WO2010013713A1 - Bending strength member and bumper reinforcement having same - Google Patents

Bending strength member and bumper reinforcement having same Download PDF

Info

Publication number
WO2010013713A1
WO2010013713A1 PCT/JP2009/063431 JP2009063431W WO2010013713A1 WO 2010013713 A1 WO2010013713 A1 WO 2010013713A1 JP 2009063431 W JP2009063431 W JP 2009063431W WO 2010013713 A1 WO2010013713 A1 WO 2010013713A1
Authority
WO
WIPO (PCT)
Prior art keywords
web
thickness
section
bending strength
cross
Prior art date
Application number
PCT/JP2009/063431
Other languages
French (fr)
Japanese (ja)
Inventor
知和 中川
拓則 山口
雅男 杵渕
美枝 橘
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Publication of WO2010013713A1 publication Critical patent/WO2010013713A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/12Vibration-dampers; Shock-absorbers using plastic deformation of members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R19/00Wheel guards; Radiator guards, e.g. grilles; Obstruction removers; Fittings damping bouncing force in collisions
    • B60R19/02Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects
    • B60R19/18Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects characterised by the cross-section; Means within the bumper to absorb impact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R19/00Wheel guards; Radiator guards, e.g. grilles; Obstruction removers; Fittings damping bouncing force in collisions
    • B60R19/02Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects
    • B60R19/18Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects characterised by the cross-section; Means within the bumper to absorb impact
    • B60R2019/1806Structural beams therefor, e.g. shock-absorbing
    • B60R2019/1813Structural beams therefor, e.g. shock-absorbing made of metal

Definitions

  • the present invention relates to a bending strength member to which a bending load due to an external force acts, and a bumper reinforcement including the bending strength member.
  • a bumper reinforcement attached to a car body of an automobile is an example of a bending strength member made of a thin material and subjected to a bending load due to an external force.
  • Many of such bumper reinforcements are molded using a 980 MPa grade steel plate into a B-shaped cross section or a cross section in which a plate material for vertically partitioning it is arranged in a hollow rectangular cross section.
  • the main role of the bumper reinforcement is to absorb the energy at the time of collision by deforming and absorbing energy at the time of collision, and transmitting the impact load to the left and right side members to deform the side members. That is, by deforming the side member and absorbing energy, the deformation of the cabin of the automobile is suppressed as designed to protect the passenger from impact.
  • Patent Document 1 discloses an automotive bumper reinforcement in which bending strength is increased by making a portion on the compression flange side thicker than a portion on the tension flange side with respect to the bending neutral axis of the web constituting the hollow rectangular cross section.
  • Patent Document 2 discloses a vehicular bumper device having a bumper force having three ribs arranged in a specific direction. In this device, the thickness of ribs at intermediate positions among these ribs is changed. By making it larger than this rib, the energy absorbing ability is prevented from being lowered when the three ribs are buckled.
  • Patent Document 3 discloses a bending strength member having a flange to which a bending load acts and a flange on the opposite side thereof.
  • an FRP material is provided on the flange surface of the latter flange.
  • the amount of energy absorption is increased by setting the ratio of the width and thickness of the flange on the compression side to 12 or less.
  • Patent document 4 includes a steel pipe and a composite of a vehicle including a steel pipe and a reinforcing rod having an outer shape along the inner wall thereof and having a rib formed therein, and the strength is ensured by inserting the reinforcing pipe into the steel pipe.
  • a structural member is disclosed.
  • Patent Document 5 discloses a filling structure having a hollow member and a filler rich in energy absorption performance, and the corrosion resistance is ensured by inserting and fixing the filler into the hollow member. Is disclosed. Further, Patent Document 6 discloses a vehicle body structural member that is composed of a plurality of members having different strengths so that a torsional moment is generated, and has improved energy absorption efficiency by dispersing a bending load to other members. ing.
  • Patent Document 7 discloses a bumper structure having a bumper reinforcing material having a hollow portion and a crush preventing body that is disposed in the hollow portion and improves impact energy absorption capability due to buckling deformation.
  • Patent Document 8 discloses an automobile bumper in which a limit load of buckling is improved by providing an R provided in a concave shape toward the center direction of the reinforcing material on a surface that is not perpendicular to the load direction of the load. A reinforcement is disclosed.
  • An object of the present invention is to provide a bending strength member capable of improving the bending strength while minimizing an increase in weight, and a bumper reinforcement including the bending strength member.
  • the bending strength member according to the present invention is disposed so as to oppose each other in a load application direction to which a load is applied, each of which is perpendicular to the load application direction, and the load application direction between the pair of flanges And a web having a shape in which the thickness of the inner portion is larger than the thickness of both ends.
  • This web has a higher buckling strength in the load application direction than a web having the same cross-sectional area as that of the web and having a constant wall thickness from one end to the other end.
  • the web buckling strength can be improved by increasing the thickness on the inner side than the thickness at both ends, without increasing the thickness of the web uniformly from one end to the other.
  • the bending strength can be improved while minimizing the increase in weight due to the thickening of the web.
  • FIG. 1 It is a schematic diagram of the bumper reinforcement according to the first embodiment of the present invention.
  • (A)-(c) is sectional drawing of the said bumper reinforcement.
  • (A)-(c) is sectional drawing of the conventional bumper reinforcement. It is a graph showing the simulation result about the buckling strength of the web in the said bumper reinforcement.
  • (A)-(c) is sectional drawing of the bumper reinforcement which concerns on the 2nd Embodiment of this invention. It is a graph showing the simulation result about the buckling strength of the web in the bumper reinforcement which concerns on the 2nd Embodiment of this invention.
  • (A) And (b) is sectional drawing of the variable cross-section web of the bumper reinforcement which concerns on the 4th Embodiment of this invention. It is a graph showing the simulation result about the buckling strength of the web in the bumper reinforcement which concerns on the 2nd Embodiment of this invention.
  • (A) And (b) is sectional drawing which shows the modification of the bumper reinforcement which concerns on this invention.
  • (A)-(c) is sectional drawing which shows the modification of the bumper reinforcement which concerns on this invention.
  • (A) And (b) is sectional drawing which shows the modification of the bumper reinforcement which concerns on this invention. It is sectional drawing which shows the modification of the bumper reinforcement which concerns on this invention.
  • a bumper reinforcement attached to a vehicle body is described as a bending strength member, but the bending strength member according to the present invention is not limited to a bumper reinforcement.
  • the bumper reinforcement according to each embodiment may include other components in addition to the bending strength member according to the present invention.
  • the bumper reinforcement 1 in the present embodiment is made of a metal material such as aluminum or steel, and is entirely molded integrally. As shown in FIG. 1, the bumper reinforcement 1 has a shape extending in a specific direction, and the longitudinal direction of the bumper reinforcement 1 is orthogonal to the collision direction indicated by an arrow (load addition direction to which a load is applied). It is attached to the front of the vehicle body 100. Specifically, the bumper reinforcement 1 is supported by a pair of stays 8 and 8 provided at a predetermined interval in a direction orthogonal to the collision direction.
  • FIG. 2 shows a cross section corresponding to the cross section taken along line AA shown in FIG.
  • the bumper reinforcement 1 has a hollow rectangular cross section, and the hollow portion is partitioned vertically by a horizontal web.
  • the bumper reinforcement 1 is disposed so as to face each other in the collision direction, and a pair of the front flange 2 and the rear flange 3 that are orthogonal to the collision direction, and between the flanges 2 and 3. 3, three webs 4, 4, 5 are arranged so as to be lined up and down in a posture parallel to the collision direction.
  • the number of webs is not limited to three.
  • the front flange 2 is located on the upstream side in the collision direction indicated by the arrow, and the rear flange 3 is located on the downstream side in the collision direction with respect to the front flange 2.
  • the front flange 2 and the rear flange 3 are connected to each other by the three webs 4, 4, and 5.
  • Two of the three webs 4, 4, 5 are respectively disposed between both ends of the front flange 2 and both ends of the rear flange 3 facing the both ends. . Further, the web 5 is disposed between a longitudinal center portion which is a portion inside the both end portions of the front flange 2 and a longitudinal center portion which is a portion inside the both end portions of the rear flange 3. Is done.
  • Each of the end side webs 4, 4 has a constant thickness from one end to the other end. Such a web is called a constant section web.
  • the inner web 5 has such a thickness that the inner portion is thicker than the both end portions. Such a web is called a variable cross section web. The thicknesses of the constant cross-section web 4 and the variable cross-section web 5 are set so that the cross-sectional areas of the constant cross-section web 4 and the variable cross-section web 5 viewed from the direction orthogonal to the collision direction are the same.
  • the constant cross-section web 4 has a length L in a direction parallel to the collision direction, and a wall thickness t3 that is constant from one end to the other end.
  • the cross-sectional shape of the constant cross-section web 4 is a rectangle.
  • the variable cross-section web 5 has a length L in a direction parallel to the collision direction and a thickness that varies from one end to the other end. Specifically, both end portions of the cross-section web 5 have a thickness t1, and the central portion, which is a distance of L / 2 from each end portion, has the maximum thickness t2.
  • the cross-sectional shape of the variable cross-section web 5 is bilaterally symmetric when the direction orthogonal to the collision direction is left and right, so that the central portion is the thickest thickest portion from both ends to the central portion.
  • the shape is such that the wall thickness continuously increases toward.
  • the conventional bumper reinforcement 31 has the constant cross-section web 15 having a constant thickness between the longitudinal center portions of the pair of flanges 2 and 3, whereas the bumper according to the present embodiment.
  • the lean reinforcement 1 has a variable cross-section web 5 between the longitudinal center portions of the pair of flanges 2 and 3, the inner thickness being larger than the thickness at both ends.
  • the variable cross-section web 5 has a buckling strength higher than that of the constant cross-section web 15 having the same cross-sectional area as the variable cross-section web 5 because the inner thickness is larger than the thickness of both ends thereof.
  • the thickness t1 at both ends and the thickness t2 at the thickest portion satisfy the following formula 1.
  • the wall thickness t1 at both ends of the variable cross section web 5 and the wall thickness t2 at the thickest part are set so as to satisfy Expression 1.
  • FIG. 4 is a graph showing the simulation results of the buckling strength, wherein the vertical axis is the ratio of Pcr and Pcr0 (Pcr / Pcr0), and the horizontal axis is the thickness of the thickest part (maximum thickness) t2 and both ends. It is a ratio (t2 / t1) with the thickness t1 of the part.
  • Pcr is a buckling load
  • the cross-sectional area of the web is the same.
  • the buckling strength of the variable cross-section web 5 is 20% or more and is in the range of 1.1 ⁇ t2 / t1 ⁇ 1.4, the bumper reinforcement 1 is kept to a minimum while the bumper reinforcement 1 is kept to a minimum. It can be seen that the bending strength of the reinforcement 1 can be improved.
  • the cross-section web 5 disposed between the pair of flanges 2 and 3 has a shape in which the inner wall thickness is larger than the wall thickness at both ends thereof, the cross-sectional area is the same as this variable cross-section web 5.
  • the buckling strength is higher than that of the constant cross-section web 15 having a constant thickness from one end to the other end.
  • the web buckling strength is improved by making the inner thickness larger than the thickness at both ends of the web. Therefore, the bending strength can be improved while minimizing the increase in weight due to the thickening of the web.
  • the thickness t1 of the end portion of the cross section web 5 and the thickness t2 of the thickest portion satisfy the relationship of Formula 1 favorably improves the bending strength while minimizing an increase in weight. enable.
  • the bumper reinforcement 1 having the above-described cross section web 5 can be attached to the vehicle body 100 of the automobile, thereby improving the safety of the passenger while contributing to the weight reduction of the vehicle.
  • the bending strength member (bumper reinforcement) 1 of the present embodiment is disposed so as to face each other in the load application direction to which a load is applied, and a pair of flanges each orthogonal to the load application direction. 2 and 3, and a web (variable cross-section web 5) which is disposed between the pair of flanges 2 and 3 in parallel to the load application direction and has a shape whose inner thickness is larger than the thickness at both ends thereof. Since the web disposed between the pair of flanges 2 and 3 has a shape in which the inner wall thickness is larger than the wall thickness at both ends, the web and the cross-sectional area are the same, and the wall thickness extends from one end to the other end.
  • the thickness t1 of the end portion of the web and the maximum thickness t2 do not satisfy the relationship of 1.1 ⁇ t2 / t1 ⁇ 1.4.
  • the bending strength is preferably improved while minimizing the increase in weight.
  • the bumper reinforcement 1 of the present embodiment comprising the bending strength member 1 described above can be attached to the vehicle body 100 of the automobile, thereby improving the safety of the occupant while contributing to weight reduction of the vehicle. .
  • the bumper reinforcement 21 in the present embodiment is made of a metal material such as aluminum or steel, and is integrally molded as a whole, and is supported by a pair of stays 8 and 8 as shown in FIG. It is attached in front of.
  • FIG. 5 shows a section of the bumper reinforcement 21 corresponding to the section taken along line AA of FIG.
  • the bumper reinforcement 21 has a cross-sectional shape in which the inside of a hollow rectangular cross section is partitioned vertically by a horizontal web, and specifically, it faces each other in the collision direction.
  • Each having a front flange 2 and a rear flange 3 orthogonal to the collision direction, and three webs 4, 6, 6 arranged between the pair of flanges 2 and 3 in parallel to the collision direction. ing.
  • the number of webs is not limited to three.
  • the front flange 2 is located on the upstream side in the collision direction indicated by the arrow, and the rear flange 3 is located on the downstream side in the collision direction with respect to the front flange 2.
  • the front flange 2 and the rear flange 3 are connected to each other by three webs 4, 6, 6.
  • the webs 6 and 6 on the end portions are variable cross-section webs, and have a shape in which the inner wall thickness is larger than the wall thicknesses at both ends.
  • the web 4 on the inner side is a constant cross-section web, and has a constant thickness from one end to the other end.
  • the constant cross-section web 4 has a length L in a direction parallel to the collision direction and a wall thickness t3 that is constant from one end to the other end.
  • the cross-sectional shape of the constant cross-section web 4 is a rectangle.
  • the variable cross-section web 6 has a length L in a direction parallel to the collision direction and a thickness that changes in that direction. Specifically, both end portions of the cross section web 6 have a thickness t1, and the central portion at a distance of L / 2 from both end portions is the thickest portion having the largest thickness t2.
  • each variable cross-section web 6 has a center plane 6c that is a virtual cross section connecting the central point in the thickness direction at one end of the variable cross-section web 6 and the central point in the thickness direction at the other end.
  • the thickness from the side surface (the surface on the side facing the mating cross-section web 6) 6a to the center plane 6c is the center plane from the outer surface (the surface on the opposite side to the surface facing the mating cross-section web 6) 6b. It has a shape larger than the wall thickness up to 6c.
  • the cross-sectional shape of the variable cross-section web 6 is asymmetrical when the direction orthogonal to the collision direction is left and right, and the inner side surface 6a has a large thickness from the inner side surface 6a to the central surface 6c.
  • the outer surface 6b is a flat surface that suppresses the thickness from the outer surface 6b to the center surface 6c. Further, the cross-sectional shape of the variable cross-section web 6 is such that the thickness continuously increases from both end portions toward the central portion so that the central portion becomes the thickest thickest portion. ing.
  • the conventional bumper reinforcement 31 has constant cross-sectional webs 14, 14 whose both end portions and central portion have a constant thickness t3. , 15.
  • the conventional bumper reinforcement 31 has a pair of constant cross-sectional webs 14 and 14 having a constant thickness between the ends of the pair of flanges 2 and 3.
  • the bumper reinforcement 1 of the form of this has the cross-section webs 6 and 6 between the edge parts of a pair of flanges 2 and 3 whose inner wall thickness is larger than the wall thickness of both ends.
  • variable cross-section webs 6 and 6 have a shape in which the inner wall thickness is larger than the thickness at both ends, so that the cross-sectional webs 14 and 14 having the same cross-sectional area as the variable cross-section webs 6 and 6 are higher. Has buckling strength. Further, the shape in which the thickness from the inner surface 6a to the central surface 6c is larger than the thickness from the outer surface 6b to the central surface 6c is such that the variable cross-section web 6 faces inward (approaching the opposite variable cross-section webs 6, 6). It is urged to buckle.
  • the wall thickness t1 at both ends of the variable cross-section web 6 and the wall thickness t2 at the thickest part satisfy the above-mentioned formula 1.
  • the wall thickness t1 at both ends of the variable cross-section web 6 and the wall thickness t2 at the thickest part are set so as to satisfy Expression 1. This makes it possible to favorably improve the bending strength while minimizing the increase in weight of the variable cross section web 6.
  • each of the variable cross-section webs 6 has a shape that prompts them to buckle in the direction in which these variable cross-section webs 6 approach each other (inward). Therefore, as shown in FIG.
  • the bent cross-section webs 6, 6 can fill the hollow portion surrounded by the pair of flanges 2, 3 and the respective webs 4, 6 to increase the toughness (stickiness) after the web buckling.
  • variable cross-section webs 6 and 6 on the pair of end portions face inward. That is, the intermediate portion of the cross section web 6 starts to buckle in a direction approaching the counterpart cross section web 6 facing the intermediate section.
  • the variable cross-section web 6 buckled in this way fills the hollow portion surrounded by the pair of flanges 2 and 3 and the webs 4 and 6, thereby toughening the bumper reinforcement 21 after the web buckling ( Tenacity) can be improved.
  • the pair of flanges 2 and 3 and the stay 8 are further deformed. In this way, the bending strength of the bumper reinforcement 21 is improved so that the variable cross-section web 6 does not buckle before the pair of flanges 2 and 3 are plasticized over the entire cross section.
  • the bending strength of the bumper reinforcement was calculated by three-point bending analysis for the bumper reinforcement 21 of the present embodiment shown in FIG. 5 and the conventional bumper reinforcement 31 shown in FIG. .
  • the center of the front flange 2 was used as a loading point, and two locations of the rear flange 3 symmetrical to the loading point were used as fulcrums.
  • the front flange 2 of each bumper reinforcement can be regarded as a beam supported near both ends. For this reason, the front flange 2 resists the load received by the bumper reinforcement at the time of collision by bending. Therefore, the greater the bending moment that can be borne by the bumper reinforcement, the higher the bending strength.
  • FIG. 6 is a graph showing a simulation result of bending strength, where the vertical axis represents the bending moment (kN ⁇ m) and the horizontal axis represents the indentation displacement (mm). From the graph of FIG. 6, the decrease in the bending strength after the bending moment reaches the peak is that the bumper reinforcement 21 having the cross-section web 6 is more than the bumper reinforcement 31 having no cross-section web 6. I understand that it is small. That is, in the bumper reinforcement 21 having the deformed cross-section web 6, the toughness (stickiness) after the web buckling is improved by buckling the respective cross-section webs 6 in the directions approaching each other (inward). I understand that. Thus, it can be seen that the bumper reinforcement 21 having the variable cross-section web 6 has higher energy absorption performance than the bumper reinforcement 31 not having the variable cross-section web 6.
  • the pair of variable cross-section webs 6, 6 disposed between the pair of flanges 2, 3 has a shape in which the wall thickness at both ends is larger than the inner wall thickness.
  • the buckling strength is higher than that of the constant cross-section web 14 having the same area and a constant wall thickness from one end to the other end.
  • Each of the variable cross-section webs 6 and 6 has a wall thickness from the inner side surface 6a to the central surface 6c, which is a surface facing the counterpart cross-section web 6, from the opposite outer surface 6b to the central surface 6c. Therefore, the direction of buckling of these variable cross-section webs 6 and 6 can be inward, that is, the direction in which these variable cross-section webs 6 approach each other.
  • the variable cross-section web 6 buckled in this direction can improve the toughness (stickiness) after the web buckling by filling the hollow portion surrounded by the pair of flanges 2 and 3 and the webs 4 and 6. .
  • the bending strength member (bumper reinforcement) 21 is disposed so as to face each other in the load application direction to which a load is applied, and a pair of flanges each orthogonal to the load application direction. 2 and 3 and a pair of flanges 2 and 3, each of which is arranged in parallel to the load application direction and has a pair of webs having a shape whose inner wall thickness is larger than the wall thickness at both ends (the variable cross-section webs 6 and 6
  • the thickness of each web from the inner surface 6a to the center surface 6c, which is the surface facing the other web, is the thickness from the outer surface 6b to the center surface 6c opposite to the inner surface 6a. It has a shape larger than the thickness.
  • the pair of webs disposed between the pair of flanges 2 and 3 have a shape in which the inner wall thickness is larger than the wall thicknesses at both ends thereof, and thus the cross-sectional area is the same as that of the web. From the web to the other end, it has a higher buckling strength than a web having a constant wall thickness.
  • the web buckling strength can be improved by increasing the inner wall thickness from the both wall thicknesses without increasing the web wall thickness uniformly from one end to the other end. Therefore, the bending strength can be improved while minimizing the increase in weight due to the thickening of the web.
  • each web has a shape in which the thickness from the inner surface 6a facing the counterpart web to the center surface 6c is larger than the thickness from the opposite outer surface 6b to the center surface 6c. Will be prompted to buckle inward, that is, closer to the opponent's web.
  • the web buckled in this direction can improve the toughness (stickiness) after web buckling by filling the hollow portion surrounded by the pair of flanges 2 and 3 and each web.
  • the bumper reinforcement 41 in the present embodiment is made of a metal material such as aluminum or steel, and is entirely molded integrally, and is supported by a pair of stays 8 and 8 as shown in FIG. It is attached to the front of the vehicle body 100.
  • FIG. 7 shows a cross section of the bumper reinforcement 41 corresponding to the cross section taken along line AA of FIG.
  • the bumper reinforcement 41 has a hollow rectangular cross section, and the hollow portion is vertically partitioned by a horizontal web.
  • the bumper reinforcement 41 is disposed so as to be opposed to each other in the collision direction, and the bumper reinforcement 41 collides between the front flange 2 and the rear flange 3 that are orthogonal to the collision direction, and the pair of flanges 2 and 3.
  • the number of webs is not limited to three.
  • the front flange 2 is located on the upstream side in the collision direction indicated by the arrow, and the rear flange 3 is located on the downstream side in the collision direction with respect to the front flange 2.
  • the front flange 2 and the rear flange 3 are connected to each other by three webs 5, 6, 6.
  • Two of the three webs 5, 6, 6 are disposed between both ends of the front flange 2 and both ends of the rear flange 3 respectively corresponding to these both ends,
  • the web 4 between 6 is arrange
  • the end side webs 6 and 6 are the variable cross-section webs described in the second embodiment, and the internal web 5 is the variable cross-section web described in the first embodiment.
  • the bumper reinforcement 41 in the present embodiment is configured by a combination of the variable cross-section web 5 described in the first embodiment and the variable cross-section webs 6 and 6 described in the second embodiment.
  • the Other configurations are the same as those in the first embodiment and the second embodiment, and thus description thereof is omitted.
  • the bending strength member (bumper reinforcement) 41 of the present embodiment is disposed so as to face each other in the load application direction to which a load is applied, and a pair of flanges each orthogonal to the load application direction. 2 and 3 and one or more internal webs (variable cross-sections) disposed between the inner sides of the pair of flanges 2 and 3 in parallel to the load application direction and having a shape whose inner thickness is larger than the thickness at both ends. Between the ends of the web 5) and the pair of flanges 2 and 3, the webs on the side of the pair of end portions, each of which is arranged in parallel to the load application direction and has a shape whose inner thickness is larger than the thickness of both ends.
  • positioned between a pair of flanges 2 and 3 has a shape where inner wall thickness is larger than the wall thickness of the both ends, this web and cross-sectional area are the same, It has a buckling strength higher than that of a web having a constant wall thickness from one end to the other end.
  • the web buckling strength can be improved by increasing the inner wall thickness from the both wall thicknesses without increasing the web wall thickness uniformly from one end to the other end. Therefore, the bending strength can be improved while minimizing the increase in weight due to the thickening of the web.
  • Each end side web has a wall thickness from the inner side surface 6a to the center surface 6c facing the other end side web, and from the outer side surface 6b to the center surface 6c opposite to the inner side surface 6a. Since it has a shape larger than the thickness, it is urged to buckle inward, that is, toward the web on the other end side.
  • the web buckling in this direction can improve the toughness (stickiness) after the web buckling by filling the hollow portion surrounded by the pair of flanges 2 and 3 and each web.
  • the bumper reinforcement 121 in the present embodiment is made of a metal material such as aluminum or steel, and is entirely molded integrally, and is supported by a pair of stays 8 and 8 as shown in FIG. It is attached to the front of the vehicle body 100.
  • FIG. 8 shows a cross section of the bumper reinforcement 121 corresponding to the cross section taken along line AA of FIG.
  • the bumper reinforcement 121 has a hollow rectangular cross section, and the hollow portion is vertically partitioned by a horizontal web.
  • the bumper reinforcement 121 is disposed so as to face each other in the collision direction, and the bumper reinforcement 121 collides between the front flange 2 and the rear flange 3 and the pair of flanges 2 and 3 which are orthogonal to the collision direction.
  • the front flange 2 is located on the upstream side in the collision direction indicated by the arrow, and the rear flange 3 is located on the downstream side in the collision direction with respect to the front flange 2.
  • the front flange 2 and the rear flange 3 are connected to each other by three webs 4, 11, 11.
  • the webs 4, 11, 11, two webs 11, 11 are respectively disposed between both ends of the front flange 2 and both ends of the rear flange 3 facing the both ends.
  • the web 4 is disposed between the longitudinal center portion of the front flange 2 and the longitudinal center portion of the rear flange 3.
  • the webs 11, 11 on each end side are variable cross-section webs and have a shape in which the inner wall thickness is larger than the wall thickness at both ends.
  • the inner web 4 is the constant cross-sectional web described in the first embodiment, and has a constant thickness from one end to the other end.
  • the constant cross-section web 4 has a length L in a direction parallel to the collision direction and a wall thickness t3 that is constant from one end to the other end.
  • the cross-sectional shape of the constant cross-section web 4 is a rectangle.
  • the variable cross-section web 11 has a length L in a direction parallel to the collision direction and a thickness that changes in the longitudinal direction.
  • both end portions of the variable cross-section web 11 have a thickness t1, and the center portion at a distance of L / 2 from both end portions is the thickest portion having the largest thickness t2.
  • the apparent thickness t2 of the thickest portion includes a depth c of a notch portion 11d described later, and the actual thickness t4 is smaller by the depth c.
  • Each variable cross-section web 11 has an inner surface 11a that is a surface facing the counterpart variable cross-section web 11, and an outer surface 11b opposite to the inner surface 11a, and the wall thickness from the inner surface 11a to the center surface 11c is It has a shape larger than the thickness from the outer surface 11b to the center surface 11c.
  • the center plane 11c is a virtual cross section that connects the center point in the thickness direction at one end of the variable cross-section web 11 and the center point in the thickness direction at the other end.
  • the cross-sectional shape of the variable cross-section web 11 is asymmetrical when the direction orthogonal to the collision direction is left and right.
  • the inner surface 11a is a convex surface that swells inward so as to increase the thickness from the inner surface 11a to the central surface 11c, and the outer surface 11b suppresses the thickness from the outer surface 11b to the central surface 11c. It is a plane.
  • the cross-sectional shape of the variable cross-section web 11 is a shape in which the thickness continuously increases from both end portions toward the central portion so that the central portion becomes the thickest thickest portion. .
  • a cutout portion 11 d is formed on the outermost surface 11 b of the thickest portion of the variable cross section web 11.
  • the notch portion 11d has a depth c, and the actual thickness t4 of the thickest portion excluding the depth c of the notch portion 11d is greater than the apparent thickness t2. Is also small.
  • the variable cross-section web 11 is different from the variable cross-section web 6 shown in FIG. 9B in that it has a notch 11d.
  • the thickness t1 at both ends, the apparent thickness t2 of the thickest part including the depth c of the notch 11d, and the depth c of the notch 11d are as follows: The following formula 2 is satisfied.
  • the thickness t1 of the both end portions of the variable cross section web 11, the apparent thickness t2 of the thickest portion, and the depth c of the notch portion 11d are set so as to satisfy Expression 2. This makes it possible to suitably improve the bending strength while minimizing the increase in weight.
  • the apparent thickness t2 of the thickest part including the depth c of the notch part 11d satisfies the above formula 1.
  • variable cross-section webs 11 and 11 have a shape in which the inner wall thickness is larger than the wall thicknesses at both ends, so that the constant cross-section webs 14 and 14 having the same cross-sectional area as this (see FIG. 3A). ) And a wall thickness from the inner surface 11a to the central surface 11c is larger than a wall thickness from the outer surface 11b to the central surface 11c. You are prompted to buckle inward (inward).
  • the variable cross-section webs 11 and 11 that buckle in this direction improve the toughness (stickiness) after the web buckling by filling the hollow portion surrounded by the pair of flanges 2 and 3 and the webs 4 and 11. Can be made.
  • the notched portion 11d formed on the outer side surface 11b of the variable cross-section webs 11 and 11 can also promote the buckling of the variable cross-section webs 11 and 11 inwardly. This can contribute to the improvement of tenacity.
  • FIG. 10 is a graph showing a simulation result of the displacement amount.
  • U / U0 on the vertical axis represents the displacement amount U of the bumper reinforcement 121 of the present embodiment having the notch 11d (see FIG. 9A). Is divided by the amount of displacement U0 (see FIG. 9B) of the bumper reinforcement 21 having no notch.
  • the horizontal axis represents a value obtained by dividing the depth c of the notch 11d by the thickness t2 of the thickest part including the depth c of the notch 11d.
  • the notch 11d greatly increases the amount of displacement due to the inward buckling of the web even if the depth c is slight.
  • the amount of displacement U of the bumper reinforcement 121 having the variable cross-section web 11 having the notch 11d is the bumper having the variable cross-section web 6 having no notch.
  • the displacement amount U0 of the reinforcement 21 is 1.6 times.
  • each variable cross-section web 11 is likely to buckle in a direction (inward) approaching the counterpart variable cross-section web 11. Recognize. This is because the bumper reinforcement 121 having the variable cross-section web 11 having the notched portion 11d has a toughness after web buckling (bumper reinforcement 21 having the variable cross-section web 6 not having the notched portion). It means that tenacity can be improved.
  • the pair of variable cross-section webs 11 and 11 disposed between the pair of flanges 2 and 3 have a shape in which the inner wall thickness is larger than the wall thickness at both ends thereof.
  • the buckling strength is higher than that of the constant cross-section web 14 (see FIG. 3A) having the same area and a constant thickness from one end to the other end. That is, even if the thickness of the web is not increased uniformly from one end to the other, the web buckling strength can be improved by increasing the thickness inside the thickness at both ends. Therefore, the bending strength can be improved while minimizing the increase in weight due to the thickening of the web.
  • each of the variable cross-section webs 11 and 11 has a wall thickness from the inner surface 11a to the central surface 11c, which is a surface facing the counterpart variable cross-section web 11, from a wall thickness from the outer surface 11b to the central surface 11c. Therefore, the direction of buckling of each of the cross-section webs 11 and 11 can be inward, that is, the direction approaching the counterpart cross-section web 11. Since the variable cross-section web 11 buckled in this direction can fill the hollow portion surrounded by the pair of flanges 2 and 3 and each web, the toughness (stickiness) after web buckling can be improved. .
  • each variable cross-section web 11, 11 can also easily buckle in the direction in which the cross-section web 11, 11 approaches each other.
  • Each of the deformed cross-section webs 11 and 11 is urged to fill a hollow portion surrounded by the pair of flanges 2 and 3 and the webs 4 and 11 to further improve toughness (stickiness) after web buckling. Can do.
  • the thickness t1 of the end of the variable cross section web 11 is expressed by the following equation (2). Since the relationship is satisfied, the bending strength can be suitably improved while minimizing the increase in weight.
  • the notch portion 11d is provided on the outermost surface 11b of the thickest portion of each web (the variable cross section web 11). ing. This notch portion 11d encourages the web to buckle in the direction in which the webs approach each other, thereby promoting the buckling of the hollow portion surrounded by the pair of flanges 2 and 3 and each web. Thus, the toughness (stickiness) after web buckling can be further improved.
  • the thickness t1 of the end portion of the web, the thickness t2 of the thickest portion, and the depth c of the notch portion 11d satisfy the relationship of 1.1 ⁇ (t2-c) /t1 ⁇ 1.4.
  • the bending strength can be suitably improved while minimizing the increase in weight.
  • the cross-sectional shape of the bumper reinforcements 1, 21, 41, 121 is a shape in which the inner space is partitioned vertically by a single horizontal web based on a hollow rectangular cross-section.
  • the inner space is divided into three or more pieces in the vertical direction by a plurality of horizontal webs, or simply a hollow rectangular cross section shape. Also good.
  • the bumper reinforcement according to the present invention is the same as the bumper reinforcement 51 shown in FIG. 11A in which the variable cross-section web 5 in the bumper reinforcement 1 according to the first embodiment is used in the second embodiment. It may be replaced with the variable cross-section web 6 of the form. Also in this bumper reinforcement 51, the bending strength can be improved while minimizing the increase in weight due to the thickening of the web.
  • the bumper reinforcement according to the present invention is the same as the bumper reinforcement 61 shown in FIG. 11B, in which the variable cross-section web 5 in the bumper reinforcement 1 according to the first embodiment is changed to the variable cross-section web 7. It may be replaced with.
  • the variable cross-section web 7 has a length L in a direction parallel to the collision direction and a thickness that changes in the longitudinal direction. Specifically, both end portions of the cross section web 7 have a thickness t1, and a portion located at a distance of L / 4 from the one end portion constitutes the thickest portion having the maximum thickness t2.
  • the cross-sectional shape of the variable cross-section web 7 is bilaterally symmetrical when the direction orthogonal to the collision direction is set to the left and right, and from both ends to the center so that the thickness of the center is the thickest.
  • the shape is such that the wall thickness increases continuously. Also in the bumper reinforcement 61 having such a configuration, the bending strength can be improved while minimizing the increase in weight due to the thickening of the web.
  • the bumper reinforcement according to the present invention like the bumper reinforcement 71 shown in FIG. 12 (a), is provided with two fixed members disposed between the pair of flanges 2 and 3 and their ends.
  • Two variable cross-section webs 5, which are arranged between the inner side portions of the pair of flanges 2, 3 between the cross-section webs 4, 4 and between the constant cross-section webs 4, 4. 5 may be included. Also in this bumper reinforcement 71, the bending strength can be improved while minimizing the increase in weight due to the thickening of the web.
  • the bumper reinforcement according to the present invention is similar to the bumper reinforcement 81 and 91 shown in FIGS. 12B and 12C, respectively, and the bumper reinforcement shown in FIG.
  • the two variable cross-section webs 5 and 5 of 71 may be respectively replaced with variable cross-section webs 6 and 6 whose cross-sectional shapes are asymmetric.
  • the bending strength can be improved and the toughness after the web buckling can be improved while minimizing the increase in weight due to the thickening of the web.
  • the bumper reinforcement according to the present invention is similar to the bumper reinforcement 101 shown in FIG. 13A, in which the variable cross-section web 5 in the bumper reinforcement 1 according to the first embodiment is changed to the variable cross-section web 9. It may be replaced with.
  • the variable cross-section web 9 has a length L in a direction parallel to the collision direction and a thickness that changes in the longitudinal direction. Specifically, both end portions of the variable cross-section web 9 have a thickness t1, and a central portion having a distance of L / 2 from both end portions constitutes the thickest portion having the maximum thickness t2.
  • the cross-sectional shape of the variable cross-section web 9 is symmetrical when the direction orthogonal to the collision direction is left and right, and is a portion (boundary portion) located at a predetermined distance (for example, L / 3) from both ends.
  • a portion having a constant thickness t1 and sandwiched between the two boundary portions 9a is arranged from each boundary portion 9a to the central portion so that the central portion becomes the thickest portion having the maximum thickness. It has a shape in which the wall thickness continuously increases. Also in this bumper reinforcement 101, the bending strength can be improved while minimizing the increase in weight due to the thickening of the web.
  • the bumper reinforcement according to the present invention is similar to the bumper reinforcement 111 shown in FIG. 13 (b), in which the variable cross-section web 5 in the bumper reinforcement 1 according to the first embodiment is replaced with the variable cross-section web 10. It may be replaced with.
  • the variable cross-section web 10 has a length L in a direction parallel to the collision direction and a thickness that changes in the longitudinal direction. Specifically, both end portions of the variable cross-section web 10 have a thickness t1, and the central portion at a distance of L / 2 from both end portions constitutes the thickest portion having the maximum thickness t2.
  • the cross-sectional shape of the variable cross-section web 10 is symmetrical when the direction orthogonal to the collision direction is left and right, and is a portion (boundary) located at a predetermined distance (for example, L / 3) from both ends.
  • Part) 10a has a constant thickness t1
  • the portion sandwiched between the two boundary portions 10a has a two-stage shape having the maximum thickness t2.
  • the bending strength can be improved while minimizing the increase in weight due to the thickening of the web.
  • the bumper reinforcement according to the present invention is similar to the bumper reinforcement 131 shown in FIG. 14 in that the constant cross-section web 4 in the bumper reinforcement 121 according to the fourth embodiment is replaced by the first embodiment. It may be replaced with the variable cross-section web 5. Also in the bumper reinforcement 131, the notched portions 11d formed in the variable cross-section webs 11 and 11 make it easy to buckle the variable cross-section webs 11 and 11 in a direction approaching each other.
  • the pair of flanges 2 and 3 and the web may not be molded integrally, or may be separate.
  • An object of the present invention is to provide a bending strength member and a bumper reinforcement capable of improving bending strength while minimizing an increase in weight.
  • a bending strength member and a bumper reinforcement capable of improving the bending strength while minimizing an increase in weight are provided.
  • the bending strength member according to the present invention is disposed so as to oppose each other in a load application direction to which a load is applied, each of which is perpendicular to the load application direction, and the load application direction between the pair of flanges And a web having a shape in which the thickness of the inner portion is larger than the thickness of both ends. Since the thickness of the inner side of the web is larger than the thickness of the both ends, the web has a higher seating in the load application direction than the web having the same cross-sectional area as the web and having a constant thickness from one end to the other end. Has bending strength.
  • the web buckling strength can be improved by increasing the thickness on the inner side than the thickness at both ends, without increasing the thickness of the web uniformly from one end to the other.
  • the bending strength can be improved while minimizing the increase in weight due to the thickening of the web.
  • the bending strength member according to the present invention is disposed so as to face each other in the load application direction to which a load is applied, and each of the pair of flanges orthogonal to the load application direction, and between the pair of flanges, respectively.
  • the thickness from the inner surface to the center surface is larger than the thickness from the outer surface to the center surface, which is the surface opposite to the inner surface, and the center surface is the thickness of one end of the web. It is a surface connecting the center point in the direction and the center point in the thickness direction at the other end.
  • Each of the pair of webs disposed between the pair of flanges in the bending strength member has a shape in which the inner wall thickness is larger than the wall thickness at both ends thereof. It has a higher buckling strength than a web having a constant thickness across the other end. In this way, the web buckling strength can be improved by increasing the thickness on the inner side of the thickness at both ends without increasing the thickness of the web uniformly from one end to the other. Therefore, the bending strength can be improved while minimizing the increase in weight due to the thickening of the web.
  • each web has a shape in which the thickness from the inner surface to the center surface facing the counterpart web is larger than the thickness from the outer surface to the center surface opposite to the inner surface.
  • a notch portion may be provided on the outer side surface of the thickest portion having the maximum thickness in each web. This notch urges the web to buckle in the direction in which the webs approach each other, thereby making it easier for the buckled web to fill the hollow portion surrounded by the pair of flanges and each web, The toughness (stickiness) after bending can be further improved.
  • the thickness t1 of the end portion of the web, the thickness t2 of the thickest portion, and the depth c of the notch portion are 1.1 ⁇ (t2-c) / It is more preferable to satisfy the relationship of t1 ⁇ 1.4. This makes it possible to suitably improve the bending strength of the bending strength member while minimizing the increase in weight.
  • the bending strength member according to the present invention is disposed so as to face each other in the load application direction to which a load is applied, and each of the pair of flanges orthogonal to the load application direction and both ends of the pair of flanges.
  • One or more inner webs arranged in parallel to the load application direction between the inner portions and having a shape in which the inner thickness is larger than the thickness at both ends, and the ends of the pair of flanges A pair of end-side webs, each of which is arranged so as to be parallel to the load application direction and has a shape whose inner thickness is larger than the thickness of both ends, and each of the end portions
  • the side web has a wall thickness from the inner surface that is the surface facing the other end side web to the center surface, more than the wall thickness from the outer surface that is the surface opposite to the inner surface to the center surface.
  • the center Is a surface connecting the middle point of the thickness direction of the central point and the other end in the thickness direction of one end of the web.
  • Each of the webs arranged between the pair of flanges in this bending strength member has a shape in which the inner wall thickness is larger than the wall thickness at both ends thereof. It has a higher buckling strength than a web with a constant wall thickness across the edges. In this way, the web buckling strength can be improved by increasing the thickness on the inner side of the thickness at both ends without increasing the thickness of the web uniformly from one end to the other. Therefore, the bending strength can be improved while minimizing the increase in weight due to the thickening of the web.
  • each end side web has a shape in which the thickness from the inner side surface to the center plane is larger than the thickness from the outer side surface to the center plane, so these end side webs buckle inward toward each other.
  • Cheap since the end side web which buckled inward can fill the hollow part enclosed by a pair of flange and each web, it can improve the toughness (tensile strength) after web buckling. it can.
  • a notch portion may be provided on the outer surface side of the thickest portion having the maximum thickness in each end side web. This notch part buckles in the direction in which the end side webs approach each other and promotes filling of the hollow part surrounded by the pair of flanges and each web, further improving the toughness (stickiness) after web buckling Can be made.
  • the thickness t1, the maximum thickness t2, and the depth c of the notch are 1.1 ⁇ (t2c) / t1 ⁇ . It is more preferable to satisfy the relationship of 1.4. This makes it possible to favorably improve the bending strength while minimizing the increase in weight.
  • the thickness t1 of the end portion of the web and the thickness t2 of the thickest portion satisfy a relationship of 1.1 ⁇ t2 / t1 ⁇ 1.4. preferable. This makes it possible to favorably improve the bending strength while minimizing the increase in weight.
  • the bumper reinforcement according to the present invention including the bending strength member described above can be attached to the vehicle body of the automobile, thereby improving the safety of the passenger while contributing to the weight reduction of the vehicle.

Abstract

Disclosed is a bending strength member which can be improved in the bending strength while an increase in the weight being minimized.  The bending strength member comprises a pair of flanges (2, 3) so disposed as to face each other in the colliding direction and a web (5) having a variable cross-section disposed between the flanges parallel to each other in the colliding direction.  The web (5) is so shaped that the wall thicknesses at both ends are larger than the wall thickness on the inner side, whereby the buckling strength of the web (5) is increased, and the bending strength of the member can be improved.

Description

曲げ強度部材およびこれを含むバンパーリーンフォースメントBending strength member and bumper reinforcement including the same
 本発明は、外力による曲げ荷重が作用する曲げ強度部材およびこれを含むバンパーリーンフォースメントに関する。 The present invention relates to a bending strength member to which a bending load due to an external force acts, and a bumper reinforcement including the bending strength member.
 従来、自動車の車体に取り付けられるバンパーリーンフォースメントは、薄肉材料で構成され、外力による曲げ荷重が作用する曲げ強度部材の一例である。このようなバンパーリーンフォースメントの多くは、980MPa級の鋼板を用いて、B型断面や、中空矩形断面内にこれを上下に仕切る板材が配された形の断面に成型される。 Conventionally, a bumper reinforcement attached to a car body of an automobile is an example of a bending strength member made of a thin material and subjected to a bending load due to an external force. Many of such bumper reinforcements are molded using a 980 MPa grade steel plate into a B-shaped cross section or a cross section in which a plate material for vertically partitioning it is arranged in a hollow rectangular cross section.
 バンパーリーンフォースメントの主たる役割は、衝突時に変形してエネルギーを吸収するとともに、衝撃荷重を左右のサイドメンバに伝達し、サイドメンバを変形させることで、衝突時のエネルギーを吸収させることである。即ち、サイドメンバを変形させて、エネルギーを吸収させることにより、設計通り自動車のキャビンの変形を抑制して、乗員を衝撃から守っている。 The main role of the bumper reinforcement is to absorb the energy at the time of collision by deforming and absorbing energy at the time of collision, and transmitting the impact load to the left and right side members to deform the side members. That is, by deforming the side member and absorbing energy, the deformation of the cabin of the automobile is suppressed as designed to protect the passenger from impact.
 特許文献1には、中空矩形断面を構成するウエブの曲げ中立軸より圧縮フランジ側の部分を引張フランジ側の部分よりも厚肉とすることによって曲げ強度を高めた自動車用バンパーリーンフォースメントが開示されている。また、特許文献2には、特定方向に並ぶ3本のリブを有するバンパリィンフォースを有する車両用バンパ装置が開示され、この装置では、それらのリブのうち中間位置にあるリブの板厚を他のリブよりも大きくすることにより3本のリブが座屈した際のエネルギー吸収能力の低下が防止されている。 Patent Document 1 discloses an automotive bumper reinforcement in which bending strength is increased by making a portion on the compression flange side thicker than a portion on the tension flange side with respect to the bending neutral axis of the web constituting the hollow rectangular cross section. Has been. Further, Patent Document 2 discloses a vehicular bumper device having a bumper force having three ribs arranged in a specific direction. In this device, the thickness of ribs at intermediate positions among these ribs is changed. By making it larger than this rib, the energy absorbing ability is prevented from being lowered when the three ribs are buckled.
 また、特許文献3には、曲げ荷重が作用するフランジと、その反対側のフランジとを有する曲げ強度部材が開示され、この曲げ強度部材では、後者のフランジのフランジ面にFRP材が設けられるとともに、圧縮側のフランジの幅と厚みとの比を12以下とすることによってエネルギー吸収量が高められている。特許文献4には、鋼管と、その内壁に沿う外側形状を有して内部にリブが形成された補強菅とを備え、この補強管の前記鋼管への挿入により強度が確保された車両の複合構造部材が開示されている。 Patent Document 3 discloses a bending strength member having a flange to which a bending load acts and a flange on the opposite side thereof. In this bending strength member, an FRP material is provided on the flange surface of the latter flange. The amount of energy absorption is increased by setting the ratio of the width and thickness of the flange on the compression side to 12 or less. Patent document 4 includes a steel pipe and a composite of a vehicle including a steel pipe and a reinforcing rod having an outer shape along the inner wall thereof and having a rib formed therein, and the strength is ensured by inserting the reinforcing pipe into the steel pipe. A structural member is disclosed.
 また、特許文献5には、中空部材と、エネルギー吸収性能に富む充填材とを有し、この充填材が前記中空部材の内部に挿入されて固定されることにより耐食性が確保された充填構造体が開示されている。また、特許文献6には、ねじれモーメントが発生するように、強度の異なる複数の部材で構成され、曲げ荷重を他部材に分散させることにより、エネルギー吸収効率を向上させた車体構造部材が開示されている。 Patent Document 5 discloses a filling structure having a hollow member and a filler rich in energy absorption performance, and the corrosion resistance is ensured by inserting and fixing the filler into the hollow member. Is disclosed. Further, Patent Document 6 discloses a vehicle body structural member that is composed of a plurality of members having different strengths so that a torsional moment is generated, and has improved energy absorption efficiency by dispersing a bending load to other members. ing.
 また、特許文献7には、中空部を有するバンパー補強材と、その中空部内に配置されることにより座屈変形による衝撃エネルギーの吸収能力を向上させる潰れ防止体とを有するバンパー構造が開示されている。また、特許文献8には、荷重の負荷方向に対して垂直でない面に、補強材の中心方向に向かって凹型に設けられたRを設けることで、座屈の限界荷重を向上させた自動車バンパー補強材が開示されている。 Further, Patent Document 7 discloses a bumper structure having a bumper reinforcing material having a hollow portion and a crush preventing body that is disposed in the hollow portion and improves impact energy absorption capability due to buckling deformation. Yes. Further, Patent Document 8 discloses an automobile bumper in which a limit load of buckling is improved by providing an R provided in a concave shape toward the center direction of the reinforcing material on a surface that is not perpendicular to the load direction of the load. A reinforcement is disclosed.
 ところで、バンパーリーンフォースメントのような中空断面の曲げ強度部材において、理論断面性能を発揮させるためには、衝突荷重を受けた際に、フランジがその全断面にわたり塑性化する前にウェブに座屈を発生させないことが必須の条件となる。 By the way, in a bending strength member with a hollow cross section such as a bumper reinforcement, in order to demonstrate the theoretical cross section performance, when subjected to a collision load, the flange is buckled before the entire section is plasticized. It is indispensable condition not to generate.
 ウェブの座屈を先行させないためには、ウェブの肉厚を増加させることが効果的である。しかし、ウェブの肉厚増加は重量アップを招くため、重量当たりの性能がそれほど向上しない。また、ウェブの肉厚増加はそのまま重量の増加を招くのに対し、今日ではCO削減のために車両の軽量化が要求されているという背景がある。 In order to prevent the web from buckling, it is effective to increase the thickness of the web. However, since the increase in web thickness causes an increase in weight, the performance per weight is not improved so much. In addition, an increase in web wall thickness leads to an increase in weight as it is, but today there is a background that a reduction in vehicle weight is required to reduce CO 2 .
 また、バンパーリーンフォースメントの断面内部に付加物を取り付けるのは、製造上の困難が大きく、また、大きな付加物を取り付けると重量増加が著しくなる。また、FRPによって圧縮座屈を防止することはほとんど望めない。また、これらの付加物を用いる場合、コストアップが著しいという問題点もある。 In addition, it is difficult to manufacture an attachment in the cross section of the bumper reinforcement, and it is difficult to manufacture. Further, it is hardly possible to prevent compression buckling with FRP. In addition, when these adducts are used, there is a problem that the cost is significantly increased.
特開平11-059296号公報JP 11-059296 A 特開2004-148915号公報JP 2004-148915 A 特開2003-129611号公報JP 2003-129611 A 特開2003-312404号公報JP 2003-312404 A 特開2005-088651号公報Japanese Patent Laid-Open No. 2005-088651 特開2006-248336号公報JP 2006-248336 A 特開2000-052897号公報JP 2000-052897 A 特開平6-199193号公報JP-A-6-199193
 本発明の目的は、重量増加を最小限に留めつつ曲げ強度を向上させることが可能な曲げ強度部材およびこれを含むバンパーリーンフォースメントを提供することである。 An object of the present invention is to provide a bending strength member capable of improving the bending strength while minimizing an increase in weight, and a bumper reinforcement including the bending strength member.
 本発明に係る曲げ強度部材は、荷重が付加される荷重付加方向に互いに対向するように配置され、それぞれが前記荷重付加方向に直交する一対のフランジと、前記一対のフランジ間において前記荷重付加方向に平行となるように配置され、両端の肉厚よりもその内側の部分の肉厚が大きい形状をもつウェブと、を有する。このウェブは、当該ウェブと断面積が同一であって一端から他端にわたって肉厚が一定なウェブよりも、前記荷重付加方向について高い座屈強度を有する。このように、ウェブの肉厚を一端から他端にわたって一様に増加させなくても、両端の肉厚よりも内側の肉厚を大きくすることでウェブの座屈強度を向上させることができるから、ウェブの厚肉化による重量増加を最小限に留めつつ、曲げ強度を向上させることができる。 The bending strength member according to the present invention is disposed so as to oppose each other in a load application direction to which a load is applied, each of which is perpendicular to the load application direction, and the load application direction between the pair of flanges And a web having a shape in which the thickness of the inner portion is larger than the thickness of both ends. This web has a higher buckling strength in the load application direction than a web having the same cross-sectional area as that of the web and having a constant wall thickness from one end to the other end. In this way, the web buckling strength can be improved by increasing the thickness on the inner side than the thickness at both ends, without increasing the thickness of the web uniformly from one end to the other. The bending strength can be improved while minimizing the increase in weight due to the thickening of the web.
本発明の第1の実施の形態に係るバンパーリーンフォースメントの模式図である。It is a schematic diagram of the bumper reinforcement according to the first embodiment of the present invention. (a)~(c)は前記バンパーリーンフォースメントの断面図である。(A)-(c) is sectional drawing of the said bumper reinforcement. (a)~(c)は従来のバンパーリーンフォースメントの断面図である。(A)-(c) is sectional drawing of the conventional bumper reinforcement. 前記バンパーリーンフォースメントにおけるウェブの座屈強度についてのシミュレーション結果を表わすグラフである。It is a graph showing the simulation result about the buckling strength of the web in the said bumper reinforcement. (a)~(c)は本発明の第2の実施の形態に係るバンパーリーンフォースメントの断面図である。(A)-(c) is sectional drawing of the bumper reinforcement which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施の形態に係るバンパーリーンフォースメントにおけるウェブの座屈強度についてのシミュレーション結果を表わすグラフである。It is a graph showing the simulation result about the buckling strength of the web in the bumper reinforcement which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係るバンパーリーンフォースメントの断面図である。It is sectional drawing of the bumper reinforcement which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施の形態に係るバンパーリーンフォースメントの断面図である。It is sectional drawing of the bumper reinforcement which concerns on the 4th Embodiment of this invention. (a)及び(b)は本発明の第4の実施の形態に係るバンパーリーンフォースメントの変断面ウェブの断面図である。(A) And (b) is sectional drawing of the variable cross-section web of the bumper reinforcement which concerns on the 4th Embodiment of this invention. 本発明の第2の実施の形態に係るバンパーリーンフォースメントにおけるウェブの座屈強度についてのシミュレーション結果を表わすグラフである。It is a graph showing the simulation result about the buckling strength of the web in the bumper reinforcement which concerns on the 2nd Embodiment of this invention. (a)及び(b)は本発明に係るバンパーリーンフォースメントの変形例を示す断面図である。(A) And (b) is sectional drawing which shows the modification of the bumper reinforcement which concerns on this invention. (a)~(c)は本発明に係るバンパーリーンフォースメントの変形例を示す断面図である。(A)-(c) is sectional drawing which shows the modification of the bumper reinforcement which concerns on this invention. (a)及び(b)は本発明に係るバンパーリーンフォースメントの変形例を示す断面図である。(A) And (b) is sectional drawing which shows the modification of the bumper reinforcement which concerns on this invention. 本発明に係るバンパーリーンフォースメントの変形例を示す断面図である。It is sectional drawing which shows the modification of the bumper reinforcement which concerns on this invention.
 以下、図面に基づいて、本発明に係る曲げ強度部材の実施の形態について説明する。これらの実施の形態では、自動車の車体に取り付けられるバンパーリーンフォースメントを曲げ強度部材として説明するが、本発明に係る曲げ強度部材はバンパーリーンフォースメントに限定されない。また、各実施の形態に係るバンパーリーンフォースメントは、本発明に係る曲げ強度部材に加えてそれ以外の構成要素を含んでいてもよい。 Hereinafter, an embodiment of a bending strength member according to the present invention will be described based on the drawings. In these embodiments, a bumper reinforcement attached to a vehicle body is described as a bending strength member, but the bending strength member according to the present invention is not limited to a bumper reinforcement. Moreover, the bumper reinforcement according to each embodiment may include other components in addition to the bending strength member according to the present invention.
[第1の実施の形態]
 本発明の第1の実施の形態におけるバンパーリーンフォースメント(曲げ強度部材)1について、図1ないし図4を用いて説明する。 
[First Embodiment]
A bumper reinforcement (bending strength member) 1 according to a first embodiment of the present invention will be described with reference to FIGS.
(バンパーリーンフォースメント1の構成)
 本実施の形態におけるバンパーリーンフォースメント1は、アルミニウムや鋼などの金属材料からなり、全体が一体に成型されている。このバンパーリーンフォースメント1は、図1に示すように、特定方向に延びる形状を有し、その長手方向が矢印で示す衝突方向(荷重が付加される荷重付加方向)に直交するように、自動車の車体100の前方に取り付けられる。具体的に、このバンパーリーンフォースメント1は、前記衝突方向に直交する方向に所定の間隔を開けて設けられた一対のステイ8,8によって支持されている。
(Configuration of Bumper Reinforcement 1)
The bumper reinforcement 1 in the present embodiment is made of a metal material such as aluminum or steel, and is entirely molded integrally. As shown in FIG. 1, the bumper reinforcement 1 has a shape extending in a specific direction, and the longitudinal direction of the bumper reinforcement 1 is orthogonal to the collision direction indicated by an arrow (load addition direction to which a load is applied). It is attached to the front of the vehicle body 100. Specifically, the bumper reinforcement 1 is supported by a pair of stays 8 and 8 provided at a predetermined interval in a direction orthogonal to the collision direction.
 図2は、図1に示されるA-A線での断面に相当する断面を示す。この図2に示されるように、バンパーリーンフォースメント1は、中空矩形断面を有し、かつ、その中空部分が水平なウェブで上下に仕切られている。具体的に、このバンパーリーンフォースメント1は、前記衝突方向に互いに対向するように配置され、それぞれが衝突方向に直交する一対の前側フランジ2及び後側フランジ3と、これらのフランジ2,3間において前記衝突方向に平行な姿勢で互いに上下に並ぶように配置された3つのウェブ4,4,5と、を有している。なお、ウェブの数は3つに限定されない。 FIG. 2 shows a cross section corresponding to the cross section taken along line AA shown in FIG. As shown in FIG. 2, the bumper reinforcement 1 has a hollow rectangular cross section, and the hollow portion is partitioned vertically by a horizontal web. Specifically, the bumper reinforcement 1 is disposed so as to face each other in the collision direction, and a pair of the front flange 2 and the rear flange 3 that are orthogonal to the collision direction, and between the flanges 2 and 3. 3, three webs 4, 4, 5 are arranged so as to be lined up and down in a posture parallel to the collision direction. The number of webs is not limited to three.
 前記前側フランジ2は、前記矢印で示す衝突方向の上流側に位置し、前記後側フランジ3は、前記前側フランジ2よりも前記衝突方向の下流側に位置する。これら前側フランジ2と後側フランジ3は、前記の3つのウェブ4,4,5によって相互に接続されている。 The front flange 2 is located on the upstream side in the collision direction indicated by the arrow, and the rear flange 3 is located on the downstream side in the collision direction with respect to the front flange 2. The front flange 2 and the rear flange 3 are connected to each other by the three webs 4, 4, and 5.
 3つのウェブ4,4,5のうちの2つのウェブ4,4は、前記前側フランジ2の両端部と、当該両端部に対向する前記後側フランジ3の両端部との間にそれぞれ配置される。また、ウェブ5は、前側フランジ2の前記両端部よりも内側の部分である長手方向中央部と、後側フランジ3の前記両端部よりも内側の部分である長手方向中央部との間に配置される。前記端部側のウェブ4,4は、それぞれ、その一端から他端にわたって一定の肉厚を有する。このようなウェブを定断面ウェブという。一方、内部側のウェブ5は、その両端部分よりも内側の部分が厚肉であるような肉厚を有する。このようなウェブを変断面ウェブという。そして、これら定断面ウェブ4及び変断面ウェブ5の肉厚は、これらを前記衝突方向と直交する方向からみた断面積が互いに同一となるように、設定されている。 Two of the three webs 4, 4, 5 are respectively disposed between both ends of the front flange 2 and both ends of the rear flange 3 facing the both ends. . Further, the web 5 is disposed between a longitudinal center portion which is a portion inside the both end portions of the front flange 2 and a longitudinal center portion which is a portion inside the both end portions of the rear flange 3. Is done. Each of the end side webs 4, 4 has a constant thickness from one end to the other end. Such a web is called a constant section web. On the other hand, the inner web 5 has such a thickness that the inner portion is thicker than the both end portions. Such a web is called a variable cross section web. The thicknesses of the constant cross-section web 4 and the variable cross-section web 5 are set so that the cross-sectional areas of the constant cross-section web 4 and the variable cross-section web 5 viewed from the direction orthogonal to the collision direction are the same.
 図2(a)に示すように、前記定断面ウェブ4は、衝突方向に平行な方向についての長さLと、その一端から他端にわたって一定である肉厚t3とを有する。この定断面ウェブ4の断面形状は長方形である。一方、変断面ウェブ5は、衝突方向に平行な方向についての長さLと、その一端から他端にわたって変化する肉厚とを有する。具体的に、この変断面ウェブ5の両端部は肉厚t1を有し、その両端部からそれぞれL/2の距離をおいた部分である中央部が最大の肉厚t2を有する。この変断面ウェブ5の断面形状は、前記衝突方向に直交する方向を左右とした場合に、左右対称であって、中央部が最も厚肉な最厚部となるように、両端部から中央部に向かって肉厚が連続的に増加していくような形状となっている。 As shown in FIG. 2A, the constant cross-section web 4 has a length L in a direction parallel to the collision direction, and a wall thickness t3 that is constant from one end to the other end. The cross-sectional shape of the constant cross-section web 4 is a rectangle. On the other hand, the variable cross-section web 5 has a length L in a direction parallel to the collision direction and a thickness that varies from one end to the other end. Specifically, both end portions of the cross-section web 5 have a thickness t1, and the central portion, which is a distance of L / 2 from each end portion, has the maximum thickness t2. The cross-sectional shape of the variable cross-section web 5 is bilaterally symmetric when the direction orthogonal to the collision direction is left and right, so that the central portion is the thickest thickest portion from both ends to the central portion. The shape is such that the wall thickness continuously increases toward.
 一方、図3(a)に示すように、従来のバンパーリーンフォースメント31においては、3つのウェブのすべてが、その両端部及び中央部がともに一定の肉厚t3である定断面ウェブ14,14,15で構成されている。これら定断面ウェブ14,14,15の各々は、図2(a)に示した定断面ウェブ4と同一である。 On the other hand, as shown in FIG. 3 (a), in the conventional bumper reinforcement 31, all of the three webs have constant cross-sectional webs 14, 14 whose both end portions and central portion have a constant thickness t3. , 15. Each of these constant cross-section webs 14, 14 and 15 is the same as the constant cross-section web 4 shown in FIG.
 つまり、従来のバンパーリーンフォースメント31は、一対のフランジ2,3の長手方向中央部間に、肉厚が一定な定断面ウェブ15を有しているのに対して、本実施の形態のバンパーリーンフォースメント1は、一対のフランジ2,3の長手方向中央部間に、両端の肉厚よりも内側の肉厚が大きい変断面ウェブ5を有している。そして、変断面ウェブ5は、その両端の肉厚よりも内側の肉厚が大きいために、この変断面ウェブ5と同一の断面積をもつ定断面ウェブ15よりも高い座屈強度を有する。 That is, the conventional bumper reinforcement 31 has the constant cross-section web 15 having a constant thickness between the longitudinal center portions of the pair of flanges 2 and 3, whereas the bumper according to the present embodiment. The lean reinforcement 1 has a variable cross-section web 5 between the longitudinal center portions of the pair of flanges 2 and 3, the inner thickness being larger than the thickness at both ends. The variable cross-section web 5 has a buckling strength higher than that of the constant cross-section web 15 having the same cross-sectional area as the variable cross-section web 5 because the inner thickness is larger than the thickness of both ends thereof.
 ここで、前記変断面ウェブ5において、両端部の肉厚t1と、最厚部の肉厚t2とは、以下の式1を満足している。言い換えれば、式1を満足するように、変断面ウェブ5の両端部の肉厚t1と最厚部の肉厚t2とが設定されている。これにより、重量増加を最小限に留めつつバンパーリーンフォースメント1の曲げ強度を好適に向上させることが達成される。 Here, in the variable cross-section web 5, the thickness t1 at both ends and the thickness t2 at the thickest portion satisfy the following formula 1. In other words, the wall thickness t1 at both ends of the variable cross section web 5 and the wall thickness t2 at the thickest part are set so as to satisfy Expression 1. As a result, it is possible to suitably improve the bending strength of the bumper reinforcement 1 while minimizing an increase in weight.
 1.1≦t2/t1≦1.4 ・・・(式1)  1.1 ≦ t2 / t1 ≦ 1.4 (Formula 1)
(バンパーリーンフォースメント1の動作) 
 次に、前記バンパーリーンフォースメント1の動作について、図2、図3を用いて説明する。
(Operation of Bumper Reinforcement 1)
Next, the operation of the bumper reinforcement 1 will be described with reference to FIGS.
 図2(a)に示すように、本実施の形態のバンパーリーンフォースメント1に対して矢印で示す衝突方向に荷重が付加されると、図2(b)に示すように、両端部側の定断面ウェブ4,4は、その中間部が互いに離れる向きに座屈し始めるが、内部側の変断面ウェブ5は、定断面ウェブ4,4よりも高い座屈強度を有するために、座屈を開始しない。このため、図2(c)に示すように、内部側の変断面ウェブ5が座屈する前に、後側フランジ3の中間部が前記衝突方向に突出するように当該後側フランジ3が塑性化し始め、これに伴い、ステイ8にも変形が生じる。 As shown in FIG. 2A, when a load is applied to the bumper reinforcement 1 of the present embodiment in the collision direction indicated by the arrow, as shown in FIG. The constant cross-section webs 4 and 4 begin to buckle in the direction in which the middle portions thereof are separated from each other. However, since the variable cross-section web 5 on the inner side has a higher buckling strength than the constant cross-section webs 4 and 4, Do not start. For this reason, as shown in FIG. 2 (c), the rear flange 3 is plasticized so that the intermediate portion of the rear flange 3 protrudes in the collision direction before the inner cross-section web 5 buckles. First, accompanying this, the stay 8 is also deformed.
 さらに荷重が付加されると、図2(c)に示すように、端部側の定断面ウェブ4,4の座屈が一層進行するとともに、内部側の変断面ウェブ5が座屈し始める。また、後側フランジ3およびステイ8の変形が一層進行する。このように、後側フランジ3がその全断面にわたって塑性化する前に変断面ウェブ5に座屈を発生させないように、バンパーリーンフォースメント1の曲げ強度が向上されている。 When a further load is applied, as shown in FIG. 2 (c), the buckling of the constant cross-section webs 4, 4 on the end side further progresses, and the variable cross-section web 5 on the inner side begins to buckle. Further, the rear flange 3 and the stay 8 are further deformed. In this way, the bending strength of the bumper reinforcement 1 is improved so as not to cause buckling of the variable cross section web 5 before the rear flange 3 is plasticized over its entire cross section.
 一方、図3(a)に示すように、従来のバンパーリーンフォースメント31に対して矢印で示す衝突方向に荷重が付加されると、図3(b)に示すように、一対の端部側の定断面ウェブ14,14は、これら定断面ウェブ14,14の中間部同士が互いに離れる向きに座屈し始めるとともに、内部側の定断面ウェブ15も座屈し始める。このように全ての定断面ウェブ14,14,15が座屈した後は、バンパーリーンフォースメント31の断面形状を保持する力が無くなって、図3(c)に示すように、バンパーリーンフォースメント31の崩壊が急速に進むこととなる。 On the other hand, as shown in FIG. 3 (a), when a load is applied to the conventional bumper reinforcement 31 in the collision direction indicated by the arrow, as shown in FIG. The constant cross-section webs 14 and 14 begin to buckle in the direction in which the intermediate portions of the constant cross-section webs 14 and 14 are separated from each other, and the inner constant cross-section web 15 also begins to buckle. After all the constant cross-section webs 14, 14, and 15 are buckled in this way, the force for maintaining the cross-sectional shape of the bumper reinforcement 31 is lost, and as shown in FIG. 31 collapse will proceed rapidly.
(座屈強度のシミュレーション結果)
 次に、図2に示したバンパーリーンフォースメント1について、中空矩形断面の中央に配置された変断面ウェブ5の座屈強度を算出した。この座屈強度の算出は、変断面ウェブ5の断面積を一定にして行った。
(Buckling strength simulation results)
Next, for the bumper reinforcement 1 shown in FIG. 2, the buckling strength of the variable cross-section web 5 disposed at the center of the hollow rectangular cross section was calculated. The calculation of the buckling strength was performed with the cross-sectional area of the variable cross section web 5 being constant.
 図4は、前記座屈強度のシミュレーション結果を示すグラフであり、縦軸がPcrとPcr0との比(Pcr/Pcr0)、横軸が最厚部の肉厚(最大の肉厚)t2と両端部の肉厚t1との比(t2/t1)である。ここで、Pcrは座屈荷重であり、Pcr0はt2/t1=1の時の座屈荷重である。また、全ての計算において、ウェブの断面積は同一である。 FIG. 4 is a graph showing the simulation results of the buckling strength, wherein the vertical axis is the ratio of Pcr and Pcr0 (Pcr / Pcr0), and the horizontal axis is the thickness of the thickest part (maximum thickness) t2 and both ends. It is a ratio (t2 / t1) with the thickness t1 of the part. Here, Pcr is a buckling load, and Pcr0 is a buckling load when t2 / t1 = 1. In all calculations, the cross-sectional area of the web is the same.
 図4のグラフから、変断面ウェブ5の断面積を一定値にした場合、変断面ウェブ5の座屈強度は、図3に示した肉厚が一定(t3/t3=1)である定断面ウェブ15に比べて、最大で1.4倍(t2/t1=1.3)になることがわかる。また、変断面ウェブ5の座屈強度が20%以上になる、1.1≦t2/t1≦1.4の範囲であれば、バンパーリーンフォースメント1の重量増加を最小限に留めつつ、バンパーリーンフォースメント1の曲げ強度を向上させることができることがわかる。 From the graph of FIG. 4, when the cross-sectional area of the variable cross-section web 5 is a constant value, the buckling strength of the variable cross-section web 5 is a constant cross section where the wall thickness shown in FIG. 3 is constant (t3 / t3 = 1). It can be seen that the maximum is 1.4 times (t2 / t1 = 1.3) compared to the web 15. In addition, if the buckling strength of the variable cross-section web 5 is 20% or more and is in the range of 1.1 ≦ t2 / t1 ≦ 1.4, the bumper reinforcement 1 is kept to a minimum while the bumper reinforcement 1 is kept to a minimum. It can be seen that the bending strength of the reinforcement 1 can be improved.
 このように、一対のフランジ2,3間に配置された変断面ウェブ5は、その両端の肉厚よりも内側の肉厚が大きい形状を有するから、この変断面ウェブ5と断面積が同一でありかつ一端から他端にわたって肉厚が一定な定断面ウェブ15よりも高い座屈強度を有する。このように、ウェブの肉厚を一端から他端にわたって一様に増加させなくても、当該ウェブの両端の肉厚よりも内側の肉厚を大きくすることによって、ウェブの座屈強度を向上させることができるから、ウェブの厚肉化による重量増加を最小限に留めつつ、曲げ強度を向上させることができる。 Thus, since the cross-section web 5 disposed between the pair of flanges 2 and 3 has a shape in which the inner wall thickness is larger than the wall thickness at both ends thereof, the cross-sectional area is the same as this variable cross-section web 5. The buckling strength is higher than that of the constant cross-section web 15 having a constant thickness from one end to the other end. Thus, even if the thickness of the web is not increased uniformly from one end to the other, the web buckling strength is improved by making the inner thickness larger than the thickness at both ends of the web. Therefore, the bending strength can be improved while minimizing the increase in weight due to the thickening of the web.
 また、変断面ウェブ5の端部の肉厚t1と最厚部の肉厚t2とが式1の関係を満足することが、重量増加を最小限に留めつつ曲げ強度を好適に向上させることを可能にする。 In addition, the fact that the thickness t1 of the end portion of the cross section web 5 and the thickness t2 of the thickest portion satisfy the relationship of Formula 1 favorably improves the bending strength while minimizing an increase in weight. enable.
 また、前記のような変断面ウェブ5を有するバンパーリーンフォースメント1は、自動車の車体100に取り付けられることによって、車両の軽量化に貢献しながら乗員の安全性を向上させることができる。 Moreover, the bumper reinforcement 1 having the above-described cross section web 5 can be attached to the vehicle body 100 of the automobile, thereby improving the safety of the passenger while contributing to the weight reduction of the vehicle.
(本実施の形態の概要)
 以上のように、本実施の形態の曲げ強度部材(バンパーリーンフォースメント)1は、荷重が付加される荷重付加方向に互いに対向するように配置され、それぞれが荷重付加方向に直交する一対のフランジ2,3と、一対のフランジ2,3間において荷重付加方向に平行に配置され、その両端の肉厚よりも内側の肉厚が大きい形状をもつウェブ(変断面ウェブ5)と、を有する。この一対のフランジ2,3間に配置されたウェブは、その両端の肉厚よりも内側の肉厚が大きい形状を有するから、このウェブと断面積が同一であって一端から他端にわたって肉厚が一定なウェブよりも、高い座屈強度を有する。したがって、ウェブの肉厚を一端から他端にわたって一様に増加させなくても、両端の肉厚よりも内側の肉厚を大きくすることによって、ウェブの座屈強度を向上させることができるから、ウェブの厚肉化による重量増加を最小限に留めつつ、曲げ強度を向上させることができる。
(Outline of this embodiment)
As described above, the bending strength member (bumper reinforcement) 1 of the present embodiment is disposed so as to face each other in the load application direction to which a load is applied, and a pair of flanges each orthogonal to the load application direction. 2 and 3, and a web (variable cross-section web 5) which is disposed between the pair of flanges 2 and 3 in parallel to the load application direction and has a shape whose inner thickness is larger than the thickness at both ends thereof. Since the web disposed between the pair of flanges 2 and 3 has a shape in which the inner wall thickness is larger than the wall thickness at both ends, the web and the cross-sectional area are the same, and the wall thickness extends from one end to the other end. Has a higher buckling strength than a constant web. Therefore, without increasing the thickness of the web uniformly from one end to the other, by increasing the inner thickness than the thickness of both ends, the buckling strength of the web can be improved, The bending strength can be improved while minimizing the increase in weight due to the thickening of the web.
 また、この実施の形態の曲げ強度部材1のように、前記ウェブの端部の肉厚t1と最大の肉厚t2とが1.1≦t2/t1≦1.4の関係を満足するものでは、重量増加を最小限に留めつつ曲げ強度が好適に向上される。 Further, as in the bending strength member 1 of this embodiment, the thickness t1 of the end portion of the web and the maximum thickness t2 do not satisfy the relationship of 1.1 ≦ t2 / t1 ≦ 1.4. The bending strength is preferably improved while minimizing the increase in weight.
 また、上記の曲げ強度部材1からなる本実施の形態のバンパーリーンフォースメント1は、自動車の車体100に取り付けられることによって、車両の軽量化に貢献しながら乗員の安全性を向上させることができる。 Further, the bumper reinforcement 1 of the present embodiment comprising the bending strength member 1 described above can be attached to the vehicle body 100 of the automobile, thereby improving the safety of the occupant while contributing to weight reduction of the vehicle. .
[第2の実施の形態]
 次に、本発明の第2の実施の形態におけるバンパーリーンフォースメント(曲げ強度部材)21について、図5ないし図6を用いて説明する。
[Second Embodiment]
Next, a bumper reinforcement (bending strength member) 21 according to the second embodiment of the present invention will be described with reference to FIGS.
(バンパーリーンフォースメント21の構成)
 本実施の形態におけるバンパーリーンフォースメント21は、アルミニウムや鋼などの金属材料からなり、全体が一体に成型され、図1に示すように、一対のステイ8,8によって支持されながら自動車の車体100の前方に取り付けられている。
(Configuration of Bumper Reinforcement 21)
The bumper reinforcement 21 in the present embodiment is made of a metal material such as aluminum or steel, and is integrally molded as a whole, and is supported by a pair of stays 8 and 8 as shown in FIG. It is attached in front of.
 図5は、図1のA-A線における断面に相当する前記バンパーリーンフォースメント21の断面を示す。この図5に示すように、前記バンパーリーンフォースメント21は、中空矩形断面の内部が水平なウェブで上下に仕切られた断面形状を有し、具体的には、前記衝突方向に互いに対向するように配置され、それぞれが衝突方向に直交する前側フランジ2及び後側フランジ3と、一対のフランジ2,3間において衝突方向に平行に配置された3つのウェブ4,6,6と、を有している。なお、ウェブの数は3つに限定されない。 FIG. 5 shows a section of the bumper reinforcement 21 corresponding to the section taken along line AA of FIG. As shown in FIG. 5, the bumper reinforcement 21 has a cross-sectional shape in which the inside of a hollow rectangular cross section is partitioned vertically by a horizontal web, and specifically, it faces each other in the collision direction. Each having a front flange 2 and a rear flange 3 orthogonal to the collision direction, and three webs 4, 6, 6 arranged between the pair of flanges 2 and 3 in parallel to the collision direction. ing. The number of webs is not limited to three.
 前記前側フランジ2は、矢印で示す衝突方向の上流側に位置し、前記後側フランジ3は、前記前側フランジ2よりも衝突方向の下流側に位置する。これら前側フランジ2及び後側フランジ3は、3つのウェブ4,6,6によって互いに接続されている。 The front flange 2 is located on the upstream side in the collision direction indicated by the arrow, and the rear flange 3 is located on the downstream side in the collision direction with respect to the front flange 2. The front flange 2 and the rear flange 3 are connected to each other by three webs 4, 6, 6.
 前記3つのウェブ4,6,6のうちの2つのウェブ6,6は、前側フランジ2の両端部と、これら両端部にそれぞれ対応する後側フランジ3の両端部との間にそれぞれ配置され、両ウェブ6,6同士の間のウェブ4は、前側フランジ2の長手方向中央部と後側フランジ3の長手方向中央部との間に配置される。各端部側のウェブ6,6は、変断面ウェブであって、その両端の肉厚よりも内側の肉厚が大きい形状を有する。一方、内部側のウェブ4は、定断面ウェブであって、その肉厚が一端から他端にわたって一定な形状を有する。 Of the three webs 4, 6, 6, two webs 6, 6 are respectively disposed between both end portions of the front flange 2 and both end portions of the rear flange 3 corresponding to the both end portions, respectively. The web 4 between the webs 6 and 6 is disposed between the longitudinal center portion of the front flange 2 and the longitudinal center portion of the rear flange 3. The webs 6 and 6 on the end portions are variable cross-section webs, and have a shape in which the inner wall thickness is larger than the wall thicknesses at both ends. On the other hand, the web 4 on the inner side is a constant cross-section web, and has a constant thickness from one end to the other end.
 図5(a)に示すように、前記定断面ウェブ4は、衝突方向に平行な方向についての長さLと、一端から他端にわたって一定である肉厚t3とを有する。この定断面ウェブ4の断面形状は長方形である。一方、変断面ウェブ6は、衝突方向に平行な方向についての長さLと、その方向に変化する肉厚を有する。具体的に、当該変断面ウェブ6の両端部は肉厚t1を有し、両端部からL/2の距離をおいた中央部は最も大きい肉厚t2を有する最厚部である。また、各変断面ウェブ6は、この変断面ウェブ6の一端の厚み方向の中央点と他端の厚み方向の中央点とを結ぶ仮想断面を中心面6cとすると、当該変断面ウェブ6の内側面(相手方の変断面ウェブ6と対向する側の面)6aから中心面6cまでの肉厚が外側面(相手方の変断面ウェブ6と対向する側の面と反対側の面)6bから中心面6cまでの肉厚よりも大きい形状を有する。 As shown in FIG. 5A, the constant cross-section web 4 has a length L in a direction parallel to the collision direction and a wall thickness t3 that is constant from one end to the other end. The cross-sectional shape of the constant cross-section web 4 is a rectangle. On the other hand, the variable cross-section web 6 has a length L in a direction parallel to the collision direction and a thickness that changes in that direction. Specifically, both end portions of the cross section web 6 have a thickness t1, and the central portion at a distance of L / 2 from both end portions is the thickest portion having the largest thickness t2. In addition, each variable cross-section web 6 has a center plane 6c that is a virtual cross section connecting the central point in the thickness direction at one end of the variable cross-section web 6 and the central point in the thickness direction at the other end. The thickness from the side surface (the surface on the side facing the mating cross-section web 6) 6a to the center plane 6c is the center plane from the outer surface (the surface on the opposite side to the surface facing the mating cross-section web 6) 6b. It has a shape larger than the wall thickness up to 6c.
 この変断面ウェブ6の断面形状は、前記衝突方向に直交する方向を左右とした場合に、左右非対称であって、前記内側面6aはこの内側面6aから前記中心面6cまでの肉厚を大きくするように内向きに膨らむ凸面であり、外側面6bはこの外側面6bから中心面6cまでの肉厚を抑えるような平面である。また、変断面ウェブ6の断面形状は、その中央部が最も厚肉な最厚部となるように、両端部から中央部に向かって肉厚が連続的に増加していくような形状となっている。 The cross-sectional shape of the variable cross-section web 6 is asymmetrical when the direction orthogonal to the collision direction is left and right, and the inner side surface 6a has a large thickness from the inner side surface 6a to the central surface 6c. The outer surface 6b is a flat surface that suppresses the thickness from the outer surface 6b to the center surface 6c. Further, the cross-sectional shape of the variable cross-section web 6 is such that the thickness continuously increases from both end portions toward the central portion so that the central portion becomes the thickest thickest portion. ing.
 一方、図3(a)に示すように、従来のバンパーリーンフォースメント31においては、3つのウェブのすべてが、その両端部及び中央部がともに一定の肉厚t3である定断面ウェブ14,14,15で構成されている。つまり、従来のバンパーリーンフォースメント31は、一対のフランジ2,3の端部同士の間に、肉厚が一定な一対の定断面ウェブ14,14を有しているのに対して、本実施の形態のバンパーリーンフォースメント1は、一対のフランジ2,3の端部同士の間に、両端の肉厚よりも内側の肉厚が大きい変断面ウェブ6,6を有している。これらの変断面ウェブ6,6は、両端の肉厚よりも内側の肉厚が大きい形状を有することによって、当該変断面ウェブ6,6と断面積が同一な定断面ウェブ14,14よりも高い座屈強度を有する。さらに、内側面6aから中心面6cまでの肉厚が、外側面6bから中心面6cまでの肉厚よりも大きい形状が、変断面ウェブ6が内向き(対向する変断面ウェブ6,6に近づく向き)に座屈するのを促している。 On the other hand, as shown in FIG. 3 (a), in the conventional bumper reinforcement 31, all of the three webs have constant cross-sectional webs 14, 14 whose both end portions and central portion have a constant thickness t3. , 15. In other words, the conventional bumper reinforcement 31 has a pair of constant cross-sectional webs 14 and 14 having a constant thickness between the ends of the pair of flanges 2 and 3. The bumper reinforcement 1 of the form of this has the cross-section webs 6 and 6 between the edge parts of a pair of flanges 2 and 3 whose inner wall thickness is larger than the wall thickness of both ends. These variable cross-section webs 6 and 6 have a shape in which the inner wall thickness is larger than the thickness at both ends, so that the cross-sectional webs 14 and 14 having the same cross-sectional area as the variable cross-section webs 6 and 6 are higher. Has buckling strength. Further, the shape in which the thickness from the inner surface 6a to the central surface 6c is larger than the thickness from the outer surface 6b to the central surface 6c is such that the variable cross-section web 6 faces inward (approaching the opposite variable cross-section webs 6, 6). It is urged to buckle.
 ここで、変断面ウェブ6の両端部の肉厚t1と最厚部の肉厚t2は上記の式1を満足している。言い換えれば、式1を満足するように、変断面ウェブ6の両端部の肉厚t1と最厚部の肉厚t2とが設定されている。このことが、変断面ウェブ6の重量増加を最小限に留めつつ曲げ強度を好適に向上させることを可能にする。 Here, the wall thickness t1 at both ends of the variable cross-section web 6 and the wall thickness t2 at the thickest part satisfy the above-mentioned formula 1. In other words, the wall thickness t1 at both ends of the variable cross-section web 6 and the wall thickness t2 at the thickest part are set so as to satisfy Expression 1. This makes it possible to favorably improve the bending strength while minimizing the increase in weight of the variable cross section web 6.
 また、上述したように、各変断面ウェブ6は、これらの変断面ウェブ6が互いに近づく向き(内向き)に座屈するように促す形状を有するので、図5(c)に示すように、座屈した変断面ウェブ6,6が一対のフランジ2,3と各ウェブ4,6とで囲まれた中空部を埋めて当該ウェブ座屈後の靭性(粘り強さ)を高めることができる。 Further, as described above, each of the variable cross-section webs 6 has a shape that prompts them to buckle in the direction in which these variable cross-section webs 6 approach each other (inward). Therefore, as shown in FIG. The bent cross-section webs 6, 6 can fill the hollow portion surrounded by the pair of flanges 2, 3 and the respective webs 4, 6 to increase the toughness (stickiness) after the web buckling.
(バンパーリーンフォースメント21の動作)
 次に、前記バンパーリーンフォースメント21の動作について、図5を用いて説明する。
(Operation of bumper reinforcement 21)
Next, the operation of the bumper reinforcement 21 will be described with reference to FIG.
 図5(a)に示すように、前記バンパーリーンフォースメント21に対して矢印で示す衝突方向に荷重が付加されると、図5(b)に示すように、内部側の定断面ウェブ4は座屈し始めるが、これよりも高い座屈強度を有する両端部側の変断面ウェブ6,6はまだ座屈を開始しない。このため、これらの端部側の変断面ウェブ6,6が座屈する前に前側フランジ2および後側フランジ3がその中央部がステイ8側に膨らむ向きに塑性化し始め、これに伴い、ステイ8にも変形が生じる。 As shown in FIG. 5A, when a load is applied to the bumper reinforcement 21 in the collision direction indicated by the arrow, as shown in FIG. The buckling webs 6 and 6 on both end sides having a higher buckling strength than this, but have not yet started buckling. For this reason, the front flange 2 and the rear flange 3 begin to plasticize in the direction in which the center portion swells toward the stay 8 before the end-section side change webs 6 and 6 buckle. Deformation also occurs.
 さらに荷重が付加されると、図5(c)に示すように、内部側の定断面ウェブ4の座屈が一層進行するとともに、一対の端部側の変断面ウェブ6,6が内向き、すなわち当該変断面ウェブ6の中間部分がこれに対向する相手方の変断面ウェブ6に近づく向きに座屈し始める。このように座屈した変断面ウェブ6は、前記一対のフランジ2,3と前記ウェブ4,6とで囲まれた中空部を埋めることによって、ウェブ座屈後のバンパーリーンフォースメント21の靭性(粘り強さ)を向上させることができる。また、一対のフランジ2,3およびステイ8の変形が一層進行する。このように、一対のフランジ2,3がその全断面にわたって塑性化する前に変断面ウェブ6に座屈を発生させないように、バンパーリーンフォースメント21の曲げ強度が向上されている。 When a load is further applied, as shown in FIG. 5 (c), the buckling of the constant cross-section web 4 on the inner side further proceeds, and the variable cross-section webs 6 and 6 on the pair of end portions face inward. That is, the intermediate portion of the cross section web 6 starts to buckle in a direction approaching the counterpart cross section web 6 facing the intermediate section. The variable cross-section web 6 buckled in this way fills the hollow portion surrounded by the pair of flanges 2 and 3 and the webs 4 and 6, thereby toughening the bumper reinforcement 21 after the web buckling ( Tenacity) can be improved. Further, the pair of flanges 2 and 3 and the stay 8 are further deformed. In this way, the bending strength of the bumper reinforcement 21 is improved so that the variable cross-section web 6 does not buckle before the pair of flanges 2 and 3 are plasticized over the entire cross section.
(曲げ強度のシミュレーション結果)
 次に、図5に示した本実施の形態のバンパーリーンフォースメント21と、図3に示した従来のバンパーリーンフォースメント31について、3点曲げ解析により、バンパーリーンフォースメントの曲げ強度を算出した。なお、3点曲げ解析は、前側フランジ2の中央を載荷点とし、載荷点に左右対称な後側フランジ3の2箇所を支点として行った。
(Bending strength simulation results)
Next, the bending strength of the bumper reinforcement was calculated by three-point bending analysis for the bumper reinforcement 21 of the present embodiment shown in FIG. 5 and the conventional bumper reinforcement 31 shown in FIG. . In the three-point bending analysis, the center of the front flange 2 was used as a loading point, and two locations of the rear flange 3 symmetrical to the loading point were used as fulcrums.
 ここで、前記各バンパーリーンフォースメントの前側フランジ2は、両端付近で支持された梁とみなすことができる。このため、衝突時にバンパーリーンフォースメントが受けた荷重に対し、前側フランジ2は曲げ支配で抵抗する。よって、バンパーリーンフォースメントが負担することが可能な曲げモーメントが大きいほど、曲げ強度が高いことになる。 Here, the front flange 2 of each bumper reinforcement can be regarded as a beam supported near both ends. For this reason, the front flange 2 resists the load received by the bumper reinforcement at the time of collision by bending. Therefore, the greater the bending moment that can be borne by the bumper reinforcement, the higher the bending strength.
 図6は曲げ強度のシミュレーション結果を示すグラフであり、縦軸が曲げモーメント(kN・m)、横軸が押込み変位量(mm)である。図6のグラフから、曲げモーメントがピークに達した後の曲げ強度の低下は、変断面ウェブ6を有するバンパーリーンフォースメント21の方が、変断面ウェブ6を有しないバンパーリーンフォースメント31よりも小さいことがわかる。即ち、変断面ウェブ6を有するバンパーリーンフォースメント21においては、各変断面ウェブ6が互いに近づく向き(内向き)に座屈することによって、ウェブ座屈後の靭性(粘り強さ)を向上させていることがわかる。これにより、変断面ウェブ6を有するバンパーリーンフォースメント21が、変断面ウェブ6を有しないバンパーリーンフォースメント31よりも高いエネルギー吸収性能を有することがわかる。 FIG. 6 is a graph showing a simulation result of bending strength, where the vertical axis represents the bending moment (kN · m) and the horizontal axis represents the indentation displacement (mm). From the graph of FIG. 6, the decrease in the bending strength after the bending moment reaches the peak is that the bumper reinforcement 21 having the cross-section web 6 is more than the bumper reinforcement 31 having no cross-section web 6. I understand that it is small. That is, in the bumper reinforcement 21 having the deformed cross-section web 6, the toughness (stickiness) after the web buckling is improved by buckling the respective cross-section webs 6 in the directions approaching each other (inward). I understand that. Thus, it can be seen that the bumper reinforcement 21 having the variable cross-section web 6 has higher energy absorption performance than the bumper reinforcement 31 not having the variable cross-section web 6.
 このように、一対のフランジ2,3間に配置された一対の変断面ウェブ6,6は、その両端の肉厚が内側の肉厚よりも大きい形状を有するから、この変断面ウェブ6と断面積が同一であって一端から他端にわたって肉厚が一定である定断面ウェブ14よりも高い座屈強度を有する。このように、ウェブの肉厚を一端から他端にわたって一様に増加させなくても、その両端の肉厚よりも内側の肉厚を大きくすることでウェブの座屈強度を向上させることができるから、ウェブの厚肉化による重量増加を最小限に留めつつ、曲げ強度を向上させることができる。 In this way, the pair of variable cross-section webs 6, 6 disposed between the pair of flanges 2, 3 has a shape in which the wall thickness at both ends is larger than the inner wall thickness. The buckling strength is higher than that of the constant cross-section web 14 having the same area and a constant wall thickness from one end to the other end. Thus, even if the thickness of the web is not increased uniformly from one end to the other, the web buckling strength can be improved by making the inner thickness larger than the thickness at both ends. Therefore, the bending strength can be improved while minimizing the increase in weight due to the thickening of the web.
  また、各変断面ウェブ6,6は、その相手方の変断面ウェブ6と対向する面である内側面6aから中心面6cまでの肉厚が反対側の外側面6bから中心面6cまでの肉厚よりも大きい形状を有するから、これらの変断面ウェブ6,6の座屈の向きを内向きすなわちこれらの変断面ウェブ6が互いに近づく向きにすることができる。この向きに座屈する変断面ウェブ6は、一対のフランジ2,3と各ウェブ4,6とで囲まれた中空部を埋めることによってウェブ座屈後の靭性(粘り強さ)を向上させることができる。 Each of the variable cross-section webs 6 and 6 has a wall thickness from the inner side surface 6a to the central surface 6c, which is a surface facing the counterpart cross-section web 6, from the opposite outer surface 6b to the central surface 6c. Therefore, the direction of buckling of these variable cross-section webs 6 and 6 can be inward, that is, the direction in which these variable cross-section webs 6 approach each other. The variable cross-section web 6 buckled in this direction can improve the toughness (stickiness) after the web buckling by filling the hollow portion surrounded by the pair of flanges 2 and 3 and the webs 4 and 6. .
(本実施の形態の概要)
 以上のように、本実施の形態の曲げ強度部材(バンパーリーンフォースメント)21は、荷重が付加される荷重付加方向に互いに対向するように配置され、それぞれが荷重付加方向に直交する一対のフランジ2,3と、一対のフランジ2,3間において、それぞれが荷重付加方向に平行に配置され、両端の肉厚よりも内側の肉厚が大きい形状を有する一対のウェブ(変断面ウェブ6,6)とを有し、各ウェブは、相手方のウェブと対向する面である内側面6aから中心面6cまでの肉厚が、内側面6aとの反対側の外側面6bから中心面6cまでの肉厚よりも大きい形状を有する。
(Outline of this embodiment)
As described above, the bending strength member (bumper reinforcement) 21 according to the present embodiment is disposed so as to face each other in the load application direction to which a load is applied, and a pair of flanges each orthogonal to the load application direction. 2 and 3 and a pair of flanges 2 and 3, each of which is arranged in parallel to the load application direction and has a pair of webs having a shape whose inner wall thickness is larger than the wall thickness at both ends (the variable cross-section webs 6 and 6 The thickness of each web from the inner surface 6a to the center surface 6c, which is the surface facing the other web, is the thickness from the outer surface 6b to the center surface 6c opposite to the inner surface 6a. It has a shape larger than the thickness.
 前記のように、一対のフランジ2,3間に配置された一対のウェブは、その両端の肉厚よりも内側の肉厚が大きい形状を有するから、このウェブと断面積が同一であって一端から他端にわたって肉厚が一定なウェブよりも高い座屈強度を有する。このように、ウェブの肉厚を一端から他端にわたって一様に増加させなくても、両端の肉厚よりも内側の肉厚を大きくすることによって、ウェブの座屈強度を向上させることができるから、ウェブの厚肉化による重量増加を最小限に留めつつ、曲げ強度を向上させることができる。 As described above, the pair of webs disposed between the pair of flanges 2 and 3 have a shape in which the inner wall thickness is larger than the wall thicknesses at both ends thereof, and thus the cross-sectional area is the same as that of the web. From the web to the other end, it has a higher buckling strength than a web having a constant wall thickness. As described above, the web buckling strength can be improved by increasing the inner wall thickness from the both wall thicknesses without increasing the web wall thickness uniformly from one end to the other end. Therefore, the bending strength can be improved while minimizing the increase in weight due to the thickening of the web.
 また、各ウェブは、相手方のウェブと対向する内側面6aから中心面6cまでの肉厚が、その反対側の外側面6bから中心面6cまでの肉厚よりも大きい形状を有するから、当該ウェブは内向きすなわち相手方のウェブに近づく向きに座屈するように促される。この向きに座屈としたウェブは、一対のフランジ2,3と各ウェブとで囲まれた中空部を埋めることにより、ウェブ座屈後の靭性(粘り強さ)を向上させることができる。 In addition, each web has a shape in which the thickness from the inner surface 6a facing the counterpart web to the center surface 6c is larger than the thickness from the opposite outer surface 6b to the center surface 6c. Will be prompted to buckle inward, that is, closer to the opponent's web. The web buckled in this direction can improve the toughness (stickiness) after web buckling by filling the hollow portion surrounded by the pair of flanges 2 and 3 and each web.
[第3の実施の形態]
 次に、本発明の第3の実施の形態におけるバンパーリーンフォースメント(曲げ強度部材)41について、図7を用いて説明する。
[Third Embodiment]
Next, a bumper reinforcement (bending strength member) 41 according to the third embodiment of the present invention will be described with reference to FIG.
(バンパーリーンフォースメント41の構成)
 本実施の形態におけるバンパーリーンフォースメント41は、アルミニウムや鋼などの金属材料からなり、全体が一体に成型されており、図1に示すように、一対のステイ8,8によって支持されながら自動車の車体100の前方に取り付けられている。
(Configuration of Bumper Reinforcement 41)
The bumper reinforcement 41 in the present embodiment is made of a metal material such as aluminum or steel, and is entirely molded integrally, and is supported by a pair of stays 8 and 8 as shown in FIG. It is attached to the front of the vehicle body 100.
 図7は、図1のA-A線での断面に相当するバンパーリーンフォースメント41の断面を示す。この図7に示すように、バンパーリーンフォースメント41は、中空矩形断面を有し、かつ、その中空部分が水平なウェブで上下に仕切られている。具体的に、このバンパーリーンフォースメント41は、前記衝突方向に互いに対向するように配置され、それぞれが衝突方向に直交する前側フランジ2及び後側フランジ3と、一対のフランジ2,3間において衝突方向に平行に配置された3つのウェブ5,6,6と、を有している。なお、ウェブの数は3つに限定されない。 FIG. 7 shows a cross section of the bumper reinforcement 41 corresponding to the cross section taken along line AA of FIG. As shown in FIG. 7, the bumper reinforcement 41 has a hollow rectangular cross section, and the hollow portion is vertically partitioned by a horizontal web. Specifically, the bumper reinforcement 41 is disposed so as to be opposed to each other in the collision direction, and the bumper reinforcement 41 collides between the front flange 2 and the rear flange 3 that are orthogonal to the collision direction, and the pair of flanges 2 and 3. And three webs 5, 6, 6 arranged parallel to the direction. The number of webs is not limited to three.
 前記前側フランジ2は、矢印で示す衝突方向の上流側に位置し、前記後側フランジ3は、前記前側フランジ2よりも衝突方向の下流側に位置する。これら前側フランジ2及び後側フランジ3は、3つのウェブ5,6,6によって互いに接続されている。 The front flange 2 is located on the upstream side in the collision direction indicated by the arrow, and the rear flange 3 is located on the downstream side in the collision direction with respect to the front flange 2. The front flange 2 and the rear flange 3 are connected to each other by three webs 5, 6, 6.
 3つのウェブ5,6,6のうちの2つのウェブは、前側フランジ2の両端部と、これら両端部にそれぞれ対応する後側フランジ3の両端部との間にそれぞれ配置され、両ウェブ6,6同士の間のウェブ4は、前側フランジ2の長手方向中央部と後側フランジ3の長手方向中央部との間に配置される。各端部側のウェブ6,6は、第2の実施の形態において説明した変断面ウェブであり、内部側のウェブ5は、第1の実施の形態において説明した変断面ウェブである。 Two of the three webs 5, 6, 6 are disposed between both ends of the front flange 2 and both ends of the rear flange 3 respectively corresponding to these both ends, The web 4 between 6 is arrange | positioned between the longitudinal direction center part of the front side flange 2, and the longitudinal direction center part of the rear side flange 3. FIG. The end side webs 6 and 6 are the variable cross-section webs described in the second embodiment, and the internal web 5 is the variable cross-section web described in the first embodiment.
 つまり、本実施の形態におけるバンパーリーンフォースメント41は、第1の実施の形態において説明した変断面ウェブ5と、第2の実施の形態において説明した変断面ウェブ6,6との組合せにより構成される。その他の構成は第1の実施の形態および第2の実施の形態と同じであるため、その説明を省略する。 That is, the bumper reinforcement 41 in the present embodiment is configured by a combination of the variable cross-section web 5 described in the first embodiment and the variable cross-section webs 6 and 6 described in the second embodiment. The Other configurations are the same as those in the first embodiment and the second embodiment, and thus description thereof is omitted.
(本実施の形態の概要)
 以上のように、本実施の形態の曲げ強度部材(バンパーリーンフォースメント)41は、荷重が付加される荷重付加方向に互いに対向するように配置され、それぞれが荷重付加方向に直交する一対のフランジ2,3と、一対のフランジ2,3の内部側間において荷重付加方向に平行に配置され、両端の肉厚よりも内側の肉厚が大きい形状を有する1以上の内部側のウェブ(変断面ウェブ5)と、一対のフランジ2,3の端部間において、それぞれが荷重付加方向に平行に配置され、両端の肉厚よりも内側の肉厚が大きい形状を有する一対の端部側のウェブ(変断面ウェブ6,6)と、を有し、各端部側のウェブは、相手方の端部側ウェブと対向する内側面6aから中心面6cまでの肉厚が、前記内側面6aと反対側の外側6bから中心面6cまでの肉厚よりも大きい形状を有する。
(Outline of this embodiment)
As described above, the bending strength member (bumper reinforcement) 41 of the present embodiment is disposed so as to face each other in the load application direction to which a load is applied, and a pair of flanges each orthogonal to the load application direction. 2 and 3 and one or more internal webs (variable cross-sections) disposed between the inner sides of the pair of flanges 2 and 3 in parallel to the load application direction and having a shape whose inner thickness is larger than the thickness at both ends. Between the ends of the web 5) and the pair of flanges 2 and 3, the webs on the side of the pair of end portions, each of which is arranged in parallel to the load application direction and has a shape whose inner thickness is larger than the thickness of both ends. (Varied cross-section webs 6 and 6), and the thickness of the web on each end side from the inner side surface 6a facing the opposite end side web to the center surface 6c is opposite to the inner side surface 6a. From the outer side 6b to the center plane 6c Having a wall shape larger than the thickness of at.
 上記の構成によれば、一対のフランジ2,3間に配置された各ウェブは、その両端の肉厚よりも内側の肉厚が大きい形状を有するから、このウェブと断面積が同一であって一端から他端にわたって肉厚が一定なウェブよりも高い座屈強度を有する。このように、ウェブの肉厚を一端から他端にわたって一様に増加させなくても、両端の肉厚よりも内側の肉厚を大きくすることによって、ウェブの座屈強度を向上させることができるから、ウェブの厚肉化による重量増加を最小限に留めつつ、曲げ強度を向上させることができる。 According to said structure, since each web arrange | positioned between a pair of flanges 2 and 3 has a shape where inner wall thickness is larger than the wall thickness of the both ends, this web and cross-sectional area are the same, It has a buckling strength higher than that of a web having a constant wall thickness from one end to the other end. As described above, the web buckling strength can be improved by increasing the inner wall thickness from the both wall thicknesses without increasing the web wall thickness uniformly from one end to the other end. Therefore, the bending strength can be improved while minimizing the increase in weight due to the thickening of the web.
 また、各端部側のウェブは、相手方の端部側のウェブと対向する内側面6aから中心面6cまでの肉厚が、内側面6aと反対側の外側面6bから中心面6cまでの肉厚よりも大きい形状を有するから、内向きすなわち相手方の端部側のウェブに近づく向きに座屈するように促される。この向きに座屈するウェブは、一対のフランジ2,3と各ウェブとで囲まれた中空部を埋めることにより、ウェブ座屈後の靭性(粘り強さ)を向上させることができる。 Each end side web has a wall thickness from the inner side surface 6a to the center surface 6c facing the other end side web, and from the outer side surface 6b to the center surface 6c opposite to the inner side surface 6a. Since it has a shape larger than the thickness, it is urged to buckle inward, that is, toward the web on the other end side. The web buckling in this direction can improve the toughness (stickiness) after the web buckling by filling the hollow portion surrounded by the pair of flanges 2 and 3 and each web.
[第4の実施の形態]
 次に、本発明の第4の実施の形態におけるバンパーリーンフォースメント(曲げ強度部材)121について、図8ないし図10を用いて説明する。
[Fourth Embodiment]
Next, a bumper reinforcement (bending strength member) 121 according to the fourth embodiment of the present invention will be described with reference to FIGS.
(バンパーリーンフォースメント121の構成)
 本実施の形態におけるバンパーリーンフォースメント121は、アルミニウムや鋼などの金属材料からなり、全体が一体に成型されており、図1に示すように、一対のステイ8,8によって支持されながら自動車の車体100の前方に取り付けられている。
(Configuration of Bumper Reinforcement 121)
The bumper reinforcement 121 in the present embodiment is made of a metal material such as aluminum or steel, and is entirely molded integrally, and is supported by a pair of stays 8 and 8 as shown in FIG. It is attached to the front of the vehicle body 100.
 図8は、図1のA-A線での断面に相当するバンパーリーンフォースメント121の断面を示す。この図8に示すように、バンパーリーンフォースメント121は、中空矩形断面を有し、かつ、その中空部分が水平なウェブで上下に仕切られている。具体的に、このバンパーリーンフォースメント121は、前記衝突方向に互いに対向するように配置され、それぞれが衝突方向に直交する前側フランジ2及び後側フランジ3と、一対のフランジ2,3間において衝突方向に平行に配置された3つのウェブ4,11,11と、を有している。なお、ウェブの数は3つに限定されない。 FIG. 8 shows a cross section of the bumper reinforcement 121 corresponding to the cross section taken along line AA of FIG. As shown in FIG. 8, the bumper reinforcement 121 has a hollow rectangular cross section, and the hollow portion is vertically partitioned by a horizontal web. Specifically, the bumper reinforcement 121 is disposed so as to face each other in the collision direction, and the bumper reinforcement 121 collides between the front flange 2 and the rear flange 3 and the pair of flanges 2 and 3 which are orthogonal to the collision direction. And three webs 4, 11, 11 arranged parallel to the direction. The number of webs is not limited to three.
 前記前側フランジ2は、矢印で示す衝突方向の上流側に位置し、前記後側フランジ3は、前記前側フランジ2よりも衝突方向の下流側に位置する。これら前側フランジ2及び後側フランジ3は、3つのウェブ4,11,11によって互いに接続されている。 The front flange 2 is located on the upstream side in the collision direction indicated by the arrow, and the rear flange 3 is located on the downstream side in the collision direction with respect to the front flange 2. The front flange 2 and the rear flange 3 are connected to each other by three webs 4, 11, 11.
 3つのウェブ4,11,11のうちの2つのウェブ11,11は、前記前側フランジ2の両端部と、当該両端部に対向する前記後側フランジ3の両端部との間にそれぞれ配置される。また、ウェブ4は、前側フランジ2の長手方向中央部と後側フランジ3の長手方向中央部との間に配置される。各端部側のウェブ11,11は、変断面ウェブであって、両端の肉厚よりも内側の肉厚が大きい形状を有する。一方、内部側のウェブ4は、第1の実施の形態において説明した定断面ウェブであって、その一端から他端にわたって一定である肉厚を有する。 Of the three webs 4, 11, 11, two webs 11, 11 are respectively disposed between both ends of the front flange 2 and both ends of the rear flange 3 facing the both ends. . Further, the web 4 is disposed between the longitudinal center portion of the front flange 2 and the longitudinal center portion of the rear flange 3. The webs 11, 11 on each end side are variable cross-section webs and have a shape in which the inner wall thickness is larger than the wall thickness at both ends. On the other hand, the inner web 4 is the constant cross-sectional web described in the first embodiment, and has a constant thickness from one end to the other end.
 図8に示すように、定断面ウェブ4は、衝突方向と平行な方向についての長さLと、その一端から他端にわたって一定である肉厚t3とを有する。この定断面ウェブ4の断面形状は、長方形である。一方、変断面ウェブ11は、衝突方向に平行な方向についての長さLと、その長手方向に変化する肉厚を有する。具体的に、この変断面ウェブ11の両端部は肉厚t1を有し、両端部からL/2の距離をおいた中央部は最も大きい肉厚t2を有する最厚部である。しかし、この最厚部の見かけ上の肉厚t2は、後述する切欠部11dの深さcを含んでおり、実際の肉厚t4はその深さc分だけ小さい。 As shown in FIG. 8, the constant cross-section web 4 has a length L in a direction parallel to the collision direction and a wall thickness t3 that is constant from one end to the other end. The cross-sectional shape of the constant cross-section web 4 is a rectangle. On the other hand, the variable cross-section web 11 has a length L in a direction parallel to the collision direction and a thickness that changes in the longitudinal direction. Specifically, both end portions of the variable cross-section web 11 have a thickness t1, and the center portion at a distance of L / 2 from both end portions is the thickest portion having the largest thickness t2. However, the apparent thickness t2 of the thickest portion includes a depth c of a notch portion 11d described later, and the actual thickness t4 is smaller by the depth c.
 各変断面ウェブ11は、相手方の変断面ウェブ11と対向する面である内側面11aと、その反対側の外側面11bとを有し、当該内側面11aから中心面11cまでの肉厚が、当該外側面11bから中心面11cまでの肉厚よりも大きい形状を有する。ここで、中心面11cは、変断面ウェブ11の一端の厚み方向の中央点と、他端の厚み方向の中央点とを結ぶ仮想の断面である。 Each variable cross-section web 11 has an inner surface 11a that is a surface facing the counterpart variable cross-section web 11, and an outer surface 11b opposite to the inner surface 11a, and the wall thickness from the inner surface 11a to the center surface 11c is It has a shape larger than the thickness from the outer surface 11b to the center surface 11c. Here, the center plane 11c is a virtual cross section that connects the center point in the thickness direction at one end of the variable cross-section web 11 and the center point in the thickness direction at the other end.
 この変断面ウェブ11の断面形状は、衝突方向に直交する方向を左右とした場合に、左右非対称である。その内側面11aは、当該内側面11aから中心面11cまでの肉厚を大きくするように内向きに膨らむ凸面であり、外側面11bは、当該外側面11bから中心面11cまでの肉厚を抑える平面である。また、変断面ウェブ11の断面形状は、その中央部が最も厚肉な最厚部となるように、両端部から中央部に向かって肉厚が連続的に増加していくような形状である。 The cross-sectional shape of the variable cross-section web 11 is asymmetrical when the direction orthogonal to the collision direction is left and right. The inner surface 11a is a convex surface that swells inward so as to increase the thickness from the inner surface 11a to the central surface 11c, and the outer surface 11b suppresses the thickness from the outer surface 11b to the central surface 11c. It is a plane. Moreover, the cross-sectional shape of the variable cross-section web 11 is a shape in which the thickness continuously increases from both end portions toward the central portion so that the central portion becomes the thickest thickest portion. .
 さらに、変断面ウェブ11の最厚部の外側面11bには切欠部11dが形成されている。図9(a)に示すように、切欠部11dは深さcを有し、この切欠部11dの深さcを除いた最厚部の実際の肉厚t4は前記の見かけの肉厚t2よりも小さい。変断面ウェブ11は、図9(b)に示す変断面ウェブ6と比べて切欠部11dを有している点で異なっている。 Further, a cutout portion 11 d is formed on the outermost surface 11 b of the thickest portion of the variable cross section web 11. As shown in FIG. 9A, the notch portion 11d has a depth c, and the actual thickness t4 of the thickest portion excluding the depth c of the notch portion 11d is greater than the apparent thickness t2. Is also small. The variable cross-section web 11 is different from the variable cross-section web 6 shown in FIG. 9B in that it has a notch 11d.
 ここで、変断面ウェブ11において、両端部の肉厚t1と、切欠部11dの深さcを含んだ最厚部の見かけ上の肉厚t2と、切欠部11dの深さcとは、以下の式2を満足している。言い換えれば、式2を満足するように、変断面ウェブ11の両端部の肉厚t1と、最厚部の見かけ上の肉厚t2と、切欠部11dの深さcとが設定されている。このことが、重量増加を最小限に留めつつ曲げ強度を好適に向上させることを可能にする。 Here, in the variable cross-section web 11, the thickness t1 at both ends, the apparent thickness t2 of the thickest part including the depth c of the notch 11d, and the depth c of the notch 11d are as follows: The following formula 2 is satisfied. In other words, the thickness t1 of the both end portions of the variable cross section web 11, the apparent thickness t2 of the thickest portion, and the depth c of the notch portion 11d are set so as to satisfy Expression 2. This makes it possible to suitably improve the bending strength while minimizing the increase in weight.
  1.1≦(t2-c)/t1≦1.4 ・・・(式2)  1.1 ≦ (t2-c) /t1≦1.4 ... (Formula 2)
 そして、切欠部11dの深さcを含んだ最厚部の見かけ上の肉厚t2は、上記の式1を満足している。 The apparent thickness t2 of the thickest part including the depth c of the notch part 11d satisfies the above formula 1.
 このように、変断面ウェブ11,11は、両端の肉厚よりも内側の肉厚が大きい形状を有することによって、これと断面積が同一な定断面ウェブ14,14(図3(a)参照)よりも高い座屈強度を有するとともに、内側面11aから中心面11cまでの肉厚が、外側面11bから中心面11cまでの肉厚よりも大きい形状を有するために、相手方の変断面ウェブ11に近づく向き(内向き)に座屈するように促される。この向きに座屈する変断面ウェブ11,11は、一対のフランジ2,3と各ウェブ4,11とで囲まれた中空部を埋められることにより、ウェブ座屈後の靭性(粘り強さ)を向上させることができる。 As described above, the variable cross-section webs 11 and 11 have a shape in which the inner wall thickness is larger than the wall thicknesses at both ends, so that the constant cross-section webs 14 and 14 having the same cross-sectional area as this (see FIG. 3A). ) And a wall thickness from the inner surface 11a to the central surface 11c is larger than a wall thickness from the outer surface 11b to the central surface 11c. You are prompted to buckle inward (inward). The variable cross-section webs 11 and 11 that buckle in this direction improve the toughness (stickiness) after the web buckling by filling the hollow portion surrounded by the pair of flanges 2 and 3 and the webs 4 and 11. Can be made.
 さらに、変断面ウェブ11,11の外側面11bに形成される切欠部11dも、当該変断面ウェブ11,11が内向きに座屈するのを促すことができ、これによりウェブ座屈後の靭性(粘り強さ)の向上に寄与することができる。 Further, the notched portion 11d formed on the outer side surface 11b of the variable cross-section webs 11 and 11 can also promote the buckling of the variable cross-section webs 11 and 11 inwardly. This can contribute to the improvement of tenacity.
(変位量のシミュレーション結果)
 図8に示した本実施の形態のバンパーリーンフォースメント121と、図5に示したバンパーリーンフォースメント21とについて、切欠部11dの深さcと、ウェブの内向きの座屈による変位量との関係を算出した。
(Displacement simulation results)
For the bumper reinforcement 121 of the present embodiment shown in FIG. 8 and the bumper reinforcement 21 shown in FIG. 5, the depth c of the notch 11d and the displacement amount due to the inward buckling of the web The relationship was calculated.
 図10は前記変位量のシミュレーション結果を示すグラフであり、縦軸のU/U0は、切欠部11dを有する本実施の形態のバンパーリーンフォースメント121の変位量U(図9(a)参照)を、切欠部を有しないバンパーリーンフォースメント21の変位量U0(図9(b)参照)で除した値である。横軸は、切欠部11dの深さcを、切欠部11dの深さcを含んだ最厚部の肉厚t2で除した値である。 FIG. 10 is a graph showing a simulation result of the displacement amount. U / U0 on the vertical axis represents the displacement amount U of the bumper reinforcement 121 of the present embodiment having the notch 11d (see FIG. 9A). Is divided by the amount of displacement U0 (see FIG. 9B) of the bumper reinforcement 21 having no notch. The horizontal axis represents a value obtained by dividing the depth c of the notch 11d by the thickness t2 of the thickest part including the depth c of the notch 11d.
 図10のグラフから、切欠部11dは、その深さcが僅かであっても、ウェブの内向きの座屈による変位量を大きく増加させることがわかる。例えば、c/t2の値が0.15であっても、切欠部11dを有する変断面ウェブ11を有するバンパーリーンフォースメント121の変位量Uは、切欠部を有しない変断面ウェブ6を有するバンパーリーンフォースメント21の変位量U0の1.6倍になる。 From the graph of FIG. 10, it can be seen that the notch 11d greatly increases the amount of displacement due to the inward buckling of the web even if the depth c is slight. For example, even if the value of c / t2 is 0.15, the amount of displacement U of the bumper reinforcement 121 having the variable cross-section web 11 having the notch 11d is the bumper having the variable cross-section web 6 having no notch. The displacement amount U0 of the reinforcement 21 is 1.6 times.
 即ち、切欠部11dが形成された変断面ウェブ11を有するバンパーリーンフォースメント121においては、各変断面ウェブ11が、その相手方の変断面ウェブ11に近づく向き(内向き)に座屈しやすいことがわかる。このことは、切欠部11dを有する変断面ウェブ11を有するバンパーリーンフォースメント121の方が、切欠部を有しない変断面ウェブ6を有するバンパーリーンフォースメント21よりも、ウェブ座屈後の靭性(粘り強さ)を向上させることができることを意味する。 That is, in the bumper reinforcement 121 having the variable cross-section web 11 in which the notch portion 11d is formed, each variable cross-section web 11 is likely to buckle in a direction (inward) approaching the counterpart variable cross-section web 11. Recognize. This is because the bumper reinforcement 121 having the variable cross-section web 11 having the notched portion 11d has a toughness after web buckling (bumper reinforcement 21 having the variable cross-section web 6 not having the notched portion). It means that tenacity can be improved.
 このように、一対のフランジ2,3間に配置された一対の変断面ウェブ11,11は、その両端の肉厚よりも内側の肉厚が大きい形状を有するから、この変断面ウェブ11と断面積が同一であって一端から他端にわたって肉厚が一定な定断面ウェブ14(図3(a)参照)よりも高い座屈強度を有する。つまり、ウェブの肉厚を一端から他端にわたって一様に増加させなくても、両端の肉厚よりも内側の肉厚を厚肉にすることによって、ウェブの座屈強度を向上させることができるから、ウェブの厚肉化による重量増加を最小限に留めつつ、曲げ強度を向上させることができる。 As described above, the pair of variable cross-section webs 11 and 11 disposed between the pair of flanges 2 and 3 have a shape in which the inner wall thickness is larger than the wall thickness at both ends thereof. The buckling strength is higher than that of the constant cross-section web 14 (see FIG. 3A) having the same area and a constant thickness from one end to the other end. That is, even if the thickness of the web is not increased uniformly from one end to the other, the web buckling strength can be improved by increasing the thickness inside the thickness at both ends. Therefore, the bending strength can be improved while minimizing the increase in weight due to the thickening of the web.
 また、各変断面ウェブ11,11は、相手方の変断面ウェブ11と対向する側の面である内側面11aから中心面11cまでの肉厚が、外側面11bから中心面11cまでの肉厚よりも大きい形状を有するから、各変断面ウェブ11,11の座屈の向きを内向きすなわち相手方の変断面ウェブ11に近づく向きにすることができる。この向きに座屈する変断面ウェブ11は、一対のフランジ2,3と各ウェブとで囲まれた中空部を埋めることができるから、ウェブ座屈後の靭性(粘り強さ)を向上させることができる。 Further, each of the variable cross-section webs 11 and 11 has a wall thickness from the inner surface 11a to the central surface 11c, which is a surface facing the counterpart variable cross-section web 11, from a wall thickness from the outer surface 11b to the central surface 11c. Therefore, the direction of buckling of each of the cross-section webs 11 and 11 can be inward, that is, the direction approaching the counterpart cross-section web 11. Since the variable cross-section web 11 buckled in this direction can fill the hollow portion surrounded by the pair of flanges 2 and 3 and each web, the toughness (stickiness) after web buckling can be improved. .
 また、各変断面ウェブ11,11の最厚部の外側面11bに設けられた切欠部11dも、変断面ウェブ11,11が互いに近づく向きに座屈しやすくすることができ、これにより、座屈した各変断面ウェブ11,11が一対のフランジ2,3と各ウェブ4,11とで囲まれた中空部を埋めるのを促して、ウェブ座屈後の靭性(粘り強さ)をさらに向上させることができる。 Further, the notched portion 11d provided on the outermost surface 11b of the thickest portion of each variable cross-section web 11, 11 can also easily buckle in the direction in which the cross-section web 11, 11 approaches each other. Each of the deformed cross-section webs 11 and 11 is urged to fill a hollow portion surrounded by the pair of flanges 2 and 3 and the webs 4 and 11 to further improve toughness (stickiness) after web buckling. Can do.
 また、変断面ウェブ11の端部の肉厚t1と、最厚部の見かけ上の(切欠部11dの深さcを含む)肉厚t2と、切欠部11dの深さcとが式2の関係を満足しているので、重量増加を最小限に留めつつ曲げ強度を好適に向上させることができる。 Further, the thickness t1 of the end of the variable cross section web 11, the apparent thickness t2 of the thickest portion (including the depth c of the notch 11d), and the depth c of the notch 11d are expressed by the following equation (2). Since the relationship is satisfied, the bending strength can be suitably improved while minimizing the increase in weight.
 その他の構成は第2の実施の形態と同じであるため、その説明を省略する。 Other configurations are the same as those of the second embodiment, and thus description thereof is omitted.
(本実施の形態の概要)
 以上のように、本実施の形態の曲げ強度部材(バンパーリーンフォースメント)121では、各ウェブ(変断面ウェブ11)において肉厚が最も大きい最厚部の外側面11bに切欠部11dが設けられている。この切欠部11dは、ウェブ同士が近づく向きに当該ウェブが座屈するのを促し、これにより、座屈したウェブが一対のフランジ2,3と各ウェブとで囲まれた中空部を埋めることを促進して、ウェブ座屈後の靭性(粘り強さ)をさらに向上させることができる。
(Outline of this embodiment)
As described above, in the bending strength member (bumper reinforcement) 121 of the present embodiment, the notch portion 11d is provided on the outermost surface 11b of the thickest portion of each web (the variable cross section web 11). ing. This notch portion 11d encourages the web to buckle in the direction in which the webs approach each other, thereby promoting the buckling of the hollow portion surrounded by the pair of flanges 2 and 3 and each web. Thus, the toughness (stickiness) after web buckling can be further improved.
 また、前記ウェブの端部の肉厚t1、最厚部の肉厚t2、切欠部11dの深さcが1.1≦(t2-c)/t1≦1.4の関係を満足することにより、重量増加を最小限に留めつつ曲げ強度を好適に向上させることが可能となる。 Further, the thickness t1 of the end portion of the web, the thickness t2 of the thickest portion, and the depth c of the notch portion 11d satisfy the relationship of 1.1 ≦ (t2-c) /t1≦1.4. The bending strength can be suitably improved while minimizing the increase in weight.
(変形例)
 以上、本発明の主たる実施の形態を説明したが、これは例示であって当該実施の形態に本発明を限定する趣旨ではなく、具体的構成などは、適宜設計変更可能である。また、発明の実施の形態に記載された、作用及び効果は、本発明から生じる最も好適な作用及び効果を列挙したに過ぎず、本発明による作用及び効果は、本発明の実施の形態に記載されたものに限定されるものではない。
(Modification)
As mentioned above, although main embodiment of this invention was described, this is an illustration and is not the meaning which limits this invention to the said embodiment, The design of a concrete structure etc. can be changed suitably. Further, the actions and effects described in the embodiments of the invention only list the most preferable actions and effects resulting from the present invention, and the actions and effects according to the present invention are described in the embodiments of the present invention. It is not limited to what was done.
 例えば、各実施の形態において、バンパーリーンフォースメント1,21,41,121の断面形状は、中空矩形断面を基本としてその内側空間が水平方向の1枚のウェブで上下に仕切られた形状であるが、その他、B型形状、E型形状、中空矩形断面を基本としてその内側空間が水平方向の複数枚のウェブで上下に3つ以上に仕切られた形状、あるいは単なる中空矩形断面形状であってもよい。 For example, in each embodiment, the cross-sectional shape of the bumper reinforcements 1, 21, 41, 121 is a shape in which the inner space is partitioned vertically by a single horizontal web based on a hollow rectangular cross-section. However, based on the B shape, E shape, and hollow rectangular cross section, the inner space is divided into three or more pieces in the vertical direction by a plurality of horizontal webs, or simply a hollow rectangular cross section shape. Also good.
 また、本発明に係るバンパーリーンフォースメントは、図11(a)に示すバンパーリーンフォースメント51のように、第1の実施の形態のバンパーリーンフォースメント1における変断面ウェブ5を第2の実施の形態の変断面ウェブ6に置き換えたものでもよい。このバンパーリーンフォースメント51においても、ウェブの厚肉化による重量増加を最小限に留めつつ、曲げ強度を向上させることができる。 Further, the bumper reinforcement according to the present invention is the same as the bumper reinforcement 51 shown in FIG. 11A in which the variable cross-section web 5 in the bumper reinforcement 1 according to the first embodiment is used in the second embodiment. It may be replaced with the variable cross-section web 6 of the form. Also in this bumper reinforcement 51, the bending strength can be improved while minimizing the increase in weight due to the thickening of the web.
 また、本発明に係るバンパーリーンフォースメントは、図11(b)に示すバンパーリーンフォースメント61のように、第1の実施の形態のバンパーリーンフォースメント1における変断面ウェブ5を変断面ウェブ7に置き換えたものでもよい。この変断面ウェブ7は、衝突方向に平行な方向についての長さLと、その長手方向に変化する肉厚を有する。具体的に、この変断面ウェブ7の両端部は肉厚t1を有し、その一端部からL/4の距離に位置する部分が、最大の肉厚t2を有する最厚部を構成する。この変断面ウェブ7の断面形状は、衝突方向に直交する方向を左右とした場合に、左右対称であって、中心部の肉厚が最も厚肉となるように、両端部から中心部に向かって肉厚が連続的に増加していくような形状である。このような構成のバンパーリーンフォースメント61においても、ウェブの厚肉化による重量増加を最小限に留めつつ、曲げ強度を向上させることができる。 Further, the bumper reinforcement according to the present invention is the same as the bumper reinforcement 61 shown in FIG. 11B, in which the variable cross-section web 5 in the bumper reinforcement 1 according to the first embodiment is changed to the variable cross-section web 7. It may be replaced with. The variable cross-section web 7 has a length L in a direction parallel to the collision direction and a thickness that changes in the longitudinal direction. Specifically, both end portions of the cross section web 7 have a thickness t1, and a portion located at a distance of L / 4 from the one end portion constitutes the thickest portion having the maximum thickness t2. The cross-sectional shape of the variable cross-section web 7 is bilaterally symmetrical when the direction orthogonal to the collision direction is set to the left and right, and from both ends to the center so that the thickness of the center is the thickest. The shape is such that the wall thickness increases continuously. Also in the bumper reinforcement 61 having such a configuration, the bending strength can be improved while minimizing the increase in weight due to the thickening of the web.
 また、本発明に係るバンパーリーンフォースメントは、図12(a)に示すバンパーリーンフォースメント71のように、一対のフランジ2,3と、その端部同士の間にそれぞれ配置される2つの定断面ウェブ4,4と、これら定断面ウェブ4,4同士の間において一対のフランジ2,3の内部側部分同士の間に配置される、断面形状が左右対称な2枚の変断面ウェブ5,5とを有するものでもよい。このバンパーリーンフォースメント71においても、ウェブの厚肉化による重量増加を最小限に留めつつ、曲げ強度を向上させることができる。 In addition, the bumper reinforcement according to the present invention, like the bumper reinforcement 71 shown in FIG. 12 (a), is provided with two fixed members disposed between the pair of flanges 2 and 3 and their ends. Two variable cross-section webs 5, which are arranged between the inner side portions of the pair of flanges 2, 3 between the cross-section webs 4, 4 and between the constant cross-section webs 4, 4. 5 may be included. Also in this bumper reinforcement 71, the bending strength can be improved while minimizing the increase in weight due to the thickening of the web.
 また、本発明に係るバンパーリーンフォースメントは、図12(b)及び図12(c)にそれぞれ示すバンパーリーンフォースメント81,91のように、前記図12(a)に示したバンパーリーンフォースメント71の2つの変断面ウェブ5,5がそれぞれ、断面形状が左右非対称な変断面ウェブ6,6に置き換えられたものでもよい。これらのバンパーリーンフォースメント81,91においても、ウェブの厚肉化による重量増加を最小限に留めつつ、曲げ強度を向上させることができるとともに、ウェブ座屈後の靭性を向上させることができる。 Further, the bumper reinforcement according to the present invention is similar to the bumper reinforcement 81 and 91 shown in FIGS. 12B and 12C, respectively, and the bumper reinforcement shown in FIG. The two variable cross-section webs 5 and 5 of 71 may be respectively replaced with variable cross-section webs 6 and 6 whose cross-sectional shapes are asymmetric. In these bumper reinforcements 81 and 91 as well, the bending strength can be improved and the toughness after the web buckling can be improved while minimizing the increase in weight due to the thickening of the web.
 また、本発明に係るバンパーリーンフォースメントは、図13(a)に示すバンパーリーンフォースメント101のように、第1の実施の形態のバンパーリーンフォースメント1における変断面ウェブ5を変断面ウェブ9に置き換えたものでもよい。この変断面ウェブ9は、衝突方向に平行な方向についての長さLと、その長手方向に変化する肉厚を有する。具体的に、この変断面ウェブ9の両端部は肉厚t1を有し、両端部からL/2の距離である中央部が、最大の肉厚t2を有する最厚部を構成する。この変断面ウェブ9の断面形状は、衝突方向に直交する方向を左右とした場合に、左右対称であって、両端部から所定の距離(例えば、L/3)に位置する部分(境界部)9aまでは、一定の肉厚t1を有し、2つの境界部9aに挟まれた部分は、その中央部が最大の肉厚をもつ最厚部となるように各境界部9aから中央部に向かって連続的に肉厚が増加する形状を有する。このバンパーリーンフォースメント101においても、ウェブの厚肉化による重量増加を最小限に留めつつ、曲げ強度を向上させることができる。 Further, the bumper reinforcement according to the present invention is similar to the bumper reinforcement 101 shown in FIG. 13A, in which the variable cross-section web 5 in the bumper reinforcement 1 according to the first embodiment is changed to the variable cross-section web 9. It may be replaced with. The variable cross-section web 9 has a length L in a direction parallel to the collision direction and a thickness that changes in the longitudinal direction. Specifically, both end portions of the variable cross-section web 9 have a thickness t1, and a central portion having a distance of L / 2 from both end portions constitutes the thickest portion having the maximum thickness t2. The cross-sectional shape of the variable cross-section web 9 is symmetrical when the direction orthogonal to the collision direction is left and right, and is a portion (boundary portion) located at a predetermined distance (for example, L / 3) from both ends. Up to 9a, a portion having a constant thickness t1 and sandwiched between the two boundary portions 9a is arranged from each boundary portion 9a to the central portion so that the central portion becomes the thickest portion having the maximum thickness. It has a shape in which the wall thickness continuously increases. Also in this bumper reinforcement 101, the bending strength can be improved while minimizing the increase in weight due to the thickening of the web.
 また、本発明に係るバンパーリーンフォースメントは、図13(b)に示すバンパーリーンフォースメント111のように、第1の実施の形態のバンパーリーンフォースメント1における変断面ウェブ5を変断面ウェブ10に置き換えたものでもよい。この変断面ウェブ10は、衝突方向に平行な方向についての長さLと、その長手方向に変化する肉厚を有する。具体的に、この変断面ウェブ10の両端部は肉厚t1を有し、両端部からL/2の距離をおいた中央部が最大の肉厚t2をもつ最厚部を構成する。詳しくは、変断面ウェブ10の断面形状は、衝突方向に直交する方向を左右とした場合に、左右対称であって、両端部から所定の距離(例えば、L/3)に位置する部分(境界部)10aまでは、一定の肉厚t1を有し、2つの境界部10aに挟まれた部分は全て前記の最大の肉厚t2を有する2段形状である。このバンパーリーンフォースメント111においても、ウェブの厚肉化による重量増加を最小限に留めつつ、曲げ強度を向上させることができる。 Further, the bumper reinforcement according to the present invention is similar to the bumper reinforcement 111 shown in FIG. 13 (b), in which the variable cross-section web 5 in the bumper reinforcement 1 according to the first embodiment is replaced with the variable cross-section web 10. It may be replaced with. The variable cross-section web 10 has a length L in a direction parallel to the collision direction and a thickness that changes in the longitudinal direction. Specifically, both end portions of the variable cross-section web 10 have a thickness t1, and the central portion at a distance of L / 2 from both end portions constitutes the thickest portion having the maximum thickness t2. Specifically, the cross-sectional shape of the variable cross-section web 10 is symmetrical when the direction orthogonal to the collision direction is left and right, and is a portion (boundary) located at a predetermined distance (for example, L / 3) from both ends. Part) 10a has a constant thickness t1, and the portion sandwiched between the two boundary portions 10a has a two-stage shape having the maximum thickness t2. Also in this bumper reinforcement 111, the bending strength can be improved while minimizing the increase in weight due to the thickening of the web.
 また、本発明に係るバンパーリーンフォースメントは、図14に示すバンパーリーンフォースメント131のように、第4の実施の形態のバンパーリーンフォースメント121における定断面ウェブ4を、第1の実施の形態の変断面ウェブ5に置き換えたものでもよい。このバンパーリーンフォースメント131においても、変断面ウェブ11,11に形成された切欠部11dが各変断面ウェブ11,11を互いに近づく向きに座屈させやすくする。 Further, the bumper reinforcement according to the present invention is similar to the bumper reinforcement 131 shown in FIG. 14 in that the constant cross-section web 4 in the bumper reinforcement 121 according to the fourth embodiment is replaced by the first embodiment. It may be replaced with the variable cross-section web 5. Also in the bumper reinforcement 131, the notched portions 11d formed in the variable cross-section webs 11 and 11 make it easy to buckle the variable cross-section webs 11 and 11 in a direction approaching each other.
 また、前記各実施形態に係るバンパーリーンフォースメントにおいて、一対のフランジ2,3とウェブとは一体に成型されなくてもよく、別体であってもよい。 本発明の目的は、重量増加を最小限に留めつつ曲げ強度を向上させることが可能な曲げ強度部材およびバンパーリーンフォースメントを提供することである。 Further, in the bumper reinforcement according to each of the above embodiments, the pair of flanges 2 and 3 and the web may not be molded integrally, or may be separate. An object of the present invention is to provide a bending strength member and a bumper reinforcement capable of improving bending strength while minimizing an increase in weight.
 以上のように、本発明によれば、重量増加を最小限に留めつつ曲げ強度を向上させることが可能な曲げ強度部材およびバンパーリーンフォースメントが提供される。 As described above, according to the present invention, a bending strength member and a bumper reinforcement capable of improving the bending strength while minimizing an increase in weight are provided.
 本発明に係る曲げ強度部材は、荷重が付加される荷重付加方向に互いに対向するように配置され、それぞれが前記荷重付加方向に直交する一対のフランジと、前記一対のフランジ間において前記荷重付加方向に平行に配置され、両端の肉厚よりもその内側の部分の肉厚が大きい形状をもつウェブと、を有する。このウェブは、その両端の肉厚よりも内側の肉厚が大きいから、このウェブと断面積が同一であって一端から他端にわたって肉厚が一定なウェブよりも、前記荷重付加方向について高い座屈強度を有する。このように、ウェブの肉厚を一端から他端にわたって一様に増加させなくても、両端の肉厚よりも内側の肉厚を大きくすることでウェブの座屈強度を向上させることができるから、ウェブの厚肉化による重量増加を最小限に留めつつ、曲げ強度を向上させることができる。 The bending strength member according to the present invention is disposed so as to oppose each other in a load application direction to which a load is applied, each of which is perpendicular to the load application direction, and the load application direction between the pair of flanges And a web having a shape in which the thickness of the inner portion is larger than the thickness of both ends. Since the thickness of the inner side of the web is larger than the thickness of the both ends, the web has a higher seating in the load application direction than the web having the same cross-sectional area as the web and having a constant thickness from one end to the other end. Has bending strength. In this way, the web buckling strength can be improved by increasing the thickness on the inner side than the thickness at both ends, without increasing the thickness of the web uniformly from one end to the other. The bending strength can be improved while minimizing the increase in weight due to the thickening of the web.
 また、本発明に係る曲げ強度部材は、荷重が付加される荷重付加方向に互いに対向するように配置され、それぞれが前記荷重付加方向に直交する一対のフランジと、前記一対のフランジ間において、それぞれが前記荷重付加方向に平行に配置され、両端の肉厚よりも内側の肉厚が大きい形状を有する一対のウェブと、を有し、各ウェブは、相手方のウェブと対向する側の面である内側面から中心面までの肉厚が、前記内側面と反対側の面である外側面から前記中心面までの肉厚よりも大きい形状を有し、前記中心面は、前記ウェブの一端の厚み方向の中央点と他端の厚み方向の中央点とを結ぶ面である。 Further, the bending strength member according to the present invention is disposed so as to face each other in the load application direction to which a load is applied, and each of the pair of flanges orthogonal to the load application direction, and between the pair of flanges, respectively. Are arranged in parallel with the load application direction, and have a pair of webs having a shape whose inner wall thickness is larger than the wall thickness at both ends, and each web is a surface on the side facing the counterpart web. The thickness from the inner surface to the center surface is larger than the thickness from the outer surface to the center surface, which is the surface opposite to the inner surface, and the center surface is the thickness of one end of the web. It is a surface connecting the center point in the direction and the center point in the thickness direction at the other end.
 この曲げ強度部材において一対のフランジ間に配置された一対のウェブは、それぞれ、その両端の肉厚よりも内側の肉厚が大きい形状を有するから、このウェブと断面積が同一であって一端から他端にわたって肉厚が一定なウェブよりも、高い座屈強度を有する。このように、ウェブの肉厚を一端から他端にわたって一様に増加させなくても、両端の肉厚よりも内側の肉厚を厚肉にすることによって、ウェブの座屈強度を向上させることができるから、ウェブの厚肉化による重量増加を最小限に留めつつ、曲げ強度を向上させることができる。 Each of the pair of webs disposed between the pair of flanges in the bending strength member has a shape in which the inner wall thickness is larger than the wall thickness at both ends thereof. It has a higher buckling strength than a web having a constant thickness across the other end. In this way, the web buckling strength can be improved by increasing the thickness on the inner side of the thickness at both ends without increasing the thickness of the web uniformly from one end to the other. Therefore, the bending strength can be improved while minimizing the increase in weight due to the thickening of the web.
 また、各ウェブは、相手方のウェブに対向する内側面から中心面までの肉厚が、前記内側面と反対側の外側面から中心面までの肉厚よりも大きい形状を有するから、これらのウェブが互いに近づく向きすなわち内向きに座屈しやすい。このように内向きに座屈したウェブは、前記一対のフランジと各ウェブとで囲まれた中空部を埋めることができるから、ウェブ座屈後の靭性(粘り強さ)を向上させることができる。 In addition, each web has a shape in which the thickness from the inner surface to the center surface facing the counterpart web is larger than the thickness from the outer surface to the center surface opposite to the inner surface. Are likely to buckle toward each other, that is, inward. Thus, since the web buckled inward can fill the hollow portion surrounded by the pair of flanges and the webs, the toughness (stickiness) after the web buckling can be improved.
 また、本発明の曲げ強度部材では、各ウェブにおいて最大の肉厚を有する最厚部の外側面に切欠部が設けられてもよい。この切欠部は、ウェブ同士が互いに近づく向きに当該ウェブが座屈するのを促し、これにより、座屈したウェブが一対のフランジと各ウェブとで囲まれた中空部を埋めやすくして、ウェブ座屈後の靭性(粘り強さ)をさらに向上させることができる。 Further, in the bending strength member of the present invention, a notch portion may be provided on the outer side surface of the thickest portion having the maximum thickness in each web. This notch urges the web to buckle in the direction in which the webs approach each other, thereby making it easier for the buckled web to fill the hollow portion surrounded by the pair of flanges and each web, The toughness (stickiness) after bending can be further improved.
 また、本発明の曲げ強度部材においては、前記ウェブの端部の肉厚t1、前記最厚部の肉厚t2、および前記切欠部の深さcが、1.1≦(t2-c)/t1≦1.4の関係を満足することが、より好ましい。このことは、重量増加を最小限に留めつつ曲げ強度部材の曲げ強度を好適に向上させることを可能にする。 In the bending strength member of the present invention, the thickness t1 of the end portion of the web, the thickness t2 of the thickest portion, and the depth c of the notch portion are 1.1 ≦ (t2-c) / It is more preferable to satisfy the relationship of t1 ≦ 1.4. This makes it possible to suitably improve the bending strength of the bending strength member while minimizing the increase in weight.
 また、本発明に係る曲げ強度部材は、荷重が付加される荷重付加方向に互いに対向するように配置され、それぞれが前記荷重付加方向に直交する一対のフランジと、前記一対のフランジにおいてその両端部よりも内側の部分同士の間に前記荷重付加方向に平行に配置され、両端の肉厚よりも内側の肉厚が大きい形状を有する1以上の内部側ウェブと、前記一対のフランジの端部同士の間に、それぞれが前記荷重付加方向に平行となるように配置され、両端の肉厚よりも内側の肉厚が大きい形状を有する一対の端部側ウェブと、を有し、前記各端部側ウェブは、相手方の端部側ウェブと対向する側の面である内側面から中心面までの肉厚が、前記内側面と反対側の面である外側面から前記中心面までの肉厚よりも大きい形状を有し、前記中心面は、前記ウェブの一端の厚み方向の中央点と他端の厚み方向の中央点とを結ぶ面である。 Further, the bending strength member according to the present invention is disposed so as to face each other in the load application direction to which a load is applied, and each of the pair of flanges orthogonal to the load application direction and both ends of the pair of flanges. One or more inner webs arranged in parallel to the load application direction between the inner portions and having a shape in which the inner thickness is larger than the thickness at both ends, and the ends of the pair of flanges A pair of end-side webs, each of which is arranged so as to be parallel to the load application direction and has a shape whose inner thickness is larger than the thickness of both ends, and each of the end portions The side web has a wall thickness from the inner surface that is the surface facing the other end side web to the center surface, more than the wall thickness from the outer surface that is the surface opposite to the inner surface to the center surface. Also has a large shape, the center Is a surface connecting the middle point of the thickness direction of the central point and the other end in the thickness direction of one end of the web.
 この曲げ強度部材において一対のフランジ同士の間に配置された各ウェブは、その両端の肉厚よりも内側の肉厚が大きい形状を有するから、このウェブと断面積が同一であって一端から他端にわたって肉厚が一定なウェブよりも、高い座屈強度を有する。このように、ウェブの肉厚を一端から他端にわたって一様に増加させなくても、両端の肉厚よりも内側の肉厚を厚肉にすることによって、ウェブの座屈強度を向上させることができるから、ウェブの厚肉化による重量増加を最小限に留めつつ、曲げ強度を向上させることができる。 Each of the webs arranged between the pair of flanges in this bending strength member has a shape in which the inner wall thickness is larger than the wall thickness at both ends thereof. It has a higher buckling strength than a web with a constant wall thickness across the edges. In this way, the web buckling strength can be improved by increasing the thickness on the inner side of the thickness at both ends without increasing the thickness of the web uniformly from one end to the other. Therefore, the bending strength can be improved while minimizing the increase in weight due to the thickening of the web.
 また、各端部側ウェブは、その内側面から中心面までの肉厚が外側面から中心面までの肉厚よりも大きい形状を有するから、これら端部側ウェブは互いに近づく内向きに座屈しやすい。このように内向きに座屈した端部側ウェブは、一対のフランジと各ウェブとで囲まれた中空部を埋めることができるから、ウェブ座屈後の靭性(粘り強さ)を向上させることができる。 In addition, each end side web has a shape in which the thickness from the inner side surface to the center plane is larger than the thickness from the outer side surface to the center plane, so these end side webs buckle inward toward each other. Cheap. Thus, since the end side web which buckled inward can fill the hollow part enclosed by a pair of flange and each web, it can improve the toughness (tensile strength) after web buckling. it can.
 また、本発明に係る曲げ強度部材では、各端部側ウェブにおいて最大の肉厚を有する最厚部の外側面側に切欠部が設けられてもよい。この切欠部は、端部側ウェブが互いに近づく向きに座屈して一対のフランジと各ウェブとで囲まれた中空部を埋めることを促すから、ウェブ座屈後の靭性(粘り強さ)をさらに向上させることができる。 Further, in the bending strength member according to the present invention, a notch portion may be provided on the outer surface side of the thickest portion having the maximum thickness in each end side web. This notch part buckles in the direction in which the end side webs approach each other and promotes filling of the hollow part surrounded by the pair of flanges and each web, further improving the toughness (stickiness) after web buckling Can be made.
 また、本発明の曲げ強度部材においては、前記端部側のウェブの端部の肉厚t1、最大の肉厚t2、前記切欠部の深さcが、1.1≦(t2c)/t1≦1.4の関係を満足することが、より好ましい。このことは、重量増加を最小限に留めつつ曲げ強度を好適に向上させることを可能にする。 In the bending strength member of the present invention, the thickness t1, the maximum thickness t2, and the depth c of the notch are 1.1 ≦ (t2c) / t1 ≦. It is more preferable to satisfy the relationship of 1.4. This makes it possible to favorably improve the bending strength while minimizing the increase in weight.
 また、本発明の曲げ強度部材においては、前記ウェブの端部の肉厚t1及び最厚部の肉厚t2が、1.1≦t2/t1≦1.4の関係を満足することが、より好ましい。このことは、重量増加を最小限に留めつつ曲げ強度を好適に向上させることを可能にする。 In the bending strength member of the present invention, it is more preferable that the thickness t1 of the end portion of the web and the thickness t2 of the thickest portion satisfy a relationship of 1.1 ≦ t2 / t1 ≦ 1.4. preferable. This makes it possible to favorably improve the bending strength while minimizing the increase in weight.
 また、上記の曲げ強度部材を含む、本発明に係るバンパーリーンフォースメントは、自動車の車体に取り付けられることによって、車両の軽量化に貢献しながら乗員の安全性を向上させることができる。 Also, the bumper reinforcement according to the present invention including the bending strength member described above can be attached to the vehicle body of the automobile, thereby improving the safety of the passenger while contributing to the weight reduction of the vehicle.

Claims (9)

  1.  荷重が付加される荷重付加方向に互いに対向するように配置され、それぞれが前記荷重付加方向に直交する一対のフランジと、
     前記一対のフランジ同士の間において前記荷重付加方向に平行となるように配置され、両端の肉厚よりも内側の肉厚が大きい形状をもつウェブとを有する、曲げ強度部材。
    A pair of flanges arranged to oppose each other in a load application direction to which a load is applied, each orthogonal to the load application direction;
    A bending strength member comprising: a web having a shape that is disposed between the pair of flanges so as to be parallel to the load application direction and has a larger inner thickness than the thickness of both ends.
  2.  荷重が付加される荷重付加方向に互いに対向するように配置され、それぞれが前記荷重付加方向に直交する一対のフランジと、
     前記一対のフランジ同士の間において前記荷重付加方向に平行となるように配置され、両端の肉厚よりも内側の肉厚が大きい形状を有する一対のウェブとを有し、各ウェブは、その相手方のウェブに対向する側の面である内側面から中心面までの肉厚が、前記内側面と反対側の面である外側面から前記中心面までの肉厚よりも大きい形状を有し、前記中心面は、前記ウェブの一端の厚み方向の中央点と他端の厚み方向の中央点とを結ぶ面である、曲げ強度部材。
    A pair of flanges arranged to oppose each other in a load application direction to which a load is applied, each orthogonal to the load application direction;
    A pair of webs arranged between the pair of flanges so as to be parallel to the load application direction and having a shape having a larger inner thickness than the thickness of both ends, and each web has its counterpart The thickness from the inner surface that is the surface facing the web to the center surface is larger than the thickness from the outer surface that is the surface opposite to the inner surface to the center surface, A center plane is a bending strength member which is a surface which connects the center point of the thickness direction of one end of the said web, and the center point of the thickness direction of the other end.
  3.  前記各ウェブにおいて最大の肉厚を有する最厚部の外側面に切欠部が設けられる、請求項2に記載の曲げ強度部材。 The bending strength member according to claim 2, wherein a notch portion is provided on an outer surface of the thickest portion having the maximum thickness in each of the webs.
  4.  前記ウェブの端部の肉厚をt1、前記最厚部の肉厚をt2、および前記切欠部の深さをcとしたとき、1.1≦(t2-c)/t1≦1.4の関係が成立する、請求項3に記載の曲げ強度部材。 1.1≤ (t2-c) /t1≤1.4 where t1 is the thickness of the end of the web, t2 is the thickness of the thickest part, and c is the depth of the notch. The bending strength member according to claim 3, wherein the relationship is established.
  5.  荷重が付加される荷重付加方向に互いに対向するように配置され、それぞれが前記荷重付加方向に直交する一対のフランジと、
     前記一対のフランジの両端部よりも内側の部分同士の間において前記荷重付加方向に平行となるように配置され、両端の肉厚よりも内側の肉厚が大きい形状を有する1以上の内部側ウェブと、
     前記一対のフランジの端部同士の間において、それぞれが前記荷重付加方向に平行となるように配置され、両端の肉厚よりも内側の肉厚が大きい形状を有する一対の端部側ウェブとを有し、各端部側のウェブは、その相手方の端部側ウェブに対向する側の面である内側面から中心面までの肉厚が、前記内側面と反対側の面である外側面から前記中心面までの肉厚よりも大きい形状を有し、前記中心面は、前記ウェブの一端の厚み方向の中央点と他端の厚み方向の中央点とを結ぶ面である、曲げ強度部材。
    A pair of flanges arranged to oppose each other in a load application direction to which a load is applied, each orthogonal to the load application direction;
    One or more inner webs that are arranged between the inner portions of both ends of the pair of flanges so as to be parallel to the load application direction and have a shape in which the inner thickness is larger than the thickness of both ends. When,
    Between the ends of the pair of flanges, a pair of end-side webs that are arranged so as to be parallel to the load application direction and have a shape whose inner thickness is larger than the thickness at both ends, Each end side web has a wall thickness from the inner surface to the center surface on the side facing the other end side web from the outer side surface that is the surface opposite to the inner side surface. A bending strength member having a shape larger than the thickness up to the central plane, wherein the central plane is a plane connecting a central point in the thickness direction at one end of the web and a central point in the thickness direction at the other end.
  6.  前記各端部側ウェブにおいて最大の肉厚を有する最厚部の外側面側に切欠部が設けられる、請求項5に記載の曲げ強度部材。 The bending strength member according to claim 5, wherein a notch portion is provided on an outer surface side of a thickest portion having a maximum thickness in each end side web.
  7.  前記端部側のウェブの端部の肉厚をt1、前記最厚部の肉厚をt2、前記切欠部の深さをcとしたとき、1.1≦(t2-c)/t1≦1.4の関係が成立する、請求項6に記載の曲げ強度部材。 1.1 ≦ (t2−c) / t1 ≦ 1 where t1 is the thickness of the web on the end side, t2 is the thickness of the thickest portion, and c is the depth of the notch. The bending strength member according to claim 6, wherein a relationship of .4 is established.
  8.  前記ウェブの端部の肉厚をt1、最大の肉厚をt2としたとき、1.1≦t2/t1≦1.4の関係が成立する、請求項1記載の曲げ強度部材。 The bending strength member according to claim 1, wherein a relationship of 1.1 ≦ t2 / t1 ≦ 1.4 is established, where t1 is a thickness of an end portion of the web and t2 is a maximum thickness.
  9.  請求項1~8のいずれかに記載の曲げ強度部材を含むバンパーリーンフォースメント。 Bumper reinforcement including the bending strength member according to any one of claims 1 to 8.
PCT/JP2009/063431 2008-07-30 2009-07-28 Bending strength member and bumper reinforcement having same WO2010013713A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008196347 2008-07-30
JP2008-196347 2008-07-30
JP2009-041613 2009-02-25
JP2009041613A JP4542602B2 (en) 2008-07-30 2009-02-25 Bending strength member and bumper reinforcement

Publications (1)

Publication Number Publication Date
WO2010013713A1 true WO2010013713A1 (en) 2010-02-04

Family

ID=41610413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/063431 WO2010013713A1 (en) 2008-07-30 2009-07-28 Bending strength member and bumper reinforcement having same

Country Status (2)

Country Link
JP (1) JP4542602B2 (en)
WO (1) WO2010013713A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130257068A1 (en) * 2010-12-15 2013-10-03 Isamu Nakazawa Under-run protector for vehicle
WO2016060255A1 (en) * 2014-10-17 2016-04-21 新日鐵住金株式会社 Impact absorption member
JP2017519674A (en) * 2014-04-28 2017-07-20 シェイプ・コープShape Corp. Multi-strip beam forming apparatus, method and beam
FR3075908A1 (en) * 2017-12-27 2019-06-28 Airbus Operations DAMPING SYSTEM COMPRISING A PRIMARY SHOCK ABSORBER DEVICE AND A SECONDARY SHOCK ABSORBER DEVICE OF DIFFERENT RAIDERS, STRUCTURE AND ASSOCIATED AIRCRAFT
US11131358B2 (en) * 2019-03-25 2021-09-28 GM Global Technology Operations LLC Energy absorbing beam

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1159296A (en) * 1997-08-13 1999-03-02 Kobe Steel Ltd Bumper reinforcement for automobile
JPH11170935A (en) * 1997-12-15 1999-06-29 Nippon Steel Corp Structural member
JP2003182481A (en) * 2001-12-25 2003-07-03 Unipres Corp Vehicle bumper reinforcement
JP2005178695A (en) * 2003-12-24 2005-07-07 Aisin Takaoka Ltd Anti-collision reinforcing member for vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1159296A (en) * 1997-08-13 1999-03-02 Kobe Steel Ltd Bumper reinforcement for automobile
JPH11170935A (en) * 1997-12-15 1999-06-29 Nippon Steel Corp Structural member
JP2003182481A (en) * 2001-12-25 2003-07-03 Unipres Corp Vehicle bumper reinforcement
JP2005178695A (en) * 2003-12-24 2005-07-07 Aisin Takaoka Ltd Anti-collision reinforcing member for vehicle

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130257068A1 (en) * 2010-12-15 2013-10-03 Isamu Nakazawa Under-run protector for vehicle
JP2017519674A (en) * 2014-04-28 2017-07-20 シェイプ・コープShape Corp. Multi-strip beam forming apparatus, method and beam
EP3137345B1 (en) 2014-04-28 2018-12-12 Shape Corp. Multi-strip beam-forming apparatus, method, and beam
EP3533670B1 (en) 2014-04-28 2020-09-16 Shape Corp. Multi-strip beam
WO2016060255A1 (en) * 2014-10-17 2016-04-21 新日鐵住金株式会社 Impact absorption member
JPWO2016060255A1 (en) * 2014-10-17 2017-07-06 新日鐵住金株式会社 Shock absorbing member
US10336371B2 (en) 2014-10-17 2019-07-02 Nippon Steel & Sumitomo Metal Corporation Impact absorbing member
FR3075908A1 (en) * 2017-12-27 2019-06-28 Airbus Operations DAMPING SYSTEM COMPRISING A PRIMARY SHOCK ABSORBER DEVICE AND A SECONDARY SHOCK ABSORBER DEVICE OF DIFFERENT RAIDERS, STRUCTURE AND ASSOCIATED AIRCRAFT
US10962075B2 (en) 2017-12-27 2021-03-30 Airbus Operations Sas Shock absorber system comprising a primary shock absorber device and a secondary shock absorber device of different stiffnesses, associated structure and aircraft
US11131358B2 (en) * 2019-03-25 2021-09-28 GM Global Technology Operations LLC Energy absorbing beam

Also Published As

Publication number Publication date
JP2010116136A (en) 2010-05-27
JP4542602B2 (en) 2010-09-15

Similar Documents

Publication Publication Date Title
US9387887B2 (en) Vehicle hood panel
US9216767B2 (en) Front axle mounting with crash grooves
JP5133297B2 (en) Bumper structure
CN102791532B (en) Vehicle component
JP5945762B2 (en) Vehicle front structure
WO2009107670A1 (en) Bumper beam
KR20120093450A (en) Hood structure of vehicle
WO2010013713A1 (en) Bending strength member and bumper reinforcement having same
WO2015079876A1 (en) Automobile bumper
JP5203870B2 (en) Automotive body reinforcement with excellent bending crush characteristics
JP2020501961A (en) Bumper beam with ribs on some walls of the bumper beam
JP6681912B2 (en) Motor vehicle lockers and vehicles equipped with such rockers
JP6540591B2 (en) Body side structure
RU2711829C1 (en) Bumper bar with figure-eight cross-section
KR102558628B1 (en) Structural members for vehicles
JP7264597B2 (en) Vehicle structural members and vehicles
KR101090707B1 (en) Door impact beam for vehicle and method for manufacturing of it
EP4365065A1 (en) Side sill for vehicle
JP3840788B2 (en) Bumper fixing structure to vehicle frame
EP4253114A1 (en) Automotive battery case and method for manufacturing same
CN112969633B (en) Front floor reinforcement structure for vehicle having battery pack placed in tunnel
CN113710566B (en) Channel with integral lateral reinforcement
JP6869912B2 (en) Vampari Information
JP7288183B2 (en) body parts
JP6125466B2 (en) Structural members for automobiles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09802956

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09802956

Country of ref document: EP

Kind code of ref document: A1