WO2010015186A1 - 半持续调度的业务数据处理方法及基站 - Google Patents

半持续调度的业务数据处理方法及基站 Download PDF

Info

Publication number
WO2010015186A1
WO2010015186A1 PCT/CN2009/073059 CN2009073059W WO2010015186A1 WO 2010015186 A1 WO2010015186 A1 WO 2010015186A1 CN 2009073059 W CN2009073059 W CN 2009073059W WO 2010015186 A1 WO2010015186 A1 WO 2010015186A1
Authority
WO
WIPO (PCT)
Prior art keywords
period
data packet
service data
arrival
resource allocation
Prior art date
Application number
PCT/CN2009/073059
Other languages
English (en)
French (fr)
Inventor
李国庆
谌丽
高卓
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Publication of WO2010015186A1 publication Critical patent/WO2010015186A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention relates to resource scheduling of base stations in a mobile communication system, and more particularly to a semi-continuously scheduled service data processing method and base station. Background of the invention
  • LTE Long Term Evolution
  • a base station allocates time-frequency resources to carry data, and the terminal receives or transmits data according to control channel information of the base station.
  • the LTE system also introduces a semi-persistent scheduling mechanism for the use of specific service data packets (such as voice packets for VoIP services).
  • a base station allocates a fixed time-frequency resource to a data packet of a specific service, and specifies a fixed transmission format, and the data packet of the specific service is sent in a specified transmission format at a specified time-frequency resource location, that is, It is sent in a predefined manner on predefined resources without scheduling.
  • the difference between semi-persistent scheduling and dynamic scheduling is that the initial HARQ (Hybrid Automatic Repeat reQuest) transmission does not occupy control channel resources, which can save control signaling overhead.
  • HARQ Hybrid Automatic Repeat reQuest
  • the semi-persistent scheduling period and resource allocation are determined by the characteristics of the scheduled service data packet, which has the characteristics that the data packet arrival period is fixed and the data packet size is relatively fixed.
  • the encoded data packet size is basically 40 bytes, and the data packet arrival period is fixed at 20 ms. Therefore, as long as the base station pre-allocates resources with a period of 20 ms and can transmit 40 bytes of data, the initial HARQ transmission can not timely occupy the scheduling signaling resources while ensuring the timely transmission of the VoIP voice packets.
  • the service data packets for semi-persistent scheduling have different periodic characteristics, and some of the arrival periods are integer multiples of 10ms, such as VoIP service, and the period is 20ms; some arrival periods are not An integer multiple of 5ms or 10ms, such as some video services, at a rate of 15 frames per second (64ms period) or 30 frames (32ms period).
  • the semi-persistent scheduling resource allocation period is equal to the service data packet arrival period, and the time point specified by the semi-persistent scheduling period is the time position of the transmission service data packet.
  • LTE FDD Frequency Division Duplexing
  • TDD Time Division Duplexing
  • the resource allocation period is not an integer multiple of the transition period of the uplink and downlink subframes, that is, an integer multiple of 5ms or 10ms, the predefined resource location allocated by the service arrival period may be located. In the sub-frames of different transmission directions, the data transmission cannot be performed normally.
  • LTE TDD is a time division duplex system. Its frame structure is shown in Figure 1.
  • Each radio frame consists of two fields (Half-Frame), each of which is 5ms long.
  • Each field consists of 8 slots of length 0.5ms and three special time slots: DwPTS (Downlink Pilot Time Slot), GP (Guard Interval) and UpPTS (Uplink Pilot Time) Slot, uplink pilot time slot).
  • the length of DwPTS and UpPTS can be configured, and the total length of DwPTS, GP and UpPTS is equal to lms.
  • Subframe 1 and subframe 6 contain DwPTS, GP and UpPTS, all other subframes contain two adjacent slots, wherein the first subframe consists of 2/2 and 2+1 slots.
  • Subframe 0 and subframe 5 and DwPTS are always reserved for downstream transmission.
  • UpPTS Supports 5ms and 10ms switching point periods.
  • UpPTS, subframe 2 and subframe 7 are reserved for uplink transmission.
  • DwPTS exists in both fields, but GP and UpPTS exists only in the first field, and the length of DwPTS in the second field is lms.
  • UpPTS and subframe 2 are reserved for uplink transmission.
  • Different uplink and downlink subframe configurations can be implemented according to different uplink and downlink subframe transition points.
  • the configuration of the uplink and downlink subframes supported by the specification is as shown in Table 1.
  • the switching point period of configuration 0 ⁇ 2 is 5ms
  • the switching point period of configuration 3 ⁇ 6 is 10ms, where D and U respectively represent downlink subframes and uplink subframes.
  • Frame, S represents a special time slot.
  • the service data packet arrival period is an integer multiple of 10ms, such as the VoIP service period is 20ms
  • the semi-persistent scheduling resource allocation is as shown in FIG. 2, and each data packet is in the subframe.
  • Send on X Since 10ms is an integer multiple of the switching point period, all the subframes X can be satisfied in one direction by appropriate resource allocation, that is, both uplink or downlink.
  • the service packet arrival period is not an integer multiple of 10 ms
  • the data direction and the resource direction may be inconsistent.
  • the downlink service needs to be scheduled, and the first data packet is sent in the downlink subframe X, and the second, third, and fourth data packets are respectively respectively. It needs to be transmitted on subframes (X+2) modl0, (X+4) modlO, (X+6) modlO, and these subframes are not necessarily downlink subframes.
  • configuration 1 is taken as an example.
  • 0 (the first packet is sent in subframe 0), and the subframes allocated by the second, third, and fourth packets are subframes 2, 4, 6, and table 1, subframe 2 It is an uplink subframe, and it is impossible to transmit downlink data.
  • Subframe 6 is a special subframe. Whether downlink data can be transmitted depends on the length configuration of DwPTS.
  • the prior art has the following disadvantages: Since the semi-persistent scheduling resource is allocated according to the service packet arrival period, for the system in which the uplink and downlink subframes alternately appear in the LTE TDD, the subframe transmission direction and the service data of the predefined resource location occur. In the case of non-conformity, the data transmission will not work properly. Summary of the invention
  • An object of the present invention is to provide a semi-persistent scheduling service data processing method and a base station, which are used in a mobile communication system in which uplink and downlink subframes are not simultaneously present, so that service data packets transmitted using a semi-persistent scheduling mechanism can be correctly performed. Transmission.
  • an embodiment of the present invention provides a service data processing method for semi-persistent scheduling, which is used for a mobile communication system in which uplink and downlink subframes are not simultaneously present, and includes: determining, according to characteristics of service data packets, using a semi-persistent scheduling mechanism Transmitting the service data packet;
  • the transmission of the service data packet is performed by using a subframe determined by the resource allocation period.
  • the above method wherein the resource allocation period is shorter than an arrival period of the service data packet.
  • the resource allocation period is a maximum value in a time series smaller than a positive integer multiple of a switching point period of a system frame of the mobile communication system, which is smaller than a time series of an arrival period of the service data packet.
  • the current data packet is dynamically allocated for transmission.
  • the resource allocation period is a minimum value in a time series greater than a positive integer multiple of a switching point period of a system frame of the mobile communication system, which is greater than a time series of an arrival period of the service data packet.
  • the service data packet is characterized by: having a fixed arrival period, and the difference between the sizes of the service data packets is within a preset range.
  • an embodiment of the present invention further provides a base station, where the uplink and downlink subframes are not simultaneously present, and the method includes:
  • a scheduling mechanism determining module configured to determine a transport mechanism that uses a semi-persistent scheduling mechanism as a service data packet that meets requirements
  • a resource allocation period setting module when a period of arrival of the service data packet is not equal to a positive integer multiple of a switching point period of a system frame of the mobile communication system, setting a resource allocation period of the semi-persistent scheduling mechanism to be a positive switching point period Integer multiple; the transmission of the packet.
  • the resource allocation period is less than an arrival period of the service data packet
  • the resource allocation period is a switching point period of a system frame of the mobile communication system
  • the positive integer multiple of the time series is less than the maximum value in the time series of the arrival period of the service data packet.
  • the above base station further comprising: allocating to other services or user equipment for use.
  • the resource allocation period is greater than the arrival period of the service data packet, and the resource allocation period is greater than a positive integer multiple of the switching point period of the system frame of the mobile communication system The minimum value in the time series of the arrival period of the service data packet.
  • the method further includes:
  • the second scheduler is configured to dynamically allocate resources for the current data packet for transmission when there is no semi-persistent scheduling resource during the arrival of the current data packet to the next data packet.
  • the eligible service data packet is: having a fixed arrival period, and the difference between the sizes of the service data packets is within a preset range.
  • the method and the base station of the embodiment of the present invention when the arrival period of the service data packet is not equal to a positive integer multiple of the switching point period of the system frame of the mobile communication system, by preselecting the transmission direction and the data packet to be transmitted.
  • the subframe X with the same transmission direction is set, and the resource allocation period is set to be a positive integer multiple of the switching point period. Due to the above setting, all the semi-persistent scheduling resources are the subframe X, and the direction is the transmission direction of the data packet to be transmitted. Consistently, all the data packets to be transmitted can be correctly transmitted without the situation that the data packets cannot be transmitted due to the inconsistent transmission direction of the semi-persistent scheduling resources in the prior art.
  • 1 is a schematic diagram of a frame structure of an existing TDD LTE
  • 2 is a schematic diagram of semi-persistent scheduling resource allocation when a service data packet arrival period is 20 ms in the prior art
  • FIG. 3 is a schematic diagram of semi-persistent scheduling resource allocation when a service data packet arrival period is 32 ms in the prior art
  • FIG. 4 is a schematic flow chart of a service data processing method for semi-persistent scheduling according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of semi-persistent scheduling resource allocation when a service data packet arrival period is 32 ms and a resource allocation period is 20 ms according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of semi-persistent scheduling resource allocation when a service data packet arrival period is 32 ms and a resource allocation period is 30 ms according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of semi-persistent scheduling resource allocation when a service data packet arrival period is 32 ms and a resource allocation period is 40 ms according to an embodiment of the present invention
  • FIG. 8 is a schematic diagram of semi-persistent scheduling resource allocation when a service data packet arrival period is 32 ms and a resource allocation period is 160 ms according to an embodiment of the present invention. Mode for carrying out the invention
  • the resource allocation period is no longer the arrival period of the service data packet, but is set to a positive integer multiple of the switching point period, so that the service data packet can be allocated in the
  • the sub-frames have the same direction to ensure that the service data packets can be transmitted correctly.
  • the semi-persistently scheduled service data processing method of the embodiment of the present invention is used for a mobile communication system in which the uplink and downlink subframes are not simultaneously present. As shown in FIG. 4, the method includes:
  • Step 41 Determine, according to characteristics of the service data packet, whether to use the semi-persistent scheduling mechanism to transmit the service data packet, and if yes, go to step 42, otherwise, use a transmission mechanism other than the semi-persistent scheduling mechanism to perform processing;
  • the service data packet that can be transmitted by using the semi-persistent scheduling mechanism has the characteristics that the data packet arrival period is fixed and the data packet size is relatively fixed.
  • Step 42 When the arrival period of the service data packet is not equal to a positive integer multiple of a switching point period of the system frame, setting a resource allocation period of the semi-persistent scheduling mechanism to be a positive integer multiple of the switching point period;
  • Step 43 Perform transmission of the service data packet by using a subframe determined by a resource allocation period in a predefined format.
  • the transmission direction of the subframe determined by the resource allocation period is the same as the transmission direction of the service data packet.
  • the base station of the embodiment of the present invention is used for a mobile communication system in which uplink and downlink subframes are not simultaneously present, and includes:
  • a scheduling mechanism determining module configured to determine a transport mechanism that uses a semi-persistent scheduling mechanism as a service data packet that meets requirements
  • a resource allocation period setting module when a period of arrival of the service data packet is not equal to a positive integer multiple of a switching point period of a system frame of the mobile communication system, setting a resource allocation period of the semi-persistent scheduling mechanism to be a positive switching point period Integer multiple
  • a transmission module configured to perform transmission of the service data packet by using a subframe determined by a resource allocation period in a predefined format
  • the transmission direction of the subframe determined by the resource allocation period is the same as the transmission direction of the service data packet.
  • the foregoing compliance requirement may be: the service data packet has a fixed arrival period, and the difference between the sizes of the service data packets is within a preset range (indicating that the service data packet has a relatively fixed size; ).
  • the resource allocation period is a positive integer of the switching point period.
  • the case of times and less than the arrival period of the service data packet is taken as an example.
  • the arrival period of the service data packet is 32 ms
  • the switching point period is 10 ms
  • the resource allocation period is 20 ms.
  • the packet N ⁇ packet N+5 is taken as an example for description.
  • the data packet N is transmitted using the first subframe X, and the data packet is transmitted.
  • the N+1 packet N+4 has no corresponding resources at the time of arrival, and the packet N+1 packet N+4 is transmitted on the subsequent semi-persistent scheduling resource that is closest to the arrival time of the packet.
  • the data packet N+1, the data packet N+2, the data packet N+3, and the data packet N+4 are in the third subframe X, the fifth subframe X, and the sixth subframe X, respectively.
  • the transmission processing is performed on the eighth subframe X.
  • Subframe X can transmit the N+5th data packet.
  • the entire transmission process is a repetition of the transmission process of the packet N packet N+4.
  • the subframe X whose transmission direction is consistent with the transmission direction of the data packet to be transmitted is pre-selected. Since the resource allocation period is a positive integer multiple of the switching point period, all the semi-persistent scheduling resources are subframe X, and the directions are both The transmission direction of the transmitted data packets is the same, so all the data packets to be transmitted can be correctly transmitted without the situation that the data packets cannot be transmitted due to the inconsistent transmission direction of the semi-persistent scheduling resources in the prior art.
  • the resource allocation period is a positive integer multiple of the switching point period and is smaller than the arrival period of the service data packet as an example.
  • the arrival period of the service data packet is 32 ms and the switching point period is 10 ms.
  • the packet N ⁇ packet N+5 is taken as an example for description.
  • the data packet N is transmitted using the first subframe X, and the data packet is transmitted.
  • N+l ⁇ 3 ⁇ 4 packet N+14 has no corresponding resources at the time of arrival, then the packet N+l, packet N+2 packet N+14 is the closest half to the arrival time of the packet.
  • Sent on persistent scheduling resources As shown in FIG. 6 (only N+5 is shown), that is, the data packet N+1 and the data packet N+2 data packet N+14 are respectively in the third subframe X, the fourth subframe X, and the 16th subframe. Transmission processing is performed on the frame X.
  • the N+15th data packet is received, and the arrival time is exactly aligned with the resource in the same direction as the transmission direction of the data packet N+15 (ie, the 17th subframe X not shown in the figure). At this time, the transmission of the N+15th packet by the 17th subframe X may be performed.
  • the entire transmission process is a repetition of the transmission process of the packet N packet N+14.
  • the subframe X whose transmission direction is consistent with the transmission direction of the data packet to be transmitted is pre-selected. Since the resource allocation period is a positive integer multiple of the switching point period, all the semi-persistent scheduling resources are subframe X, and the directions are both The transmission direction of the transmitted data packets is the same, so all the data packets to be transmitted can be correctly transmitted without the situation that the data packets cannot be transmitted due to the inconsistent transmission direction of the semi-persistent scheduling resources in the prior art. However, it can be found from the above description that there is also a second subframe X that is not used for data transmission. In a specific embodiment of the present invention, the semi-continuously allocated remaining resources are temporarily allocated to other resources through dynamic scheduling through the scheduler. Business or user equipment use.
  • the resource allocation period (which is a positive integer multiple of the switching point period) is smaller than the arrival period of the service data packet, the resource allocation period is larger, and is not used for The number of subframes X transmitted by the service data packet of the service is smaller. Therefore, when the resource allocation period (which is a positive integer multiple of the switching point period) is smaller than the arrival period of the service data packet, the closest to the service data packet is taken. A positive integer multiple of the switching point period of the arrival period is preferred as the final resource allocation period.
  • the service data packet has a period of 32 ms and the switch point period is 10 ms.
  • the resource allocation period may be 10 ms, 20 ms, and 30 ms, and selecting 30 ms may greatly reduce the scheduling.
  • the workload of the device may be 10 ms, 20 ms, and 30 ms, and selecting 30 ms may greatly reduce the scheduling. The workload of the device.
  • the resource allocation period is a positive integer multiple of the switching point period and is greater than the arrival period of the service data packet as an example.
  • the arrival period of the service data packet is 32 ms
  • the switching point period is 10 ms
  • the resource allocation period is 40 ms.
  • the packet N ⁇ packet N+6 is taken as an example for description.
  • the data packet N is transmitted using the first subframe X, and the data packet is transmitted.
  • the N+1 packet N+5 has no corresponding resources at the time of arrival, and the packet N+1 packet N+5 is transmitted on the subsequent semi-persistent scheduling resource that is closest to the arrival time of the packet.
  • the packet N+1, the packet N+2, and the packet N+3 are transmitted in the second subframe X, the third subframe X, and the fourth subframe X, respectively. It can be seen from FIG.
  • the embodiment of the present invention uses the scheduler as the N+4th data.
  • the packet temporarily allocates resources dynamically for transmission.
  • Subframe X can transmit the N+5th data packet.
  • the entire transmission process is a repetition of the transmission process of the packet N packet N+4.
  • the subframe X whose transmission direction is consistent with the transmission direction of the data packet to be transmitted is pre-selected. Since the resource allocation period is a positive integer multiple of the switching point period, all the semi-persistent scheduling resources are subframe X, and the directions are both The transmission direction of the transmitted data packets is the same, so all the data packets to be transmitted can be correctly transmitted without the situation that the data packets cannot be transmitted due to the inconsistent transmission direction of the semi-persistent scheduling resources in the prior art.
  • the resource allocation period is a positive integer multiple of the switching point period and is greater than the arrival period of the service data packet as an example.
  • the arrival period of the service data packet is 32 ms
  • the switching point period is 10 ms
  • the resource allocation period is 160 ms.
  • the packet N ⁇ packet N+5 is taken as an example for description.
  • the data packet N is transmitted using the first subframe X, and the data packet is transmitted.
  • the N+1 data packet N+4 has no corresponding resources at the time of arrival, and there is no semi-persistent scheduling resource during the arrival of the N+1th data packet until the arrival of the N+5th data packet.
  • the data is temporarily and dynamically allocated by the scheduler for the packet N+l ⁇ packet N+4.
  • Subframe X can transmit the N+5th data packet.
  • the entire transmission process is a repetition of the transmission process of the packet N packet N+4.
  • the subframe X whose transmission direction is consistent with the transmission direction of the data packet to be transmitted is pre-selected. Since the resource allocation period is a positive integer multiple of the switching point period, all the semi-persistent scheduling resources are subframe X, and the directions are both The transmission direction of the transmitted data packets is the same, so all the data packets to be transmitted can be correctly transmitted without the situation that the data packets cannot be transmitted due to the inconsistent transmission direction of the semi-persistent scheduling resources in the prior art.
  • the resource allocation period (which is a positive integer multiple of the switching point period) is greater than the arrival period of the service data packet, the resource allocation period is smaller, and there is no semi-continuous The less the scheduling resource is used to transmit the service data packet of the service, therefore, when the resource allocation period (which is a positive integer multiple of the switching point period) is greater than the arrival period of the service data packet, the closest to the service data packet is taken.
  • a positive integer multiple of the switching point period of the arrival period is preferred as the final resource allocation period.
  • the service data packet has a period of 32 ms and the switch point period is 10 ms.
  • the resource allocation period may be 40 ms, 50 ms, and 60 ms, and selecting 40 ms may greatly reduce the scheduling.
  • the workload of the device may be 40 ms, 50 ms, and 60 ms, and selecting 40 ms may greatly reduce the scheduling. The workload of the device.
  • the description is made by taking an example that the arrival period of the service data packet is 32 ms and the switching point period is 10 ms, but at the same time, other various service data packets may be used, or other services may be used.
  • TDD frame structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

半持续调度的业务数据处理方法及基站 技术领域
本发明涉及移动通信系统中基站的资源调度, 特别是一种半持续调 度的业务数据处理方法及基站。 发明背景
LTE(Long Term Evolution , 长期演进)系统 ^^于调度的系统, 由基 站分配时频资源来承载数据, 终端根据基站的控制信道信息接收或发送 数据。
同时, LTE系统还引入了针对特定业务数据包(如 VoIP业务的话 音包)使用的半持续调度机制。 在半持续调度机制中, 基站给特定业务 的数据包分配固定的时频资源、 并指定固定的传输格式, 而该特定业务 的数据包在指定的时频资源位置以指定的传输格式发送, 即在预定义资 源上以预定义方式发送, 不需调度。 半持续调度和动态调度的差别在于 初始 HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)传输不 占用控制信道资源, 可节约控制信令开销。
半持续调度周期和资源的分配由被调度的业务数据包的特点决定, 该业务数据包具有数据包到达周期固定和数据包大小相对固定的特点。
以速率为 12.2 kbit/s的 VoIP话音包为例,其编码后数据包大小基本 为 40 byte, 数据包到达周期固定为 20ms。 因此, 只要基站预先分配周 期为 20ms、 且能传输 40byte数据的资源, 即可在初始 HARQ传输不占 用调度信令资源的同时保证 VoIP话音包的及时传输。
进行半持续调度的业务数据包各自具有不同周期特性, 有的到达周 期为 10ms的整数倍, 如 VoIP业务, 周期为 20ms; 有的到达周期不为 5ms或 10ms的整数倍, 如某些视频业务, 以每秒 15 (周期为 64ms )帧 或 30帧 (周期为 32ms ) 的速率进行。
现有技术中, 为保证业务数据及时传输, 半持续调度资源分配周期 等于业务数据包到达周期, 半持续调度周期指定的时间点即为传输业务 数据包的时间位置。 对 LTE FDD ( Frequency Division Duplexing, 频分 双工)这种上下行子帧同时存在、 上下行传输同时进行的系统来说, 资 源分配周期无论是多少都没有问题; 但对 LTE TDD ( Time Division Duplexing, 时分双工) 系统来说, 如果资源分配周期不为上下行子帧转 换点周期的整数倍, 即 5ms或 10ms的整数倍, 就会导致按业务到达周 期所分配的预定义资源位置可能位于不同传输方向的子帧上, 进而造成 数据传输不能正常进行。
LTE TDD是一种时分双工系统, 其帧结构如图 1所示, 每一个无线 帧由两个半帧 (Half-Frame )构成, 每一个半帧长度为 5ms。 每一个半 帧包括 8 个长度为 0.5ms 的时隙 (slot ), 以及三个特殊时隙: DwPTS ( Downlink Pilot Time Slot, 下行导频时隙)、 GP (保护间隔)和 UpPTS ( Uplink Pilot Time Slot,上行导频时隙)。 DwPTS和 UpPTS的长度可配 置, 且 DwPTS、 GP及 UpPTS的总长度等于 lms。 子帧 1和子帧 6包含 DwPTS, GP以及 UpPTS, 所有其他子帧包含两个相邻的时隙, 其中第 个子帧由第 2/个和 2 +1个时隙构成。
子帧 0和子帧 5以及 DwPTS永远预留为下行传输。
支持 5ms和 10ms的切换点周期,在 5ms切换周期情况下, UpPTS、 子帧 2和子帧 7预留为上行传输, 在 10ms切换周期情况下, DwPTS在 两个半帧中都存在, 但是 GP和 UpPTS只在第一个半帧中存在, 在第二 个半帧中的 DwPTS长度为 lms。 UpPTS和子帧 2预留为上行传输。
根据上下行子帧转换点不同, 可实现不同的上下行子帧配置。 目前 规范确定支持的上下行子帧配置如表 1所示, 其中配置 0~2的切换点周 期是 5ms, 配置 3~6的切换点周期是 10ms , 其中 D、 U分别表示下行子 帧和上行子帧, S表示特殊时隙。
Figure imgf000005_0001
表 1 基于 LTE TDD帧结构的特点,如果业务数据包到达周期为 10ms的 整数倍, 如 VoIP业务的周期为 20ms, 其半持续调度资源分配如图 2所 示, 每一个数据包都在子帧 X上发送。 由于 10ms是切换点周期的整数 倍, 通过适当的资源分配, 可以满足所有子帧 X都为一个方向, 即都为 上行或都为下行。
但对于业务数据包到达周期不为 10ms的整数倍的情况, 如果按照 业务数据包到达周期分配预定义资源则会出现数据方向和资源方向不 一致的情况。 以周期为 32ms的业务为例, 如图 3所示, 假设需要调度 的是下行业务, 第一个数据包在下行子帧 X发送, 则第二个、 第三个、 第四个数据包分别需要在子帧 (X+2 ) modl0、 ( X+4 ) modlO、 ( X+6 ) modlO上发送, 这些子帧不一定是下行子帧。 具体以配置 1为例, 如果 χ=0 (第一个数据包在子帧 0发送), 第二个、 第三个、 第四个数据包分 配的子帧分别为子帧 2、 4、 6, 对照表 1 , 子帧 2是上行子帧, 不可能 传输下行数据,子帧 6是特殊子帧,是否能传输下行数据取决于 DwPTS 的长度配置。
因此, 现有技术存在以下缺点: 由于按业务数据包到达周期分配半 持续调度资源, 对于 LTE TDD这种上下行子帧交替出现的系统, 会出 现预定义资源位置的子帧传输方向和业务数据方向不符的情况, 最终导 致数据传输不能正常进行。 发明内容
本发明的目的是提供一种半持续调度的业务数据处理方法及基站, 用于上下行子帧不是同时出现的移动通信系统中, 使得使用半持续调度 机制进行传输的业务数据包都能进行正确的传输。
为了实现上述目的, 本发明实施例提供了一种半持续调度的业务数 据处理方法, 用于上下行子帧不是同时出现的移动通信系统, 包括: 根据业务数据包的特点确定使用半持续调度机制传输所述业务数 据包;
在所述业务数据包的到达周期不等于所述移动通信系统的系统帧 的切换点周期的正整数倍时, 设置所述半持续调度机制的资源分配周期 为所述切换点周期的正整数倍;
利用所述资源分配周期所确定的子帧进行所述业务数据包的传输。 上述的方法, 其中, 所述资源分配周期小于所述业务数据包的到达 周期。
上述的方法, 其中, 还包括: 之外的剩余子帧分配给其它业务或用户设备使用。
上述的方法, 其中, 所述资源分配周期为所述移动通信系统的系统 帧的切换点周期的正整数倍的时间序列中小于所述业务数据包的到达 周期的时间序列中的最大值。
上述的方法, 其中, 所述资源分配周期大于所述业务数据包的到达 周期。
上述的方法, 其中, 还包括:
在当前数据包到来到下一数据包到来期间不存在半持续调度资源 时, 为所述当前数据包动态分配资源进行传输。
上述的方法, 其中, 所述资源分配周期为所述移动通信系统的系统 帧的切换点周期的正整数倍的时间序列中大于所述业务数据包的到达 周期的时间序列中的最小值。
所述业务数据包的特点为: 具有固定的到达周期、 且所述业务数据 包的大小之间的差值处于预设范围之内。
为了实现上述目的, 本发明实施例还提供了一种基站, 用于上下行 子帧不是同时出现的移动通信系统, 其中, 包括:
调度机制确定模块, 用于确定使用半持续调度机制作为符合要求的 业务数据包的传输机制;
资源分配周期设置模块, 在所述业务数据包的到达周期不等于所述 移动通信系统的系统帧的切换点周期的正整数倍时, 设置半持续调度机 制的资源分配周期为切换点周期的正整数倍; 数据包的传输。
上述的基站, 其中, 所述资源分配周期小于所述业务数据包的到达 周期、 且所述资源分配周期为所述移动通信系统的系统帧的切换点周期 的正整数倍的时间序列中小于所述业务数据包的到达周期的时间序列 中的最大值。
上述的基站, 其中, 还包括: 分配给其它业务或用户设备使用。
上述的基站, 其中, 所述资源分配周期大于所述业务数据包的到达 周期、 且所述资源分配周期为所述移动通信系统的系统帧的切换点周期 的正整数倍的时间序列中大于所述业务数据包的到达周期的时间序列 中的最小值。
上述的基站, 其中, 还包括:
第二调度器, 用于在当前数据包到来到下一数据包到来期间不存在 半持续调度资源时, 为所述当前数据包动态分配资源进行传输。
所述符合要求的业务数据包为: 具有固定的到达周期、 且所述业务 数据包的大小之间的差值处于预设范围之内。
本发明实施例具有以下的有益效果:
本发明实施例的方法和基站, 在所述业务数据包的到达周期不等于 所述移动通信系统的系统帧的切换点周期的正整数倍时, 通过预先选定 传输方向与待传输的数据包的传输方向一致的子帧 X, 并设置资源分配 周期为切换点周期的正整数倍, 由于以上设置, 所有的半持续调度资源 都为子帧 X, 方向都与待传输的数据包的传输方向一致, 所以所有的待 传输数据包都能被正确的传输, 而不会出现现有技术中由于半持续调度 资源传输方向不一致而导致的数据包无法传输的情形。 附图简要说明
图 1为现有 TDD LTE的帧结构示意图; 图 2为现有技术中业务数据包到达周期为 20ms时的半持续调度资 源分配示意图;
图 3为现有技术中业务数据包到达周期为 32ms时的半持续调度资 源分配示意图;
图 4为本发明实施例的半持续调度的业务数据处理方法的流程示意 图;
图 5为本发明实施例中业务数据包到达周期为 32ms ,而资源分配周 期为 20ms时的半持续调度资源分配示意图;
图 6为本发明实施例中业务数据包到达周期为 32ms,而资源分配周 期为 30ms时的半持续调度资源分配示意图;
图 7为本发明实施例中业务数据包到达周期为 32ms ,而资源分配周 期为 40ms时的半持续调度资源分配示意图;
图 8为本发明实施例中业务数据包到达周期为 32ms,而资源分配周 期为 160ms时的半持续调度资源分配示意图。 实施本发明的方式
本发明实施例的半持续调度的业务数据处理方法及基站中, 资源分 配周期不再是业务数据包的到达周期, 而设置为切换点周期的正整数 倍, 进而使得业务数据包都能分配在具有相同方向的子帧上, 以保证业 务数据包都能正确传输。
本发明实施例的半持续调度的业务数据处理方法, 用于上下行子帧 不是同时出现的移动通信系统, 如图 4所示, 包括:
步骤 41 , 根据业务数据包的特点确定是否使用半持续调度机制传输 所述业务数据包, 如果是, 进入步骤 42, 否则, 采用半持续调度机制之 外的传输机制进行处理; 在本步骤中, 可以使用半持续调度机制传输的业务数据包具有数据 包到达周期固定和数据包大小相对固定的特点。
步骤 42, 在所述业务数据包的到达周期不等于系统帧的切换点周期 的正整数倍时, 设置半持续调度机制的资源分配周期为切换点周期的正 整数倍;
步骤 43 , 以预定义格式、 利用资源分配周期所确定的子帧进行所述 业务数据包的传输。
所述资源分配周期所确定的子帧的传输方向与所述业务数据包的传 输方向相同。
本发明实施例的基站, 用于上下行子帧不是同时出现的移动通信系 统, 包括:
调度机制确定模块, 用于确定使用半持续调度机制作为符合要求的 业务数据包的传输机制;
资源分配周期设置模块, 在所述业务数据包的到达周期不等于所述 移动通信系统的系统帧的切换点周期的正整数倍时, 设置半持续调度机 制的资源分配周期为切换点周期的正整数倍;
传输模块, 用于以预定义格式、 利用资源分配周期所确定的子帧进 行所述业务数据包的传输;
所述资源分配周期所确定的子帧的传输方向与所述业务数据包的传 输方向相同。
其中, 上述的符合要求可以是: 所述业务数据包具有固定的到达周 期、 且所述业务数据包的大小之间的差值处于预设范围之内 (表明业务 数据包具有相对固定的大小;)。
<第一实施例〉
在本发明的第一实施例中, 以资源分配周期为切换点周期的正整数 倍、 且小于业务数据包的到达周期为例进行说明。
在第一实施例中,假设业务数据包的到达周期为 32ms, 切换点周期 为 10ms, 而资源分配周期为 20ms, 下面对上述的情况进行详细说明。
如图 5所示, 取数据包 N~数据包 N+5为例进行说明。
假定数据包 N的到达时刻正好与一个方向与数据包 N的传输方向相 同的资源(即第 1个子帧 X )在时间上对齐, 则数据包 N利用第 1个子 帧 X进行传输, 而数据包 N+1 数据包 N+4在到达时刻均没有对应的资 源, 则该数据包 N+1 数据包 N+4在随后的与数据包的到达时刻最接近 的半持续调度资源上发送。 如图 5所示, 即数据包 N+l、 数据包 N+2、 数据包 N+3和数据包 N+4分别在第 3个子帧 X、 第 5个子帧 X、 第 6 个子帧 X、 第 8个子帧 X上进行发送处理。
随后接收到第 N+5个数据包, 其到达时刻正好与一个方向与数据包 N+5的传输方向相同的资源 (即第 9个子帧 X )在时间上对齐, 此时, 利用该第 9个子帧 X进行第 N+5个数据包的传输即可。
从上述的描述可以发现, 整个的传输过程是数据包 N数据包 N+4 的传输过程的不断重复。
预先选定传输方向与待传输的数据包的传输方向一致的子帧 X, 由 于资源分配周期为切换点周期的正整数倍, 所以所有的半持续调度资源 都为子帧 X, 方向都与待传输的数据包的传输方向一致, 所以所有的待 传输数据包都能被正确的传输, 而不会出现现有技术中由于半持续调度 资源传输方向不一致而导致的数据包无法传输的情形。
然而, 从上述的描述可以发现, 其中还有第 2个、 第 4个和第 7个 子帧 X没有用于数据的传输, 在本发明的具体实施例中, 通过调度器将 半持续分配的剩余资源通过动态调度临时分配给其他业务或用户设备 使用。 <第二实施例〉
在本发明的第二实施例中, 以资源分配周期为切换点周期的正整数 倍、 且小于业务数据包的到达周期为例进行说明。
在第二实施例中,假设业务数据包的到达周期为 32ms , 切换点周期 为 10ms , 下面以资源分配周期为 30ms为例进行说明。
如图 6所示, 取数据包 N~数据包 N+5为例进行说明。
假定数据包 N的到达时刻正好与一个方向与数据包 N的传输方向相 同的资源(即第 1个子帧 X )在时间上对齐, 则数据包 N利用第 1个子 帧 X进行传输, 而数据包 N+l~¾据包 N+14在到达时刻均没有对应的 资源, 则该数据包 N+l、 数据包 N+2 数据包 N+14在随后的与 数据包的到达时刻最接近的半持续调度资源上发送。 如图 6所示(其中 仅仅示出到 N+5 ), 即该数据包 N+1、 数据包 N+2 数据包 N+14 分别在第 3个子帧 X、 第 4个子帧 X 第 16个子帧 X上进行发 送处理。
随后接收到第 N+15个数据包, 其到达时刻正好与一个方向与数据 包 N+15的传输方向相同的资源(即图中未示出的第 17个子帧 X )在时 间上对齐, 此时, 利用该第 17个子帧 X进行第 N+15个数据包的传输 即可。
从上述的描述可以发现, 整个的传输过程是数据包 N数据包 N+14 的传输过程的不断重复。
预先选定传输方向与待传输的数据包的传输方向一致的子帧 X, 由 于资源分配周期为切换点周期的正整数倍, 所以所有的半持续调度资源 都为子帧 X, 方向都与待传输的数据包的传输方向一致, 所以所有的待 传输数据包都能被正确的传输, 而不会出现现有技术中由于半持续调度 资源传输方向不一致而导致的数据包无法传输的情形。 然而, 从上述的描述可以发现, 其中还有第 2个子帧 X没有用于数 据的传输, 在本发明的具体实施例中, 通过调度器将半持续分配的剩余 资源通过动态调度临时分配给其他业务或用户设备使用。
通过对比上述的第一实施例和第二实施例可以发现, 在资源分配周 期(为切换点周期的正整数倍) 小于业务数据包的到达周期的情况下, 资源分配周期越大,没有用于该业务的业务数据包传输的子帧 X的数目 越少, 因此, 资源分配周期(为切换点周期的正整数倍) 小于业务数据 包的到达周期的情况下, 取其中最接近业务数据包的到达周期的切换点 周期的正整数倍作为最终的资源分配周期较佳。
举例说明如下, 假设业务数据包的到达周期为 32 ms, 切换点周期 为 10ms, 此时, 按照本发明实施例的方法, 资源分配周期可以为 10ms、 20ms和 30ms, 而选择 30ms可以大大减少调度器的工作量。
<第三实施例〉
在本发明的第三实施例中, 以资源分配周期为切换点周期的正整数 倍、 且大于业务数据包的到达周期为例进行说明。
在第三实施例中,假设业务数据包的到达周期为 32ms, 切换点周期 为 10ms, 而资源分配周期为 40ms, 下面对上述的情况进行详细说明。
如图 7所示, 取数据包 N~数据包 N+6为例进行说明。
假定数据包 N的到达时刻正好与一个方向与数据包 N的传输方向相 同的资源(即第 1个子帧 X )在时间上对齐, 则数据包 N利用第 1个子 帧 X进行传输, 而数据包 N+1 数据包 N+5在到达时刻均没有对应的资 源, 则该数据包 N+1 数据包 N+5在随后的与数据包的到达时刻最接近 的半持续调度资源上发送。 如图 7所示, 即数据包 N+l、 数据包 N+2和 数据包 N+3分别在第 2个子帧 X、第 3个子帧 X、第 4个子帧 X上进行 发送处理。 从图 7中可以发现,在第 N+4个数据包到来到第 N+5个数据包到来 期间不存在半持续调度资源, 此时, 本发明实施例通过调度器为第 N+4 个数据包临时动态分配资源进行传输。
随后接收到第 N+5个数据包, 其到达时刻正好与一个方向与数据包 N+5的传输方向相同的资源 (即第 5个子帧 X )在时间上对齐, 此时, 利用该第 5个子帧 X进行第 N+5个数据包的传输即可。
从上述的描述可以发现, 整个的传输过程是数据包 N数据包 N+4 的传输过程的不断重复。
预先选定传输方向与待传输的数据包的传输方向一致的子帧 X, 由 于资源分配周期为切换点周期的正整数倍, 所以所有的半持续调度资源 都为子帧 X, 方向都与待传输的数据包的传输方向一致, 所以所有的待 传输数据包都能被正确的传输, 而不会出现现有技术中由于半持续调度 资源传输方向不一致而导致的数据包无法传输的情形。
<第四实施例〉
在本发明的第四实施例中, 以资源分配周期为切换点周期的正整数 倍、 且大于业务数据包的到达周期为例进行说明。
在第四实施例中,假设业务数据包的到达周期为 32ms, 切换点周期 为 10ms, 而资源分配周期为 160ms, 下面对上述的情况进行详细说明。
如图 8所示, 取数据包 N~数据包 N+5为例进行说明。
假定数据包 N的到达时刻正好与一个方向与数据包 N的传输方向相 同的资源(即第 1个子帧 X )在时间上对齐, 则数据包 N利用第 1个子 帧 X进行传输, 而数据包 N+1 数据包 N+4在到达时刻均没有对应的资 源, 在第 N+1个数据包到来到第 N+5个数据包到来期间不存在半持续 调度资源, 此时, 本发明实施例通过调度器为数据包 N+l~数据包 N+4 临时动态分配资源进行传输。 随后接收到第 N+5个数据包, 其到达时刻正好与一个方向与数据包 N+5的传输方向相同的资源 (即第 2个子帧 X )在时间上对齐, 此时, 利用该第 5个子帧 X进行第 N+5个数据包的传输即可。
从上述的描述可以发现, 整个的传输过程是数据包 N数据包 N+4 的传输过程的不断重复。
预先选定传输方向与待传输的数据包的传输方向一致的子帧 X, 由 于资源分配周期为切换点周期的正整数倍, 所以所有的半持续调度资源 都为子帧 X, 方向都与待传输的数据包的传输方向一致, 所以所有的待 传输数据包都能被正确的传输, 而不会出现现有技术中由于半持续调度 资源传输方向不一致而导致的数据包无法传输的情形。
通过对比上述的第三实施例和第四实施例可以发现, 在资源分配周 期(为切换点周期的正整数倍) 大于业务数据包的到达周期的情况下, 资源分配周期越小, 没有半持续调度资源用于传输该业务的业务数据包 的情况越少, 因此, 资源分配周期(为切换点周期的正整数倍) 大于业 务数据包的到达周期的情况下, 取其中最接近业务数据包的到达周期的 切换点周期的正整数倍作为最终的资源分配周期较佳。
举例说明如下, 假设业务数据包的到达周期为 32 ms, 切换点周期 为 10ms, 此时, 按照本发明实施例的方法, 资源分配周期可以为 40ms、 50ms, 60ms , 而选择 40ms可以大大减少调度器的工作量。
当然, 在上述的实施例中, 是以业务数据包的到达周期为 32 ms , 切换点周期为 10ms为例进行的说明, 但同时也可以是其它的各种业务 数据包, 也可以是其它的 TDD帧结构。
以上所述仅是本发明的优选实施方式, 应当指出, 对于本技术领域 的普通技术人员来说, 在不脱离本发明原理的前提下, 还可以作出若干 改进和润饰, 这些改进和润饰也应视为本发明的保护范围。

Claims

权利要求书
1. 一种半持续调度的业务数据处理方法,用于上下行子帧不是同时 出现的移动通信系统, 其特征在于, 包括:
根据业务数据包的特点确定使用半持续调度机制传输所述业务数据 包;
在所述业务数据包的到达周期不等于所述移动通信系统的系统帧的 切换点周期的正整数倍时, 设置所述半持续调度机制的资源分配周期为 所述切换点周期的正整数倍;
利用所述资源分配周期所确定的子帧进行所述业务数据包的传输。
2. 根据权利要求 1所述的方法, 其特征在于, 所述资源分配周期小 于所述业务数据包的到达周期。
3. 根据权利要求 2所述的方法, 其特征在于, 还包括: 用户设备使用。
4. 根据权利要求 2或 3所述的方法, 其特征在于, 所述资源分配周 期为所述移动通信系统的系统帧的切换点周期的正整数倍的时间序列 中小于所述业务数据包的到达周期的时间序列中的最大值。
5.根据权利要求 1所述的方法, 其特征在于, 所述资源分配周期大 于所述业务数据包的到达周期。
6.根据权利要求 5所述的方法, 其特征在于, 还包括:
在当前数据包到来到下一数据包到来期间不存在半持续调度资源 时, 为所述当前数据包动态分配资源进行传输。
7. 根据权利要求 5或 6所述的方法, 其特征在于, 所述资源分配周 期为所述移动通信系统的系统帧的切换点周期的正整数倍的时间序列 中大于所述业务数据包的到达周期的时间序列中的最小值。
8. 根据权利要求 1、 2、 3、 5或 6任一项所述的方法, 其特征在于: 所述业务数据包的特点为: 具有固定的到达周期、 且所述业务数据 包的大小之间的差值处于预设范围之内。
9. 一种基站, 用于上下行子帧不是同时出现的移动通信系统, 其特 征在于, 包括:
调度机制确定模块, 用于确定使用半持续调度机制作为符合要求的 业务数据包的传输机制;
资源分配周期设置模块, 在所述业务数据包的到达周期不等于所述 移动通信系统的系统帧的切换点周期的正整数倍时, 设置半持续调度机 制的资源分配周期为切换点周期的正整数倍; 数据包的传输。
10.根据权利要求 9所述的基站, 其特征在于, 所述资源分配周期 小于所述业务数据包的到达周期、 且所述资源分配周期为所述移动通信 系统的系统帧的切换点周期的正整数倍的时间序列中小于所述业务数 据包的到达周期的时间序列中的最大值。
11. 根据权利要求 10所述的基站, 其特征在于, 还包括: 业务数据包的传输之外的剩余子帧分配给其它业务或用户设备使用。
12.根据权利要求 9所述的基站, 其特征在于, 所述资源分配周期 大于所述业务数据包的到达周期、 且所述资源分配周期为所述移动通信 系统的系统帧的切换点周期的正整数倍的时间序列中大于所述业务数 据包的到达周期的时间序列中的最小值。
13.根据权利要求 12所述的基站, 其特征在于, 还包括:
第二调度器, 用于在当前数据包到来到下一数据包到来期间不存在 半持续调度资源时, 为所述当前数据包动态分配资源进行传输。
14.根据权利要求 9至 13任一项所述的基站, 其特征在于: 所述符合要求的业务数据包为: 具有固定的到达周期、 且所述业务 数据包的大小之间的差值处于预设范围之内。
PCT/CN2009/073059 2008-08-04 2009-08-03 半持续调度的业务数据处理方法及基站 WO2010015186A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 200810117802 CN101646209B (zh) 2008-08-04 2008-08-04 半持续调度的业务数据处理方法及基站
CN200810117802.5 2008-08-04

Publications (1)

Publication Number Publication Date
WO2010015186A1 true WO2010015186A1 (zh) 2010-02-11

Family

ID=41657872

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/073059 WO2010015186A1 (zh) 2008-08-04 2009-08-03 半持续调度的业务数据处理方法及基站

Country Status (2)

Country Link
CN (1) CN101646209B (zh)
WO (1) WO2010015186A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018229713A1 (en) * 2017-06-16 2018-12-20 Nokia Technologies Oy Method and apparatus for persistent scheduling adaptation

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107295643B (zh) * 2016-03-30 2019-12-13 电信科学技术研究院 一种调度方法、装置和设备
CN109392171B (zh) * 2017-08-11 2022-04-15 中国移动通信有限公司研究院 半持续调度数据传输方法、通信设备及存储介质
CN110351032B (zh) * 2018-04-02 2022-04-26 华为技术有限公司 资源配置方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1826767A (zh) * 2003-07-24 2006-08-30 株式会社安川电机 主装置/从装置同步通信方式
CN1886920A (zh) * 2003-12-30 2006-12-27 诺基亚公司 使用具有非对称数据链路的中继基站的通信系统
WO2008041805A1 (en) * 2006-10-05 2008-04-10 Lg Electronics Inc. Method for transmitting voice packets in wireless communication system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101222309B (zh) * 2008-01-25 2013-06-05 中兴通讯股份有限公司 Lte tdd系统上行harq进程的配置方法和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1826767A (zh) * 2003-07-24 2006-08-30 株式会社安川电机 主装置/从装置同步通信方式
CN1886920A (zh) * 2003-12-30 2006-12-27 诺基亚公司 使用具有非对称数据链路的中继基站的通信系统
WO2008041805A1 (en) * 2006-10-05 2008-04-10 Lg Electronics Inc. Method for transmitting voice packets in wireless communication system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018229713A1 (en) * 2017-06-16 2018-12-20 Nokia Technologies Oy Method and apparatus for persistent scheduling adaptation

Also Published As

Publication number Publication date
CN101646209B (zh) 2011-12-07
CN101646209A (zh) 2010-02-10

Similar Documents

Publication Publication Date Title
EP4117214B1 (en) Method and user equipment (ue) for managing harq procedure for multiple numerologies
CN108632966B (zh) 发射功率控制方法、装置、设备和存储介质
CN102056174B (zh) 一种资源调度的方法、装置和基站
RU2413393C2 (ru) Выделение радиоресурсов в системе подвижной связи
US8572250B2 (en) Discontinuous transmission/reception in a communications system
AU2007301647B2 (en) Uplink allocations for acknowledgement of downlink data
CN101646239B (zh) 一种半持久调度的方法
CN101646202B (zh) 一种半静态调度下行传输的实现方法
EP1973361B1 (en) A method for scheduling of service data in downlink and base station therefor
EP2587706A2 (en) Improved re-transmission capability in semi-persistent transmission
TWI495291B (zh) 在無線通信系統中用以維護連接之服務品質之技術
US20090103440A1 (en) Collision avoidance for uplink VoIP transmission
WO2010037272A1 (zh) 用户上行数据调度方法及用户设备
KR101730363B1 (ko) 업링크 데이터를 송신하는 방법, 사용자 장비, 및 기지국
CN101800991B (zh) 一种数据传输方法、系统及装置
WO2009034553A2 (en) Cyclic bandwidth allocation method with harq enabled
CN106413106B (zh) 一种上行数据的传输方法及装置
WO2010121539A1 (zh) 一种tdd系统回程链路通信方法、设备和系统
WO2009115027A1 (zh) 一种指示上行资源的系统和方法
US9560670B2 (en) Method of managing coexisting packet streams
WO2009062389A1 (en) Resource scheduling method and corresponding apparatus
WO2020224969A1 (en) Communications device, infrastructure equipment and methods
WO2010015186A1 (zh) 半持续调度的业务数据处理方法及基站
CN109728884B (zh) 集群数据传输方法及设备
EP4104343A1 (en) Telecommunications apparatus and methods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09804486

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09804486

Country of ref document: EP

Kind code of ref document: A1