WO2010015769A1 - Permanent magnet - Google Patents

Permanent magnet Download PDF

Info

Publication number
WO2010015769A1
WO2010015769A1 PCT/FR2009/051502 FR2009051502W WO2010015769A1 WO 2010015769 A1 WO2010015769 A1 WO 2010015769A1 FR 2009051502 W FR2009051502 W FR 2009051502W WO 2010015769 A1 WO2010015769 A1 WO 2010015769A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic material
magnetic
magnetization
grains
permanent magnet
Prior art date
Application number
PCT/FR2009/051502
Other languages
French (fr)
Inventor
Dominique Givord
Nora Dempsey
Oliver Axel Gutfleisch
Alexey Dobrynin
Original Assignee
Centre National De La Recherche Scientifique - Cnrs -
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National De La Recherche Scientifique - Cnrs - filed Critical Centre National De La Recherche Scientifique - Cnrs -
Publication of WO2010015769A1 publication Critical patent/WO2010015769A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0579Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B with exchange spin coupling between hard and soft nanophases, e.g. nanocomposite spring magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/0302Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity characterised by unspecified or heterogeneous hardness or specially adapted for magnetic hardness transitions
    • H01F1/0306Metals or alloys, e.g. LAVES phase alloys of the MgCu2-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/068Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder having a L10 crystallographic structure, e.g. [Co,Fe][Pt,Pd] (nano)particles

Definitions

  • the present invention relates to a permanent magnet having a strong coercive field and a method of manufacturing such a magnet.
  • the coercive field of a ferromagnetic material designates the magnetic field that it is necessary to apply to a material, having initially reached its saturation magnetization, to cancel the magnetization of the material.
  • the coercive field is usually noted Hc.
  • the remanent magnetization of a magnetic material refers to the magnetization existing in the material in the absence of applied magnetic field.
  • the remanent magnetization is usually denoted M.
  • M When the coercive field of a magnetic material is high, the material is called "hard”. As an indication, the typical values of coercive field are between 10 5 A / m and 2 10 6 A / m.
  • Such a material is then suitable as a material for the manufacture of permanent magnets, for example inside electric motors used in particular in the automobile or household appliances.
  • a permanent magnet is generally made of ferromagnetic or ferrimagnetic type materials.
  • the most common permanent magnets are AlNiCo magnets, ferrite magnets and rare earth element magnets.
  • magnets based on rare earth magnets for example, Nd 2 Fe l4 B, and those of Sm (Co b AIFE w Zr x Cu y), usually designated by the term magnets type 2:17, are two main categories of permanent magnet.
  • NdFeB type magnets have significant values of remanent magnetization Mr and coercive field H c , a moderate cost and ease of operation. manufacturing.
  • the main weakness of the NdFeB type magnets is the moderate value of the Curie temperature of the order of 590 K. A significant decrease in the coercive field is observed at the Curie temperature approach.
  • the value of the coercive field H c at 100 ° C. is for example equal to 50% of the value of said coercive field at ambient temperature, which makes it impossible to use such magnets above about 100 ° C.
  • An object of the present invention is to provide a new permanent magnet reinforced coercive field and a method of manufacturing such a magnet.
  • the invention thus proposes a permanent magnet which comprises:
  • the magnetization of the second magnetic material B is oriented according to the field magnetic applied and tends to oppose the reversal of the magnetization of the first magnetic material A.
  • the inventors have demonstrated that the threshold of 10% of the surface of each grain of the magnetic material A covered by the second magnetic material B makes it possible to increase the value of the field coercive significantly.
  • the coupling between the first and the second magnetic material is a source of increase in coercivity and a source of improvement in the performance of permanent magnet systems.
  • a permanent magnet according to the invention may further comprise one or more of the following optional features, considered individually or according to all the possible combinations:
  • the element of the transition series 3d is chosen from the list consisting of iron, cobalt, nickel, manganese and chromium;
  • the second magnetic material B covers at least the surfaces substantially perpendicular to the direction of the magnetization M A of each magnetic grain;
  • the second magnetic material B covers at least 50% of the surface of each magnetic grain; the second magnetic material B is in the form of at least one layer on the surface of each magnetic grain with a thickness greater than or equal to 1 nm and / or less than or equal to 5 ⁇ m;
  • the second magnetic material B is arranged in such a way that, when it covers said magnetic grains, said second magnetic material B has a magnetization M B substantially antiparallel to the magnetization M A of said magnetic grains;
  • the first magnetic material A is chosen from the list comprising FePt, CoPt and the compounds of type RM 5 or R 2 M 17 (type 2: 17), or R 2 M 17 N 8 , or R 2 M 14 B with R a rare earth element and M an element of the 3d transition series, or a hard magnetic compound such as MnBi or MnAl, or a hexagonal ferrite with Sr or Ba base;
  • the second magnetic material B is chosen from the list comprising rare earth-based compounds or alloys, compounds or alloys based on a member of the 3d transition series, compounds of the R-Fe or R-Co type; with R a lanthanide.
  • the second magnetic material B is chosen from the list comprising:
  • R rare earths
  • M is predominantly Mn, Fe, Co, Ni or their combination, ferromagnetic or ferrimagnetic compounds based on Mn, for example MnAl, MnBi or an alloy Heusler such as Cu2MnAl, or ferromagnetic or ferrimagnetic compounds based on Cr, for example CrO2.
  • the invention also relates to a method for manufacturing hard magnetic grains, comprising the following steps:
  • a set of substantially monocrystalline magnetic grains is provided composed of a first magnetic material A having a magnetization M A to which at least one element of the 3d transition series provides the main contribution, and whose magnetic anisotropy field , measured on at least 80% of the monocrystalline grains (12), is greater than or equal to 80% of the magnetization (M A ) of the first magnetic material,
  • At least 10% of the surface of magnetic grains is covered with a second magnetic material B, the second magnetic material B being such that its magnetization MB couples substantially antiparallel to the magnetization M A of the first magnetic material A.
  • the invention also relates to a method of manufacturing a permanent magnet comprising the following steps:
  • Powders containing a first magnetic material A and a second magnetic material B are mixed, densifying said mixture of the first and second magnetic materials A and B; where the first magnetic material has a magnetization M A to which at least one element of the 3d transition series provides the main contribution, and whose magnetic anisotropy field, measured on at least 80% of the monocrystalline grains (12), is greater than or equal to 80% of the magnetization (M A ) of the first magnetic material.
  • the manufacturing method according to the invention may comprise a sintering step in the liquid phase at a sintering temperature greater than or equal to the melting temperature of the second magnetic material B and less than the melting temperature of the first magnetic material A
  • the manufacturing method according to the invention may also comprise a compaction step by any suitable method, at room temperature or at high temperature.
  • the invention also relates to a magnet motor comprising at least one permanent magnet according to the invention.
  • the invention also relates to an electrical generator comprising at least one permanent magnet according to the invention.
  • the invention also relates to any system magnets, for example magnets for medical imaging, traveling wave tubes, or magnetic bearings comprising at least one permanent magnet according to the invention.
  • FIG. 1 is a schematic representation of a section of a permanent magnet according to a first embodiment of the invention
  • FIG. 2 is a schematic representation of a section of a permanent magnet according to a second embodiment of the invention.
  • - Figure 3 shows hysteresis cycles of permanent magnets.
  • magnetic grain means a piece of material of substantially monocrystalline structure having ferromagnetic or ferrimagnetic properties.
  • X-Y is the alloy of elements X and Y
  • XY is the compound consisting of elements X and Y.
  • the invention relates to a permanent magnet comprising first and second magnetic materials.
  • the first and second materials are such that the interfacial exchange coupling between the two materials promotes the antiparallelism of the magnetizations of said first and second magnetic materials.
  • the permanent magnet 10 comprises a set of magnetic grains 12 of a first material magnetic magnet A having a magnetization M A and a second magnetic material B covering the surfaces 14 of the magnetic grains 12 substantially perpendicular to the direction of the magnetization M A of the magnetic grains 12.
  • the first magnetic material A has a magnetization M A at which minus one element or combination of elements of the 3d transition series provides the main contribution, and whose magnetic anisotropy field, measured on at least 80% of the monocrystalline grains (12), is greater than or equal to 80% of the magnetization (M A ) of the first magnetic material.
  • the at least one element of the 3d transition series having a dominant contribution to the magnetization of the first magnetic material A is chosen from the list consisting of iron, cobalt, nickel, manganese and chromium.
  • the first magnetic material A may have ferromagnetic or ferrimagnetic hard properties.
  • the first magnetic material A may consist of a high-anisotropy type compound RM 5 , in which R denotes a rare earth element or a combination of rare earth elements, for example Sm, Pr or Y, and M denotes an element of the 3d transition series for example Co.
  • the first magnetic material A may also be an uniaxial anisotropic compound of the RM type in which R denotes a rare earth element or a combination of rare earth elements and M denotes an element from the series of 3d, Fe transitions and optionally including additional elements such as Zr, Cu.
  • the first magnetic material A can also be a compound of the type R 2 M 14 B in which R is chosen from Nd and / or Pr and M is predominantly Fe or Co.
  • the first magnetic material A can also be a compound of FePt or Co or Pt type.
  • the second magnetic material B covers at least 10% of the surface of each magnetic grain 12 and its magnetization M B is substantially antiparallel to the magnetization M A of the first magnetic material when the permanent magnet according to the The embodiment shown in FIG. 1 is subjected to an external magnetic field H substantially antiparallel to the magnetization M A of the first magnetic material 1.
  • the second magnetic material B represents less than 20%, for example less than 10% of the total volume of the permanent magnet according to the invention.
  • the second magnetic material B may be a rare earth metal of the second series, for example Gd, Tb or Dy or an alloy based on such elements.
  • the material B may also be composed of an alloy of such a rare earth metal of the second series and of a non-magnetic element such as Al, Zn to constitute a ferromagnetic material.
  • the second magnetic material B may consist of a ferromagnetic or ferrimagnetic alloy R-M, where R contains one or more elements of the second part of the lanthanide series and M contains Fe and / or Co.
  • the second magnetic material B may be a ferromagnetic or ferrimagnetic compound or alloy based on elements of the series of 3d transitions, for example Mn or Cr.
  • the second magnetic material B may for example be chosen from the following compounds:
  • the permanent magnet 10 comprises a set of substantially monocrystalline magnetic grains 12 of a first magnetic material A having a magnetization M A and a second magnetic material B covering substantially the entire surface of the grains 12 and being arranged so that the magnetization M B of the second magnetic material B is substantially antiparallel to the magnetization M A of the first magnetic material A when the permanent magnet 10 is subjected to an external magnetic field H substantially antiparallel to the magnetization M A of the first magnetic material A.
  • such an arrangement of the second magnetic material B makes it possible to increase the value of the coercive field of the permanent magnet 10.
  • the first and second magnetic materials A and B may have the same composition as in the first embodiment.
  • a permanent magnet according to the invention may comprise hard magnetic grains prepared according to a manufacturing method comprising the following steps:
  • the set of substantially monocrystalline magnetic grains 12 is composed of a first magnetic material A having a magnetization M A to which at least one element of the 3d transition series provides the main contribution, and whose anisotropy field magnetic measurement, measured on at least 80% of the monocrystalline grains (12), is greater than or equal to 80% of the magnetization (M A ) of the first magnetic material,
  • a second magnetic material B is provided, for example in the form of a powder,
  • the sintering in the liquid phase is carried out at a sintering temperature greater than or equal to melting temperature of the second magnetic material B and less than the melting temperature of the first magnetic material A.
  • a permanent magnet according to the invention can be obtained by a method comprising the following steps:
  • Powders are mixed comprising a first magnetic material A and a second magnetic material B,
  • the first magnetic material has a magnetization M A to which at least one element of the 3d transition series provides the main contribution, and whose magnetic anisotropy field , measured on at least 80% of the monocrystalline grains (12), is greater than or equal to 80% of the magnetization (M A ) of the first magnetic material.
  • the method according to the invention may also comprise a step of densifying the mixture A-B at low temperatures.
  • a magnet according to the invention can be obtained by coating the magnetic grains 12, then a suitable compaction process, for example under the effect of a pulsed magnetic field.
  • a compaction method allows temperature-based densification, preserving the interfacial exchange coupling between the first magnetic material A and the second magnetic material B according to the so-called super-ferrimagnetic magnetization configuration.
  • a manufacturing method according to the invention makes it possible advantageously to obtain a permanent magnet with a strong coercive field.
  • a manufacturing method according to the invention may also comprise a step where the grains A of a powder of a layer of B are covered, for example according to a structure of the heart / shell type.
  • a permanent magnet according to the invention can also be obtained by means of a process comprising the deposition of successive layers of magnetic materials A and B, for example by a technique such as cathodic sputtering, pulsed laser deposition or any other suitable method. .
  • a manufacturing method according to the invention may also comprise an etching step.
  • FIG. 3 represents hysteresis cycles illustrating the increase of the coercive field of the magnets according to the invention.
  • the hysteresis cycle 20 in FIG. 3 corresponds to that of a layer of a first NdFeB magnetic material of 100 nm in thickness.
  • the coercive field corresponding to the hysteresis cycle 20 of FIG. 3 is equal to 0.01 Tesla.
  • the hysteresis cycle 22 shown in FIG. 3 corresponds to a 50 nm thick layer of GdFe 2 , the coercive field of such a layer can be measured at 0.002 Tesla.
  • the hysteresis cycle 24 shown in FIG. 3 corresponds to that of a permanent magnet according to the invention.
  • Said permanent magnet comprises a structure as shown in FIG. 1 with the first magnetic material having a columnar structure of NdFeB of approximately 100 nm in length and 30 nm in section and as second magnetic material two layers of GdFe 2 of 50 nm in diameter. each thickness.
  • Each column of NdFeB corresponds to a monocrystalline grain according to the invention.
  • the GdFe layers 2 cover the surfaces of the NdFeB columnar structures substantially perpendicular to the direction of permanent magnetization of said NdFeB columnar structures.
  • the coercive field of said permanent magnet Ambient temperature is about 1 Tesla, about 100x greater than that of the NdFeB layer alone.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

Permanent magnet (10) comprising: an assembly of substantially single-crystal magnetic grains (12) of a first magnetic material A having a magnetization (MA) at which at least one element of the 3d transition series provides the main contribution, and the magnetic anisotropy field of which, measured over at least 80% of the single-crystal grains (12), is greater than or equal to 80% of the magnetization (MA) of the first magnetic material, a second magnetic material B covering at least 10% of the surface of each grain of the magnetic material A in which the second magnetic material B is such that its magnetization MB is coupled, in a substantially antiparallel manner, to the magnetization MA of the first magnetic material A.

Description

AIMANTS PERMANENTS PERMANENT MAGNETS
La présente invention concerne un aimant permanent présentant un fort champ coercitif ainsi qu'un procédé de fabrication d'un tel aimant.The present invention relates to a permanent magnet having a strong coercive field and a method of manufacturing such a magnet.
Le champ coercitif d'un matériau ferromagnétique désigne le champ magnétique qu'il est nécessaire d'appliquer à un matériau, ayant initialement atteint son aimantation de saturation, pour annuler l'aimantation du matériau. Le champ coercitif est usuellement noté Hc.The coercive field of a ferromagnetic material designates the magnetic field that it is necessary to apply to a material, having initially reached its saturation magnetization, to cancel the magnetization of the material. The coercive field is usually noted Hc.
L'aimantation rémanente d'un matériau magnétique désigne l'aimantation existant dans le matériau en l'absence de champ magnétique appliqué. L'aimantation rémanente est usuellement notée Mr. Lorsque le champ coercitif d'un matériau magnétique est élevé, le matériau est qualifié de « dur ». A titre indicatif, les valeurs typiques de champ coercitif sont comprises entre 105 A/m et 2 106 A/m. Un tel matériau est alors approprié comme matériau pour la fabrication d'aimants permanents, par exemple à l'intérieur de moteurs électriques utilisés notamment dans l'automobile ou l'électroménager.The remanent magnetization of a magnetic material refers to the magnetization existing in the material in the absence of applied magnetic field. The remanent magnetization is usually denoted M. When the coercive field of a magnetic material is high, the material is called "hard". As an indication, the typical values of coercive field are between 10 5 A / m and 2 10 6 A / m. Such a material is then suitable as a material for the manufacture of permanent magnets, for example inside electric motors used in particular in the automobile or household appliances.
Un aimant permanent est généralement constitué de matériaux de type ferromagnétique ou ferrimagnétique . Les aimants permanents les plus usuels sont les aimants de type AlNiCo, les aimants ferrites et les aimants à base d'éléments de terres rares.A permanent magnet is generally made of ferromagnetic or ferrimagnetic type materials. The most common permanent magnets are AlNiCo magnets, ferrite magnets and rare earth element magnets.
Parmi les aimants à base de terres rares, les aimants en néodyme-fer-bore, par exemple Nd2FeI4B, et ceux de type Sm(CobaiFewCuyZrx) , usuellement désignés par l'expression aimants de type 2:17, sont deux catégories principales d'aimant permanent.Among the magnets based on rare earth magnets neodymium-iron-boron, for example, Nd 2 Fe l4 B, and those of Sm (Co b AIFE w Zr x Cu y), usually designated by the term magnets type 2:17, are two main categories of permanent magnet.
Les aimants de type NdFeB présentent des valeurs importantes d'aimantation rémanente Mr et de champ coercitif Hc, un coût modéré et une facilité de fabrication. La faiblesse principale des aimants de type NdFeB est la valeur modérée de la température de Curie de l'ordre de 590 K. Une décroissance importante du champ coercitif est observée à l'approche de la température de Curie. La valeur du champ coercitif Hc à 100 0C est par exemple égale à 50% de la valeur dudit champ coercitif à température ambiante ce qui rend impossible l'utilisation de tels aimants au-dessus d'environ 1000C.NdFeB type magnets have significant values of remanent magnetization Mr and coercive field H c , a moderate cost and ease of operation. manufacturing. The main weakness of the NdFeB type magnets is the moderate value of the Curie temperature of the order of 590 K. A significant decrease in the coercive field is observed at the Curie temperature approach. The value of the coercive field H c at 100 ° C. is for example equal to 50% of the value of said coercive field at ambient temperature, which makes it impossible to use such magnets above about 100 ° C.
Or, de nombreuses applications demandent un fonctionnement occasionnellement ou fréquemment à des températures supérieures à 15O0C.However, many applications require operation occasionally or frequently at temperatures above 15O 0 C.
Pour celles-ci, il est connu de l'état de la technique que le remplacement d'une partie du néodyme par du dysprosium dans la phase R2FeI4B, où R est du néodyme ou du dysprosium, conduit à la formation d'un composé pseudo-ternaire, (Nd-Dy) 2Fei4B . Elle permet d'augmenter substantiellement la valeur du champ coercitif Hc du fait de la grande anisotropie de ce composé. Ceci se produit au détriment d'une perte significative en aimantation, ainsi que d'une augmentation substantielle du coût du matériau car le dysprosium est environ 10 fois plus cher que le néodyme.For these, it is known from the state of the art that the replacement of a part of the neodymium by dysprosium in the R 2 FeI 4 B phase, where R is neodymium or dysprosium, leads to the formation of a pseudo-ternary compound, (Nd-Dy) 2 Fei 4 B. It makes it possible to substantially increase the value of the coercive field H c because of the great anisotropy of this compound. This occurs at the expense of a significant loss of magnetization, as well as a substantial increase in the cost of the material because dysprosium is about 10 times more expensive than neodymium.
Dans les aimants Sm-Co (aimants SmCo5 ou de type 2 :17) des champs coercitifs supérieurs à ceux des aimants RFeB sont atteints. Ces aimants conservent une coercitivité significative jusqu'à haute température, parfois jusqu'à 4000C. Mais, ils sont de coûts bien supérieurs aux aimants NdFeB et présentent une aimantation rémanente moindre. II existe donc un besoin pour un aimant permanent qui présente un champ coercitif et une aimantation importants, en particulier qui pourrait être utilisé à haute température sans présenter les inconvénients des solutions de l'état de la technique, en particulier en terme de coût. Un but de la présente invention est de proposer un nouvel aimant permanent à champ coercitif renforcé ainsi qu'un procédé de fabrication d'un tel aimant.In Sm-Co magnets (SmCo 5 or 2: 17 magnets) coercive fields higher than RFeB magnets are achieved. These magnets retain a significant coercitivity up to high temperature, sometimes up to 400 0 C. But, they are much higher costs than NdFeB magnets and have a lower remanent magnetization. There is therefore a need for a permanent magnet that has a large coercive field and magnetization, in particular that could be used at high temperature without the disadvantages of the solutions of the state of the art, particularly in terms of cost. An object of the present invention is to provide a new permanent magnet reinforced coercive field and a method of manufacturing such a magnet.
L'invention propose ainsi un aimant permanent qui comprend :The invention thus proposes a permanent magnet which comprises:
- un ensemble de grains magnétiques sensiblement monocristallins d'un premier matériau magnétique A présentant une aimantation MA à laquelle au moins un élément ou une association d'éléments, de la série de transition 3d apporte la contribution principale, et dont le champ d'anisotropie magnétique, mesuré sur au moins 80% des grains monocristallins (12), est supérieur ou égal à 80% de l'aimantation (MA) du premier matériau magnétique, - un deuxième matériau magnétique B recouvrant au moins 10% de la surface de chaque grain du matériau magnétique A où le deuxième matériau magnétique B est tel que son aimantation MB se couple de façon sensiblement antiparallèle à l'aimantation MA du premier matériau magnétique A, propriété conservée lorsque l'aimant permanent est soumis à un champ magnétique extérieur H sensiblement antiparallèle à l'aimantation MA du premier matériau A.a set of substantially monocrystalline magnetic grains of a first magnetic material A having a magnetization M A to which at least one element or combination of elements of the 3d transition series provides the main contribution, and whose field of magnetic anisotropy, measured on at least 80% of the monocrystalline grains (12), is greater than or equal to 80% of the magnetization (M A ) of the first magnetic material, - a second magnetic material B covering at least 10% of the surface each grain of the magnetic material A where the second magnetic material B is such that its magnetization M B couples substantially antiparallel to the magnetization M A of the first magnetic material A, property retained when the permanent magnet is subjected to a field external magnet H substantially antiparallel to the magnetization M A of the first material A.
Lorsqu'un aimant permanent selon l'invention est placé dans un champ magnétique appliqué Happ, d'orientation opposée à celle de l'aimantation MA du premier matériau magnétique A, l'aimantation du deuxième matériau magnétique B s'oriente selon le champ magnétique appliqué et tend à s'opposer au renversement de l'aimantation du premier matériau magnétique A.When a permanent magnet according to the invention is placed in an applied magnetic field Happ, of opposite orientation to that of the magnetization M A of the first magnetic material A, the magnetization of the second magnetic material B is oriented according to the field magnetic applied and tends to oppose the reversal of the magnetization of the first magnetic material A.
Les inventeurs ont mis en évidence que le seuil de 10% de la surface de chaque grain du matériau magnétique A recouvert par le deuxième matériau magnétique B permet d'augmenter la valeur du champ coercitif de manière significative.The inventors have demonstrated that the threshold of 10% of the surface of each grain of the magnetic material A covered by the second magnetic material B makes it possible to increase the value of the field coercive significantly.
Par ce mécanisme, le couplage entre le premier et le deuxième matériau magnétique, dit couplage super- ferrimagnétique, est une source d'augmentation de la coercitivité et une source d'amélioration des performances des systèmes à aimants permanents.By this mechanism, the coupling between the first and the second magnetic material, said super-ferrimagnetic coupling, is a source of increase in coercivity and a source of improvement in the performance of permanent magnet systems.
Un aimant permanent selon l'invention peut en outre comporter l'une ou plusieurs des caractéristiques optionnelles suivantes, considérées individuellement ou selon toutes les combinaisons possibles :A permanent magnet according to the invention may further comprise one or more of the following optional features, considered individually or according to all the possible combinations:
- l'élément de la série de transition 3d est choisi parmi la liste consistant du fer, du cobalt, du nickel, du manganèse et du chrome ;the element of the transition series 3d is chosen from the list consisting of iron, cobalt, nickel, manganese and chromium;
- le deuxième matériau magnétique B recouvre au moins les surfaces sensiblement perpendiculaires à la direction de l'aimantation MA de chaque grain magnétique ;the second magnetic material B covers at least the surfaces substantially perpendicular to the direction of the magnetization M A of each magnetic grain;
- le deuxième matériau magnétique B recouvre au moins 50% de la surface de chaque grain magnétique ; - le deuxième matériau magnétique B se présente sous la forme d'au moins une couche sur la surface de chaque grain magnétique d'une épaisseur supérieure ou égale à 1 nm et/ou inférieure ou égale à 5 μm ;the second magnetic material B covers at least 50% of the surface of each magnetic grain; the second magnetic material B is in the form of at least one layer on the surface of each magnetic grain with a thickness greater than or equal to 1 nm and / or less than or equal to 5 μm;
- le deuxième matériau magnétique B est disposé de manière à ce que, lorsqu'il recouvre lesdits grains magnétique, ledit deuxième matériau magnétique B présente une aimantation MB sensiblement antiparallèle à l'aimantation MA desdits grains magnétiques ; - le premier matériau magnétique A est choisi parmi la liste comprenant FePt, CoPt et les composés de type RM5 ou R2M17 (de type 2 :17), ou R2M17N8, ou R2M14B avec R un élément de terre rare et M un élément de la série de transition 3d, ou un composé magnétique dur tel que MnBi ou MnAl, ou un ferrite hexagonal à base de Sr ou de Ba ;the second magnetic material B is arranged in such a way that, when it covers said magnetic grains, said second magnetic material B has a magnetization M B substantially antiparallel to the magnetization M A of said magnetic grains; the first magnetic material A is chosen from the list comprising FePt, CoPt and the compounds of type RM 5 or R 2 M 17 (type 2: 17), or R 2 M 17 N 8 , or R 2 M 14 B with R a rare earth element and M an element of the 3d transition series, or a hard magnetic compound such as MnBi or MnAl, or a hexagonal ferrite with Sr or Ba base;
- le deuxième matériau magnétique B est choisi dans la liste comprenant les composés ou alliages à base de terre rare, les composés ou alliage à base d'un élément de la série de transition 3d, les composés de type R-Fe ou R-Co avec R un lanthanide.the second magnetic material B is chosen from the list comprising rare earth-based compounds or alloys, compounds or alloys based on a member of the 3d transition series, compounds of the R-Fe or R-Co type; with R a lanthanide.
- le deuxième matériau magnétique B est choisi dans la liste comprenant :the second magnetic material B is chosen from the list comprising:
- les composés et alliages de terres rares (R) , R étant majoritairement Gd, Dy ou Tb ou leur association,the compounds and alloys of rare earths (R), R being predominantly Gd, Dy or Tb or their combination,
- les composés et alliages de type R-M où R est défini comme ci-dessus et M est majoritairement Mn, Fe, Co, Ni ou leur association, - les composés ferromagnétiques ou ferrimagnétiques à base de Mn, par exemple MnAl, MnBi ou un alliage d'Heusler tel que Cu2MnAl, ou les composés ferromagnétiques ou ferrimagnétiques à base de Cr, par exemple CrO2.compounds and alloys of RM type where R is defined as above and M is predominantly Mn, Fe, Co, Ni or their combination, ferromagnetic or ferrimagnetic compounds based on Mn, for example MnAl, MnBi or an alloy Heusler such as Cu2MnAl, or ferromagnetic or ferrimagnetic compounds based on Cr, for example CrO2.
L'invention se rapporte également à un procédé de fabrication de grains magnétiques durs, comprenant les étapes suivantes :The invention also relates to a method for manufacturing hard magnetic grains, comprising the following steps:
- on dispose d'un ensemble de grains magnétiques sensiblement monocristallins composés d'un premier matériau magnétique A présentant une aimantation MA à laquelle au moins un élément de la série de transition 3d apporte la contribution principale, et dont le champ d'anisotropie magnétique, mesuré sur au moins 80% des grains monocristallins (12), est supérieur ou égal à 80% de l'aimantation (MA) du premier matériau magnétique,a set of substantially monocrystalline magnetic grains is provided composed of a first magnetic material A having a magnetization M A to which at least one element of the 3d transition series provides the main contribution, and whose magnetic anisotropy field , measured on at least 80% of the monocrystalline grains (12), is greater than or equal to 80% of the magnetization (M A ) of the first magnetic material,
- on recouvre, au moins 10% de la surface de grains magnétiques, d'un deuxième matériau magnétique B, le deuxième matériau magnétique B étant tel que son aimantation MB se couple de façon sensiblement antiparallèle à l'aimantation MA du premier matériau magnétique A.at least 10% of the surface of magnetic grains is covered with a second magnetic material B, the second magnetic material B being such that its magnetization MB couples substantially antiparallel to the magnetization M A of the first magnetic material A.
L'invention se rapporte également à un procédé de fabrication d'un aimant permanent comprenant les étapes suivantes :The invention also relates to a method of manufacturing a permanent magnet comprising the following steps:
- on mélange des poudres contenant un premier matériau magnétique A et un deuxième matériau magnétique B,- on densifie ledit mélange des premier et deuxième matériaux magnétiques A et B ; où le premier matériau magnétique présent une aimantation MA à laquelle au moins un élément de la série de transition 3d apporte la contribution principale, et dont le champ d'anisotropie magnétique, mesuré sur au moins 80% des grains monocristallins (12), est supérieur ou égal à 80% de l'aimantation (MA) du premier matériau magnétique.- Powders containing a first magnetic material A and a second magnetic material B are mixed, densifying said mixture of the first and second magnetic materials A and B; where the first magnetic material has a magnetization M A to which at least one element of the 3d transition series provides the main contribution, and whose magnetic anisotropy field, measured on at least 80% of the monocrystalline grains (12), is greater than or equal to 80% of the magnetization (M A ) of the first magnetic material.
Par exemple, le procédé de fabrication selon l'invention peut comprendre une étape de frittage en phase liquide à une température de frittage supérieure ou égale à la température de fusion du deuxième matériau magnétique B et inférieure à la température de fusion du premier matériau magnétique A. Le procédé de fabrication selon l'invention peut également comprendre une étape de compaction par tout procédé adapté, à température ambiante ou à haute température .For example, the manufacturing method according to the invention may comprise a sintering step in the liquid phase at a sintering temperature greater than or equal to the melting temperature of the second magnetic material B and less than the melting temperature of the first magnetic material A The manufacturing method according to the invention may also comprise a compaction step by any suitable method, at room temperature or at high temperature.
L'invention concerne également un moteur à aimant comprenant au moins un aimant permanent selon 1 ' invention .The invention also relates to a magnet motor comprising at least one permanent magnet according to the invention.
L'invention se rapporte aussi à un générateur électrique comprenant au moins un aimant permanent selon 1 ' invention . L'invention concerne également tout système à aimants, par exemple aimants pour l'imagerie médicale, tubes à onde progressive, ou encore paliers magnétiques comprenant au moins un aimant permanent selon l 'invention . L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple et faite en se référant aux dessins annexés dans lesquels :The invention also relates to an electrical generator comprising at least one permanent magnet according to the invention. The invention also relates to any system magnets, for example magnets for medical imaging, traveling wave tubes, or magnetic bearings comprising at least one permanent magnet according to the invention. The invention will be better understood on reading the description which follows, given solely by way of example and with reference to the appended drawings in which:
- la figure 1 est une représentation schématique d'une coupe d'un aimant permanent selon un premier mode de réalisation de l'invention ;- Figure 1 is a schematic representation of a section of a permanent magnet according to a first embodiment of the invention;
- la figure 2 est une représentation schématique d'une coupe d'un aimant permanent selon un deuxième mode de réalisation de l'invention ; et - la figure 3 représente des cycles d'hystérésis d'aimants permanents.- Figure 2 is a schematic representation of a section of a permanent magnet according to a second embodiment of the invention; and - Figure 3 shows hysteresis cycles of permanent magnets.
Pour des raisons de clarté, les différents éléments représentés sur les figures ne sont pas nécessairement à l'échelle. On entend par « grain magnétique » au sens de l'invention un morceau de matière de structure sensiblement monocristalline présentant des propriétés ferromagnétiques ou ferrimagnétiques .For the sake of clarity, the different elements shown in the figures are not necessarily to scale. For the purposes of the invention, the term "magnetic grain" means a piece of material of substantially monocrystalline structure having ferromagnetic or ferrimagnetic properties.
Dans le cadre de l'invention on note X-Y l'alliage des éléments X et Y, XY le composé constitué des éléments X et Y.In the context of the invention, X-Y is the alloy of elements X and Y, XY is the compound consisting of elements X and Y.
L'invention se rapporte à un aimant permanent comprenant des premier et deuxième matériaux magnétiques. Les premier et deuxième matériaux sont tels que le couplage d'échange interfacial entre les deux matériaux favorise 1 'antiparallélisme des aimantations des dits premier et deuxième matériaux magnétiques.The invention relates to a permanent magnet comprising first and second magnetic materials. The first and second materials are such that the interfacial exchange coupling between the two materials promotes the antiparallelism of the magnetizations of said first and second magnetic materials.
Selon un premier mode de réalisation représenté à la figure 1, l'aimant permanent 10, comprend un ensemble de grains magnétiques 12 d'un premier matériau magnétique A présentant une aimantation MA et un deuxième matériau magnétique B recouvrant les surfaces 14 des grains magnétiques 12 sensiblement perpendiculaires à la direction de l'aimantation MA des grains magnétiques 12. Le premier matériau magnétique A présente une aimantation MA à laquelle au moins un élément ou une association d'éléments de la série de transition 3d apporte la contribution principale, et dont le champ d'anisotropie magnétique, mesuré sur au moins 80% des grains monocristallins (12), est supérieur ou égal à 80% de l'aimantation (MA) du premier matériau magnétique.According to a first embodiment shown in FIG. 1, the permanent magnet 10 comprises a set of magnetic grains 12 of a first material magnetic magnet A having a magnetization M A and a second magnetic material B covering the surfaces 14 of the magnetic grains 12 substantially perpendicular to the direction of the magnetization M A of the magnetic grains 12. The first magnetic material A has a magnetization M A at which minus one element or combination of elements of the 3d transition series provides the main contribution, and whose magnetic anisotropy field, measured on at least 80% of the monocrystalline grains (12), is greater than or equal to 80% of the magnetization (M A ) of the first magnetic material.
Selon un mode de réalisation de l'invention, le au moins un éléments de la série de transition 3d ayant une contribution dominante à l'aimantation du premier matériau magnétique A est choisi parmi la liste consistant du fer, du cobalt, du nickel, du manganèse et du chrome.According to an embodiment of the invention, the at least one element of the 3d transition series having a dominant contribution to the magnetization of the first magnetic material A is chosen from the list consisting of iron, cobalt, nickel, manganese and chromium.
En outre, le premier matériau magnétique A peut présenter des propriétés ferromagnétiques ou ferrimagnétiques dures. Le premier matériau magnétique A peut être constitué d'un composé de type RM5 à forte anisotropie, dans lequel R désigne un élément de terre rare ou une association d'éléments de terre rare, par exemple Sm, Pr ou Y, et M désigne un élément de la série de transition 3d par exemple Co.In addition, the first magnetic material A may have ferromagnetic or ferrimagnetic hard properties. The first magnetic material A may consist of a high-anisotropy type compound RM 5 , in which R denotes a rare earth element or a combination of rare earth elements, for example Sm, Pr or Y, and M denotes an element of the 3d transition series for example Co.
Le premier matériau magnétique A peut aussi être un composé anisotrope uniaxial de type R-M dans lequel R désigne un élément de terre rare ou une association d'éléments de terre rare et M désigne un élément de la série des transitions 3d, Fe et incluant éventuellement des éléments additionnels tels que Zr, Cu.The first magnetic material A may also be an uniaxial anisotropic compound of the RM type in which R denotes a rare earth element or a combination of rare earth elements and M denotes an element from the series of 3d, Fe transitions and optionally including additional elements such as Zr, Cu.
Le premier matériau magnétique A peut aussi être un composé de type R2M14B dans lequel R est choisi parmi Nd et/ou Pr et M est majoritairement Fe ou Co. Le premier matériau magnétique A peut aussi être un composé de type FePt ou Co ou Pt.The first magnetic material A can also be a compound of the type R 2 M 14 B in which R is chosen from Nd and / or Pr and M is predominantly Fe or Co. The first magnetic material A can also be a compound of FePt or Co or Pt type.
Selon l'invention, le deuxième matériau magnétique B recouvre au moins 10 % de la surface de chaque grain magnétique 12 et son aimantation MB est sensiblement antiparallèle à l'aimantation MA du premier matériau magnétique lorsque l'aimant permanent selon le mode de réalisation représenté à la figure 1 est soumis à un champ magnétique extérieur H sensiblement antiparallèle à l'aimantation MA du premier matériau magnétique 1.According to the invention, the second magnetic material B covers at least 10% of the surface of each magnetic grain 12 and its magnetization M B is substantially antiparallel to the magnetization M A of the first magnetic material when the permanent magnet according to the The embodiment shown in FIG. 1 is subjected to an external magnetic field H substantially antiparallel to the magnetization M A of the first magnetic material 1.
Selon un mode de réalisation de l'invention, le deuxième matériau magnétique B représente moins de 20%, par exemple moins de 10% du volume total de l'aimant permanent selon l'invention. Le deuxième matériau magnétique B peut être un métal de terre rare de la deuxième série, par exemple Gd, Tb ou Dy ou un alliage à base de tels éléments. Le matériau B peut également être composé d'un alliage d'un tel métal de terre rare de la seconde série et d'un élément non magnétique tel que Al, Zn pour constituer un matériau ferromagnétique.According to one embodiment of the invention, the second magnetic material B represents less than 20%, for example less than 10% of the total volume of the permanent magnet according to the invention. The second magnetic material B may be a rare earth metal of the second series, for example Gd, Tb or Dy or an alloy based on such elements. The material B may also be composed of an alloy of such a rare earth metal of the second series and of a non-magnetic element such as Al, Zn to constitute a ferromagnetic material.
Le deuxième matériau magnétique B peut être constitué d'un alliage ferromagnétique ou ferrimagnétique R-M, où R contient un ou plusieurs éléments de la seconde partie de la série des lanthanides et M contient Fe et/ou Co.The second magnetic material B may consist of a ferromagnetic or ferrimagnetic alloy R-M, where R contains one or more elements of the second part of the lanthanide series and M contains Fe and / or Co.
Le deuxième matériau magnétique B peut être un composé ou alliage ferromagnétique ou ferrimagnétique à base d'éléments de la série des transitions 3d, par exemple Mn ou Cr. Le deuxième matériau magnétique B peut par exemple être choisi parmi les composés suivants :The second magnetic material B may be a ferromagnetic or ferrimagnetic compound or alloy based on elements of the series of 3d transitions, for example Mn or Cr. The second magnetic material B may for example be chosen from the following compounds:
- MnBi de structure hexagonale,- MnBi of hexagonal structure,
- MnAl de structure LlO,- MnAl of LlO structure,
- des alliages d'Heusler, par exemple Cu2MnAl - CrO2. Selon un mode de réalisation représenté à la figure 2, l'aimant permanent 10 comprend un ensemble de grains magnétiques 12 sensiblement monocristallins d'un premier matériau magnétique A présentant une aimantation MA et un deuxième matériau magnétique B recouvrant sensiblement toute la surface des grains magnétiques 12 et étant disposés de manière à ce que l'aimantation MB du deuxième matériau magnétique B soit sensiblement antiparallèle à l'aimantation MA du premier matériau magnétique A lorsque l'aimant permanent 10 est soumis à un champ magnétique extérieur H sensiblement antiparallèle à l'aimantation MA du premier matériau magnétique A.- Heusler alloys, for example Cu 2 MnAl - CrO 2 . According to an embodiment shown in FIG. 2, the permanent magnet 10 comprises a set of substantially monocrystalline magnetic grains 12 of a first magnetic material A having a magnetization M A and a second magnetic material B covering substantially the entire surface of the grains 12 and being arranged so that the magnetization M B of the second magnetic material B is substantially antiparallel to the magnetization M A of the first magnetic material A when the permanent magnet 10 is subjected to an external magnetic field H substantially antiparallel to the magnetization M A of the first magnetic material A.
Avantageusement, une telle disposition du deuxième matériau magnétique B permet d'augmenter la valeur du champ coercitif de l'aimant permanent 10.Advantageously, such an arrangement of the second magnetic material B makes it possible to increase the value of the coercive field of the permanent magnet 10.
Les premier et deuxième matériaux magnétiques A et B peuvent présenter la même composition que dans le premier mode de réalisation. Un aimant permanent selon l'invention peut comprendre des grains magnétiques durs préparés selon un procédé de fabrication comprenant les étapes suivantes :The first and second magnetic materials A and B may have the same composition as in the first embodiment. A permanent magnet according to the invention may comprise hard magnetic grains prepared according to a manufacturing method comprising the following steps:
- on dispose de l'ensemble des grains magnétiques 12 sensiblement monocristallins composés d'un premier matériau magnétique A présentant une aimantation MA à laquelle au moins un élément de la série de transition 3d apporte la contribution principale, et dont le champ d'anisotropie magnétique, mesuré sur au moins 80% des grains monocristallins (12), est supérieur ou égal à 80% de l'aimantation (MA) du premier matériau magnétique,the set of substantially monocrystalline magnetic grains 12 is composed of a first magnetic material A having a magnetization M A to which at least one element of the 3d transition series provides the main contribution, and whose anisotropy field magnetic measurement, measured on at least 80% of the monocrystalline grains (12), is greater than or equal to 80% of the magnetization (M A ) of the first magnetic material,
- on dispose d'un deuxième matériau magnétique B, par exemple sous la forme d'une poudre,a second magnetic material B is provided, for example in the form of a powder,
- on réalise le frittage en phase liquide à une température de frittage supérieure ou égale à la température de fusion du deuxième matériau magnétique B et inférieure à la température de fusion du premier matériau magnétique A.the sintering in the liquid phase is carried out at a sintering temperature greater than or equal to melting temperature of the second magnetic material B and less than the melting temperature of the first magnetic material A.
Un aimant permanent selon l'invention peut être obtenu par un procédé comprenant les étapes suivantes :A permanent magnet according to the invention can be obtained by a method comprising the following steps:
- on mélange des poudres comprenant un premier matériau magnétique A et un deuxième matériau magnétique B,- Powders are mixed comprising a first magnetic material A and a second magnetic material B,
- on densifie ledit mélange des matériaux A et B par tout procédé adapté, où le premier matériau magnétique présent une aimantation MA à laquelle au moins un élément de la série de transition 3d apporte la contribution principale, et dont le champ d'anisotropie magnétique, mesuré sur au moins 80% des grains monocristallins (12), est supérieur ou égal à 80% de l'aimantation (MA) du premier matériau magnétique .densifying said mixture of materials A and B by any suitable method, wherein the first magnetic material has a magnetization M A to which at least one element of the 3d transition series provides the main contribution, and whose magnetic anisotropy field , measured on at least 80% of the monocrystalline grains (12), is greater than or equal to 80% of the magnetization (M A ) of the first magnetic material.
Le procédé selon l'invention peut également comprendre une étape de densification du mélange A-B à basses températures.The method according to the invention may also comprise a step of densifying the mixture A-B at low temperatures.
Un aimant selon l'invention peut être obtenu par enrobage des grains magnétiques 12, puis un procédé de compaction adapté, par exemple sous l'effet d'un champ magnétique puisé. Avantageusement, un tel procédé de compaction permet une densification à base température, préservant le couplage d'échange interfacial entre le premier matériau magnétique A et le deuxième matériau magnétique B selon la configuration des aimantations dite super-ferrimagnétique . Un procédé de fabrication selon l'invention permet d'obtenir avantageusement un aimant permanent à fort champ coercitif.A magnet according to the invention can be obtained by coating the magnetic grains 12, then a suitable compaction process, for example under the effect of a pulsed magnetic field. Advantageously, such a compaction method allows temperature-based densification, preserving the interfacial exchange coupling between the first magnetic material A and the second magnetic material B according to the so-called super-ferrimagnetic magnetization configuration. A manufacturing method according to the invention makes it possible advantageously to obtain a permanent magnet with a strong coercive field.
Un procédé de fabrication selon l'invention peut également comprendre une étape où l'on recouvre les grains A d'une poudre d'une couche de B, par exemple selon une structure de type cœur/coquille.A manufacturing method according to the invention may also comprise a step where the grains A of a powder of a layer of B are covered, for example according to a structure of the heart / shell type.
Un aimant permanent selon l'invention peut également être obtenu au moyen d'un procédé comprenant le dépôt de couches successives des matériaux magnétiques A et B, par exemple par une technique telle que la pulvérisation cathodique, le dépôt laser puisé ou toute autre méthode adaptée.A permanent magnet according to the invention can also be obtained by means of a process comprising the deposition of successive layers of magnetic materials A and B, for example by a technique such as cathodic sputtering, pulsed laser deposition or any other suitable method. .
Un procédé de fabrication selon l'invention peut également comprendre une étape de gravure. La figure 3 représente des cycles d'hystérésis illustrant l'augmentation du champ coercitif des aimants selon l'invention.A manufacturing method according to the invention may also comprise an etching step. FIG. 3 represents hysteresis cycles illustrating the increase of the coercive field of the magnets according to the invention.
Le cycle d'hystérésis 20 sur la figure 3 correspond à celui d'une couche d'un premier matériau magnétique de NdFeB de lOOnm d'épaisseur. Le champ coercitif correspondant au cycle d'hystérésis 20 de la figure 3 est égal à 0,01 Tesla.The hysteresis cycle 20 in FIG. 3 corresponds to that of a layer of a first NdFeB magnetic material of 100 nm in thickness. The coercive field corresponding to the hysteresis cycle 20 of FIG. 3 is equal to 0.01 Tesla.
Le cycle d'hystérésis 22 représenté sur la figure 3 correspond à une couche de GdFe2 de 50 nm d'épaisseur, le champ coercitif d'une telle couche peut être mesuré à 0,002 Tesla.The hysteresis cycle 22 shown in FIG. 3 corresponds to a 50 nm thick layer of GdFe 2 , the coercive field of such a layer can be measured at 0.002 Tesla.
Le cycle d'hystérésis 24 représenté sur la figure 3 correspond à celui d'un aimant permanent selon l'invention. Ledit aimant permanent comprend une structure telle que représentée à la figure 1 avec comme premier matériau magnétique A une structure colonnaire de NdFeB d'environ 100 nm de longueur et 30 nm de section et comme deuxième matériau magnétique deux couches de GdFe2 de 50 nm d'épaisseur chacune. Chaque colonne de NdFeB correspond à un grain monocristallin selon l'invention. Les couches de GdFe2 recouvrent les surfaces des structures colonnaires de NdFeB sensiblement perpendiculaires à la direction de l'aimantation permanente desdites structures colonnaires de NdFeB. Le champ coercitif dudit aimant permanent à température ambiante est d'environ 1 Tesla, soit environ 100 x supérieur à celui de la couche de NdFeB seul.The hysteresis cycle 24 shown in FIG. 3 corresponds to that of a permanent magnet according to the invention. Said permanent magnet comprises a structure as shown in FIG. 1 with the first magnetic material having a columnar structure of NdFeB of approximately 100 nm in length and 30 nm in section and as second magnetic material two layers of GdFe 2 of 50 nm in diameter. each thickness. Each column of NdFeB corresponds to a monocrystalline grain according to the invention. The GdFe layers 2 cover the surfaces of the NdFeB columnar structures substantially perpendicular to the direction of permanent magnetization of said NdFeB columnar structures. The coercive field of said permanent magnet Ambient temperature is about 1 Tesla, about 100x greater than that of the NdFeB layer alone.
L'invention ne se limite pas aux modes de réalisations décrits et ne sera pas interprétée de façon limitative, et englobe tout mode de réalisation équivalent . The invention is not limited to the embodiments described and will not be interpreted in a limiting manner, and encompasses any equivalent embodiment.

Claims

REVENDICATIONS
1. Aimant permanent (10) comprenant:A permanent magnet (10) comprising:
- un ensemble de grains magnétiques (12) sensiblement monocristallins d'un premier matériau présentant une aimantation (MA) à laquelle au moins un élément de la série de transition 3d apporte la contribution principale, et dont le champ d'anisotropie magnétique, mesuré sur au moins 80% des grains monocristallins (12), est supérieur ou égal à 80% de l'aimantation (MA) du premier matériau magnétique,a set of substantially monocrystalline magnetic grains (12) of a first material having a magnetization (M A ) to which at least one element of the 3d transition series provides the main contribution, and whose magnetic anisotropy field, measured on at least 80% of the monocrystalline grains (12), is greater than or equal to 80% of the magnetization (M A ) of the first magnetic material,
- un deuxième matériau magnétique B recouvrant au moins 10% de la surface de chaque grain du matériau magnétique A où le deuxième matériau magnétique B est tel que son aimantation MB se couple de façon sensiblement antiparallèle à l'aimantation MA du premier matériau magnétique A.a second magnetic material B covering at least 10% of the surface of each grain of the magnetic material A where the second magnetic material B is such that its magnetization M B couples substantially antiparallel to the magnetization M A of the first magnetic material AT.
2. Aimant selon la revendication 1, caractérisé en ce que le au moins un élément de la série de transition 3d est choisi parmi la liste consistant du fer, du cobalt, du nickel, du manganèse et du chrome.2. Magnet according to claim 1, characterized in that the at least one element of the 3d transition series is selected from the list consisting of iron, cobalt, nickel, manganese and chromium.
3. Aimant selon l'une des revendications 1 ou 2, caractérisé en ce que le deuxième matériau magnétique (B) recouvre au moins les surfaces (14) sensiblement perpendiculaires à la direction de l'aimantation (MA) de chaque grain magnétique (12) .3. Magnet according to one of claims 1 or 2, characterized in that the second magnetic material (B) covers at least the surfaces (14) substantially perpendicular to the direction of magnetization (M A ) of each magnetic grain ( 12).
4. Aimant selon l'une quelconque des revendications précédentes, caractérisé en ce que le deuxième matériau magnétique (B) recouvre au moins 50% de la surface de chaque grain magnétique (12) .4. Magnet according to any one of the preceding claims, characterized in that the second magnetic material (B) covers at least 50% of the surface of each magnetic grain (12).
5. Aimant selon l'une quelconque des revendications précédentes, caractérisé en ce que le deuxième matériau magnétique (B) se présente sous la forme d'au moins une couche sur la surface de chaque grain magnétique (12) d'une épaisseur supérieure ou égale à 1 nm et/ou inférieure ou égale à 5 μm.5. Magnet according to any one of preceding claim, characterized in that the second magnetic material (B) is in the form of at least one layer on the surface of each magnetic grain (12) having a thickness greater than or equal to 1 nm and / or less or equal to 5 μm.
6. Aimant selon l'une quelconque des revendications précédentes, caractérisé en ce que le deuxième matériau magnétique (B) est disposé de manière à ce que lorsqu'il recouvre lesdits grains magnétique (12) ledit deuxième matériau magnétique (B) présente une aimantation (MB) sensiblement antiparallèle à l'aimantation (MA) desdits grains magnétiques (12) .6. Magnet according to any one of the preceding claims, characterized in that the second magnetic material (B) is arranged so that when it covers said magnetic grains (12) said second magnetic material (B) has a magnetization (M B ) substantially antiparallel to the magnetization (M A ) of said magnetic grains (12).
7. Aimant selon l'une quelconque des revendications précédentes caractérisé en ce que : le premier matériau magnétique (A) est choisi parmi la liste comprenant FePt, CoPt et les composés de type RM5 ou R2M17 (de type 2 :17), ou R2M17Ns, ou F^M14B avec R un élément de terre rare et M un élément de la série de transition 3d, ou un composé magnétique dur tel que MnBi ou MnAl, ou un ferrite hexagonal à base de Sr ou de Ba ;Magnet according to any one of the preceding claims, characterized in that: the first magnetic material (A) is chosen from the list comprising FePt, CoPt and the compounds of type RM 5 or R 2 M 17 (type 2: 17 ), or R 2 M 17 Ns, or F ^ M 14 B with R a rare earth element and M an element of the transition series 3d, or a hard magnetic compound such as MnBi or MnAl, or a hexagonal ferrite based Sr or Ba;
le deuxième matériau magnétique (B) est choisi dans la liste comprenant les composés ou alliages à base de terre rare, les composés ou alliage à base d'un élément de la série de transition 3d, les composés de type R-Fe ou R-Co avec R un lanthanide.the second magnetic material (B) is chosen from the list comprising the compounds or alloys based on rare earth, the compounds or alloy based on an element of the 3d transition series, the compounds of the R-Fe or R-type Co with R a lanthanide.
8. Procédé de fabrication de grains magnétiques durs, comprenant les étapes suivantes : on dispose d'un ensemble de grains magnétiques (12) sensiblement monocristallins composés d'un premier matériau magnétique (A) présentant une aimantation (MA) à laquelle au moins un élément de la série de transition 3d apporte la contribution principale, et dont le champ d'anisotropie magnétique, mesuré sur au moins 80% des grains monocristallins (12), est supérieur ou égal à 80% de l'aimantation (MA) du premier matériau magnétique, on recouvre, au moins 10% de la surface de grains magnétiques (10), d'un deuxième matériau magnétique (B), le deuxième matériau magnétique (B) étant tel que son aimantation (MB) se couple de façon sensiblement antiparallèle à l'aimantation permanente (MA) du premier matériau magnétique (A) .8. A method of manufacturing hard magnetic grains, comprising the following steps: there is a set of substantially monocrystalline magnetic grains (12) composed of a first magnetic material (A) having a magnetization (M A ) to which at least one element of the 3d transition series provides the main contribution, and whose magnetic anisotropy field, measured on at least 80% of the monocrystalline grains (12), is greater than or equal to 80% of the magnetization ( M A ) of the first magnetic material, at least 10% of the surface of magnetic grains (10) is covered with a second magnetic material (B), the second magnetic material (B) being such that its magnetization (M B ) couples substantially antiparallel to the permanent magnetization (M A ) of the first magnetic material (A).
9. Procédé de fabrication d'un aimant permanent comprenant les étapes suivantes : on mélange des poudres comprenant un premier matériau magnétique A et un deuxième matériau magnétique B, on densifie ledit mélange des premier et deuxième matériaux A et B, caractérisé en ce que le premier matériau magnétique présent une aimantation (MA) à laquelle au moins un élément de la série de transition 3d apporte la contribution principale, et dont le champ d'anisotropie magnétique, mesuré sur au moins 80% des grains monocristallins (12), est supérieur ou égal à 80% de l'aimantation (MA) du premier matériau magnétique.9. A method of manufacturing a permanent magnet comprising the steps of: mixing powders comprising a first magnetic material A and a second magnetic material B, densifying said mixture of the first and second materials A and B, characterized in that the first magnetic material having a magnetization (M A ) to which at least one element of the 3d transition series provides the main contribution, and whose magnetic anisotropy field, measured on at least 80% of the monocrystalline grains (12), is greater than or equal to 80% of the magnetization (M A ) of the first magnetic material.
10. Procédé selon la revendication 9 caractérisé en ce qu'il comprend une étape de compaction.10. The method of claim 9 characterized in that it comprises a compaction step.
11. Moteur à aimant caractérisé en ce qu'il comprend au moins un aimant permanent (10) selon l'une quelconque des revendications 1 à 7.11. Magnet motor characterized in that it comprises at least one permanent magnet (10) according to any one of claims 1 to 7.
12. Générateur électrique caractérisé en ce qu'il comprend au moins un aimant permanent (10) selon l'une quelconque des revendications 1 à 7.12. Electric generator characterized in that comprises at least one permanent magnet (10) according to any one of claims 1 to 7.
13. Système à aimant caractérisé en ce qu'il comprend au moins un aimant permanent (10) selon l'une quelconque des revendications 1 à 7. 13. Magnet system characterized in that it comprises at least one permanent magnet (10) according to any one of claims 1 to 7.
PCT/FR2009/051502 2008-08-08 2009-07-24 Permanent magnet WO2010015769A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0855491A FR2934920A1 (en) 2008-08-08 2008-08-08 PERMANENT MAGNETS
FR0855491 2008-08-08

Publications (1)

Publication Number Publication Date
WO2010015769A1 true WO2010015769A1 (en) 2010-02-11

Family

ID=40383735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2009/051502 WO2010015769A1 (en) 2008-08-08 2009-07-24 Permanent magnet

Country Status (2)

Country Link
FR (1) FR2934920A1 (en)
WO (1) WO2010015769A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016146308A1 (en) * 2015-03-13 2016-09-22 Siemens Aktiengesellschaft Anisotropic high-performance permanent magnet having optimised nanostructural design and method for production of same
EP3288043A4 (en) * 2015-04-20 2019-01-16 Lg Electronics Inc. Anisotropic complex sintered magnet containing manganese bismuth and pressureless sintering method therefor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013221828A1 (en) * 2013-10-28 2015-04-30 Siemens Aktiengesellschaft Nanoscale magnetic composite for high-performance permanent magnets

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4107499A1 (en) * 1991-03-08 1992-09-10 Basf Ag New magnetic material based up coupled exchange of hard and soft materials - with alloy including rare earth materials and with remanence to saturation magnetisation of more than 0.6
US20050011588A1 (en) * 2000-08-31 2005-01-20 Showa Denko K.K. Centrifugal casting method, centrifugal casting apparatus, and cast alloy produced by same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4107499A1 (en) * 1991-03-08 1992-09-10 Basf Ag New magnetic material based up coupled exchange of hard and soft materials - with alloy including rare earth materials and with remanence to saturation magnetisation of more than 0.6
US20050011588A1 (en) * 2000-08-31 2005-01-20 Showa Denko K.K. Centrifugal casting method, centrifugal casting apparatus, and cast alloy produced by same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
K. DUMESNIL ET AL.: "Spring magnet behavior in DyFe2/YFe2 laves phase superlattices", PHYSICAL REVIEW B, vol. 62, 1 July 2000 (2000-07-01), pages 1136 - 1140, XP002518716 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016146308A1 (en) * 2015-03-13 2016-09-22 Siemens Aktiengesellschaft Anisotropic high-performance permanent magnet having optimised nanostructural design and method for production of same
EP3288043A4 (en) * 2015-04-20 2019-01-16 Lg Electronics Inc. Anisotropic complex sintered magnet containing manganese bismuth and pressureless sintering method therefor
US10741314B2 (en) 2015-04-20 2020-08-11 Lg Electronics Inc. Anisotropic complex sintered magnet comprising MnBi and atmospheric sintering process for preparing the same

Also Published As

Publication number Publication date
FR2934920A1 (en) 2010-02-12

Similar Documents

Publication Publication Date Title
Nakamura et al. Magnetic properties of extremely small Nd-Fe-B sintered magnets
Skomski et al. Predicting the future of permanent-magnet materials
Cui et al. Nd2Fe14B/FeCo anisotropic nanocomposite films with a large maximum energy product
Komuro et al. Increase of coercivity and composition distribution in fluoride-diffused NdFeB sintered magnets treated by fluoride solutions
Akiya et al. Low temperature diffusion process using rare earth-Cu eutectic alloys for hot-deformed Nd-Fe-B bulk magnets
JP3386747B2 (en) Sputtering target
WO2015004054A1 (en) Annular sintered magnet with radial magnetization and reinforced mechanical strength
WO2010015769A1 (en) Permanent magnet
JP2001237119A (en) Permanent magnet thin film and its manufacturing method
EP1727998B1 (en) Active magnetic bearing with automatic detection of the position thereof
WO2007077809A1 (en) Rare earth magnet and method for producing same
JP5765721B2 (en) Ultra-thin perpendicular magnetization film exhibiting high perpendicular magnetic anisotropy, its production method and use
JP4803398B2 (en) Multilayer permanent magnet
Zirhli et al. Fabrication and Characterization of Fe16N2 Micro‐Flake Powders and Their Extrusion‐Based 3D Printing into Permanent Magnet Form
WO2002015206A1 (en) Thin film rare earth permanent magnet, and method for manufacturing the permanent magnet
Ishimaru et al. Microstructure analysis of high coercivity PLD-Made Nd-Fe-B thick-film improved by Tb-coating-diffusion treatment
Chen et al. Effect of interfacial diffusion on microstructure and magnetic properties of Cu∕ FePt bilayer thin films
FR2605449A1 (en) MAGNETIC BLOCK WITH ADJUSTABLE MAGNET FOR THE PRODUCTION OF A PERMANENT MAGNETIC FIELD IN AN AREA OF INTEREST
JP2005209669A (en) Rare-earth magnet and magnetic circuit using it
Ma et al. Tunable ferromagnetic and antiferromagnetic interfacial exchange coupling in perpendicularly magnetized L1-MnGa/Co2FeAl Heusler bilayers
JP2003168602A (en) Anisotropic rare earth bonded magnet and its manufacturing method
JP5660485B2 (en) Laminated magnet film mover
JP4868061B2 (en) Rare earth magnets
FR2839580A1 (en) Car engine ignition coil, has closed magnetic circuit with magnetic gap filled permanent magnet and outer coil with permanent magnet limiting magnetic trajectory/magnetic field effect
Li et al. XPS analyses on Ta/Au/NiFe/NiO/Ta films

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09740387

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09740387

Country of ref document: EP

Kind code of ref document: A1