • fuel cell technology which is a power generation method that directly converts the chemical energy of hydrogen into electric energy, has been developed with high efficiency and low environmental impact, and is reaching the stage of practical use. Therefore, the development of technology for generating gas from combustible waste as a raw material, further purifying hydrogen from the generated gas, and generating electricity with this environmentally-friendly fuel cell is being promoted.
  • fuel components in the waste fluctuate greatly, unlike ordinary fuel, and the seasonal fluctuations in Japan are particularly large. However, it is almost impossible to generate fuel gas with a stable component at all times.
  • the present invention converts gaseous combustibles into hydrogen gas stations or power plants that do not pollute the environment, in order to convert waste incineration facilities to hydrogen gas stations or environmentally friendly power plants.
  • the present inventors have conducted intensive studies to solve the above problems, and as a result, efficiently produced hydrogen gas suitable for fuel cell power generation from low-grade gas generated by gasification of combustibles shown in FIGS. 1 and 2.
  • the present invention which provides a hydrogen production method and a fuel cell power generation method, has been completed.
  • the present invention provides a hydrogen production method comprising a gasification step of gasifying a first combustible material, and a gas treatment step of purifying a product gas generated in the gasification step to produce hydrogen. And a reforming step of mixing the composition gas obtained in the gasification step with a second combustible material to perform a reforming reaction of the second combustible substance, wherein the obtained reformed gas is subjected to the gas treatment step. It is decided to lead to.
  • the gas treatment step includes at least three steps of an exhaust heat recovery step, a gas cleaning step, and a transformation step.
  • the three steps include a selective oxidation step, a carbon dioxide chemical absorption step, a methylation step, and a hydrogen purification step. And one or more of the carbon monoxide adsorption processes.
  • the product gas obtained by gasification of the first combustible material differs depending on the type of the first combustible material and the composition of the gasifying agent, but in general, hydrogen and carbon monoxide are a few percent to several tens percent, respectively, as fuel gas components.
  • the main non-fuel gas components include carbon dioxide, nitrogen and argon as a few percent to tens of percent each, and trace amounts of acidic gas components include hydrogen sulfide and hydrogen chloride at several ppm. It is contained in concentrations ranging from to several thousand ppm.
  • the water vapor content of the generated gas when the first combustible material to be treated is general waste having a high water content or when water vapor is used as a gasifying agent, In this case, the water vapor content reaches 50% to 60%.
  • the temperature of the product gas is determined by the gasification temperature of the gasification process used.
  • a high-temperature incineration process or a high-temperature gasification process is established, and the operating temperature in this process shall be in the range of 900 to 150 ° C.
  • this method is extremely effective in reducing the environmental burden, but on the other hand, it decreases the recovery efficiency when recovering energy from the first combustible material to be treated. This is because the generated gas has severe corrosiveness due to components such as hydrogen chloride, and it is technically difficult to recover and utilize the high-temperature thermal energy of the generated gas at high temperatures. .
  • the carbon monoxide when hydrogen gas obtained by gasification of combustibles is supplied as a fuel gas to a phosphoric acid type fuel cell or a polymer electrolyte fuel cell, the lowest possible carbon monoxide concentration is required.
  • the carbon monoxide In the case of a fuel cell, the carbon monoxide must be below 100 ppm, preferably below 1 O ppm, more preferably below 1 ppm.
  • acidic gases, particularly hydrogen sulfide and hydrogen chloride poison various gas absorbents, adsorbents and various catalysts in the gas treatment process in addition to the electrode catalyst of the fuel cell, lppm or less, preferably 0.1 ppm. It is necessary to remove it to 1 ppm or less.
  • the gas treatment step according to the present invention comprises: removing harmful components such as acid gas and carbon monoxide from the product gas obtained in the gasification step or the reformed gas obtained in the reformation step; Produces fuel gas suitable for fuel cells by separating all or part of inactive components such as carbon and nitrogen and increasing the hydrogen content
  • the extent to which the carbon monoxide content should be reduced, and how high the hydrogen content should be, is determined by the type of fuel cell used, operating conditions, and design criteria. .
  • the load of the gas treatment process is determined by the balance between the specifications of the hydrogen gas required by the fuel cell used and the composition of the generated gas or the reformed gas.
  • the hydrogen content of the fuel cell used is 50% or more, and at the same time, 1
  • the calorific value of the combustible is high, the load on the gas treatment process is small.
  • the load on the gas treatment process increases.
  • the higher the load of the gas treatment process the higher the equipment cost of the process, and the higher the energy consumption, the lower the energy efficiency of the entire system, and as a result, the system itself is not established There is a risk.
  • the energy efficiency of the system can be enhanced by effectively utilizing the high-temperature thermal energy of the product gas obtained in the gasification process for the reforming reaction of the second combustibles to be input.
  • the method for producing hydrogen by gasification of a combustible material and the method for generating a fuel cell according to the present invention can be applied to a first combustible material having a low calorific value such as general garbage.
  • the present invention relates to a method for producing hydrogen and an energy method for generating fuel cells. Improve efficiency and improve economics.
  • the gasification process of the present invention includes a one-stage gasification process using a high-temperature gasifier and a two-stage gasification process using a low-temperature gasifier and a high-temperature gasifier. It may be a process, but a two-stage gasification process is more desirable.
  • the first combustible material consisting of waste and the gasifying agent for the low-temperature gasification furnace are supplied to the low-temperature gasification furnace, which is a fluidized bed gasification furnace, and the temperature is reduced from 400 ° C to 100 ° C.
  • the substance undergoes thermal decomposition in the temperature range of 0 ° C, producing a gas containing hydrogen, carbon monoxide, and some hydrocarbons.
  • the carrying temperature from the temperature at the time of charging to 400 ° C. to 100 ° C. is performed by partially burning the combustible material. Incombustibles mixed into the first combustible are discharged from the gasifier.
  • a gasification furnace in addition to a fluidized-bed furnace, a roasted kiln, a single-stroke furnace, etc. may be used, but raw materials containing amorphous and non-combustible materials such as garbage can be used as first combustible materials.
  • a fluidized bed furnace is more preferable. This is because in a fluidized bed furnace, unburned matter does not adhere to incombustible matter to be discharged from the furnace, so there are few problems in the treatment and disposal of incombustible matter.
  • the bed temperature should be as low as possible without impairing thermal decomposition, specifically, if it is operated at a temperature between 400 ° C and 600 ° C, the incombustibles will oxidize. Since it is not used, it is easy to reuse and is preferable.
  • the product gas obtained in the low-temperature gasification furnace is supplied to the high-temperature gasification furnace together with the gasification agent for the high-temperature gasification furnace. It is further gasified at a temperature of from 1000 to 140 ° C., more preferably from 110 to 135 ° C., to reduce the molecular weight.
  • the temperature of the high-temperature gasifier is maintained at a temperature higher than the temperature at which the ash contained in the generated gas melts, and 80 to 90% of the ash in the generated gas is converted into slag, which is then discharged outside the system as molten slag. Is discharged. Organic matter and hydrocarbons in the product gas are completely decomposed into hydrogen, carbon monoxide, steam, and carbon dioxide in the high-temperature gasifier.
  • the gasifying agent for the low-temperature gasification furnace used must have the amount of oxygen for partial combustion required to maintain the gasification temperature required for low-temperature gasification and supply gasification heat, and to fluidize It is only necessary to have a large amount of fluidizing gas, but a gasifying agent containing oxygen and water vapor as main components is desirable so as to reduce the load of the subsequent gas treatment step.
  • the high-temperature gasifying agent only needs to maintain the gasification temperature required for high-temperature gasification and the amount of oxygen for partial combustion required to supply the heat of gasification, but the load of the subsequent gas treatment process is limited. It is desirable to use a gasifying agent containing oxygen and water vapor as main components so as to reduce the amount.
  • the oxygen-containing gas used for the low-temperature gasifying agent and / or the high-temperature gasifying agent may be air, but it may be an oxygen-enriched gas such as PSA oxygen (enriched oxygen produced by the pressure swing method) or liquid oxygen. Garlic is more desirable.
  • the auxiliary combustion material can be charged into the high-temperature gasifier. Any material may be used as the auxiliary material, as long as it generates a large amount of heat.
  • a liquid fuel such as kerosene or heavy oil or a gaseous fuel such as city gas is preferable.
  • a reforming step is provided, and a high-temperature gasification product gas and a second combustible are supplied to the step to perform steam reforming of the second combustible.
  • steam reforming there are partial oxidation reforming and a combined method of partial oxidation reforming and steam reforming for combustibles.
  • the temperature of the generated gas is extremely high.
  • the steam content is very high, so steam reforming is more advantageous.
  • the second combustibles to be supplied include methane gas or digestive gas containing methane as a main component, city gas, propane gas, butane gas, and industrial gas containing these fuel components.
  • Liquid fuels such as natural gas (LNG), gasoline, kerosene, isopropanol, ethanol and methanol; waste liquids containing these liquid fuels; solutions containing reformable organic components; and solids.
  • LNG natural gas
  • Examples thereof include granular or powdered combustibles having a small amount of noncombustibles and ash.
  • the higher the calorific value of the first combustible material to be treated the more preferable. Therefore, in the present invention, when the first combustible material is waste containing water such as general garbage, the first combustible material is used to increase the calorific value. To separate liquid components (so-called garbage juice). Then, the separated liquid component is evaporated and concentrated using the low-level waste heat generated by the method of the present invention, and the concentrated liquid component can be used as the second combustible. Further, in the case where a solid component containing almost no incombustibles or ash is mixed in the waste to be treated, the solid component can be selected and finely ground to be used as a second combustible. Of course, it is more preferable that the solid component is originally separated.
  • the present invention if a liquid component and / or a solid component having a small amount of non-combustible and ash components are separated from the waste to be treated as described above, and are introduced into the reforming process as the second combustible material, not only waste but also gas
  • the amount of the agent can also be reduced.
  • the amount of generated gas in the gasification step is reduced, the amount of combustion required to reach the predetermined gasification temperature of the generated gas is reduced, and the energy efficiency of the system is improved.
  • reaction formulas respectively show the steam reforming reactions when methane gas, methanol and fixed carbon are used as the second combustibles.
  • the sensible heat of the generated gas is utilized for the reaction heat, and the generated gas itself is cooled. Also, since steam participates in the reforming reaction as a reactant, the stoichiometric excess of steam is more advantageous in the reaction. Since the gas temperature of the present invention is high enough to reform the second combustible such as methane under conditions where no reforming catalyst is used, and the gas composition contains a large amount of water vapor, 2It can be said to be optimal for steam reforming of combustibles.
  • the steam reforming reaction of methanol shown in equation (2) proceeds at a temperature of 200 to 300 ° C. under the action of the reforming catalyst, and at a higher temperature without using a reforming catalyst. Therefore, it goes without saying that the method according to the present invention is also applicable to steam reforming of methanol.
  • the steam reforming reaction of fixed carbon shown in the equations (3) and (4) is a so-called water gas reaction, and proceeds at temperatures of 900 ° C or more and 700 ° C or more, respectively. Therefore, the method according to the present invention is also applicable to solid second combustibles containing fixed carbon.
  • a reforming catalyst may be used in the present invention. However, if a reforming catalyst is not required, the reforming reactor is simpler and the cost of the apparatus is lower.
  • the supply amount of the second combustible material that is, the reaction amount of the reforming reaction may be determined so that the outlet temperature of the reforming reactor is about 900 ° C.
  • the reforming reactor to be used only needs to have a volume that gives a sufficient residence time for the reforming reaction, and the reforming reactor and the rear part of the high-temperature gasifier can be integrated in design.
  • the temperature of the reformed gas at the outlet of the reforming reactor is as described above. It is good to be 300 ° C or more.
  • one mole of methane is reformed into three moles of hydrogen and one mole of carbon monoxide.
  • carbon monoxide undergoes a further metamorphic reaction with steam in the subsequent metamorphosis step, producing one equivalent of hydrogen and one equivalent of carbon dioxide.
  • 4 moles of hydrogen and 1 mole of carbon dioxide that is, a gas having a hydrogen content of 80% and a carbon dioxide content of 20% are mixed with the product gas.
  • a second combustible such as methane gas into the reforming step to increase the hydrogen content of the reformed gas, nitrogen and argon which cannot be separated depending on the processing step to be applied.
  • the content rate can be relatively reduced, which in turn can simplify the gas treatment process, reduce the load, improve efficiency and improve economic efficiency.
  • an optimal gas treatment step can be constructed according to the type and conditions of the first combustible material, the gasifier, and the fuel cell to be used.
  • the gas treatment step according to the present invention comprises at least three steps: an exhaust heat recovery step, a gas cleaning step, and a metamorphosis step, or the three steps include a selective oxidation step, a carbon dioxide chemical absorption step, a methylation step, and hydrogen purification.
  • One or more of the carbon monoxide adsorption steps are combined.
  • an exhaust heat recovery step is provided to recover thermal energy from the reformed gas. And collect it.
  • a reformed gas of about 100 ° C. is led to a waste heat boiler, which generates high-pressure steam.
  • the generated high-pressure steam drives the steam bin to increase the pressure of the gas after cleaning, which will be described later.
  • a heat exchanger can be provided before or after the waste heat boiler to preheat the low-temperature gasifying agent and / or the high-temperature gasifying agent.
  • the low-pressure steam discharged from the steam turbine may be used as a steam source in a metamorphosis step or a heat source in a humidifier in a metamorphosis step, and / or as a heat source for regenerating the absorbent in the carbon dioxide chemical absorption step.
  • a steam source in a metamorphosis step or a heat source in a humidifier in a metamorphosis step and / or as a heat source for regenerating the absorbent in the carbon dioxide chemical absorption step.
  • the reformed gas is cooled as a result of sensible heat recovery in this step.
  • the lower the cooling temperature that is, the lower the temperature I at the end of the process, the greater the amount of recovered heat.
  • the temperature should be 400 ° C or higher, preferably 48
  • the temperature is preferably set to 0 ° C. or higher, more preferably 500 ° C. or higher.
  • a cleaning step is provided to remove an acid gas such as hydrogen sulfide or hydrogen chloride in the reformed gas to 10 ppm or less, preferably 1 ppm or less.
  • an acid gas such as hydrogen sulfide or hydrogen chloride in the reformed gas to 10 ppm or less, preferably 1 ppm or less.
  • a gas cleaning method used in the cleaning step there are a wet cleaning method and a dry cleaning method.
  • the reformed gas is brought into contact with cleaning water in a cleaning tower to absorb and neutralize the acidic gas.
  • the washing water may be pure water or water, but an alkaline solution obtained by adding 0.05 to 5% caustic soda to water is more preferable.
  • caustic soda solution is used as washing water, acid gas is absorbed and removed by the following neutralization reaction. Since dust in the reformed gas causes blockage of the gas flow path in the next step, it is washed and removed in this step.
  • the reformed gas is brought into contact with the adsorbent in the adsorption tower before The acid gas is chemisorbed.
  • the adsorption tower filled with the adsorbent may be either a fixed bed or a fluidized bed.
  • any solid substance having a large specific surface area and alkaline properties may be used, but a particulate metal oxide such as CaO or Z ⁇ is preferable.
  • the adsorption reaction using C a 0 is shown in the following formula.
  • a shift process is provided, and a shift reaction filled with a shift catalyst is carried out in the shift reaction described below, whereby carbon monoxide in the gas after washing is converted into hydrogen and carbon dioxide.
  • carbon monoxide in the gas after washing is converted into hydrogen and carbon dioxide.
  • Hydrogen sulfide is used as an advanced desulfurization means to ensure that the hydrogen sulfide content of the gas after desulfurization is 1 ppm or less, and preferably 0.1 ppm or less, in order to prevent poisoning of the conversion catalyst in the shift process by hydrogen sulfide. It is desirable to provide a dry desulfurizer for adsorption removal.
  • the dry desulfurizer used in the present invention has a container filled with a desulfurizing agent.
  • a desulfurizing agent for Although the shape and the material of the container are not particularly limited, the shape is preferably cylindrical from the range of the gas temperature and the pressure, and the material is preferably stainless steel.
  • the desulfurizing agent used is preferably an oxide such as iron oxide, zinc oxide or calcium oxide, or an adsorbent such as activated carbon, particularly activated carbon having an alkali agent supported on the surface.
  • the shape of the desulfurizing agent is preferably granular, pellet, or honeycomb. The desulfurization reaction using zinc oxide is described below.
  • a carbon dioxide chemical absorption step can be provided as one of the gas treatment steps after the washing step, the transformation step, or the selective oxidation step.
  • after cleaning gas or absorb separates only almost all or part of the transformer after the gas or the selective oxidation gas C 0 2 in accordance with the conditions required for the overall process.
  • the absorption tower of the step contacting the gas with absorbing liquid C 0 2 to absorb separation.
  • the absorbing solution a thermocarbonated realm absorbing solution or an alminol olamine absorbing solution is preferable.
  • an alkanol luminous absorbing solution having a strong absorbing ability is still more preferable.
  • the absorbent include monoethanolamine (MEA), diethanolamine (DEA), and methylethanolamine (MDEA). The adsorption reaction using the alkanolamine absorption solution is described below.
  • the absorption liquid When the absorption liquid is absorbed and saturated, the absorption liquid is transferred to a regenerating tower, and the absorption liquid is transferred to 100 to 150 ° performs reproduction at a temperature of c, together with the recovery of co 2 gas, returning the absorption liquid after regeneration in the absorption tower.
  • a heat source necessary for heating the absorbent during regeneration low-pressure steam discharged from the steam bin in the heat recovery step is used.
  • water vapor in the gas is removed by condensation in this step to the saturated vapor pressure at the absorption temperature. Note that acidic gases such as hydrogen sulfide and hydrogen chloride are further absorbed and removed in this step.
  • a metanalysis step can be provided after the carbon dioxide absorption step as one of the gas treatment steps.
  • carbon monoxide in the gas is reduced to 10 ppm or less, preferably 1 ppm or less
  • carbon dioxide in the gas is reduced to 100 ppm or less, preferably 10 ppm or less.
  • the following methanation reaction (also referred to as a methanol reaction) is carried out in a converter packed with a methanation catalyst.
  • the hydrogen in the gas after conversion is used as the hydrogen required for the reaction. Since the above-mentioned reaction is an exothermic reaction, lowering the reaction temperature lowers the equilibrium concentration of carbon monoxide, but conversely lowers the reaction rate, so that the reaction temperature is 200 to 350 ° C. Is desirable.
  • the type and shape of the catalyst are not limited as long as it promotes the metanation reaction, but nickel-based, iron-based, ruthenium-based methanation catalysts and the like are preferable.
  • the C 0 2 removal limit C 0 2 remaining in front of carbon dioxide chemical absorption process in order to achieve the hydrogen concentration reduction due to load reduction and main evening National reaction Metaneshiyon step The concentration should be 1% or less, preferably 0.1% or less.
  • dehumidifying means is installed to remove the water content to 100 ppm or less, preferably to 10 ppm or less. It is desirable to do.
  • the dehumidifying means is not particularly limited, but is preferably a cooling condensing method, an adsorption method using a silica gel or activated alumina, or a method combining these methods.
  • a hydrogen purification step can be provided after any of the following: the mes- sage step, the selective oxidation step, or the carbon monoxide adsorption step.
  • the purpose of the hydrogen refining process is to use a hydrogen storage alloy to store only hydrogen from the gas after metanation or the gas after selective oxidation or the gas after adsorption of carbon monoxide, and to release the hydrogen once stored, thereby reducing the pressure. 1-1 0 atm (1. 0 1 xl 0 5 ⁇ l. 0 1 X 1 0 6 P a), preferably 3-7 atm (3. 0 4 xl 0 5 ⁇ 7.
  • H 2 S and HC 1 which are the poisoning components of the hydrogen storage alloy are each 10 ppm or less, desirably lp pm or less, more desirably 0.1 lp pm or less, and CO is ⁇ ⁇ ⁇ ⁇ m or less, preferably below 1 ppm is, H 2 0 is 1 0 0 ppm or less, with respect to preferably rather were removed respectively below 1 0 ppm gas, provided the hydrogen purification steps with the hydrogen storage alloy, a hydrogen storage alloy of the gas Into the vessel containing hydrogen, and while absorbing the hydrogen into the hydrogen-absorbing alloy, occludes the hydrogen and separates N 2 and Ar from the hydrogen.After saturation of the hydrogen-absorbing alloy, the nitrogen and argon are removed from the alloy vessel.
  • the hydrogen storage alloy After purging, the hydrogen storage alloy is heated to release hydrogen, so that hydrogen gas is pressurized and stored in a hydrogen tank, or supplied to a fuel cell power generation process via a hydrogen tank. . Nitrogen and argon in the released and purified hydrogen gas are removed to 100 ppm or less, respectively. Hydrogen concentration reaches 99.9% or more. Any hydrogen storage alloy may be used as long as it has a large hydrogen storage capacity, but a low-level exhaust heat of about 70 ° C generated from a phosphoric acid fuel cell or solid polymer fuel cell is used as a heating heat source when releasing hydrogen. as can be used as the hydrogen release pressure of 7 0 ° C in 1-1 0 atm (1. 0 1 xl 0 5 ⁇ l.
  • Hydrogen storage reaction La Ni 5 + 3 H 2 ⁇ La Ni 5 H ⁇ + heat release (14)
  • Hydrogen release reaction La Ni 5 « « ⁇ La Na i ⁇ + 3 ⁇ 2 + heat absorption (15)
  • the hydrogen storage reaction is a heat release reaction, so when the hydrogen partial pressure is constant, especially when the hydrogen partial pressure is low, the hydrogen storage alloy is cooled during hydrogen storage. It is necessary to keep the storage temperature low. The lower the hydrogen storage temperature is, the more advantageous it is. However, a temperature of 12 to 32 ° C, which can be easily maintained by cooling water, is preferable.
  • the hydrogen release reaction is an endothermic reaction.
  • the hydrogen storage alloy is housed in a heat exchanger-type container provided with a heat exchange means such as a jacket tube for heat exchange, and the above-described hydrogen storage alloy is used to continuously store and release hydrogen. At least two hydrogen storage alloy storage containers are provided, and switching is performed by a solenoid valve.
  • a selective oxidation step can be provided after the shift step as one of the gas treatment steps.
  • the purpose of this step is to adopt a solid polymer fuel cell in the fuel cell power generation step, and to adjust the concentration of carbon monoxide in the hydrogen-containing gas supplied to the fuel cell to lOO ppm or less, preferably lO ppm or less. It is to lower to. That is, the following selective oxidation reaction is performed by supplying oxygen or air while guiding the gas to the selective oxidizer filled with the selective oxidation catalyst.
  • the reaction temperature is preferably in the range of 100 to 180 ° C, and any catalyst may be used as long as it has excellent selective oxidation property to carbon monoxide and a high reaction rate.
  • a gold catalyst in which gold is supported on a carrier is suitable.
  • a carbon monoxide adsorption step can be provided after the carbon dioxide absorption step as one of the gas treatment steps.
  • the purpose of this step is to use a polymer electrolyte fuel cell in the fuel cell power generation step, and to reduce the concentration of carbon monoxide in the hydrogen-containing gas supplied to the fuel cell to 100 ppm or less, preferably 100 m2. Below, more preferably, it is reduced to 1 ppm or less. That is, a carbon monoxide adsorption step by a pressure swing adsorption (PSA) method is provided, and the gas is introduced into an adsorption tower filled with a C ⁇ adsorbent to adsorb and separate C 0 in the gas.
  • PSA pressure swing adsorption
  • N may be any adsorption force weak adsorbent for 2 ⁇ beauty A r, for example Zeorai Tomo Rekiyura one sheet one ugly or carbon molecular Sieves or activated carbon or activated alumina are preferred, and are described above by agents that have an affinity for C0.
  • a c0 selective adsorbent having a modified adsorbent is more preferred.
  • the adsorption temperature is, the more advantageous it is, but the temperature is preferably in the range of 12 to 40 ° C. where the temperature control is relatively easy.
  • the gas pressure is of course higher
  • the have us in the present invention is carried out at atmospheric pressure to 7 atm (1. 0 1 xl 0 5 ⁇ 7. 0 9 xl 0 5 P a) of about the low-pressure region .
  • the desorption pressure As the desorption pressure is reduced by the vacuum pump, the pressure difference between the adsorption pressure and the desorption pressure increases, so that the treatment capacity of the adsorption tower is improved.On the other hand, the power consumption of the vacuum pump increases, so the desorption pressure is increased.
  • the range of 100/760 to 10 / 760Pa (100 to 10Torr) is desirable.
  • the present invention provides a fuel cell power generation step, and supplies hydrogen gas produced by the hydrogen production method as a fuel gas to the fuel cell power generation step to generate power. Since the temperature of the pure hydrogen gas or hydrogen-containing gas produced in the gas treatment process in the hydrogen production method is relatively low, the hydrogen concentration is high, and the content of carbon monoxide is low, the temperature of the fuel cell used is relatively low.
  • An operating phosphoric acid fuel cell, especially a polymer electrolyte fuel cell, is preferred. The cell reaction in the case of a phosphoric acid type or solid polymer type fuel cell is described below.
  • the reformed gas obtained by the method of the present invention is processed in a gas processing step to produce a fuel gas, and the produced fuel gas is melted in a carbonate fuel cell (MCFC) or a solid oxide fuel cell. It can also be supplied to a fuel cell (SOFC) to generate electricity.
  • the gas treatment step can be constituted by at least a gas cleaning step, or a combination of the gas cleaning step and the exhaust heat recovery step and / or the metamorphosis step.
  • a dry cleaning method can be employed in the gas cleaning step.
  • FIG. 1 is an explanatory diagram of a hydrogen production method and a fuel cell power generation method according to the present invention.
  • FIG. 2 is an explanatory diagram of the gas treatment step according to the present invention.
  • FIG. 3 is an explanatory diagram of the hydrogen production method and the fuel cell power generation method according to the first embodiment of the present invention.
  • FIG. 4 is an explanatory diagram of a hydrogen production method and a fuel cell power generation method according to a second embodiment of the present invention.
  • FIG. 5 is an explanatory diagram of a hydrogen production method and a fuel cell power generation method according to a third embodiment of the present invention.
  • FIG. 6 is an explanatory diagram of a hydrogen production method and a fuel cell power generation method according to a fourth embodiment of the present invention.
  • FIG. 7 is an explanatory diagram of a hydrogen production method and a fuel cell power generation method according to a fifth embodiment of the present invention.
  • FIG. 8 is a view showing a first embodiment of an apparatus for performing the gasification step of the present invention.
  • FIG. 9 is a view showing a second embodiment of the apparatus for performing the gasification step of the present invention.
  • FIG. 10 is a diagram showing a typical configuration of main components of the second embodiment of the present invention.
  • FIG. 11 is a view showing a third embodiment of the apparatus for performing the gasification step of the present invention.
  • FIG. 1 is a schematic diagram showing a hydrogen production method and a fuel cell power generation method of the present invention.
  • a first combustible substance a is gasified using a gasifying agent b in a gasification step A, and the obtained product gas c and a second combustible substance are obtained.
  • e into the reforming step B, and the second combustible e is subjected to water vapor reforming, and the resulting reformed gas f is led to the gas treatment step C for pure hydrogen gas g or hydrogen-containing gas. to produce h.
  • the pure hydrogen gas g or the hydrogen-containing gas h produced by the above-described hydrogen production method is supplied as fuel gas to the fuel cell power generation step D to generate power.
  • the gas treatment step C of the present invention comprises: an exhaust heat recovery step 1 for recovering thermal energy from the reformed gas f; a gas cleaning step 2 for removing hydrogen sulfide and hydrogen chloride; Gas conversion step 3, gas cleaning step 2, or conversion step 3 or selective oxidation step 7 for converting carbon monoxide into hydrogen and carbon dioxide Is a carbon dioxide chemical absorption process in which almost all or only part of the carbon dioxide in the gas after conversion or the gas after selective oxidation is absorbed and separated4.
  • Pure hydrogen gas is produced by storing only hydrogen from the gas after carbon monoxide adsorption and then releasing hydrogen to provide pure hydrogen gas after the hydrogen purification process 6 and the conversion process 3 to selectively oxidize carbon monoxide It is constituted by a
  • the exhaust heat recovery step 1 is performed by a heat exchanger, etc.
  • the gas cleaning step 2 is performed by a cleaning tower
  • the shift step 3 is performed by a shift converter
  • the carbon dioxide chemical absorption step 4 is performed by an absorption tower.
  • the methanation step 5 is performed in a metanalysis reactor
  • the hydrogen purification step 6 is performed in a hydrogen storage alloy container
  • the selective oxidation step 7 is performed in a selective oxidizer
  • the carbon monoxide absorption step 8 is performed in an adsorption tower.
  • the gas processing equipment is equipped with one or more other equipment (absorption tower, methanation reactor, selective oxidizer, adsorption tower) in the heat exchanger, washing tower, transformer, hydrogen storage alloy container and the above-mentioned process. It is a combination according to.
  • a phosphoric acid fuel cell is used as the fuel cell, and the first combustible material in the case where the required hydrogen content is 50% or more and the CO content is 0.5% or less is required as the fuel gas specification.
  • Hydrogen production method by gasification and fuel cell generation It is an electricity method.
  • the first combustible material a is gasified using the gasifying agent b, and the resulting product gas c and the second combustible material e is introduced into the reforming step B, and the second combustible e is subjected to water vapor reforming.
  • the amount of the second combustible material e (city gas) to be supplied is determined so that the hydrogen content of the hydrogen-containing gas h obtained in the metamorphosis step 3 described later is 50% or more.
  • the reformed gas f obtained in the reforming process B is led to the exhaust heat recovery process 1 to perform heat recovery, then introduced into the gas cleaning process 2, and then supplied to the conversion process 3 after the cleaning.
  • a shift reaction is performed to produce a hydrogen-containing gas h.
  • the produced hydrogen-containing gas h is supplied to the phosphoric acid type fuel cell in the fuel cell power generation step D to generate electric power.
  • This method is advantageous in terms of equipment cost and internal power consumption because the process is simple, but on the other hand, the power generation efficiency of the fuel cell is relatively low due to the low hydrogen content of the supplied hydrogen-containing gas h, and the type of fuel cell Is disadvantageous in that it is limited to the phosphoric acid type which has relatively strong C 0 resistance.
  • a polymer electrolyte fuel cell is used as the fuel cell, and the required specification of the fuel gas is a combustible gas when the hydrogen content is 50% or more and the C0 content is 10 ppm or less. It is a method for producing hydrogen by gasification and a method for generating fuel cells.
  • the first combustible substance a is gasified using the gasifying agent b, and the obtained product gas c and the second combustible substance e Into the reforming step B to perform steam reforming of the second combustible e.
  • the amount of the second combustible material e (city gas) to be supplied is determined so that the hydrogen content of the hydrogen-containing gas h obtained in the selective oxidation step 7 described later becomes 50% or more.
  • the reformed gas f obtained in the reforming step B is led to the exhaust heat recovery step 1 to perform heat recovery, and then introduced into the gas cleaning step 2, and then the post-cleaning gas is supplied to the conversion step 3 to perform a conversion reaction.
  • carbon monoxide is selectively oxidized in a selective oxidation step 7 to produce a hydrogen-containing gas h.
  • the produced hydrogen-containing gas h is separated from the solid Power is supplied to the secondary fuel cell to generate electricity.
  • the method is advantageous in terms of equipment cost and in-house power consumption because the process is simple, but is disadvantageous in that the hydrogen content of the supplied hydrogen-containing gas h is low and the fuel cell power generation efficiency is relatively low.
  • the method of the second embodiment is more advantageous than the method of the first embodiment in that it can be applied to a polymer electrolyte fuel cell, which is considered to be more economical.
  • a polymer electrolyte fuel cell is used as a fuel cell, and the required specification of the fuel gas is a combustible gas when the hydrogen content is 60% or more and the C0 content is 10 ppm or less. It is a method for producing hydrogen by gasification and a method for generating fuel cells. In the configuration of the third embodiment, as shown in FIG.
  • the first combustible material a is gasified using the gasifying agent b, and the obtained product gas c and the second combustible material e Into the reforming step B to perform steam reforming of the second combustible e.
  • the amount of the second combustible material e (city gas) to be supplied is determined so that the hydrogen content of the hydrogen-containing gas h obtained in the selective oxidation step 7 described later is 60% or more.
  • the reformed gas f obtained in the reforming process B is led to the exhaust heat recovery process 1 to perform heat recovery, and then introduced into the gas cleaning process 2, and then the post-cleaning gas is passed through the carbon dioxide chemical absorption process 4 Then, the mixture is supplied to a shift process 3 to perform a shift reaction, and further a selective oxidation process 7 is performed to produce a hydrogen-containing gas h. If C 0 2 removal rate of carbon dioxide chemical absorption step 4 set watching the hydrogen concentration of the first combustible materials a and second combustibles e hydrogenous gas h obtained at a feed rate and selective oxidation step 7 of Good.
  • the produced hydrogen-containing gas h is supplied to the polymer electrolyte fuel cell in the fuel cell power generation step D to generate electric power.
  • the method of the third embodiment has one additional step compared to the method of the second embodiment, which is disadvantageous in terms of equipment cost and in-house power consumption, but the hydrogen content of the supplied hydrogen-containing gas h is low. Relatively high is advantageous in that the hydrogen utilization rate and fuel cell power generation efficiency are relatively high, and the operation of the fuel cell is shifted to a safe side.
  • the fourth embodiment uses a polymer electrolyte fuel cell as a fuel cell,
  • the required specifications for hydrogen include a hydrogen production method by gasification of combustibles and a fuel cell power generation method when the hydrogen content is 70% or more and the C ⁇ content is 5 ppm or less.
  • the first combustible material a is gasified using the gasifying agent b, and the resulting product gas c and the second combustible material e Into the reforming step B to perform steam reforming of the second combustible e.
  • the upper limit of the amount of the second combustible material e that can be supplied is that the outlet temperature of the reforming step B is equal to or higher than the reformable temperature of the second combustible material e (in the case of city gas, 900 ° C or more without a catalyst, (Preferably 100 ° C. or more, more preferably 1100 ° C. or more).
  • the actual supply amount may be determined by checking the hydrogen concentration after gas treatment.
  • the reformed gas f obtained in the reforming step B is led to the exhaust heat recovery step 1 to perform heat recovery, and then introduced into the gas cleaning step 2, and then the gas after cleaning is supplied to the conversion step 3.
  • the gas after the metamorphosis is led to the carbon dioxide chemical absorption step 4 to separate and remove C 0 to 1% or less, preferably 0.5% or less. Then, by supplying carbon dioxide absorption after gas Metaneshi tio down step 5 to methanation of residual CO and C_ ⁇ 2 in the gas to produce a hydrogen-containing gas h. Then, the produced hydrogen-containing gas h is supplied to the polymer electrolyte fuel cell in the fuel cell power generation step D to generate electric power.
  • the method of the fourth embodiment is slightly disadvantageous in terms of equipment cost and in-house power consumption because the load of the carbon dioxide absorption step 4 is larger than that of the method of the third embodiment. Higher hydrogen content and lower residual CO concentration have relatively high hydrogen utilization and fuel cell power generation efficiency, and are advantageous in that fuel cell operation can be shifted to safer sites. .
  • a polymer electrolyte fuel cell is used as the fuel cell, and the first specification when the hydrogen content is 99.9% or more and the CO content is 0.5 pm or less is required as a fuel gas specification.
  • a hydrogen production method by gasifying combustibles and a fuel cell power generation method is required.
  • FIG. As shown, in the gasification step A, the first combustible substance a is gasified using the gasifying agent b, and the resulting product gas c and the second combustible substance e are introduced into the reforming step B, Performs steam reforming of combustibles e.
  • the upper limit of the amount of the second combustible material e that can be supplied is that the outlet temperature of the reforming step B is equal to or higher than the reformable temperature of the second combustible material e. (Preferably 100 ° C. or more, more preferably 1100 ° C. or more).
  • the actual supply amount may be determined by checking the hydrogen concentration after gas treatment.
  • the reformed gas f obtained in the reforming step B is led to the exhaust heat recovery step 1 to perform heat recovery, and then introduced into the gas cleaning step 2, and then the gas after the cleaning is supplied to the conversion step 3 for conversion.
  • the produced pure hydrogen gas g is supplied to the polymer electrolyte fuel cell in the fuel cell power generation step D to generate electric power.
  • the method of the fifth embodiment is more complicated than the method of the fourth embodiment, which is disadvantageous in terms of equipment cost and in-house power consumption.
  • pure hydrogen gas g is supplied, the hydrogen utilization rate is 10%. This is advantageous because it is close to 0%, and the fuel cell power generation efficiency is high and the life of the fuel cell is extended.
  • Table 1 summarizes the preconditions and features of Embodiments 1 to 5.
  • FIG. 8 is a view showing a first embodiment of an apparatus for performing the gasification step of the present invention.
  • the first combustible material a supplied from the raw material feeder 101 to the gasification furnace 102 which is a fluidized-bed gasification furnace, is in a temperature range of 900 to 1200 ° C. It undergoes thermal decomposition to produce product gas c containing hydrogen and carbon monoxide, which are active gas components for fuel cell power generation, and product gas c is sent to reformer 300 along with second combustible e. .
  • the temperature of the gasifier is maintained by partially burning the first combustible a.
  • the object of the present invention is to increase the temperature of the generated gas by high temperature.
  • Incombustibles d mixed into the first combustibles a are discharged from the gasifier 102.
  • a rotary kiln, a single-stroke furnace, etc. may be used for the gasification furnace in addition to a fluidized bed furnace. In such cases, a fluidized bed furnace is preferred. This is because in a fluidized bed furnace, unburned matter does not adhere to incombustible matter to be discharged from the furnace, so there are few problems in treating and disposing of incombustible matter.
  • FIG. 9 is a diagram showing a second embodiment of an apparatus for performing a gasification step including two-stage gasification of low-temperature gasification and high-temperature gasification.
  • the first combustible material a is 400 to 100 000 in the low-temperature gasification furnace 102.
  • the product gas obtained by pyrolysis and gasification at preferably 450 to 800 ° C, more preferably 500 to 600 ° C, is directly sent to the high-temperature gasification furnace 115.
  • the high-temperature gasification furnace 115 900 to: L500 ° C, preferably 100 to 140 ° C, more preferably 110 to 140 ° C At a temperature of 0 ° C, it is further gasified and reduced in molecular weight.
  • the temperature of the high-temperature gasifier 1 15 is maintained at a temperature higher than the temperature at which the ash contained in the generated gas melts, and 80 to 90% of the ash in the generated gas is turned into slag, which is used as molten slag k. It is discharged outside.
  • the second combustible e can be supplied to any location as long as it is downstream of the slag discharge outlet of the high-temperature gasifier 115, but it is as close as possible to the slag discharge outlet in order not to make the device excessively large. Is more desirable.
  • a reformer 300 is provided downstream of the high-temperature gasifier 1 15 in addition to the high-temperature gasifier, but the high-temperature gasifier 1 1 after the supply point of the second combustible material e If the gas residence time in (5) is sufficient as the reforming time for the second combustible e, the organic matter and hydrocarbons in the product gas, including the components of the second combustible e, are completely hydrogenated in the high-temperature gasification furnace. It is decomposed into carbon dioxide, steam, and carbon dioxide, so of course the reformer It is not necessary to provide 300 and can be omitted.
  • the post-reformation gas f after complete decomposition of organic matter and removal of solid content is sent to the gas treatment step C described above.
  • the high-temperature gasification furnace 1 15 performs three functions: complete decomposition of dioxin, fuel reforming, and slagging of ash. This process has the great advantage that ash can be slagged, and the ash can be taken out separately from alkali metal salts and low-melting metals, thus reducing the ash disposal problem.
  • FIG. 10 shows a typical configuration of the main components of the second embodiment shown in FIG.
  • the low-temperature gasification furnace 102 is a cylindrical fluidized-bed furnace having an internal swirling flow, and performs stable gasification by increasing the diffusivity of the raw material in the furnace.
  • the selective combustion of the char generated in the furnace becomes possible, contributing to the improvement of carbon conversion rate and cold gas efficiency.
  • the high-temperature gasifier 1 15 is a rotary melting furnace.
  • a conical dispersion plate 106 is arranged on the hearth of the cylindrical fluidized-bed furnace.
  • the fluidizing gas supplied through the dispersion plate 106 is supplied to the central fluidizing gas 207 supplied upward from the vicinity of the central part 204 of the furnace bottom into the furnace and the peripheral part 203 of the furnace bottom. From the peripheral fluidizing gas 208 supplied as an upward flow into the furnace.
  • the central fluidizing gas 207 is made of a gas containing no oxygen
  • the peripheral fluidizing gas 207 is made of a gasifying agent containing oxygen.
  • the oxygen content of the fluidized gas as a whole should be 10% or more and 30% or less of the theoretical combustion oxygen required for combustible combustibles, and the inside of the furnace is a reducing atmosphere.
  • the mass velocity of the central fluidizing gas 207 is made smaller than that of the peripheral fluidizing gas 208, and the upward flow of the fluidizing gas above the periphery in the furnace is differential.
  • Lek Yu 206 he is turned to the center of the furnace.
  • a moving bed 209 in which the fluidized medium (using silica sand) settles and diffuses is formed in the center of the furnace, and a fluidized bed in which the fluidized medium is actively fluidized around the furnace. 0 is formed.
  • the first combustible material a supplied to the upper part of the moving bed 209 by the raw material feeder 101 is moved down in the moving bed 209 together with the flowing medium by the heat of the flowing medium. It is heated and mainly volatiles are gasified. Since there is no or little oxygen in the moving bed 209, the pyrolysis gas (product gas) composed of the gasified volatiles is not burned and passes through the moving bed 209 as indicated by the arrow 116. The moving bed 209 therefore forms a gasification zone G.
  • the product gas that has moved to the freeboard 107 rises as shown by the arrow 120 and is discharged as a product gas j from the gas outlet 108 through the freeboard 107.
  • the fluidized bed 210 forms an oxidation zone S for combustibles.
  • the fluidized medium is heated by the heat of combustion in the fluidized bed and becomes a high temperature.
  • the high temperature fluid medium is reversed by the inclined wall 206 as shown by the arrow 118, moves to the moving bed 209, and again becomes a heat source for gasification.
  • the temperature of the fluidized bed is 40 0 to: Maintained at L 0000 ° C, preferably 400 to 600 ° C, so that the suppressed combustion reaction can be continued.
  • a ring-shaped non-combustible material discharge port 205 for discharging non-combustible material is formed in a portion on the outer peripheral side of the bottom of the fluidized-bed gasification furnace.
  • a gasification zone G and an oxidation zone S are formed in the fluidized-bed furnace, and the fluidized medium serves as a heat transfer medium in both zones.
  • G high-quality combustible gas having a high calorific value is generated, and in the oxidation zone S, it is possible to efficiently burn char and tar which are difficult to gasify. Therefore, the gasification efficiency of combustibles such as waste can be improved, and high-quality product gas can be generated.
  • the low-temperature gasification furnace is not limited to the cylindrical fluidized-bed furnace, and may be a kiln-stalker furnace as in the previous embodiment.
  • Rotating melting furnace as high temperature gasifier 1 1 5
  • the product gas supplied to the swirling melting furnace is supplied tangentially so as to generate a swirling flow in the primary gasification chamber 115a.
  • the inflowing product gas forms a swirling flow, and the solid content in the gas is trapped on the surrounding wall by centrifugal force, so the slag conversion rate and slag collection rate are high, and the slag mist is less scattered. is there.
  • a gasifying agent b containing oxygen is supplied from a plurality of nozzles 1 34 in the swirling melting furnace so as to maintain an appropriate temperature distribution in the furnace. Completely decompose hydrocarbons and turn ash into slag in the primary gasification chamber 1 15a and the secondary gasification chamber 1 15b. Adjust the temperature distribution to complete. Since the supply of oxygen alone may cause burning of the nozzle, etc., a gasifying agent b obtained by diluting oxygen with steam or the like is used. In addition, steam must be supplied so as not to be insufficient because it contributes to the reduction of hydrocarbon molecules by steam reforming. This is because the temperature inside the furnace is high, and if the water vapor is insufficient, the condensation polymerization reaction will produce extremely poorly-reactive graphite, leading to unburned loss.
  • the slag flows down the lower surface of the secondary gasification chamber 1 15 b and is discharged from the slag discharge port 142 as molten slag k.
  • the tertiary gasification chamber 115c serves as an interference zone for preventing the slag discharge outlet 142 from being cooled by the radiant cooling from the waste heat boiler in the reforming process B provided downstream At the same time, it is provided for the purpose of completing the reduction of the molecular weight of undecomposed gas.
  • An exhaust port 144 for exhausting the generated gas c is provided at the upper end of the tertiary gasification chamber 115c, and a radiation plate 148 is provided at the lower portion.
  • the radiation plate 144 has a function of reducing the amount of heat lost from the exhaust port 144 due to radiation.
  • Reference numeral 13 2 denotes a starter wrench, and reference numeral 13 6 denotes an auxiliary burner wrench.
  • Organic matter and hydrocarbons in the generating power are completely decomposed into hydrogen, carbon monoxide, steam, and carbon dioxide in the high-temperature gasifier.
  • the generated gas c obtained in the high temperature gasifier 1 15 is discharged from the exhaust port 144 and sent to the reforming step B.
  • the high-temperature gasifier is not limited to the rotary melting furnace, but may be another type of gasifier.
  • FIG. 11 is a view showing a third embodiment of the apparatus for performing the gasification step of the present invention.
  • Figure 11 shows a high-temperature gasifier with a shape that is advantageous for slag discharge. That is, the high-temperature gasifier 115 is configured as a two-stage upper and lower stage, and the generated gas flows in from the upper side of the high-temperature gasifier 115 and flows to the lower side. In this case, since the gas also flows in the direction in which the slag falls due to gravity, the flow is natural, and there is little blockage trouble at the slag discharge port.
  • high temperature gasification A reformer 300 can be installed on the lower side of the furnace 1 15.
  • the reformer 300 since the reformer 300 must withstand the slag flow, it is impossible to install a catalyst packed bed, etc., and it can only provide a high-temperature field.
  • it is important to devise measures such as supplying a swirling flow in the reformer 300 so that it can be sufficiently mixed with the high-temperature generated gas from the high-temperature gasifier 115.
  • a waste heat boiler 119 composed of a radiation boiler is installed below the reformer 300.
  • the reformed gas f is sent to the gas treatment step C via the waste heat boiler 119.
  • the molten slag k is discharged outside the furnace through a waste heat boiler 1 19.
  • Other configurations are the same as those of the second embodiment shown in FIG.
  • the energy efficiency of the system can be improved, the concentration and flow rate of hydrogen gas supplied to the fuel cell can be stabilized, and the applicable gas can be improved.
  • the degree of freedom can be given to the process and the design and selection of the fuel cell. That is, according to the present invention, a combustible substance is gasified or reformed, and a hydrogen gas suitable for fuel cell power generation can be produced from the generated gas at low cost and high efficiency. Then, fuel cell power generation can be efficiently performed using the produced hydrogen gas.
  • the present invention relates to an energy conversion technique for converting chemical energy of combustibles into electric energy with high efficiency.
  • the present invention relates to a method of gasifying or reforming combustible materials such as combustible waste and coal to produce hydrogen gas from a generated gas, and a method of generating electricity by supplying the produced hydrogen gas to a fuel cell. It can be used for power generation systems that generate hydrogen by using the produced hydrogen gas as fuel gas for fuel cells.

Abstract

A method of producing hydrogen by gasification of combustibles which has a gasification step (A) of gasifying a first combustible (a) and a gas treatment step (C) of purifying a formed gas (c) formed in the gasification step (A), characterized in that the method further comprises a modification step (B) of admixing the formed gas (c) obtained in the gasification step (A) with a second combustible (e) and carrying out a modification reaction of the second combustible (e), and the resulting modified gas (f) is introduced to the gas treatment step (C).

Description

明 細 可燃物のガス化による水素製造方法及び燃料電池発電方法 技術分野  Description Hydrogen production method by gasification of combustibles and fuel cell power generation method
本発明は、 可燃物のもつ化学エネルギーを水素ガスの形で回収する技 術、 さらには高効率で電気エネルギーに変換する、 エネルギー変換技術 に係り、 特に可燃性廃棄物や石炭等の可燃物をガス化又は改質し、 生成 ガスから水素ガスを製造する方法、 さらには製造した水素ガスを燃料電 池に供給して発電する究電方法に関するものである。 ここで、 可燃性廃 棄物には都市ゴミ、 固形化燃料、 スラ リー化燃料、 古紙、 廃プラスチッ ク、 廃 F R P、 バイオマス廃棄物、 自動車廃棄物、 廃木材等の産業廃棄 物、 低品位石炭、 有機性廃液、 廃油等が含まれる。 背景技術  The present invention relates to a technology for recovering the chemical energy of combustibles in the form of hydrogen gas, and further to an energy conversion technology for converting the energy into electrical energy with high efficiency.In particular, the present invention relates to combustibles such as combustible waste and coal. The present invention relates to a method for producing hydrogen gas from gas produced by gasification or reforming, and a method for generating electricity by supplying the produced hydrogen gas to a fuel cell. Here, flammable waste includes municipal waste, solidified fuel, slurry fuel, waste paper, waste plastic, waste FRP, biomass waste, automobile waste, industrial waste such as waste wood, and low-grade coal. , Organic waste liquid, waste oil, etc. Background art
近年、 環境保護の意識が高まる中、 可燃性廃棄物をエネルギー源とし て発電を行なう発電方法に関する様々な試みがなされている。 その試み の一つとして、 可燃物を加圧下でガス化し、 得られた生成ガスでガス夕 一ビンを駆動しつつ、 ガスタービン排ガスから排熱ボイ ラで熱回収して 蒸気夕一ビンを駆動し、 ガス夕一ビンと蒸気タービンの併用で複合サイ クル発電を行って高効率発電を達成しょう とする複合サイクル発電方法 がある。  In recent years, with increasing awareness of environmental protection, various attempts have been made regarding power generation methods that use flammable waste as an energy source. As one of the approaches, combustibles are gasified under pressure, and the resulting gas is used to drive the gas bin, while the exhaust gas from the gas turbine is recovered by a waste heat boiler to drive the steam bin. However, there is a combined cycle power generation method that aims to achieve high-efficiency power generation by using a combined gas cycle and a steam turbine to generate combined cycle power.
しかしながら、 上述の複合サイクル発電方法は、 低カロ リーのガスに 適用困難であるという欠点や、 燃焼を伴う発電方法であるために窒素酸 化物、 硫黄酸化物及びダイォキシン等の環境に悪影響を与える汚染物質 を発生し、 環境負荷の増大をもたらすおそれがある。 近年、 水素のもつ化学エネルギーを直接に電気エネルギーに変換する 発電方法で、 効率が高く環境負荷が少ない燃料電池技術が開発されおり、 実用化の段階に達しつつある。 従って、 可燃性の廃棄物を原料としてガ スを生成し、 その生成ガスからさらに水素を精製し、 この環境負荷の小 さい燃料電池で発電する技術の開発が進められつつある。 しかしながら 廃棄物を原料とする場合、 通常の燃料とは異な り廃棄物中の燃料成分の 変動が大きく、 特に日本における季節毎の変動はかなり大きなものであ ることから、 廃棄物だけを原料として、 常に安定した成分の燃料ガスを 発生させるのはほとんど不可能という状況である。 However, the above-mentioned combined cycle power generation method is disadvantageous in that it is difficult to apply to low-calorie gas, and because it is a power generation method involving combustion, pollution that adversely affects the environment, such as nitrogen oxides, sulfur oxides, and dioxins. May generate substances and cause an increase in environmental load. In recent years, fuel cell technology, which is a power generation method that directly converts the chemical energy of hydrogen into electric energy, has been developed with high efficiency and low environmental impact, and is reaching the stage of practical use. Therefore, the development of technology for generating gas from combustible waste as a raw material, further purifying hydrogen from the generated gas, and generating electricity with this environmentally-friendly fuel cell is being promoted. However, when waste is used as a raw material, fuel components in the waste fluctuate greatly, unlike ordinary fuel, and the seasonal fluctuations in Japan are particularly large. However, it is almost impossible to generate fuel gas with a stable component at all times.
また、 一方で燃料電池のような発電技術を生かすためには高品質水素 ガスの製造方法の開 ¾及び水素ガスステーシヨ ン等の水索に [ 連するィ ンフラス トラクチャ一の整備が不可欠で、 と りわけ燃料電池自動車や家 庭発電方法に最適の固体高分子型燃料電池には硫化水素や一酸化炭素等 の被毒ガス成分をほとんど含まない高濃度の水素ガスを供給する必要が あるが、 改質が比較的容易である天然ガスとメタノールを水素の原料と して用いているのが現状である。  On the other hand, in order to make use of power generation technologies such as fuel cells, it is essential to develop a method for producing high-quality hydrogen gas and to establish an infrastructure that is connected to water cables such as hydrogen gas stations. This means that high-concentration hydrogen gas containing almost no poisonous gas components such as hydrogen sulfide and carbon monoxide needs to be supplied to polymer electrolyte fuel cells, which are optimal for fuel cell vehicles and home power generation methods. At present, natural gas and methanol, which are relatively easy to use, are used as raw materials for hydrogen.
ところが、 天然ガスゃメ夕ノ一ル等の気体又は液体燃料から水素ガス を製造するには、 改質工程を経なければならない。 通常、 水蒸気改質反 応が用いられるが、 該反応は高温条件下で進行する吸熱反応なので、 原 料燃料又は改質後ガスの一部を燃焼して燃焼熱を改質反応の温度維持と 反応熱供給及び水蒸気の発生に用いるのが一般的である。 このため、 改 質工程の熱効率が 7 0〜 8 0 %程度にとどまつている。 発明の開示  However, in order to produce hydrogen gas from gas or liquid fuel such as natural gas or methanol, a reforming process must be performed. Usually, a steam reforming reaction is used, but since this reaction is an endothermic reaction that proceeds under high temperature conditions, a part of the raw fuel or the reformed gas is burned to reduce the combustion heat to maintain the temperature of the reforming reaction. It is generally used for supplying reaction heat and generating steam. For this reason, the thermal efficiency of the reforming process remains at around 70-80%. Disclosure of the invention
上述の事情に鑑み、 本発明は、 廃棄物焼却施設を水素ガスステーショ ンあるいは環境を汚さない発電所に変えるべく、 可燃物をガス化して生 成したガスから燃料電池、 と りわけ固体高分子型燃料電池に適した水素 ガスを季節等に関係なく安定して製造する方法、 さらには製造した水素 ガスを燃料電池に供給し高効率でしかも環境負荷の少ない非焼却発電方 法を提供することを課題とする。 In view of the above-mentioned circumstances, the present invention converts gaseous combustibles into hydrogen gas stations or power plants that do not pollute the environment, in order to convert waste incineration facilities to hydrogen gas stations or environmentally friendly power plants. A method for stably producing hydrogen gas suitable for fuel cells, especially polymer electrolyte fuel cells, regardless of the seasons, etc. from the produced gas, and supplying the produced hydrogen gas to the fuel cell to achieve high efficiency and It is an object of the present invention to provide a non-incineration power generation method with low environmental load.
前記課題を解決すべく 本発明者らは鋭意研究を重ねた結果、 図 1 及び 2に示す可燃物のガス化によつて生成した低品位ガスから燃料電池発電 に適した水素ガスを効率よく製造する水素製造方法及び燃料電池発電方 法を提供する本発明の完成に至った。  The present inventors have conducted intensive studies to solve the above problems, and as a result, efficiently produced hydrogen gas suitable for fuel cell power generation from low-grade gas generated by gasification of combustibles shown in FIGS. 1 and 2. The present invention, which provides a hydrogen production method and a fuel cell power generation method, has been completed.
即ち、 本発明は、 第 1可燃物をガス化させるガス化工程と、 該ガス化 工程にて生成した生成ガスを精製して水素を製造するガス処 1!ェ程から なる水素製造方法であって、 前記ガス化工程で^られた ΐ成ガスに第 2 可燃物を混合して第 2可燃物の改質反応を行う改質工程を設け、 得られ た改質後ガスを前記ガス処理工程に導く ことと したものである。  That is, the present invention provides a hydrogen production method comprising a gasification step of gasifying a first combustible material, and a gas treatment step of purifying a product gas generated in the gasification step to produce hydrogen. And a reforming step of mixing the composition gas obtained in the gasification step with a second combustible material to perform a reforming reaction of the second combustible substance, wherein the obtained reformed gas is subjected to the gas treatment step. It is decided to lead to.
前記ガス処理工程は少なく とも排熱回収工程とガス洗浄工程と変成ェ 程の 3工程からなり、 あるいは前記 3工程に、 選択酸化工程と二酸化炭 素化学吸収工程とメ夕ネーション工程と水素精製工程と一酸化炭素吸着 工程の内のある 1工程、 又は 1工程以上の工程を組み合せて構成される ことを基本とするものである。  The gas treatment step includes at least three steps of an exhaust heat recovery step, a gas cleaning step, and a transformation step. Alternatively, the three steps include a selective oxidation step, a carbon dioxide chemical absorption step, a methylation step, and a hydrogen purification step. And one or more of the carbon monoxide adsorption processes.
第 1可燃物のガス化によって得られる生成ガスは第 1可燃物の種類と ガス化剤の組成によつて異なるが、 一般に燃料ガス成分として水素と一 酸化炭素がそれぞれ数パーセン トから数十パーセン ト、 主な非燃料ガス 成分として二酸化炭素、 窒素及びアルゴンがそれぞれ数パ一セン トから 数十パーセン ト含まれており、 また、 微量の酸性ガス成分として硫化水 素や塩化水素などが数 p p mから数千 p p mの濃度範囲において含まれ ている。 また、 生成ガスの水蒸気含有率については、 処理する第 1可燃 物が含水率の高い一般ゴミの場合やガス化剤に水蒸気を使用する場合に おいて水蒸気含有率が 5 0 %乃至 6 0 %にも達する。 The product gas obtained by gasification of the first combustible material differs depending on the type of the first combustible material and the composition of the gasifying agent, but in general, hydrogen and carbon monoxide are a few percent to several tens percent, respectively, as fuel gas components. The main non-fuel gas components include carbon dioxide, nitrogen and argon as a few percent to tens of percent each, and trace amounts of acidic gas components include hydrogen sulfide and hydrogen chloride at several ppm. It is contained in concentrations ranging from to several thousand ppm. Also, regarding the water vapor content of the generated gas, when the first combustible material to be treated is general waste having a high water content or when water vapor is used as a gasifying agent, In this case, the water vapor content reaches 50% to 60%.
また、 生成ガスの温度は用いるガス化工程のガス化温度によって決ま るが、 近年、 廃棄物の焼却又はガス化において生成ガス中ダイォキシン の完全分解と飛灰の溶融を達成するために、 通常の焼却工程又は低温ガ ス化工程の後に、 あるいは単独で高温焼却工程又は高温ガス化ェ程を設 け、 この工程における運転温度を 9 0 0〜 1 5 0 0 °Cの範囲にしている ことが多い。 しかしこの方法は環境負荷を低減する上で極めて有効であ るが、 反面、 処理する第 1可燃物からエネルギーを回収する上では逆に 回収効率を低下させてしまう。 なぜなら、 生成ガスが塩化水素等の成分 によって激しい腐食性を有するので、 生成ガスのもつ高温熱エネルギー を高温のままに回収利用するのが技術的に困難であるとの現状があるか らである。  The temperature of the product gas is determined by the gasification temperature of the gasification process used.In recent years, in order to achieve complete decomposition of dioxin in the product gas and melting of fly ash in the incineration or gasification of waste, After the incineration process or the low-temperature gasification process, or independently, a high-temperature incineration process or a high-temperature gasification process is established, and the operating temperature in this process shall be in the range of 900 to 150 ° C. Many. However, this method is extremely effective in reducing the environmental burden, but on the other hand, it decreases the recovery efficiency when recovering energy from the first combustible material to be treated. This is because the generated gas has severe corrosiveness due to components such as hydrogen chloride, and it is technically difficult to recover and utilize the high-temperature thermal energy of the generated gas at high temperatures. .
一方、 可燃物のガス化によって得た水素ガスを燃料ガスとして燐酸型 燃料電池や固体高分子型燃料電池に供給する場合は、 できるだけ低い一 酸化炭素濃度が要求され、 と りわけ固体高分子型燃料電池の場合には、 一酸化炭素を 1 0 0 p p m以下、 好ましくは 1 O p p m以下、 さらに好 ましくは 1 p p m以下にする必要がある。 また、 酸性ガス、 特に硫化水 素と塩化水素は燃料電池の電極触媒の他に、 ガス処理工程の各種ガス吸 収剤、 吸着剤及び各種触媒を被毒するので、 l p p m以下、 好ましくは 0 . 1 p p m以下に取除く ことが必要である。 また、 燃料電池に供給さ れる燃料ガスの水素含有率は高い程望ましいが、 最低でも乾ガスとして (以下同様) 4 0 %以上の濃度が必要である。  On the other hand, when hydrogen gas obtained by gasification of combustibles is supplied as a fuel gas to a phosphoric acid type fuel cell or a polymer electrolyte fuel cell, the lowest possible carbon monoxide concentration is required. In the case of a fuel cell, the carbon monoxide must be below 100 ppm, preferably below 1 O ppm, more preferably below 1 ppm. In addition, since acidic gases, particularly hydrogen sulfide and hydrogen chloride, poison various gas absorbents, adsorbents and various catalysts in the gas treatment process in addition to the electrode catalyst of the fuel cell, lppm or less, preferably 0.1 ppm. It is necessary to remove it to 1 ppm or less. The higher the hydrogen content of the fuel gas supplied to the fuel cell, the better, but the dry gas must have a concentration of at least 40% (the same applies hereinafter).
本発明によるガス処理工程は、 ガス化工程で得られた生成ガスあるい は改質工程で得られた改質後ガスから酸性ガスや一酸化炭素等の有害成 分を除去することと、 二酸化炭素や窒素等の非活性成分を全部又は一部 分離し水素の含有率を高めることで、 燃料電池に適した燃料ガスを製造 することを目的とするが、 それでは一酸化炭素含有率をどこまで下げれ ばよいのか、 また、 水素含有率をどこまで高めれば十分なのかは、 用い る燃料電池の種類と操作条件や設計基準によって決定する。 一方、 ガス 処理工程の負荷は、 用いる燃料電池によって要求される水素ガスの仕様 と、 生成ガスあるいは改質後ガスの組成との兼合いによって決まる。 例 えば第 2可燃物を投入せずに一定のガス化剤を用いる場合を考えてみる と、 用いる燃料電池の水素ガスとして水素含有率が 5 0 %以上であれば よいと同時に、 処理する第 1可燃物の発熱量が高い時はガス処理工程の 負荷が小さい。 逆に、 用いる燃料電池の水素ガスとして純水素ガスが必 要であると同時に、 処理する第 1可燃物が一般ゴミで発熱量が低い時は ガス処理工程の負荷が高くなる。 当然のことながら、 ガス処理工程の負 荷が高い程、 該工程の設備コス トが高くなり、 また、 エネルギー消費量 の上昇でシステム全体のエネルギー効率が低く なり、 結果としてシステ ムそのものが成立しないおそれがある。 The gas treatment step according to the present invention comprises: removing harmful components such as acid gas and carbon monoxide from the product gas obtained in the gasification step or the reformed gas obtained in the reformation step; Produces fuel gas suitable for fuel cells by separating all or part of inactive components such as carbon and nitrogen and increasing the hydrogen content The extent to which the carbon monoxide content should be reduced, and how high the hydrogen content should be, is determined by the type of fuel cell used, operating conditions, and design criteria. . On the other hand, the load of the gas treatment process is determined by the balance between the specifications of the hydrogen gas required by the fuel cell used and the composition of the generated gas or the reformed gas. For example, considering a case where a certain gasifying agent is used without adding the second combustible material, it is sufficient that the hydrogen content of the fuel cell used is 50% or more, and at the same time, 1 When the calorific value of the combustible is high, the load on the gas treatment process is small. Conversely, when pure hydrogen gas is required as hydrogen gas for the fuel cell used, and the first combustible material to be treated is general garbage and the calorific value is low, the load on the gas treatment process increases. Naturally, the higher the load of the gas treatment process, the higher the equipment cost of the process, and the higher the energy consumption, the lower the energy efficiency of the entire system, and as a result, the system itself is not established There is a risk.
よって、 本発明において改質工程を設け第 2可燃物を必要に応じて投 入することにより、 下記に列挙する効果を見出すことができる。  Therefore, the effects listed below can be obtained by providing the reforming step in the present invention and injecting the second combustibles as needed.
1 ) ガス化工程で得られた生成ガスのもつ高温熱エネルギーを、 投入す る第 2可燃物の改質反応に有効利用することでシステムのエネルギー効 率を高めることができる。  1) The energy efficiency of the system can be enhanced by effectively utilizing the high-temperature thermal energy of the product gas obtained in the gasification process for the reforming reaction of the second combustibles to be input.
2 ) 投入する第 2可燃物の種類と量を変えることで改質後ガスの水素含 有率及び一酸化炭素含有率を調整することによって、 ガス処理工程の簡 素化と負荷低減を図ることができる。  2) To simplify the gas treatment process and reduce the load by adjusting the hydrogen content and carbon monoxide content of the reformed gas by changing the type and amount of the second combustibles to be charged Can be.
3 ) —般都巿ゴミのように発熱量が低い第 1可燃物に対しても、 本発明 の可燃物のガス化による水素製造方法並びに燃料電池発電方法を適用す ることができる。  3) — The method for producing hydrogen by gasification of a combustible material and the method for generating a fuel cell according to the present invention can be applied to a first combustible material having a low calorific value such as general garbage.
本発明はかく して、 水素製造方法及び燃料電池発電方法のエネルギー 効率を高め、 経済性を改善する。 Thus, the present invention relates to a method for producing hydrogen and an energy method for generating fuel cells. Improve efficiency and improve economics.
以下、 各工程について詳しく説明する。  Hereinafter, each step will be described in detail.
A) ガス化工程 A) Gasification process
本発明のガス化工程には、 高温のガス化炉を用いた 1段ガス化工程と、 低温ガス化炉と高温ガス化炉とを用いた 2段ガス化工程とがあり、 1段 ガス化工程でもよいが、 2段ガス化工程がよ り望ましい。  The gasification process of the present invention includes a one-stage gasification process using a high-temperature gasifier and a two-stage gasification process using a low-temperature gasifier and a high-temperature gasifier. It may be a process, but a two-stage gasification process is more desirable.
2段ガス化工程においては、 廃棄物からなる第 1可燃物及び低温ガス 化炉用ガス化剤は流動層ガス化炉である低温ガス化炉に供給され、 4 0 0 °Cから 1 0 0 0 °Cの温度域で熱分解を受け、 水素と一酸化炭素、 及び 若干の炭化水素を含んだガスを生成する。 この場合、 投入時の温度から 4 0 0 °C〜 1 0 0 0 °Cへの舁温は、 ¾ 1可燃物を部分燃焼させることに より行う。 また第 1可燃物中に混入した不燃物は、 ガス化炉から排出さ れる。 ガス化炉には流勋床炉の他、 ロー夕 リーキルン、 ス ト一力炉等を 用いても良いが、 都巿ゴミのように不定形で、 かつ不燃物を含む原料を 第 1可燃物とする場合には、 流動床炉の方が望ましい。 なぜなら流動床 炉であれば炉から排出されるべき不燃物に未燃物が付着しないので、 不 燃物の処理、 処分における問題が少ないからである。 また流動床炉を採 用する場合の層温は、 熱分解を阻害しない範囲で低い方、 具体的には 4 0 0 °C以上 6 0 0 °C以下で運転する方が、 不燃物が酸化されないので再 利用し易く、 好ましい。  In the two-stage gasification process, the first combustible material consisting of waste and the gasifying agent for the low-temperature gasification furnace are supplied to the low-temperature gasification furnace, which is a fluidized bed gasification furnace, and the temperature is reduced from 400 ° C to 100 ° C. The substance undergoes thermal decomposition in the temperature range of 0 ° C, producing a gas containing hydrogen, carbon monoxide, and some hydrocarbons. In this case, the carrying temperature from the temperature at the time of charging to 400 ° C. to 100 ° C. is performed by partially burning the combustible material. Incombustibles mixed into the first combustible are discharged from the gasifier. As a gasification furnace, in addition to a fluidized-bed furnace, a roasted kiln, a single-stroke furnace, etc. may be used, but raw materials containing amorphous and non-combustible materials such as garbage can be used as first combustible materials. In this case, a fluidized bed furnace is more preferable. This is because in a fluidized bed furnace, unburned matter does not adhere to incombustible matter to be discharged from the furnace, so there are few problems in the treatment and disposal of incombustible matter. In addition, when a fluidized bed furnace is used, the bed temperature should be as low as possible without impairing thermal decomposition, specifically, if it is operated at a temperature between 400 ° C and 600 ° C, the incombustibles will oxidize. Since it is not used, it is easy to reuse and is preferable.
また、 低温ガス化炉で得られた生成ガスは高温ガス化炉用ガス化剤と 共に高温ガス化炉へ供給され、 高温ガス化炉において 9 0 0〜 1 5 0 0 °C、 好ましくは 1 0 0 0〜 1 4 0 0 °C、 さらに好ましく は 1 1 0 0〜 1 3 5 0 °Cの温度で更にガス化され、 低分子化される。 高温ガス化炉の温 度は、 生成ガス中に含まれる灰分が溶融する温度以上に維持され、 生成 ガス中の 8 0〜 9 0 %の灰分はスラグ化され、 溶融スラグとして系外に 排出される。 生成ガス中の有機物、 炭化水素は高温ガス化炉内で完全に 水素、 一酸化炭素、 水蒸気、 二酸化炭素にまで分解される。 The product gas obtained in the low-temperature gasification furnace is supplied to the high-temperature gasification furnace together with the gasification agent for the high-temperature gasification furnace. It is further gasified at a temperature of from 1000 to 140 ° C., more preferably from 110 to 135 ° C., to reduce the molecular weight. The temperature of the high-temperature gasifier is maintained at a temperature higher than the temperature at which the ash contained in the generated gas melts, and 80 to 90% of the ash in the generated gas is converted into slag, which is then discharged outside the system as molten slag. Is discharged. Organic matter and hydrocarbons in the product gas are completely decomposed into hydrogen, carbon monoxide, steam, and carbon dioxide in the high-temperature gasifier.
用いる低温ガス化炉用ガス化剤と しては、 低温ガス化に必要なガス化 温度の維持とガス化熱の供給に必要な部分燃焼用酸素量を有することと、 流動化するために必要な流動化ガス量を有すればよいが、 後のガス処理 工程の負荷が少なくなるように酸素と水蒸気を主成分とするガス化剤が 望ましい。 同様に、 高温ガス化剤としては、 高温ガス化に必要なガス化 温度の維持とガス化熱の供給に必要な部分燃焼用酸素量を有すればよい が、 後のガス処理工程の負荷が少なくなるように酸素と水蒸気を主成分 とするガス化剤が望ま しい。 なお、 低温ガス化剤及び/又は高温ガス化 剤に用いる含酸素ガスとしては空気でもよいが、 P S A酸素 (圧力スィ ング法によって製造される富化酸素) などの富化酸素又は液体酸素のほ うがよ り望ましい。  The gasifying agent for the low-temperature gasification furnace used must have the amount of oxygen for partial combustion required to maintain the gasification temperature required for low-temperature gasification and supply gasification heat, and to fluidize It is only necessary to have a large amount of fluidizing gas, but a gasifying agent containing oxygen and water vapor as main components is desirable so as to reduce the load of the subsequent gas treatment step. Similarly, the high-temperature gasifying agent only needs to maintain the gasification temperature required for high-temperature gasification and the amount of oxygen for partial combustion required to supply the heat of gasification, but the load of the subsequent gas treatment process is limited. It is desirable to use a gasifying agent containing oxygen and water vapor as main components so as to reduce the amount. The oxygen-containing gas used for the low-temperature gasifying agent and / or the high-temperature gasifying agent may be air, but it may be an oxygen-enriched gas such as PSA oxygen (enriched oxygen produced by the pressure swing method) or liquid oxygen. Garlic is more desirable.
また、 第 1可燃物の発熱量があま りにも低い故に高温ガス化炉で所定 のガス化温度が達成されない場合は高温ガス化炉に助燃材を投入するこ とができる。 助燃材としては発熱量の高いものであれば何でもよいが、 灯油や重油等の液体燃料又は都市ガス等の気体燃料が好適である。  In addition, if the predetermined gasification temperature cannot be achieved in the high-temperature gasifier because the calorific value of the first combustible is too low, the auxiliary combustion material can be charged into the high-temperature gasifier. Any material may be used as the auxiliary material, as long as it generates a large amount of heat. A liquid fuel such as kerosene or heavy oil or a gaseous fuel such as city gas is preferable.
B ) 改質工程 B) Reforming process
本発明では、 改質工程を設け、 該工程に高温のガス化生成ガスと第 2 可燃物とを供給し、 第 2可燃物の水蒸気改質を行う。 可燃物の改質方式 としては、 水蒸気改質の他に部分酸化改質と、 部分酸化改質と水蒸気改 質との複合方式とがあるが、 本発明では生成ガスの温度が非常に高いこ とと、 水蒸気含有率が非常に高いことから、 水蒸気改質のほうが有利で ある。 投入する第 2可燃物には、 気体としてメタンガス又はメタンを主 成分とする消化ガス、 都市ガス、 プロパンガス、 ブタンガス、 及びこれ らの燃料成分を含む工業ガス等が挙げられ、 また、 液体としては液化天 然ガス (LNG) 、 ガソ リ ン、 灯油、 イ ソプロパノール、 エタノールや メタノールなどの液体燃料及びこれらの液体燃料を含む廃液、 及び改質 可能な有機物成分を含む溶液等が挙げられ、 また、 固体としては不燃分 や灰分が少ない粒状又は粉末状の可燃物が挙げられる。 In the present invention, a reforming step is provided, and a high-temperature gasification product gas and a second combustible are supplied to the step to perform steam reforming of the second combustible. In addition to steam reforming, there are partial oxidation reforming and a combined method of partial oxidation reforming and steam reforming for combustibles. In the present invention, the temperature of the generated gas is extremely high. And the steam content is very high, so steam reforming is more advantageous. Examples of the second combustibles to be supplied include methane gas or digestive gas containing methane as a main component, city gas, propane gas, butane gas, and industrial gas containing these fuel components. Liquefied heaven Liquid fuels such as natural gas (LNG), gasoline, kerosene, isopropanol, ethanol and methanol; waste liquids containing these liquid fuels; solutions containing reformable organic components; and solids. Examples thereof include granular or powdered combustibles having a small amount of noncombustibles and ash.
また、 処理する第 1可燃物の発熱量が高い程好ましいことから、 本発 明では第 1可燃物が一般都巿ゴミなど水分を含む廃棄物の場合に、 発熱 量を上げるために該廃棄物を圧搾し液状成分 (いわゆるゴミ汁) を分離 する。 そして、 分離した液状成分を本発明による方法で発生した低位排 熱を用いて蒸発濃縮し、 濃縮した液状成分を第 2可燃物として利用する ことができる。 また、 処理する廃棄物に不燃物分や灰分をほとんど含ま ない固形成分が混じっている場合には、 前記固形成分を選別し細かく粉 碎して第 2可燃物として用いることもできる。 勿論、 前記固形成分が元 々分別されている状態にあればなお好ましい。  In addition, the higher the calorific value of the first combustible material to be treated, the more preferable. Therefore, in the present invention, when the first combustible material is waste containing water such as general garbage, the first combustible material is used to increase the calorific value. To separate liquid components (so-called garbage juice). Then, the separated liquid component is evaporated and concentrated using the low-level waste heat generated by the method of the present invention, and the concentrated liquid component can be used as the second combustible. Further, in the case where a solid component containing almost no incombustibles or ash is mixed in the waste to be treated, the solid component can be selected and finely ground to be used as a second combustible. Of course, it is more preferable that the solid component is originally separated.
本発明によって、 前述のように処理する廃棄物から液状成分及び/又 は不燃分や灰分が少ない固形成分を分離し、 第 2可燃物として改質工程 に投入すれば、 廃棄物だけでなくガス化剤の量も減らすことができる。 その結果、 ガス化工程における生成ガスの量が減少するので、 生成ガス の温度を所定のガス化温度に到達させるための必要燃焼量が減り、 シス テムのエネルギー効率が向上する。  According to the present invention, if a liquid component and / or a solid component having a small amount of non-combustible and ash components are separated from the waste to be treated as described above, and are introduced into the reforming process as the second combustible material, not only waste but also gas The amount of the agent can also be reduced. As a result, since the amount of generated gas in the gasification step is reduced, the amount of combustion required to reach the predetermined gasification temperature of the generated gas is reduced, and the energy efficiency of the system is improved.
例として、 第 2可燃物としてメタンガスとメタノール及び固定炭素を 用いる場合の水蒸気改質反応をそれぞれ下記の反応式に示す。  As an example, the following reaction formulas respectively show the steam reforming reactions when methane gas, methanol and fixed carbon are used as the second combustibles.
C H + H 20 → C 0 + 3 H 2 - 2 06 k J /m o 1 ( 1 ) C H 3 O H + H 2 O → C 02 + 3 H 2 - 1 3 1 k J /m o 1 ( 2) C + H20 → CO + H 2 - 1 3 1 k J/mo l ( 3 ) C + 2 H 20 → C 02 + 2 H 2 一 7 6 k J /m o 1 (4) ( 1 ) 式に示すメタンの水蒸気改質反応は改質触媒作用下で 600〜 8 0 0 °C、 改質触媒なしでは 9 0 0 °C以上の温度において進行する。 ま た、 該反応は吸熱反応でメ夕ン 1モル当りに 2 0 6 k Jの反応熱が必要 となる。 そこで、 該反応の進行に伴って生成ガスの顕熱が反応熱に利用 され、 生成ガス自身が冷却される。 また、 水蒸気が反応物として改質反 応に関与するので、 該反応においては水蒸気が量論的に過剰である程有 利である。 本発明による生成ガスは、 ガス温度が改質触媒を用いない条 件下におけるメタンなどの第 2可燃物の改質に十分な高温であり しかも ガス組成として大量の水蒸気を含んでいるので、 第 2可燃物の水蒸気改 質に最適と云える。 CH + H 20 → C 0 + 3 H 2 - 2 06 k J / mo 1 (1) CH 3 OH + H 2 O → C 02 + 3 H 2 - 1 3 1 k J / mo 1 (2) C + H 2 0 → CO + H 2-13 1 kJ / mo l (3) C + 2 H 20 → C 02 + 2 H 2 1 76 k J / mo 1 (4) (1) The steam reforming reaction of It proceeds at a temperature of 900 ° C, 900 ° C or higher without a reforming catalyst. In addition, the reaction is an endothermic reaction and requires 206 kJ of heat of reaction per mole of the monomer. Then, as the reaction proceeds, the sensible heat of the generated gas is utilized for the reaction heat, and the generated gas itself is cooled. Also, since steam participates in the reforming reaction as a reactant, the stoichiometric excess of steam is more advantageous in the reaction. Since the gas temperature of the present invention is high enough to reform the second combustible such as methane under conditions where no reforming catalyst is used, and the gas composition contains a large amount of water vapor, 2It can be said to be optimal for steam reforming of combustibles.
また、 ( 2 ) 式に示すメ夕ノールの水蒸気改質反応は改質触媒作用下 で 2 0 0〜 3 0 0 °C、 改質触媒を用いない条件下でそれ以上の温度にて 進行するので、 本発明による方法がメ夕ノールの水蒸気改質にも適用で きることは言うまでもない。  In addition, the steam reforming reaction of methanol shown in equation (2) proceeds at a temperature of 200 to 300 ° C. under the action of the reforming catalyst, and at a higher temperature without using a reforming catalyst. Therefore, it goes without saying that the method according to the present invention is also applicable to steam reforming of methanol.
また、 ( 3 ) 及び ( 4 ) 式に示す固定炭素の水蒸気改質反応は、 いわ ゆる水性ガス反応であり、 それぞれ 9 0 0 °C以上と 7 0 0 °C以上の温度 において進行する。 よって、 本発明による方法が固定炭素を含む固体の 第 2可燃物にも適用できる。  The steam reforming reaction of fixed carbon shown in the equations (3) and (4) is a so-called water gas reaction, and proceeds at temperatures of 900 ° C or more and 700 ° C or more, respectively. Therefore, the method according to the present invention is also applicable to solid second combustibles containing fixed carbon.
勿論、 本発明では改質触媒を用いてもよいが、 改質触媒が不要であれ ば改質反応器が簡単で装置コス 卜が安くなることから、 改質反応温度を Of course, a reforming catalyst may be used in the present invention. However, if a reforming catalyst is not required, the reforming reactor is simpler and the cost of the apparatus is lower.
9 0 0 °C以上とすることによって改質触媒を不要にしたほうが有利であ る。 よって、 第 2可燃物の供給量、 即ち改質反応の反応量を改質反応器 出口温度が 9 0 0 °C程度となるように決定すればよい。 なお、 用いる改 質反応器は前記改質反応に十分な滞留時間を与える容積を有すればよく、 設計上改質反応器と高温ガス化炉の後部とを一体化することもできる。 なお、 メ夕ノ一ルのように比較的低温領域においても水蒸気改質が進行 する第 2可燃物を用いる場合は、 改質反応器出口の改質ガス温度は前述 のように 3 0 0 °C以上で良い。 It is advantageous to eliminate the need for a reforming catalyst by setting the temperature to 900 ° C. or higher. Therefore, the supply amount of the second combustible material, that is, the reaction amount of the reforming reaction may be determined so that the outlet temperature of the reforming reactor is about 900 ° C. The reforming reactor to be used only needs to have a volume that gives a sufficient residence time for the reforming reaction, and the reforming reactor and the rear part of the high-temperature gasifier can be integrated in design. When using a second combustible that undergoes steam reforming even in a relatively low temperature range, such as a sample, the temperature of the reformed gas at the outlet of the reforming reactor is as described above. It is good to be 300 ° C or more.
上記反応式 ( 1 ) のように 1モルのメタンが 3モルの水素と 1モルの 一酸化炭素に改質される。 また、 一酸化炭素が後の変成工程においてさ らに水蒸気と変成反応し、 1 当量の水素と 1当量の二酸化炭素を生成す るので、 結果として 1モルのメタンを生成ガスに混合することが、 4モ ルの水素と 1モルの二酸化炭素、 即ち水素含有率 8 0 %、 二酸化炭素含 有率 2 0 %のガスを前記生成ガスに混合することになる。 即ち、 メタン ガスのような第 2可燃物を改質工程に投入することで改質後ガスの水素 含有率を高めることによ り、 適用する処理工程によっては分離ができな い窒素及びアルゴンの含有率を相対的に低下させることができ、 ひいて はガス処理工程の簡素化、 負荷軽減、 効率向上及び経済性改善を図るこ とができる。  As shown in the above reaction formula (1), one mole of methane is reformed into three moles of hydrogen and one mole of carbon monoxide. In addition, carbon monoxide undergoes a further metamorphic reaction with steam in the subsequent metamorphosis step, producing one equivalent of hydrogen and one equivalent of carbon dioxide.As a result, it is possible to mix one mole of methane into the product gas. Thus, 4 moles of hydrogen and 1 mole of carbon dioxide, that is, a gas having a hydrogen content of 80% and a carbon dioxide content of 20% are mixed with the product gas. In other words, by introducing a second combustible such as methane gas into the reforming step to increase the hydrogen content of the reformed gas, nitrogen and argon which cannot be separated depending on the processing step to be applied. The content rate can be relatively reduced, which in turn can simplify the gas treatment process, reduce the load, improve efficiency and improve economic efficiency.
用いる第 1可燃物の成分の時間的変動によっては一時的に第 2可燃物 を投入しなくてもよい場合があり、 また、 用いるガス化剤及び燃料電池 の種類によっては改質工程を特に設けなくてよい場合もあるが、 当然の ことながら、 これらの場合も本発明の権利範囲に含まれる。  Depending on the time variation of the components of the first combustible used, it may not be necessary to temporarily add the second combustible.In addition, depending on the type of gasifying agent and fuel cell used, a reforming process is particularly provided. In some cases, these may not be necessary, but, of course, these cases are also included in the scope of the present invention.
C ) ガス処理工程 C) Gas treatment process
本発明では改質工程を設けることによ り、 用いる第 1可燃物、 ガス化 剤及び燃料電池の種類や条件等に応じて最適のガス処理工程を構築する ことができる。 本発明によるガス処理工程は少なく とも排熱回収工程と ガス洗浄工程と変成工程の 3工程からなり、 又は前記 3工程に、 選択酸 化工程と二酸化炭素化学吸収工程とメ夕ネーション工程と水素精製工程 と一酸化炭素吸着工程の内の 1工程又は 1工程以上の工程を組み合せて なる。 以下、 各構成工程について詳しく説明する。  In the present invention, by providing the reforming step, an optimal gas treatment step can be constructed according to the type and conditions of the first combustible material, the gasifier, and the fuel cell to be used. The gas treatment step according to the present invention comprises at least three steps: an exhaust heat recovery step, a gas cleaning step, and a metamorphosis step, or the three steps include a selective oxidation step, a carbon dioxide chemical absorption step, a methylation step, and hydrogen purification. One or more of the carbon monoxide adsorption steps are combined. Hereinafter, each of the constituent steps will be described in detail.
( 1 ) 排熱回収工程  (1) Waste heat recovery process
本発明では、 排熱回収工程を設け、 改質後ガスから熱エネルギーをさ らに回収する。 例えば 1 0 0 0 °c程度の改質後ガスを排熱ボイラに導き、 排熱ボイラで高圧蒸気を発生する。 発生した高圧蒸気を用いて蒸気夕一 ビンを駆動し、 後述する洗浄後ガスを昇圧することができる。 また、 排 熱ボイラの前又は後ろに熱交換器を設け、 低温ガス化剤及び/又は高温 ガス化剤を予熱することもできる。 さらには、 前記蒸気タービンから排 出された低圧蒸気は、 後述の変成工程の蒸気源も しくは変成工程加湿器 の熱源として、 及び/又は二酸化炭素化学吸収工程の吸収液再生用熱源 として用いることもできる。 In the present invention, an exhaust heat recovery step is provided to recover thermal energy from the reformed gas. And collect it. For example, a reformed gas of about 100 ° C. is led to a waste heat boiler, which generates high-pressure steam. The generated high-pressure steam drives the steam bin to increase the pressure of the gas after cleaning, which will be described later. In addition, a heat exchanger can be provided before or after the waste heat boiler to preheat the low-temperature gasifying agent and / or the high-temperature gasifying agent. Further, the low-pressure steam discharged from the steam turbine may be used as a steam source in a metamorphosis step or a heat source in a humidifier in a metamorphosis step, and / or as a heat source for regenerating the absorbent in the carbon dioxide chemical absorption step. Can also.
なお、 改質後ガスは該工程で顕熱回収の結果冷却される。 その冷却温 度、 即ち該工程の出に I温度を低く するほど回収熱量が増えるが、 改質後 ガス冷却過程におけるダイォキシンの再合成を避けるために 4 0 0 °C以 上、 好ましくは 4 8 0 °C以上、 さらに好ましくは 5 0 0 °C以上に設定す るのがよい。  The reformed gas is cooled as a result of sensible heat recovery in this step. The lower the cooling temperature, that is, the lower the temperature I at the end of the process, the greater the amount of recovered heat. However, in order to avoid re-synthesis of dioxin in the gas cooling process after reforming, the temperature should be 400 ° C or higher, preferably 48 The temperature is preferably set to 0 ° C. or higher, more preferably 500 ° C. or higher.
( 2 ) 洗浄工程  (2) Cleaning process
本発明では洗浄工程を設け改質後ガス中の硫化水素や塩化水素等の酸 性ガスをそれぞれ 1 0 p p m以下、 望ましくは 1 p p m以下に除去する。 洗浄工程で用いるガス洗浄方法として湿式洗浄法と乾式洗浄法とがある。 湿式洗浄法では洗浄塔にて改質後ガスを洗浄水と接触させて前記酸性ガ スを吸収、 中和する。 洗浄水としては巿水またはェ水でもよいが、 水に 0 . 0 5〜 5 % の苛性ソーダを添加したアルカ リ性溶液がさらに好適 である。 洗浄水として苛性ソーダ溶液を用いる場合、 酸性ガスが下記の 中和反応によって吸収除去される。 なお、 改質後ガス中の煤塵が次工程 のガス流路閉塞をもたらすので、 該工程にて洗浄除去する。  In the present invention, a cleaning step is provided to remove an acid gas such as hydrogen sulfide or hydrogen chloride in the reformed gas to 10 ppm or less, preferably 1 ppm or less. As a gas cleaning method used in the cleaning step, there are a wet cleaning method and a dry cleaning method. In the wet cleaning method, the reformed gas is brought into contact with cleaning water in a cleaning tower to absorb and neutralize the acidic gas. The washing water may be pure water or water, but an alkaline solution obtained by adding 0.05 to 5% caustic soda to water is more preferable. When caustic soda solution is used as washing water, acid gas is absorbed and removed by the following neutralization reaction. Since dust in the reformed gas causes blockage of the gas flow path in the next step, it is washed and removed in this step.
H 2 S + N a 0 H → N a H S + H 2 O ( 5 )  H 2 S + Na 0 H → Na H S + H 2 O (5)
H C l + N a O H → N a C 1 + H 2 0 ( 6 )  H C l + N a O H → N a C 1 + H 2 0 (6)
また、 乾式洗浄法では吸着塔にて改質後ガスを吸着剤と接触させて前 記酸性ガスを化学吸着する。 吸着剤を充填した吸着塔は固定床と流動床 のどちらでもよい。 また、 用いる吸着剤としては、 大きな比表面積とァ ルカ リ性を有する固形物であれば何でもよいが、 C a Oや Z η θ等の粒 状の金属酸化物が好適である。 C a 0を用いる場合の吸着反応を下式に 示す。 In the dry cleaning method, the reformed gas is brought into contact with the adsorbent in the adsorption tower before The acid gas is chemisorbed. The adsorption tower filled with the adsorbent may be either a fixed bed or a fluidized bed. As the adsorbent to be used, any solid substance having a large specific surface area and alkaline properties may be used, but a particulate metal oxide such as CaO or Zηθ is preferable. The adsorption reaction using C a 0 is shown in the following formula.
H . S + C a 0 → C a S + H 20 ( 7 ) H. S + C a 0 → C a S + H 2 0 (7)
2 H C l + C a O → C a C 12+ H 20 ( 8 ) 2 HC l + C a O → C a C 1 2 + H 2 0 (8)
( 3 ) 変成工程  (3) Metamorphosis process
本発明では、 変成工程を設け、 変成触媒を充填した変成器にて下記の 変成反応 (シフ ト反応とも云う) を行い、 これによつて洗净後ガス中の 一酸化炭素を水素と二酸化炭素に変成し、 C Oを 1 %以下、 好ましくは 0. 5 %以下、 さらに好ましくは 0. 2 %以下に低下させる。  In the present invention, a shift process is provided, and a shift reaction filled with a shift catalyst is carried out in the shift reaction described below, whereby carbon monoxide in the gas after washing is converted into hydrogen and carbon dioxide. To reduce CO to 1% or less, preferably 0.5% or less, more preferably 0.2% or less.
C O + H 2 O → C 02 + H2 ( 9 ) 該反応では C〇に対し 1当量の水蒸気が消費されるので、 本発明では 反応に必要な水蒸気として洗浄後ガス中の水蒸気成分を利用する。 上記 変成反応は発熱反応なので、 反応温度を低くすれば一酸化炭素の平衡濃 度が低くなるが、 逆に反応速度が遅くなるので、 反応温度として 2 0 0 〜 2 5 0 °Cの範囲が望ましい。 触媒としては変成反応を促進するもので あれば種類と形状のいずれも限定されるものではないが、 前記温度範囲 に適した触媒として C u— Z n系変成触媒などが挙げられる。 CO + H 2 O → C 0 2 + H 2 (9) In the reaction, 1 equivalent of steam is consumed per C〇, so in the present invention, the steam component in the gas after washing is used as steam required for the reaction. I do. Since the above-mentioned transformation reaction is an exothermic reaction, lowering the reaction temperature lowers the equilibrium concentration of carbon monoxide.On the contrary, the reaction rate becomes slower, so the reaction temperature is in the range of 200 to 250 ° C. desirable. The type and shape of the catalyst are not limited as long as it promotes the shift reaction. Examples of the catalyst suitable for the above-mentioned temperature range include a Cu—Zn shift catalyst.
ところで、 前記洗浄工程の操作条件と運転管理によつては微量の硫化 水素が洗浄後ガスに残存する恐れがある。 硫化水素による変成工程の変 成触媒の被毒を防ぐために、 脱硫後ガスの硫化水素含有率を 1 p p m以 下、 好ましくは 0. 1 p pm以下に確保するための高度脱硫手段として 硫化水素を吸着除去する乾式脱硫器を設けるのが望ましい。  By the way, depending on the operation conditions and operation management of the cleaning step, a small amount of hydrogen sulfide may remain in the gas after cleaning. Hydrogen sulfide is used as an advanced desulfurization means to ensure that the hydrogen sulfide content of the gas after desulfurization is 1 ppm or less, and preferably 0.1 ppm or less, in order to prevent poisoning of the conversion catalyst in the shift process by hydrogen sulfide. It is desirable to provide a dry desulfurizer for adsorption removal.
本発明で用いる乾式脱硫器は容器に脱硫剤を充填したものである。 用 いる容器の形状及び材質がと く に限定されるものではないが、 ガス温度 と圧力の範囲から形状として円筒状が望ましく、 材質としてはステンレ ス鋼が望ましい。 また、 用いる脱硫剤としては酸化鉄、 酸化亜鉛や酸化 カルシウム等の酸化物、 又は活性炭、 特にアルカ リ剤を表面に担持した 活性炭等の吸着剤が好適である。 脱硫剤の形状として粒状、 ペレ ツ ト状 ゃハニカム状が好ましい。 酸化亜鉛を用いる場合の脱硫反応を下記に記 す。 The dry desulfurizer used in the present invention has a container filled with a desulfurizing agent. for Although the shape and the material of the container are not particularly limited, the shape is preferably cylindrical from the range of the gas temperature and the pressure, and the material is preferably stainless steel. The desulfurizing agent used is preferably an oxide such as iron oxide, zinc oxide or calcium oxide, or an adsorbent such as activated carbon, particularly activated carbon having an alkali agent supported on the surface. The shape of the desulfurizing agent is preferably granular, pellet, or honeycomb. The desulfurization reaction using zinc oxide is described below.
Z n 0 + H 2 S → Z n S + H 20 ( 1 0 )Z n 0 + H 2 S → Z n S + H 2 0 (1 0)
(4 ) 二酸化炭素化学吸収工程 (4) Carbon dioxide chemical absorption process
本発叨ではガス処理工程の一工程として、 洗浄工程又は変成工程又は 選択酸化工程のいずれかの後ろに二酸化炭素化学吸収工程を設けること ができる。 該工程で、 全体方法に要求される条件に応じて洗浄後ガス又 は変成後ガス又は選択酸化後ガス中 C 02のほとんど全部又は一部だけを 吸収分離する。 該工程の吸収塔にてガスと吸収液を接触させて C 02を吸 収分離する。 吸収液としては熱炭酸力 リ ゥム吸収液またはアル力ノール ァミ ン吸収液が好適であり、 該工程においては、 吸収能力が強いアル力 ノールァミ ン吸収液がなお好適であり、 具体的な吸収剤としてモノエタ ノールァミ ン (MEA) 、 ジエタノールァミ ン (D EA) 、 メチルジェ 夕ノールァミ ン (MDEA) などが挙げられる。 アルカノールァミ ン吸 収液による吸着反応を下記に記す。 In the present invention, a carbon dioxide chemical absorption step can be provided as one of the gas treatment steps after the washing step, the transformation step, or the selective oxidation step. In about該工, after cleaning gas or absorb separates only almost all or part of the transformer after the gas or the selective oxidation gas C 0 2 in accordance with the conditions required for the overall process. At the absorption tower of the step contacting the gas with absorbing liquid C 0 2 to absorb separation. As the absorbing solution, a thermocarbonated realm absorbing solution or an alminol olamine absorbing solution is preferable. In the step, an alkanol luminous absorbing solution having a strong absorbing ability is still more preferable. Examples of the absorbent include monoethanolamine (MEA), diethanolamine (DEA), and methylethanolamine (MDEA). The adsorption reaction using the alkanolamine absorption solution is described below.
R- N H 2 + H 2 O + C O 2 → R - N H 3H C 0 a ( 1 1 ) 前記反応は放熱反応なので吸収温度が低い程有利であるが、 温度制御 が比較的容易な 1 2〜40 °Cの範囲が好適である。 ガス圧力はいうまで もなく高いほど有利であるが、 本発明においては常圧〜 7気圧 ( 1. 0 l x l 05〜7. 0 9 X 1 05 P a ) 程度の低圧領域において行う。 また、 前記吸収液が吸収飽和したら、 吸収液を再生塔に移送し 1 00〜 1 50 °cの温度にて再生を行い、 c o 2ガスを回収すると共に、 再生後の吸収液 を吸収塔に返送する。 再生時吸収液を加熱するのに必要な熱源として、 前記熱回収工程の蒸気夕一ビンから排出された低圧蒸気を用いる。 また、 ガス中の水蒸気が該工程で凝縮によ り吸収温度の飽和蒸気圧まで除去さ れる。 なお、 硫化水素や塩化水素等の酸性ガスが該工程においてさらに 吸収除去される。 R-NH 2 + H 2 O + CO 2 → R-NH 3 HC 0 a (11) Since the above reaction is an exothermic reaction, the lower the absorption temperature, the better, but the temperature control is relatively easy. A range of ° C is preferred. Although the gas pressure is advantageously higher Needless to say, carried out at normal pressure to 7 atm (1. 0 lxl 0 5 ~7. 0 9 X 1 0 5 P a) of about the low-pressure region in the present invention. When the absorption liquid is absorbed and saturated, the absorption liquid is transferred to a regenerating tower, and the absorption liquid is transferred to 100 to 150 ° performs reproduction at a temperature of c, together with the recovery of co 2 gas, returning the absorption liquid after regeneration in the absorption tower. As a heat source necessary for heating the absorbent during regeneration, low-pressure steam discharged from the steam bin in the heat recovery step is used. In addition, water vapor in the gas is removed by condensation in this step to the saturated vapor pressure at the absorption temperature. Note that acidic gases such as hydrogen sulfide and hydrogen chloride are further absorbed and removed in this step.
( 5 ) メタネーシヨン工程  (5) Metanation process
本発明ではガス処理工程の一工程として二酸化炭素吸収工程の後ろに メタネーシヨ ン工程を設けることができる。 該工程で二酸化炭素吸収後 ガス中の一酸化炭素を 1 0 p p m以下、 好ましく は 1 p p m以下に、 二 酸化炭素を 1 0 0 p p m以下、 好ま しくは 1 0 p p m以下に下げる。 β|] ち、 メタン化触媒を充填した変成器にて下記のメタン化反応 (メタネ一 シヨ ン反応とも云う ) を f う。
Figure imgf000016_0001
In the present invention, a metanalysis step can be provided after the carbon dioxide absorption step as one of the gas treatment steps. After the absorption of carbon dioxide in this step, carbon monoxide in the gas is reduced to 10 ppm or less, preferably 1 ppm or less, and carbon dioxide in the gas is reduced to 100 ppm or less, preferably 10 ppm or less. β |] Then, the following methanation reaction (also referred to as a methanol reaction) is carried out in a converter packed with a methanation catalyst.
Figure imgf000016_0001
反応に必要な水素として変成後ガス中の水素を利用する。 上記メ夕ネ ーション反応は発熱反応なので、 反応温度を低くすれば一酸化炭素の平 衡濃度が低くなるが、 逆に反応速度が遅くなるので、 反応温度として 2 0 0〜 3 5 0 °Cの範囲が望ましい。 触媒としてはメタネーシヨン反応を 促進するものであれば種類と形状のいずれも限定されるものではないが、 ニッケル系、 鉄系やルテニウム系メタン化触媒などが好適である。  The hydrogen in the gas after conversion is used as the hydrogen required for the reaction. Since the above-mentioned reaction is an exothermic reaction, lowering the reaction temperature lowers the equilibrium concentration of carbon monoxide, but conversely lowers the reaction rate, so that the reaction temperature is 200 to 350 ° C. Is desirable. The type and shape of the catalyst are not limited as long as it promotes the metanation reaction, but nickel-based, iron-based, ruthenium-based methanation catalysts and the like are preferable.
なお、 メタネ一シヨン工程を設ける場合は、 メタネーシヨン工程の負 荷低減とメ夕ネーション反応による水素濃度低下を図るために前段の二 酸化炭素化学吸収工程での C 0 2除去限界を C 0 2残留濃度として 1 %以 下、 好ましくは 0 . 1 %以下にするとよい。 In the case of providing a Metane one Chillon step, the C 0 2 removal limit C 0 2 remaining in front of carbon dioxide chemical absorption process in order to achieve the hydrogen concentration reduction due to load reduction and main evening Nation reaction Metaneshiyon step The concentration should be 1% or less, preferably 0.1% or less.
また、 メタネーション工程の後ろに水素精製工程を設ける場合には、 メタネ一ショ ン反応によって生成する水が水素精製工程の水素吸蔵合金 を被毒するので、 除湿手段を設けて水の含有率を 1 0 0 p pm以下、 好 ましくは 1 0 p p m以下に除去するのが望ましい。 除湿手段としては特 に限定されないが、 冷却凝縮法又はシリ力ゲルや活性アルミナ等による 吸着法又はこれらの方法を組み合せた方法が好適である。 If a hydrogen purification step is provided after the methanation step, Since the water generated by the metalation reaction poisons the hydrogen storage alloy in the hydrogen purification process, dehumidifying means is installed to remove the water content to 100 ppm or less, preferably to 10 ppm or less. It is desirable to do. The dehumidifying means is not particularly limited, but is preferably a cooling condensing method, an adsorption method using a silica gel or activated alumina, or a method combining these methods.
( 6 ) 水素精製工程  (6) Hydrogen purification process
本発明ではガス処理工程の一工程としてメ夕ネーショ ン工程又は選択 酸化工程又は一酸化炭素吸着工程のいずれかの後ろに水素精製工程を設 けることができる。 該水素精製工程の目的は水素吸蔵合金を用い、 メタ ネーショ ン後ガス又は選択酸化後ガス又は一酸化炭素吸着後ガスから水 ¾のみを吸蔵し、 そして一旦吸蔵した水素を放出させることによって圧 力 1〜 1 0気圧 ( 1. 0 1 x l 05〜 l . 0 1 X 1 06 P a ) 、 好ましく は 3〜 7気圧 ( 3. 0 4 x l 05〜 7. 0 9 x l 05P a ) の純水素ガス を製造することである。 該工程において、 本発明の他の工程では分離で きない不活性ガスの窒素とアルゴンが分離できる。 即ち、 水素吸蔵合金 の被毒成分である H 2 Sと H C 1がそれぞれ 1 0 p p m以下、 望ましくは l p pm以下、 さらに望ましくは 0. l p pm以下に、 C Oが Ι Ο ρ ρ m以下、 好ましくは 1 p p m以下に、 H 20が 1 0 0 p p m以下、 好まし くは 1 0 p p m以下にそれぞれ除去されたガスに対し、 水素吸蔵合金に よる水素精製工程を設け、 前記ガスを水素吸蔵合金を収容する容器に導 き、 水素を水素吸蔵合金に冷却しながら吸蔵して水素から N2と A r等を 分離し、 次いで水素吸蔵合金の水素吸蔵飽和後に合金容器から窒素とァ ルゴン等をパージしてから、 前記水素吸蔵合金を加熱して水素を放出す ることによって、 水素ガスを昇圧して水素タンクに貯蔵するか、 又は水 素夕ンクを経由して燃料電池発電工程に供給する。 前記放出精製された 水素ガス中の窒素及びアルゴンがそれぞれ 1 0 0 p p m以下に除去され、 水素濃度が 9 9.9 %以上に達する。 用いる水素吸蔵合金としては水素吸 蔵容量が大きいものであれば何でもよいが、 燐酸型燃料電池または固体 高分子型燃料電池から発生する 7 0 °Cぐらいの低位排熱を水素放出時の 加熱熱源として利用できるように、 水素放出圧が 7 0 °Cで 1〜 1 0気圧 ( 1 . 0 1 x l 05〜 l . 0 1 x 1 06 P a) 、 好ましく は 3〜 7気圧 ( 3. 0 4 x l 05〜 7. 0 9 x l 05P a) の吸蔵 ' 放出特性を有する 水素吸蔵合金が望ましく、 具体的な合金例としては L a N i 5合金や T i F e合金が挙げられる。 L a N i 5合金による水素吸蔵 · 放出反応を下記 に記す。 In the present invention, as one step of the gas treatment step, a hydrogen purification step can be provided after any of the following: the mes- sage step, the selective oxidation step, or the carbon monoxide adsorption step. The purpose of the hydrogen refining process is to use a hydrogen storage alloy to store only hydrogen from the gas after metanation or the gas after selective oxidation or the gas after adsorption of carbon monoxide, and to release the hydrogen once stored, thereby reducing the pressure. 1-1 0 atm (1. 0 1 xl 0 5 ~ l. 0 1 X 1 0 6 P a), preferably 3-7 atm (3. 0 4 xl 0 5 ~ 7. 0 9 xl 0 5 P a ) To produce pure hydrogen gas. In this step, nitrogen and argon of an inert gas which cannot be separated by other steps of the present invention can be separated. That is, H 2 S and HC 1 which are the poisoning components of the hydrogen storage alloy are each 10 ppm or less, desirably lp pm or less, more desirably 0.1 lp pm or less, and CO is Ι ρ ρ ρ m or less, preferably below 1 ppm is, H 2 0 is 1 0 0 ppm or less, with respect to preferably rather were removed respectively below 1 0 ppm gas, provided the hydrogen purification steps with the hydrogen storage alloy, a hydrogen storage alloy of the gas Into the vessel containing hydrogen, and while absorbing the hydrogen into the hydrogen-absorbing alloy, occludes the hydrogen and separates N 2 and Ar from the hydrogen.After saturation of the hydrogen-absorbing alloy, the nitrogen and argon are removed from the alloy vessel. After purging, the hydrogen storage alloy is heated to release hydrogen, so that hydrogen gas is pressurized and stored in a hydrogen tank, or supplied to a fuel cell power generation process via a hydrogen tank. . Nitrogen and argon in the released and purified hydrogen gas are removed to 100 ppm or less, respectively. Hydrogen concentration reaches 99.9% or more. Any hydrogen storage alloy may be used as long as it has a large hydrogen storage capacity, but a low-level exhaust heat of about 70 ° C generated from a phosphoric acid fuel cell or solid polymer fuel cell is used as a heating heat source when releasing hydrogen. as can be used as the hydrogen release pressure of 7 0 ° C in 1-1 0 atm (1. 0 1 xl 0 5 ~ l. 0 1 x 1 0 6 P a), preferably 3-7 atm (3. 0 4 xl 0 5 ~ 7. 0 9 xl 0 5 hydrogen storage alloy having a storage 'release properties of P a) is desirable, include L a N i 5 alloy and T i F e alloy specific alloys examples Can be The hydrogen storage / release reaction by the La Ni 5 alloy is described below.
水素吸蔵反応 : L a N i 5 + 3 H 2 → L a N i 5 H π +放熱 ( 1 4 ) 水素放出反応 : L a N i 5 Η « → L a Ν i π + 3 Η 2 +吸熱 ( 1 5 ) 上記 ( 1 4 ) 式に示すように水素吸蔵反応が放熱反応のため、 水素分 圧が一定の場合、 特に水素分圧が低い場合では水素吸蔵時において水素 吸蔵合金を冷却して吸蔵温度を低く保つ必要がある。 水素吸蔵温度が低 いほど有利であるが、 冷却水によって容易に保持できる 1 2〜 3 2 °Cが 好ま しい。 また、 上記 ( 1 5 ) 式に示すように水素放出反応が吸熱反応 なので放出水素の圧力を高くするには、 水素放出時に水素吸蔵合金を加 熱して放出温度を上げる必要がある。 本発明においては、 加熱熱源とし て、 燃料電池発電工程を設けている実施形態においては燃料電池ス夕ッ クの 7 0 °C前後の冷却水を、 燃料電池発電工程を設けていない実施形態 においてはガス化工程ゃ排熱回収工程などの工程での回収蒸気又は温水 を用いる。 また、 前記水素吸蔵合金を、 熱交換のためのジャケッ トゃチ ユ ーブ等熱交換手段を設けた熱交換器形容器に収納し、 水素の吸蔵と放 出を連続的に行うために前記水素吸蔵合金収納容器を少なく とも 2系列 設け、 電磁弁によって切替える。 Hydrogen storage reaction: La Ni 5 + 3 H 2 → La Ni 5 H π + heat release (14) Hydrogen release reaction: La Ni 5 «« → La Na i π + 3 Η 2 + heat absorption (15) As shown in the above equation (14), the hydrogen storage reaction is a heat release reaction, so when the hydrogen partial pressure is constant, especially when the hydrogen partial pressure is low, the hydrogen storage alloy is cooled during hydrogen storage. It is necessary to keep the storage temperature low. The lower the hydrogen storage temperature is, the more advantageous it is. However, a temperature of 12 to 32 ° C, which can be easily maintained by cooling water, is preferable. In addition, as shown in the above equation (15), the hydrogen release reaction is an endothermic reaction. Therefore, to increase the pressure of the released hydrogen, it is necessary to heat the hydrogen storage alloy at the time of releasing hydrogen to raise the release temperature. In the present invention, in the embodiment in which the fuel cell power generation step is provided as the heating heat source, the cooling water around 70 ° C. of the fuel cell suck is used, and in the embodiment in which the fuel cell power generation step is not provided. Uses steam or hot water recovered in processes such as gasification process and exhaust heat recovery process. Further, the hydrogen storage alloy is housed in a heat exchanger-type container provided with a heat exchange means such as a jacket tube for heat exchange, and the above-described hydrogen storage alloy is used to continuously store and release hydrogen. At least two hydrogen storage alloy storage containers are provided, and switching is performed by a solenoid valve.
( 7 ) 選択酸化工程 本発明ではガス処理工程の 1工程として変成工程の後ろに選択酸化工 程を設けることができる。 該工程の目的は燃料電池発電工程に固体高分 子型燃料電池を採用する場合、 前記燃料電池に供給する含水素ガス中の 一酸化炭素濃度を l O O p pm以下、 好ましく は l O p p m以下に低下 させることである。 即ち、 選択酸化触媒を充填した選択酸化器に前記ガ スを導きながら酸素又は空気を供給して下記の選択酸化反応を行う。 (7) Selective oxidation process In the present invention, a selective oxidation step can be provided after the shift step as one of the gas treatment steps. The purpose of this step is to adopt a solid polymer fuel cell in the fuel cell power generation step, and to adjust the concentration of carbon monoxide in the hydrogen-containing gas supplied to the fuel cell to lOO ppm or less, preferably lO ppm or less. It is to lower to. That is, the following selective oxidation reaction is performed by supplying oxygen or air while guiding the gas to the selective oxidizer filled with the selective oxidation catalyst.
C 0 + 1 / 202 → C 0 > ( 1 6 ) C 0 + 1/20 2 → C 0> (1 6)
反応に供給する酸素量は多い程、 一酸化炭素の残留濃度が低くなるの で、 一酸化炭素に対して 2当量以上が望ましい。 また、 反応温度として 1 0 0〜 1 8 0 °Cの範囲が望ましく、 触媒としては一酸化炭素に対する 選択酸化性が優れしかも反応速度が高いものであれば何でもよいが、 白 金系触媒又はアルミナ担体に金を担持させた金触媒等が好適である。  The larger the amount of oxygen supplied to the reaction, the lower the residual concentration of carbon monoxide. Therefore, it is desirable that the amount of carbon monoxide be at least 2 equivalents. Further, the reaction temperature is preferably in the range of 100 to 180 ° C, and any catalyst may be used as long as it has excellent selective oxidation property to carbon monoxide and a high reaction rate. A gold catalyst in which gold is supported on a carrier is suitable.
( 8 ) C 0吸着工程  (8) C0 adsorption process
本発明ではガス処理工程の 1工程として二酸化炭素吸収工程の後ろに 一酸化炭素吸着工程を設けることができる。 該工程の目的は燃料電池発 電工程に固体高分子型燃料電池を採用する場合、 前記燃料電池に供給す る含水素ガス中の一酸化炭素濃度を 1 0 0 p p m以下、 好ましくは 1 0 m以下、 さらに好ましくは 1 p p m以下に低下させることである。 即ち、 圧力スイ ング吸着 (P S A) 法による一酸化炭素吸着工程を設け、 C〇吸着剤を充填した吸着塔に前記ガスを導きガス中の C 0を吸着分離 する。 C 0に対する吸着塔の吸着能力を最大に発揮するために、 C Oに 対して選択吸着性を示す吸着剤を吸着塔に充填するのが望ましい。 即ち、 吸着剤としては C Oに対する吸着力が比較的強く、 一方で C 02、 N2及 び A rに対する吸着力が弱い吸着剤であれば良く、 例えばゼォライ トモ レキユラ一シ一ブス又はカーボンモレキュラーシーブス又は活性炭又は 活性アルミナが好適であり、 C 0に対し親和力を示す薬剤によって前記 吸着剤を改質した c 0選択吸着剤がさらに好適である。 吸着温度は低い ほど有利であるが、 温度制御が比較的容易な 1 2〜4 0 °Cの範囲が好適 である。 ガス圧力はいうまでもなく高いほど有利であるが、 本発明にお いては常圧〜 7気圧 ( 1 . 0 1 x l 05〜 7. 0 9 x l 05P a ) 程度の 低圧領域で行う。 また、 用いる吸着剤が吸着飽和したら、 真空ポンプに より減圧脱着を行い、 脱着した C 0パージガスを変成工程に返送する。 真空ポンプによって脱着圧力を下げていく につれて、 吸着圧と脱着圧と の圧力差が拡大するので、 吸着塔の処理能力が向上する反面、 真空ボン プの電力消費が増大することから、 脱着圧力は 1 0 0/ 7 6 0〜 1 0/ 7 6 0 P a ( 1 0 0〜 1 0 T o r r ) の範囲が望ましい。 In the present invention, a carbon monoxide adsorption step can be provided after the carbon dioxide absorption step as one of the gas treatment steps. The purpose of this step is to use a polymer electrolyte fuel cell in the fuel cell power generation step, and to reduce the concentration of carbon monoxide in the hydrogen-containing gas supplied to the fuel cell to 100 ppm or less, preferably 100 m2. Below, more preferably, it is reduced to 1 ppm or less. That is, a carbon monoxide adsorption step by a pressure swing adsorption (PSA) method is provided, and the gas is introduced into an adsorption tower filled with a C〇 adsorbent to adsorb and separate C 0 in the gas. In order to maximize the adsorption capacity of the adsorption tower for C 0, it is desirable to fill the adsorption tower with an adsorbent that exhibits selective adsorption to CO. That is, the suction force for CO as the adsorbent is relatively strong, while the C 0 2, N may be any adsorption force weak adsorbent for 2及beauty A r, for example Zeorai Tomo Rekiyura one sheet one ugly or carbon molecular Sieves or activated carbon or activated alumina are preferred, and are described above by agents that have an affinity for C0. A c0 selective adsorbent having a modified adsorbent is more preferred. The lower the adsorption temperature is, the more advantageous it is, but the temperature is preferably in the range of 12 to 40 ° C. where the temperature control is relatively easy. Although the gas pressure is of course higher Advantageously, the have us in the present invention is carried out at atmospheric pressure to 7 atm (1. 0 1 xl 0 5 ~ 7. 0 9 xl 0 5 P a) of about the low-pressure region . When the adsorbent used is adsorbed and saturated, desorption is performed under reduced pressure by a vacuum pump, and the desorbed C0 purge gas is returned to the shift process. As the desorption pressure is reduced by the vacuum pump, the pressure difference between the adsorption pressure and the desorption pressure increases, so that the treatment capacity of the adsorption tower is improved.On the other hand, the power consumption of the vacuum pump increases, so the desorption pressure is increased. The range of 100/760 to 10 / 760Pa (100 to 10Torr) is desirable.
(D ) 燃料電池発電工程  (D) Fuel cell power generation process
本発明は燃料電池発電工程を設け、 水素製造方法で製造した水素ガス を燃料ガスとして燃料電池発電工程に供給して発電する。 水素製造方法 におけるガス処理工程で製造した純水素ガス又は含水素ガスの温度が比 較的低く、 水素濃度が高く しかも一酸化炭素の含有率が低いことから、 用いる燃料電池として比較的低い温度で作動する燐酸型燃料電池、 と り わけ固体高分子型燃料電池が好適である。 燐酸型又は固体高分子型燃料 電池の場合における電池反応を下記に記す。  The present invention provides a fuel cell power generation step, and supplies hydrogen gas produced by the hydrogen production method as a fuel gas to the fuel cell power generation step to generate power. Since the temperature of the pure hydrogen gas or hydrogen-containing gas produced in the gas treatment process in the hydrogen production method is relatively low, the hydrogen concentration is high, and the content of carbon monoxide is low, the temperature of the fuel cell used is relatively low. An operating phosphoric acid fuel cell, especially a polymer electrolyte fuel cell, is preferred. The cell reaction in the case of a phosphoric acid type or solid polymer type fuel cell is described below.
アノー ド反応 : H2 → 2 H + + 2 e - ( 1 7 ) 力ソード反応 : 1 / 202 + 2 H + + 2 e → H 20 ( 1 8 ) 即ち、 水素ガスを燃料電池スタ ックのアノー ド極室に、 空気又は酸素 富化空気又は酸素ガスをカソ一 ド極室にそれぞれ供給し上記電池反応に よ り発電する。 燐酸型燃料電池と固体高分子型燃料電池の作動温度がそ れぞれ 2 0 0 °C前後と 8 0°C前後であるが、 前記電池反応が発熱を伴う ので、 前記作動温度を保っためにはスタックを冷却する必要がある。 本 発明の水素精製工程を設ける実施形態においては、 ス夕 ック冷却水を燃 料電池発電工程と水素吸蔵合金による水素精製工程との間に循環させる ことによ り、 ス夕 ック排熱を水素放出時の加熱源として利用する。 Anodic reaction: H 2 → 2 H + + 2 e - (1 7) force Sword reaction: 1/20 2 + 2 H + + 2 e → H 2 0 (1 8) That is, the fuel cell static hydrogen gas Tsu Air or oxygen-enriched air or oxygen gas is supplied to the cathode electrode chamber of the cathode and the cathode electrode chamber, respectively, and power is generated by the above-described battery reaction. The operating temperatures of the phosphoric acid fuel cell and the polymer electrolyte fuel cell are around 200 ° C. and around 80 ° C., respectively. Requires the stack to cool. In the embodiment in which the hydrogen purification step of the present invention is provided, the screen cooling water is burned. By circulating between the fuel cell power generation process and the hydrogen refining process using a hydrogen storage alloy, the exhaust heat of the screen is used as a heating source when releasing hydrogen.
当然のことながら、 本発明の方法によって得られた改質後ガスをガス 処理工程において処理して燃料ガスを製造し、 製造した燃料ガスを溶融 炭酸塩型燃料電池 (M C F C ) 又は固体酸化物型燃料電池 ( S O F C ) に供給して発電することもできる。 この場合、 ガス処理工程は少なく と もガス洗浄工程、 又はガス洗浄工程と排熱回収工程及び/又は変成工程 を組み合せることによって構成することができる。 なお、 この場合、 ガ ス洗浄工程では乾式洗浄法を採用することもできる。 図面の簡単な説明  As a matter of course, the reformed gas obtained by the method of the present invention is processed in a gas processing step to produce a fuel gas, and the produced fuel gas is melted in a carbonate fuel cell (MCFC) or a solid oxide fuel cell. It can also be supplied to a fuel cell (SOFC) to generate electricity. In this case, the gas treatment step can be constituted by at least a gas cleaning step, or a combination of the gas cleaning step and the exhaust heat recovery step and / or the metamorphosis step. In this case, a dry cleaning method can be employed in the gas cleaning step. BRIEF DESCRIPTION OF THE FIGURES
図 1は本発明による水素製造方法及び燃料電池発電方法の説明図であ る。  FIG. 1 is an explanatory diagram of a hydrogen production method and a fuel cell power generation method according to the present invention.
図 2は本発明によるガス処理工程の説明図である。  FIG. 2 is an explanatory diagram of the gas treatment step according to the present invention.
図 3は本発明の第 1実施形態による水素製造方法及び燃料電池発電方法 の説明図である。  FIG. 3 is an explanatory diagram of the hydrogen production method and the fuel cell power generation method according to the first embodiment of the present invention.
図 4は本発明の第 2実施形態による水素製造方法及び燃料電池発電方 法の説明図である。  FIG. 4 is an explanatory diagram of a hydrogen production method and a fuel cell power generation method according to a second embodiment of the present invention.
図 5は本発明の第 3実施形態による水素製造方法及び燃料電池発電方 法の説明図である。  FIG. 5 is an explanatory diagram of a hydrogen production method and a fuel cell power generation method according to a third embodiment of the present invention.
図 6は本発明の第 4実施形態による水素製造方法及び燃料電池発電方 法の説明図である。  FIG. 6 is an explanatory diagram of a hydrogen production method and a fuel cell power generation method according to a fourth embodiment of the present invention.
図 7は本発明の第 5実施形態による水素製造方法及び燃料電池発電方 法の説明図である。  FIG. 7 is an explanatory diagram of a hydrogen production method and a fuel cell power generation method according to a fifth embodiment of the present invention.
図 8は本発明のガス化工程を実施する装置の第 1実施例を示す図であ る。 図 9は本発明のガス化工程を実施する装置の第 2実施例を示す図であ る。 FIG. 8 is a view showing a first embodiment of an apparatus for performing the gasification step of the present invention. FIG. 9 is a view showing a second embodiment of the apparatus for performing the gasification step of the present invention.
図 1 0は本発明の第 2実施例の主要構成機器の典型的な形状を示した 図である。  FIG. 10 is a diagram showing a typical configuration of main components of the second embodiment of the present invention.
図 1 1は本発明のガス化工程を実施する装置の第 3実施例を示す図で ある。 発明を実施するための最良の形態  FIG. 11 is a view showing a third embodiment of the apparatus for performing the gasification step of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明に係る可燃物のガス化による水素製造方法並びに燃料電 池発電方法の実施形態を図 1乃至図 7を参照して説明する。 図 1乃至図 7において、 同一又は対応する工程又は部材は、 同一の符号を付し、 重 複する説明が省略される。  Hereinafter, embodiments of a method for producing hydrogen by gasifying combustibles and a method for generating a fuel cell according to the present invention will be described with reference to FIGS. 1 to 7, the same or corresponding steps or members are denoted by the same reference numerals, and overlapping description will be omitted.
図 1は本発明の水素製造方法及び燃料電池発電方法を示す概略図であ る。 本発明の水素製造方法においては、 図 1に示すように、 まずガス化 工程 Aにて第 1可燃物 aをガス化剤 bを用いてガス化し、 得られた生成 ガス c と第 2可燃物 e とを改質工程 Bに導入し、 該第 2可燃物 eの水蒸 気改質を行い、 得られた改質後ガス f をガス処理工程 Cに導いて純水素 ガス g又は含水素ガス hを製造する。 さらに、 上述の水素製造方法にお いて製造した純水素ガス g又は含水素ガス hを燃料ガスとして燃料電池 発電工程 Dに供給し発電を行う。  FIG. 1 is a schematic diagram showing a hydrogen production method and a fuel cell power generation method of the present invention. In the hydrogen production method of the present invention, as shown in FIG. 1, first, a first combustible substance a is gasified using a gasifying agent b in a gasification step A, and the obtained product gas c and a second combustible substance are obtained. e into the reforming step B, and the second combustible e is subjected to water vapor reforming, and the resulting reformed gas f is led to the gas treatment step C for pure hydrogen gas g or hydrogen-containing gas. to produce h. Further, the pure hydrogen gas g or the hydrogen-containing gas h produced by the above-described hydrogen production method is supplied as fuel gas to the fuel cell power generation step D to generate power.
前記ガス処理工程 Cは実施形態によって構成が異なり、 各実施形態に よる構成をまとめて図 2に示す。 図示するように、 本発明のガス処理ェ 程 Cは、 改質後ガス f から熱エネルギーを回収する排熱回収工程 1、 硫 化水素や塩化水素の除去に係るガス洗浄工程 2、 洗浄後ガス中の一酸化 炭素を水素と二酸化炭素に変成する変成工程 3、 ガス洗浄工程 2又は変 成工程 3又は選択酸化工程 7のいずれかの後段に設けられ洗浄後ガス又 は変成後ガス又は選択酸化後ガス中の二酸化炭素のほとんど全部又は一 部だけを吸収分離する二酸化炭素化学吸収工程 4、 二酸化炭素吸収後ガ ス中の一酸化炭素および二酸化炭素をメタネーシヨン反応によ り所定値 以下に下げるメ夕ネーション工程 5、 メタネーション工程 5又は選択酸 化工程 7又は一酸化炭素吸着工程 8のいずれかの後段に設けられメ夕ネ ーショ ン後ガス又は選択酸化後ガス又は一酸化炭素吸着後ガスから水素 のみを吸蔵した後に水素を放出させることによ り純水素ガスを製造する 水素精製工程 6、 変成工程 3の後段に設けられ一酸化炭素を選択的に酸 化する選択酸化工程 7、 二酸化炭素化学吸収工程 4の後段に設けられ一 酸化炭素を吸着分離する一酸化炭素吸着工程 8の組み合わせによ り構成 される。 The configuration of the gas treatment step C differs depending on the embodiment. The configuration according to each embodiment is shown in FIG. As shown in the figure, the gas treatment step C of the present invention comprises: an exhaust heat recovery step 1 for recovering thermal energy from the reformed gas f; a gas cleaning step 2 for removing hydrogen sulfide and hydrogen chloride; Gas conversion step 3, gas cleaning step 2, or conversion step 3 or selective oxidation step 7 for converting carbon monoxide into hydrogen and carbon dioxide Is a carbon dioxide chemical absorption process in which almost all or only part of the carbon dioxide in the gas after conversion or the gas after selective oxidation is absorbed and separated4.The carbon monoxide and carbon dioxide in the gas after carbon dioxide absorption 5 or methanation step 5 or selective oxidation step 7 or carbon monoxide adsorption step 8 Pure hydrogen gas is produced by storing only hydrogen from the gas after carbon monoxide adsorption and then releasing hydrogen to provide pure hydrogen gas after the hydrogen purification process 6 and the conversion process 3 to selectively oxidize carbon monoxide It is constituted by a combination of a carbon monoxide adsorption step 8 provided after the selective oxidation step 7 and the carbon dioxide chemical absorption step 4 to adsorb and separate carbon monoxide.
上記排熱回収工程 1は熱交換器等により行ない、 ガス洗浄工程 2は洗 浄塔で行ない、 変成工程 3は変成器によ り行ない、 二酸化炭素化学吸収 工程 4は吸収塔で行なう。 またメタネーション工程 5はメタネーシヨン 反応器で行ない、 水素精製工程 6は水素吸蔵合金容器で行ない、 選択酸 化工程 7は選択酸化器で行ない、 一酸化炭素吸収工程 8は吸着塔で行な ラ。  The exhaust heat recovery step 1 is performed by a heat exchanger, etc., the gas cleaning step 2 is performed by a cleaning tower, the shift step 3 is performed by a shift converter, and the carbon dioxide chemical absorption step 4 is performed by an absorption tower. In addition, the methanation step 5 is performed in a metanalysis reactor, the hydrogen purification step 6 is performed in a hydrogen storage alloy container, the selective oxidation step 7 is performed in a selective oxidizer, and the carbon monoxide absorption step 8 is performed in an adsorption tower.
ガス処理装置は上述の熱交換器、 洗浄塔、 変成器、 水素吸蔵合金容器 に 1又は 2以上の他の各機器 (吸収塔、 メタネーション反応器、 選択酸 化器、 吸着塔) を工程に応じて組み合わせたものである。  The gas processing equipment is equipped with one or more other equipment (absorption tower, methanation reactor, selective oxidizer, adsorption tower) in the heat exchanger, washing tower, transformer, hydrogen storage alloy container and the above-mentioned process. It is a combination according to.
以下に、 第 1可燃物として一般都巿ゴミを、 ガス化剤として P S A酸 素と水蒸気の混合ガスを用い、 また、 第 2可燃物として都市ガスを用い る場合における実施形態について具体的に説明する。  The following specifically describes an embodiment in which general-purpose garbage is used as the first flammable substance, a mixed gas of PSA oxygen and water vapor is used as the gasifying agent, and city gas is used as the second flammable substance. I do.
第 1実施形態は燃料電池として燐酸型燃料電池を用い、 燃料ガスの要 求仕様として水素含有率が 5 0 %以上、 C O含有率が 0 . 5 %以下とす る場合における第 1可燃物のガス化による水素製造方法及び燃料電池発 電方法である。 第 1実施形態の構成においては、 図 3に示すように、 ガス 化工程 Aにて第 1可燃物 aをガス化剤 bを用いてガス化し、 得られた生 成ガス c と第 2可燃物 e とを改質工程 Bに導入し該第 2可燃物 eの水蒸 気改質を行う。 ここで、 供給する第 2可燃物 e (都市ガス) の量を、 後 述する変成工程 3で得られる含水素ガス hの水素含有率が 5 0 %以上と なるように決定する。 次いで、 改質工程 Bで得られた改質後ガス f を排 熱回収工程 1 に導き熱回収を行ってからガス洗浄工程 2に導入し、 次い で洗浄後ガスを変成工程 3に供給し変成反応を行い含水素ガス hを製造 する。 そして、 製造した含水素ガス hを燃料電池発電工程 Dの燐酸型燃 料電池に供給し発電する。 該方法は工程が簡潔なので装置コス ト と所内 消費電力の上で有利である反面、 供給する含水素ガス hの水素含有率が 低いため燃料電池発電効率が比較的低く、 また、 燃料電池の種類として は C 0耐性が比較的強い燐酸型に限定される点で不利である。 In the first embodiment, a phosphoric acid fuel cell is used as the fuel cell, and the first combustible material in the case where the required hydrogen content is 50% or more and the CO content is 0.5% or less is required as the fuel gas specification. Hydrogen production method by gasification and fuel cell generation It is an electricity method. In the configuration of the first embodiment, as shown in FIG. 3, in the gasification step A, the first combustible material a is gasified using the gasifying agent b, and the resulting product gas c and the second combustible material e is introduced into the reforming step B, and the second combustible e is subjected to water vapor reforming. Here, the amount of the second combustible material e (city gas) to be supplied is determined so that the hydrogen content of the hydrogen-containing gas h obtained in the metamorphosis step 3 described later is 50% or more. Next, the reformed gas f obtained in the reforming process B is led to the exhaust heat recovery process 1 to perform heat recovery, then introduced into the gas cleaning process 2, and then supplied to the conversion process 3 after the cleaning. A shift reaction is performed to produce a hydrogen-containing gas h. Then, the produced hydrogen-containing gas h is supplied to the phosphoric acid type fuel cell in the fuel cell power generation step D to generate electric power. This method is advantageous in terms of equipment cost and internal power consumption because the process is simple, but on the other hand, the power generation efficiency of the fuel cell is relatively low due to the low hydrogen content of the supplied hydrogen-containing gas h, and the type of fuel cell Is disadvantageous in that it is limited to the phosphoric acid type which has relatively strong C 0 resistance.
第 2実施形態は燃料電池として固体高分子型燃料電池を用い、 燃料ガ スの要求仕様として水素含有率が 5 0 %以上、 C 0含有率が 1 0 p p m 以下とする場合における可燃物のガス化による水素製造方法及び燃料電 池発電方法である。 第 2実施形態の構成においては、 図 4に示すように、 ガス化工程 Aにて第 1可燃物 aをガス化剤 bを用いてガス化し、 得られ た生成ガス c と第 2可燃物 e とを改質工程 Bに導入し該第 2可燃物 eの 水蒸気改質を行う。 ここで、 供給する第 2可燃物 e (都市ガス) の量を、 後述する選択酸化工程 7で得られる含水素ガス hの水素含有率が 5 0 % 以上となるように決定する。 次いで、 改質工程 Bで得られた改質後ガス f を排熱回収工程 1に導き熱回収を行ってからガス洗浄工程 2に導入し、 次いで洗浄後ガスを変成工程 3に供給し変成反応を行った後に選択酸化 工程 7で一酸化炭素を選択的に酸化し、 これによ り含水素ガス hを製造 する。 そして、 製造した含水素ガス hを燃料電池発電工程 Dの固体高分 子型燃料電池に供給し発電する。 該方法は工程が簡潔なので装置コス ト と所内消費電力の上で有利である反面、 供給する含水素ガス hの水素含 有率が低いため燃料電池発電効率が比較的低い点で不利である。 なお、 第 2実施形態の方法は第 1実施形態の方法に比較して、 経済性が優れて いるとされる固体高分子型燃料電池に適用できる点では有利と云える。 第 3実施形態は燃料電池として固体高分子型燃料電池を用い、 燃料ガ スの要求仕様として水素含有率が 6 0 %以上、 C 0含有率が 1 0 p p m 以下とする場合における可燃物のガス化による水素製造方法及び燃料電 池発電方法である。 第 3実施形態の構成においては、 図 5に示すように、 ガス化工程 Aにて第 1可燃物 aをガス化剤 bを用いてガス化し、 得られ た生成ガス c と第 2可燃物 e とを改質工程 Bに導入し該第 2可燃物 eの 水蒸気改質を行う。 ここで、 供給する第 2可燃物 e (都市ガス) の量を、 後述する選択酸化工程 7で得られる含水素ガス hの水素含有率が 6 0 % 以上となるように決定する。 次いで、 改質工程 Bで得られた改質後ガス f を排熱回収工程 1に導き熱回収を行ってからガス洗浄工程 2に導入し、 次いで洗浄後ガスを二酸化炭素化学吸収工程 4を経てから、 変成工程 3 に供給し変成反応を行い、 更に選択酸化工程 7 を経て含水素ガス hを製 造する。 二酸化炭素化学吸収工程 4での C 0 2除去率は前記第 1可燃物 a および第 2可燃物 eの供給量と選択酸化工程 7で得られる含水素ガス h の水素濃度を見て設定すればよい。 そして、 製造した含水素ガス hを燃 料電池発電工程 Dの固体高分子型燃料電池に供給し発電する。 第 3実施 形態の方法は第 2実施形態の方法に比べて工程が一つ増えるので装置コ ス ト と所内消費電力の上で不利になる反面、 供給する含水素ガス hの水 素含有率が比較的高いために水素利用率及び燃料電池発電効率が比較的 高く、 また、 燃料電池の運転が安全サイ ドにシフ トする点で有利である。 第 4実施形態は燃料電池として固体高分子型燃料電池を用い、 燃料ガ スの要求仕様として水素含有率が 7 0 %以上、 C◦含有率が 5 p p m以 下とする場合における可燃物のガス化による水素製造方法及び燃料電池 発電方法である。 第 4実施形態の構成においては、 図 6に示すように、 ガス化工程 Aにて第 1可燃物 aをガス化剤 bを用いてガス化し、 得られ た生成ガス c と第 2可燃物 e とを改質工程 Bに導入し該第 2可燃物 eの 水蒸気改質を行う。 ここで、 供給できる第 2可燃物 eの量の上限は改質 工程 Bの出口温度が第 2可燃物 eの改質可能温度以上 (都市ガスの場合、 触媒無しで 9 0 0 °C以上、 好ましく は 1 0 0 0 °C以上、 さらに好ま しく は 1 1 0 0 °C以上) を維持できる量であり、 実際の供給量はガス処理後 水素濃度を見て決めればよい。 次いで、 改質工程 Bで得られた改質後ガ ス f を排熱回収工程 1 に導き熱回収を行ってからガス洗淨工程 2に導入 し、 次いで洗浄後ガスを変成工程 3に供給し変成反応を行い、 変成後ガ スを二酸化炭素化学吸収工程 4に導いて C 0 を 1 %以下、 好ましくは 0 . 5 %以下に分離除去する。 次いで、 二酸化炭素吸収後ガスをメタネーシ ョン工程 5に供給してガス中の残留 C O及び C〇 2をメタン化し、 含水素 ガス hを製造する。 そして、 製造した含水素ガス hを燃料電池発電工程 Dの固体高分子型燃料電池に供給し発電する。 第 4実施形態の方法は第 3実施形態の方法に比べて二酸化炭素吸収工程 4の負荷が大きいので装 置コス ト と所内消費電力の上でやや不利であるが、 供給する含水素ガス hの水素含有率が高く しかも残留 C 0濃度がよ り低いために水素利用率 及び燃料電池発電効率が比較的高く、 また、 燃料電池の運転がさらに安 全サイ ドにシフ 卜する点で有利である。 In the second embodiment, a polymer electrolyte fuel cell is used as the fuel cell, and the required specification of the fuel gas is a combustible gas when the hydrogen content is 50% or more and the C0 content is 10 ppm or less. It is a method for producing hydrogen by gasification and a method for generating fuel cells. In the configuration of the second embodiment, as shown in FIG. 4, in the gasification step A, the first combustible substance a is gasified using the gasifying agent b, and the obtained product gas c and the second combustible substance e Into the reforming step B to perform steam reforming of the second combustible e. Here, the amount of the second combustible material e (city gas) to be supplied is determined so that the hydrogen content of the hydrogen-containing gas h obtained in the selective oxidation step 7 described later becomes 50% or more. Next, the reformed gas f obtained in the reforming step B is led to the exhaust heat recovery step 1 to perform heat recovery, and then introduced into the gas cleaning step 2, and then the post-cleaning gas is supplied to the conversion step 3 to perform a conversion reaction. After performing the above, carbon monoxide is selectively oxidized in a selective oxidation step 7 to produce a hydrogen-containing gas h. Then, the produced hydrogen-containing gas h is separated from the solid Power is supplied to the secondary fuel cell to generate electricity. The method is advantageous in terms of equipment cost and in-house power consumption because the process is simple, but is disadvantageous in that the hydrogen content of the supplied hydrogen-containing gas h is low and the fuel cell power generation efficiency is relatively low. The method of the second embodiment is more advantageous than the method of the first embodiment in that it can be applied to a polymer electrolyte fuel cell, which is considered to be more economical. In the third embodiment, a polymer electrolyte fuel cell is used as a fuel cell, and the required specification of the fuel gas is a combustible gas when the hydrogen content is 60% or more and the C0 content is 10 ppm or less. It is a method for producing hydrogen by gasification and a method for generating fuel cells. In the configuration of the third embodiment, as shown in FIG. 5, in the gasification step A, the first combustible material a is gasified using the gasifying agent b, and the obtained product gas c and the second combustible material e Into the reforming step B to perform steam reforming of the second combustible e. Here, the amount of the second combustible material e (city gas) to be supplied is determined so that the hydrogen content of the hydrogen-containing gas h obtained in the selective oxidation step 7 described later is 60% or more. Next, the reformed gas f obtained in the reforming process B is led to the exhaust heat recovery process 1 to perform heat recovery, and then introduced into the gas cleaning process 2, and then the post-cleaning gas is passed through the carbon dioxide chemical absorption process 4 Then, the mixture is supplied to a shift process 3 to perform a shift reaction, and further a selective oxidation process 7 is performed to produce a hydrogen-containing gas h. If C 0 2 removal rate of carbon dioxide chemical absorption step 4 set watching the hydrogen concentration of the first combustible materials a and second combustibles e hydrogenous gas h obtained at a feed rate and selective oxidation step 7 of Good. Then, the produced hydrogen-containing gas h is supplied to the polymer electrolyte fuel cell in the fuel cell power generation step D to generate electric power. The method of the third embodiment has one additional step compared to the method of the second embodiment, which is disadvantageous in terms of equipment cost and in-house power consumption, but the hydrogen content of the supplied hydrogen-containing gas h is low. Relatively high is advantageous in that the hydrogen utilization rate and fuel cell power generation efficiency are relatively high, and the operation of the fuel cell is shifted to a safe side. The fourth embodiment uses a polymer electrolyte fuel cell as a fuel cell, The required specifications for hydrogen include a hydrogen production method by gasification of combustibles and a fuel cell power generation method when the hydrogen content is 70% or more and the C◦ content is 5 ppm or less. In the configuration of the fourth embodiment, as shown in FIG. 6, in the gasification step A, the first combustible material a is gasified using the gasifying agent b, and the resulting product gas c and the second combustible material e Into the reforming step B to perform steam reforming of the second combustible e. Here, the upper limit of the amount of the second combustible material e that can be supplied is that the outlet temperature of the reforming step B is equal to or higher than the reformable temperature of the second combustible material e (in the case of city gas, 900 ° C or more without a catalyst, (Preferably 100 ° C. or more, more preferably 1100 ° C. or more). The actual supply amount may be determined by checking the hydrogen concentration after gas treatment. Next, the reformed gas f obtained in the reforming step B is led to the exhaust heat recovery step 1 to perform heat recovery, and then introduced into the gas cleaning step 2, and then the gas after cleaning is supplied to the conversion step 3. After the metamorphic reaction, the gas after the metamorphosis is led to the carbon dioxide chemical absorption step 4 to separate and remove C 0 to 1% or less, preferably 0.5% or less. Then, by supplying carbon dioxide absorption after gas Metaneshi tio down step 5 to methanation of residual CO and C_〇 2 in the gas to produce a hydrogen-containing gas h. Then, the produced hydrogen-containing gas h is supplied to the polymer electrolyte fuel cell in the fuel cell power generation step D to generate electric power. The method of the fourth embodiment is slightly disadvantageous in terms of equipment cost and in-house power consumption because the load of the carbon dioxide absorption step 4 is larger than that of the method of the third embodiment. Higher hydrogen content and lower residual CO concentration have relatively high hydrogen utilization and fuel cell power generation efficiency, and are advantageous in that fuel cell operation can be shifted to safer sites. .
第 5実施形態は燃料電池として固体高分子型燃料電池を用い、 燃料ガ スの要求仕様として水素含有率が 9 9 . 9 %以上、 C O含有率が 0 . 5 p m以下とする場合における第 1可燃物のガス化による水素製造方法 及び燃料電池発電方法である。 第 5実施形態の構成においては、 図 7に 示すように、 ガス化工程 Aにて第 1可燃物 aをガス化剤 bを用いてガス 化し、 得られた生成ガス c と第 2可燃物 e とを改質工程 Bに導入し該第 2可燃物 eの水蒸気改質を行う。 ここで、 供給できる第 2可燃物 eの量 の上限は改質工程 Bの出口温度が第 2可燃物 eの改質可能温度以上 (都 巿ガスの場合、 触媒無しで 9 0 0 °C以上、 好ましくは 1 0 0 0 °C以上、 さらに好ましくは 1 1 0 0 °C以上) を維持できる量であ り、 実際の供給 量はガス処理後水素濃度を見て決めればよい。 次いで、 改質工程 Bで得 られた改質後ガス f を排熱回収工程 1 に導き熱回収を行ってからガス洗 浄工程 2に導入し、 次いで洗浄後ガスを変成工程 3に供給し変成反応を 行い、 変成後ガスを二酸化炭素化学吸収工程 4に導いて C 0 2を 1 %以下、 好ま しくは 0 . 5 %以下に分離除去する。 次いで、 二酸化炭素吸収後ガ スをメ夕ネーショ ン工程 5に供給してガス中の残留 C 0及び C 0 2をメタ ン化し、 メタネーション後ガスを除湿後に水素精製工程 6に導き純水素 ガス gを製造する。 そして、 製造した純水素ガス gを燃料電池発電工程 Dの固体高分子型燃料電池に供給し発電する。 第 5実施形態の方法は第 4実施形態の方法よりもさらに複雑になるので装置コス ト と所内消費電 力の上で不利であるが、 純水素ガス gを供給するので水素利用率が 1 0 0 %近くになり、 しかも燃料電池発電効率が高く燃料電池寿命が延びる 点で有利である。 In the fifth embodiment, a polymer electrolyte fuel cell is used as the fuel cell, and the first specification when the hydrogen content is 99.9% or more and the CO content is 0.5 pm or less is required as a fuel gas specification. A hydrogen production method by gasifying combustibles and a fuel cell power generation method. In the configuration of the fifth embodiment, FIG. As shown, in the gasification step A, the first combustible substance a is gasified using the gasifying agent b, and the resulting product gas c and the second combustible substance e are introduced into the reforming step B, Performs steam reforming of combustibles e. Here, the upper limit of the amount of the second combustible material e that can be supplied is that the outlet temperature of the reforming step B is equal to or higher than the reformable temperature of the second combustible material e. (Preferably 100 ° C. or more, more preferably 1100 ° C. or more). The actual supply amount may be determined by checking the hydrogen concentration after gas treatment. Next, the reformed gas f obtained in the reforming step B is led to the exhaust heat recovery step 1 to perform heat recovery, and then introduced into the gas cleaning step 2, and then the gas after the cleaning is supplied to the conversion step 3 for conversion. the reaction carried out, the modified gas after carbon dioxide chemical absorption step 4 led to C 0 2 1% or less, preferred properly is 0. separating off 5% or less. Then, the gas after the carbon dioxide absorbed by supplying the main evening Nesho down step 5 the residual C 0 and C 0 2 in the gas and methane reduction, pure hydrogen gas introduced into a hydrogen purification step 6 after dehumidifying methanation gas after to produce g. Then, the produced pure hydrogen gas g is supplied to the polymer electrolyte fuel cell in the fuel cell power generation step D to generate electric power. The method of the fifth embodiment is more complicated than the method of the fourth embodiment, which is disadvantageous in terms of equipment cost and in-house power consumption. However, since pure hydrogen gas g is supplied, the hydrogen utilization rate is 10%. This is advantageous because it is close to 0%, and the fuel cell power generation efficiency is high and the life of the fuel cell is extended.
実施形態 1〜 5の前提条件と特徴を表 1にまとめて記す。 Table 1 summarizes the preconditions and features of Embodiments 1 to 5.
【表 1 】 【table 1 】
Figure imgf000028_0001
次に、 本発明のガス化工程の詳細を図 8乃至図 1 1 を参照して説明す る。
Figure imgf000028_0001
Next, details of the gasification step of the present invention will be described with reference to FIGS.
図 8は本発明のガス化工程を実施する装置の第 1実施例を示す図であ る。 図 8に示すように、 原料フィーダ 1 0 1から流動層ガス化炉である ガス化炉 1 0 2に供給された第 1可燃物 aは 9 0 0 から 1 2 0 0 °Cの 温度域で熱分解を受け、 燃料電池発電のための有効ガス成分である水素 と一酸化炭素を含んだ生成ガス cを生成し、 生成ガス cは第 2可燃物 e とともに改質装置 3 0 0に送られる。 この場合、 ガス化炉の温度維持は、 第 1可燃物 aを部分燃焼させることにより行う。 改質装置 3 0 0の温度 が十分でない場合には、 改質装置 3 0 0に酸素を供給して部分燃焼によ り昇温させても良いが、 本発明の目的は生成ガスの高温顕熱を利用して 第 2可燃物 eを改質することであるので、 改質装置 3 0 0への酸素供給 はできるだけ行わない方が良い。 また第 1可燃物 aの中に混入した不燃 物 dは、 ガス化炉 1 0 2から排出される。 ガス化炉には流動床炉の他、 ロータ リ—キルン、 ス ト一力炉等を用いても良いが、 都巿ゴミのように 不定形で、 かつ不燃物を含む可燃物を原料とする場合には、 流動床炉の 方が望ましい。 なぜなら流動床炉であれば炉から排出されるべき不燃物 に未燃物が付着しないので、 不燃物の処理、 処分における問題が少ない からである。 FIG. 8 is a view showing a first embodiment of an apparatus for performing the gasification step of the present invention. As shown in Fig. 8, the first combustible material a supplied from the raw material feeder 101 to the gasification furnace 102, which is a fluidized-bed gasification furnace, is in a temperature range of 900 to 1200 ° C. It undergoes thermal decomposition to produce product gas c containing hydrogen and carbon monoxide, which are active gas components for fuel cell power generation, and product gas c is sent to reformer 300 along with second combustible e. . In this case, the temperature of the gasifier is maintained by partially burning the first combustible a. If the temperature of the reformer 300 is not sufficient, oxygen may be supplied to the reformer 300 to raise the temperature by partial combustion, but the object of the present invention is to increase the temperature of the generated gas by high temperature. Using heat Since the second combustible e is to be reformed, it is better not to supply oxygen to the reformer 300 as much as possible. Incombustibles d mixed into the first combustibles a are discharged from the gasifier 102. A rotary kiln, a single-stroke furnace, etc. may be used for the gasification furnace in addition to a fluidized bed furnace. In such cases, a fluidized bed furnace is preferred. This is because in a fluidized bed furnace, unburned matter does not adhere to incombustible matter to be discharged from the furnace, so there are few problems in treating and disposing of incombustible matter.
図 9は低温ガス化と高温ガス化の 2段ガス化からなるガス化工程を実 施する装置の第 2実施例を示す図である。 第 1可燃物 aを低温ガス化炉 1 0 2で 4 0 0〜 1 0 0 0。 好ましくは 4 5 0〜 8 0 0 °C、 さらに好 ましくは 5 0 0〜 6 0 0 °Cで熱分解 · ガス化して得られた生成ガスは、 そのまま高温ガス化炉 1 1 5へ送られ、 高温ガス化炉 1 1 5において 9 0 0〜 : L 5 0 0 °C、 好ま しくは 1 0 0 0〜 1 4 0 0 °C、 さらに好ましく は 1 1 0 0 °C〜 1 3 5 0 °Cの温度で更にガス化され、 低分子化される。 高温ガス化炉 1 1 5の温度は、 生成ガス中に含まれる灰分が溶融する温 度以上に維持され、 生成ガス中の 8 0〜 9 0 %の灰分はスラグ化され、 溶融スラグ kとして系外に排出される。  FIG. 9 is a diagram showing a second embodiment of an apparatus for performing a gasification step including two-stage gasification of low-temperature gasification and high-temperature gasification. The first combustible material a is 400 to 100 000 in the low-temperature gasification furnace 102. The product gas obtained by pyrolysis and gasification at preferably 450 to 800 ° C, more preferably 500 to 600 ° C, is directly sent to the high-temperature gasification furnace 115. In the high-temperature gasification furnace 115: 900 to: L500 ° C, preferably 100 to 140 ° C, more preferably 110 to 140 ° C At a temperature of 0 ° C, it is further gasified and reduced in molecular weight. The temperature of the high-temperature gasifier 1 15 is maintained at a temperature higher than the temperature at which the ash contained in the generated gas melts, and 80 to 90% of the ash in the generated gas is turned into slag, which is used as molten slag k. It is discharged outside.
第 2実施例において、 第 2可燃物 eは高温ガス化炉 1 1 5のスラグ排 出口の下流であればどこに供給しても良いが、 装置を過大にしないため にはできるだけスラグ排出口に近い方が望ましい。 図 9では高温ガス化 炉 1 1 5の下流に高温ガス化炉とは別に改質装置 3 0 0 を設けているが、 第 2可燃物 eの供給ボイ ン ト以降の高温ガス化炉 1 1 5のガス滞留時間 が第 2可燃物 eの改質時間として十分な場合は第 2可燃物 eの成分も含 め生成ガス中の有機物、 炭化水素は高温ガス化炉内で完全に水素、 一酸 化炭素、 水蒸気、 二酸化炭素にまで分解されるので、 もちろん改質装置 3 0 0を設ける必要はなく省略できる。 In the second embodiment, the second combustible e can be supplied to any location as long as it is downstream of the slag discharge outlet of the high-temperature gasifier 115, but it is as close as possible to the slag discharge outlet in order not to make the device excessively large. Is more desirable. In Fig. 9, a reformer 300 is provided downstream of the high-temperature gasifier 1 15 in addition to the high-temperature gasifier, but the high-temperature gasifier 1 1 after the supply point of the second combustible material e If the gas residence time in (5) is sufficient as the reforming time for the second combustible e, the organic matter and hydrocarbons in the product gas, including the components of the second combustible e, are completely hydrogenated in the high-temperature gasification furnace. It is decomposed into carbon dioxide, steam, and carbon dioxide, so of course the reformer It is not necessary to provide 300 and can be omitted.
有機物の完全分解と、 固形分除去の完了した改質後ガス f は、 前述し たガス処理工程 Cへ送られる。 図 9に示すガス化工程において、 高温ガ ス化炉 1 1 5はダイォキシンの完全分解と燃料改質と灰のスラグ化とい う 3つの機能を果たしている。 このプロセスは灰がスラグ化でき、 しか も灰をアル力 リ金属塩類や低融点金属類とは別に取り出せるという こと で、 灰処分の問題を軽減できるという大きなメ リ ッ トがある。  The post-reformation gas f after complete decomposition of organic matter and removal of solid content is sent to the gas treatment step C described above. In the gasification process shown in Fig. 9, the high-temperature gasification furnace 1 15 performs three functions: complete decomposition of dioxin, fuel reforming, and slagging of ash. This process has the great advantage that ash can be slagged, and the ash can be taken out separately from alkali metal salts and low-melting metals, thus reducing the ash disposal problem.
図 1 0は図 9に示す第 2実施例の主要構成機器の典型的な形状を示し たものである。 低温ガス化炉 1 0 2は内部旋回流を有する円筒形流動床 炉であり、 原料の炉内拡散性を高めて安定したガス化を行わせている。 炉内中央の流動媒体が沈降している部分には酸素を含まない流動化ガス を供給し、 炉内周辺部にのみ酸素を含むガス化剤ガスを供給することに よ り、 低温ガス化炉内で発生したチヤ一の選択燃焼が可能になり、 炭素 転換率、 冷ガス効率の向上に寄与する。 また高温ガス化炉 1 1 5は旋回 型溶融炉である。  FIG. 10 shows a typical configuration of the main components of the second embodiment shown in FIG. The low-temperature gasification furnace 102 is a cylindrical fluidized-bed furnace having an internal swirling flow, and performs stable gasification by increasing the diffusivity of the raw material in the furnace. By supplying a fluidizing gas containing no oxygen to the center of the furnace where the fluidized medium is settled, and supplying a gasifying gas containing oxygen only to the periphery of the furnace, The selective combustion of the char generated in the furnace becomes possible, contributing to the improvement of carbon conversion rate and cold gas efficiency. The high-temperature gasifier 1 15 is a rotary melting furnace.
図 1 0に示す円筒形流動床炉を、 以下に詳細に説明する。 円筒形流動 床炉の炉床には、 円錐状の分散板 1 0 6が配置されている。 分散板 1 0 6を介し供給される流動化ガスは、 炉底中央部 2 0 4付近から炉内へ上 向き流として供給される中央流動化ガス 2 0 7及び炉底周辺部 2 0 3か ら炉内へ上向き流として供給される、 周辺流動化ガス 2 0 8からなる。 中央流動化ガス 2 0 7は酸素を含まないガスからなり、 周辺流動化ガ ス 2 0 8は酸素を含むガス化剤からなっている。 流動化ガス全体の酸素 量が、 可燃物の燃焼に必要な理論燃焼酸素量の 1 0 %以上 3 0 %以下と され、 炉内は、 還元雰囲気とされる。  The cylindrical fluidized bed furnace shown in FIG. 10 will be described in detail below. A conical dispersion plate 106 is arranged on the hearth of the cylindrical fluidized-bed furnace. The fluidizing gas supplied through the dispersion plate 106 is supplied to the central fluidizing gas 207 supplied upward from the vicinity of the central part 204 of the furnace bottom into the furnace and the peripheral part 203 of the furnace bottom. From the peripheral fluidizing gas 208 supplied as an upward flow into the furnace. The central fluidizing gas 207 is made of a gas containing no oxygen, and the peripheral fluidizing gas 207 is made of a gasifying agent containing oxygen. The oxygen content of the fluidized gas as a whole should be 10% or more and 30% or less of the theoretical combustion oxygen required for combustible combustibles, and the inside of the furnace is a reducing atmosphere.
中央流動化ガス 2 0 7の質量速度は、 周辺流動化ガス 2 0 8の質量速 度よ り小にされ、 炉内周辺部上方における流動化ガスの上向き流がデフ レク夕 2 0 6により炉の中央部へ向かうように転向される。 それによつ て、 炉の中央部に流動媒体 (硅砂を使用) が沈降拡散する移動層 2 0 9 が形成されるとともに炉内周辺部に流動媒体が活発に流動化している流 動層 2 1 0が形成される。 流動媒体は、 矢印 1 1 8で示すように、 炉周 辺部の流動層 2 1 0を上昇し、 次にデフレクタ 2 0 6によ り転向され、 移動層 2 0 9の上方へ流入し、 移動層 2 0 9中を下降し、 次に矢印 1 1 2で示すように、 分散板 1 0 6に沿って移動し、 流動層 2 1 0の下方へ 流入することにより、 流動層 2 1 0 と移動層 2 0 9の中を矢印 1 1 8お よび 1 1 2で示すように循環する。 The mass velocity of the central fluidizing gas 207 is made smaller than that of the peripheral fluidizing gas 208, and the upward flow of the fluidizing gas above the periphery in the furnace is differential. By Lek Yu 206, he is turned to the center of the furnace. As a result, a moving bed 209 in which the fluidized medium (using silica sand) settles and diffuses is formed in the center of the furnace, and a fluidized bed in which the fluidized medium is actively fluidized around the furnace. 0 is formed. The fluidized medium rises in the fluidized bed 210 around the furnace, as shown by the arrow 1 18, is then turned by the deflector 206, and flows above the moving bed 209, By descending in the moving bed 209 and then moving along the dispersion plate 106 as shown by the arrow 112, it flows below the fluidized bed 210, whereby the fluidized bed 210 And the moving bed 209 circulates as indicated by the arrows 1 18 and 1 12.
原料フィーダ 1 0 1 によつて移動層 2 0 9の上部へ供給された第 1可 燃物 aは、 流動媒体とともに移動層 2 0 9中を下降する間に、 流動媒体 のもつ熱によ り加熱され、 主として揮発分がガス化される。 移動層 2 0 9には、 酸素がないか少ないため、 ガス化された揮発分からなる熱分解 ガス (生成ガス) は燃焼されないで、 移動層 2 0 9中を矢印 1 1 6のよ うに抜ける。 それ故、 移動層 2 0 9は、 ガス化ゾーン Gを形成する。 フ リ一ボー ド 1 0 7へ移動した生成ガスは、 矢印 1 2 0で示すように上昇 し、 フ リーボ一ド 1 0 7 を経てガス出口 1 0 8から生成ガス j として排 出される。  The first combustible material a supplied to the upper part of the moving bed 209 by the raw material feeder 101 is moved down in the moving bed 209 together with the flowing medium by the heat of the flowing medium. It is heated and mainly volatiles are gasified. Since there is no or little oxygen in the moving bed 209, the pyrolysis gas (product gas) composed of the gasified volatiles is not burned and passes through the moving bed 209 as indicated by the arrow 116. The moving bed 209 therefore forms a gasification zone G. The product gas that has moved to the freeboard 107 rises as shown by the arrow 120 and is discharged as a product gas j from the gas outlet 108 through the freeboard 107.
移動層 2 0 9でガス化されない、 主としてチヤ一 (固定炭素分) や夕 ールは、 移動層 2 0 9の下部から、 流動媒体とともに矢印 1 1 2で示す ように炉内周辺部の流動層 2 1 0の下部へ移動し、 比較的酸素含有量の 多い周辺流動化ガス 2 0 8によ り燃焼され、 部分酸化される。 流動層 2 1 0は、 可燃物の酸化ゾーン Sを形成する。 流動層 2 1 0内において、 流動媒体は、 流動層内の燃焼熱によ り加熱され高温となる。 高温になつ た流動媒体は、 矢印 1 1 8で示すように、 傾斜壁 2 0 6により反転され、 移動層 2 0 9へ移り、 再びガス化の熱源となる。 流動層の温度は、 4 0 0〜 : L 0 0 0 °C、 好ましくは 4 0 0〜 6 0 0 °Cに維持され、 抑制された 燃焼反応が継続するようにされる。 流動層ガス化炉の底部外周側の部分 には、 不燃物を排出するためのリ ング状の不燃物排出口 2 0 5が形成さ れている。 The gas (fixed carbon) and evening gas, which are not gasified in the moving bed 209, flow from the lower part of the moving bed 209 together with the fluidized medium to the peripheral part of the furnace as indicated by the arrow 112. It moves to the lower part of the layer 210 and is burned by the peripheral fluidizing gas 208 having a relatively high oxygen content and partially oxidized. The fluidized bed 210 forms an oxidation zone S for combustibles. In the fluidized bed 210, the fluidized medium is heated by the heat of combustion in the fluidized bed and becomes a high temperature. The high temperature fluid medium is reversed by the inclined wall 206 as shown by the arrow 118, moves to the moving bed 209, and again becomes a heat source for gasification. The temperature of the fluidized bed is 40 0 to: Maintained at L 0000 ° C, preferably 400 to 600 ° C, so that the suppressed combustion reaction can be continued. A ring-shaped non-combustible material discharge port 205 for discharging non-combustible material is formed in a portion on the outer peripheral side of the bottom of the fluidized-bed gasification furnace.
図 1 0に示す流動層ガス化炉によれば、 流動層炉内にガス化ゾーン G と酸化ゾーン Sが形成され、 流動媒体が両ゾーンにおいて熱伝達媒体と なることによ り、 ガス化ゾーン Gにおいて、 発熱量の高い良質の可燃ガ スが生成され、 酸化ゾーン Sにおいては、 ガス化困難なチヤ一やタール を効率よく燃焼させることができる。 それ故、 廃棄物等の可燃物のガス 化効率を向上させることができ、 良質の生成ガスを生成することができ る。 なお、 低温ガス化炉には円筒形流動床炉に限ることなく、 前の実施 例と同様、 キルンゃス トーカー方式の炉を採用しても良い。  According to the fluidized-bed gasification furnace shown in Fig. 10, a gasification zone G and an oxidation zone S are formed in the fluidized-bed furnace, and the fluidized medium serves as a heat transfer medium in both zones. In G, high-quality combustible gas having a high calorific value is generated, and in the oxidation zone S, it is possible to efficiently burn char and tar which are difficult to gasify. Therefore, the gasification efficiency of combustibles such as waste can be improved, and high-quality product gas can be generated. The low-temperature gasification furnace is not limited to the cylindrical fluidized-bed furnace, and may be a kiln-stalker furnace as in the previous embodiment.
次に、 旋回型溶融炉を説明する。 高温ガス化炉 1 1 5 としての旋回型 溶融炉は垂直の軸線を有する円筒形の 1次ガス化室 1 1 5 a、 および水 平からわずかに下向きに傾斜した 2次ガス化室 1 1 5 b、 およびその下 流に配され、 ほぼ垂直の軸線を有する 3次ガス化室 1 1 5 cによって構 成されている。 2次ガス化室 1 1 5 bと 3次ガス化室 1 1 5 cの間にス ラグ排出口 1 4 2を有し、 ここで大部分の灰分はスラグ化して排出され る。 旋回型溶融炉に供給される生成ガスは 1次ガス化室 1 1 5 a内で旋 回流を生じるよう、 接線方向に供給される。 流入した生成ガスは旋回流 を形成し、 ガス中の固形分は遠心力によって周辺の壁面に捕捉されるの でスラグ化率、 スラグ捕集率が高く、 スラグミス トの飛散が少ないのが 特長である。  Next, the rotary melting furnace will be described. Rotating melting furnace as high temperature gasifier 1 1 5 The cylindrical melting chamber 1 1 5 a with a vertical axis and the secondary gasifier 1 1 5 slightly inclined from the horizontal b, and a tertiary gasification chamber 115c with a substantially vertical axis arranged downstream of it. There is a slag discharge port 142 between the secondary gasification chamber 1 15b and the tertiary gasification chamber 1 15c, where most of the ash is discharged as slag. The product gas supplied to the swirling melting furnace is supplied tangentially so as to generate a swirling flow in the primary gasification chamber 115a. The inflowing product gas forms a swirling flow, and the solid content in the gas is trapped on the surrounding wall by centrifugal force, so the slag conversion rate and slag collection rate are high, and the slag mist is less scattered. is there.
旋回溶融炉内には炉内を適正な温度分布に保つよう、 複数のノズル 1 3 4から酸素を含むガス化剤 bが供給される。 1次ガス化室 1 1 5 a、 2次ガス化室 1 1 5 bまでで完全に炭化水素の分解と灰のスラグ化を完 了させるように温度分布を調整する。 酸素の単独供給はノズルの焼損等 を引き起こす恐れがあるので、 酸素を蒸気等で希釈したガス化剤 bが用 いられる。 また、 蒸気は蒸気改質による炭化水素の低分子化に寄与する ので不足しないように供給しなければならない。 なぜなら、 炉内は高温 であ り、 水蒸気が不足すると縮合重合反応によ り反応性の著しく劣るグ ラ フ ァイ トが生成され、 未燃損失の原因となるからである。 A gasifying agent b containing oxygen is supplied from a plurality of nozzles 1 34 in the swirling melting furnace so as to maintain an appropriate temperature distribution in the furnace. Completely decompose hydrocarbons and turn ash into slag in the primary gasification chamber 1 15a and the secondary gasification chamber 1 15b. Adjust the temperature distribution to complete. Since the supply of oxygen alone may cause burning of the nozzle, etc., a gasifying agent b obtained by diluting oxygen with steam or the like is used. In addition, steam must be supplied so as not to be insufficient because it contributes to the reduction of hydrocarbon molecules by steam reforming. This is because the temperature inside the furnace is high, and if the water vapor is insufficient, the condensation polymerization reaction will produce extremely poorly-reactive graphite, leading to unburned loss.
スラグは 2次ガス化室 1 1 5 bの下面を流下し、 スラグ排出口 1 4 2 から溶融スラグ kとして排出される。 3次ガス化室 1 1 5 cはその下流 に設けられた改質工程 Bゃ排熱ボイ ラからの輻射冷却によってスラグ排 出口 1 4 2が冷却されないようにするための干渉ゾーンの役割を果たす と共に、 未分解ガスの低分子化を完了させる目的で設けられている。 3 次ガス化室 1 1 5 cの上端には生成ガス cを排気する排気口 1 4 4が設 けられ、 また下部には輻射板 1 4 8が設けられている。 輻射板 1 4 8は 輻射により排気口 1 4 4から失われる熱量を減少させる機能を有する。 なお符号 1 3 2は始動パーナ、 符号 1 3 6は助燃パーナである。 生成力' ス中の有機物、 炭化水素は高温ガス化炉内で完全に水素、 一酸化炭素、 水蒸気、 二酸化炭素にまで分解される。 高温ガス化炉 1 1 5で得られた 生成ガス cは排気口 1 4 4から排出され、 改質工程 Bに送られる。 なお、 高温ガス化炉は本旋回溶融炉に限られず、 他の型式のガス化炉であって もよい。  The slag flows down the lower surface of the secondary gasification chamber 1 15 b and is discharged from the slag discharge port 142 as molten slag k. The tertiary gasification chamber 115c serves as an interference zone for preventing the slag discharge outlet 142 from being cooled by the radiant cooling from the waste heat boiler in the reforming process B provided downstream At the same time, it is provided for the purpose of completing the reduction of the molecular weight of undecomposed gas. An exhaust port 144 for exhausting the generated gas c is provided at the upper end of the tertiary gasification chamber 115c, and a radiation plate 148 is provided at the lower portion. The radiation plate 144 has a function of reducing the amount of heat lost from the exhaust port 144 due to radiation. Reference numeral 13 2 denotes a starter wrench, and reference numeral 13 6 denotes an auxiliary burner wrench. Organic matter and hydrocarbons in the generating power are completely decomposed into hydrogen, carbon monoxide, steam, and carbon dioxide in the high-temperature gasifier. The generated gas c obtained in the high temperature gasifier 1 15 is discharged from the exhaust port 144 and sent to the reforming step B. The high-temperature gasifier is not limited to the rotary melting furnace, but may be another type of gasifier.
図 1 1は本発明のガス化工程を実施する装置の第 3実施例を示す図で ある。 図 1 1 は高温ガス化炉の形状をスラグ排出に有利な形状に変えた ものである。 即ち、 高温ガス化炉 1 1 5は、 上下の二段式に構成されて おり、 生成ガスは高温ガス化炉 1 1 5の上段側より流入して下段側に流 れる。 この場合、 スラグが重力で落下する方向にガスも流れるので、 流 れが自然でスラグ排出口での閉塞トラブルが少ない。 なお、 高温ガス化 炉 1 1 5の下段側に改質装置 3 0 0を設置することができる。 この場合 の改質装置 3 0 0はスラグの流下に耐えなければならないので、 触媒充 填層等の設置は不可能であり、 単純に高温場を提供できるに過ぎないの で、 第 2可燃物 eの供給に際しては、 高温ガス化炉 1 1 5からの高温生 成ガスと十分に混合されるよう、 改質装置 3 0 0内で旋回流を起こすよ うに供給する等の工夫が重要になる。 また改質装置 3 0 0の下方には輻 射ボイラからなる排熱ボイラ 1 1 9が設置されている。 改質後ガス f は 排熱ボイラ 1 1 9を経てガス処理工程 Cに送られる。 また溶融スラグ k は排熱ボイラ 1 1 9 を絰て炉外へ排出される。 その他の構成は図 9に示 す第 2実施例と同様である。 FIG. 11 is a view showing a third embodiment of the apparatus for performing the gasification step of the present invention. Figure 11 shows a high-temperature gasifier with a shape that is advantageous for slag discharge. That is, the high-temperature gasifier 115 is configured as a two-stage upper and lower stage, and the generated gas flows in from the upper side of the high-temperature gasifier 115 and flows to the lower side. In this case, since the gas also flows in the direction in which the slag falls due to gravity, the flow is natural, and there is little blockage trouble at the slag discharge port. In addition, high temperature gasification A reformer 300 can be installed on the lower side of the furnace 1 15. In this case, since the reformer 300 must withstand the slag flow, it is impossible to install a catalyst packed bed, etc., and it can only provide a high-temperature field. When supplying e, it is important to devise measures such as supplying a swirling flow in the reformer 300 so that it can be sufficiently mixed with the high-temperature generated gas from the high-temperature gasifier 115. . Further, a waste heat boiler 119 composed of a radiation boiler is installed below the reformer 300. The reformed gas f is sent to the gas treatment step C via the waste heat boiler 119. The molten slag k is discharged outside the furnace through a waste heat boiler 1 19. Other configurations are the same as those of the second embodiment shown in FIG.
以上に説叨したように、 本発明によれば、 システムの ト一夕ルェネル ギー効率を高めることができ、 燃料電池に供給する水素ガスの濃度及び 流量を安定化させることができ、 適用するガス処理工程と燃料電池の設 計や選定に自由度を与えることができる。 即ち本発明により、 可燃物を ガス化又は改質し、 生成したガスから燃料電池発電に適した水素ガスを 低コス トかつ高効率で製造することができる。 そして、 製造した水素ガ スを用いて燃料電池発電を効率よく行うことができる。 産業上の利用の可能性  As described above, according to the present invention, the energy efficiency of the system can be improved, the concentration and flow rate of hydrogen gas supplied to the fuel cell can be stabilized, and the applicable gas can be improved. The degree of freedom can be given to the process and the design and selection of the fuel cell. That is, according to the present invention, a combustible substance is gasified or reformed, and a hydrogen gas suitable for fuel cell power generation can be produced from the generated gas at low cost and high efficiency. Then, fuel cell power generation can be efficiently performed using the produced hydrogen gas. Industrial applicability
本発明は、 可燃物のもつ化学エネルギーを高効率で電気エネルギーに 変換する、 エネルギー変換技術に関する。 本発明は、 可燃性廃棄物や石 炭等の可燃物をガス化又は改質し、 生成ガスから水素ガスを製造する方 法、 さらには製造した水素ガスを燃料電池に供給して発電する発電シス テムに利用可能であり、 また製造された水素ガスを燃料電池の燃料ガス として利用し発電する発電システムに利用可能である。  The present invention relates to an energy conversion technique for converting chemical energy of combustibles into electric energy with high efficiency. The present invention relates to a method of gasifying or reforming combustible materials such as combustible waste and coal to produce hydrogen gas from a generated gas, and a method of generating electricity by supplying the produced hydrogen gas to a fuel cell. It can be used for power generation systems that generate hydrogen by using the produced hydrogen gas as fuel gas for fuel cells.

Claims

請求の範囲 The scope of the claims
1 . 第 1可燃物をガス化させるガス化工程と、 該ガス化工程にて生成し た生成ガスを精製して水素を製造するガス処理工程からなる水素製造方 法であって、 1. A hydrogen production method comprising: a gasification step of gasifying a first combustible material; and a gas treatment step of purifying a product gas generated in the gasification step to produce hydrogen.
前記ガス化工程で得られた生成ガスに第 2可燃物を混合して第 2可燃 物の改質反応を行う改質工程を設け、 得られた改質後ガスを前記ガス処 理工程に導く ことを特徴とする可燃物のガス化による水素製造方法。  A reforming step of mixing the generated gas obtained in the gasification step with a second combustible to perform a reforming reaction of the second combustible is provided, and the obtained reformed gas is guided to the gas processing step. A method for producing hydrogen by gasifying combustibles.
2 . 前記ガス化工程はガス化温度の範囲が 9 0 0〜 1 5 0 0 °Cで、 該ガ ス化工程よ り得られる生成ガスの温度が 9 0 0 °C以上で、 組成として水 蒸気と、 水素及び/又は一酸化炭素とを含むことを特徴とする請求項 1 に記載の可燃物のガス化による水素製造方法。 2. The gasification step has a gasification temperature range of 900 to 150 ° C., the temperature of the product gas obtained from the gasification step is 900 ° C. or higher, and water as a composition. The method for producing hydrogen by gasifying a combustible material according to claim 1, wherein the method includes steam, hydrogen, and / or carbon monoxide.
3 . 前記ガス化工程は低温ガス化工程と高温ガス化工程の 2段ガス化工 程からなり、 前記高温ガス化工程のガス化温度の範囲が 9 0 0〜 1 5 0 0 °Cで、 該高温ガス化工程より得られる生成ガスの温度が 9 0 0 °C以上 で、 組成として水蒸気と、 水素及び/又は一酸化炭素とを含むことを特 徴とする請求項 1に記載の可燃物のガス化による水素製造方法。 3. The gasification step comprises a two-stage gasification step of a low-temperature gasification step and a high-temperature gasification step, and the gasification temperature of the high-temperature gasification step is 900 to 150 ° C. The flammable substance according to claim 1, wherein the temperature of the product gas obtained from the high-temperature gasification step is 900 ° C or more, and the composition contains steam, hydrogen, and / or carbon monoxide. Hydrogen production method by gasification.
4 . 請求項 2に記載のガス化工程又は請求項 3に記載の高温ガス化工程 に助燃材を投入することが可能であることを特徴とする請求項 2又は 3 に記載の可燃物のガス化による水素製造方法。 4. A combustible gas according to claim 2 or 3, characterized in that a combustion aid can be added to the gasification step according to claim 2 or the high-temperature gasification step according to claim 3. Hydrogen production method by chemical conversion.
5 . 前記ガス処理工程は少なく とも排熱回収工程とガス洗浄工程と変成 工程の 3工程から構成されるか、 又は前記 3工程に、 選択酸化工程と二 酸化炭素化学吸収工程とメ夕ネーショ ン工程と水素精製工程と一酸化炭 素吸着工程の内の 1又はそれ以上の工程を組み合せてなることを特徴と する請求項 1乃至 4のいずれか 1項に記載の可燃物のガス化による水素 製造方法。 5. The gas treatment step is composed of at least three steps: an exhaust heat recovery step, a gas cleaning step, and a metamorphosis step, or the three steps include a selective oxidation step, a carbon dioxide chemical absorption step, and a 5.Hydrogen by combustible gasification according to any one of claims 1 to 4, characterized by combining one or more of a process, a hydrogen purification process, and a carbon monoxide adsorption process. Production method.
6 . 燃料電池発電工程を設け、 請求項 1乃至 5のいずれか 1項に記載の 方法で製造した水素ガスを燃料ガスとして該燃料電池発電工程に供給し て発電することを特徴とする可燃物のガス化による燃料電池発電方法。 6. A combustible material provided with a fuel cell power generation step, wherein hydrogen gas produced by the method according to any one of claims 1 to 5 is supplied as fuel gas to the fuel cell power generation step to generate power. Cell power generation method by gasification of fuel.
7 . 前記燃料電池発電工程で用いる燃料電池は、 固体高分子型燃料電池 又は燐酸型燃料電池であることを特徴とする請求項 6に記載の可燃物の ガス化による燃料電池発電方法。 7. The fuel cell power generation method according to claim 6, wherein the fuel cell used in the fuel cell power generation step is a polymer electrolyte fuel cell or a phosphoric acid fuel cell.
8 . 第 1可燃物をガス化させるガス化炉と、 該ガス化炉にて生成した生 成ガスを精製して水素を製造するガス処理装置からなる水素製造装置で あって、 8. A hydrogen production apparatus comprising: a gasification furnace for gasifying the first combustible material; and a gas processing apparatus for purifying generated gas generated in the gasification furnace to produce hydrogen,
前記ガス化炉で得られた生成ガスに第 2可燃物を混合して第 2可燃物 の改質反応を行う改質装置を設け、 得られた改質後ガスを前記ガス処理 装置に導く ことを特徴とする可燃物のガス化による水素製造装置。  Providing a reforming device for mixing the generated gas obtained in the gasification furnace with a second combustible to perform a reforming reaction of the second combustible; and guiding the obtained reformed gas to the gas processing device. An apparatus for producing hydrogen by gasifying combustibles.
9 . 前記ガス化炉はガス化温度の範囲が 9 0 0〜 1 5 0 0 °Cで、 該ガス 化炉ょり得られる生成ガスの温度が 9 0 0 °C以上で、 組成として水蒸気 と、 水素及び/又は一酸化炭素とを含むことを特徴とする請求項 8に記 載の可燃物のガス化による水素製造装置。 9. The gasification furnace has a gasification temperature range of 900 to 150 ° C., the temperature of the generated gas obtained from the gasification furnace is 900 ° C. or higher, and the composition is steam and 9. The apparatus for producing hydrogen by gasifying combustibles according to claim 8, comprising hydrogen, hydrogen and / or carbon monoxide.
1 0 . 前記ガス化炉は低温ガス化炉と高温ガス化炉からなり、 前記高温 ガス化炉のガス化温度の範囲が 9 0 0〜 1 5 0 0 °Cで、 該高温ガス化炉 よ り得られる生成ガスの温度が 9 0 0 °C以上で、 組成として水蒸気と、 水素及び/又は一酸化炭素とを含むことを特徴とする請求項 8に記載の 可燃物のガス化による水素製造装置。 100. The gasifier comprises a low-temperature gasifier and a high-temperature gasifier, and the high-temperature gasifier has a gasification temperature range of 900 to 150 ° C. 9. The hydrogen production by gasifying combustibles according to claim 8, wherein the temperature of the produced gas obtained is 900 ° C. or higher, and the composition contains steam and hydrogen and / or carbon monoxide. apparatus.
1 1 . 燃料電池を設け、 請求項 8乃至 1 0のいずれか 1項に記載の装置 で製造した水素ガスを燃料ガスとして該燃料電池に供給して発電するこ とを特徴とする可燃物のガス化による燃料 IE池発電システム。 11. A combustible material characterized by providing a fuel cell and supplying hydrogen gas produced by the device according to any one of claims 8 to 10 as a fuel gas to the fuel cell to generate power. Fuel by gasification IE pond power generation system.
1 2 . 前記燃料電池は、 固体高分子型燃料電池又は燐酸型燃料電池であ ることを特徴とする請求項 1 1 に記載の可燃物のガス化による発電シス テム。 12. The power generation system according to claim 11, wherein the fuel cell is a polymer electrolyte fuel cell or a phosphoric acid fuel cell.
PCT/JP2000/007366 1999-10-21 2000-10-23 Method of producing hydrogen by gasification of combustibles and electric power generation using fuel cell WO2001028916A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU79535/00A AU7953500A (en) 1999-10-21 2000-10-23 Method of producing hydrogen by gasification of combustibles and electric power generation using fuel cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP29973499 1999-10-21
JP11/299734 1999-10-21

Publications (1)

Publication Number Publication Date
WO2001028916A1 true WO2001028916A1 (en) 2001-04-26

Family

ID=17876329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/007366 WO2001028916A1 (en) 1999-10-21 2000-10-23 Method of producing hydrogen by gasification of combustibles and electric power generation using fuel cell

Country Status (2)

Country Link
AU (1) AU7953500A (en)
WO (1) WO2001028916A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004020331A1 (en) * 2002-08-27 2004-03-11 Japan Planning Organization Inc. Method of recovering hydrogen from organic waste
JP2006164953A (en) * 2004-11-10 2006-06-22 Central Res Inst Of Electric Power Ind Fuel supply system of high temperature type fuel cell and high temperature type fuel cell device
WO2006126737A1 (en) * 2005-05-27 2006-11-30 Gs Yuasa Corporation Stacked fuel cell generator
JP2007500115A (en) * 2003-07-28 2007-01-11 ウーデ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Process for producing hydrogen from methane-containing gas, in particular natural gas, and system for carrying out the process
WO2007116897A1 (en) * 2006-04-07 2007-10-18 Nippon Oil Corporation Solid oxide fuel cell system and method of operating the same
JP2008258029A (en) * 2007-04-05 2008-10-23 Plus Kaken Koho Kenkyusho:Kk Power generation device, biomass multiplication device used for the same power generation device, and power generation method
WO2012014277A1 (en) * 2010-07-27 2012-02-02 株式会社日本計画機構 Method for producing hydrogen-containing gas
WO2013084402A1 (en) * 2011-12-08 2013-06-13 川崎重工業株式会社 Method and apparatus for separating hydrogen sulfide and hydrogen production system using same
JP5566290B2 (en) * 2008-08-06 2014-08-06 電気化学工業株式会社 Method for producing hydrogen gas from hydrogen halide, mixed gas containing hydrogen and silicon halide, method for producing silicon compound using the hydrogen gas, and plant for the method
JP2017132668A (en) * 2016-01-29 2017-08-03 株式会社高橋製作所 Hydrogen station system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03208801A (en) * 1990-01-11 1991-09-12 Mitsubishi Heavy Ind Ltd Method for removing carbon monoxide in reformed gas as raw material for hydrogen
US5347068A (en) * 1991-08-01 1994-09-13 Energiewerke Schwarze Pumpe Aktiengesellschaft Method of simultaneous disposal of solid and liquid wastes
JPH06283189A (en) * 1993-03-30 1994-10-07 Toshiba Corp Fuel cell power generation system
EP0803562A1 (en) * 1996-04-23 1997-10-29 Ebara Corporation Method and apparatus for treating wastes by gasification
JPH10140167A (en) * 1996-11-06 1998-05-26 Noel Krc Energ & Umwelttechnik Gmbh Method and apparatus for separation and gasification of combustible, residue and waste each having carbon and ash
WO1999055618A1 (en) * 1998-04-29 1999-11-04 Stichting Energieonderzoek Centrum Nederland Method and apparatus for the production of synthesis gas

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03208801A (en) * 1990-01-11 1991-09-12 Mitsubishi Heavy Ind Ltd Method for removing carbon monoxide in reformed gas as raw material for hydrogen
US5347068A (en) * 1991-08-01 1994-09-13 Energiewerke Schwarze Pumpe Aktiengesellschaft Method of simultaneous disposal of solid and liquid wastes
JPH06283189A (en) * 1993-03-30 1994-10-07 Toshiba Corp Fuel cell power generation system
EP0803562A1 (en) * 1996-04-23 1997-10-29 Ebara Corporation Method and apparatus for treating wastes by gasification
JPH10140167A (en) * 1996-11-06 1998-05-26 Noel Krc Energ & Umwelttechnik Gmbh Method and apparatus for separation and gasification of combustible, residue and waste each having carbon and ash
WO1999055618A1 (en) * 1998-04-29 1999-11-04 Stichting Energieonderzoek Centrum Nederland Method and apparatus for the production of synthesis gas

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
C.C.P. PIAN ET AL.: "Advanced gasifier design for low rank coals and waste-derived fuels", PAP. AM. INST. AERONAUT ASTRONAUT. (AIAA99-0731), 1999, pages 1 - 8, XP002936076 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003261772B2 (en) * 2002-08-27 2009-08-13 Japan Planning Organization Inc Method of recovering hydrogen from organic waste
WO2004020331A1 (en) * 2002-08-27 2004-03-11 Japan Planning Organization Inc. Method of recovering hydrogen from organic waste
JP2007500115A (en) * 2003-07-28 2007-01-11 ウーデ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Process for producing hydrogen from methane-containing gas, in particular natural gas, and system for carrying out the process
JP4707665B2 (en) * 2003-07-28 2011-06-22 ウーデ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Process for producing hydrogen from methane-containing gas, in particular natural gas, and system for carrying out the process
JP2006164953A (en) * 2004-11-10 2006-06-22 Central Res Inst Of Electric Power Ind Fuel supply system of high temperature type fuel cell and high temperature type fuel cell device
WO2006126737A1 (en) * 2005-05-27 2006-11-30 Gs Yuasa Corporation Stacked fuel cell generator
WO2007116897A1 (en) * 2006-04-07 2007-10-18 Nippon Oil Corporation Solid oxide fuel cell system and method of operating the same
JP2007280797A (en) * 2006-04-07 2007-10-25 Nippon Oil Corp Solid oxide fuel cell (sofc) system and its operation method
JP2008258029A (en) * 2007-04-05 2008-10-23 Plus Kaken Koho Kenkyusho:Kk Power generation device, biomass multiplication device used for the same power generation device, and power generation method
JP5566290B2 (en) * 2008-08-06 2014-08-06 電気化学工業株式会社 Method for producing hydrogen gas from hydrogen halide, mixed gas containing hydrogen and silicon halide, method for producing silicon compound using the hydrogen gas, and plant for the method
WO2012014277A1 (en) * 2010-07-27 2012-02-02 株式会社日本計画機構 Method for producing hydrogen-containing gas
JP5385396B2 (en) * 2010-07-27 2014-01-08 株式会社ジャパンブルーエナジー Method for producing hydrogen-containing gas
WO2013084402A1 (en) * 2011-12-08 2013-06-13 川崎重工業株式会社 Method and apparatus for separating hydrogen sulfide and hydrogen production system using same
JP2013119503A (en) * 2011-12-08 2013-06-17 Kawasaki Heavy Ind Ltd Method and device for separating hydrogen sulfide and hydrogen manufacturing system using the same
AU2012347153B2 (en) * 2011-12-08 2015-09-24 Kawasaki Jukogyo Kabushiki Kaisha Method and device for separating hydrogen sulfide and hydrogen production system using the same
US9365423B2 (en) 2011-12-08 2016-06-14 Kawasaki Jukogyo Kabushiki Kaisha Method and device for separating hydrogen sulfide and hydrogen production system using the same
JP2017132668A (en) * 2016-01-29 2017-08-03 株式会社高橋製作所 Hydrogen station system

Also Published As

Publication number Publication date
AU7953500A (en) 2001-04-30

Similar Documents

Publication Publication Date Title
EP1207132A1 (en) Process and apparatus for production of hydrogen by gasification of combustible material and method for electric power generation using fuel cell and electric power generation system using fuel cell
AU759861B2 (en) Power generation system based on gasification of combustible material
EP1194508B1 (en) Electric power generating system by gasification
KR100569120B1 (en) Apparatus of catalytic gasification for refined biomass fuel at low temperature and the method thereof
Bocci et al. Biomass to fuel cells state of the art: A review of the most innovative technology solutions
US8636818B2 (en) Fuel gas purification apparatus, power generation system, and fuel synthesis system
CA2461716A1 (en) Combustible gas reforming method and combustible gas reforming apparatus and gasification apparatus
JP2008163944A (en) Reforming system for partial co2 recovery type cycle plant
KR20020026536A (en) Apparatus and method for cleaning acidic gas
EP1195353A1 (en) Method and apparatus for production of hydrogen by gasification of combusible material
CN104025357B (en) Method of operating a fuel cell system on low quality by-product gases
WO2001028916A1 (en) Method of producing hydrogen by gasification of combustibles and electric power generation using fuel cell
JP2009117054A (en) Power generation method and system by high temperature operating fuel cell
AU2011346041A1 (en) Method and device for reforming produced gas
JP2017521353A (en) Method for producing hydrogen
AU2007250925B2 (en) Method for treatment of drain in hydrogen production and hydrogen production system
WO2001004046A1 (en) Method for electric power generation using fuel cell and electric power generation system using fuel cell
JP3926917B2 (en) Combustion system
JP2003226501A (en) Hydrogen production system
CN212482087U (en) Flash circulating smelting system capable of self-exchanging heat and reforming coal gas
Park et al. Novel applications of chemical looping technologies
Escribano Sanz Study of Chemical Looping and later applications
Ferreira The usage of biogas in fuel cell systems
JPH07114927B2 (en) ▲ High ▼ Refining method of warm reducing gas
KR20170080941A (en) Ship

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 531714

Kind code of ref document: A

Format of ref document f/p: F

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase