WO2010015196A1 - Device and method for testing fabric color - Google Patents

Device and method for testing fabric color Download PDF

Info

Publication number
WO2010015196A1
WO2010015196A1 PCT/CN2009/073087 CN2009073087W WO2010015196A1 WO 2010015196 A1 WO2010015196 A1 WO 2010015196A1 CN 2009073087 W CN2009073087 W CN 2009073087W WO 2010015196 A1 WO2010015196 A1 WO 2010015196A1
Authority
WO
WIPO (PCT)
Prior art keywords
color
fabric
detecting
computer
cie
Prior art date
Application number
PCT/CN2009/073087
Other languages
French (fr)
Chinese (zh)
Inventor
克汗杜尔·阿思曼达
白求智
胡金莲
辛斌杰
Original Assignee
香港纺织及成衣研发中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 香港纺织及成衣研发中心 filed Critical 香港纺织及成衣研发中心
Publication of WO2010015196A1 publication Critical patent/WO2010015196A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06HMARKING, INSPECTING, SEAMING OR SEVERING TEXTILE MATERIALS
    • D06H3/00Inspecting textile materials
    • D06H3/08Inspecting textile materials by photo-electric or television means

Definitions

  • Figure 2 shows a comparison table obtained by using FABRIC EYE D2000 to scan high-order variables based on fabric characterization models of 153 fabrics;
  • Figures 13 and 14 show the L*, a*, b* (D65 64) distribution of the X-rite color card and the 153 standard fabrics. These fabric characterization techniques, typical fabric standards based on the color card domain, are considered to be an effective method for analyzing commonly used fabrics.

Abstract

A device for testing the fabric color comprises a holder, a scanner, a computer and a color analysis system, wherein the color analysis system used to analyze the color feature of a scanned object is stored in the computer. Besides, a method for testing the fabric color comprises scanning the image information of a scanned object fixed on a holder by a scanner, inputting the scanned image information into a computer, converting the inputted scanned object image information from RGB value into CIE*l*a*b value by the computer, setting the related color tolerance information by an user at the user-friendly interface of the computer, conducting color classifying, color searching and auto-matching on the CIE*l*a*b value of the scanned object and a fabric standard color sample database module in the computer database, outputting the standard fabric information conformed with the scanned object information.

Description

检测织物颜色的装置和方法  Apparatus and method for detecting fabric color
技术领域 Technical field
本发明根据非线性颜色模型,可从扫描到的织物图像上准确得到设备独立 色彩坐标, 从而进行颜色分析。要对商用扫描仪进行表征, 只需要一个基于标 准织物的模型就可以了, 无需传统的昂贵器材如色度计、分光光度计、 多光源 照相机等。所述方法和系统可用作表面颜色工业领域的质量控制工具, 如检测 织物、 油漆、 纸、 皮革、 塑料和印刷品等的质量。  According to the non-linear color model, the present invention can accurately obtain device independent color coordinates from the scanned fabric image, thereby performing color analysis. To characterize a commercial scanner, only a standard fabric-based model is required, eliminating the need for traditional expensive equipment such as colorimeters, spectrophotometers, multi-source cameras, and more. The methods and systems can be used as quality control tools in the field of surface color industry, such as testing the quality of fabrics, paints, paper, leather, plastics, and prints.
背景技术 Background technique
由扫描仪获取的 RGB格式的颜色受照明类型和能将可见波长分成多个颜 色组分的光学滤波器的特性有关。常规台式扫描仪的显色性都比较差。所有的 常用成像系统, 包括数码相机、 扫描仪和 CRTs, 它们的颜色再现都是采用相 似的 3 波段颜色编码方案, 因为它们的目的都是要将信息输入到人类视觉系 统。 三重传感器是多对一的反射光谱仪器,我们到目前为止还不能根据简化的 图像来重构完美的原始光谱, 也不可能还原表面所具有的精确的表面反射特 性。 最好的方法是采用一种三参数描述的方式来说明反射系数和照明属性。  The color of the RGB format acquired by the scanner is related to the type of illumination and the characteristics of the optical filter that can divide the visible wavelength into multiple color components. Conventional desktop scanners have poor color rendering. All common imaging systems, including digital cameras, scanners, and CRTs, use a similar 3-band color coding scheme for color reproduction because their purpose is to input information into the human visual system. The triple sensor is a many-to-one reflection spectroscopy instrument. We have not been able to reconstruct a perfect original spectrum from a simplified image so far, nor can it restore the precise surface reflection characteristics of a surface. The best approach is to use a three-parameter description to illustrate the reflection coefficient and illumination properties.
CRT (Cathode Ray Tube, 阴极射线管)显示器、 扫描仪、 彩色打印机和印 前系统等具有高度的设备依赖: 如果没有考虑不同设备的特点、 定性标准、颜 色和表面轮廓, 就把 RGB值从一个设备传送到另一个设备, 则很可能结果会 得到不同的颜色。这种情况在纺织品方面很突出,所以需要高精度的系统能对 设备颜色再现特征做适当处理,如表面轮廓、图像分布噪点的曝光部分等特征, 这样才能正确地评估像素级 RGB值。 颜色特征可定义为设备 "颜色空间"和 CIE颜色测量系统如颜色转换空 间之间的关系, 也可以定义为由一套方程式构成的数学模型。 使用三波段颜色编码的人类视觉系统,对于突发性照明变化表现出非凡的 调整能力。 CIE采用的是另一套设计巧妙的有特定属性的原始刺激,定义为 X、 Y和 Z, 包括相应三刺激值 X、 Y和 Z和颜色匹配函数。 CRT (Cathode Ray Tube) displays, scanners, color printers, and prepress systems have a high degree of equipment dependencies: If you don't consider the characteristics of different devices, qualitative standards, colors, and surface contours, put RGB values from one When the device is transferred to another device, it is likely that the result will get a different color. This situation is very prominent in textiles, so a system with high precision is required. The device color reproduction features are appropriately processed, such as surface contours, exposed portions of image distribution noise, etc., in order to correctly evaluate pixel-level RGB values. The color feature can be defined as the relationship between the device "color space" and the CIE color measurement system such as the color conversion space, or it can be defined as a mathematical model consisting of a set of equations. The human vision system, which uses three-band color coding, exhibits extraordinary adjustments for sudden illumination changes. CIE uses another set of well-designed original stimuli with specific properties, defined as X, Y, and Z, including the corresponding tristimulus values X, Y, and Z, and the color matching function.
b _ b _  b _ b _
X = ^ K.E( ).X ( ).r( ).d Υ = ^ Κ.Ε(λ).Ϋ(λ) .Γ(λ).Μ b  X = ^ K.E( ).X ( ).r( ).d Υ = ^ Κ.Ε(λ).Ϋ(λ) .Γ(λ).Μ b
/ = Ύ κ.Ε{λ)Ι{λ).ν{λ).άλ  / = κ κ.Ε{λ)Ι{λ).ν{λ).άλ
。 (1) . (1)
(入) =能量分布函数, X (人)=标准观测者的颜色匹配函数, Ι (λ)=被测对 象的反射系数。  (in) = energy distribution function, X (person) = color matching function of the standard observer, Ι (λ) = reflection coefficient of the measured object.
Berns和 Shyu在 1994~1995年间提出了基于 Beer-Bouger和 Kubelka-Munk 理论和扫描信号的颜色混合方法。他们采用多项式回归。 Hardeberg等人在 1996 年提出一种基于三阶多项式回归的分析方法。 他们使用 CIE 颜色空间值和 IT8.7/2校准色卡其中的 288个的扫描值。 结果发现多项式回归比其他方式所 得的结果好。  Berns and Shyu proposed a color mixing method based on Beer-Bouger and Kubelka-Munk theory and scanning signals from 1994 to 1995. They use polynomial regression. In 1996, Hardeberg et al. proposed an analytical method based on third-order polynomial regression. They use the CIE color space value and the 8.7 scan values of the IT8.7/2 calibration color card. It turns out that the polynomial regression is better than the results obtained by other methods.
Finlayson和 Drew提到由颜色设备如扫描仪、彩色复印机以及彩色照相机 等测量所得的颜色值必须转换成比色 "三刺激"值, 以便用设备独立色彩的形 式来表征它们。 它们还提出一种约束回归法, 找到 RGB数据和相应 XYZ三 刺激值的距离平方的总和的最小值点,即使在校准颜色不完整的情况下也可以 办到。 Finlayson and Drew mentioned that color values measured by color devices such as scanners, color copiers, and color cameras must be converted to colorimetric "tri-stimulus" values to characterize them in the form of device-independent colors. They also propose a constrained regression method that finds the minimum point of the sum of the squared distances of the RGB data and the corresponding XYZ tristimulus values, even if the calibration color is incomplete. Do it.
Kang在 1997年指出许多科学家已经成功的应用回归方法使用 IT8.7/2校 准色卡和 Sharp JX 450扫描仪将扫描所得 RGB值转换成为比色值。 他把根据 不同阶多项式和不同标准光源条件下获得的结果做了比较。  Kang pointed out in 1997 that many scientists have successfully applied regression methods to convert the scanned RGB values into colorimetric values using the IT8.7/2 calibration color card and the Sharp JX 450 scanner. He compared the results obtained with different order polynomials and different standard light sources.
Noriega等人在 2001年用正密度和负密度测量法来测量扫描所得的 RGB 值和 CIE XYZ颜色空间值来判定扫描仪的属性。 他们因此得出以下结论: 扫 描仪扫描的比色值的偏差取决于设备的属性和相关的颜色管理系统。在基于多 项式回归的模型中, 颜色空间包含样品越多, 则域边界 (the gamut boundary) 处的误差越少。 像 ISO 12640和 12641这些常用测试指标中域边界处的样品 数量都很有限。不过 Green在 2000年提出了一种定义中间域边界(media gamut boundary) 的新的测试指标, 所采用的是二阶多项式回归。 尽管最近的学术论文中提到照相机的比色表征方法包含多项式回归、神经 网络和查找表,但实际上在扫描仪表征的方法中多项式回归是最适合的。 比色 表征的主要限制因素是必须要同时结合光照和观测函数。 最近的一项研究发 现, 在同一光源条件下, 比色表征所反映的颜色准确性要高于光谱法。  In 2001, Noriega et al. used positive density and negative density measurements to measure the RGB values of the scan and the CIE XYZ color space values to determine the properties of the scanner. They therefore conclude that the deviation of the colorimetric values scanned by the scanner depends on the properties of the device and the associated color management system. In a model based on polynomial regression, the more color space contains samples, the less error there is at the gamut boundary. The number of samples at the domain boundaries in the commonly used test indicators like ISO 12640 and 12641 is very limited. However, in 2000, Green proposed a new test metric that defines the media gamut boundary, using a second-order polynomial regression. Although recent studies have mentioned that the colorimetric characterization methods of cameras include polynomial regression, neural networks, and lookup tables, polynomial regression is actually the most appropriate method in scanner characterization. The main limiting factor in colorimetric characterization is the need to combine illumination and observation functions. A recent study found that colorimetric characterizations are more accurate than spectroscopy at the same source.
美国专利 20050018191 A1提出了有相机反射率评估的 11变量多项式模型 RGBXYZ。 不过, 23变量模型对减少误差的效果是最理想的, 而这对于 RGB 转 CIE L*a*b和基于材料的特征也是最适合的。 因此, 基于标准色卡的典型织 物标准就被提议用来表征在特定变量模型下所有 ATSM照明和观测者函数的 的扫描仪颜色。 颜色表征图的最佳选择一一即多少 (或者哪些) 样本会影响到表征性能。 Cheung 和 Westland在 2006年通过实验验证并提出了标准 Gretag Macbeth色 卡, 所述 Gretag Macbeth色卡 DC (直流) 颜色只用到一套 1269 Munsell表面 颜色的优化颜色样品的子集。 美国专利 7230707B2 中, 要求分光光度计应当结合使用具有对材料颜色 能进行准确表征的照相机, 且这种材料要有典型的表面反射属性。 U.S. Patent No. 2,005,018,191 A1 proposes an 11-variable polynomial model RGBXYZ with camera reflectance evaluation. However, the 23-variable model is ideal for reducing errors, which is also best for RGB-to-CIE L*a*b and material-based features. Therefore, typical fabric standards based on standard color cards are proposed to characterize the scanner color of all ATSM illumination and observer functions under a particular variable model. The best choice of color characterization maps is how many (or which) samples will affect characterization performance. Cheung and Westland passed the experimental verification in 2006 and proposed the standard Gretag Macbeth color. The card, the Gretag Macbeth color card DC (DC) color uses only a subset of the 1269 Munsell surface color optimized color samples. In U.S. Patent 7,230,707 B2, it is required that a spectrophotometer should be used in conjunction with a camera that accurately characterizes the color of the material, and that such material has typical surface reflection properties.
发明内容 Summary of the invention
本发明涉及的是一种利用扫描仪分析织物颜色的装置和方法。现有技术的 颜色分析大多要使用色度计、 分光光度计、 多光源照相机等昂贵的设备。本发 明所要解决的问题是提供一种成本低的颜色检验的设备和方法。本发明采用的 技术方案是: 采用一种颜色特性分析系统模块, 根据非线性颜色模型, 可从扫 描到的织物图像上准确得到设备独立色彩坐标, 从而进行颜色分析。要对商用 扫描仪进行表征, 只需要一个基于标准织物的模型就可以了。所述方法和系统 可用作表面颜色工业领域的质量控制工具, 如检测织物、 油漆、 纸、 皮革、 塑 料和印刷品等的质量。 本发明所述检测织物颜色的装置和方法的装置包括: 夹具: 安装在扫描仪 上, 用于固定检测对象; 扫描仪: 获取检测对象图像信息数据; 计算机: 连接 到扫描器,用于处理检测对象图像信息数据;颜色分析系统:存储在计算机里, 用于分析扫描对象的颜色特性。本发明所述检测织物颜色的装置和方法中, 所 述颜色分析系统包括用于把扫描所得图像信息从 RGB值转换为 CIE*l*a*b值 的变量非线性模型模块。 本发明所述检测织物颜色的装置和方法中, 所述多变量非线性模型使用 23个变量时最佳。
Figure imgf000007_0001
The present invention relates to an apparatus and method for analyzing the color of a fabric using a scanner. Most of the prior art color analysis uses expensive equipment such as a colorimeter, a spectrophotometer, and a multi-source camera. The problem to be solved by the present invention is to provide an apparatus and method for low cost color inspection. The technical solution adopted by the invention is: adopting a color characteristic analysis system module, according to the nonlinear color model, the device independent color coordinates can be accurately obtained from the scanned fabric image, thereby performing color analysis. To characterize a commercial scanner, you only need a standard fabric-based model. The methods and systems can be used as quality control tools in the field of surface color industry, such as testing the quality of fabrics, paints, paper, leather, plastics, and prints. The apparatus and method for detecting the color of a fabric according to the present invention comprises: a fixture: mounted on a scanner for fixing a detection object; a scanner: acquiring image information data of the detection object; and a computer: connected to the scanner for processing detection Object image information data; color analysis system: stored in a computer for analyzing the color characteristics of the scanned object. In the apparatus and method for detecting the color of a fabric according to the present invention, the color analysis system includes a variable nonlinear model module for converting scanned image information from RGB values to CIE*l*a*b values. In the apparatus and method for detecting the color of a fabric according to the present invention, the multivariable nonlinear model is optimal when 23 variables are used.
Figure imgf000007_0001
J[(L * -Lp*) + (a * -ap*) + (b * -bp*)] J[(L * -Lp*) + (a * -ap*) + (b * -bp*)]
ERROR误差 = 本发明所述检测织物颜色的装置和方法中, 所述 23个变量为织物的属性 信息值。本发明所述检测织物颜色的装置和方法中,所述颜色分析系统包括用 于与扫描所得图像信息进行颜色分类、颜色搜索和自动匹配的织物标准色样数 据库模块。 本发明所述检测织物颜色的装置和方法中,所述颜色分析系统包括用户友 好界面模块, 用户在用户友好界面设定色容条件,多变量非线性模型模块转换所得的扫 描对象 CIE*l*a*b值和织物标准色样数据库模块里的织物标准色样信息根据设 定色容条件进行颜色分类、 颜色搜索和自动匹配; 所述用户友好界面根据检测对象的 RGB值得到并显示装置独立 CIE颜色 坐标。 本发明所述检测织物颜色的装置和方法中,所述织物标准色样数据库模块 是根据常用织物的典型表面轮廓特征和多项式回归模型的鲁棒性的分析结果 中选出来的 153种具有代表性织物标准色样所得,那些很透明的, 光滑的以及 表面复杂的织物材料都被排除在外; 选好标准色样后, 用分光光度计对所选取 标准色样进行数据采集, 采集所得数据即为织物标准色样数据库模块。 本发明所述检测织物颜色的装置和方法中, 所述用于固定检测对象的夹 具, 起到对检测对象的定位作用, 安装在所述扫描仪上。 本发明所述检测织物颜色的装置和方法中, 所述方法包括以下步骤: S1 : 用扫描仪扫描固定在夹具上的扫描对象的图像信息; ERROR Error = In the apparatus and method for detecting the color of a fabric according to the present invention, the 23 variables are attribute information values of the fabric. In the apparatus and method for detecting the color of a fabric of the present invention, the color analysis system includes a fabric standard color sample database module for color sorting, color search, and automatic matching with the scanned image information. In the apparatus and method for detecting the color of a fabric according to the present invention, the color analysis system includes a user-friendly interface module. The user sets the color tolerance condition in the user-friendly interface, and the multi-variable nonlinear model module converts the scanned object CIE*l*a*b value and the fabric standard color sample information in the fabric standard color sample database module according to the set color capacity condition. Perform color classification, color search, and automatic matching; the user-friendly interface obtains and displays device independent CIE color coordinates according to the RGB values of the detected objects. In the apparatus and method for detecting the color of a fabric according to the present invention, the fabric standard color sample database module is 153 representative fabrics selected according to typical surface contour features of common fabrics and robustness analysis results of polynomial regression models. According to the standard color samples, those fabric materials that are very transparent, smooth and complex in surface are excluded. After the standard color samples are selected, the selected standard color samples are collected by a spectrophotometer, and the collected data is the fabric. Standard color sample database module. In the apparatus and method for detecting the color of a fabric according to the present invention, the jig for fixing the detection object functions as a positioning object to be detected and is mounted on the scanner. In the apparatus and method for detecting the color of a fabric according to the present invention, the method comprises the following steps: S1: scanning, by a scanner, image information of a scanned object fixed on the fixture;
S2: 把扫描所得扫描对象的图像信息输入连接到扫描仪上的计算机中;  S2: input image information of the scanned object to be scanned into a computer on the scanner;
S3: 计算机把输入的扫描对象图像信息从 RGB值转换为 CIE*l*a* b值; S3: The computer converts the input scanned object image information from the RGB value to the CIE*l*a*b value;
S4 : 用户在计算机的用户友好界面设定相关色容信息, 如: DE , DL*,Da*,Db*, Dc* & Dh*; S4: The user sets relevant color information in the user-friendly interface of the computer, such as: DE, DL*, Da*, Db*, Dc* &Dh*;
S5: 把 S3所得的扫描对象 CIE*l*a* b值与计算机数据库里的织物标准色 样数据库模块进行颜色分类、 颜色搜索和自动匹配, 根据 S4中用户自定义色 容条件输出与检测对象信息相符的标准织物信息。 本发明所述检测织物颜色的装置和方法中,所述颜色分析系统通过填补织 物(substrates) 的 XYZ/CIE L*a*b*值的基本数据库, 预测到基于 XYZ/CIE L*a*b*匹配的染料配方。 S5: Perform color classification, color search and automatic matching on the scanned object CIE*l*a* b value obtained by S3 and the fabric standard color sample database module in the computer database, and output and detect the object according to the user-defined color capacity condition in S4. Standard fabric information that matches the information. In the apparatus and method for detecting the color of a fabric according to the present invention, the color analysis system predicts to be based on XYZ/CIE L*a*b by filling a basic database of XYZ/CIE L*a*b* values of the substrates. * Matching dye formulations.
通过使用本发明所提供检测织物颜色的装置和方法可以得到以下有益效 果- 在多光源和观测者 (ASTM颜色测量标准) 下的设备独立 CIE色彩坐标 可以从所测量区域 (ROI) 扫描到的 RGB值得到, 而不需要采用昂贵的色度 计、分光光度计等, 所述用于织物颜色分析的系统适用于不同材质如羊毛、丝 綢或者其他天然或合成的纤维,用户定义色容后,数据库可对这些不同材质进 行颜色分类和自动匹配。所述方法可用在表面颜色应用工业领域的很多商用台 式扫描仪上, 这些工业领域包括纺织品、 画、 纸、 皮革、 塑料、 印刷品等。  The following benefits can be obtained by using the apparatus and method for detecting the color of the fabric provided by the present invention - device independent CIE color coordinates under multiple light sources and observers (ASTM color measurement standards) can be scanned from the measured area (ROI) to RGB The value is obtained without using an expensive colorimeter, spectrophotometer, etc., and the system for fabric color analysis is suitable for different materials such as wool, silk or other natural or synthetic fibers, after user-defined color tolerance, The database can color and automatically match these different materials. The method can be applied to many commercial desktop scanners in the industrial field of surface color applications, including textiles, drawings, paper, leather, plastics, printed matter and the like.
附图说明 DRAWINGS
下面将结合附图及实施例对本发明作进一步说明, 附图中:  The present invention will be further described below in conjunction with the accompanying drawings and embodiments, in which:
图 1所示为用 FABRIC EYE D2000扫描 Xrite色卡验证模型的高阶变量结 果比较表格;  Figure 1 shows a comparison table of high-order variable results for scanning the Xrite color card verification model with FABRIC EYE D2000;
图 2所示为用 FABRIC EYE D2000扫描, 采用基于 153种织物的织物表 征模型的高阶变量所得的比较表格;  Figure 2 shows a comparison table obtained by using FABRIC EYE D2000 to scan high-order variables based on fabric characterization models of 153 fabrics;
图 3所示为用 FABRIC EYE D2000扫描, 采用基于 153种织物的表征模 型来扫描其中的 52种随机织物得到的结果表格;  Figure 3 shows a table of results obtained by scanning a 52 random fabrics based on a 153 fabric-based characterization model with a FABRIC EYE D2000 scan;
图 4-6是本发明通过扫描仪的颜色表征进行织物颜色分析的系统构成示意 图; 图 7所示为所述系统的工作原理示意图; 图 8所示为被扫描织物的 ROI颜色分析的用户友好界面示意图;  4-6 are schematic diagrams showing the system configuration of the fabric color analysis by the color characterization of the scanner of the present invention; FIG. 7 is a schematic diagram showing the working principle of the system; FIG. 8 is a user-friendly ROI color analysis of the scanned fabric. Interface diagram;
替换页 (细则第 26条) 图 9和图 10所示为两种不同的扫描仪 D - 2000及佳能 8887对 X-rite SGA 色卡 140的颜色表征结果示意图; Replacement page (Article 26) 9 and 10 are schematic diagrams showing the color characterization results of two different scanners D-2000 and Canon 8887 for the X-rite SGA color card 140;
图 11所示为分别采用 RGB L*a*b*模型和 RGBXYZ 23 Coffs.模型时用 FABRIC EYE D2000扫描 Xrite色卡得到的结果比较示意图;  Figure 11 shows a comparison of the results obtained by scanning the Xrite color card with the FABRIC EYE D2000 using the RGB L*a*b* model and the RGBXYZ 23 Coffs.
图 12所示为用 FABRIC EYE D2000扫描 Xrite色卡所得的高阶变量结果 比较图;  Figure 12 shows a comparison of the results of the higher-order variables obtained by scanning the Xrite color card with the FABRIC EYE D2000;
图 13和图 14所示为 X-rite色卡和所述 153织物标准的 L *、 a *、 b* (D65 64) 的分布状态;  Figures 13 and 14 show the distribution of the X-rite color card and the standard L*, a*, b* (D65 64) of the 153 fabric;
图 15、 图 16和图 17所示为采用织物颜色表征 D-2000扫描仪得到的 CIE L*、 a*、 b* (D65-64) 的预测性的实验值。  Figure 15, Figure 16, and Figure 17 show the predictive experimental values of CIE L*, a*, b* (D65-64) obtained by fabric color characterization of the D-2000 scanner.
具体实施方式 detailed description
图 4-6所示为本发明通过扫描仪表征织物颜色的系统的组成示意图。所述 系统包括: 图 4所示的个人电脑和与个人电脑相连的扫描仪、 图 5所示的带有 色卡样块的织物模板和图 6所示的 153种标准织物色样。 带有色卡样块的织物模板是用来校准扫描仪的。多项式回归表征技术是用 标准 X-write色卡来评估织物颜色的, 下文中将结合不同照明条件下连接三个 典型扫描仪到分光光度计上去时推演设备独立色彩 CIE参数的结果时来详述。 但是用所得到的表征模型来证实纯色织物的 CIE颜色坐标并不合适。 因此, 建议把基于色卡域的典型织物标准 (如图 13、 14所示) 用来表征 那些分析常规纯色织物的扫描仪。考虑到织物的典型表面特征和多项式回归模 型的鲁棒性,在排除典型样品(非常透明、表面很光滑且具有复杂轮廓的)后, 153种纯色织物 (如图 6所示) 被选出, 则合适采用 23个变量的基于 RGB  4-6 are schematic diagrams showing the composition of a system for characterizing fabric color by a scanner according to the present invention. The system includes: a personal computer shown in Fig. 4 and a scanner connected to a personal computer, a fabric template with a color card sample shown in Fig. 5, and 153 standard fabric color samples shown in Fig. 6. A fabric template with a color card sample is used to calibrate the scanner. The polynomial regression characterization technique uses a standard X-write color card to evaluate the color of the fabric. The following is a detailed description of the results of the device independent color CIE parameters when connecting three typical scanners to the spectrophotometer under different lighting conditions. . However, it is not appropriate to use the resulting characterization model to verify the CIE color coordinates of a solid color fabric. Therefore, it is recommended to use typical fabric standards based on the color card domain (shown in Figures 13 and 14) to characterize scanners that analyze conventional solid color fabrics. Taking into account the typical surface characteristics of the fabric and the robustness of the polynomial regression model, after excluding typical samples (very transparent, very smooth and complexly contoured), 153 solid-colored fabrics (shown in Figure 6) were selected. It is suitable to use RGB based on 23 variables.
替换百 (细则第 26条) L*a*b*织物的模型。 Replacement of 100 (Article 26) Model of L*a*b* fabric.
图 7所示为所述系统的工作原理示意图。 关键参数特征对颜色显示有影 响。首先,应该检査分光光度计的带通误差,必须根须参照 ASTM E308-06 (用 CIE 系统计算物体颜色的标准) 将三色刺激值和 L*, a* , b*都调整到 400-700nm。 所述第一步完成后, 基于 23个变量的(方程式 2) 的非线性模型 可以通过优化每个光源和观测 ό r.o r 6 Γ. Γg rl b条件的目标误差函数(方程式 3 ) 获得。  Figure 7 shows a schematic diagram of the working principle of the system. Key parameter characteristics have an effect on the color display. First, the bandpass error of the spectrophotometer should be checked. The tristimulus values and L*, a*, b* must be adjusted to 400- by reference to ASTM E308-06 (Standard for Calculating Object Colors with the CIE System). 700nm. After the first step is completed, a nonlinear model based on 23 variables (Equation 2) can be obtained by optimizing each source and observing the target error function (Equation 3) of the condition ό r.o r 6 Γ. Γg rl b.
Figure imgf000011_0002
Figure imgf000011_0002
1/21/2
J [(L * -Lp*) + (a * -ap*) + (6 * -bp*)]
Figure imgf000011_0001
J [(L * -Lp*) + (a * -ap*) + (6 * -bp*)]
Figure imgf000011_0001
图 8所示对被扫描织物的 ROI进行颜色分析的用户友好界面示意图。 表 征和优化非线性模型之后, 用户可以在用户友好界面选择每个光源和观测者, 通过选择被测区域(ROI)来分析颜色参数。这样就获得了设备独立色彩参数, 这些参数可用在随后的所有步骤(颜色交流、展示、渲染、颜色分类和匹配)。 替换页 (细则第 26条) 图 9和图 10所示为用两种不同的扫描仪 D-2000及佳能 8887对 X-rite SGA 色卡 140的颜色表征结果示意图。 Figure 8 is a schematic illustration of a user friendly interface for color analysis of the ROI of the fabric being scanned. After characterizing and optimizing the nonlinear model, the user can select each source and observer in a user-friendly interface and analyze the color parameters by selecting the region to be tested (ROI). This gives the device independent color parameters that can be used in all subsequent steps (color communication, presentation, rendering, color categorization, and matching). Replacement page (Article 26) Figures 9 and 10 show the results of color characterization of the X-rite SGA color card 140 using two different scanners D-2000 and Canon 8887.
图 11所示为 FABRIC EYE D2000扫描 Xrite色卡分别采用 RGB L*a*b*和 RGBXYZ 23 Coffs.模型的比较结果示意图。 对于每个扫描仪, RGB L*a*b*成 像效果好于 RGBXYZ的成像效果。在所有案例中 RGBL*a*b*模型预测的颜色 差别 (DE平均值、 最大值、 最小值和标准方差) 都比 RGBXYZ模型相比要 小。  Figure 11 shows a comparison of the results of the RGB L*a*b* and RGBXYZ 23 Coffs. models for the FABRIC EYE D2000 scan Xrite color card. For each scanner, RGB L*a*b* imaging is better than RGBXYZ imaging. In all cases, the RGBL*a*b* model predicted color differences (DE average, maximum, minimum, and standard deviation) were smaller than the RGBXYZ model.
图 12所示为用 FABRIC EYE D2000扫描 Xrite色卡的高阶变量结果比较 示意图。 误差如 DE平均值、 最大值、 最小值和标准方差随多项式变量的增加 而减小。 在测量织物样品时, 多于 23个变量时误差不再有明显改善, -因此可 以认为这就是最佳方案。  Figure 12 shows a comparison of the results of high-order variables for scanning Xrite color cards with the FABRIC EYE D2000. Errors such as DE average, maximum, minimum, and standard deviation decrease as polynomial variables increase. When measuring fabric samples, the error is no longer significantly improved with more than 23 variables - so this is considered to be the best solution.
图 1、 2、 3所示验证了事实的结果。 图 1所示为用 FABRIC EYE D2000 扫描, 采用 Xrite色卡验证模型的高阶变量的比较结果。 图 2所示用 FABRIC EYE D2000扫描, 采用基于 153种织物的织物表征模型的高阶变量的比较结 果。 图 3所示用 FABRIC EYE D2000扫描, 采用基于 153种织物模型扫描其 中的 52种随机织物的高阶变量的验证结果示意表格。  Figures 1, 2, and 3 verify the results of the facts. Figure 1 shows the comparison of the higher-order variables of the model with the Xrite color card scan using the FABRIC EYE D2000. Figure 2 shows a comparison of higher-order variables using a FABRIC EYE D2000 scan using a 153 fabric-based fabric characterization model. Figure 3 shows the results of a verification of the high-order variables of 52 random fabrics based on 153 fabric models scanned with the FABRIC EYE D2000.
图 13和图 14所示为 X-rite色卡和所述 153种标准织物的 L *、a *、b*(D65 64)分布。这些采用织物表征技术、基于色卡域的典型织物标准, 认为是一种 分析常用织物的有效方法。  Figures 13 and 14 show the L*, a*, b* (D65 64) distribution of the X-rite color card and the 153 standard fabrics. These fabric characterization techniques, typical fabric standards based on the color card domain, are considered to be an effective method for analyzing commonly used fabrics.
图 15、图 16和图 17所示为织物颜色表征 D-2000扫描仪采用所述技术预 替换页 (细则第 26条) 测的的 L*、 a*、 b*(D6564)分布结果。 Figure 15, Figure 16, and Figure 17 show the fabric color characterization D-2000 scanner using the technology pre-replacement page (Rule 26) The measured distribution results of L*, a*, b* (D6564).
替换页 (细则第 26条) Replacement page (Article 26)

Claims

权 利 要 求 Rights request
1. 一种检测织物颜色的装置和方法, 其特征在于, 该装置包括: 夹具: 安装在扫描仪上, 用于固定检测对象; A device and method for detecting a color of a fabric, the device comprising: a jig: mounted on a scanner for fixing a test object;
扫描仪: 获取检测对象图像信息数据;  Scanner: acquiring image information data of the detection object;
计算机: 连接到扫描器, 用于处理检测对象图像信息数据;  Computer: connected to the scanner, configured to process image data of the detection object;
颜色分析系统: 存储在计算机里, 用于分析扫描对象的颜色特性。  Color Analysis System: Stored in a computer to analyze the color characteristics of scanned objects.
2. 根据权利要求 1 所述检测织物颜色的装置和方法, 其特征在于, 所述 颜色分析系统包括用于把扫描所得图像信息从 RGB值转换为 CIE*l*a*b值的 变量非线性模型模块。  2. Apparatus and method for detecting the color of a fabric according to claim 1, wherein said color analysis system comprises variable nonlinearity for converting scanned image information from RGB values to CIE*l*a*b values. Model module.
3. 根据权利要求 2述检测织物颜色的装置和方法, 其特征在于, 所述多 变量非线性模型使用 23个变量时最佳。 3. Apparatus and method for detecting the color of a fabric according to claim 2, wherein said multivariable nonlinear model is optimal when 23 variables are used.
Figure imgf000015_0001
Figure imgf000015_0001
J[(L * -Lp*) + (a * -ap*) + (b * -bp*)] J[(L * -Lp*) + (a * -ap*) + (b * -bp*)]
ERROR误差 =  ERROR error =
4. 据权利要求 3 述检测织物颜色的装置和方法, 其特征在于, 所述 23 个变量为织物的属性信息值。 4. Apparatus and method for detecting the color of a fabric according to claim 3, wherein the 23 variables are attribute information values of the fabric.
5. 根据权利要求 1所述检测织物颜色的装置和方法, 其特征在于, 所述 颜色分析系统包括用于与扫描所得图像信息进行颜色分类、颜色搜索和自动匹 配的织物标准色样数据库模块。 5. Apparatus and method for detecting the color of a fabric according to claim 1 wherein said color analysis system includes a fabric standard color sample database module for color sorting, color searching, and automatic matching with scanned image information.
6. 利要求 1所述检测织物颜色的装置和方法, 其特征在于, 所述颜色分 析系统包括用户友好界面模块, 用户在用户友好界面设定色容条件,多变量非线性模型模块转换所得的扫 描对象 CIE*l*a*b值和织物标准色样数据库模块里的织物标准色样信息根据设 定色容条件进行颜色分类、 颜色搜索和自动匹配; 6. The apparatus and method for detecting the color of a fabric according to claim 1, wherein the color is divided into The analysis system includes a user-friendly interface module, the user sets the color tolerance condition in the user-friendly interface, and the multi-variable nonlinear model module converts the scanned object CIE*l*a*b value and the fabric standard color in the fabric standard color sample database module. The sample information is color-classified, color-searched, and automatically matched according to the set color-capacity conditions;
所述用户友好界面根据检测对象的 RGB值得到并显示装置独立 CIE颜色 坐标。  The user friendly interface derives and displays device independent CIE color coordinates based on the RGB values of the detected objects.
7. 权利要求 1所述检测织物颜色的装置和方法, 其特征在于, 所述织物 标准色样数据库模块是根据常用织物的典型表面轮廓特征和多项式回归模型 的鲁棒性的分析结果中选出来的 153种具有代表性织物标准色样所得,那些很 透明的, 光滑的以及表面复杂的织物材料都被排除在外; 选好标准色样后, 用 分光光度计对所选取标准色样进行数据采集,采集所得数据即为织物标准色样 数据库模块。 7. The apparatus and method for detecting the color of a fabric according to claim 1, wherein the fabric standard color sample database module is selected based on a typical surface contour feature of a common fabric and a robustness analysis result of a polynomial regression model. 153 kinds of representative fabric standard color samples, those very transparent, smooth and complex surface materials are excluded; after selecting the standard color samples, the selected standard color samples are collected by spectrophotometer. The collected data is the fabric standard color sample database module.
8. 根据权利要求 1所述检测织物颜色的装置和方法, 其特征在于, 所述 用于固定检测对象的夹具,起到对检测对象的定位作用,安装在所述扫描仪上。  8. The apparatus and method for detecting the color of a fabric according to claim 1, wherein the fixture for fixing the detection object functions as a positioning object to be detected and is mounted on the scanner.
9. 一种检测织物颜色的装置和方法, 其特征在于, 所述方法包括以下步 骤: S1 : 用扫描仪扫描固定在夹具上的扫描对象的图像信息;  9. Apparatus and method for detecting the color of a fabric, the method comprising the steps of: S1: scanning, by a scanner, image information of a scanned object fixed on the fixture;
S2: 把扫描所得扫描对象的图像信息输入连接到扫描仪上的计算机中; S2: input image information of the scanned object to be scanned into a computer on the scanner;
S3: 计算机把输入的扫描对象图像信息从 RGB值转换为 CIE*l*a* b值; S3: The computer converts the input scanned object image information from the RGB value to the CIE*l*a*b value;
S4 : 用户在计算机的用户友好界面设定相关色容信息, 如: DE , DL*,Da*,Db*, Dc* & Dh*; S4: The user sets relevant color information in the user-friendly interface of the computer, such as: DE, DL*, Da*, Db*, Dc* &Dh*;
S5: 把 S3所得的扫描对象 CIE*l*a* b值与计算机数据库里的织物标准色 样数据库模块进行颜色分类、 颜色搜索和自动匹配, 根据 S4中用户自定义色 容条件输出与检测对象信息相符的标准织物信息。 S5: The CIE*l*a* b value of the scanned object obtained by S3 and the fabric standard color in the computer database The sample database module performs color classification, color search, and automatic matching, and outputs standard fabric information that matches the detected object information according to the user-defined color capacity condition in S4.
10. 根据权利要求 1述检测织物颜色的装置和方法, 其特征在于, 所述颜 色分析系统通过填补织物 (substrates) 的 XYZ/CIE L*a*b*值的基本数据库, 预测到基于 XYZ/CIE L*a*b*匹配的染料配方。  10. Apparatus and method for detecting the color of a fabric according to claim 1, wherein said color analysis system predicts to be based on XYZ/ by filling a basic database of XYZ/CIE L*a*b* values of the substrates. CIE L*a*b* matched dye formulation.
PCT/CN2009/073087 2008-08-04 2009-08-04 Device and method for testing fabric color WO2010015196A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12996508P 2008-08-04 2008-08-04
US61/129,965 2008-08-04

Publications (1)

Publication Number Publication Date
WO2010015196A1 true WO2010015196A1 (en) 2010-02-11

Family

ID=41663292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/073087 WO2010015196A1 (en) 2008-08-04 2009-08-04 Device and method for testing fabric color

Country Status (2)

Country Link
CN (1) CN101788341B (en)
WO (1) WO2010015196A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3321668A3 (en) * 2016-11-11 2018-05-30 Saurer Germany GmbH & Co. KG Method and apparatus for evaluating the quality of a longitudinally moving strand-shaped material
CN111751294A (en) * 2020-06-30 2020-10-09 深兰科技(达州)有限公司 Cloth defect detection method based on learning and memory
CN114252401A (en) * 2021-12-17 2022-03-29 江苏恒力化纤股份有限公司 Method for detecting fiber dyeing based on spectral image color processing technology
CN115797260A (en) * 2022-11-03 2023-03-14 武汉纺织大学 Visual high-fidelity textile fabric color changing method and system
CN115835448A (en) * 2022-12-28 2023-03-21 无锡车联天下信息技术有限公司 Method and device for adjusting light, endoscope equipment and medium
WO2024012383A1 (en) * 2022-07-12 2024-01-18 江苏恒力化纤股份有限公司 Tow colorimetric method and yarn colorimetric machine

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101936883B (en) * 2010-08-10 2012-04-04 西安理工大学 Method for detecting color difference of printed matter
CN103163132A (en) * 2011-12-08 2013-06-19 常州中港纺织智能科技有限公司 System and method for real-time appearance digital analysis for yarn
CN102611821B (en) * 2012-03-08 2014-07-02 西安理工大学 Automatic dynamic range detection method of reflection scanner
CN102968877A (en) * 2012-11-15 2013-03-13 镇江石鼓文智能化系统开发有限公司 Flame detection device based on video image analysis
CN103258183A (en) * 2012-11-15 2013-08-21 镇江石鼓文智能化系统开发有限公司 Video image preprocessing module based on video image analysis flame
CN103063310A (en) * 2013-01-18 2013-04-24 岑夏凤 Non-contact type color measurement method and non-contact type color measurement device based on digital technology
CN103077541A (en) * 2013-01-18 2013-05-01 无锡鸿图微电子技术有限公司 Measuring and expressing method and system for skin color of human face
CN104168475B (en) * 2014-08-15 2016-02-03 浙江大学 A kind of imaging type of digital camera changeable parameters obtains the method for color tristimulus values
ITUA20161497A1 (en) * 2016-03-09 2017-09-09 Ger Elettr S R L DEVICE FOR DETECTION OF THE COLOR OF LEATHER AND AFFINE
CN106382990A (en) * 2016-09-28 2017-02-08 鲁泰纺织股份有限公司 Color selection and color measuring method for small number of neutral-color or dark-color yarns
CN108732107B (en) * 2017-04-17 2020-07-14 中国科学院化学研究所 Device and method for detecting orientation equilibrium degree of transparent polymer stretched film
CN107093031A (en) * 2017-05-10 2017-08-25 广东溢达纺织有限公司 Color data Internet management method and system
US11433687B2 (en) * 2017-12-01 2022-09-06 Hewlett-Packard Development Company, L.P. Adaptive sampling
CN108240862A (en) * 2018-01-15 2018-07-03 武汉精测电子集团股份有限公司 High-precision self-correcting tristimulus color analysis and chromatic value acquisition method
CN109323999B (en) * 2018-10-24 2020-06-16 大连理工大学 Spectrophotometric detection method based on image numerical analysis
TWI783370B (en) * 2021-02-05 2022-11-11 岳揚智控股份有限公司 Method of color deviation and surface examination
CN113654998A (en) * 2021-06-28 2021-11-16 浙江省常山纺织有限责任公司 Color matching instrument for colored spun yarn and color matching method thereof
CN113804624A (en) * 2021-09-18 2021-12-17 温州佳易仪器有限公司 Device and method for quickly fixing standard sample

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1164027A (en) * 1996-04-29 1997-11-05 财团法人中国纺织工业研究中心 Method for analysing woven fabric count
US6842532B2 (en) * 2001-02-08 2005-01-11 The Hong Kong Polytechnic University Three dimensional measurement, evaluation and grading system for fabric/textile structure/garment appearance
CN1648321A (en) * 2005-02-01 2005-08-03 西安工程科技学院 Method and device for detecting fabric texture
CN1247994C (en) * 2002-06-06 2006-03-29 香港理工大学 Textile surface analysis method and its system
CN1844550A (en) * 2006-01-26 2006-10-11 香港理工大学 Textile and yarn analysis system based on two-side scanning technology
CN101207832A (en) * 2006-12-19 2008-06-25 Tcl数码科技(深圳)有限责任公司 Method for checking digital camera color reduction

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1312461C (en) * 2004-06-23 2007-04-25 香港理工大学 Reconstruction system and method for sheet three-dimensional surface of flexible body

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1164027A (en) * 1996-04-29 1997-11-05 财团法人中国纺织工业研究中心 Method for analysing woven fabric count
US6842532B2 (en) * 2001-02-08 2005-01-11 The Hong Kong Polytechnic University Three dimensional measurement, evaluation and grading system for fabric/textile structure/garment appearance
CN1247994C (en) * 2002-06-06 2006-03-29 香港理工大学 Textile surface analysis method and its system
CN1648321A (en) * 2005-02-01 2005-08-03 西安工程科技学院 Method and device for detecting fabric texture
CN1844550A (en) * 2006-01-26 2006-10-11 香港理工大学 Textile and yarn analysis system based on two-side scanning technology
CN101207832A (en) * 2006-12-19 2008-06-25 Tcl数码科技(深圳)有限责任公司 Method for checking digital camera color reduction

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3321668A3 (en) * 2016-11-11 2018-05-30 Saurer Germany GmbH & Co. KG Method and apparatus for evaluating the quality of a longitudinally moving strand-shaped material
CN111751294A (en) * 2020-06-30 2020-10-09 深兰科技(达州)有限公司 Cloth defect detection method based on learning and memory
CN114252401A (en) * 2021-12-17 2022-03-29 江苏恒力化纤股份有限公司 Method for detecting fiber dyeing based on spectral image color processing technology
CN114252401B (en) * 2021-12-17 2023-06-02 江苏恒力化纤股份有限公司 Method for detecting fiber dyeing based on spectral image color processing technology
WO2024012383A1 (en) * 2022-07-12 2024-01-18 江苏恒力化纤股份有限公司 Tow colorimetric method and yarn colorimetric machine
CN115797260A (en) * 2022-11-03 2023-03-14 武汉纺织大学 Visual high-fidelity textile fabric color changing method and system
CN115835448A (en) * 2022-12-28 2023-03-21 无锡车联天下信息技术有限公司 Method and device for adjusting light, endoscope equipment and medium
CN115835448B (en) * 2022-12-28 2024-03-19 无锡车联天下信息技术有限公司 Method and device for adjusting light, endoscope equipment and medium

Also Published As

Publication number Publication date
CN101788341B (en) 2012-10-10
CN101788341A (en) 2010-07-28

Similar Documents

Publication Publication Date Title
WO2010015196A1 (en) Device and method for testing fabric color
Leon et al. Color measurement in L∗ a∗ b∗ units from RGB digital images
CN108020519B (en) Virtual multi-light-source spectrum reconstruction method based on color constancy
Foster et al. Frequency of metamerism in natural scenes
TWI495857B (en) High accuracy imaging colorimeter by special designed pattern closed-loop calibration assisted by spectrograph
WO2003029811A1 (en) Assessing colour fastiness
KR100238960B1 (en) Apparatus for chromatic vision measurement
CN109506781B (en) Chrominance measuring method and device
CN106504241A (en) A kind of apparatus and method of checking colors automatically
Gökmen et al. A non-contact computer vision based analysis of color in foods
CN110926609A (en) Spectrum reconstruction method based on sample feature matching
Shahin et al. Color calibration of scanners for scanner‐independent grain grading
JP6113319B2 (en) Image color distribution inspection apparatus and image color distribution inspection method
JP5841091B2 (en) Image color distribution inspection apparatus and image color distribution inspection method
JP2016206760A (en) Color discrimination method and color discrimination device, as well as printer color tone control method
El-Rifai et al. Enhanced spectral reflectance reconstruction using pseudo-inverse estimation method
WO2022242608A1 (en) Object preference memory color obtaining method and preference memory color standard color card
Picollo et al. Application of hyper-spectral imaging technique for colorimetric analysis of paintings
Zhu et al. Color calibration for colorized vision system with digital sensor and LED array illuminator
Nyström Colorimetric and multispectral image acquisition using model-based and empirical device characterization
CN110926608B (en) Spectrum reconstruction method based on light source screening
Mohammadi et al. A prototype calibration target for spectral imaging
Xu et al. Comparison of black fabric indexes based on computer color measurement and color matching technology
Hung Sensitivity metamerism index digital still camera
Hajipour et al. Estimation of fabric opacity by scanner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09804496

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09804496

Country of ref document: EP

Kind code of ref document: A1