WO2010013633A1 - Methods for prediction of rb status and sensitivity to plk1 inhibitor of cell - Google Patents

Methods for prediction of rb status and sensitivity to plk1 inhibitor of cell Download PDF

Info

Publication number
WO2010013633A1
WO2010013633A1 PCT/JP2009/063158 JP2009063158W WO2010013633A1 WO 2010013633 A1 WO2010013633 A1 WO 2010013633A1 JP 2009063158 W JP2009063158 W JP 2009063158W WO 2010013633 A1 WO2010013633 A1 WO 2010013633A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
expression level
cyclin
function
expression
Prior art date
Application number
PCT/JP2009/063158
Other languages
French (fr)
Japanese (ja)
Inventor
朋宏 江口
啓 板谷
秀也 駒谷
秀仁 小谷
卓充 町田
慎司 水洗
Original Assignee
萬有製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 萬有製薬株式会社 filed Critical 萬有製薬株式会社
Publication of WO2010013633A1 publication Critical patent/WO2010013633A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/46Assays involving biological materials from specific organisms or of a specific nature from animals; from humans from vertebrates
    • G01N2333/47Assays involving proteins of known structure or function as defined in the subgroups
    • G01N2333/4701Details
    • G01N2333/4739Cyclin; Prad 1
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/52Predicting or monitoring the response to treatment, e.g. for selection of therapy based on assay results in personalised medicine; Prognosis

Definitions

  • the present invention relates to a method for predicting the sensitivity of cancer cells to a PLK1 inhibitor and a method for predicting RB status.
  • RB protein that forms the core of the RB pathway is one of tumor suppressor genes and plays an extremely important role in the negative control of the cell cycle.
  • the RB protein is involved in a G1 checkpoint that blocks the transition from G1 to S phase.
  • the RB protein is derived from the G1 phase by directly binding to the transactivation domain of E2F and by forming a complex with E2F and binding to the promoter of a gene required for the transition from G1 phase to S phase. Suppresses gene transcription required for transition to S phase.
  • the RB function is impaired, the cell cycle becomes abnormal and contributes to canceration.
  • PLK1 Poly-likeKkinase 1; polo-like kinase 1
  • PLK1 is a phosphorylating enzyme that is activated during cell division. Increased expression of PLK1 has been observed in various human cancers (malignant tumors), and this increased expression is known to be associated with poor prognosis in various types of cancer. Therefore, it has been proposed to use PLK1 as a disease marker. Furthermore, it has been confirmed that when PLK1 is specifically deficient in cancer cells, the viable cell rate decreases due to apoptosis. Therefore, PLK1 inhibitors are being developed as promising candidates for the development of anticancer agents.
  • the present inventor analyzed a gene expression pattern related to RB function, and identified a gene expressed in correlation with RB function.
  • the present inventor has found that the cyclin D1 gene and the p16 gene are particularly effective for predicting whether or not the RB function of the cell is abnormal because the correlation with the RB function is high.
  • the present inventor has confirmed that cancer cells with abnormal RB function are highly sensitive to a PLK1 inhibitor, and that cell death is induced by administration of the PLK1 inhibitor. Therefore, the present invention can predict whether or not the RB function is normal based on the expression profile of the gene expressed in correlation with the RB function, in particular, the expression ratio of the cyclin D1 gene and the p16 gene, and further inhibits PLK1 inhibition. It has been clarified that the effect of the agent can be predicted, and has been completed.
  • the present invention includes the steps of determining the expression level of the cyclin D1 gene and the expression level of the p16 gene in the patient-derived biological sample, determining the ratio of the expression level of the cyclin D1 gene to the expression level of the p16 gene, And predicting that the PLK1 inhibitor is effective when the ratio of the expression levels is small compared to the control cells.
  • the present invention also includes the steps of determining the expression level of the cyclin D1 gene and the expression level of the p16 gene in the patient-derived biological sample, determining the ratio of the expression level of the cyclin D1 gene to the expression level of the p16 gene, Predicting whether the RB function in the cell is abnormal, including predicting that the RB function in the cell in the biological sample is abnormal when the ratio of expression levels is small compared to the control cell Regarding the method.
  • the ratio of expression levels is represented by the expression ratio of cyclin D1 / p16, and the value of the expression ratio of cyclin D1 / p16 is expressed by the following formula:
  • the present invention relates to whether or not RB function in cells in a biological sample is abnormal based on RB gene mutation, RB gene expression level and / or RB protein production level in a biological sample derived from a patient.
  • the present invention relates to a method for predicting the effect of a PLK1 inhibitor, comprising the steps of predicting and predicting that the PLK1 inhibitor is effective when the RB function is abnormal.
  • the present invention determines the expression level of one or more genes described in FIG. 7 and / or the expression level of one or more genes described in FIG. 8 in a biological sample derived from a patient, and FIG.
  • the PLK1 inhibitor is effective when the expression level of the gene described in 1 is smaller than that of the control cells and / or when the expression level of the gene described in FIG. 8 is higher than that of the control cells.
  • the method of predicting the effect of a PLK1 inhibitor is effective when the expression level of the gene described in 1 is smaller than that of the control cells and / or when the expression level of the gene described in FIG. 8 is higher than that of the control cells.
  • the present invention also includes the step of determining the expression level of one or more genes described in FIG. 7 and / or the expression level of one or more genes described in FIG. 8 in a biological sample derived from a patient,
  • the expression level of the described gene is small compared to the control cell and / or when the expression level of the gene described in FIG. 8 is large compared to the control cell, the RB function in the cell is abnormal.
  • a method for predicting whether or not RB function in a cell is abnormal.
  • the expression level of one or more genes described in FIGS. 7 and 8 is determined, the gene described in FIG. 7 includes the cyclin D1 gene, and the gene described in FIG. 8 includes the p16 gene. Is desirable.
  • the patient-derived biological sample can contain cancer cells, preferably contains lung cancer cells, and more preferably contains small cell cancer cells.
  • the present invention provides a pharmaceutical composition for treating a cancer patient having cancer cells with abnormal RB function, the pharmaceutical composition comprising a pharmaceutically effective amount of a PLK1 inhibitor.
  • the present invention also relates to a drug for inducing cell death in cells having abnormal RB function, the drug comprising a pharmacologically effective amount of a PLK1 inhibitor.
  • the pharmaceutical composition and drug can be administered to cancer cells predicted to have abnormal RB function by the method of the present invention, or to cells predicted to have abnormal RB function.
  • the present invention determines a cyclin D1 gene expression level and a p16 gene expression level in a patient-derived biological sample, and determines a ratio of the cyclin D1 gene expression level to the p16 gene expression level. And a step of administering a PLK1 inhibitor to a patient when the ratio of expression levels is smaller than that of control cells.
  • the ratio of expression levels can be expressed by the expression ratio of cyclin D1 / p16, and the value of the expression ratio of cyclin D1 / p16 is expressed by the following formula:
  • the present invention relates to whether the RB function in cells in the biological sample is abnormal based on RB gene mutation, RB gene expression level and / or RB protein production level in a biological sample derived from a patient.
  • the present invention relates to a method for treating cancer, comprising: a step of predicting whether or not, and a step of administering a PLK1 inhibitor to a patient when the RB function is abnormal.
  • the present invention also includes the step of determining the expression level of one or more genes described in FIG. 7 and / or the expression level of one or more genes described in FIG.
  • the expression level of one or more genes described in FIGS. 7 and 8 is determined, the gene described in FIG. 7 includes the cyclin D1 gene, and the gene illustrated in FIG. 8 includes the p16 gene. It is desirable.
  • the present invention relates to one or more isolated nucleic acid sequences selected from the group consisting of FIG. 7 and FIG. 8 that are associated with the function of RB, and also comprising nucleic acids that bind to said one or more nucleic acid sequences. It also relates to an array containing.
  • the present invention provides an expression profile of a gene whose expression increases or decreases in relation to RB function, and more particularly based on the expression ratio of cyclin D1 gene and p16 gene than that of cyclin D1 gene alone or p16 gene alone. It is possible to predict whether or not the RB function is abnormal with high accuracy. Further, according to the present invention, sensitivity to a PLK1 inhibitor can be predicted based on the expression ratio of the cyclin D1 gene and the p16 gene.
  • a biological sample is collected from a cancer patient, and based on the expression ratio of the cyclin D1 gene and the p16 gene, whether the RB function is normal and sensitivity to the PLK1 inhibitor
  • the present invention can be administered to a patient who is highly sensitive to a PLK1 inhibitor, that is, a drug containing the PLK1 inhibitor is administered only to a patient who is expected to be effective in administering the PLK1 inhibitor. It helps when selecting an anticancer drug to be administered to a patient.
  • a patient refers to a human who has or may have cancer, but besides humans, veterinary uses, i.e., non-human primates, Mammals such as dogs, cats, cows and horses can be targeted.
  • biological samples include body fluids obtained from patients, body fluids containing cells such as blood, sputum, and intraperitoneal washings.
  • the body tissue obtained from the patient is preferably a cancer tissue.
  • the primary culture or the subcultured thing may be used.
  • the RB function state is also referred to as “RB status” in this specification.
  • the RB function refers to whether or not the RB protein functions normally.
  • the case where the RB function is abnormal includes not only the abnormality of the RB protein itself but also the case where the function of the RB protein is inhibited by a viral protein and is not functioning normally. However, it does not include the case where the RB protein is not functioning normally due to abnormal protein function upstream of the RB protein in the RB pathway.
  • Either absolute or relative amount of gene expression may be measured as the gene expression level.
  • the expression levels of cyclin D1 gene and p16 gene are as follows: 1) cyclin D1 mRNA and p16 mRNA are detected 2) cyclin D1 protein and p16 protein are detected 3) cyclin D1 and p16 protein biological activities Can be determined by any one or more of detecting.
  • gene amplification methods such as real-time PCR and RT-PCR, microarrays, Northern hybridization, and immunological measurement methods such as IHC, ELISA, and Western blotting can be used, but are not particularly limited.
  • the expression level can also be measured by hybridization of a target gene and a complementary probe using cells or tissues.
  • the expression ratio between the cyclin D1 gene and the p16 gene in the cell whose RB function or PLK1 inhibitor sensitivity is to be predicted can be determined as the ratio of the expression level of the cyclin D1 gene and the p16 gene in the control cell as follows: .
  • log 10 expression ratio of cyclin D1 / p16
  • log 10 expression ratio of cyclin D1 / p16
  • log 10 expression ratio of cyclin D1 / p16
  • log 10 expression ratio of cyclin D1 / p16
  • log 10 expression ratio of cyclin D1 / p16
  • log 10 the expression ratio of cyclin D1 / p16
  • log 10 the expression ratio of cyclin D1 / p16
  • the RB function is abnormal and the sensitivity of the PLK1 inhibitor is high, that is, cell death is effectively caused by administration of the PLK1 inhibitor. It can be predicted that it can be guided.
  • the value of the expression ratio of cyclin / p16 and the log 10 (expression ratio of cyclin D1 / p16), which are the criteria for judgment ) Value varies depending on the control cell X. This value can be easily set by those skilled in the art by measuring the expression levels of cyclin and p16 in several cell lines with known RB functions and the target cell X. For example, when HeLa S3 is used as the cell X, when log 10 (the expression ratio of cyclin D1 / p16) is larger than 0.6, the RB function is normal and the sensitivity of the PLK1 inhibitor is low. Can be predicted to be low.
  • RB status of the patient's cancer cells, and PLK1 Sensitivity to inhibitors can be predicted.
  • the expression level of the gene described in FIG. 7 in the biological sample is small compared to the control cells, or when the expression level of the gene described in FIG. 8 is large compared to the control cells, It can be predicted that the RB function is abnormal and the sensitivity to the PLK1 inhibitor is high. In this method, it is desirable to compare both the expression level of the gene described in FIG. 7 and the expression level of the gene described in FIG. 8 with the control cells.
  • control cell a cell confirmed to have normal RB function can be used.
  • the above prediction can be made based on the expression level of one or more genes shown in FIG. 7 and / or one or more genes shown in FIG. 8, but preferably 5 or more of each of the genes described in FIG. More preferably, the above prediction can be made based on 10 or more genes, more preferably 50 or more genes.
  • the one or more genes described in FIG. 7 preferably include the cyclin D1 gene
  • the one or more genes described in FIG. 8 desirably include the p16 gene.
  • the cancer referred to in this specification is not particularly limited, and may infiltrate (infiltrate) or metastasize to a boundary with another tissue such as a malignant tumor or a malignant neoplasm, and may increase in various parts of the body.
  • Tumors that threaten the life of the host include carcinomas derived from epithelial tissues (cancer), sarcomas derived from connective and mesenchymal tissues, leukemias, and malignant lymphomas.
  • the method of the present invention can be applied to lung cancer cells, particularly small cell lung cancer cells.
  • the gene expression profile indicates information such as the expression pattern of a gene in a specific cell under a certain condition, the presence or absence of expression of a known and unknown gene, the expression level of all the genes to be expressed, and the like.
  • nucleic acid amplification methods such as RT-PCR and real-time PCR, microarray, Northern hybridization, differential display, differential hybridization, subtraction, etc. Any analysis method known to those skilled in the art can be used.
  • cancer cells having an abnormal RB function are highly sensitive to a PLK1 inhibitor and can selectively cause cell death in cells having an abnormal RB function. Therefore, a patient having cancer cells predicted to have abnormal RB function by the above method or other methods is selected and a pharmaceutical composition containing a pharmacologically effective amount of a PLK1 inhibitor is administered. It is effective to do. On the other hand, even if a PLK1 inhibitor is administered to a patient having cancer cells having no abnormality in RB function, only side effects appear and the possibility that the effect cannot be expected is high. Therefore, according to the present invention, an appropriate treatment method can be selected after predicting the RB function in a cancer cell of a patient in advance.
  • a pharmaceutical composition containing a PLK1 inhibitor can be effectively administered.
  • a pharmaceutical composition comprising a PLK1 inhibitor typically comprises pharmacologically acceptable excipients and / or other additives.
  • a pharmacologically effective amount of a PLK1 inhibitor against cancer is included in the pharmaceutical composition.
  • the administration method of the pharmaceutical composition of the present invention includes oral administration such as buccal and sublingual, intravenous administration, intramuscular administration, subcutaneous administration, transdermal administration, nasal administration, parenteral administration such as pulmonary administration, etc. It can be appropriately changed according to the cancer site and symptoms of the patient. Therefore, for oral administration, tablets, pills, capsules, powders, granules, extracts, liquids, etc., and for parenteral administration, injections, suppositories, eye drops, nasal drops , Ointments, liquids, patches, nasal agents, inhalants, sprays, and the like.
  • excipients include, but are not limited to, lactose, mannitol, glucose, hydroxypropyl cellulose, microcrystalline cellulose, starch, polyvinyl pyrrolidone, magnesium aluminate metasilicate, and the like.
  • additives include excipients, stabilizers, preservatives, buffering agents, flavoring agents, suspending agents, emulsifiers, flavoring agents, solubilizing agents, coloring agents, and thickening agents.
  • Ointments include not only oleaginous bases (eg, petrolatum, paraffin, etc.), but also creams, water-soluble bases (eg, polyethylene glycol bases), suspension bases (e.g., petroleum jelly, paraffin, etc.) For example, those using cellulose) are included.
  • oleaginous bases eg, petrolatum, paraffin, etc.
  • water-soluble bases e.g, polyethylene glycol bases
  • suspension bases e.g., petroleum jelly, paraffin, etc.
  • those using cellulose are included.
  • the pharmaceutical composition containing the PLK1 inhibitor includes 0.1 to 1000 mg / day of a PLK1 inhibitor per unit dose, depending on the route of administration, for example, 1 mg to 600 mg / day of a PLK1 inhibitor.
  • the pharmaceutical composition of the present invention may be further combined with other anticancer agents or anticancer treatments.
  • a drug containing a PLK1 inhibitor can be used to induce cell death in cells with abnormal RB function. Cell death includes apoptosis, necrosis, autophagy and the like.
  • PLK1 inhibitor can be used as the PLK1 inhibitor, and Compound Example 38 and Example 186 described in WO2006 / 049339, Compound Example 5 and Example 81 described in WO2008 / 081914, BI 2536 (for example, Curr Biol. 2007 2007 Feb 20; 17 (4): 304-15), ON01910 (Cancer Cell. 2005 2005 May; 7 (5): 497), GSK461364, ZK-Thiazolidinone (Mol Biol Cell. 2007 2007 Oct; 18 (10): 4024-36), Cyclapolin 1 (Nat. Chem. Biol. 2006, Nov .; 2, (11): 608-617), but not limited thereto.
  • the structural formulas of Compound Example 38 and Example 186 described in WO2006 / 049339 and Compound Example 5 and Example 81 described in WO2008 / 081914 are shown below.
  • the treatment method and pharmaceutical composition of the present invention can be used in combination with other known anticancer agents or in combination with other known anticancer treatment methods.
  • other known anticancer agents include anticancer alkylating agents, anticancer antimetabolites, anticancer antibiotics, plant-derived anticancer agents, and anticancer platinum coordination. Examples include, but are not limited to, compounds, anticancer camptothecin derivatives, anticancer tyrosine kinase inhibitors, monoclonal antibodies, interferons, and biological response modifiers.
  • Other known anti-cancer treatments can include, but are not limited to, radiation therapy.
  • the inventor has identified 194 genes related to RB function. Among them, 90 genes described in FIG. 7 decrease in expression when RB function is abnormal, and 104 genes described in FIG. 8 increase in expression when RB function is abnormal. It has been confirmed that there is a tendency.
  • the RB function is predicted based on the expression ratio of cyclin D1 / p16 or log 10 (expression ratio of cyclin D1 / p16), or the expression level of the genes described in FIG. 7 and FIG. It is possible to determine based on the presence / absence of mutation of the RB gene, the expression level of the RB gene and / or the production amount of the RB protein. Moreover, since RB function is known to be inactivated by viral infection such as HPV, it can be predicted by examining infection with HPV.
  • the RB gene mutation includes not only a mutation in the region encoding the RB gene but also a mutation in the promoter region.
  • the presence or absence of mutations in the RB gene is determined by sequencing the RB gene, Southern blotting, Northern blotting, methods based on gene amplification such as PCR-SSCP and ARMS, ASO, Taqman-PCR, Invader, and DNA chip And can be determined by any method known to those skilled in the art.
  • the amount of RB gene expression and the amount of RB protein produced can be measured by detecting the expression and loss of RB gene mRNA, detecting the RB protein, and detecting the biological activity of the RB protein.
  • the expression amount of RB gene and the production amount of RB protein are, for example, gene amplification methods such as real-time PCR and RT-PCR, microarray, Northern hybridization and immunological measurement methods such as IHC, ELISA and Western blotting, RB protein It can be measured by any method known to those skilled in the art, such as a functional assay.
  • the RB function of the cell is abnormal is predicted, and when the RB function is predicted to be abnormal, it is determined that the cell is highly sensitive to the PLK1 inhibitor, and PLK1 Inhibitors are judged to be effective. Moreover, when it is estimated that the RB function of a cell is abnormal, it can be judged that administration of a PLK1 inhibitor is effective for a patient from which the cell is derived. That is, there is provided a cancer treatment method in which the RB function of cells contained in a biological sample of a patient is predicted, and the PLK1 inhibitor is administered when the RB function is abnormal.
  • ⁇ Determination of RB status> The following 30 human cancer cell lines were used to determine RB status. T24, U-2 OS, SF-268, DLD-1, HCT 116, Hep G2, NCI-H460, A549, UACC-62, MDAH-2774, PANC-1, SU.86.86, NCI-N87, Hs 746T, KATO III, SCC-25, J82, HeLa S3, Du 145, TCCSUP, MDA-MB-436, MDA-MB-468, SF-539, HeLa, C-33 A, Lu-135, NCI-H128, NCI- H1417, NCI-H69, NCI-H596
  • RB status was determined by RB protein functional assay.
  • the RB protein function assay is a method for examining the status of intracellular RB via the inhibitory effect of an exogenous E2F transcriptional reporter.
  • RB is a central molecule that regulates the activity of the E2F transcription factor in the cell, and its regulatory mechanism is as shown in FIG.
  • RB suppresses the transcriptional activity of E2F, but this inhibitory effect is lost when RB is phosphorylated by Cdk4 / cyclin D.
  • Cdk4 / cyclin D phosphorylase activity is inhibited by its intracellular inhibitory protein, p16.
  • the status of intracellular RBs can be examined by exogenously introducing p16 and E2F transcription reporters into cells.
  • RB status is examined by this method, cells whose E2F transcription reporter activity is inhibited by the introduced p16 are identified as normal RB function, and cells whose E2F transcription reporter activity does not change even when p16 is introduced are identified as abnormal RB function. Can do.
  • RB protein functional assay it was determined that 16 were normal and 3 were abnormal as shown in Table 2.
  • HURR Human Universal Reference RNAs
  • the fluorescence signal read by the scanner was analyzed with Resolver® (Rosetta® Biosoftware), and the expression level ratio was calculated.
  • Resolver Rosetta® Biosoftware
  • MATLABMAT MATLABMAT
  • RB function signature that is, presence or absence of RB protein function.
  • the standard deviation of the expression log ratio (bottom 10) in all 30 samples is 0.1 or more.
  • the p-value of the Pearson correlation coefficient between the expression log ratio (bottom 10) and the RB functional state in all 30 samples is 0.001 or less.
  • the selected “RB function signature” is shown in Table 3 below.
  • Clustering of 30 cell lines in which the RB function was confirmed to be normal or abnormal with respect to the above 194 RB function signature was performed. Clustering was created based on the log ratio relative to the average for all 30 cell lines shown below.
  • each gene is arranged in the horizontal direction and the cell lines are arranged in the vertical direction.
  • the expression level of each gene is represented by the log ratio (bottom 10) with respect to the average in all samples as in the above formula, and is shown in white when the expression level is higher than the average and black when it is lower.
  • both p16 and GSK3B are known to inhibit the CDK4 / cyclin D1 complex, but their gene expression was negatively correlated with RB function (correlation coefficient was -0.85, respectively). -0.61).
  • RB1, cyclin D1, p16, and GSK3B alone do not accurately identify the RB function.
  • RB function could be completely identified by taking the ratio of cyclin D1 and p16 gene expression (FIG. 2). At this time, the criteria for identification were as follows.
  • the log ratio for HeLa S3 in a specific cell is calculated as follows.
  • ⁇ PLK1 inhibitor induces RB status-dependent cell death in RB matched pair cell lines>
  • PLK1 inhibitor In order to confirm the RB status-dependent cell death inducing effect of the PLK1 inhibitor, it was examined whether the induction of apoptosis by the four types of PLK1 inhibitors occurs selectively only in RB dysfunction cell lines.
  • U-2 OS cell (U-2 OS RB shRNA strain) which caused dysfunction in RB by shRNA against RB, and U-2 OS cell (U-2 OS vector strain with normal RB function introduced with a vector as a control) ) was administered a PLK1 inhibitor.
  • the U-2 OS RB shRNA strain and the U-2 OS vector strain were prepared based on the description of Oncogene (2007) 26, 509-520. That is, the U-2 OS vector strain and the U-2 OS RB shRNA strain were cultured in the presence of a PLK1 inhibitor for 48 hours, and the proportion of cells that caused apoptosis after the culture was compared between the strains.
  • PLK1 inhibitors As PLK1 inhibitors, four types of Compound Example 38 and Example 186 described in WO2006 / 049339 and Compound Example 5 and Example 81 described in WO2008 / 081914 were used. Apoptotic cells were identified by measuring the DNA content of the cells by flow cytometry. In this identification method, a cell having a DNA content less than that of a G1 phase cell (hereinafter referred to as subG1 cell) is defined as an apoptotic cell. As shown in FIG. 3, all four PLK1 inhibitors were found to induce apoptosis selectively and strongly against RB shRNA strains with RB dysfunction compared to Vector strains with normal RB function. It was. From this, it was confirmed that the PLK1 inhibitor induces RB status-dependent cell death only in the RB dysfunctional strain.
  • the gene expression ratio of cyclin D1 and p16 identifies RB status>
  • 10 cell lines with unknown RB status are prepared, and the cyclin D1 and p16 gene expression ratio of these cells and the actual RB status are calculated.
  • the cell lines used are A427, NCI-H441, NCI-H23, NCI-H358, NCI-H661, NCI-H2030, NCI-H522, NCI-H1048, NCI-H2172, and NCI-H810.
  • the gene expression levels of cyclin D1 and p16 in these cells were measured relative using a quantitative real-time PCR method.
  • Measurement of the expression levels of cyclin D1 and p16 by quantitative real-time PCR was performed as follows. First, the gene expression levels of cyclin D1 and p16 were measured by a real-time PCR method. That is, cells in the logarithmic growth phase were collected, and RNA was extracted and purified. Next, based on the obtained purified RNA, cDNA was synthesized using random primers, and the amount of cyclin D1 and p16 contained therein was determined with Applied Biosystems 7900HT Fast Real-Time PCR System (Applied Biosystems). It was measured. The probe used for real-time PCR is TaqManaqGene Expression Assays (Applied Biosystems).
  • cyclin D1 / p16 expression ratio was calculated in the same manner as in the method described in Example 1, and the RB status was calculated in the same manner as in Example 1 for cells with log 10 (cyclin D1 / p16 expression ratio)> 0.6.
  • RB function was predicted to be normal, and cells with log 10 (cyclin D1 / p16 expression ratio) ⁇ 0.6 were predicted to have RB function abnormality.
  • the actual RB status was identified by the RB protein functional assay in the same manner as in Example 1.
  • the actual RB status was identified by the RB protein functional assay as follows.
  • FIG. 5 shows a comparison between the predicted RB status, the value of log 10 (cyclin D1 / p16 expression ratio), and the actual RB function.
  • cells for which the RB status was correctly predicted by the gene expression ratio of cyclin D1 and p16 are indicated by ⁇ , and cells for which the RB status was not predicted are indicated by ⁇ .
  • the RB function can be predicted with high accuracy from the cyclin D1 / p16 expression ratio.
  • log 10 cyclin D1 / p16 expression ratio
  • the RB function is normal. It was confirmed that when the value is smaller than 0.6, the RB function can be predicted to be abnormal.
  • the cell experiment system is a good model system that reflects clinical tissues, it is considered that the RB status identification method using the gene expression ratio of cyclin D1 and p16 can also be used for clinical samples. Therefore, it is possible to predict the RB function of cells in a clinical sample with high accuracy based on the cyclin D1 / p16 expression ratio.
  • Sensitivity to the PLK1 inhibitor was determined by quantifying the number of cells after 72 hours of culturing in the presence of the PLK1 inhibitor using WST-8 (Kishida Chemical Co., Ltd.).
  • the complete growth inhibitory concentration hereinafter referred to as IC 100
  • IC 100 is the concentration of the compound that maintains the same number of cells after 72 hours of treatment with the compound as when the compound was added, and is an index reflecting the effect of cell death.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Hospice & Palliative Care (AREA)
  • Microbiology (AREA)
  • Urology & Nephrology (AREA)
  • Physics & Mathematics (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Hematology (AREA)
  • Oncology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Cell Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Food Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

Disclosed is a method for predicting the sensitivity of a cancer cell to a PLK1 inhibitor.  Also disclosed is a method for predicting the RB status of a cancer cell. The sensitivity to a PLK1 inhibitor or the RB status can be predicted through the following steps: determining the expression level of cyclin D1 gene and the expression level of p16 gene in a biological sample collected from a patient; determining the ratio of the expression level of cyclin D1 gene to the expression level of p16 gene; and predicting that the PLK1 inhibitor is effective or the RB function is abnormal when the ratio of the expression levels is smaller compared with that in a control cell.

Description

細胞のRBステイタス及びPLK1阻害剤に対する感受性を予測する方法Method for predicting RB status of cells and sensitivity to PLK1 inhibitor
 本発明は、がん細胞のPLK1阻害剤に対する感受性を予測する方法、及びRBステイタスを予測する方法に関する。 The present invention relates to a method for predicting the sensitivity of cancer cells to a PLK1 inhibitor and a method for predicting RB status.
 個々のがんの遺伝子特徴に応じたオーダーメイド(テーラーメイド)治療の開発に伴って、臨床診断手法が重要なものとして認識されるようになってきている。例えば、同じ薬剤を用いた場合であっても、その治療効果と副作用(毒性)は患者ごとに異なる。従って、患者ごとに、治療効果が高く、副作用がない又は少ない薬剤を投与することが望まれる。特に、抗がん剤は、治療効果が各種のがん細胞の型によって大きく異なり、また副作用が強いことが多く、投与前に薬効及び副作用を予測し、各患者に最も適した治療を行うことが、治療効果を高める上で望ましい。 With the development of tailor-made treatment according to the genetic characteristics of individual cancers, clinical diagnostic techniques are becoming recognized as important. For example, even when the same drug is used, its therapeutic effect and side effects (toxicity) vary from patient to patient. Therefore, it is desirable to administer drugs with high therapeutic effects and no or no side effects for each patient. In particular, anticancer drugs have therapeutic effects that vary greatly depending on the type of various cancer cells, and often have side effects. Predict drug efficacy and side effects before administration, and provide the most appropriate treatment for each patient. However, it is desirable for enhancing the therapeutic effect.
 がん化には、Hedgehogパスウェイ、Wntパスウェイ、Survivin遺伝子を介したアポトーシスパスウェイ、Rasパスウェイ、p53パスウェイ及びRBパスウェイなど、種々のパスウェイが関与することが知られている。抗がん剤の薬効予測などを行うために、患者のがんが、どのパスウェイの異常を原因とするものであるかを明らかにした上で、適切な抗がん剤を投与することが望まれている。 It is known that various pathways such as Hedgehog pathway, Wnt pathway, apoptosis pathway via Survivin gene, Ras pathway, p53 pathway and RB pathway are involved in canceration. In order to predict the efficacy of anticancer drugs, it is desirable to determine which pathway abnormalities are caused by the patient's cancer and to administer appropriate anticancer drugs. It is rare.
 RBパスウェイの中核をなすRBタンパク質は、腫瘍抑制遺伝子の一つであり、細胞周期の負の制御において極めて重要な役割を果たしている。RBタンパク質は、G1からS期への移行を阻止するG1チェックポイントに関与している。RBタンパク質は、E2Fのトランス活性化ドメインに直接結合することによって、及びE2Fと複合体を形成し、G1期からS期への移行に要求される遺伝子のプロモーターに結合することによって、G1期からS期への移行に要求される遺伝子転写を抑制する。RB機能が損なわれると、細胞周期が異常になり、がん化の一因となる。 RB protein that forms the core of the RB pathway is one of tumor suppressor genes and plays an extremely important role in the negative control of the cell cycle. The RB protein is involved in a G1 checkpoint that blocks the transition from G1 to S phase. The RB protein is derived from the G1 phase by directly binding to the transactivation domain of E2F and by forming a complex with E2F and binding to the promoter of a gene required for the transition from G1 phase to S phase. Suppresses gene transcription required for transition to S phase. When the RB function is impaired, the cell cycle becomes abnormal and contributes to canceration.
 細胞分裂時のエラーのない染色体の分離が、正しい倍数性とゲノムの完全性の維持のために必要とされる。細胞分裂時のエラーは、異数性及びがんの原因となると推測されている。娘細胞が染色体を正しく受け継ぐためには、染色体が均等に分離されること、細胞質分裂が分離した2セットの染色体の間で起こることが大切である。細胞分裂におけるこれらの過程において、PLK1(Polo-like kinase 1;ポロ様キナーゼ1)と呼ばれるキナーゼが関与していることが知られている。 ¡Chromosomal separation without error during cell division is required to maintain correct ploidy and genomic integrity. Errors during cell division are speculated to cause aneuploidy and cancer. In order for daughter cells to inherit chromosomes correctly, it is important that the chromosomes are evenly separated and that cytokinesis occurs between the two sets of separated chromosomes. It is known that a kinase called PLK1 (Polo-likeKkinase 1; polo-like kinase 1) is involved in these processes in cell division.
 PLK1は、細胞分裂期に活性化するリン酸化酵素である。PLK1は、様々なヒトのがん(悪性腫瘍)において発現上昇が認められており、この発現上昇は、各種のがんの型において予後不良に関係することが知られている。そのため、PLK1を疾患マーカーとして使用することが提唱されている。さらに、がん細胞でPLK1を特異的に欠損させると、アポトーシスにより生細胞率が減少することが確認されている。そのため、PLK1の阻害剤は、抗がん剤開発の有力な候補として開発が進められている。 PLK1 is a phosphorylating enzyme that is activated during cell division. Increased expression of PLK1 has been observed in various human cancers (malignant tumors), and this increased expression is known to be associated with poor prognosis in various types of cancer. Therefore, it has been proposed to use PLK1 as a disease marker. Furthermore, it has been confirmed that when PLK1 is specifically deficient in cancer cells, the viable cell rate decreases due to apoptosis. Therefore, PLK1 inhibitors are being developed as promising candidates for the development of anticancer agents.
 したがって、本発明は、がんの治療剤として、PLK1阻害剤の効果を予測するための方法を開発することを目的とする。また、細胞のRB機能とPLK1阻害剤の効果との関連を精査するために、RB機能に相関して発現する遺伝子を同定することを目的とする。 Therefore, an object of the present invention is to develop a method for predicting the effect of a PLK1 inhibitor as a cancer therapeutic agent. Another object of the present invention is to identify a gene that is expressed in correlation with the RB function in order to investigate the relationship between the RB function of the cell and the effect of the PLK1 inhibitor.
 本発明者は、RB機能に関連する遺伝子発現パターンを解析し、RB機能に相関して発現する遺伝子を同定した。本発明者は、特に、サイクリンD1遺伝子及びp16遺伝子がRB機能との相関が高く、細胞のRB機能が異常であるか否かを予測するために有効であることを見いだした。さらに、本発明者は、RB機能の異常を伴うがん細胞は、PLK1阻害剤に対して感受性が高く、PLK1阻害剤の投与により細胞死が誘導されることを確認した。そこで本発明は、RB機能に相関して発現する遺伝子の発現プロファイル、特にサイクリンD1遺伝子とp16遺伝子との発現比に基づいて、RB機能が正常であるか否かを予測でき、さらに、PLK1阻害剤の効果を予測することができることを明らかにし、完成されたものである。 The present inventor analyzed a gene expression pattern related to RB function, and identified a gene expressed in correlation with RB function. The present inventor has found that the cyclin D1 gene and the p16 gene are particularly effective for predicting whether or not the RB function of the cell is abnormal because the correlation with the RB function is high. Furthermore, the present inventor has confirmed that cancer cells with abnormal RB function are highly sensitive to a PLK1 inhibitor, and that cell death is induced by administration of the PLK1 inhibitor. Therefore, the present invention can predict whether or not the RB function is normal based on the expression profile of the gene expressed in correlation with the RB function, in particular, the expression ratio of the cyclin D1 gene and the p16 gene, and further inhibits PLK1 inhibition. It has been clarified that the effect of the agent can be predicted, and has been completed.
 即ち、本発明は、患者由来の生物試料におけるサイクリンD1遺伝子の発現量とp16遺伝子の発現量を決定するステップと、p16遺伝子の発現量に対するサイクリンD1遺伝子の発現量の比を求めるステップと、前記発現量の比が対照の細胞と比べて小さい場合に、PLK1阻害剤が効果的であると予測するステップとを含む、PLK1阻害剤の効果を予測する方法に関する。
 また、本発明は、患者由来の生物試料におけるサイクリンD1遺伝子の発現量とp16遺伝子の発現量を決定するステップと、p16遺伝子の発現量に対するサイクリンD1遺伝子の発現量の比を求めるステップと、前記発現量の比が対照の細胞と比べて小さい場合に、前記生物試料中の細胞におけるRB機能が異常であると予測するステップとを含む、細胞におけるRB機能が異常であるか否かを予測する方法に関する。
 前記方法では、発現量の比は、サイクリンD1/p16発現比により表され、前記サイクリンD1/p16発現比の値は、次の式
That is, the present invention includes the steps of determining the expression level of the cyclin D1 gene and the expression level of the p16 gene in the patient-derived biological sample, determining the ratio of the expression level of the cyclin D1 gene to the expression level of the p16 gene, And predicting that the PLK1 inhibitor is effective when the ratio of the expression levels is small compared to the control cells.
The present invention also includes the steps of determining the expression level of the cyclin D1 gene and the expression level of the p16 gene in the patient-derived biological sample, determining the ratio of the expression level of the cyclin D1 gene to the expression level of the p16 gene, Predicting whether the RB function in the cell is abnormal, including predicting that the RB function in the cell in the biological sample is abnormal when the ratio of expression levels is small compared to the control cell Regarding the method.
In the method, the ratio of expression levels is represented by the expression ratio of cyclin D1 / p16, and the value of the expression ratio of cyclin D1 / p16 is expressed by the following formula:
Figure JPOXMLDOC01-appb-M000004
により表すことができる。
Figure JPOXMLDOC01-appb-M000004
Can be represented by
 別の態様として、本発明は、患者由来の生物試料におけるRB遺伝子の変異、RB遺伝子発現量及び/又はRBタンパク質生成量に基づいて、前記生物試料中の細胞におけるRB機能が異常であるか否か予測するステップと、RB機能が異常である場合に、PLK1阻害剤が効果的であると予測するステップとを含む、PLK1阻害剤の効果を予測する方法に関する。
 またさらに、本発明は、患者由来の生物試料における図7に記載された一以上の遺伝子の発現量及び/又は図8に記載された一以上の遺伝子の発現量を決定するステップと、図7に記載された遺伝子の発現量が対照の細胞と比べて小さい場合、及び/又は、図8に記載された遺伝子の発現量が対照の細胞と比べて大きい場合、PLK1阻害剤が効果的であると予測するステップとを含む、PLK1阻害剤の効果を予測する方法に関する。
In another aspect, the present invention relates to whether or not RB function in cells in a biological sample is abnormal based on RB gene mutation, RB gene expression level and / or RB protein production level in a biological sample derived from a patient. The present invention relates to a method for predicting the effect of a PLK1 inhibitor, comprising the steps of predicting and predicting that the PLK1 inhibitor is effective when the RB function is abnormal.
Furthermore, the present invention determines the expression level of one or more genes described in FIG. 7 and / or the expression level of one or more genes described in FIG. 8 in a biological sample derived from a patient, and FIG. The PLK1 inhibitor is effective when the expression level of the gene described in 1 is smaller than that of the control cells and / or when the expression level of the gene described in FIG. 8 is higher than that of the control cells. The method of predicting the effect of a PLK1 inhibitor.
 また、本発明は、患者由来の生物試料における図7に記載された一以上の遺伝子の発現量及び/又は図8に記載された一以上の遺伝子の発現量を決定するステップと、図7に記載された遺伝子の発現量が対照の細胞と比べて小さい場合、及び/又は、図8に記載された遺伝子の発現量が対照の細胞と比べて大きい場合、細胞におけるRB機能が異常であると予測するステップとを含む、細胞におけるRB機能が異常であるか否かを予測する方法に関する。
 上記方法において、図7及び図8に記載の一以上の遺伝子の発現量を決定し、図7に記載された遺伝子がサイクリンD1遺伝子を含み、図8に記載された遺伝子がp16遺伝子を含むことが望ましい。
The present invention also includes the step of determining the expression level of one or more genes described in FIG. 7 and / or the expression level of one or more genes described in FIG. 8 in a biological sample derived from a patient, When the expression level of the described gene is small compared to the control cell and / or when the expression level of the gene described in FIG. 8 is large compared to the control cell, the RB function in the cell is abnormal. A method for predicting whether or not RB function in a cell is abnormal.
In the above method, the expression level of one or more genes described in FIGS. 7 and 8 is determined, the gene described in FIG. 7 includes the cyclin D1 gene, and the gene described in FIG. 8 includes the p16 gene. Is desirable.
 患者由来の生物試料は、がん細胞を含むものとすることができ、好ましくは、肺がん細胞を含むものであり、さらに好ましくは、小細胞癌細胞を含むものである。
 別の態様として、本発明は、RB機能が異常であるがん細胞を有するがん患者を治療するための医薬組成物であって、薬学的有効量のPLK1阻害剤を含んでなる医薬組成物に関し、また、RB機能が異常である細胞に細胞死を誘導するための薬剤であって、薬理学的有効量のPLK1阻害剤を含んでなる薬剤にも関する。
 上記医薬組成物及び薬剤は、本発明の方法によりRB機能が異常であると予測されたがん細胞、又はRB機能が異常であると予測された細胞に投与することができる。
The patient-derived biological sample can contain cancer cells, preferably contains lung cancer cells, and more preferably contains small cell cancer cells.
In another aspect, the present invention provides a pharmaceutical composition for treating a cancer patient having cancer cells with abnormal RB function, the pharmaceutical composition comprising a pharmaceutically effective amount of a PLK1 inhibitor. In addition, the present invention also relates to a drug for inducing cell death in cells having abnormal RB function, the drug comprising a pharmacologically effective amount of a PLK1 inhibitor.
The pharmaceutical composition and drug can be administered to cancer cells predicted to have abnormal RB function by the method of the present invention, or to cells predicted to have abnormal RB function.
 さらに別の態様として、本発明は、患者由来の生物試料におけるサイクリンD1遺伝子の発現量とp16遺伝子の発現量を決定するステップと、p16遺伝子の発現量に対するサイクリンD1遺伝子の発現量の比を求めるステップと、前記発現量の比が対照の細胞と比べて小さい場合に、PLK1阻害剤を患者に投与するステップとを含む、がんの治療方法に関する。
 上記治療方法において、発現量の比は、サイクリンD1/p16発現比により表すことができ、前記サイクリンD1/p16発現比の値は、次の式
As yet another aspect, the present invention determines a cyclin D1 gene expression level and a p16 gene expression level in a patient-derived biological sample, and determines a ratio of the cyclin D1 gene expression level to the p16 gene expression level. And a step of administering a PLK1 inhibitor to a patient when the ratio of expression levels is smaller than that of control cells.
In the above treatment method, the ratio of expression levels can be expressed by the expression ratio of cyclin D1 / p16, and the value of the expression ratio of cyclin D1 / p16 is expressed by the following formula:
Figure JPOXMLDOC01-appb-M000005
により表すことができる。
Figure JPOXMLDOC01-appb-M000005
Can be represented by
 さらに別の態様において、本発明は、患者由来の生物試料におけるRB遺伝子の変異、RB遺伝子発現量及び/又はRBタンパク質生成量に基づいて、前記生物試料中の細胞におけるRB機能が異常であるか否か予測するステップと、RB機能が異常である場合に、PLK1阻害剤を患者に投与するステップとを含む、がんの治療方法に関する。
 また、本発明は、患者由来の生物試料における図7に記載された一以上の遺伝子の発現量及び/又は図8に記載された一以上の遺伝子の発現量を決定するステップと、図7に記載された遺伝子の発現量が対照の細胞と比べて小さい場合、及び/又は、図8に記載された遺伝子の発現量が対照の細胞と比べて大きい場合、PLK1阻害剤を患者に投与するステップとを含む、がんの治療方法に関する。
 上記治療方法において、図7及び図8に記載の一以上の遺伝子の発現量を決定し、図7に記載された遺伝子がサイクリンD1遺伝子を含み、図8に記載された遺伝子がp16遺伝子を含むことが望ましい。
 本発明は、RBの機能と関連している、図7及び図8からなる群から選択される、一以上の単離された核酸配列に関し、また、前記一以上の核酸配列に結合する核酸を含むアレイにも関する。
In yet another aspect, the present invention relates to whether the RB function in cells in the biological sample is abnormal based on RB gene mutation, RB gene expression level and / or RB protein production level in a biological sample derived from a patient. The present invention relates to a method for treating cancer, comprising: a step of predicting whether or not, and a step of administering a PLK1 inhibitor to a patient when the RB function is abnormal.
The present invention also includes the step of determining the expression level of one or more genes described in FIG. 7 and / or the expression level of one or more genes described in FIG. 8 in a biological sample derived from a patient, A step of administering a PLK1 inhibitor to a patient when the expression level of the described gene is small compared to the control cell and / or when the expression level of the gene described in FIG. 8 is large compared to the control cell And a method for treating cancer.
In the above treatment method, the expression level of one or more genes described in FIGS. 7 and 8 is determined, the gene described in FIG. 7 includes the cyclin D1 gene, and the gene illustrated in FIG. 8 includes the p16 gene. It is desirable.
The present invention relates to one or more isolated nucleic acid sequences selected from the group consisting of FIG. 7 and FIG. 8 that are associated with the function of RB, and also comprising nucleic acids that bind to said one or more nucleic acid sequences. It also relates to an array containing.
 本発明により、RB機能に関連して発現が増減する遺伝子の発現プロファイルが提供され、特にサイクリンD1遺伝子及びp16遺伝子の発現比に基づいて、サイクリンD1遺伝子単独、又はp16遺伝子単独の場合よりもより高い精度でRB機能が異常であるか否かを予測することができる。また、本発明により、サイクリンD1遺伝子及びp16遺伝子の発現比に基づいて、PLK1阻害剤に対する感受性を予測することができる。例えば、PLK1阻害剤を投与する前に、がん患者から生体試料を採取し、サイクリンD1遺伝子及びp16遺伝子の発現比に基づいて、RB機能が正常であるか否か、及びPLK1阻害剤に対する感受性を予測し、PLK1阻害剤に対して感受性が高い、すなわち、PLK1阻害剤の投与が効果的と予測される患者に対してのみPLK1阻害剤を含む医薬を投与するなど、本発明は、がん患者に投与する抗がん剤を選択する際の一助となる。 The present invention provides an expression profile of a gene whose expression increases or decreases in relation to RB function, and more particularly based on the expression ratio of cyclin D1 gene and p16 gene than that of cyclin D1 gene alone or p16 gene alone. It is possible to predict whether or not the RB function is abnormal with high accuracy. Further, according to the present invention, sensitivity to a PLK1 inhibitor can be predicted based on the expression ratio of the cyclin D1 gene and the p16 gene. For example, before administering a PLK1 inhibitor, a biological sample is collected from a cancer patient, and based on the expression ratio of the cyclin D1 gene and the p16 gene, whether the RB function is normal and sensitivity to the PLK1 inhibitor And the present invention can be administered to a patient who is highly sensitive to a PLK1 inhibitor, that is, a drug containing the PLK1 inhibitor is administered only to a patient who is expected to be effective in administering the PLK1 inhibitor. It helps when selecting an anticancer drug to be administered to a patient.
RB機能サイン194遺伝子による30細胞株のクラスタリングを示す図である。It is a figure which shows the clustering of 30 cell lines by RB function signature 194 gene. サイクリンD1及びp16の遺伝子発現量比とRBステイタスの関係を示すグラフである。It is a graph which shows the relationship between the gene expression level ratio of cyclin D1 and p16, and RB status. PLK1阻害剤がU-2 OS RB matched pair cell linesに対してRB異常依存的にアポトーシスを誘導することを示す図である。It is a figure which shows that PLK1 inhibitor induces apoptosis in an RB abnormality-dependent manner with respect to U-2UOS RB matched pair cell lines. RBがE2F転写因子の活性をどのような経路で制御しているかを示す図である。It is a figure which shows what kind of pathway RB controls the activity of an E2F transcription factor. サイクリンD1とp16遺伝子発現比が実際のRBステイタスを識別できることを示す図である。It is a figure which shows that a cyclin D1 and p16 gene expression ratio can identify actual RB status. PLK1阻害剤の感受性が、サイクリンD1とp16の遺伝子発現比から予測したRBステイタスと相関することを示した図である。It is the figure which showed that the sensitivity of a PLK1 inhibitor correlates with the RB status estimated from the gene expression ratio of cyclin D1 and p16. RB機能が異常な場合に発現量が減少する遺伝子を示す。A gene whose expression level decreases when RB function is abnormal is shown. RB機能が異常な場合に発現量が増加する遺伝子を示す。A gene whose expression level increases when RB function is abnormal is shown.
 本明細書でいう患者は、がんに罹患している又はがんに罹患している可能性があるヒトを言うが、ヒト以外にも、獣医学的な用途、即ち、非ヒト霊長目、イヌ、ネコ、ウシ、ウマなどの哺乳動物を対象とすることができる。 As used herein, a patient refers to a human who has or may have cancer, but besides humans, veterinary uses, i.e., non-human primates, Mammals such as dogs, cats, cows and horses can be targeted.
 生物試料として、患者から得られる体組織、血液、痰、腹腔内洗浄液などの細胞を含む体液などが例示できる。患者から得られる体組織は、がん組織が望ましい。また、患者の細胞のみならず、初代培養又は継代培養されたものでもよい。 Examples of biological samples include body fluids obtained from patients, body fluids containing cells such as blood, sputum, and intraperitoneal washings. The body tissue obtained from the patient is preferably a cancer tissue. Moreover, not only a patient's cell but the primary culture or the subcultured thing may be used.
 RB機能状態を、本明細書において「RBステイタス」ともいう。RB機能とは、RBタンパク質が正常に機能するか否かをいう。RB機能が異常である場合として、RBタンパク質自体の異常のみならず、RBタンパク質の機能がウイルス性タンパク質により阻害され、正常に機能していない場合も含む。しかし、RBパスウェイにおけるRBタンパク質よりも上流のタンパク質機能の異常により、RBタンパク質が正常に機能していない場合は含まれない。 The RB function state is also referred to as “RB status” in this specification. The RB function refers to whether or not the RB protein functions normally. The case where the RB function is abnormal includes not only the abnormality of the RB protein itself but also the case where the function of the RB protein is inhibited by a viral protein and is not functioning normally. However, it does not include the case where the RB protein is not functioning normally due to abnormal protein function upstream of the RB protein in the RB pathway.
 遺伝子の発現量として、遺伝子発現の絶対量及び相対量のいずれを測定してもよい。例えば、サイクリンD1遺伝子及びp16遺伝子の遺伝子発現量は、1)サイクリンD1のmRNA及びp16のmRNAを検出する、2)サイクリンD1タンパク質及びp16タンパク質を検出する、3)サイクリンD1及びp16タンパク質の生物活性を検出する、のいずれか一以上により決定することができる。例えば、リアルタイムPCR、RT-PCRのような遺伝子増幅法、マイクロアレイ、ノーザンハイブリダイゼーション及びIHC、ELISA、ウエスタンブロッティングのような免疫学測定法等を用いることができるが、特に限定されない。細胞又は組織を用いて、目的とする遺伝子と相補的なプローブとのハイブリダイゼーションによっても、その発現量を測定することができる。 Either absolute or relative amount of gene expression may be measured as the gene expression level. For example, the expression levels of cyclin D1 gene and p16 gene are as follows: 1) cyclin D1 mRNA and p16 mRNA are detected 2) cyclin D1 protein and p16 protein are detected 3) cyclin D1 and p16 protein biological activities Can be determined by any one or more of detecting. For example, gene amplification methods such as real-time PCR and RT-PCR, microarrays, Northern hybridization, and immunological measurement methods such as IHC, ELISA, and Western blotting can be used, but are not particularly limited. The expression level can also be measured by hybridization of a target gene and a complementary probe using cells or tissues.
 RB機能又はPLK1阻害剤の感受性を予測したい細胞におけるサイクリンD1遺伝子とp16遺伝子の発現比を、対照の細胞におけるサイクリンD1遺伝子及びp16遺伝子の発現量との比として下記の式の通り求めることができる。 The expression ratio between the cyclin D1 gene and the p16 gene in the cell whose RB function or PLK1 inhibitor sensitivity is to be predicted can be determined as the ratio of the expression level of the cyclin D1 gene and the p16 gene in the control cell as follows: .
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 このとき、サイクリンD1/p16の発現比が大きい場合には、RB機能が正常であり、また、PLK1阻害剤の感受性が低いと予測できる。一方、サイクリンD1/p16の発現比が小さい場合には、RB機能が異常であり、また、PLK1阻害剤の感受性が高い、すなわち、PLK1阻害剤の投与により細胞死が効果的に誘導できると予測できる。 At this time, when the expression ratio of cyclin D1 / p16 is large, it can be predicted that the RB function is normal and the sensitivity of the PLK1 inhibitor is low. On the other hand, when the expression ratio of cyclin D1 / p16 is small, the RB function is abnormal, and the sensitivity of the PLK1 inhibitor is high, that is, cell death can be effectively induced by administration of the PLK1 inhibitor. it can.
 さらに、log10(サイクリンD1/p16の発現比)を用いて、RB機能及びPLK1阻害剤の感受性を予測することもできる。すなわち、log10(サイクリンD1/p16の発現比)が大きい場合には、RB機能が正常であり、また、PLK1阻害剤の感受性が低いと予測できる。一方、log10(サイクリンD1/p16の発現比)が小さい場合には、RB機能が異常であり、また、PLK1阻害剤の感受性が高い、すなわち、PLK1阻害剤の投与により細胞死が効果的に誘導できると予測できる。 Furthermore, log 10 (expression ratio of cyclin D1 / p16) can also be used to predict RB function and PLK1 inhibitor sensitivity. That is, when log 10 (the expression ratio of cyclin D1 / p16) is large, it can be predicted that the RB function is normal and the sensitivity of the PLK1 inhibitor is low. On the other hand, when log 10 (the expression ratio of cyclin D1 / p16) is small, the RB function is abnormal and the sensitivity of the PLK1 inhibitor is high, that is, cell death is effectively caused by administration of the PLK1 inhibitor. It can be predicted that it can be guided.
 RB機能が異常であるか否か、及びPLK1阻害剤の感受性が高いか否かについて、判断する際の基準となるサイクリン/p16の発現比の値、及びlog10(サイクリンD1/p16の発現比)の値は、対照となる細胞Xにより異なる。この値は、当業者が、いくつかのRB機能が既知の細胞株と、対象となる細胞Xにおけるサイクリン及びp16の発現量を測定することにより容易に設定することができる。例えば、細胞XとしてHeLa S3を用いた場合には、log10(サイクリンD1/p16の発現比)が0.6よりも大きい場合に、RB機能が正常であり、また、PLK1阻害剤の感受性が低いと予測できる。一方、log10(サイクリンD1/p16の発現比)が0.6よりも小さい場合に、RB機能が異常であり、また、PLK1阻害剤の感受性が高い、すなわち、PLK1阻害剤の投与により細胞死が効果的に誘導できると予測できる。 Whether the RB function is abnormal and whether the sensitivity of the PLK1 inhibitor is high or not, the value of the expression ratio of cyclin / p16 and the log 10 (expression ratio of cyclin D1 / p16), which are the criteria for judgment ) Value varies depending on the control cell X. This value can be easily set by those skilled in the art by measuring the expression levels of cyclin and p16 in several cell lines with known RB functions and the target cell X. For example, when HeLa S3 is used as the cell X, when log 10 (the expression ratio of cyclin D1 / p16) is larger than 0.6, the RB function is normal and the sensitivity of the PLK1 inhibitor is low. Can be predicted to be low. On the other hand, when log 10 (the expression ratio of cyclin D1 / p16) is smaller than 0.6, the RB function is abnormal, and the sensitivity of the PLK1 inhibitor is high, that is, cell death by administration of the PLK1 inhibitor Can be effectively induced.
 また、患者由来の生物試料における図7に記載された一以上の遺伝子及び/又は図8に記載された一以上の遺伝子の発現プロファイルに基づいて、患者のがん細胞のRBステイタス、及び、PLK1阻害剤に対する感受性を予測することができる。具体的には、生物試料における図7に記載された遺伝子の発現量が対照の細胞と比べて小さい場合、又は、図8に記載された遺伝子の発現量が対照の細胞と比べて大きい場合、RB機能が異常であり、また、PLK1阻害剤に対する感受性が高いと予測することができる。本方法では、図7に記載された遺伝子の発現量及び図8に記載された遺伝子の発現量の両者を、対照の細胞と比較することが望ましい。対照の細胞は、RB機能が正常であることが確認されている細胞を用いることができる。図7に記載された遺伝子の一以上の遺伝子及び/又は図8に記載された一以上の遺伝子の発現量に基づいて上記の予測が出来るが、好ましくは、それぞれに記載された遺伝子の5以上、より好ましくは10以上、さらに好ましくは50以上の遺伝子に基づいて上記の予測をすることが出来る。また図7に記載された一以上の遺伝子には、サイクリンD1遺伝子が含まれることが望ましく、図8に記載された一以上の遺伝子には、p16遺伝子が含まれることが望ましい。 Further, based on the expression profile of one or more genes described in FIG. 7 and / or one or more genes described in FIG. 8 in a biological sample derived from a patient, RB status of the patient's cancer cells, and PLK1 Sensitivity to inhibitors can be predicted. Specifically, when the expression level of the gene described in FIG. 7 in the biological sample is small compared to the control cells, or when the expression level of the gene described in FIG. 8 is large compared to the control cells, It can be predicted that the RB function is abnormal and the sensitivity to the PLK1 inhibitor is high. In this method, it is desirable to compare both the expression level of the gene described in FIG. 7 and the expression level of the gene described in FIG. 8 with the control cells. As the control cell, a cell confirmed to have normal RB function can be used. The above prediction can be made based on the expression level of one or more genes shown in FIG. 7 and / or one or more genes shown in FIG. 8, but preferably 5 or more of each of the genes described in FIG. More preferably, the above prediction can be made based on 10 or more genes, more preferably 50 or more genes. In addition, the one or more genes described in FIG. 7 preferably include the cyclin D1 gene, and the one or more genes described in FIG. 8 desirably include the p16 gene.
 患者由来の生物試料は、がん細胞を含む、又はがん細胞を含む疑いのあるものを使用することが望ましい。本明細書でいうがんは、特に限定されず、悪性腫瘍、悪性新生物のように、他の組織との境界に侵入したり(浸潤)、あるいは転移し、身体の各所で増大することで宿主の生命を脅かす腫瘍をいい、上皮組織由来の癌腫(癌)、結合組織や間葉系組織由来の肉腫、白血病、悪性リンパ腫をも含むものとする。例えば、肺がん細胞、特に肺小細胞がんの細胞に対して、本発明の方法を適用することができる。 It is desirable to use a biological sample derived from a patient containing or suspected of containing cancer cells. The cancer referred to in this specification is not particularly limited, and may infiltrate (infiltrate) or metastasize to a boundary with another tissue such as a malignant tumor or a malignant neoplasm, and may increase in various parts of the body. Tumors that threaten the life of the host and include carcinomas derived from epithelial tissues (cancer), sarcomas derived from connective and mesenchymal tissues, leukemias, and malignant lymphomas. For example, the method of the present invention can be applied to lung cancer cells, particularly small cell lung cancer cells.
 遺伝子発現プロファイルとは、ある条件下における特定の細胞における遺伝子の発現パターン、公知及び未知遺伝子の発現の有無、発現される全ての遺伝子の発現量等の情報を示すものである。図7及び図8に記載された遺伝子について、網羅的に解析するために、RT-PCR、リアルタイムPCR等の核酸増幅法、マイクロアレイ、ノーザンハイブリダイゼーションに加え、ディファレンシャルディスプレイ、ディファレンシャルハイブリダイゼーション、サブトラクションなど、当業者に公知の任意の解析方法を用いることができる。 The gene expression profile indicates information such as the expression pattern of a gene in a specific cell under a certain condition, the presence or absence of expression of a known and unknown gene, the expression level of all the genes to be expressed, and the like. In order to comprehensively analyze the genes described in FIG. 7 and FIG. 8, in addition to nucleic acid amplification methods such as RT-PCR and real-time PCR, microarray, Northern hybridization, differential display, differential hybridization, subtraction, etc. Any analysis method known to those skilled in the art can be used.
 RB機能が異常であるがん細胞は、PLK1阻害剤に対して感受性が高く、RB機能が異常である細胞に選択的に細胞死を起こすことができることが本発明者により明らかにされた。したがって、上述の方法により、又は、その他の方法によりRB機能が異常であると予測されたがん細胞を有する患者を選択して、薬理学的有効量のPLK1阻害剤を含む医薬組成物を投与することは有効である。一方、RB機能に異常がないがん細胞を有する患者に対してPLK1阻害剤を投与しても、副作用のみが現れ、効果が期待できない可能性が高い。したがって、本発明によれば、予め患者のがん細胞におけるRB機能を予測した上で、適切な治療方法を選択することができる。 It has been clarified by the present inventor that cancer cells having an abnormal RB function are highly sensitive to a PLK1 inhibitor and can selectively cause cell death in cells having an abnormal RB function. Therefore, a patient having cancer cells predicted to have abnormal RB function by the above method or other methods is selected and a pharmaceutical composition containing a pharmacologically effective amount of a PLK1 inhibitor is administered. It is effective to do. On the other hand, even if a PLK1 inhibitor is administered to a patient having cancer cells having no abnormality in RB function, only side effects appear and the possibility that the effect cannot be expected is high. Therefore, according to the present invention, an appropriate treatment method can be selected after predicting the RB function in a cancer cell of a patient in advance.
 この知見に基づき、投与対象となる患者群を、RB機能が異常であるがん細胞を有するがん患者に特定することにより、PLK1阻害剤を含む医薬組成物の効果的な投与が可能となる。PLK1阻害剤を含む医薬組成物は、典型的には、薬理学的に許容可能な賦形剤及び/又はその他の添加剤を含むものである。がんに対して薬理学的に有効な量のPLK1阻害剤が、医薬組成物中に含まれる。 Based on this finding, by specifying a patient group to be administered to cancer patients having cancer cells with abnormal RB function, a pharmaceutical composition containing a PLK1 inhibitor can be effectively administered. . A pharmaceutical composition comprising a PLK1 inhibitor typically comprises pharmacologically acceptable excipients and / or other additives. A pharmacologically effective amount of a PLK1 inhibitor against cancer is included in the pharmaceutical composition.
 本発明の医薬組成物の投与方法は、口腔内、舌下などの経口投与、静脈内投与、筋肉内投与、皮下投与、経皮投与、経鼻投与、経肺投与などの非経口投与など、患者のがんの部位や症状等に応じて適宜変更することができる。したがって、経口投与用として、錠剤、丸剤、カプセル剤、散剤、顆粒剤、エキス剤及び液剤などの剤型に、また、非経口投与用として、注射剤、坐剤、点眼剤、点鼻剤、軟膏剤、液剤、貼付剤、経鼻剤、吸入剤、噴霧剤等の剤型にすることができる。 The administration method of the pharmaceutical composition of the present invention includes oral administration such as buccal and sublingual, intravenous administration, intramuscular administration, subcutaneous administration, transdermal administration, nasal administration, parenteral administration such as pulmonary administration, etc. It can be appropriately changed according to the cancer site and symptoms of the patient. Therefore, for oral administration, tablets, pills, capsules, powders, granules, extracts, liquids, etc., and for parenteral administration, injections, suppositories, eye drops, nasal drops , Ointments, liquids, patches, nasal agents, inhalants, sprays, and the like.
 好ましくは、薬理学的に許容可能な賦形剤及び/又は添加剤と一緒に、当業者によく知られている多くの方法により製剤化することができる。賦形剤として、ラクトース、マンニトール、グルコース、ヒドロキシプロピルセルロース、微結晶セルロース、デンプン、ポリビニルピロリドン、メタケイ酸アルミン酸マグネシウム等を例示できるが、これらに限定されない。また、その他の添加剤として、賦形剤、安定剤、保存剤、緩衝剤、矯味剤、懸濁化剤、乳化剤、着香剤、溶解補助剤、着色剤、粘稠剤が例示できる。また、無菌の精製水、特に注射用蒸留水、生理食塩水、アルコール(例えば、エタノール)、植物油、ブドウ糖水溶液などを用いて液剤としてもよい。軟膏剤には、油脂性基剤(例えば、ワセリン、パラフィン等)のみならず、乳剤性基剤を用いたクリーム剤、水溶性基剤(例えば、ポリエチレングリコール基剤)、懸濁性基剤(例えば、セルロース)を用いたものが含まれる。 Preferably, it can be formulated together with pharmacologically acceptable excipients and / or additives by a number of methods well known to those skilled in the art. Examples of excipients include, but are not limited to, lactose, mannitol, glucose, hydroxypropyl cellulose, microcrystalline cellulose, starch, polyvinyl pyrrolidone, magnesium aluminate metasilicate, and the like. Examples of other additives include excipients, stabilizers, preservatives, buffering agents, flavoring agents, suspending agents, emulsifiers, flavoring agents, solubilizing agents, coloring agents, and thickening agents. Moreover, it is good also as a liquid agent using aseptic purified water, especially distilled water for injection, physiological saline, alcohol (for example, ethanol), vegetable oil, glucose aqueous solution, etc. Ointments include not only oleaginous bases (eg, petrolatum, paraffin, etc.), but also creams, water-soluble bases (eg, polyethylene glycol bases), suspension bases (e.g., petroleum jelly, paraffin, etc.) For example, those using cellulose) are included.
 当業者はPLK1阻害剤を含む医薬組成物の投与量を、PLK1阻害剤の種類、患者の病状、病巣の場所、年齢、体重、性別、投与ルートなどに応じて任意に変更することができる。一例として、医薬組成物には、投与ルートに応じて単位用量あたり0.1~1000mg/日のPLK1阻害剤が含まれ、例えば、1mg~600mg/日のPLK1阻害剤が含まれる。本発明の医薬組成物は、さらに他の抗がん剤又は抗がん治療と組み合わせてもよい。
 また、RB機能が異常である細胞に細胞死を誘導するために、PLK1阻害剤を含む薬剤を使用することができる。なお、細胞死とは、アポトーシス、ネクローシス、オートファジーなどを含むものである。
A person skilled in the art can arbitrarily change the dose of the pharmaceutical composition containing the PLK1 inhibitor according to the type of the PLK1 inhibitor, the patient's medical condition, the location of the lesion, age, weight, sex, administration route and the like. As an example, the pharmaceutical composition includes 0.1 to 1000 mg / day of a PLK1 inhibitor per unit dose, depending on the route of administration, for example, 1 mg to 600 mg / day of a PLK1 inhibitor. The pharmaceutical composition of the present invention may be further combined with other anticancer agents or anticancer treatments.
In addition, a drug containing a PLK1 inhibitor can be used to induce cell death in cells with abnormal RB function. Cell death includes apoptosis, necrosis, autophagy and the like.
 PLK1阻害剤として、任意のPLK1阻害剤を使用することができ、WO2006/049339に記載された化合物実施例38及び実施例186、WO2008/081914に記載された化合物実施例5及び実施例81、BI 2536(例えば、Curr Biol. 2007 Feb 20;17(4):304-15)、ON01910(Cancer Cell. 2005 May;7(5):497)、GSK461364、ZK-Thiazolidinone(Mol Biol Cell. 2007 Oct;18(10):4024-36)、Cyclapolin 1(Nat. Chem. Biol. 2006, Nov.; 2, (11): 608-617)を例示できるが、これらに限定されない。WO2006/049339に記載された化合物実施例38及び実施例186、並びにWO2008/081914に記載された化合物実施例5及び実施例81の構造式を下記に示す。 Any PLK1 inhibitor can be used as the PLK1 inhibitor, and Compound Example 38 and Example 186 described in WO2006 / 049339, Compound Example 5 and Example 81 described in WO2008 / 081914, BI 2536 (for example, Curr Biol. 2007 2007 Feb 20; 17 (4): 304-15), ON01910 (Cancer Cell. 2005 2005 May; 7 (5): 497), GSK461364, ZK-Thiazolidinone (Mol Biol Cell. 2007 2007 Oct; 18 (10): 4024-36), Cyclapolin 1 (Nat. Chem. Biol. 2006, Nov .; 2, (11): 608-617), but not limited thereto. The structural formulas of Compound Example 38 and Example 186 described in WO2006 / 049339 and Compound Example 5 and Example 81 described in WO2008 / 081914 are shown below.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 また、本発明の治療方法及び医薬組成物は、他の公知の抗がん剤と組み合わせて使用したり、他の公知の抗がん治療方法と組み合わせて使用することも可能である。他の公知の抗がん剤の例としては、抗がん性アルキル化剤、抗がん性代謝拮抗剤、抗がん性抗生物質、植物由来抗がん剤、抗がん性白金配位化合物、抗がん性カンプトテシン誘導体、抗がん性チロシンキナーゼ阻害剤、モノクローナル抗体、インターフェロン、生物学的応答調節剤を挙げることができるが、これらに限定されない。他の公知の抗がん治療としては、放射線療法を挙げることができるが、これらに限定されない。 In addition, the treatment method and pharmaceutical composition of the present invention can be used in combination with other known anticancer agents or in combination with other known anticancer treatment methods. Examples of other known anticancer agents include anticancer alkylating agents, anticancer antimetabolites, anticancer antibiotics, plant-derived anticancer agents, and anticancer platinum coordination. Examples include, but are not limited to, compounds, anticancer camptothecin derivatives, anticancer tyrosine kinase inhibitors, monoclonal antibodies, interferons, and biological response modifiers. Other known anti-cancer treatments can include, but are not limited to, radiation therapy.
 本発明者は、RB機能に関連する194の遺伝子を同定した。このうち、図7に記載された90の遺伝子は、RB機能が異常である場合に発現が減少し、図8に記載された104の遺伝子は、RB機能が異常である場合に発現が増加する傾向があることが確認されている。図7及び図8に記載された遺伝子の発現プロファイルを解析することによって、RB機能が異常であるか否かをより正確に予測することができる。図7及び図8に記載された遺伝子の核酸配列に結合する核酸を含むアレイを用いることによって、発現プロファイルを解析することができる。そのようなアレイは公知の方法に基づいて作成することができる。例えば、Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer, Hughes, TR; Mao, M; Jones, AR, et al. NATURE BIOTECHNOLOGY  19, 342-347 (2001)に記載の方法に基づいて作成することができる。 The inventor has identified 194 genes related to RB function. Among them, 90 genes described in FIG. 7 decrease in expression when RB function is abnormal, and 104 genes described in FIG. 8 increase in expression when RB function is abnormal. It has been confirmed that there is a tendency. By analyzing the expression profiles of the genes described in FIGS. 7 and 8, it is possible to predict more accurately whether or not the RB function is abnormal. By using an array containing nucleic acids that bind to the nucleic acid sequences of the genes described in FIGS. 7 and 8, the expression profile can be analyzed. Such arrays can be made based on known methods. For example, based on the method described in ExpressionExpressprofiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer, Hughes, TR; Mao, M; Jones, AR, et al. NATURE BIOTECHNOLOGY 19, 342-347 (2001) Can do.
 本発明によれば、RB機能が異常であるか否かを予測することにより、PLK1阻害剤に対する感受性、即ち、PLK1阻害剤が効果的であるか否かを予測することができる。RB機能は、上記に記載したように、サイクリンD1/p16の発現比又はlog10(サイクリンD1/p16の発現比)に基づいて予測したり、図7及び図8に記載された遺伝子の発現量に基づいて予測する以外にも、RB遺伝子の変異の有無、RB遺伝子の発現量及び/又はRBタンパク質の生成量に基づいて決定することが可能である。また、RB機能はHPVなどのウイルス感染によって不活性化されることが知られているので、HPVの感染を調べることによっても予測することが可能である。 According to the present invention, by predicting whether or not the RB function is abnormal, it is possible to predict the sensitivity to the PLK1 inhibitor, that is, whether or not the PLK1 inhibitor is effective. As described above, the RB function is predicted based on the expression ratio of cyclin D1 / p16 or log 10 (expression ratio of cyclin D1 / p16), or the expression level of the genes described in FIG. 7 and FIG. It is possible to determine based on the presence / absence of mutation of the RB gene, the expression level of the RB gene and / or the production amount of the RB protein. Moreover, since RB function is known to be inactivated by viral infection such as HPV, it can be predicted by examining infection with HPV.
 RB遺伝子の変異の有無、RB遺伝子の発現量及び/又はRBタンパク質の生成量を測定することは、当業者には公知である。RB遺伝子の変異は、RB遺伝子をコードする領域における変異のみならず、プロモーター領域における変異をも含む。RB遺伝子の変異の有無は、RB遺伝子の配列決定、サザンブロット法、ノザンブロット法、PCR-SSCPやARMS法のような遺伝子増幅に基づく方法、ASO法、Taqman-PCR法、Invader法、DNAチップ法など、当業者に公知の任意の方法により決定できる。RB遺伝子の発現量及びRBタンパク質の生成量は、RB遺伝子のmRNAの発現及び喪失の検出、RBタンパク質の検出、及びRBタンパク質の生物活性を検出することにより測定することができる。RB遺伝子の発現量及びRBタンパク質の生成量は、例えば、リアルタイムPCR、RT-PCRのような遺伝子増幅法、マイクロアレイ、ノーザンハイブリダイゼーション及びIHC、ELISA、ウエスタンブロッティングのような免疫学測定法、RBタンパク質機能アッセイ等、当業者に公知の任意の方法により測定できる。 It is known to those skilled in the art to measure the presence / absence of mutation of the RB gene, the expression level of the RB gene and / or the production amount of the RB protein. The RB gene mutation includes not only a mutation in the region encoding the RB gene but also a mutation in the promoter region. The presence or absence of mutations in the RB gene is determined by sequencing the RB gene, Southern blotting, Northern blotting, methods based on gene amplification such as PCR-SSCP and ARMS, ASO, Taqman-PCR, Invader, and DNA chip And can be determined by any method known to those skilled in the art. The amount of RB gene expression and the amount of RB protein produced can be measured by detecting the expression and loss of RB gene mRNA, detecting the RB protein, and detecting the biological activity of the RB protein. The expression amount of RB gene and the production amount of RB protein are, for example, gene amplification methods such as real-time PCR and RT-PCR, microarray, Northern hybridization and immunological measurement methods such as IHC, ELISA and Western blotting, RB protein It can be measured by any method known to those skilled in the art, such as a functional assay.
 このように、細胞のRB機能が異常であるか否かを予測し、RB機能が異常であると予測された場合には、その細胞はPLK1阻害剤に対して感受性が高いと判断され、PLK1阻害剤が効果的であると判断される。また、細胞のRB機能が異常であると予測された場合には、その細胞が由来する患者に対して、PLK1阻害剤の投与が効果的であると判断できる。即ち、患者の生物試料に含まれる細胞のRB機能を予測し、RB機能が異常である場合に、PLK1阻害剤を投与するがんの治療方法が提供される。 Thus, whether or not the RB function of the cell is abnormal is predicted, and when the RB function is predicted to be abnormal, it is determined that the cell is highly sensitive to the PLK1 inhibitor, and PLK1 Inhibitors are judged to be effective. Moreover, when it is estimated that the RB function of a cell is abnormal, it can be judged that administration of a PLK1 inhibitor is effective for a patient from which the cell is derived. That is, there is provided a cancer treatment method in which the RB function of cells contained in a biological sample of a patient is predicted, and the PLK1 inhibitor is administered when the RB function is abnormal.
<RBステイタスの決定>
 以下の30のヒトがん細胞株を使用し、RBステイタスを決定した。
T24, U-2 OS, SF-268, DLD-1, HCT 116, Hep G2, NCI-H460, A549, UACC-62, MDAH-2774, PANC-1, SU.86.86, NCI-N87, Hs 746T, KATO III, SCC-25, J82, HeLa S3, Du 145, TCCSUP, MDA-MB-436, MDA-MB-468, SF-539, HeLa, C-33 A, Lu-135, NCI-H128, NCI-H1417, NCI-H69, NCI-H596
<Determination of RB status>
The following 30 human cancer cell lines were used to determine RB status.
T24, U-2 OS, SF-268, DLD-1, HCT 116, Hep G2, NCI-H460, A549, UACC-62, MDAH-2774, PANC-1, SU.86.86, NCI-N87, Hs 746T, KATO III, SCC-25, J82, HeLa S3, Du 145, TCCSUP, MDA-MB-436, MDA-MB-468, SF-539, HeLa, C-33 A, Lu-135, NCI-H128, NCI- H1417, NCI-H69, NCI-H596
 上記30細胞株のうち、文献などから、11の細胞株についてRBの突然変異、発現抑制、あるいはウイルス性タンパク質の発現によるRBタンパク質の機能阻害の情報を得た(表1)。これらの細胞株はRBタンパク質が機能しないと考えられるので、RB機能異常として解析に使用した。 Among the above 30 cell lines, information on RB protein function inhibition by RB mutation, expression suppression, or viral protein expression was obtained from 11 literature cell lines (Table 1). These cell lines were used for analysis as RB dysfunction because RB protein is considered to be nonfunctional.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 残りの19については、RBステイタスをRBタンパク質機能アッセイにより決定した。
 RBタンパク質機能アッセイは、細胞内在性RBのステイタスを外因的に導入したE2F転写レポーターの阻害効果を介して調べる方法である。RBは細胞内でE2F転写因子の活性を調節する中心的分子であり、その調節機構は図4に示す通りである。RBはE2Fの転写活性を抑制するが、この抑制効果はRBがCdk4/サイクリンDによってリン酸化されると失われる。さらに、Cdk4/サイクリンDのリン酸化酵素活性は その細胞内阻害タンパク質であるp16によって阻害される。このため、細胞内RBのステイタスは、細胞にp16およびE2F転写レポーターを外因的に導入することで調べることが可能である。この方法でRBステイタスを調べた場合、導入したp16によりE2F転写レポーター活性が阻害される細胞をRB機能正常、p16を導入してもE2F転写レポーター活性が変化しない細胞をRB機能異常と同定することができる。
 RBタンパク質機能アッセイにより、表2のように16が正常、3つが異常であると決定された。
For the remaining 19, RB status was determined by RB protein functional assay.
The RB protein function assay is a method for examining the status of intracellular RB via the inhibitory effect of an exogenous E2F transcriptional reporter. RB is a central molecule that regulates the activity of the E2F transcription factor in the cell, and its regulatory mechanism is as shown in FIG. RB suppresses the transcriptional activity of E2F, but this inhibitory effect is lost when RB is phosphorylated by Cdk4 / cyclin D. Furthermore, Cdk4 / cyclin D phosphorylase activity is inhibited by its intracellular inhibitory protein, p16. For this reason, the status of intracellular RBs can be examined by exogenously introducing p16 and E2F transcription reporters into cells. When RB status is examined by this method, cells whose E2F transcription reporter activity is inhibited by the introduced p16 are identified as normal RB function, and cells whose E2F transcription reporter activity does not change even when p16 is introduced are identified as abnormal RB function. Can do.
By RB protein functional assay, it was determined that 16 were normal and 3 were abnormal as shown in Table 2.
Figure JPOXMLDOC01-appb-T000012
 結果として、用いた30種の細胞株のうち、16細胞株がRB機能正常であり、14細胞株がRB機能異常であることが確認された。
Figure JPOXMLDOC01-appb-T000012
As a result, it was confirmed that of the 30 cell lines used, 16 cell lines had normal RB function and 14 cell lines had abnormal RB function.
<RB機能と相関する遺伝子群の抽出>
 RBタンパク質機能の有無と相関する遺伝子を抽出するため、RB機能が正常である細胞16株とRB機能が異常な細胞14株の遺伝子発現をマイクロアレイを用いて測定し、各プローブ毎に、30株での発現量とRB機能の状態(正常を1、異常を0とする)とのピアソン相関係数を計算した。
 各細胞株をそれぞれ通常の条件下で培養し、一定時間経過後に当該細胞から全RNAを調整したものを遺伝子発現に用いた。全RNAの精製にはRNeasyキット(QIAGEN社)を用い、マイクロアレイはHuman 3.0 A1 (Agilent Technologies社製カスタムアレイ)を使用して、Agilent社のプロトコルにしたがってラベリング反応、ハイブリダイゼーションを行った。Agilent社のシステムは1枚のアレイ上に別々の色素で標識された2サンプルを競合的にハイブリダイズする方式であるため、リファレンスRNAとして全サンプル共通にHuman Universal Reference RNAs(HURR) (Stratagene)を用い、細胞株間での発現量をお互いに比較できるようにした。
<Extraction of genes that correlate with RB function>
In order to extract genes that correlate with the presence or absence of RB protein function, the gene expression of 16 cell lines with normal RB function and 14 cell lines with abnormal RB function was measured using a microarray. Pearson correlation coefficient was calculated between the expression level at 1 and the state of RB function (normal is 1 and abnormality is 0).
Each cell line was cultured under normal conditions, and a total RNA prepared from the cells after a certain period of time was used for gene expression. For the purification of total RNA, RNeasy kit (QIAGEN) was used, and human 3.0 A1 (custom array made by Agilent Technologies) was used as a microarray, and labeling reaction and hybridization were performed according to the protocol of Agilent. Since Agilent's system is a method of competitively hybridizing two samples labeled with different dyes on one array, Human Universal Reference RNAs (HURR) (Stratagene) is commonly used as a reference RNA. It was used so that the expression level between cell lines could be compared with each other.
 スキャナーで読み取った蛍光シグナルは、Resolver (Rosetta Biosoftware)で解析し、発現量比を算出した。遺伝子発現データの解析には、Resolver、R (GNUフリーウェア)、およびMATLAB (MathWorks社)を用いた。 The fluorescence signal read by the scanner was analyzed with Resolver® (Rosetta® Biosoftware), and the expression level ratio was calculated. For analysis of gene expression data, Resolver, R (GNU freeware), and MATLABMAT (MathWorks) were used.
Figure JPOXMLDOC01-appb-M000013
により発現量比を求めた。
Figure JPOXMLDOC01-appb-M000013
Was used to determine the expression level ratio.
 その結果、以下の条件を満たすプローブに対応する遺伝子を「RB機能サイン」、すなわち、RBタンパク質機能の有無と相関する遺伝子として同定した。
(1)全30サンプルでの発現ログ比(底10)の標準偏差が0.1以上。
(2)全30サンプルでの発現ログ比(底10)と RB機能状態とのピアソン相関係数のp値が0.001以下。
 選択された「RB機能サイン」を下記の表3に示す。
As a result, a gene corresponding to a probe satisfying the following conditions was identified as a gene that correlates with “RB function signature”, that is, presence or absence of RB protein function.
(1) The standard deviation of the expression log ratio (bottom 10) in all 30 samples is 0.1 or more.
(2) The p-value of the Pearson correlation coefficient between the expression log ratio (bottom 10) and the RB functional state in all 30 samples is 0.001 or less.
The selected “RB function signature” is shown in Table 3 below.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
 上記194のRB機能サインについてRB機能が正常か異常か確認されている30細胞株のクラスタリングを行った。クラスタリングは、下記に示す全30細胞株における平均に対するログ比に基づいて作成した。 Clustering of 30 cell lines in which the RB function was confirmed to be normal or abnormal with respect to the above 194 RB function signature was performed. Clustering was created based on the log ratio relative to the average for all 30 cell lines shown below.
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000022
 結果を図1に示す。図1では、遺伝子を横方向に、細胞株を縦方向に配置した。各遺伝子の発現量は、上記の式の通り全サンプルでの平均に対するログ比(底10)で表され、平均より発現量が多い場合は白、少ない場合は黒で示されている。 The results are shown in FIG. In FIG. 1, the genes are arranged in the horizontal direction and the cell lines are arranged in the vertical direction. The expression level of each gene is represented by the log ratio (bottom 10) with respect to the average in all samples as in the above formula, and is shown in white when the expression level is higher than the average and black when it is lower.
 細胞株MDA-MB-468を除いて、RBタンパク質正常株と異常株がそれぞれクラスターを形成していることが明らかにされた(図1)。即ち、上記194遺伝子により、RB機能正常株と異常株を分けることができることが示された。 Except for the cell line MDA-MB-468, it was revealed that normal and abnormal RB protein strains formed clusters (FIG. 1). That is, it was shown that RB function normal strain and abnormal strain can be separated by the 194 gene.
RB機能サインによるRB機能予測精度を評価するために、Leave-one-out cross validationをおこなった。すなわち、全サンプルから1サンプルのデータを除き、残り29サンプルのデータで遺伝子を選び、特異値分解の第一特異値に対する二値回帰により除いた1サンプルのRB機能を予測した。その結果30株中26株のRB機能状態が正しく予測され、予測精度は87%であった。 In order to evaluate the RB function prediction accuracy based on the RB function signature, leave-one-out cross validation was performed. That is, 1 sample data was removed from all samples, genes were selected from the remaining 29 sample data, and the RB function of 1 sample excluded by binary regression on the first singular value of singular value decomposition was predicted. As a result, the RB function state of 26 of 30 strains was correctly predicted, and the prediction accuracy was 87%.
<サイクリンD1とp16の遺伝子発現によるRBステイタス予測法の開発>
 次に、RB機能異常の有無をより少ない数の遺伝子で予測する方法を開発するため、RB機能サインのうち、p16-RB-E2F経路に関わる4つの遺伝子に注目した。4つの遺伝子とは、RB1(RB遺伝子)、サイクリンD1(DCND1)、p16、GSK3Bである。RB1とサイクリンD1遺伝子は、RB機能の有無と正の相関を示した(相関係数はそれぞれ0.61、0.66)。 一方、p16とGSK3Bは、どちらもCDK4/サイクリンD1複合体を阻害することが知られているが、その遺伝子発現はRB機能と負の相関を示した(相関係数はそれぞれ-0.85、-0.61)。ここで、RB1、サイクリンD1、p16及びGSK3Bは、いずれも単独ではRB機能を正確には識別しない。
 しかし、サイクリンD1とp16の遺伝子発現の比を取ることにより、RB機能を完全に識別することができた(図2)。このとき、識別の判定基準は以下の様になった。
RB機能正常: Log10(サイクリンD1/p16遺伝子発現比)>0.6
RB機能異常: Log10(サイクリンD1/p16遺伝子発現比)<0.6
サイクリンD1/p16発現比は、次のように計算した。
<Development of RB status prediction method by gene expression of cyclin D1 and p16>
Next, in order to develop a method for predicting the presence or absence of RB dysfunction with a smaller number of genes, attention was paid to four genes involved in the p16-RB-E2F pathway in the RB function signature. The four genes are RB1 (RB gene), cyclin D1 (DCND1), p16, and GSK3B. The RB1 and cyclin D1 genes showed a positive correlation with the presence or absence of RB function (correlation coefficients were 0.61 and 0.66, respectively). On the other hand, both p16 and GSK3B are known to inhibit the CDK4 / cyclin D1 complex, but their gene expression was negatively correlated with RB function (correlation coefficient was -0.85, respectively). -0.61). Here, RB1, cyclin D1, p16, and GSK3B alone do not accurately identify the RB function.
However, RB function could be completely identified by taking the ratio of cyclin D1 and p16 gene expression (FIG. 2). At this time, the criteria for identification were as follows.
Normal RB function: Log 10 (cyclin D1 / p16 gene expression ratio)> 0.6
RB dysfunction: Log 10 (cyclin D1 / p16 gene expression ratio) <0.6
The cyclin D1 / p16 expression ratio was calculated as follows.
Figure JPOXMLDOC01-appb-M000023
Figure JPOXMLDOC01-appb-M000023
 また、特定の細胞におけるHeLa S3に対するログ比は、次のように計算される。 Also, the log ratio for HeLa S3 in a specific cell is calculated as follows.
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000024
 上記のように定義されたサイクリンD1/p16発現比を求めることによって、RB機能正常株とRB機能異常株とが、明確に識別できることが明らかになった(図2)。即ち、サイクリンD1/p16発現比が大きい場合(例えば、log10(サイクリンD1/p16遺伝子発現比)が0.6より大きい場合)、RB機能正常株と判断でき、サイクリンD1/p16発現比が小さい場合(例えば、log10(サイクリンD1/p16遺伝子発現比)が0.6より小さい場合)、RB機能異常株と判断できる。 By obtaining the cyclin D1 / p16 expression ratio defined as described above, it was revealed that a normal RB function strain and an abnormal RB function strain can be clearly distinguished (FIG. 2). That is, when the expression ratio of cyclin D1 / p16 is large (for example, when log 10 (cyclin D1 / p16 gene expression ratio) is larger than 0.6), it can be determined that the RB function is normal, and the expression ratio of cyclin D1 / p16 is small. In the case (for example, when log 10 (cyclin D1 / p16 gene expression ratio) is smaller than 0.6), it can be determined as an RB dysfunctional strain.
<PLK1阻害剤は、RB matched pair cell linesにRBステイタス依存的な細胞死を誘導する>
 PLK1阻害剤のRBステイタス依存的な細胞死誘導効果を確認するために、4種のPLK1阻害剤によるアポトーシスの誘導が、RB機能異常細胞株のみに選択的に起こるかどうかを検討した。
<PLK1 inhibitor induces RB status-dependent cell death in RB matched pair cell lines>
In order to confirm the RB status-dependent cell death inducing effect of the PLK1 inhibitor, it was examined whether the induction of apoptosis by the four types of PLK1 inhibitors occurs selectively only in RB dysfunction cell lines.
 RBに対するshRNAによりRBに機能異常を起こしたU-2 OS細胞(U-2 OS RB shRNA株)、及びコントロールとしてベクターを導入したRB機能が正常なU-2 OS細胞(U-2 OS vector株)にPLK1阻害剤を投与した。U-2 OS RB shRNA株及びU-2 OS vector株は、Oncogene (2007) 26, 509-520の記載に基づいて作成した。すなわち、U-2 OS vector株とU-2 OS RB shRNA株をPLK1 阻害剤存在下で48時間培養し、培養後にアポトーシスを起こした細胞の割合を株間で比較した。PLK1阻害剤としてWO2006/049339に記載された化合物実施例38及び実施例186、WO2008/081914に記載された化合物実施例5及び実施例81の4種を用いた。アポトーシス細胞の同定は、細胞のDNA含有量をフローサイトメトリーにより測定することで行った。この同定法では、DNA含有量がG1期の細胞のDNA量より少ない細胞(以下、subG1細胞と記載)がアポトーシス細胞と定義される。
 図3に示すとおり、4種のPLK1阻害剤はすべて、RB機能正常であるVector株と比較して、RB機能異常であるRB shRNA株に対してアポトーシスを選択的かつ強力に誘導することが分かった。このことから、PLK1阻害剤は、RB機能異常株のみにRBステイタス依存的な細胞死を誘導することが確認できた。
U-2 OS cell (U-2 OS RB shRNA strain) which caused dysfunction in RB by shRNA against RB, and U-2 OS cell (U-2 OS vector strain with normal RB function introduced with a vector as a control) ) Was administered a PLK1 inhibitor. The U-2 OS RB shRNA strain and the U-2 OS vector strain were prepared based on the description of Oncogene (2007) 26, 509-520. That is, the U-2 OS vector strain and the U-2 OS RB shRNA strain were cultured in the presence of a PLK1 inhibitor for 48 hours, and the proportion of cells that caused apoptosis after the culture was compared between the strains. As PLK1 inhibitors, four types of Compound Example 38 and Example 186 described in WO2006 / 049339 and Compound Example 5 and Example 81 described in WO2008 / 081914 were used. Apoptotic cells were identified by measuring the DNA content of the cells by flow cytometry. In this identification method, a cell having a DNA content less than that of a G1 phase cell (hereinafter referred to as subG1 cell) is defined as an apoptotic cell.
As shown in FIG. 3, all four PLK1 inhibitors were found to induce apoptosis selectively and strongly against RB shRNA strains with RB dysfunction compared to Vector strains with normal RB function. It was. From this, it was confirmed that the PLK1 inhibitor induces RB status-dependent cell death only in the RB dysfunctional strain.
<サイクリンD1とp16の遺伝子発現比が、RBステイタスを識別する>
 サイクリンD1とp16の遺伝子発現比がRBステイタスを識別できることを確認するために、RBステイタスが未知の10細胞株を用意し、これら細胞のサイクリンD1とp16遺伝子発現比と、実際のRBステイタスとを比較した。用いた細胞株は、A427、NCI-H441、NCI-H23、NCI-H358、NCI-H661、NCI-H2030、NCI-H522、NCI-H1048、NCI-H2172、NCI-H810である。これら細胞のサイクリンD1とp16の遺伝子発現量を、定量的リアルタイムPCR法を用いて相対測定した。
<The gene expression ratio of cyclin D1 and p16 identifies RB status>
In order to confirm that the gene expression ratio of cyclin D1 and p16 can distinguish RB status, 10 cell lines with unknown RB status are prepared, and the cyclin D1 and p16 gene expression ratio of these cells and the actual RB status are calculated. Compared. The cell lines used are A427, NCI-H441, NCI-H23, NCI-H358, NCI-H661, NCI-H2030, NCI-H522, NCI-H1048, NCI-H2172, and NCI-H810. The gene expression levels of cyclin D1 and p16 in these cells were measured relative using a quantitative real-time PCR method.
 定量的リアルタイムPCR法によるサイクリンD1とp16の発現量測定は、以下の様に行った。まず、サイクリンD1とp16の遺伝子発現量をリアルタイムPCR法で測定した。すなわち、対数増殖期の細胞を回収し、RNAを抽出し精製した。次に、得られた精製RNAを基に、ランダムプライマーを用いてcDNAを合成し、この中に含まれるサイクリンD1およびp16のcDNA量をアプライドバイオシステムズ7900HT FastリアルタイムPCRシステム(アプライドバイオシステムズ社)で測定した。また、リアルタイムPCRに用いたプローブはTaqMan Gene Expression Assays(アプライドバイオシステムズ社)である。 Measurement of the expression levels of cyclin D1 and p16 by quantitative real-time PCR was performed as follows. First, the gene expression levels of cyclin D1 and p16 were measured by a real-time PCR method. That is, cells in the logarithmic growth phase were collected, and RNA was extracted and purified. Next, based on the obtained purified RNA, cDNA was synthesized using random primers, and the amount of cyclin D1 and p16 contained therein was determined with Applied Biosystems 7900HT Fast Real-Time PCR System (Applied Biosystems). It was measured. The probe used for real-time PCR is TaqManaqGene Expression Assays (Applied Biosystems).
 ここで、相対定量は校正標本としてHeLaS3細胞から同様の方法で得たcDNAを用いて行った。そのため、得られた遺伝子発現量の値はHeLaS3細胞における遺伝子発現量に対する相対比として表され、実施例1で用いた遺伝子発現情報と比較が可能である。サイクリンD1/p16発現比を、実施例1に記載した方法と同様に計算し、RBステイタスを、実施例1と同様に、log10(サイクリンD1/p16発現比)>0.6である細胞をRB機能正常と予測し、log10(サイクリンD1/p16発現比)<0.6である細胞をRB機能異常と予測した。 Here, relative quantification was performed using cDNA obtained from HeLaS3 cells in the same manner as a calibration sample. Therefore, the value of the obtained gene expression level is expressed as a relative ratio to the gene expression level in HeLaS3 cells and can be compared with the gene expression information used in Example 1. The cyclin D1 / p16 expression ratio was calculated in the same manner as in the method described in Example 1, and the RB status was calculated in the same manner as in Example 1 for cells with log 10 (cyclin D1 / p16 expression ratio)> 0.6. RB function was predicted to be normal, and cells with log 10 (cyclin D1 / p16 expression ratio) <0.6 were predicted to have RB function abnormality.
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
 また 実際のRBステイタスを、実施例1と同様にRBタンパク質機能アッセイにより同定した。RBタンパク質機能アッセイにより、実際のRBステイタスは次の様に同定された。 Further, the actual RB status was identified by the RB protein functional assay in the same manner as in Example 1. The actual RB status was identified by the RB protein functional assay as follows.
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
 予測したRBステイタスと、log10(サイクリンD1/p16発現比)の値と、実際のRB機能との比較を図5に示す。図5では、サイクリンD1とp16の遺伝子発現比によりRBステイタスが正しく予想できた細胞を●として、予想できなかった細胞を×として示している。 FIG. 5 shows a comparison between the predicted RB status, the value of log 10 (cyclin D1 / p16 expression ratio), and the actual RB function. In FIG. 5, cells for which the RB status was correctly predicted by the gene expression ratio of cyclin D1 and p16 are indicated by ●, and cells for which the RB status was not predicted are indicated by ×.
 図5に示す通り、サイクリンD1/p16発現比から、RB機能を高い精度で予測でき、特にlog10(サイクリンD1/p16発現比)が0.6より大きい場合にはRB機能が正常であり、0.6より小さい場合にはRB機能が異常であると予測することができることが確認された。
 また、細胞実験系は臨床組織を反映する良いモデル系であることから、サイクリンD1とp16の遺伝子発現量比を用いたRBステイタスの識別方法が臨床サンプルにも利用可能であると考えられる。したがって、サイクリンD1/p16発現比に基づいて、臨床サンプル中の細胞のRB機能を高い精度で予測することが可能である。
As shown in FIG. 5, the RB function can be predicted with high accuracy from the cyclin D1 / p16 expression ratio. In particular, when log 10 (cyclin D1 / p16 expression ratio) is larger than 0.6, the RB function is normal. It was confirmed that when the value is smaller than 0.6, the RB function can be predicted to be abnormal.
In addition, since the cell experiment system is a good model system that reflects clinical tissues, it is considered that the RB status identification method using the gene expression ratio of cyclin D1 and p16 can also be used for clinical samples. Therefore, it is possible to predict the RB function of cells in a clinical sample with high accuracy based on the cyclin D1 / p16 expression ratio.
 <サイクリンD1とp16の遺伝子発現比で予測されたRBステイタスとPLK1阻害剤への感受性が相関する>
 PLK1阻害剤の感受性がサイクリンD1とp16の遺伝子発現比から予測したRBステイタスと相関することを確かめるために、PLK1阻害剤(WO2006/049339に記載された化合物実施例38及びWO2008/081914に記載された化合物実施例5)に対する肺がん細胞の感受性試験を行い、得られた感受性情報とサイクリンD1とp16の遺伝子発現比から予測したRBステイタスとの相関関係を検討した。
<RB Status Predicted by Gene Expression Ratio of Cyclin D1 and p16 Correlates with Sensitivity to PLK1 Inhibitor>
To confirm that the sensitivity of the PLK1 inhibitor correlates with the RB status predicted from the gene expression ratio of cyclin D1 and p16, the PLK1 inhibitor (compound example 38 described in WO2006 / 049339 and described in WO2008 / 081914) The susceptibility test of lung cancer cells against Compound Example 5) was conducted, and the correlation between the obtained sensitivity information and the RB status predicted from the gene expression ratio of cyclin D1 and p16 was examined.
 8つの小細胞癌と20の非小細胞癌を肺がん細胞として用い、これらの細胞のRBステイタスはサイクリンD1とp16の遺伝子発現量比から表6の様に予測された。ここで、サイクリンD1とp16の発現比は、実施例1と同様の方法で求めた。小細胞肺癌は、ほとんどがRB機能異常と予測された。 8 small cell carcinomas and 20 non-small cell carcinomas were used as lung cancer cells, and the RB status of these cells was predicted as shown in Table 6 from the gene expression ratio of cyclin D1 and p16. Here, the expression ratio of cyclin D1 and p16 was determined by the same method as in Example 1. Most small cell lung cancers were predicted to have RB dysfunction.
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
 PLK1阻害剤への感受性は、PLK1阻害剤の存在下で72時間培養後の細胞の数をWST-8(キシダ化学社製)を用いて定量して調べた。ここで、感受性の指標には完全増殖阻害濃度(以下 IC100と表記)を用いた。IC100は、化合物による72時間処理後の細胞数が化合物添加時と同数に維持される化合物の濃度であり、細胞死の影響を反映する指標である。 Sensitivity to the PLK1 inhibitor was determined by quantifying the number of cells after 72 hours of culturing in the presence of the PLK1 inhibitor using WST-8 (Kishida Chemical Co., Ltd.). Here, the complete growth inhibitory concentration (hereinafter referred to as IC 100 ) was used as the sensitivity index. IC 100 is the concentration of the compound that maintains the same number of cells after 72 hours of treatment with the compound as when the compound was added, and is an index reflecting the effect of cell death.
 図6に示す通り、PLK1阻害剤の感受性と予測されたRBステイタスが相関することが確かめられた(フィッシャーの正確確率検定 p値<0.05)。 As shown in FIG. 6, it was confirmed that the sensitivity of the PLK1 inhibitor and the predicted RB status were correlated (Fischer's exact test, p value <0.05).

Claims (23)

  1.  患者由来の生物試料におけるサイクリンD1遺伝子の発現量とp16遺伝子の発現量を決定するステップと、
     p16遺伝子の発現量に対するサイクリンD1遺伝子の発現量の比を求めるステップと、
     前記発現量の比が対照の細胞と比べて小さい場合に、PLK1阻害剤が効果的であると予測するステップと
    を含む、PLK1阻害剤の効果を予測する方法。
    Determining the expression level of the cyclin D1 gene and the expression level of the p16 gene in a patient-derived biological sample;
    determining the ratio of the expression level of the cyclin D1 gene to the expression level of the p16 gene;
    Predicting that the PLK1 inhibitor is effective when the ratio of the expression levels is smaller than that of the control cells.
  2.  前記発現量の比が、サイクリンD1/p16発現比により表され、前記サイクリンD1/p16発現比の値が、次の式
    Figure JPOXMLDOC01-appb-M000001
    により表される請求項1に記載の方法。
    The ratio of the expression levels is represented by the expression ratio of cyclin D1 / p16, and the value of the expression ratio of cyclin D1 / p16 is expressed by the following formula:
    Figure JPOXMLDOC01-appb-M000001
    The method of claim 1 represented by:
  3.  患者由来の生物試料におけるサイクリンD1遺伝子の発現量とp16遺伝子の発現量を決定するステップと、
     p16遺伝子の発現量に対するサイクリンD1遺伝子の発現量の比を求めるステップと、
     前記発現量の比が対照の細胞と比べて小さい場合に、前記生物試料中の細胞におけるRB機能が異常であると予測するステップと
    を含む、細胞におけるRB機能が異常であるか否かを予測する方法。
    Determining the expression level of the cyclin D1 gene and the expression level of the p16 gene in a patient-derived biological sample;
    determining the ratio of the expression level of the cyclin D1 gene to the expression level of the p16 gene;
    Predicting whether the RB function in the cell is abnormal, including predicting that the RB function in the cell in the biological sample is abnormal when the ratio of the expression levels is small compared to the control cell how to.
  4.  前記発現量の比が、サイクリンD1/p16発現比により表され、前記サイクリンD1/p16発現比の値が、次の式
    Figure JPOXMLDOC01-appb-M000002
    により表される請求項3に記載の方法。
    The ratio of the expression levels is represented by the expression ratio of cyclin D1 / p16, and the value of the expression ratio of cyclin D1 / p16 is expressed by the following formula:
    Figure JPOXMLDOC01-appb-M000002
    The method of claim 3 represented by:
  5.  患者由来の生物試料におけるRB遺伝子の変異、RB遺伝子発現量及び/又はRBタンパク質生成量に基づいて、前記生物試料中の細胞におけるRB機能が異常であるか否か予測するステップと、
     RB機能が異常である場合に、PLK1阻害剤が効果的であると予測するステップと
    を含む、PLK1阻害剤の効果を予測する方法。
    Predicting whether or not RB function in cells in the biological sample is abnormal based on RB gene mutation, RB gene expression level and / or RB protein production level in a biological sample derived from a patient;
    Predicting the effectiveness of the PLK1 inhibitor when the RB function is abnormal, and predicting that the PLK1 inhibitor is effective.
  6.  患者由来の生物試料における図7に記載された一以上の遺伝子の発現量及び/又は図8に記載された一以上の遺伝子の発現量を決定するステップと、
     図7に記載された遺伝子の発現量が対照の細胞と比べて小さい場合、及び/又は、図8に記載された遺伝子の発現量が対照の細胞と比べて大きい場合、PLK1阻害剤が効果的であると予測するステップと
     を含む、PLK1阻害剤の効果を予測する方法。
    Determining the expression level of one or more genes described in FIG. 7 and / or the expression level of one or more genes described in FIG. 8 in a patient-derived biological sample;
    When the expression level of the gene described in FIG. 7 is smaller than that of the control cell and / or when the expression level of the gene described in FIG. 8 is higher than that of the control cell, the PLK1 inhibitor is effective. Predicting the effect of a PLK1 inhibitor.
  7.  図7及び図8に記載の一以上の遺伝子の発現量を決定し、図7に記載された遺伝子がサイクリンD1遺伝子を含み、図8に記載された遺伝子がp16遺伝子を含む請求項6に記載の方法。 The expression level of one or more genes described in FIGS. 7 and 8 is determined, and the gene described in FIG. 7 includes the cyclin D1 gene, and the gene described in FIG. 8 includes the p16 gene. the method of.
  8.  患者由来の生物試料における図7に記載された一以上の遺伝子の発現量及び/又は図8に記載された一以上の遺伝子の発現量を決定するステップと、
     図7に記載された遺伝子の発現量が対照の細胞と比べて小さい場合、及び/又は、図8に記載された遺伝子の発現量が対照の細胞と比べて大きい場合、細胞におけるRB機能が異常であると予測するステップと
     を含む、細胞におけるRB機能が異常であるか否かを予測する方法。
    Determining the expression level of one or more genes described in FIG. 7 and / or the expression level of one or more genes described in FIG. 8 in a patient-derived biological sample;
    When the expression level of the gene described in FIG. 7 is smaller than that of the control cell and / or when the expression level of the gene described in FIG. 8 is higher than that of the control cell, the RB function in the cell is abnormal. Predicting whether or not the RB function in the cell is abnormal.
  9.  図7及び図8に記載の一以上の遺伝子の発現量を決定し、図7に記載された遺伝子がサイクリンD1遺伝子を含み、図8に記載された遺伝子がp16遺伝子を含む請求項8に記載の方法。 The expression level of one or more genes described in FIGS. 7 and 8 is determined, and the gene described in FIG. 7 includes the cyclin D1 gene, and the gene described in FIG. 8 includes the p16 gene. the method of.
  10.  患者由来の生物試料が、がん細胞を含む、請求項1~9のいずれか1項に記載の方法。 10. The method according to any one of claims 1 to 9, wherein the patient-derived biological sample contains cancer cells.
  11.  患者由来の生物試料が、肺がん細胞を含む、請求項1~9のいずれか1項に記載の方法。 10. The method according to any one of claims 1 to 9, wherein the patient-derived biological sample contains lung cancer cells.
  12.  患者由来の生物試料が、小細胞癌細胞を含む、請求項1~9のいずれか1項に記載の方法。 The method according to any one of claims 1 to 9, wherein the patient-derived biological sample contains small cell carcinoma cells.
  13.  RB機能が異常であるがん細胞を有するがん患者を治療するための医薬組成物であって、薬学的有効量のPLK1阻害剤を含んでなる医薬組成物。 A pharmaceutical composition for treating a cancer patient having cancer cells with abnormal RB function, the pharmaceutical composition comprising a pharmaceutically effective amount of a PLK1 inhibitor.
  14.  RB機能が異常である細胞に細胞死を誘導するための薬剤であって、薬理学的有効量のPLK1阻害剤を含んでなる薬剤。 A drug for inducing cell death in cells with abnormal RB function, comprising a pharmacologically effective amount of a PLK1 inhibitor.
  15.  前記がん細胞が、請求項3、4、8又は9のいずれか1項に記載の方法によりRB機能が異常であると予測された請求項13に記載の医薬組成物。 The pharmaceutical composition according to claim 13, wherein the cancer cell is predicted to have an abnormal RB function by the method according to any one of claims 3, 4, 8 or 9.
  16.  前記細胞が、請求項3、4、8又は9のいずれか1項に記載の方法によりRB機能が異常であると予測された請求項14に記載の薬剤。 The drug according to claim 14, wherein the cell is predicted to have abnormal RB function by the method according to any one of claims 3, 4, 8, or 9.
  17.  患者由来の生物試料におけるサイクリンD1遺伝子の発現量とp16遺伝子の発現量を決定するステップと、
     p16遺伝子の発現量に対するサイクリンD1遺伝子の発現量の比を求めるステップと、
     前記発現量の比が対照の細胞と比べて小さい場合に、PLK1阻害剤を患者に投与するステップと
    を含む、がんの治療方法。
    Determining the expression level of the cyclin D1 gene and the expression level of the p16 gene in a patient-derived biological sample;
    determining the ratio of the expression level of the cyclin D1 gene to the expression level of the p16 gene;
    Administering a PLK1 inhibitor to a patient when the ratio of the expression levels is smaller than that of control cells.
  18.  前記発現量の比が、サイクリンD1/p16発現比により表され、前記サイクリンD1/p16発現比の値が、次の式
    Figure JPOXMLDOC01-appb-M000003
    により表される請求項17に記載の方法。
    The ratio of the expression levels is represented by the expression ratio of cyclin D1 / p16, and the value of the expression ratio of cyclin D1 / p16 is expressed by the following formula:
    Figure JPOXMLDOC01-appb-M000003
    The method of claim 17 represented by:
  19.  患者由来の生物試料におけるRB遺伝子の変異、RB遺伝子発現量及び/又はRBタンパク質生成量に基づいて、前記生物試料中の細胞におけるRB機能が異常であるか否か予測するステップと、
     RB機能が異常である場合に、PLK1阻害剤を患者に投与するステップと
    を含む、がんの治療方法。
    Predicting whether or not RB function in cells in the biological sample is abnormal based on RB gene mutation, RB gene expression level and / or RB protein production level in a biological sample derived from a patient;
    Administering a PLK1 inhibitor to a patient when the RB function is abnormal.
  20.  患者由来の生物試料における図7に記載された一以上の遺伝子の発現量及び/又は図8に記載された一以上の遺伝子の発現量を決定するステップと、
     図7に記載された遺伝子の発現量が対照の細胞と比べて小さい場合、及び/又は、図8に記載された遺伝子の発現量が対照の細胞と比べて大きい場合、PLK1阻害剤を患者に投与するステップと
     を含む、がんの治療方法。
    Determining the expression level of one or more genes described in FIG. 7 and / or the expression level of one or more genes described in FIG. 8 in a patient-derived biological sample;
    When the expression level of the gene described in FIG. 7 is small compared to the control cells and / or when the expression level of the gene described in FIG. 8 is large compared to the control cells, a PLK1 inhibitor is administered to the patient. A method of treating cancer, comprising: administering.
  21.  図7及び図8に記載の一以上の遺伝子の発現量を決定し、図7に記載された遺伝子がサイクリンD1遺伝子を含み、図8に記載された遺伝子がp16遺伝子を含む請求項20に記載の方法。 21. The expression level of one or more genes described in FIGS. 7 and 8 is determined, the gene described in FIG. 7 includes a cyclin D1 gene, and the gene described in FIG. 8 includes a p16 gene. the method of.
  22.  RBの機能と関連している、図7及び図8からなる群から選択される、一以上の単離された核酸配列。 One or more isolated nucleic acid sequences selected from the group consisting of FIG. 7 and FIG. 8 that are associated with RB function.
  23.  請求項22の単離された一以上の核酸配列に結合する核酸を含むアレイ。 23. An array comprising nucleic acids that bind to one or more isolated nucleic acid sequences of claim 22.
PCT/JP2009/063158 2008-07-31 2009-07-23 Methods for prediction of rb status and sensitivity to plk1 inhibitor of cell WO2010013633A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-197532 2008-07-31
JP2008197532 2008-07-31

Publications (1)

Publication Number Publication Date
WO2010013633A1 true WO2010013633A1 (en) 2010-02-04

Family

ID=41610332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/063158 WO2010013633A1 (en) 2008-07-31 2009-07-23 Methods for prediction of rb status and sensitivity to plk1 inhibitor of cell

Country Status (1)

Country Link
WO (1) WO2010013633A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013058344A1 (en) * 2011-10-21 2013-04-25 武田薬品工業株式会社 Method for predicting effect of plk1 inhibitor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001011367A1 (en) * 1999-08-04 2001-02-15 Medical & Biological Laboratories Co., Ltd. Method of assyaing phosphorylation enzyme activity of cyclin/cdk complex
WO2006049339A1 (en) * 2004-11-08 2006-05-11 Banyu Pharmaceutical Co., Ltd. Novel fused imidazole derivative
WO2008081914A1 (en) * 2006-12-28 2008-07-10 Banyu Pharmaceutical Co., Ltd. Novel aminopyrimidine derivative as plk1 inhibitor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001011367A1 (en) * 1999-08-04 2001-02-15 Medical & Biological Laboratories Co., Ltd. Method of assyaing phosphorylation enzyme activity of cyclin/cdk complex
WO2006049339A1 (en) * 2004-11-08 2006-05-11 Banyu Pharmaceutical Co., Ltd. Novel fused imidazole derivative
WO2008081914A1 (en) * 2006-12-28 2008-07-10 Banyu Pharmaceutical Co., Ltd. Novel aminopyrimidine derivative as plk1 inhibitor

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
DONALD A. WITHERS ET AL.: "Characterization of a Candidate bcl-l Gene", MOLECULAR AND CELLULAR BIOLOGY, vol. 11, no. 10, 1991, pages 4846 - 4853 *
HIROTOSHI AKITA: "Saibo Shuki Chosetsu Inshi Hatsugen Ijo no Yogo Inshi Toshite no Igi", IGAKU NO AYUMI, vol. 199, no. 9, 1 December 2001 (2001-12-01), pages 631 - 635 *
JOHN P. COGSWELL ET AL.: "Dominant-Negative Polo-like Kinase 1 Induces Mitotic Catastrophe Independent of cdc25C Function", CELL GROWTH & DIFFERENTIATION, vol. 11, 2000, pages 615 - 623 *
KAYOKO YONEMARU ET AL.: "The Significance of p53 and Retinoblastoma Pathways in Canine Hemangiosarcoma", J VET MED SCI, vol. 69, no. 3, 25 March 2007 (2007-03-25), pages 271 - 278 *
KM SATHYAN ET AL.: "H-Ras mutation modulates the expression of major cell cycle regulatory proteins and disease prognosis in oral carcinoma", MODERN PATHOLOGY, vol. 20, 2007, pages 1141 - 1148 *
MARK W. JACKSON ET AL.: "p130/p107/p105Rb- dependent transcriptional repression during DNA-damage-induced cell-cycle exit at G2", JOURNAL OF CELL SCIENCE, vol. 118, 2005, pages 1821 - 1832 *
RANJAKA W. GUNAWARDENA ET AL.: "Hierarchical Requirement of SWI/SNF in Retinoblastoma Tumor Suppressor-mediated Repression of Plk1", THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 279, no. 28, 2004, pages 29278 - 29285 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013058344A1 (en) * 2011-10-21 2013-04-25 武田薬品工業株式会社 Method for predicting effect of plk1 inhibitor

Similar Documents

Publication Publication Date Title
US10172916B2 (en) Methods of treating heart failure with agonists of hypocretin receptor 2
US20160222468A1 (en) Diagnosis, prognosis and treatment of glioblastoma multiforme
WO2013138237A1 (en) Methods and compositions for the diagnosis, prognosis and treatment of acute myeloid leukemia
EP1611890B1 (en) Methods for assessing and treating cancer
CN102216775A (en) Susceptibility to hsp90-inhibitors
JP2008539731A (en) Compositions and methods for diagnosis and treatment of cancer
US20230017330A1 (en) USE OF COMPOSITION FOR ENHANCING ANTICANCER EFFECT, COMPRISING ERRy INHIBITOR AS ACTIVE INGREDIENT
US20200270702A1 (en) Classification of diffuse large b-cell lymphoma
EP3617330B1 (en) Biomarkers for predicting sensitivity to cancer treatments
CN109952383A (en) For predicting the active method and composition of Enzastaurin
CN109468382B (en) Application of lncRNA in diagnosis and treatment of lung adenocarcinoma
Duggan et al. siRNA library screening identifies a druggable immune-signature driving esophageal adenocarcinoma cell growth
CN111518884A (en) Application of miRNA30 cluster as Alzheimer disease diagnostic marker
JP2023098926A (en) Cancer prophylactic or therapeutic pharmaceutical composition containing tut4/7 expression regulatory factor
Tian et al. Aberrant MCM10 SUMOylation induces genomic instability mediated by a genetic variant associated with survival of esophageal squamous cell carcinoma
KR102164964B1 (en) Synthetic lethality and the treatment of cancer
KR102238258B1 (en) A novel biomarker for diagnosing liver cancer and a treating method using thereof
Li MiR-509-3-5p inhibits colon cancer malignancy by suppressing GTSE1
EP3144395B1 (en) Microrna signature as an indicator of the risk of early recurrence in patients with breast cancer
WO2017186882A1 (en) A method of predicting a response to an anti-tumor treatment by means of signal interfering dna molecules
WO2010013633A1 (en) Methods for prediction of rb status and sensitivity to plk1 inhibitor of cell
US11510911B2 (en) Method for prediction of susceptibility to sorafenib treatment by using SULF2 gene, and composition for treatment of cancer comprising SULF2 inhibitor
US11268154B2 (en) Methods for the identification, evaluation and treatment of patients having multiple myeloma
CN115807082A (en) Use of lncRNA LINREP for diagnosis, prognosis and treatment of glioma
US20120010102A1 (en) Modulation of abcg2-mediated urate transport to treat hyperuricemia and gout

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09802876

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 09802876

Country of ref document: EP

Kind code of ref document: A1