WO2010013411A1 - Bearing device adapted for use in wheel and equipped with rotation sensing device - Google Patents
Bearing device adapted for use in wheel and equipped with rotation sensing device Download PDFInfo
- Publication number
- WO2010013411A1 WO2010013411A1 PCT/JP2009/003443 JP2009003443W WO2010013411A1 WO 2010013411 A1 WO2010013411 A1 WO 2010013411A1 JP 2009003443 W JP2009003443 W JP 2009003443W WO 2010013411 A1 WO2010013411 A1 WO 2010013411A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- magnetic encoder
- magnetic
- plastic
- wheel bearing
- bearing device
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/72—Sealings
- F16C33/76—Sealings of ball or roller bearings
- F16C33/78—Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C41/00—Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
- F16C41/007—Encoders, e.g. parts with a plurality of alternating magnetic poles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2326/00—Articles relating to transporting
- F16C2326/01—Parts of vehicles in general
- F16C2326/02—Wheel hubs or castors
Definitions
- the present invention relates to a wheel bearing device with a rotation detecting device used for an automobile or the like equipped with an anti-lock brake system.
- the gap between the surface of the magnetic encoder and the magnetic sensor arranged opposite to the surface becomes large. An encoder is required.
- Patent Document 1 a wheel bearing device with a rotation detecting device in which the magnetic encoder and the magnetic sensor are installed inside the bearing has also been proposed (for example, Patent Document 1).
- This wheel bearing device with a rotation detection device includes an axial type plastic magnetic encoder 71 fitted on the outer peripheral surface of an inner member 42 of a bearing serving as a rotating wheel, and an outside of the bearing serving as a fixed wheel with a built-in magnetic sensor 74.
- FIG. 1 In the configuration example of FIG.
- the magnetic sensor 74 is disposed so as to face the plastic magnetic encoder 71 in the axial direction with a predetermined interval at a position inside the bearing relative to the plastic magnetic encoder 71.
- the outer peripheral surface of the plastic magnetic encoder 71 is an inclined surface 71b inclined with respect to the axial direction, and the magnetic sensor 74 is parallel to the inclined surface 71b of the plastic magnetic encoder 71 via a predetermined gap. Arranged to face each other.
- the plastic magnetic encoder 71 having no slinger is used as the magnetic encoder, so that the size and cost can be reduced.
- the coupling force of the plastic magnetic encoder 71 to the inner member 42 is higher than that of the rubber magnetic encoder disclosed in Patent Document 1 fitted to the inner member 42 via a slinger.
- the axial position of the plastic magnetic encoder 71 may be insufficient due to a decrease in the size.
- the plastic magnetic encoder is still placed in a high temperature environment near the bearing heat generating part such as a rolling element, and when the automobile is used in a very low temperature region, the plastic magnetic encoder is low in temperature. You will be exposed to the environment. For this reason, the difference in linear expansion coefficient between the plastic magnetic encoder and the metal shaft to which the plastic magnetic encoder is attached causes the plastic magnetic encoder to be easily damaged, causing a problem that the magnetic signal is disturbed, and also cannot accurately detect rotation. The problem remains.
- An object of the present invention is to provide a wheel bearing with a rotation detecting device that can be made compact, prevent wear, swelling, damage and displacement of a magnetic encoder, and can be used even in a high and low temperature environment and can detect rotation accurately. Is to provide a device.
- a double row rolling surface is formed on the inner periphery and an outer member serving as a fixed member and a rolling surface facing each of the rolling surfaces are formed on the outer periphery.
- a bearing device for a wheel that includes an inner member serving as a rotation side member and a double row rolling element interposed between the facing rolling surfaces, and rotatably supports the wheel with respect to the vehicle body,
- a magnetic encoder fitted to and attached to the outer peripheral surface of the inner member and a magnetic sensor are incorporated, and the magnetic sensor is attached to the outer member so as to face the magnetic encoder in the axial direction through a predetermined gap.
- This magnetic energy Either or both of the coder and the inner member to form an engagement portion for positional regulation of the magnetic encoder in the axial direction of the both members are engaged with each other.
- the sensor holder with the built-in magnetic sensor is attached to the outer member so that the magnetic sensor faces the magnetic encoder in the axial direction at a predetermined interval, and the sensor holder is positioned outside the bearing relative to the magnetic encoder.
- a sealing device is provided for sealing a space between the inner member and the inner member.
- the magnetic encoder since a plastic magnetic encoder is used as the magnetic encoder, it is possible to prevent the magnet portion from coming into contact with the grease as the lubricant and swelling.
- the fixing position of the magnetic encoder is set. It can be determined accurately and can be prevented from being displaced due to rotation of the bearing or temperature change. As a result, accurate rotation detection is possible.
- the magnetic encoder is arranged at the same axial position as the sensor holder, the axial length of the wheel bearing device with the rotation detecting device can be shortened by the axial length of the magnetic encoder, and the device can be made compact. It becomes possible.
- the engaging portion is composed of a convex portion formed on the outer peripheral surface of the inner member and a concave portion formed on the inner peripheral surface of the plastic magnetic encoder and engaged with the convex portion. May be. In the case of this configuration, the position of the magnetic encoder in the axial direction can be restricted by an engaging portion with a simple configuration.
- the engaging portion is composed of a concave portion formed on the outer peripheral surface of the inner member and a convex portion formed on the inner peripheral surface of the plastic magnetic encoder and engaged with the concave portion. Also good. In the case of this configuration, the position of the magnetic encoder in the axial direction can be restricted by an engaging portion with a simple configuration.
- the engaging portion may be formed of a stepped surface that is formed on the outer peripheral surface of the inner member and engages with a width surface facing the axial direction of the plastic magnetic encoder.
- the position of the magnetic encoder in the axial direction can be restricted by an engaging portion with a simple configuration.
- the plastic magnetic encoder is a magnetic encoder having a multipolar magnet in which magnetic poles are arranged in a circumferential direction, and the multipolar magnet includes magnetic powder and a thermoplastic resin, and the magnetic powder-containing thermoplastic resin
- the melt viscosity may be 30 Pa ⁇ s to 1500 Pa ⁇ s. If the melt viscosity of the magnetic powder-containing thermoplastic resin, which is a material of the plastic multipolar magnet, is smaller than 30 Pa ⁇ s, a large amount of burrs are generated at the time of injection molding, and it becomes difficult to appropriately mold. If the melt viscosity of the thermoplastic resin is greater than 1500 Pa ⁇ s, it will be difficult to knead the magnetic powder into the thermoplastic resin.
- the thermoplastic resin may include one or more compounds selected from the group consisting of polyamide 12, polyamide 612, polyamide 11, and polyphenylene sulfide. These thermoplastic resins have very low swelling (less than 10%) even when immersed in grease used as a lubricant for bearings at high temperatures, so they have poor water absorption, condensation at low temperatures, salt water and muddy water. It is resistant to deterioration even in an environment with a lot of moisture such as rain water, and is particularly effective as a material for a plastic magnetic encoder incorporated in a wheel bearing device.
- the magnetic powder may be a ferrite-based magnetic powder. Since the ferrite-based magnetic powder is difficult to oxidize, the corrosion resistance of the plus-chip magnetic encoder can be improved.
- the magnetic powder may be anisotropic ferrite magnetic powder.
- the plastic magnetic encoder may be an injection molded product. According to injection molding, plastic magnetic encoders can be easily molded.
- the plastic magnetic encoder may be a magnetic field formed by injection molding. By forming the magnetic field in this way, a plastic magnetic encoder with a higher magnetic flux density can be obtained.
- the plastic magnetic encoder has an inclined surface inclined with respect to the axial direction, and the annular sensor holder is opposed to the inclined surface of the plastic magnetic encoder in parallel with a predetermined interval. It may be attached to the outer member.
- the plastic magnetic encoder is configured to face the sensor holder on the inclined surface as described above, the plastic magnetic encoder has a triangular shape in cross section, and thus the plastic magnetic encoder can be reinforced with a compact configuration.
- the magnet to be detected may include a thermoplastic elastomer magnet in which magnetic powder is mixed in a thermoplastic elastomer.
- thermoplastic elastomer magnetic encoder since the thermoplastic elastomer magnetic encoder is used as the magnetic encoder, unlike the rubber magnetic encoder, it is avoided that the magnet portion swells even when it comes into contact with grease as a lubricant.
- the stress inside the magnetic encoder due to the difference in linear expansion coefficient in a high and low temperature environment is smaller than a plastic magnetic encoder and is not cracked if it is a thermoplastic elastomer. As a result, wear, swelling and damage of the magnetic encoder can be prevented and accurate rotation detection is possible.
- FIG. 1 is a cross-sectional view of a wheel bearing device with a rotation detector according to a first embodiment of the present invention. It is an expanded sectional view of the A section in FIG. It is explanatory drawing of the magnetic pole which looked at the plastic magnetic encoder from the front. It is a partial expanded sectional view of the bearing device for wheels with a rotation detector concerning a 2nd embodiment of this invention.
- FIG. 2 is a wheel bearing device with a rotation detection device according to a first application example of the present invention, and is an enlarged cross-sectional view of a portion corresponding to part A in FIG. 1. 2 is a graph showing the stress-strain behavior of an elastomer compared to other materials such as plastic. It is a partial expanded sectional view of the wheel bearing apparatus with a rotation detection apparatus concerning the 2nd application example of this invention. It is a partial expanded sectional view of a proposal example. It is a partial expanded sectional view of other proposal examples.
- the wheel bearing device with a rotation detection device of this embodiment is a double row angular contact ball bearing type classified as a third generation type, and is an inner ring rotation type and a drive wheel support type.
- the side closer to the outer side in the vehicle width direction of the vehicle when attached to the vehicle is referred to as the outboard side, and the side closer to the center of the vehicle is referred to as the inboard side.
- the wheel bearing device in the wheel bearing device with the rotation detecting device includes an outer member 1 in which a double row rolling surface 3 is formed on the inner periphery, and each of these rolling surfaces. 3, an inner member 2 formed on the outer periphery with a rolling surface 4 facing the outer periphery 3, and a double row rolling element 5 interposed between the outer member 1 and the rolling surfaces 3, 4 of the inner member 2.
- the rolling elements 5 are formed of balls and are held by the cage 6 for each row.
- the rolling surfaces 3 and 4 have a circular arc shape in cross section, and the rolling surfaces 3 and 4 are formed so that the contact angles are aligned with the back surface.
- the end of the bearing space between the outer member 1 and the inner member 2 is sealed by a sealing device 7.
- the outer member 1 is a fixed side member, and has a flange 1a for mounting a vehicle body attached to a knuckle 60 in a suspension device (not shown) of the vehicle body on the outer periphery, and the whole is an integral part.
- Bolt holes 14 for mounting the vehicle body are provided at a plurality of locations in the circumferential direction of the flange 1a, and knuckle bolts 61 inserted from the inboard side into the bolt insertion holes 60a of the knuckle 60 are screwed into the bolt holes 14 of the flange 1a. By doing so, the flange 1a is bolted to the knuckle 60.
- the inner member 2 is a rotating side member, and includes a hub wheel 9 having a hub flange 9a for wheel mounting, and an inner ring 10 fitted to the outer periphery of the end portion on the inboard side of the shaft portion 9b of the hub wheel 9. And become.
- the hub wheel 9 and the inner ring 10 are formed with the rolling surfaces 4 of the respective rows.
- An inner ring fitting surface 12 having a small diameter with a step is provided on the outer periphery of the inboard side end of the hub wheel 9, and the inner ring 10 is fitted to the inner ring fitting surface 12.
- a through hole 11 is provided at the center of the hub wheel 9.
- the stem portion 63a of the outer ring 63 of the constant velocity joint 62 is inserted into the through-hole 11, and the inner member 2 is sandwiched between the stepped surface around the proximal end of the stem portion 63a and the nut 64 that is screwed to the distal end.
- the hub flange 9a is provided with press-fit holes 16 for hub bolts 15 at a plurality of locations in the circumferential direction.
- a cylindrical pilot portion 13 for guiding a brake rotor and a wheel (not shown) protrudes toward the outboard side.
- the pilot rotor 13 guides the hub flange 9 a so that the brake rotor and the wheel are overlapped with each other and fixed with the hub bolt 15.
- FIG. 2 is an enlarged cross-sectional view of part A in FIG.
- a plastic magnetic encoder 21 is fitted and attached to the inboard side end of the outer peripheral surface of the inner member 2.
- an annular sensor holder 25 incorporating a magnetic sensor 24 for detecting the magnetic flux of the plastic magnetic encoder 21 is attached to the inboard side end of the outer member 1.
- the plastic magnetic encoder 21 and the magnetic sensor 24 constitute a rotation detection device 20 that detects the rotation of the inner member 2 integral with the plastic magnetic encoder 21, that is, the rotation of the wheel.
- the plastic magnetic encoder 21 is an annular single body, and the inner peripheral surface 21a that is press-fitted and fixed to the outer peripheral surface of the inner member 2 (here, the outer peripheral surface of the inner ring 10), and the inner side of the bearing have a large diameter. It has the inclined surface 21b which is an outer peripheral surface inclined with respect to the axial direction.
- the sensor holder 25 is attached to the outer member 1 so that the magnetic sensor 24 faces the inclined surface 21b of the plastic magnetic encoder 21 in parallel with a predetermined interval.
- the position of the plastic magnetic encoder 21 is restricted in the axial direction by engaging the inner member 2 with engaging portions 21ab and 10a formed on both the plastic magnetic encoder 21 and the inner member 2.
- the engaging portion 10 a of the inner member 2 is a convex portion that extends in the circumferential direction on the outer peripheral surface of the inner ring 10 that is a component of the inner member 2 and is formed in an annular shape.
- the engaging portion 21ab of the plastic magnetic encoder 21 is a recess that extends in the circumferential direction on the inner peripheral surface 21a and is formed in an annular shape and engages with the engaging portion 10a of the inner member 2.
- the engaging portions 10a and 21ab may be locally provided at a plurality of locations in the circumferential direction.
- the plastic magnetic encoder 21 is an annular plastic multipolar magnet that is magnetized in multiple poles so that the magnetic poles N and S are alternately arranged in the circumferential direction.
- An injection molded product containing a plastic resin is used.
- the magnetic poles N and S are formed to have a predetermined pitch p in the pitch circle diameter PCD.
- the melt viscosity of the magnetic powder-containing thermoplastic resin that is the material of the plastic magnetic encoder 21 is smaller than 30 Pa ⁇ s, a large amount of burrs are generated during injection molding, making it difficult to mold appropriately. If the melt viscosity of the thermoplastic resin is greater than 1500 Pa ⁇ s, it will be difficult to knead the magnetic powder into the thermoplastic resin. In particular, when the proportion of the magnetic powder is increased, the kneading failure becomes remarkable. Therefore, in this embodiment, the melt viscosity of the magnetic powder-containing thermoplastic resin is 30 Pa ⁇ s or more and 1500 Pa ⁇ s or less. Thereby, the plastic magnetic encoder 21 with good productivity can be obtained.
- the melt viscosity of the thermoplastic resin in this case is a capillograph (manufactured by Toyo Seiki Co., Ltd.), using a capillary with a diameter of 1 mm ⁇ and a land length of 10 mm, a shear rate of 100 (l / s), and a melting point of the thermoplastic resin.
- the result measured at the temperature of +50 degreeC is shown.
- the thermoplastic resin in this case includes polyamide 12, polyamide 612, polyamide 11 and polyphenylene sulfide, which have a very small amount of swelling (less than 10%) even when immersed in grease used as a lubricant in a bearing at a high temperature. It is preferred to include one or more compounds selected from the group. Since such a thermoplastic resin has poor water absorption, the thermoplastic resin is resistant to deterioration even in a high moisture environment such as dew condensation at low temperatures, salt water, muddy water, rainwater, etc., and the plastic magnetic encoder 21 incorporated in the wheel bearing device is used. It is particularly effective as a material.
- Barium-based or strontium-based ferrite powder is used as the magnetic powder that is the material of the plastic magnetic encoder 21.
- a ferrite magnetic powder it may be an isotropic ferrite magnetic powder or an anisotropic ferrite magnetic powder. Since such ferrite-based magnetic powder is difficult to oxidize, the corrosion resistance of the plastic magnetic encoder 21 can be improved.
- rare earth magnetic powder such as samarium iron magnetic powder or neodymium iron magnetic powder may be mixed with ferrite magnetic powder and used.
- the plastic magnetic encoder 21 is manufactured by the following process. First, the magnetic powder and the molten thermoplastic resin are kneaded using a twin screw extruder or a kneader, and the magnetic powder is appropriately dispersed in the thermoplastic resin. Then, injection molding etc. are performed so that it may become a shape of a multipolar magnet, and a desired molded object is obtained. The molded product thus obtained is magnetized into multiple poles using a magnetizing yoke to form a magnetic pole. At the time of the injection molding, it is preferable to form a magnetic field while applying a vertical magnetic field of 80000 Oe or more to the magnetic encoder magnetized surface and to orient the contained magnetic powder. By forming the magnetic field in this way, the plastic magnetic encoder 21 having a larger magnetic flux density can be obtained.
- the annular sensor holder 25 includes an annular cored bar 26 and a resin sensor holder 27 that incorporates a magnetic sensor 24 and is coupled to the cored bar 26.
- the sensor holding body 27 protrudes from the inner bearing end in the axial direction to the inner peripheral surface, and is provided with a sensor embedded protrusion 27a.
- the corner between the tip surface and the bearing inner surface is an inclined surface parallel to the inclined surface 21b of the plastic magnetic encoder 21, and the magnetic sensor 24 is built in along the inclined surface. ing.
- the sensor embedding protrusion 27a may be annular or may be locally provided in a part of the circumferential direction.
- the core metal 26 includes an outer diameter cylindrical portion 26a that is press-fitted and attached to the outer peripheral surface of the outer member 1, a flange portion 26b that extends from the inboard side end of the outer diameter cylindrical portion 26a toward the inner diameter side, and the flange portion 26b.
- the inner diameter cylindrical portion 26c extends in the axial direction from the inner diameter side end of the inner diameter.
- the cored bar 26 is formed by pressing a corrosion resistant stainless steel plate or the like. Perforations 28 are formed at a plurality of locations in the circumferential direction of the inner diameter cylindrical portion 26c in the cored bar 26, and a resin sensor holding body 27 is integrally molded at a portion extending from the inner diameter cylindrical portion 26c to the flange portion 26b.
- the space between the inner periphery of the sensor holder 25 and the outer periphery of the inner member 2 is sealed by a sealing device 8 installed at a position outside the bearing relative to the plastic magnetic encoder 21.
- the sealing device 8 includes annular first and second seal plates 31 and 32 attached to the outer peripheral surface of the inner member 2 and the inner peripheral surface of the sensor holder 25, respectively.
- the first seal plate 31 includes a cylindrical portion 31a that is press-fitted and attached to the outer peripheral surface of the inner member 2, and a cross-section L that includes a vertical plate portion 31b that extends from the inboard side end of the cylindrical portion 31a to the outer diameter side. It is formed in a letter shape.
- the first seal plate 31 is formed by pressing an austenitic stainless steel plate or a cold-rolled steel plate that has been rust-proofed.
- the second seal plate 32 includes a cylindrical portion 32a that is press-fitted and attached to the inboard side of the inner peripheral surface of the sensor holder 25, and a standing plate portion 32b that extends from the outboard side end of the cylindrical portion 32a to the inner diameter side.
- the cross section is formed in an inverted L shape.
- the second seal plate 32 has an upright plate portion 32b positioned on the outboard side of the upright plate portion 31b of the first seal plate 31, and is axially aligned with the upright plate portion 31b of the first seal plate 31. It arrange
- a seal member 33 having a side lip 33a, a grease lip 33b, and an intermediate lip 33c is vulcanized and bonded to the second seal plate 32.
- the seal member 33 is made of an elastic member such as rubber.
- the side lip 33 a is in sliding contact with the standing plate portion 31 b of the first seal plate 31, and the grease lip 33 b and the intermediate lip 33 c are in sliding contact with the cylindrical portion 31 a of the first seal plate 31.
- the tip of the upright plate portion 31b of the first seal plate 31 is opposed to the cylindrical portion 32a of the second seal plate 32 via a slight radial gap to constitute a labyrinth seal.
- the sealing device 8 seals the inboard side end in the bearing space between the outer member 1 and the inner member 2.
- the plastic magnetic encoder 21 integrated with the inner member 2 rotates as the wheel rotates.
- a magnetic sensor 24 facing the inclined surface 21b which is a magnetized surface of the plastic magnetic encoder 21, in parallel through a predetermined gap reads the change in magnetic force of the magnetic poles N and S of the plastic magnetic encoder 21.
- the rotation detection apparatus 20 comprised by the plastic magnetic encoder 21 and the magnetic sensor 24 can detect rotation of a wheel.
- a sensor holder 25 including a magnetic sensor 24 that constitutes the rotation detection device 20 with a plastic magnetic encoder 21 fitted and attached to the outer peripheral surface of the inner member 2 is provided.
- the magnetic sensor 24 is attached to the outer member 1 so as to face the inclined surface 21b of the plastic magnetic encoder 21 in parallel, and between the sensor holder 25 and the inner member 2 at a position outside the bearing than the plastic magnetic encoder 21. Since the sealing device 8 for sealing the space is provided, it is possible to prevent the plastic magnetic encoder 21 from being worn by foreign matters or the like from the outside.
- the plastic magnetic encoder 21 is used as the magnetic encoder, it is possible to prevent the magnetic encoder from swelling due to contact with grease as a lubricant.
- the plastic magnetic encoder 21 and the inner member 2 are engaged with each other by the engaging portions 21ab and 10a to restrict the position of the plastic magnetic encoder 21 in the axial direction, the plastic magnetic encoder 21 It is possible to accurately determine the fixed position of the shaft, and it is also possible to prevent displacement due to rotation of the bearing, temperature change, or the like. As a result, accurate rotation detection is possible.
- the plastic magnetic encoder 21 is disposed at the same axial position as the sensor holder 25, the axial length of the wheel bearing device with the rotation detecting device can be shortened by the axial length of the plastic magnetic encoder 21, The device can be made compact.
- the plastic magnetic encoder 21 has a generally triangular cross section whose outer peripheral surface is an inclined surface 21b inclined with respect to the axial direction, so that the structure of the plastic magnetic encoder 21 can be strengthened. it can.
- a magnet as a detected portion may be provided with a thermoplastic elastomer magnet in which magnetic powder is mixed in a thermoplastic elastomer.
- a thermoplastic elastomer magnetic encoder unlike the rubber magnetic encoder, swelling is avoided even when the magnet portion comes into contact with grease as a lubricant.
- the stress inside the magnetic encoder due to the difference in linear expansion coefficient under a high and low temperature environment is smaller than the plastic magnetic encoder 21 and is not cracked if it is a thermoplastic elastomer. As a result, wear, swelling and damage of the magnetic encoder can be prevented and accurate rotation detection is possible.
- This thermoplastic elastomer magnetic encoder can be used similarly in the second to fifth embodiments described below, instead of the plastic magnetic encoder 21.
- FIG. 4 shows a second embodiment of the present invention.
- the engagement portions 21aa and 10b formed on both the plastic magnetic encoder 21 and the inner member 2 are inward.
- the engaging portion 10b of the inner member 2 is a concave portion that extends in the circumferential direction on the outer peripheral surface of the inner ring 10 that is a component of the inner member 2, and is formed in an annular shape.
- the engaging portion 21aa of the plastic magnetic encoder 21 is a convex portion that extends in the circumferential direction on the inner peripheral surface 21a and is formed in an annular shape and engages with the engaging portion 10b of the inner member 2.
- the engaging portions 10b and 21aa may be provided locally at a plurality of locations in the circumferential direction.
- Other configurations are the same as those of the first embodiment shown in FIGS.
- FIG. 5 shows a third embodiment of the present invention.
- the plastic magnetic encoder 21 is engaged with the inner member 2 by the engaging portion 10c formed on the inner member 2.
- the engaging portion 10c of the inner member 2 is formed at the boundary between the large-diameter portion on the inboard side and the small-diameter portion on the outboard side on the outer peripheral surface of the inner ring 10 that is a component of the inner member 2.
- the step surface is engaged with a width surface facing the inboard side of the plastic magnetic encoder 21 to restrict the displacement of the plastic magnetic encoder 21 toward the inboard side.
- Other configurations are the same as those of the first embodiment shown in FIGS.
- FIG. 6 shows a fourth embodiment of the present invention.
- the plastic magnetic encoder 21 is engaged with the inner member 2 by the engaging portion 10d formed on the inner member 2.
- the engaging portion 10d of the inner member 2 is formed at the boundary between the small diameter portion on the inboard side and the large diameter portion on the outboard side on the outer peripheral surface of the inner ring 10 that is a component of the inner member 2.
- the step surface is engaged with a width surface facing the inboard side of the plastic magnetic encoder 21 to restrict the displacement of the plastic magnetic encoder 21 to the outboard.
- Other configurations are the same as those of the first embodiment shown in FIGS.
- FIG. 7 shows a fifth embodiment of the present invention.
- the plastic magnetic encoder 21 is engaged with the inner member 2 by the engaging portion 10e formed on the inner member 2.
- the engaging portion 10e of the inner member 2 is formed between a small-diameter portion in the middle in the axial direction formed on the outer peripheral surface of the inner ring 10 that is a component of the inner member 2, and a large-diameter portion on both sides. It is a stepped surface.
- the plastic magnetic encoder 21 is fitted into a circumferential groove-shaped portion composed of the small-diameter portion and the engaging portions 10e on the step surfaces on both sides, and the positional deviation is caused in both the outboard side and the inboard side. Is prevented.
- Other configurations are the same as those of the first embodiment shown in FIGS.
- FIG. 8 is an enlarged cross-sectional view of a portion corresponding to part A in FIG.
- the same or corresponding parts as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
- thermoplastic elastomer magnetic encoder 21A is fitted and attached to the inboard side end of the outer peripheral surface of the inner member 2.
- An annular sensor holder 25 having a built-in magnetic sensor 24 for detecting the magnetic flux of the thermoplastic elastomer magnetic encoder 21 ⁇ / b> A is attached to the inboard side end of the outer member 1.
- the thermoplastic elastomer magnetic encoder 21A and the magnetic sensor 24 constitute a rotation detection device 20 that detects the rotation of the inner member 2 integrated with the thermoplastic elastomer magnetic encoder 21A, that is, the rotation of the wheel.
- the thermoplastic elastomer magnetic encoder 21A has an inner peripheral surface 23a that is press-fitted and fixed to the outer peripheral surface of the inner member 2 (here, the outer peripheral surface of the inner ring 10), and the axial direction so that the inside of the bearing has a large diameter.
- a single annular thermoplastic elastomer multipolar magnet 23 having an inclined surface 23b that is an outer peripheral surface inclined outward is formed.
- the inclined surface 23b is a detected surface.
- the thermoplastic elastomer multipolar magnet 23 has a sealing device fitting projection 23c that fits on the outer diameter surface of a sealing plate 31 of the sealing device 8 described later at the outer end in the axial direction.
- the sensor holder 25 is placed on the outer member 1 so that the magnetic sensor 24 faces the inclined surface 23b of the thermoplastic elastomer magnetic encoder 21A (thermoplastic elastomer multipolar magnet 23) in parallel with a predetermined gap. Mounted.
- thermoplastic elastomer multipolar magnet 23 contains one or more compounds selected from the group consisting of ester, urethane, vinyl chloride and olefin.
- TPO olefin-based thermoplastic elastomer
- TPV vinyl chloride-based thermoplastic elastomer
- TPEE polyyester-based thermoplastic elastomer
- melt viscosity of the magnetic powder-containing thermoplastic elastomer that is the material of the thermoplastic elastomer multipolar magnet 23 is the same as the reason and advantage described above.
- the range of 30 Pa ⁇ s to 1500 Pa ⁇ s is preferable.
- thermoplastic elastomer Hytrel 4767 (manufactured by Toray DuPont Co., Ltd.), which is an ester-based thermoplastic elastomer having a very small amount of swelling even when immersed in grease used as a lubricant in a bearing at high temperature, is used.
- Ferrite powder F700 manufactured by Toda Kogyo Co., Ltd.
- Such a thermoplastic elastomer is particularly effective as a material for the thermoplastic elastomer magnetic encoder 21A, which has good oil resistance and is incorporated into a wheel bearing device.
- the magnetic powder that is the material of the thermoplastic elastomer multipolar magnet 23 the same powder as in the case of the plastic magnetic encoder 21 of the first embodiment is used, and the advantages thereof are also the same.
- thermoplastic elastomer magnetic encoder 21 The manufacturing of the thermoplastic elastomer magnetic encoder 21 is the same except that the thermoplastic resin in the description of the manufacturing process of the plastic magnetic encoder 21 of the first embodiment is replaced with the thermoplastic elastomer, and the injection molding is performed. Since the magnetic field shaping at the time and the advantages thereof are the same, detailed description thereof will be omitted.
- thermoplastic elastomer magnetic encoder 21A thermoplastic elastomer multipole magnet 23
- the magnetic encoder can be prevented from coming into contact with the lubricant grease and swelling.
- the stress inside the magnetic encoder due to the difference in linear expansion coefficient under a high and low temperature environment is smaller than a plastic magnetic encoder as long as it is a thermoplastic elastomer and does not crack. As a result, wear, swelling, and damage of the magnetic encoder can be prevented and accurate rotation detection can be performed.
- Resin-Thermosetting resin phenol resin, urea resin, etc.
- -Thermoplastic resin PP (polypropylene), ABS resin (acrylonitrile butadiene styrene resin), PPS (polyphenylene sulfide), etc.
- Elastomer-Synthetic rubber Natural rubber: NBR (nitrile rubber), CR (chloroprene rubber), VMQ (silicone rubber), etc.
- Thermoplastic elastomer TPO (olefin), TPVC (vinyl chloride), TPEE (ester), etc.
- thermoplastic elastomer is superior as a material, the following will describe data compared with other materials (plastic, elastomer) in terms of its physical properties.
- Plastic thermoplastic resin or thermosetting resin
- Thermoplastic elastomer It is a polymer material that behaves as a rubber elastic body at room temperature, but melts when the temperature rises. It has both rubber and plastic properties (elastic deformation of about 10%). For this reason, it has flexibility, is moderately stretched and is hard to break.
- Elastomer A flexible (low hardness) elastic body with a large amount of elastic deformation (about several hundred percent).
- FIG. 9 is a graph showing a comparison of stress-strain behavior of four materials, ie, a thermoplastic resin, polyurethane (thermoplastic elastomer), polyester (thermoplastic elastomer), and elastomer (rubber) as plastics.
- the graph shows the following.
- Plastic Harder than rubber, large stress during deformation, and small amount of elastic deformation. For this reason, it is easy to break.
- Rubber The elastic deformation is large and it extends sufficiently. Low elastic modulus (Young's modulus).
- Thermosetting elastomer Combines the strength of plastic and the flexibility of rubber. As long as it is used within the range of the strain amount W shown in FIG. 9, the behavior as an elastic body is shown. Thus, in the case of a thermoplastic elastomer, since the elastic region is wider than that of plastic, it is more resistant to impact and is hard to crack.
- FIG. 10 shows a second application example of the present invention.
- This second application example is the same as the first application example shown in FIG. 8 except that the thermoplastic elastomer magnetic encoder 21A composed of a single unit of the thermoplastic elastomer multipole magnet 23 is replaced with an annular slinger 22 in the wheel bearing device with a rotation detector.
- This is a thermoplastic elastomer magnetic encoder 21B made of a composite of thermoplastic elastomer multipolar magnets 23.
- thermoplastic elastomer As the thermoplastic elastomer in this case, Hytrel 4767 (manufactured by Toray DuPont Co., Ltd.), which is an ester-based thermoplastic elastomer, is used, and ferrite powder (FA700 manufactured by Toda Kogyo Co., Ltd.) at a volume content of 50 vol% at 220 ° C. It was added and kneaded with a kneader. A thermoplastic elastomer magnetic encoder 21B molded with this material was incorporated into a bearing and examined for cracks after 800 cycles in a low temperature side -35 ° C and high temperature side 110 ° C heat cycle test (held at each temperature for 1 hour). Cracking did not occur and good high and low temperature characteristics were exhibited. This shows that it can be used even in a sufficiently high and low temperature environment.
- the slinger 22 is a cylindrical portion 22a that is press-fitted and fixed to the outer peripheral surface of the inner member 2 (here, the outer peripheral surface of the inner ring 10), and a standing plate portion that rises to the outer diameter side from the inner end of the bearing of the cylindrical portion 22a. It is a cored bar having an annular shape and an L-shaped cross section composed of 22b.
- the thermoplastic elastomer multipolar magnet 23 is molded separately from the slinger 22 and then bonded to the slinger 22 with a one-component cyanoacrylate adhesive (Toagosei Aron ⁇ 201) to integrate the heat.
- a plastic elastomer magnetic encoder 21B is configured.
- the slinger 22 is made of a magnetic steel plate (SUS430). As described above, by using a magnetic material as the material of the slinger 22, the magnetic force of the thermoplastic elastomer magnetic encoder 21B can be increased as compared with the case of using a non-magnetic material.
- thermoplastic elastomer magnetic encoder 21B in this application example can also be manufactured by insert molding according to the following process. First, the magnetic powder and the molten thermoplastic elastomer are kneaded using a twin screw extruder or a kneader, and the magnetic powder is appropriately dispersed in the thermoplastic elastomer. Thereafter, a thermoplastic elastomer containing magnetic powder is injected into the mold in which the slinger 22 is disposed, and the thermoplastic elastomer multipole magnet 23 is integrally formed with the slinger 22 to obtain a desired thermoplastic elastomer magnetic encoder 21B.
- thermoplastic elastomer magnetic encoder 21B is magnetized in multiple poles using a magnetizing yoke, thereby forming the magnetic poles of the thermoplastic elastomer multipole magnet 23. Also in this case, at the time of the injection molding, it is preferable to form a magnetic field while applying a vertical magnetic field of 80000 Oe or more to the inclined surface 23b which is a magnetized surface, and to magnetically orient the contained magnetic powder.
- Other configurations are the same as those of the first application example shown in FIG. 8, and the description thereof is omitted here.
- the application examples that do not require the engaging portions 10a to 10d, 21aa, and 21ab of the present invention described above include the following application modes.
- the outer member which is a fixed side member with a double row rolling surface formed on the inner periphery, and the rolling surface facing each of the rolling surfaces is on the outer periphery.
- a wheel bearing device that includes an inner member that is formed as a rotation-side member and a double row rolling element interposed between these opposing rolling surfaces, and that supports the wheel rotatably with respect to the vehicle body, A magnetic encoder that is fitted and attached to the outer peripheral surface near the end of the inner member and is inclined with respect to the axial direction so that the outer peripheral surface faces the end of the inner member, and An annular sensor holder which is attached to the outer member in a fitted state with a cored bar having a built-in magnetic sensor and which faces the inclined surface of the magnetic encoder in parallel via a gap; The sensor holder and the inner member at a position outside the bearing relative to the encoder And a sealing device for sealing the space between, the magnetic encoder, magnets to be detected portion has a thermoplastic elastomer magnetic encoder is a thermoplastic elastomer magnet by mixing magnetic powder into thermoplastic elastomers.
- the detected surface of the magnetic encoder is an outwardly inclined surface
- a sensor holder incorporating a magnetic sensor facing the inclined surface is attached to the outer member
- the sealing device is disposed at a position outside the bearing relative to the magnetic encoder. Since it is provided, it is possible to prevent the magnetic encoder from being worn by foreign matters from the outside.
- a thermoplastic elastomer magnetic encoder is used as the magnetic encoder, unlike the rubber magnetic encoder, swelling is avoided even if the magnet portion comes into contact with grease as a lubricant.
- the stress inside the magnetic encoder due to the difference in linear expansion coefficient in a high and low temperature environment is smaller than a plastic magnetic encoder and is not cracked if it is a thermoplastic elastomer.
- wear, swelling and damage of the magnetic encoder can be prevented and accurate rotation detection is possible.
- the magnetic encoder since the magnetic encoder has an inclined surface to be detected, the cross-sectional outline can be made triangular and the structure can be strengthened. Since the detection surface of the magnetic encoder is an inclined surface, the magnetic encoder is disposed at the same axial position as the sensor holder. Therefore, the axial length of the wheel bearing device with the rotation detecting device can be shortened by the axial length of the magnetic encoder, and the device can be made compact.
- the thermoplastic elastomer magnetic encoder is a multipolar magnet in which the thermoplastic elastomer magnet has magnetic poles arranged in a circumferential direction.
- the multipolar magnet includes magnetic powder and a thermoplastic resin, and includes the magnetic powder.
- the melt viscosity of the thermoplastic resin may be 30 Pa ⁇ s or more and 1500 Pa ⁇ s or less.
- the magnetic powder-containing thermoplastic elastomer which is a material for the thermoplastic elastomer multipolar magnet, generates a large amount of burrs during injection molding, making it difficult to mold appropriately.
- thermoplastic elastomer If the melt viscosity of the thermoplastic elastomer is greater than 1500 Pa ⁇ s, it becomes difficult to knead the magnetic powder into the thermoplastic elastomer. In particular, when the proportion of the magnetic powder is increased, the kneading failure becomes remarkable.
- the melt viscosity of the magnetic powder-containing thermoplastic elastomer by setting the melt viscosity of the magnetic powder-containing thermoplastic elastomer to 30 Pa ⁇ s or more and 1500 Pa ⁇ s or less, a thermoplastic elastomer magnetic encoder with good productivity can be obtained. Further, the productivity improvement of the thermoplastic elastomer magnetic encoder also leads to the improvement of the productivity of the wheel bearing device with the rotation detection device.
- thermoplastic elastomer may contain one or more compounds selected from the group consisting of ester, urethane, vinyl chloride and olefin. Since these thermoplastic elastomers have a very small amount of swelling (less than 10%) even when they are immersed in grease used as a lubricant for bearings at high temperatures, they are materials for thermoplastic elastomer magnetic encoders incorporated in wheel bearing devices. As particularly effective.
- the magnetic powder may be a ferrite-based magnetic powder. Since ferrite magnetic powder is difficult to oxidize, the corrosion resistance of the thermoplastic elastomer magnetic encoder can be improved.
- the magnetic powder may be anisotropic ferrite magnetic powder.
- thermoplastic elastomer magnet of the thermoplastic elastomer magnetic encoder may be an injection molded product.
- thermoplastic elastomer magnet when the thermoplastic elastomer magnet is an injection-molded product, the thermoplastic elastomer magnet may be formed by magnetic field molding in injection molding. That is, it may be formed by magnetic field molding in an injection mold during injection molding. By forming the magnetic field in this way, a thermoplastic elastomer magnetic encoder having a larger magnetic flux density can be obtained.
- thermoplastic elastomer magnetic encoder is a single annular thermoplastic elastomer magnet having an inner peripheral surface that is press-fitted and fixed to the outer peripheral surface of the inner member and an outer peripheral surface that is the inclined surface. May be.
- thermoplastic elastomer magnetic encoder includes a cylindrical portion that is press-fitted and fixed to the outer peripheral surface of the inner member, and a slinger having an L-shaped cross section that includes a standing plate portion that rises from one end portion of the cylindrical portion.
- the slinger may be formed of a thermoplastic elastomer magnet having an outer peripheral surface integrally formed over the cylindrical portion and the standing plate portion of the slinger.
- thermoplastic elastomer magnetic encoder having the slinger is an insert-molded product in which the thermoplastic elastomer magnet is integrally molded by injecting a magnetic powder-containing thermoplastic elastomer into a mold in which the slinger is disposed. Also good. Alternatively, a slinger and a thermoplastic elastomer magnet may be manufactured separately, and a thermoplastic elastomer magnetic encoder having the slinger integrated by bonding them together may be used.
- an adhesive at this time an isocyanate, urethane, ester, vinyl chloride, rubber, or cyanoacrylate adhesive can be used. In particular, urethane type and cyanoacrylate type are preferable.
- the slinger material is preferably a nonmagnetic material.
- the magnetic powder distribution in the thermoplastic elastomer magnetic encoder is improved compared to the case where a magnetic material is used, so that the magnetic force can be increased.
- thermoplastic elastomer magnetic encoder having a slinger by producing a thermoplastic elastomer magnet separately, and bonding and integrating them, when a thermoplastic elastomer magnetic encoder having a slinger is used, by using a magnetic material as a slinger material, Compared with the case of using a nonmagnetic material, the magnetic force can be increased.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
Abstract
A bearing device adapted for use in a wheel and equipped with a rotation sensing device is compact in size and enables accurate sensing of rotation by preventing wear, swelling, and positional displacement of a magnetic encoder. A bearing device for a wheel, having rolling bodies (5) mounted between a rolling surface (3) on the inner periphery of an outer member (1) and a rolling surface (4) on the outer periphery of an inner member (2), wherein a magnetic encoder (21) is mounted to the outer peripheral surface of the inner member (2). A sensor holder (25) incorporating a magnetic sensor (24) is mounted to the outer member (1), and the magnetic sensor (24) faces axially the magnetic encoder (21) with a predetermined gap therebetween. A gap between the sensor holder (25) and the inner member (2) is sealed by a sealing device (8). The magnetic encoder (21) is a plastic magnetic encoder. On either or both of the magnetic encoder (21) and the inner member (2) are formed engaging sections (21ab, 10a) for engaging the magnetic encoder (21) and the inner member (2) with each other to axially restrict the magnetic encoder (21) in position.
Description
本出願は、2008年7月28日出願の特願2008-193474、および2008年8月11日出願の特願2008-207113の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。
This application claims the priority of Japanese Patent Application No. 2008-193474 filed on July 28, 2008 and Japanese Patent Application No. 2008-207113 filed on August 11, 2008, which is incorporated herein by reference in its entirety. Quote as part.
この発明は、アンチロックブレーキシステムを備えた自動車等に用いられる回転検出装置付き車輪用軸受装置に関する。
The present invention relates to a wheel bearing device with a rotation detecting device used for an automobile or the like equipped with an anti-lock brake system.
近年、経済成長の著しいBRICs諸国向けの自動車部品の輸出が拡大している。そのような自動車部品のうち、車体に対して車輪を回転自在に支持する車輪用軸受装置では、前記アンチロックブレーキシステム(ABS)のタイヤロック検知センサとして、磁気エンコーダと、この磁気エンコーダをターゲットとして車輪の回転を検出する磁気センサとでなる回転検出装置を内蔵させ、前記磁気エンコーダとして磁性ゴム製のものを使用する場合が多い。
In recent years, exports of automobile parts to BRICs countries where economic growth is remarkable are expanding. Among such automobile parts, in a wheel bearing device that rotatably supports a wheel with respect to a vehicle body, as a tire lock detection sensor of the anti-lock brake system (ABS), a magnetic encoder, and this magnetic encoder as a target In many cases, a rotation detector including a magnetic sensor for detecting the rotation of the wheel is incorporated, and the magnetic encoder is made of magnetic rubber.
上記したBRICs諸国では、未舗装の悪路で自動車が運転される場合も多いので、その自動車の車輪用軸受装置に回転検出装置が内蔵される場合には、その磁気エンコーダとして耐摩耗性の高いものが要求される。このため、従来は、加熱圧縮により製造される磁性ゴム製の磁気エンコーダの表面を非磁性材料からなる保護カバーで被覆して、摩耗防止を図るなどの対策が講じられていた。
In the above-mentioned BRICs countries, an automobile is often driven on an unpaved rough road. Therefore, when a rotation detecting device is built in a wheel bearing device of the automobile, the magnetic encoder has high wear resistance. Things are required. For this reason, conventionally, measures have been taken such as to prevent wear by covering the surface of a magnetic rubber magnetic encoder manufactured by heat compression with a protective cover made of a non-magnetic material.
しかし、非磁性材料からなる保護カバーで磁気エンコーダの表面を被覆するのでは、磁気エンコーダの表面と、これに対向して配置される磁気センサとのギャップが大きくなるため、より磁束密度の大きい磁気エンコーダが必要となる。
However, if the surface of the magnetic encoder is covered with a protective cover made of a non-magnetic material, the gap between the surface of the magnetic encoder and the magnetic sensor arranged opposite to the surface becomes large. An encoder is required.
そこで、このような課題を解決するものとして、前記磁気エンコーダと磁気センサとを軸受内部に設置した回転検出装置付き車輪用軸受装置も提案されている(例えば特許文献1)。
Therefore, as a solution to such a problem, a wheel bearing device with a rotation detecting device in which the magnetic encoder and the magnetic sensor are installed inside the bearing has also been proposed (for example, Patent Document 1).
しかし、このようにゴム製の磁気エンコーダを軸受内部に設置した場合、潤滑剤であるグリースが磁気エンコーダに接触し、しかも磁気エンコーダは転動体などの軸受発熱部近傍の高温環境下に配置されることになるので、磁気エンコーダが膨潤しやすく、磁気信号が乱れる不具合が生じ、正確な回転検出ができないという問題がある。また、このような構成では、軸方向スペースが大きくなるので、コンパクト化する必要もある。
However, when a rubber magnetic encoder is installed inside the bearing in this way, the grease, which is a lubricant, comes into contact with the magnetic encoder, and the magnetic encoder is placed in a high-temperature environment near the bearing heat generating part such as a rolling element. As a result, there is a problem that the magnetic encoder easily swells, the magnetic signal is disturbed, and accurate rotation detection cannot be performed. Further, in such a configuration, the axial space becomes large, so it is necessary to make it compact.
このような要請に応えるものとして、本発明者等は、図11や図12に示す構成の回転検出装置付き車輪用軸受装置を開発した。この回転検出装置付き車輪用軸受装置は、回転輪となる軸受の内方部材42の外周面に嵌合したアキシアル型のプラスチック磁気エンコーダ71と、磁気センサ74を内蔵し固定輪となる軸受の外方部材41に取付けられた円環状のセンサホルダ75と、前記プラスチック磁気エンコーダ71よりも軸受外側位置で前記センサホルダ75と前記内方部材42との間の空間を密封する密封装置48とを備える。図11の構成例では、磁気センサ74がプラスチック磁気エンコーダ71よりも軸受内側位置でプラスチック磁気エンコーダ71と所定間隔を介して軸方向に対峙するように配置される。図12の構成例では、プラスチック磁気エンコーダ71の外周面が軸方向に対して傾斜した傾斜面71bとされ、磁気センサ74はプラスッチック磁気エンコーダ71の傾斜面71bに対して所定隙間を介して平行に対峙するように配置される。
In order to meet such a demand, the present inventors have developed a wheel bearing device with a rotation detection device having the configuration shown in FIGS. This wheel bearing device with a rotation detection device includes an axial type plastic magnetic encoder 71 fitted on the outer peripheral surface of an inner member 42 of a bearing serving as a rotating wheel, and an outside of the bearing serving as a fixed wheel with a built-in magnetic sensor 74. An annular sensor holder 75 attached to the side member 41 and a sealing device 48 that seals a space between the sensor holder 75 and the inner member 42 at a position outside the bearing than the plastic magnetic encoder 71. . In the configuration example of FIG. 11, the magnetic sensor 74 is disposed so as to face the plastic magnetic encoder 71 in the axial direction with a predetermined interval at a position inside the bearing relative to the plastic magnetic encoder 71. In the configuration example of FIG. 12, the outer peripheral surface of the plastic magnetic encoder 71 is an inclined surface 71b inclined with respect to the axial direction, and the magnetic sensor 74 is parallel to the inclined surface 71b of the plastic magnetic encoder 71 via a predetermined gap. Arranged to face each other.
上記構成の回転検出装置付き車輪用軸受装置では、磁気エンコーダとして、スリンガを有しないプラスチック磁気エンコーダ71を用いているので、コンパクト化およびコスト低減が可能となる。
しかし、この構成の場合、特許文献1に開示のゴム製磁気エンコーダのようにスリンガを介して内方部材42に嵌合したものに比べて、内方部材42に対するプラスチック磁気エンコーダ71の結合力が小さくなり、プラスチック磁気エンコーダ71の軸方向位置決めが不十分となる懸念がある。 In the wheel bearing device with a rotation detection device having the above-described configuration, the plasticmagnetic encoder 71 having no slinger is used as the magnetic encoder, so that the size and cost can be reduced.
However, in the case of this configuration, the coupling force of the plasticmagnetic encoder 71 to the inner member 42 is higher than that of the rubber magnetic encoder disclosed in Patent Document 1 fitted to the inner member 42 via a slinger. There is a concern that the axial position of the plastic magnetic encoder 71 may be insufficient due to a decrease in the size.
しかし、この構成の場合、特許文献1に開示のゴム製磁気エンコーダのようにスリンガを介して内方部材42に嵌合したものに比べて、内方部材42に対するプラスチック磁気エンコーダ71の結合力が小さくなり、プラスチック磁気エンコーダ71の軸方向位置決めが不十分となる懸念がある。 In the wheel bearing device with a rotation detection device having the above-described configuration, the plastic
However, in the case of this configuration, the coupling force of the plastic
また、この場合にもプラスチック磁気エンコーダが転動体などの軸受発熱部近傍の高温環境下に配置されることに変わりはなく、さらに自動車が極低温地域で使用される場合にはプラスチック磁気エンコーダが低温環境下に晒されることになる。このため、プラスチック磁気エンコーダと、プラスチック磁気エンコーダが取付けられる金属製の軸との線膨張率の違いから、プラスチック磁気エンコーダが損傷し易く、磁気信号が乱れる不具合が生じ、やはり正確な回転検出ができないという問題が残る。
Also in this case, the plastic magnetic encoder is still placed in a high temperature environment near the bearing heat generating part such as a rolling element, and when the automobile is used in a very low temperature region, the plastic magnetic encoder is low in temperature. You will be exposed to the environment. For this reason, the difference in linear expansion coefficient between the plastic magnetic encoder and the metal shaft to which the plastic magnetic encoder is attached causes the plastic magnetic encoder to be easily damaged, causing a problem that the magnetic signal is disturbed, and also cannot accurately detect rotation. The problem remains.
この発明の目的は、コンパクト化が可能で、磁気エンコーダの摩耗・膨潤・損傷の防止や位置ずれを防止、高低温環境化でも使用できて正確な回転検出が可能な回転検出装置付き車輪用軸受装置を提供することである。
An object of the present invention is to provide a wheel bearing with a rotation detecting device that can be made compact, prevent wear, swelling, damage and displacement of a magnetic encoder, and can be used even in a high and low temperature environment and can detect rotation accurately. Is to provide a device.
この発明の回転検出装置付き車輪用軸受装置は、内周に複列の転走面が形成され固定側部材となる外方部材と、前記各転走面に対向する転走面が外周に形成され回転側部材となる内方部材と、これら対向する転走面間に介在した複列の転動体とを備え、車体に対して車輪を回転自在に支持する車輪用軸受装置であって、前記内方部材の外周面に嵌合して取付けられた磁気エンコーダと、磁気センサを内蔵しその磁気センサが前記磁気エンコーダと所定隙間を介して軸方向に対峙するように前記外方部材に取付けられた円環状のセンサホルダと、前記磁気エンコーダよりも軸受外側位置で前記センサホルダと前記内方部材との間の空間を密封する密封装置とを備え、前記磁気エンコーダをプラスチック磁気エンコーダとすると共に、この磁気エンコーダと前記内方部材のいずれか一方または両方に、これら両部材を互いに係合させて磁気エンコーダを軸方向に位置規制する係合部を形成した。
この構成によると、磁気センサを内蔵したセンサホルダを、その磁気センサが前記磁気エンコーダと所定間隔を介して軸方向に対峙するように外方部材に取付け、磁気エンコーダよりも軸受外側位置でセンサホルダと内方部材との間の空間を密封する密封装置を設けている。このため、外部からの異物などにより磁気エンコーダが摩耗するのを防止できる。特に、磁気エンコーダとしてプラスチック磁気エンコーダを用いているので、その磁石部が潤滑剤であるグリースに接触して膨潤するのを防止できる。また、磁気エンコーダと内方部材のいずれか一方または両方に、これら両部材を互いに係合させて磁気エンコーダを軸方向に位置規制する係合部を形成しているので、磁気エンコーダの固定位置を正確に決めることができ、軸受の回転や温度変化等により位置ずれするのを防止することもできる。その結果、正確な回転検出が可能となる。
また、センサホルダと同じ軸方向位置に磁気エンコーダが配置されるので、磁気エンコーダの軸方向長さ分だけ、回転検出装置付き車輪用軸受装置の軸方向長さを短くでき、装置のコンパクト化が可能となる。 In the wheel bearing device with a rotation detecting device of the present invention, a double row rolling surface is formed on the inner periphery and an outer member serving as a fixed member and a rolling surface facing each of the rolling surfaces are formed on the outer periphery. A bearing device for a wheel that includes an inner member serving as a rotation side member and a double row rolling element interposed between the facing rolling surfaces, and rotatably supports the wheel with respect to the vehicle body, A magnetic encoder fitted to and attached to the outer peripheral surface of the inner member and a magnetic sensor are incorporated, and the magnetic sensor is attached to the outer member so as to face the magnetic encoder in the axial direction through a predetermined gap. An annular sensor holder, and a sealing device that seals a space between the sensor holder and the inner member at a position outside the bearing than the magnetic encoder, and the magnetic encoder is a plastic magnetic encoder, This magnetic energy Either or both of the coder and the inner member to form an engagement portion for positional regulation of the magnetic encoder in the axial direction of the both members are engaged with each other.
According to this configuration, the sensor holder with the built-in magnetic sensor is attached to the outer member so that the magnetic sensor faces the magnetic encoder in the axial direction at a predetermined interval, and the sensor holder is positioned outside the bearing relative to the magnetic encoder. A sealing device is provided for sealing a space between the inner member and the inner member. For this reason, it is possible to prevent the magnetic encoder from being worn by foreign matter or the like from the outside. In particular, since a plastic magnetic encoder is used as the magnetic encoder, it is possible to prevent the magnet portion from coming into contact with the grease as the lubricant and swelling. In addition, since either or both of the magnetic encoder and the inner member are engaged with each other to form an engaging portion for restricting the position of the magnetic encoder in the axial direction, the fixing position of the magnetic encoder is set. It can be determined accurately and can be prevented from being displaced due to rotation of the bearing or temperature change. As a result, accurate rotation detection is possible.
In addition, since the magnetic encoder is arranged at the same axial position as the sensor holder, the axial length of the wheel bearing device with the rotation detecting device can be shortened by the axial length of the magnetic encoder, and the device can be made compact. It becomes possible.
この構成によると、磁気センサを内蔵したセンサホルダを、その磁気センサが前記磁気エンコーダと所定間隔を介して軸方向に対峙するように外方部材に取付け、磁気エンコーダよりも軸受外側位置でセンサホルダと内方部材との間の空間を密封する密封装置を設けている。このため、外部からの異物などにより磁気エンコーダが摩耗するのを防止できる。特に、磁気エンコーダとしてプラスチック磁気エンコーダを用いているので、その磁石部が潤滑剤であるグリースに接触して膨潤するのを防止できる。また、磁気エンコーダと内方部材のいずれか一方または両方に、これら両部材を互いに係合させて磁気エンコーダを軸方向に位置規制する係合部を形成しているので、磁気エンコーダの固定位置を正確に決めることができ、軸受の回転や温度変化等により位置ずれするのを防止することもできる。その結果、正確な回転検出が可能となる。
また、センサホルダと同じ軸方向位置に磁気エンコーダが配置されるので、磁気エンコーダの軸方向長さ分だけ、回転検出装置付き車輪用軸受装置の軸方向長さを短くでき、装置のコンパクト化が可能となる。 In the wheel bearing device with a rotation detecting device of the present invention, a double row rolling surface is formed on the inner periphery and an outer member serving as a fixed member and a rolling surface facing each of the rolling surfaces are formed on the outer periphery. A bearing device for a wheel that includes an inner member serving as a rotation side member and a double row rolling element interposed between the facing rolling surfaces, and rotatably supports the wheel with respect to the vehicle body, A magnetic encoder fitted to and attached to the outer peripheral surface of the inner member and a magnetic sensor are incorporated, and the magnetic sensor is attached to the outer member so as to face the magnetic encoder in the axial direction through a predetermined gap. An annular sensor holder, and a sealing device that seals a space between the sensor holder and the inner member at a position outside the bearing than the magnetic encoder, and the magnetic encoder is a plastic magnetic encoder, This magnetic energy Either or both of the coder and the inner member to form an engagement portion for positional regulation of the magnetic encoder in the axial direction of the both members are engaged with each other.
According to this configuration, the sensor holder with the built-in magnetic sensor is attached to the outer member so that the magnetic sensor faces the magnetic encoder in the axial direction at a predetermined interval, and the sensor holder is positioned outside the bearing relative to the magnetic encoder. A sealing device is provided for sealing a space between the inner member and the inner member. For this reason, it is possible to prevent the magnetic encoder from being worn by foreign matter or the like from the outside. In particular, since a plastic magnetic encoder is used as the magnetic encoder, it is possible to prevent the magnet portion from coming into contact with the grease as the lubricant and swelling. In addition, since either or both of the magnetic encoder and the inner member are engaged with each other to form an engaging portion for restricting the position of the magnetic encoder in the axial direction, the fixing position of the magnetic encoder is set. It can be determined accurately and can be prevented from being displaced due to rotation of the bearing or temperature change. As a result, accurate rotation detection is possible.
In addition, since the magnetic encoder is arranged at the same axial position as the sensor holder, the axial length of the wheel bearing device with the rotation detecting device can be shortened by the axial length of the magnetic encoder, and the device can be made compact. It becomes possible.
この発明において、前記係合部が、前記内方部材の外周面に形成された凸部と、前記プラスチック磁気エンコーダの内周面に形成され前記凸部に係合する凹部とからなるものであっても良い。この構成の場合、簡単な構成の係合部で磁気エンコーダの軸方向の位置規制が行える。
In this invention, the engaging portion is composed of a convex portion formed on the outer peripheral surface of the inner member and a concave portion formed on the inner peripheral surface of the plastic magnetic encoder and engaged with the convex portion. May be. In the case of this configuration, the position of the magnetic encoder in the axial direction can be restricted by an engaging portion with a simple configuration.
この発明において、前記係合部が、前記内方部材の外周面に形成された凹部と、前記プラスチック磁気エンコーダの内周面に形成され前記凹部に係合する凸部とからなるものであっても良い。この構成の場合、簡単な構成の係合部で磁気エンコーダの軸方向の位置規制が行える。
In this invention, the engaging portion is composed of a concave portion formed on the outer peripheral surface of the inner member and a convex portion formed on the inner peripheral surface of the plastic magnetic encoder and engaged with the concave portion. Also good. In the case of this configuration, the position of the magnetic encoder in the axial direction can be restricted by an engaging portion with a simple configuration.
この発明において、前記係合部が、前記内方部材の外周面に形成され前記プラスチック磁気エンコーダの軸方向に向く幅面に係合する段差面からなるものであっても良い。この構成の場合、簡単な構成の係合部で磁気エンコーダの軸方向の位置規制が行える。
In this invention, the engaging portion may be formed of a stepped surface that is formed on the outer peripheral surface of the inner member and engages with a width surface facing the axial direction of the plastic magnetic encoder. In the case of this configuration, the position of the magnetic encoder in the axial direction can be restricted by an engaging portion with a simple configuration.
この発明において、前記プラスチック磁気エンコーダは、円周方向に磁極が並ぶ多極磁石を有する磁気エンコーダであり、前記多極磁石は磁性粉と熱可塑性樹脂とを含み、前記磁性粉含有熱可塑性樹脂の溶融粘度が30Pa・s以上1500Pa・s以下であっても良い。
プラスチック多極磁石の材料である磁性粉含有熱可塑性樹脂の溶融粘度が30Pa・sよりも小さいと、射出成形時においてバリが多量に発生し、適切に成形することが困難になる。また、熱可塑性樹脂の溶融粘度が1500Pa・sよりも大きいと、熱可塑性樹脂に磁性粉を混練することが困難となる。特に、磁性粉の割合を高くした場合に、混練不良が顕著となる。そこで、磁性粉含有熱可塑性樹脂の溶融粘度を、30Pa・s以上で、1500Pa・s以下とすることにより、生産性の良好なプラスチック磁気エンコーダを得ることができる。また、プラスチック磁気エンコーダの生産性向上は、回転検出装置付き車輪用軸受装置の生産性向上にもつながる。 In this invention, the plastic magnetic encoder is a magnetic encoder having a multipolar magnet in which magnetic poles are arranged in a circumferential direction, and the multipolar magnet includes magnetic powder and a thermoplastic resin, and the magnetic powder-containing thermoplastic resin The melt viscosity may be 30 Pa · s to 1500 Pa · s.
If the melt viscosity of the magnetic powder-containing thermoplastic resin, which is a material of the plastic multipolar magnet, is smaller than 30 Pa · s, a large amount of burrs are generated at the time of injection molding, and it becomes difficult to appropriately mold. If the melt viscosity of the thermoplastic resin is greater than 1500 Pa · s, it will be difficult to knead the magnetic powder into the thermoplastic resin. In particular, when the proportion of the magnetic powder is increased, the kneading failure becomes remarkable. Therefore, by setting the melt viscosity of the magnetic powder-containing thermoplastic resin to 30 Pa · s or more and 1500 Pa · s or less, a plastic magnetic encoder with good productivity can be obtained. In addition, the improvement in the productivity of the plastic magnetic encoder leads to the improvement in the productivity of the wheel bearing device with the rotation detection device.
プラスチック多極磁石の材料である磁性粉含有熱可塑性樹脂の溶融粘度が30Pa・sよりも小さいと、射出成形時においてバリが多量に発生し、適切に成形することが困難になる。また、熱可塑性樹脂の溶融粘度が1500Pa・sよりも大きいと、熱可塑性樹脂に磁性粉を混練することが困難となる。特に、磁性粉の割合を高くした場合に、混練不良が顕著となる。そこで、磁性粉含有熱可塑性樹脂の溶融粘度を、30Pa・s以上で、1500Pa・s以下とすることにより、生産性の良好なプラスチック磁気エンコーダを得ることができる。また、プラスチック磁気エンコーダの生産性向上は、回転検出装置付き車輪用軸受装置の生産性向上にもつながる。 In this invention, the plastic magnetic encoder is a magnetic encoder having a multipolar magnet in which magnetic poles are arranged in a circumferential direction, and the multipolar magnet includes magnetic powder and a thermoplastic resin, and the magnetic powder-containing thermoplastic resin The melt viscosity may be 30 Pa · s to 1500 Pa · s.
If the melt viscosity of the magnetic powder-containing thermoplastic resin, which is a material of the plastic multipolar magnet, is smaller than 30 Pa · s, a large amount of burrs are generated at the time of injection molding, and it becomes difficult to appropriately mold. If the melt viscosity of the thermoplastic resin is greater than 1500 Pa · s, it will be difficult to knead the magnetic powder into the thermoplastic resin. In particular, when the proportion of the magnetic powder is increased, the kneading failure becomes remarkable. Therefore, by setting the melt viscosity of the magnetic powder-containing thermoplastic resin to 30 Pa · s or more and 1500 Pa · s or less, a plastic magnetic encoder with good productivity can be obtained. In addition, the improvement in the productivity of the plastic magnetic encoder leads to the improvement in the productivity of the wheel bearing device with the rotation detection device.
この発明において、前記熱可塑性樹脂は、ポリアミド12、ポリアミド612、ポリアミド11、ポリフェニレンスルフィドの群から選択される1つ以上の化合物を含むものであっても良い。
これらの熱可塑性樹脂は、軸受に潤滑剤として使用されるグリースに高温浸漬された時でも非常に膨潤量が小さい(10%以下)ので、吸水性に乏しく、低温下での結露、塩水や泥水、雨水など、水分が多い環境下においても劣化に強く、車輪用軸受装置に組み込まれるプラスチック磁気エンコーダの材料として特に有効である。 In the present invention, the thermoplastic resin may include one or more compounds selected from the group consisting ofpolyamide 12, polyamide 612, polyamide 11, and polyphenylene sulfide.
These thermoplastic resins have very low swelling (less than 10%) even when immersed in grease used as a lubricant for bearings at high temperatures, so they have poor water absorption, condensation at low temperatures, salt water and muddy water. It is resistant to deterioration even in an environment with a lot of moisture such as rain water, and is particularly effective as a material for a plastic magnetic encoder incorporated in a wheel bearing device.
これらの熱可塑性樹脂は、軸受に潤滑剤として使用されるグリースに高温浸漬された時でも非常に膨潤量が小さい(10%以下)ので、吸水性に乏しく、低温下での結露、塩水や泥水、雨水など、水分が多い環境下においても劣化に強く、車輪用軸受装置に組み込まれるプラスチック磁気エンコーダの材料として特に有効である。 In the present invention, the thermoplastic resin may include one or more compounds selected from the group consisting of
These thermoplastic resins have very low swelling (less than 10%) even when immersed in grease used as a lubricant for bearings at high temperatures, so they have poor water absorption, condensation at low temperatures, salt water and muddy water. It is resistant to deterioration even in an environment with a lot of moisture such as rain water, and is particularly effective as a material for a plastic magnetic encoder incorporated in a wheel bearing device.
この発明において、前記磁性粉がフェライト系磁性粉であっても良い。フェライト系磁性粉は酸化しにくいため、プラスチップ磁気エンコーダの防食性を向上させることができる。
In this invention, the magnetic powder may be a ferrite-based magnetic powder. Since the ferrite-based magnetic powder is difficult to oxidize, the corrosion resistance of the plus-chip magnetic encoder can be improved.
この発明において、前記磁性粉が異方性フェライト系磁性粉であっても良い。
In this invention, the magnetic powder may be anisotropic ferrite magnetic powder.
この発明において、前記プラスチック磁気エンコーダが射出成形品であっても良い。射出成形によると、プラスチック磁気エンコーダの成形が容易に行える。
In this invention, the plastic magnetic encoder may be an injection molded product. According to injection molding, plastic magnetic encoders can be easily molded.
この発明において、前記プラスチック磁気エンコーダは射出成形において磁場成形したものであっても良い。このように磁場成形することにより、より磁束密度の大きなプラスチック磁気エンコーダを得ることができる。
In this invention, the plastic magnetic encoder may be a magnetic field formed by injection molding. By forming the magnetic field in this way, a plastic magnetic encoder with a higher magnetic flux density can be obtained.
この発明において、前記プラスチック磁気エンコーダが軸方向に対して傾斜した傾斜面をもち、前記円環状のセンサホルダが前記プラスチック磁気エンコーダの傾斜面に対して所定間隔を介して平行に対峙するように、外方部材に装着されていても良い。
このように傾斜面でプラスチック磁気エンコーダがセンサホルダと対峙する構成とすると、プラスチック磁気エンコーダは断面概形三角形状となるため、コンパクトな構成でプラスチック磁気エンコーダを強化することができる。 In this invention, the plastic magnetic encoder has an inclined surface inclined with respect to the axial direction, and the annular sensor holder is opposed to the inclined surface of the plastic magnetic encoder in parallel with a predetermined interval. It may be attached to the outer member.
When the plastic magnetic encoder is configured to face the sensor holder on the inclined surface as described above, the plastic magnetic encoder has a triangular shape in cross section, and thus the plastic magnetic encoder can be reinforced with a compact configuration.
このように傾斜面でプラスチック磁気エンコーダがセンサホルダと対峙する構成とすると、プラスチック磁気エンコーダは断面概形三角形状となるため、コンパクトな構成でプラスチック磁気エンコーダを強化することができる。 In this invention, the plastic magnetic encoder has an inclined surface inclined with respect to the axial direction, and the annular sensor holder is opposed to the inclined surface of the plastic magnetic encoder in parallel with a predetermined interval. It may be attached to the outer member.
When the plastic magnetic encoder is configured to face the sensor holder on the inclined surface as described above, the plastic magnetic encoder has a triangular shape in cross section, and thus the plastic magnetic encoder can be reinforced with a compact configuration.
この発明において、前記磁気エンコーダとして、プラスチック磁気エンコーダに代えて、被検出部となる磁石が熱可塑性エラストマーに磁性粉を混入させた熱可塑性エラストマー磁石を備えたものであっても良い。
この構成によれば、磁気エンコーダとして熱可塑性エラストマー磁気エンコーダを用いているので、ゴム磁気エンコーダと異なり、その磁石部が潤滑剤であるグリースに接触しても、膨潤することが回避される。また、高低温環境下での線膨張率差による磁気エンコーダ内部の応力も、プラスチック磁気エンコーダに比べて、熱可塑性エラストマーであれば小さくなり割れることはない。その結果、磁気エンコーダの摩耗・膨潤や損傷を防止して正確な回転検出が可能である。 In the present invention, as the magnetic encoder, instead of the plastic magnetic encoder, the magnet to be detected may include a thermoplastic elastomer magnet in which magnetic powder is mixed in a thermoplastic elastomer.
According to this configuration, since the thermoplastic elastomer magnetic encoder is used as the magnetic encoder, unlike the rubber magnetic encoder, it is avoided that the magnet portion swells even when it comes into contact with grease as a lubricant. In addition, the stress inside the magnetic encoder due to the difference in linear expansion coefficient in a high and low temperature environment is smaller than a plastic magnetic encoder and is not cracked if it is a thermoplastic elastomer. As a result, wear, swelling and damage of the magnetic encoder can be prevented and accurate rotation detection is possible.
この構成によれば、磁気エンコーダとして熱可塑性エラストマー磁気エンコーダを用いているので、ゴム磁気エンコーダと異なり、その磁石部が潤滑剤であるグリースに接触しても、膨潤することが回避される。また、高低温環境下での線膨張率差による磁気エンコーダ内部の応力も、プラスチック磁気エンコーダに比べて、熱可塑性エラストマーであれば小さくなり割れることはない。その結果、磁気エンコーダの摩耗・膨潤や損傷を防止して正確な回転検出が可能である。 In the present invention, as the magnetic encoder, instead of the plastic magnetic encoder, the magnet to be detected may include a thermoplastic elastomer magnet in which magnetic powder is mixed in a thermoplastic elastomer.
According to this configuration, since the thermoplastic elastomer magnetic encoder is used as the magnetic encoder, unlike the rubber magnetic encoder, it is avoided that the magnet portion swells even when it comes into contact with grease as a lubricant. In addition, the stress inside the magnetic encoder due to the difference in linear expansion coefficient in a high and low temperature environment is smaller than a plastic magnetic encoder and is not cracked if it is a thermoplastic elastomer. As a result, wear, swelling and damage of the magnetic encoder can be prevented and accurate rotation detection is possible.
この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきでない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の部品番号は、同一部分を示す。
この発明の第1実施形態にかかる回転検出装置付き車輪用軸受装置の断面図である。
図1におけるA部の拡大断面図である。
プラスチック磁気エンコーダを正面から見た磁極の説明図である。
この発明の第2実施形態にかかる回転検出装置付き車輪用軸受装置の部分拡大断面図である。
この発明の第3実施形態にかかる回転検出装置付き車輪用軸受装置の部分拡大断面図である。
この発明の第4実施形態にかかる回転検出装置付き車輪用軸受装置の部分拡大断面図である。
この発明の第5実施形態にかかる回転検出装置付き車輪用軸受装置の部分拡大断面図である。
この発明の第1応用例にかかる回転検出装置付き車輪用軸受装置であって、図1におけるA部に相当する部分の拡大断面図である。
エラストマーの応力-ひずみ挙動をプラスチックなどの他の材料と比較して示したグラフである。
この発明の第2応用例にかかる回転検出装置付き車輪用軸受装置の部分拡大断面図である。
提案例の部分拡大断面図である。
他の提案例の部分拡大断面図である。
The present invention will be more clearly understood from the following description of preferred embodiments with reference to the accompanying drawings. However, the embodiments and drawings are merely for illustration and description and should not be used to define the scope of the present invention. The scope of the invention is defined by the appended claims. In the accompanying drawings, the same part number in a plurality of drawings indicates the same part.
1 is a cross-sectional view of a wheel bearing device with a rotation detector according to a first embodiment of the present invention. It is an expanded sectional view of the A section in FIG. It is explanatory drawing of the magnetic pole which looked at the plastic magnetic encoder from the front. It is a partial expanded sectional view of the bearing device for wheels with a rotation detector concerning a 2nd embodiment of this invention. It is a partial expanded sectional view of the wheel bearing apparatus with a rotation detector concerning 3rd Embodiment of this invention. It is a partial expanded sectional view of the wheel bearing apparatus with a rotation detector concerning 4th Embodiment of this invention. It is a partial expanded sectional view of the bearing device for wheels with a rotation detector concerning a 5th embodiment of this invention. FIG. 2 is a wheel bearing device with a rotation detection device according to a first application example of the present invention, and is an enlarged cross-sectional view of a portion corresponding to part A in FIG. 1. 2 is a graph showing the stress-strain behavior of an elastomer compared to other materials such as plastic. It is a partial expanded sectional view of the wheel bearing apparatus with a rotation detection apparatus concerning the 2nd application example of this invention. It is a partial expanded sectional view of a proposal example. It is a partial expanded sectional view of other proposal examples.
この発明の第1実施形態を図1ないし図3と共に説明する。この実施形態の回転検出装置付き車輪用軸受装置は、第3世代型に分類される複列のアンギュラ玉軸受型であり、内輪回転タイプでかつ駆動輪支持用のものである。なお、この明細書において、車両に取付けた状態で車両の車幅方向の外側寄りとなる側をアウトボード側と呼び、車両の中央寄りとなる側をインボード側と呼ぶ。
A first embodiment of the present invention will be described with reference to FIGS. The wheel bearing device with a rotation detection device of this embodiment is a double row angular contact ball bearing type classified as a third generation type, and is an inner ring rotation type and a drive wheel support type. In this specification, the side closer to the outer side in the vehicle width direction of the vehicle when attached to the vehicle is referred to as the outboard side, and the side closer to the center of the vehicle is referred to as the inboard side.
この回転検出装置付き車輪用軸受装置における車輪用軸受装置は、図1に断面図で示すように、内周に複列の転走面3を形成した外方部材1と、これら各転走面3に対向する転走面4を外周に形成した内方部材2と、これら外方部材1および内方部材2の転走面3,4間に介在した複列の転動体5とで構成される。転動体5はボールからなり、各列毎に保持器6で保持されている。上記転走面3,4は断面円弧状であり、各転走面3,4は接触角が背面合わせとなるように形成されている。外方部材1と内方部材2との間の軸受空間のアウトボード側端は密封装置7によって密封されている。
As shown in the sectional view of FIG. 1, the wheel bearing device in the wheel bearing device with the rotation detecting device includes an outer member 1 in which a double row rolling surface 3 is formed on the inner periphery, and each of these rolling surfaces. 3, an inner member 2 formed on the outer periphery with a rolling surface 4 facing the outer periphery 3, and a double row rolling element 5 interposed between the outer member 1 and the rolling surfaces 3, 4 of the inner member 2. The The rolling elements 5 are formed of balls and are held by the cage 6 for each row. The rolling surfaces 3 and 4 have a circular arc shape in cross section, and the rolling surfaces 3 and 4 are formed so that the contact angles are aligned with the back surface. The end of the bearing space between the outer member 1 and the inner member 2 is sealed by a sealing device 7.
外方部材1は固定側部材となるものであって、車体の懸架装置(図示せず)におけるナックル60に取付ける車体取付用のフランジ1aを外周に有し、全体が一体の部品とされている。フランジ1aには、周方向の複数箇所に車体取付用のボルト孔14が設けられ、インボード側からナックル60のボルト挿通孔60aに挿通したナックルボルト61を前記フランジ1aのボルト孔14に螺合することにより、フランジ1aがナックル60にボルト止めされる。
内方部材2は回転側部材となるものであって、車輪取付用のハブフランジ9aを有するハブ輪9と、このハブ輪9の軸部9bのインボード側端の外周に嵌合した内輪10とでなる。これらハブ輪9および内輪10に、前記各列の転走面4が形成されている。ハブ輪9のインボード側端の外周には段差を持って小径となる内輪嵌合面12が設けられ、この内輪嵌合面12に内輪10が嵌合している。ハブ輪9の中心には貫通孔11が設けられている。この貫通孔11に、等速ジョイント62の外輪63のステム部63aを挿通し、ステム部63aの基端周辺の段面と先端に螺合するナット64との間で内方部材2を挟み込むことで、車輪用軸受装置と等速ジョイント62とを連結している。ハブフランジ9aには、周方向複数箇所にハブボルト15の圧入孔16が設けられている。ハブ輪9のハブフランジ9aの根元部付近には、ブレーキロータとホイール(図示せず)を案内する円筒状のパイロット部13がアウトボード側に突出している。このパイロット部13の案内により、前記ハブフランジ9aにブレーキロータとホイールとを重ね、ハブボルト15で固定する。 Theouter member 1 is a fixed side member, and has a flange 1a for mounting a vehicle body attached to a knuckle 60 in a suspension device (not shown) of the vehicle body on the outer periphery, and the whole is an integral part. . Bolt holes 14 for mounting the vehicle body are provided at a plurality of locations in the circumferential direction of the flange 1a, and knuckle bolts 61 inserted from the inboard side into the bolt insertion holes 60a of the knuckle 60 are screwed into the bolt holes 14 of the flange 1a. By doing so, the flange 1a is bolted to the knuckle 60.
Theinner member 2 is a rotating side member, and includes a hub wheel 9 having a hub flange 9a for wheel mounting, and an inner ring 10 fitted to the outer periphery of the end portion on the inboard side of the shaft portion 9b of the hub wheel 9. And become. The hub wheel 9 and the inner ring 10 are formed with the rolling surfaces 4 of the respective rows. An inner ring fitting surface 12 having a small diameter with a step is provided on the outer periphery of the inboard side end of the hub wheel 9, and the inner ring 10 is fitted to the inner ring fitting surface 12. A through hole 11 is provided at the center of the hub wheel 9. The stem portion 63a of the outer ring 63 of the constant velocity joint 62 is inserted into the through-hole 11, and the inner member 2 is sandwiched between the stepped surface around the proximal end of the stem portion 63a and the nut 64 that is screwed to the distal end. Thus, the wheel bearing device and the constant velocity joint 62 are connected. The hub flange 9a is provided with press-fit holes 16 for hub bolts 15 at a plurality of locations in the circumferential direction. In the vicinity of the base portion of the hub flange 9a of the hub wheel 9, a cylindrical pilot portion 13 for guiding a brake rotor and a wheel (not shown) protrudes toward the outboard side. The pilot rotor 13 guides the hub flange 9 a so that the brake rotor and the wheel are overlapped with each other and fixed with the hub bolt 15.
内方部材2は回転側部材となるものであって、車輪取付用のハブフランジ9aを有するハブ輪9と、このハブ輪9の軸部9bのインボード側端の外周に嵌合した内輪10とでなる。これらハブ輪9および内輪10に、前記各列の転走面4が形成されている。ハブ輪9のインボード側端の外周には段差を持って小径となる内輪嵌合面12が設けられ、この内輪嵌合面12に内輪10が嵌合している。ハブ輪9の中心には貫通孔11が設けられている。この貫通孔11に、等速ジョイント62の外輪63のステム部63aを挿通し、ステム部63aの基端周辺の段面と先端に螺合するナット64との間で内方部材2を挟み込むことで、車輪用軸受装置と等速ジョイント62とを連結している。ハブフランジ9aには、周方向複数箇所にハブボルト15の圧入孔16が設けられている。ハブ輪9のハブフランジ9aの根元部付近には、ブレーキロータとホイール(図示せず)を案内する円筒状のパイロット部13がアウトボード側に突出している。このパイロット部13の案内により、前記ハブフランジ9aにブレーキロータとホイールとを重ね、ハブボルト15で固定する。 The
The
図2は、図1におけるA部の拡大断面図である。内方部材2の外周面のインボード側端には、プラスチック磁気エンコーダ21が嵌合して取付けられる。一方、外方部材1のインボード側端には、前記プラスチック磁気エンコーダ21の磁束を検出する磁気センサ24を内蔵した円環状のセンサホルダ25が取付けられる。前記プラスチック磁気エンコーダ21と磁気センサ24とで、プラスチック磁気エンコーダ21と一体の内方部材2の回転、つまり車輪の回転を検出する回転検出装置20が構成される。
FIG. 2 is an enlarged cross-sectional view of part A in FIG. A plastic magnetic encoder 21 is fitted and attached to the inboard side end of the outer peripheral surface of the inner member 2. On the other hand, an annular sensor holder 25 incorporating a magnetic sensor 24 for detecting the magnetic flux of the plastic magnetic encoder 21 is attached to the inboard side end of the outer member 1. The plastic magnetic encoder 21 and the magnetic sensor 24 constitute a rotation detection device 20 that detects the rotation of the inner member 2 integral with the plastic magnetic encoder 21, that is, the rotation of the wheel.
プラスチック磁気エンコーダ21は円環状の単体であり、内方部材2の外周面(ここでは内輪10の外周面)に圧入して固定される内周面21a、および軸受内側が大径となるように軸方向に対して傾斜した外周面である傾斜面21bを有する。
センサホルダ25は、その磁気センサ24が前記プラスチック磁気エンコーダ21の傾斜面21bに対して所定間隔を介して平行に対峙するように外方部材1に取付けられる。 The plasticmagnetic encoder 21 is an annular single body, and the inner peripheral surface 21a that is press-fitted and fixed to the outer peripheral surface of the inner member 2 (here, the outer peripheral surface of the inner ring 10), and the inner side of the bearing have a large diameter. It has the inclined surface 21b which is an outer peripheral surface inclined with respect to the axial direction.
Thesensor holder 25 is attached to the outer member 1 so that the magnetic sensor 24 faces the inclined surface 21b of the plastic magnetic encoder 21 in parallel with a predetermined interval.
センサホルダ25は、その磁気センサ24が前記プラスチック磁気エンコーダ21の傾斜面21bに対して所定間隔を介して平行に対峙するように外方部材1に取付けられる。 The plastic
The
プラスチック磁気エンコーダ21は、プラスチック磁気エンコーダ21と内方部材2の両方に形成された係合部21ab,10aで内方部材2に係合させることで、軸方向に位置規制される。この場合、内方部材2の係合部10aは、内方部材2の構成部品である内輪10の外周面に周方向に延びて環状に形成された凸部である。プラスチック磁気エンコーダ21の係合部21abは、その内周面21aに周方向に延びて環状に形成され前記内方部材2の係合部10aに係合する凹部である。なお、上記係合部10a,21abは、円周方向の複数箇所に局部的に設けられたものであっても良い。
The position of the plastic magnetic encoder 21 is restricted in the axial direction by engaging the inner member 2 with engaging portions 21ab and 10a formed on both the plastic magnetic encoder 21 and the inner member 2. In this case, the engaging portion 10 a of the inner member 2 is a convex portion that extends in the circumferential direction on the outer peripheral surface of the inner ring 10 that is a component of the inner member 2 and is formed in an annular shape. The engaging portion 21ab of the plastic magnetic encoder 21 is a recess that extends in the circumferential direction on the inner peripheral surface 21a and is formed in an annular shape and engages with the engaging portion 10a of the inner member 2. The engaging portions 10a and 21ab may be locally provided at a plurality of locations in the circumferential direction.
プラスチック磁気エンコーダ21は、図3に示すように、円周方向に交互に磁極N,Sが並ぶように多極に磁化された環状のプラスチック多極磁石であり、磁性粉と、バインダとしての熱可塑性樹脂とを含む射出成形品とされる。前記磁極N,Sは、ピッチ円直径PCDにおいて、所定のピッチpとなるように形成されている。
As shown in FIG. 3, the plastic magnetic encoder 21 is an annular plastic multipolar magnet that is magnetized in multiple poles so that the magnetic poles N and S are alternately arranged in the circumferential direction. An injection molded product containing a plastic resin is used. The magnetic poles N and S are formed to have a predetermined pitch p in the pitch circle diameter PCD.
プラスチック磁気エンコーダ21の材料である磁性粉含有熱可塑性樹脂の溶融粘度が30Pa・sよりも小さいと、射出成形時においてバリが多量に発生し、適切に成形することが困難になる。また、熱可塑性樹脂の溶融粘度が1500Pa・sよりも大きいと、熱可塑性樹脂に磁性粉を混練することが困難となる。特に、磁性粉の割合を高くした場合に、混練不良が顕著となる。そこで、この実施形態では、前記磁性粉含有熱可塑性樹脂の溶融粘度を、30Pa・s以上で、1500Pa・s以下としている。これにより、生産性の良好なプラスチック磁気エンコーダ21を得ることができる。また、回転検出装置付き車輪用軸受装置の生産性向上にもつながる。
なお、この場合の熱可塑性樹脂の溶融粘度は、キャピログラフ(東洋精機(株)製)で、径1mmφ,ランド長10mmのキャピラリーを用いて、剪断速度100(l/s)、熱可塑性樹脂の融点+50℃の温度で測定した結果を示す。 If the melt viscosity of the magnetic powder-containing thermoplastic resin that is the material of the plasticmagnetic encoder 21 is smaller than 30 Pa · s, a large amount of burrs are generated during injection molding, making it difficult to mold appropriately. If the melt viscosity of the thermoplastic resin is greater than 1500 Pa · s, it will be difficult to knead the magnetic powder into the thermoplastic resin. In particular, when the proportion of the magnetic powder is increased, the kneading failure becomes remarkable. Therefore, in this embodiment, the melt viscosity of the magnetic powder-containing thermoplastic resin is 30 Pa · s or more and 1500 Pa · s or less. Thereby, the plastic magnetic encoder 21 with good productivity can be obtained. Moreover, it leads also to the productivity improvement of the wheel bearing apparatus with a rotation detection apparatus.
The melt viscosity of the thermoplastic resin in this case is a capillograph (manufactured by Toyo Seiki Co., Ltd.), using a capillary with a diameter of 1 mmφ and a land length of 10 mm, a shear rate of 100 (l / s), and a melting point of the thermoplastic resin. The result measured at the temperature of +50 degreeC is shown.
なお、この場合の熱可塑性樹脂の溶融粘度は、キャピログラフ(東洋精機(株)製)で、径1mmφ,ランド長10mmのキャピラリーを用いて、剪断速度100(l/s)、熱可塑性樹脂の融点+50℃の温度で測定した結果を示す。 If the melt viscosity of the magnetic powder-containing thermoplastic resin that is the material of the plastic
The melt viscosity of the thermoplastic resin in this case is a capillograph (manufactured by Toyo Seiki Co., Ltd.), using a capillary with a diameter of 1 mmφ and a land length of 10 mm, a shear rate of 100 (l / s), and a melting point of the thermoplastic resin. The result measured at the temperature of +50 degreeC is shown.
また、この場合の熱可塑性樹脂としては、軸受に潤滑剤として使用されるグリースに高温浸漬された時でも非常に膨潤量の小さい(10%以下)ポリアミド12、ポリアミド612、ポリアミド11、ポリフェニレンスルフィドの群から選択される1つ以上の化合物を含むものとするのが好ましい。このような熱可塑性樹脂は、吸水性が乏しいため、低温下での結露、塩水や泥水、雨水など、水分が多い環境下においても劣化に強く、車輪用軸受装置に組み込まれるプラスチック磁気エンコーダ21の材料として特に有効である。
The thermoplastic resin in this case includes polyamide 12, polyamide 612, polyamide 11 and polyphenylene sulfide, which have a very small amount of swelling (less than 10%) even when immersed in grease used as a lubricant in a bearing at a high temperature. It is preferred to include one or more compounds selected from the group. Since such a thermoplastic resin has poor water absorption, the thermoplastic resin is resistant to deterioration even in a high moisture environment such as dew condensation at low temperatures, salt water, muddy water, rainwater, etc., and the plastic magnetic encoder 21 incorporated in the wheel bearing device is used. It is particularly effective as a material.
プラスチック磁気エンコーダ21の材料である磁性粉としては、バリウム系やストロンチウム系のフェライト粉が用いられる。フェライト系磁性粉の場合、等方性のフェライト系磁性粉であっても異方性のフェライト系磁性粉であっても良い。このようなフェライト系磁性粉は酸化しにくいため、プラスチック磁気エンコーダ21の防食性を向上させることができる。また、フェライト系磁性粉のみでは磁力が不足する場合、サマリウム鉄系磁性粉やネオジウム鉄系磁性粉などの希土類系磁性粉をフェライト系磁性粉に混合して使用しても良い。
Barium-based or strontium-based ferrite powder is used as the magnetic powder that is the material of the plastic magnetic encoder 21. In the case of a ferrite magnetic powder, it may be an isotropic ferrite magnetic powder or an anisotropic ferrite magnetic powder. Since such ferrite-based magnetic powder is difficult to oxidize, the corrosion resistance of the plastic magnetic encoder 21 can be improved. In addition, when the magnetic force is insufficient with only ferrite magnetic powder, rare earth magnetic powder such as samarium iron magnetic powder or neodymium iron magnetic powder may be mixed with ferrite magnetic powder and used.
プラスチック磁気エンコーダ21は、以下の工程で製造される。まず、2軸押出機や混練機などを用いて、磁性粉と溶融した熱可塑性樹脂とを混練し、磁性粉を熱可塑性樹脂に適当に分散させる。その後、多極磁石の形状となるように射出成形等を行い、所望の成形体を得る。このようにして得られた成形品を、着磁ヨークを用いて多極に着磁することで磁極を形成する。なお、前記射出成形時には、磁気エンコーダ着磁面に対し80000Oe以上の垂直磁場を印加しながら磁場成形して、含有する磁性粉を磁場配向させるのが好ましい。このように磁場成形することにより、より磁束密度の大きなプラスチック磁気エンコーダ21を得ることができる。
The plastic magnetic encoder 21 is manufactured by the following process. First, the magnetic powder and the molten thermoplastic resin are kneaded using a twin screw extruder or a kneader, and the magnetic powder is appropriately dispersed in the thermoplastic resin. Then, injection molding etc. are performed so that it may become a shape of a multipolar magnet, and a desired molded object is obtained. The molded product thus obtained is magnetized into multiple poles using a magnetizing yoke to form a magnetic pole. At the time of the injection molding, it is preferable to form a magnetic field while applying a vertical magnetic field of 80000 Oe or more to the magnetic encoder magnetized surface and to orient the contained magnetic powder. By forming the magnetic field in this way, the plastic magnetic encoder 21 having a larger magnetic flux density can be obtained.
円環状のセンサホルダ25は、環状の芯金26と、磁気センサ24を内蔵し前記芯金26に結合された樹脂製のセンサ保持体27とでなる。センサ保持体27は、その軸方向の軸受内側端から内周面に突出してセンサ埋め込み突部27aが設けられる。このセンサ埋め込み突部27aは、先端面と軸受内側面との間の角部が、プラスチック磁気エンコーダ21の傾斜面21bに平行な傾斜面とされ、この傾斜面に沿って磁気センサ24が内蔵されている。センサ埋め込み突部27aは、円環状であっても、また円周方向の一部に局部的に設けられたものであっても良い。芯金26は、外方部材1の外周面に圧入して取付けられる外径円筒部26aと、この外径円筒部26aのインボード側端から内径側に延びる鍔部26bと、この鍔部26bの内径側端から軸方向に延びる内径円筒部26cとでなる。この芯金26は、耐食性を有するステンレス鋼板などをプレス加工して形成される。芯金26における内径円筒部26cの周方向複数箇所には穿孔28が形成され、この内径円筒部26cから鍔部26bにわたる部位に樹脂製のセンサ保持体27が一体モールド成形されている。前記芯金26の外径円筒部26aを外方部材1の外周面に圧入し、その鍔部26bを外方部材1のインボード側端面に密着させた状態で、センサホルダ25が外方部材1のインボード側端に固定される。
The annular sensor holder 25 includes an annular cored bar 26 and a resin sensor holder 27 that incorporates a magnetic sensor 24 and is coupled to the cored bar 26. The sensor holding body 27 protrudes from the inner bearing end in the axial direction to the inner peripheral surface, and is provided with a sensor embedded protrusion 27a. In the sensor embedded protrusion 27a, the corner between the tip surface and the bearing inner surface is an inclined surface parallel to the inclined surface 21b of the plastic magnetic encoder 21, and the magnetic sensor 24 is built in along the inclined surface. ing. The sensor embedding protrusion 27a may be annular or may be locally provided in a part of the circumferential direction. The core metal 26 includes an outer diameter cylindrical portion 26a that is press-fitted and attached to the outer peripheral surface of the outer member 1, a flange portion 26b that extends from the inboard side end of the outer diameter cylindrical portion 26a toward the inner diameter side, and the flange portion 26b. The inner diameter cylindrical portion 26c extends in the axial direction from the inner diameter side end of the inner diameter. The cored bar 26 is formed by pressing a corrosion resistant stainless steel plate or the like. Perforations 28 are formed at a plurality of locations in the circumferential direction of the inner diameter cylindrical portion 26c in the cored bar 26, and a resin sensor holding body 27 is integrally molded at a portion extending from the inner diameter cylindrical portion 26c to the flange portion 26b. In a state where the outer diameter cylindrical portion 26a of the metal core 26 is press-fitted into the outer peripheral surface of the outer member 1, and the flange portion 26b is brought into close contact with the inboard side end surface of the outer member 1, the sensor holder 25 is moved to the outer member. 1 is fixed to the inboard side end.
センサホルダ25の内周と内方部材2の外周との間の空間は、前記プラスチック磁気エンコーダ21よりも軸受外側位置に設置される密封装置8によって密封される。この密封装置8は、内方部材2の外周面およびセンサホルダ25の内周面にそれぞれ装着された環状の第1および第2のシール板31,32を有する。
第1のシール板31は、内方部材2の外周面に圧入して取付けられる円筒部31aと、この円筒部31aのインボード側端から外径側に延びる立板部31bとでなる断面L字状に形成されている。この第1のシール板31は、オーステナイト系ステンレス鋼板、あるいは防錆処理された冷間圧延鋼板をプレス加工して形成される。
第2のシール板32は、センサホルダ25の内周面におけるインボード側に圧入して取付けられる円筒部32aと、この円筒部32aのアウトボード側端から内径側に延びる立板部32bとでなる断面逆L字状に形成される。この第2のシール板32は、その立板部32bが第1のシール板31の立板部31bよりもアウトボード側に位置して、第1のシール板31の立板部31bと軸方向に対面するように配置される。第2のシール板32には、サイドリップ33a、グリースリップ33b、および中間リップ33cを有するシール部材33が加硫接着されている。このシール部材33はゴム等の弾性部材からなる。前記サイドリップ33aは第1のシール板31の立板部31bに摺接し、グリースリップ33bおよび中間リップ33cは第1のシール板31の円筒部31aに摺接する。第1のシール板31の立板部31bの先端は、第2のシール板32の円筒部32aと僅かな径方向隙間を介して対向し、ラビリンスシールを構成する。この密封装置8により、外方部材1と内方部材2の間の軸受空間におけるインボード側端が密封される。 The space between the inner periphery of thesensor holder 25 and the outer periphery of the inner member 2 is sealed by a sealing device 8 installed at a position outside the bearing relative to the plastic magnetic encoder 21. The sealing device 8 includes annular first and second seal plates 31 and 32 attached to the outer peripheral surface of the inner member 2 and the inner peripheral surface of the sensor holder 25, respectively.
Thefirst seal plate 31 includes a cylindrical portion 31a that is press-fitted and attached to the outer peripheral surface of the inner member 2, and a cross-section L that includes a vertical plate portion 31b that extends from the inboard side end of the cylindrical portion 31a to the outer diameter side. It is formed in a letter shape. The first seal plate 31 is formed by pressing an austenitic stainless steel plate or a cold-rolled steel plate that has been rust-proofed.
Thesecond seal plate 32 includes a cylindrical portion 32a that is press-fitted and attached to the inboard side of the inner peripheral surface of the sensor holder 25, and a standing plate portion 32b that extends from the outboard side end of the cylindrical portion 32a to the inner diameter side. The cross section is formed in an inverted L shape. The second seal plate 32 has an upright plate portion 32b positioned on the outboard side of the upright plate portion 31b of the first seal plate 31, and is axially aligned with the upright plate portion 31b of the first seal plate 31. It arrange | positions so that it may face. A seal member 33 having a side lip 33a, a grease lip 33b, and an intermediate lip 33c is vulcanized and bonded to the second seal plate 32. The seal member 33 is made of an elastic member such as rubber. The side lip 33 a is in sliding contact with the standing plate portion 31 b of the first seal plate 31, and the grease lip 33 b and the intermediate lip 33 c are in sliding contact with the cylindrical portion 31 a of the first seal plate 31. The tip of the upright plate portion 31b of the first seal plate 31 is opposed to the cylindrical portion 32a of the second seal plate 32 via a slight radial gap to constitute a labyrinth seal. The sealing device 8 seals the inboard side end in the bearing space between the outer member 1 and the inner member 2.
第1のシール板31は、内方部材2の外周面に圧入して取付けられる円筒部31aと、この円筒部31aのインボード側端から外径側に延びる立板部31bとでなる断面L字状に形成されている。この第1のシール板31は、オーステナイト系ステンレス鋼板、あるいは防錆処理された冷間圧延鋼板をプレス加工して形成される。
第2のシール板32は、センサホルダ25の内周面におけるインボード側に圧入して取付けられる円筒部32aと、この円筒部32aのアウトボード側端から内径側に延びる立板部32bとでなる断面逆L字状に形成される。この第2のシール板32は、その立板部32bが第1のシール板31の立板部31bよりもアウトボード側に位置して、第1のシール板31の立板部31bと軸方向に対面するように配置される。第2のシール板32には、サイドリップ33a、グリースリップ33b、および中間リップ33cを有するシール部材33が加硫接着されている。このシール部材33はゴム等の弾性部材からなる。前記サイドリップ33aは第1のシール板31の立板部31bに摺接し、グリースリップ33bおよび中間リップ33cは第1のシール板31の円筒部31aに摺接する。第1のシール板31の立板部31bの先端は、第2のシール板32の円筒部32aと僅かな径方向隙間を介して対向し、ラビリンスシールを構成する。この密封装置8により、外方部材1と内方部材2の間の軸受空間におけるインボード側端が密封される。 The space between the inner periphery of the
The
The
この回転検出装置付き車輪用軸受装置では、車輪の回転に伴って内方部材2と一体のプラスチック磁気エンコーダ21が回転する。このとき、このプラスチック磁気エンコーダ21の着磁面である傾斜面21bと所定隙間を介して平行に対峙する磁気センサ24が、プラスチック磁気エンコーダ21の磁極N,Sの磁力の変化を読み取る。これにより、プラスチック磁気エンコーダ21と磁気センサ24とで構成される回転検出装置20は、車輪の回転を検出できる。
In this wheel bearing device with a rotation detection device, the plastic magnetic encoder 21 integrated with the inner member 2 rotates as the wheel rotates. At this time, a magnetic sensor 24 facing the inclined surface 21b, which is a magnetized surface of the plastic magnetic encoder 21, in parallel through a predetermined gap reads the change in magnetic force of the magnetic poles N and S of the plastic magnetic encoder 21. Thereby, the rotation detection apparatus 20 comprised by the plastic magnetic encoder 21 and the magnetic sensor 24 can detect rotation of a wheel.
また、この回転検出装置付き車輪用軸受装置では、内方部材2の外周面に嵌合して取付けられるプラスチック磁気エンコーダ21とで回転検出装置20を構成する磁気センサ24を内蔵したセンサホルダ25を、その磁気センサ24がプラスチック磁気エンコーダ21の傾斜面21bと平行に対峙するように外方部材1に取付け、プラスチック磁気エンコーダ21よりも軸受外側位置でセンサホルダ25と内方部材2との間の空間を密封する密封装置8を設けているので、外部からの異物などによりプラスチック磁気エンコーダ21が摩耗するのを防止できる。
Further, in this wheel bearing device with a rotation detection device, a sensor holder 25 including a magnetic sensor 24 that constitutes the rotation detection device 20 with a plastic magnetic encoder 21 fitted and attached to the outer peripheral surface of the inner member 2 is provided. The magnetic sensor 24 is attached to the outer member 1 so as to face the inclined surface 21b of the plastic magnetic encoder 21 in parallel, and between the sensor holder 25 and the inner member 2 at a position outside the bearing than the plastic magnetic encoder 21. Since the sealing device 8 for sealing the space is provided, it is possible to prevent the plastic magnetic encoder 21 from being worn by foreign matters or the like from the outside.
特に、磁気エンコーダとしてプラスチック磁気エンコーダ21を用いているので、磁気エンコーダが潤滑剤であるグリースと接触して膨潤するのを防止できる。また、プラスチック磁気エンコーダ21と内方部材2に形成した係合部21ab,10aでこれら両部材を互いに係合させて、プラスチック磁気エンコーダ21を軸方向に位置規制しているので、プラスチック磁気エンコーダ21の固定位置を正確に決めることができ、軸受の回転や温度変化等により位置ずれするのを防止することもできる。その結果、正確な回転検出が可能となる。
Especially, since the plastic magnetic encoder 21 is used as the magnetic encoder, it is possible to prevent the magnetic encoder from swelling due to contact with grease as a lubricant. In addition, since the plastic magnetic encoder 21 and the inner member 2 are engaged with each other by the engaging portions 21ab and 10a to restrict the position of the plastic magnetic encoder 21 in the axial direction, the plastic magnetic encoder 21 It is possible to accurately determine the fixed position of the shaft, and it is also possible to prevent displacement due to rotation of the bearing, temperature change, or the like. As a result, accurate rotation detection is possible.
また、センサホルダ25と同じ軸方向位置にプラスチック磁気エンコーダ21が配置されるので、プラスチック磁気エンコーダ21の軸方向長さ分だけ、回転検出装置付き車輪用軸受装置の軸方向長さを短くでき、装置のコンパクト化が可能となる。
Further, since the plastic magnetic encoder 21 is disposed at the same axial position as the sensor holder 25, the axial length of the wheel bearing device with the rotation detecting device can be shortened by the axial length of the plastic magnetic encoder 21, The device can be made compact.
また、この実施形態の場合、プラスチック磁気エンコーダ21はその外周面が軸方向に対して傾斜した傾斜面21bとされた断面概形三角形状であるので、プラスチック磁気エンコーダ21の構造を強化することができる。
Further, in the case of this embodiment, the plastic magnetic encoder 21 has a generally triangular cross section whose outer peripheral surface is an inclined surface 21b inclined with respect to the axial direction, so that the structure of the plastic magnetic encoder 21 can be strengthened. it can.
さらに、この第1実施形態における磁気エンコーダとして用いるプラスチック磁気エンコーダ21に代えて、被検出部となる磁石が熱可塑性エラストマーに磁性粉を混入させた熱可塑性エラストマー磁石を備えたものを用いることもできる。このように、磁気エンコーダとして熱可塑性エラストマー磁気エンコーダを用いた場合、ゴム磁気エンコーダと異なり、その磁石部が潤滑剤であるグリースに接触しても、膨潤することが回避される。また、高低温環境下での線膨張率差による磁気エンコーダ内部の応力も、プラスチック磁気エンコーダ21に比べて、熱可塑性エラストマーであれば小さくなり割れることはない。その結果、磁気エンコーダの摩耗・膨潤や損傷を防止して正確な回転検出が可能である。なお、この熱可塑性エラストマー磁気エンコーダは、以下に説明する第2~第5実施形態においてもプラスチック磁気エンコーダ21に代えて同様に使用できる。
Further, in place of the plastic magnetic encoder 21 used as the magnetic encoder in the first embodiment, a magnet as a detected portion may be provided with a thermoplastic elastomer magnet in which magnetic powder is mixed in a thermoplastic elastomer. . Thus, when a thermoplastic elastomer magnetic encoder is used as the magnetic encoder, unlike the rubber magnetic encoder, swelling is avoided even when the magnet portion comes into contact with grease as a lubricant. Also, the stress inside the magnetic encoder due to the difference in linear expansion coefficient under a high and low temperature environment is smaller than the plastic magnetic encoder 21 and is not cracked if it is a thermoplastic elastomer. As a result, wear, swelling and damage of the magnetic encoder can be prevented and accurate rotation detection is possible. This thermoplastic elastomer magnetic encoder can be used similarly in the second to fifth embodiments described below, instead of the plastic magnetic encoder 21.
図4は、この発明の第2実施形態を示す。この実施形態では、図1~図3の第1実施形態の回転検出装置付き車輪用軸受装置において、プラスチック磁気エンコーダ21と内方部材2の両方に形成された係合部21aa,10bで内方部材2に係合させることで、プラスチック磁気エンコーダ21が軸方向に位置規制される。この場合、内方部材2の係合部10bは、内方部材2の構成部品である内輪10の外周面に周方向に延びて環状に形成された凹部である。プラスチック磁気エンコーダ21の係合部21aaは、その内周面21aに周方向に延びて環状に形成され前記内方部材2の係合部10bに係合する凸部である。係合部10b,21aaは、円周方向の複数箇所に局部的に設けられたものであっても良い。その他の構成は図1~図3の第1実施形態の場合と同様である。
FIG. 4 shows a second embodiment of the present invention. In this embodiment, in the wheel bearing device with a rotation detecting device of the first embodiment shown in FIGS. 1 to 3, the engagement portions 21aa and 10b formed on both the plastic magnetic encoder 21 and the inner member 2 are inward. By engaging with the member 2, the position of the plastic magnetic encoder 21 is restricted in the axial direction. In this case, the engaging portion 10b of the inner member 2 is a concave portion that extends in the circumferential direction on the outer peripheral surface of the inner ring 10 that is a component of the inner member 2, and is formed in an annular shape. The engaging portion 21aa of the plastic magnetic encoder 21 is a convex portion that extends in the circumferential direction on the inner peripheral surface 21a and is formed in an annular shape and engages with the engaging portion 10b of the inner member 2. The engaging portions 10b and 21aa may be provided locally at a plurality of locations in the circumferential direction. Other configurations are the same as those of the first embodiment shown in FIGS.
図5は、この発明の第3実施形態を示す。この実施形態では、図1~図3の第1実施形態の回転検出装置付き車輪用軸受装置において、内方部材2に形成された係合部10cでプラスチック磁気エンコーダ21を内方部材2に係合させることで、プラスチック磁気エンコーダ21が軸方向に位置規制される。この場合、内方部材2の係合部10cは、内方部材2の構成部品である内輪10の外周面において、インボード側の大径部とアウトボード側の小径部の境界に形成された段差面であり、プラスチック磁気エンコーダ21のインボード側に向く幅面に係合して、プラスチック磁気エンコーダ21がインボード側へ位置ずれするのを規制する。その他の構成は図1~図3の第1実施形態の場合と同様である。
FIG. 5 shows a third embodiment of the present invention. In this embodiment, in the wheel bearing device with a rotation detector of the first embodiment shown in FIGS. 1 to 3, the plastic magnetic encoder 21 is engaged with the inner member 2 by the engaging portion 10c formed on the inner member 2. As a result, the position of the plastic magnetic encoder 21 is restricted in the axial direction. In this case, the engaging portion 10c of the inner member 2 is formed at the boundary between the large-diameter portion on the inboard side and the small-diameter portion on the outboard side on the outer peripheral surface of the inner ring 10 that is a component of the inner member 2. The step surface is engaged with a width surface facing the inboard side of the plastic magnetic encoder 21 to restrict the displacement of the plastic magnetic encoder 21 toward the inboard side. Other configurations are the same as those of the first embodiment shown in FIGS.
図6は、この発明の第4実施形態を示す。この実施形態では、図1~図3の第1実施形態の回転検出装置付き車輪用軸受装置において、内方部材2に形成された係合部10dでプラスチック磁気エンコーダ21を内方部材2に係合させることで、プラスチック磁気エンコーダ21が軸方向に位置規制される。この場合、内方部材2の係合部10dは、内方部材2の構成部品である内輪10の外周面において、インボード側の小径部とアウトボード側の大径部の境界に形成された段差面であり、プラスチック磁気エンコーダ21のインボード側に向く幅面に係合して、プラスチック磁気エンコーダ21がアウトボードへ位置ずれするのを規制する。その他の構成は図1~図3の第1実施形態の場合と同様である。
FIG. 6 shows a fourth embodiment of the present invention. In this embodiment, in the wheel bearing device with a rotation detector of the first embodiment shown in FIGS. 1 to 3, the plastic magnetic encoder 21 is engaged with the inner member 2 by the engaging portion 10d formed on the inner member 2. As a result, the position of the plastic magnetic encoder 21 is restricted in the axial direction. In this case, the engaging portion 10d of the inner member 2 is formed at the boundary between the small diameter portion on the inboard side and the large diameter portion on the outboard side on the outer peripheral surface of the inner ring 10 that is a component of the inner member 2. The step surface is engaged with a width surface facing the inboard side of the plastic magnetic encoder 21 to restrict the displacement of the plastic magnetic encoder 21 to the outboard. Other configurations are the same as those of the first embodiment shown in FIGS.
図7は、この発明の第5実施形態を示す。この実施形態では、図1~図3の第1実施形態の回転検出装置付き車輪用軸受装置において、内方部材2に形成された係合部10eでプラスチック磁気エンコーダ21を内方部材2に係合させることで、プラスチック磁気エンコーダ21が軸方向に位置規制される。この場合、内方部材2の係合部10eは、内方部材2の構成部品である内輪10の外周面に形成された軸方向中間の小径部分と両側の大径部分との間に形成された段差面である。プラスチック磁気エンコーダ21は、上記小径部分と両側の段差面の係合部10eとからなる円周溝状部分に嵌まり込み、アウトボード側およびインボード側のいずれの方向に対しても位置ずれが防止される。その他の構成は図1~図3の第1実施形態の場合と同様である。
FIG. 7 shows a fifth embodiment of the present invention. In this embodiment, in the wheel bearing device with a rotation detector of the first embodiment shown in FIGS. 1 to 3, the plastic magnetic encoder 21 is engaged with the inner member 2 by the engaging portion 10e formed on the inner member 2. As a result, the position of the plastic magnetic encoder 21 is restricted in the axial direction. In this case, the engaging portion 10e of the inner member 2 is formed between a small-diameter portion in the middle in the axial direction formed on the outer peripheral surface of the inner ring 10 that is a component of the inner member 2, and a large-diameter portion on both sides. It is a stepped surface. The plastic magnetic encoder 21 is fitted into a circumferential groove-shaped portion composed of the small-diameter portion and the engaging portions 10e on the step surfaces on both sides, and the positional deviation is caused in both the outboard side and the inboard side. Is prevented. Other configurations are the same as those of the first embodiment shown in FIGS.
つぎに、この発明の応用例について説明する。以下に説明する応用例は、磁気エンコーダの摩耗・膨潤・損傷の防止、および構造強化が可能で、高低温環境化でも使用でき、かつ装置のコンパクト化が可能な回転検出装置付き車輪用軸受装置を提供することを目的とするもので、前述したこの発明の各実施形態における磁気エンコーダを軸方向に位置規制する係合部を要件としない。
まず、第1応用例について図8を参照しながら説明する。図8は、図1におけるA部に相当する部分の拡大断面図である。なお、この応用例において、前記第1実施形態と同一または相当する部分には同一の符号を付してその詳しい説明は省略する。
内方部材2の外周面のインボード側端には、熱可塑性エラストマー磁気エンコーダ21Aが嵌合して取付けられる。外方部材1のインボード側端には、前記熱可塑性エラストマー磁気エンコーダ21Aの磁束を検出する磁気センサ24を内蔵した円環状のセンサホルダ25が取付けられる。前記熱可塑性エラストマー磁気エンコーダ21Aと磁気センサ24とで、熱可塑性エラストマー磁気エンコーダ21Aと一体の内方部材2の回転、つまり車輪の回転を検出する回転検出装置20が構成される。 Next, application examples of the present invention will be described. The application example described below is a wheel bearing device with a rotation detection device that can prevent wear, swelling, and damage of the magnetic encoder, and can be strengthened in structure, can be used even in high-temperature environments, and can be made compact. Therefore, the engaging portion for restricting the position of the magnetic encoder in the axial direction in each embodiment of the present invention described above is not a requirement.
First, a first application example will be described with reference to FIG. FIG. 8 is an enlarged cross-sectional view of a portion corresponding to part A in FIG. In this application example, the same or corresponding parts as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
A thermoplastic elastomermagnetic encoder 21A is fitted and attached to the inboard side end of the outer peripheral surface of the inner member 2. An annular sensor holder 25 having a built-in magnetic sensor 24 for detecting the magnetic flux of the thermoplastic elastomer magnetic encoder 21 </ b> A is attached to the inboard side end of the outer member 1. The thermoplastic elastomer magnetic encoder 21A and the magnetic sensor 24 constitute a rotation detection device 20 that detects the rotation of the inner member 2 integrated with the thermoplastic elastomer magnetic encoder 21A, that is, the rotation of the wheel.
まず、第1応用例について図8を参照しながら説明する。図8は、図1におけるA部に相当する部分の拡大断面図である。なお、この応用例において、前記第1実施形態と同一または相当する部分には同一の符号を付してその詳しい説明は省略する。
内方部材2の外周面のインボード側端には、熱可塑性エラストマー磁気エンコーダ21Aが嵌合して取付けられる。外方部材1のインボード側端には、前記熱可塑性エラストマー磁気エンコーダ21Aの磁束を検出する磁気センサ24を内蔵した円環状のセンサホルダ25が取付けられる。前記熱可塑性エラストマー磁気エンコーダ21Aと磁気センサ24とで、熱可塑性エラストマー磁気エンコーダ21Aと一体の内方部材2の回転、つまり車輪の回転を検出する回転検出装置20が構成される。 Next, application examples of the present invention will be described. The application example described below is a wheel bearing device with a rotation detection device that can prevent wear, swelling, and damage of the magnetic encoder, and can be strengthened in structure, can be used even in high-temperature environments, and can be made compact. Therefore, the engaging portion for restricting the position of the magnetic encoder in the axial direction in each embodiment of the present invention described above is not a requirement.
First, a first application example will be described with reference to FIG. FIG. 8 is an enlarged cross-sectional view of a portion corresponding to part A in FIG. In this application example, the same or corresponding parts as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
A thermoplastic elastomer
熱可塑性エラストマー磁気エンコーダ21Aは、内方部材2の外周面(ここでは内輪10の外周面)に圧入して固定される内周面23a、および軸受内側が大径となるように軸方向に対して外向きに傾斜した外周面である傾斜面23bを有する円環状の熱可塑性エラストマー多極磁石23の単体とされる。前記傾斜面23bが被検出面となる。この熱可塑性エラストマー多極磁石23は、軸方向の外側端に、後述の密封装置8のシール板31の外径面に嵌合する密封装置嵌合突部23cを有している。
センサホルダ25は、その磁気センサ24が前記熱可塑性エラストマー磁気エンコーダ21A(熱可塑性エラストマー多極磁石23)の傾斜面23bに対して所定隙間を介して平行に対峙するように、外方部材1に取付けられる。 The thermoplastic elastomermagnetic encoder 21A has an inner peripheral surface 23a that is press-fitted and fixed to the outer peripheral surface of the inner member 2 (here, the outer peripheral surface of the inner ring 10), and the axial direction so that the inside of the bearing has a large diameter. Thus, a single annular thermoplastic elastomer multipolar magnet 23 having an inclined surface 23b that is an outer peripheral surface inclined outward is formed. The inclined surface 23b is a detected surface. The thermoplastic elastomer multipolar magnet 23 has a sealing device fitting projection 23c that fits on the outer diameter surface of a sealing plate 31 of the sealing device 8 described later at the outer end in the axial direction.
Thesensor holder 25 is placed on the outer member 1 so that the magnetic sensor 24 faces the inclined surface 23b of the thermoplastic elastomer magnetic encoder 21A (thermoplastic elastomer multipolar magnet 23) in parallel with a predetermined gap. Mounted.
センサホルダ25は、その磁気センサ24が前記熱可塑性エラストマー磁気エンコーダ21A(熱可塑性エラストマー多極磁石23)の傾斜面23bに対して所定隙間を介して平行に対峙するように、外方部材1に取付けられる。 The thermoplastic elastomer
The
熱可塑性エラストマー多極磁石23についても前述した図3の説明はそのまま適用でき、その説明は省略する。
前記熱可塑性エラストマーは、エステル系、ウレタン系、塩ビ系、オレフィン系の群から選択される1つ以上の化合物を含むものとされる。例えば、熱可塑性エラストマーとしてTPO(オレフィン系熱可塑性エラストマー)、TPV(塩ビ系熱可塑性エラストマー)、TPEE(ポリエステル系熱可塑性エラストマー)等が使用できる。 The description of FIG. 3 described above can be applied to the thermoplastic elastomermultipolar magnet 23 as it is, and the description thereof is omitted.
The thermoplastic elastomer contains one or more compounds selected from the group consisting of ester, urethane, vinyl chloride and olefin. For example, TPO (olefin-based thermoplastic elastomer), TPV (vinyl chloride-based thermoplastic elastomer), TPEE (polyester-based thermoplastic elastomer), or the like can be used as the thermoplastic elastomer.
前記熱可塑性エラストマーは、エステル系、ウレタン系、塩ビ系、オレフィン系の群から選択される1つ以上の化合物を含むものとされる。例えば、熱可塑性エラストマーとしてTPO(オレフィン系熱可塑性エラストマー)、TPV(塩ビ系熱可塑性エラストマー)、TPEE(ポリエステル系熱可塑性エラストマー)等が使用できる。 The description of FIG. 3 described above can be applied to the thermoplastic elastomer
The thermoplastic elastomer contains one or more compounds selected from the group consisting of ester, urethane, vinyl chloride and olefin. For example, TPO (olefin-based thermoplastic elastomer), TPV (vinyl chloride-based thermoplastic elastomer), TPEE (polyester-based thermoplastic elastomer), or the like can be used as the thermoplastic elastomer.
熱可塑性エラストマー多極磁石23の材料である磁性粉含有熱可塑性エラストマーの溶融粘度についても、前述した第1実施形態で説明した磁性粉含有熱可塑性樹脂の溶融粘度について説明と同様の理由・利点から30Pa・s以上1500Pa・s以下の範囲が好ましい。
Regarding the melt viscosity of the magnetic powder-containing thermoplastic elastomer that is the material of the thermoplastic elastomer multipolar magnet 23, the melt viscosity of the magnetic powder-containing thermoplastic resin described in the first embodiment is the same as the reason and advantage described above. The range of 30 Pa · s to 1500 Pa · s is preferable.
また、この場合の熱可塑性エラストマーとしては、軸受に潤滑剤として使用されるグリースに高温浸漬された時でも非常に膨潤量の小さいエステル系熱可塑性エラストマーであるハイトレル4767(東レ・デュポン(株)製)を採用し、220℃でフェライト粉(戸田工業(株)製FA700)を体積含有率で50vol%添加してニーダーで混練して作成した。
このような熱可塑性エラストマーは、耐油性が良く車輪用軸受装置に組み込まれる熱可塑性エラストマー磁気エンコーダ21Aの材料として特に有効である。 In this case, as the thermoplastic elastomer, Hytrel 4767 (manufactured by Toray DuPont Co., Ltd.), which is an ester-based thermoplastic elastomer having a very small amount of swelling even when immersed in grease used as a lubricant in a bearing at high temperature, is used. ), Ferrite powder (FA700 manufactured by Toda Kogyo Co., Ltd.) was added at a volume content of 50 vol% at 220 ° C., and kneaded with a kneader.
Such a thermoplastic elastomer is particularly effective as a material for the thermoplastic elastomermagnetic encoder 21A, which has good oil resistance and is incorporated into a wheel bearing device.
このような熱可塑性エラストマーは、耐油性が良く車輪用軸受装置に組み込まれる熱可塑性エラストマー磁気エンコーダ21Aの材料として特に有効である。 In this case, as the thermoplastic elastomer, Hytrel 4767 (manufactured by Toray DuPont Co., Ltd.), which is an ester-based thermoplastic elastomer having a very small amount of swelling even when immersed in grease used as a lubricant in a bearing at high temperature, is used. ), Ferrite powder (FA700 manufactured by Toda Kogyo Co., Ltd.) was added at a volume content of 50 vol% at 220 ° C., and kneaded with a kneader.
Such a thermoplastic elastomer is particularly effective as a material for the thermoplastic elastomer
熱可塑性エラストマー多極磁石23の材料である磁性粉としては、前述第1実施形態のプラスチック磁気エンコーダ21の場合と同様のものが用いられ、その利点も同様であるから詳しい説明を省略する。
As the magnetic powder that is the material of the thermoplastic elastomer multipolar magnet 23, the same powder as in the case of the plastic magnetic encoder 21 of the first embodiment is used, and the advantages thereof are also the same.
熱可塑性エラストマー磁気エンコーダ21の製造についても前記第1実施形態のプラスチック磁気エンコーダ21の製造工程についての説明における熱可塑性樹脂を、熱可塑性エラストマーに置き換える点が異なるだけで他は同様であり、射出成形時の磁場成形およびその利点についても同様であるので、その詳しい説明は省略する。
The manufacturing of the thermoplastic elastomer magnetic encoder 21 is the same except that the thermoplastic resin in the description of the manufacturing process of the plastic magnetic encoder 21 of the first embodiment is replaced with the thermoplastic elastomer, and the injection molding is performed. Since the magnetic field shaping at the time and the advantages thereof are the same, detailed description thereof will be omitted.
上記構成の回転検出装置付き車輪用軸受装置の動作および効果についても第1実施形態と同様であるので、その詳しい説明は省略する。
Since the operation and effect of the wheel bearing device with a rotation detection device having the above-described configuration are the same as those in the first embodiment, detailed description thereof will be omitted.
特に、磁気エンコーダとして熱可塑性エラストマー磁気エンコーダ21A(熱可塑性エラストマー多極磁石23)を用いているので、ゴム磁気エンコーダと異なり、磁気エンコーダが潤滑剤であるグリースと接触して膨潤するのを防止できる。また高低温環境下での線膨張率差による磁気エンコーダ内部の応力も、プラスチック磁気エンコーダに比べて、熱可塑性エラストマーであれば小さくなり割れることはない。その結果、磁気エンコーダの摩耗・膨潤や損傷を防止して正確な回転検出が可能となる。
In particular, since the thermoplastic elastomer magnetic encoder 21A (thermoplastic elastomer multipole magnet 23) is used as the magnetic encoder, unlike the magnetic magnetic encoder, the magnetic encoder can be prevented from coming into contact with the lubricant grease and swelling. . Also, the stress inside the magnetic encoder due to the difference in linear expansion coefficient under a high and low temperature environment is smaller than a plastic magnetic encoder as long as it is a thermoplastic elastomer and does not crack. As a result, wear, swelling, and damage of the magnetic encoder can be prevented and accurate rotation detection can be performed.
高分子物質を大別すると、次のように樹脂とエラストマーに2分される。
(1)樹脂
・熱硬化性樹脂:フェノール樹脂、尿素樹脂など
・熱可塑性樹脂:PP(ポリプロピレン)、ABS樹脂(アクリロニトリルブタジエンスチレン樹脂)、PPS(ポリフェニレンスルファイド)など
(2)エラストマー
・合成ゴム、天然ゴム:NBR(ニトリルゴム)、CR(クロロプレンゴム)、VMQ(シリコンゴム)など
・熱可塑性エラストマー:TPO(オレフィン系)、TPVC(塩ビ系)、TPEE(エステル系)、など
次に、磁気エンコーダの材料として熱可塑性エラストマーが優位であることを示すために、その物性等について他の材料(プラスチック、エラストマー)と比較したデータについて以下に説明する。
プラスチック(熱可塑性樹脂 または 熱硬化性樹脂)……………硬度が高く、弾性変形量が小さい(数%以内)。
熱可塑性エラストマー…常温ではゴム弾性体としての挙動をとるが、温度上昇によって溶融する高分子材料であり、ゴムの性質とプラスチックの性質を併せ持つ(弾性変形量十%程度)。このため、柔軟性を持ち、そこそこ伸びがあって割れにくい。
エラストマー……………柔軟(低硬度)な弾性体であり、弾性変形量が大きい(数百%程度)。常温で非常に大きな弾性を持つ高分子物質(天然ゴム、合成ゴムなど)の総称であり、伸びがある。
図9は、プラスチックとして熱可塑性樹脂、ポリウレタン(熱可塑性エラストマー)、ポリエステル(熱可塑性エラストマー)、およびエラストマー(ゴム)の4つの材料について、応力-ひずみ挙動を比較して示したグラフである。同グラフから、次のことが分かる。
プラスチック:ゴムに比べて硬く、変形時の応力が大きく、弾性変形量が小さい。このため破損しやすい。
ゴム:弾性変形量が大きく、十分に延びる。弾性率(ヤング率)が小さい。
熱硬化性エラストマー:プラスチックの強度とゴムの柔軟性を兼ね備えている。図9中に示すひずみ量Wの範囲内で使用する限りでは、弾性体としての挙動を示す。
このように、熱可塑性エラストマーの場合、弾性域がプラスチックよりも広いので、より衝撃に対して耐性があり割れにくい。 When polymer substances are roughly classified, they are divided into resin and elastomer as follows.
(1) Resin-Thermosetting resin: phenol resin, urea resin, etc.-Thermoplastic resin: PP (polypropylene), ABS resin (acrylonitrile butadiene styrene resin), PPS (polyphenylene sulfide), etc. (2) Elastomer-Synthetic rubber, Natural rubber: NBR (nitrile rubber), CR (chloroprene rubber), VMQ (silicone rubber), etc. Thermoplastic elastomer: TPO (olefin), TPVC (vinyl chloride), TPEE (ester), etc. Next, magnetic encoder In order to show that a thermoplastic elastomer is superior as a material, the following will describe data compared with other materials (plastic, elastomer) in terms of its physical properties.
Plastic (thermoplastic resin or thermosetting resin) ............ High hardness and low elastic deformation (within several percent).
Thermoplastic elastomer: It is a polymer material that behaves as a rubber elastic body at room temperature, but melts when the temperature rises. It has both rubber and plastic properties (elastic deformation of about 10%). For this reason, it has flexibility, is moderately stretched and is hard to break.
Elastomer: A flexible (low hardness) elastic body with a large amount of elastic deformation (about several hundred percent). It is a general term for polymer substances (natural rubber, synthetic rubber, etc.) that have very large elasticity at room temperature, and has elongation.
FIG. 9 is a graph showing a comparison of stress-strain behavior of four materials, ie, a thermoplastic resin, polyurethane (thermoplastic elastomer), polyester (thermoplastic elastomer), and elastomer (rubber) as plastics. The graph shows the following.
Plastic: Harder than rubber, large stress during deformation, and small amount of elastic deformation. For this reason, it is easy to break.
Rubber: The elastic deformation is large and it extends sufficiently. Low elastic modulus (Young's modulus).
Thermosetting elastomer: Combines the strength of plastic and the flexibility of rubber. As long as it is used within the range of the strain amount W shown in FIG. 9, the behavior as an elastic body is shown.
Thus, in the case of a thermoplastic elastomer, since the elastic region is wider than that of plastic, it is more resistant to impact and is hard to crack.
(1)樹脂
・熱硬化性樹脂:フェノール樹脂、尿素樹脂など
・熱可塑性樹脂:PP(ポリプロピレン)、ABS樹脂(アクリロニトリルブタジエンスチレン樹脂)、PPS(ポリフェニレンスルファイド)など
(2)エラストマー
・合成ゴム、天然ゴム:NBR(ニトリルゴム)、CR(クロロプレンゴム)、VMQ(シリコンゴム)など
・熱可塑性エラストマー:TPO(オレフィン系)、TPVC(塩ビ系)、TPEE(エステル系)、など
次に、磁気エンコーダの材料として熱可塑性エラストマーが優位であることを示すために、その物性等について他の材料(プラスチック、エラストマー)と比較したデータについて以下に説明する。
プラスチック(熱可塑性樹脂 または 熱硬化性樹脂)……………硬度が高く、弾性変形量が小さい(数%以内)。
熱可塑性エラストマー…常温ではゴム弾性体としての挙動をとるが、温度上昇によって溶融する高分子材料であり、ゴムの性質とプラスチックの性質を併せ持つ(弾性変形量十%程度)。このため、柔軟性を持ち、そこそこ伸びがあって割れにくい。
エラストマー……………柔軟(低硬度)な弾性体であり、弾性変形量が大きい(数百%程度)。常温で非常に大きな弾性を持つ高分子物質(天然ゴム、合成ゴムなど)の総称であり、伸びがある。
図9は、プラスチックとして熱可塑性樹脂、ポリウレタン(熱可塑性エラストマー)、ポリエステル(熱可塑性エラストマー)、およびエラストマー(ゴム)の4つの材料について、応力-ひずみ挙動を比較して示したグラフである。同グラフから、次のことが分かる。
プラスチック:ゴムに比べて硬く、変形時の応力が大きく、弾性変形量が小さい。このため破損しやすい。
ゴム:弾性変形量が大きく、十分に延びる。弾性率(ヤング率)が小さい。
熱硬化性エラストマー:プラスチックの強度とゴムの柔軟性を兼ね備えている。図9中に示すひずみ量Wの範囲内で使用する限りでは、弾性体としての挙動を示す。
このように、熱可塑性エラストマーの場合、弾性域がプラスチックよりも広いので、より衝撃に対して耐性があり割れにくい。 When polymer substances are roughly classified, they are divided into resin and elastomer as follows.
(1) Resin-Thermosetting resin: phenol resin, urea resin, etc.-Thermoplastic resin: PP (polypropylene), ABS resin (acrylonitrile butadiene styrene resin), PPS (polyphenylene sulfide), etc. (2) Elastomer-Synthetic rubber, Natural rubber: NBR (nitrile rubber), CR (chloroprene rubber), VMQ (silicone rubber), etc. Thermoplastic elastomer: TPO (olefin), TPVC (vinyl chloride), TPEE (ester), etc. Next, magnetic encoder In order to show that a thermoplastic elastomer is superior as a material, the following will describe data compared with other materials (plastic, elastomer) in terms of its physical properties.
Plastic (thermoplastic resin or thermosetting resin) ............ High hardness and low elastic deformation (within several percent).
Thermoplastic elastomer: It is a polymer material that behaves as a rubber elastic body at room temperature, but melts when the temperature rises. It has both rubber and plastic properties (elastic deformation of about 10%). For this reason, it has flexibility, is moderately stretched and is hard to break.
Elastomer: A flexible (low hardness) elastic body with a large amount of elastic deformation (about several hundred percent). It is a general term for polymer substances (natural rubber, synthetic rubber, etc.) that have very large elasticity at room temperature, and has elongation.
FIG. 9 is a graph showing a comparison of stress-strain behavior of four materials, ie, a thermoplastic resin, polyurethane (thermoplastic elastomer), polyester (thermoplastic elastomer), and elastomer (rubber) as plastics. The graph shows the following.
Plastic: Harder than rubber, large stress during deformation, and small amount of elastic deformation. For this reason, it is easy to break.
Rubber: The elastic deformation is large and it extends sufficiently. Low elastic modulus (Young's modulus).
Thermosetting elastomer: Combines the strength of plastic and the flexibility of rubber. As long as it is used within the range of the strain amount W shown in FIG. 9, the behavior as an elastic body is shown.
Thus, in the case of a thermoplastic elastomer, since the elastic region is wider than that of plastic, it is more resistant to impact and is hard to crack.
図10は、この発明の第2応用例を示す。この第2応用例は、図8の第1応用例の回転検出装置付き車輪用軸受装置において、熱可塑性エラストマー多極磁石23の単体からなる熱可塑性エラストマー磁気エンコーダ21Aを、円環状のスリンガ22と熱可塑性エラストマー多極磁石23の複合体からなる熱可塑性エラストマー磁気エンコーダ21Bに置き換えたものである。この場合の熱可塑性エラストマーとしては、エステル系熱可塑性エラストマーであるハイトレル4767(東レ・デュポン(株)製)を採用し、220℃でフェライト粉(戸田工業・製FA700)を体積含有率で50vol%添加してニーダーで混練して作成した。
この材料で成形した熱可塑性エラストマー磁気エンコーダ21Bを軸受に組込み低温側-35℃および高温側110℃のヒートサイクル(各温度で1時間保持)試験で800サイクル後での割れの有無を調べたところ、割れは生じず、良好な高低温特性を示した。このことから十分に高低温環境下でも使用できることが分かる。 FIG. 10 shows a second application example of the present invention. This second application example is the same as the first application example shown in FIG. 8 except that the thermoplastic elastomermagnetic encoder 21A composed of a single unit of the thermoplastic elastomer multipole magnet 23 is replaced with an annular slinger 22 in the wheel bearing device with a rotation detector. This is a thermoplastic elastomer magnetic encoder 21B made of a composite of thermoplastic elastomer multipolar magnets 23. As the thermoplastic elastomer in this case, Hytrel 4767 (manufactured by Toray DuPont Co., Ltd.), which is an ester-based thermoplastic elastomer, is used, and ferrite powder (FA700 manufactured by Toda Kogyo Co., Ltd.) at a volume content of 50 vol% at 220 ° C. It was added and kneaded with a kneader.
A thermoplastic elastomermagnetic encoder 21B molded with this material was incorporated into a bearing and examined for cracks after 800 cycles in a low temperature side -35 ° C and high temperature side 110 ° C heat cycle test (held at each temperature for 1 hour). Cracking did not occur and good high and low temperature characteristics were exhibited. This shows that it can be used even in a sufficiently high and low temperature environment.
この材料で成形した熱可塑性エラストマー磁気エンコーダ21Bを軸受に組込み低温側-35℃および高温側110℃のヒートサイクル(各温度で1時間保持)試験で800サイクル後での割れの有無を調べたところ、割れは生じず、良好な高低温特性を示した。このことから十分に高低温環境下でも使用できることが分かる。 FIG. 10 shows a second application example of the present invention. This second application example is the same as the first application example shown in FIG. 8 except that the thermoplastic elastomer
A thermoplastic elastomer
スリンガ22は、内方部材2の外周面(ここでは内輪10の外周面)に圧入して固定される円筒部22aおよびこの円筒部22aの軸受内側の端部から外径側に立ち上がる立板部22bからなる円環状で断面L字状の芯金である。熱可塑性エラストマー多極磁石23は、前記スリンガ22と別体に成形され、その後、1液性シアノアクリレート系接着剤(東亞合成・アロンα201)でスリンガ22に接着して一体化することで、熱可塑性エラストマー磁気エンコーダ21Bが構成される。熱可塑性エラストマー多極磁石23の外周面が斜面部23bとされていることは、先の実施形態の場合と同様である。スリンガ22は磁性体(SUS430)の鋼板からなる。このように、スリンガ22の材料として磁性材料を用いることにより、非磁性材料を用いた場合に比べて、熱可塑性エラストマー磁気エンコーダ21Bの磁力を強くすることができる。
The slinger 22 is a cylindrical portion 22a that is press-fitted and fixed to the outer peripheral surface of the inner member 2 (here, the outer peripheral surface of the inner ring 10), and a standing plate portion that rises to the outer diameter side from the inner end of the bearing of the cylindrical portion 22a. It is a cored bar having an annular shape and an L-shaped cross section composed of 22b. The thermoplastic elastomer multipolar magnet 23 is molded separately from the slinger 22 and then bonded to the slinger 22 with a one-component cyanoacrylate adhesive (Toagosei Aron α201) to integrate the heat. A plastic elastomer magnetic encoder 21B is configured. The fact that the outer peripheral surface of the thermoplastic elastomer multipolar magnet 23 is the inclined surface portion 23b is the same as in the previous embodiment. The slinger 22 is made of a magnetic steel plate (SUS430). As described above, by using a magnetic material as the material of the slinger 22, the magnetic force of the thermoplastic elastomer magnetic encoder 21B can be increased as compared with the case of using a non-magnetic material.
この応用例における熱可塑性エラストマー磁気エンコーダ21Bは、以下の工程によるインサート成形により製造することもできる。まず、2軸押出機や混練機などを用いて、磁性粉と溶融した熱可塑性エラストマーとを混練し、磁性粉を熱可塑性エラストマーに適当に分散させる。その後、前記スリンガ22を配置した金型内に磁性粉含有熱可塑性エラストマーを射出して、熱可塑性エラストマー多極磁石23をスリンガ22と一体成形し、所望の熱可塑性エラストマー磁気エンコーダ21Bを得る。このようにして得られた熱可塑性エラストマー磁気エンコーダ21Bのインサート成形品を、着磁ヨークを用いて多極に着磁することで、前記熱可塑性エラストマー多極磁石23の磁極を形成する。なお、この場合にも、前記射出成形時には、着磁面である前記傾斜面23bに対し80000Oe以上の垂直磁場を印加しながら磁場形成して、含有する磁性粉を磁場配向させるのが好ましい。その他の構成は、図8に示す第1応用例の場合と同様であり、ここではその説明を省略する。
The thermoplastic elastomer magnetic encoder 21B in this application example can also be manufactured by insert molding according to the following process. First, the magnetic powder and the molten thermoplastic elastomer are kneaded using a twin screw extruder or a kneader, and the magnetic powder is appropriately dispersed in the thermoplastic elastomer. Thereafter, a thermoplastic elastomer containing magnetic powder is injected into the mold in which the slinger 22 is disposed, and the thermoplastic elastomer multipole magnet 23 is integrally formed with the slinger 22 to obtain a desired thermoplastic elastomer magnetic encoder 21B. The insert molded product of the thermoplastic elastomer magnetic encoder 21B thus obtained is magnetized in multiple poles using a magnetizing yoke, thereby forming the magnetic poles of the thermoplastic elastomer multipole magnet 23. Also in this case, at the time of the injection molding, it is preferable to form a magnetic field while applying a vertical magnetic field of 80000 Oe or more to the inclined surface 23b which is a magnetized surface, and to magnetically orient the contained magnetic powder. Other configurations are the same as those of the first application example shown in FIG. 8, and the description thereof is omitted here.
以上説明した、この発明の係合部10a~10d,21aa,21abを要件としない応用例は、つぎの応用態様を含む。
The application examples that do not require the engaging portions 10a to 10d, 21aa, and 21ab of the present invention described above include the following application modes.
[態様1]
態様1にかかる回転検出装置付き車輪用軸受装置は、内周に複列の転走面が形成され固定側部材となる外方部材と、前記各転走面に対向する転走面が外周に形成され回転側部材となる内方部材と、これら対向する転走面間に介在した複列の転動体とを備え、車体に対して車輪を回転自在に支持する車輪用軸受装置であって、前記内方部材の端部付近の外周面に嵌合して取付けられ外周面が内方部材の端部側に向くように軸方向に対して傾斜した傾斜面とされた磁気エンコーダと、外周に有する芯金で前記外方部材に嵌合状態に取付けられて磁気センサを内蔵しこの磁気センサが前記磁気エンコーダの傾斜面に対して隙間を介して平行に対峙する円環状のセンサホルダと、磁気エンコーダよりも軸受外側位置で前記センサホルダと前記内方部材との間の空間を密封する密封装置とを備え、前記磁気エンコーダを、被検出部となる磁石が、熱可塑性エラストマーに磁性粉を混入させた熱可塑性エラストマー磁石である熱可塑性エラストマー磁気エンコーダとした。
この構成によると、磁気エンコーダの被検出面を外向きの傾斜面とし、この傾斜面に対峙する磁気センサを内蔵したセンサホルダを外方部材に取付け、磁気エンコーダよりも軸受外側位置に密封装置を設けたので、外部からの異物などにより磁気エンコーダが摩耗するのを防止できる。
特に、磁気エンコーダとして熱可塑性エラストマー磁気エンコーダを用いているので、ゴム磁気エンコーダと異なり、その磁石部が潤滑剤であるグリースに接触しても、膨潤することが回避される。また、高低温環境下での線膨張率差による磁気エンコーダ内部の応力も、プラスチック磁気エンコーダに比べて、熱可塑性エラストマーであれば小さくなり割れることはない。その結果、磁気エンコーダの摩耗・膨潤や損傷を防止して正確な回転検出が可能である。
また、磁気エンコーダは、被検出面を傾斜面としたので、断面概形を三角形状にできて構造を強化することができる。磁気エンコーダの被検出面が傾斜面であるため、センサホルダと同じ軸方向位置に磁気エンコーダが配置される。そのため、磁気エンコーダの軸方向長さ分だけ、回転検出装置付き車輪用軸受装置の軸方向長さを短くでき、装置のコンパクト化が可能となる。 [Aspect 1]
In the wheel bearing device with a rotation detection device according to theaspect 1, the outer member which is a fixed side member with a double row rolling surface formed on the inner periphery, and the rolling surface facing each of the rolling surfaces is on the outer periphery. A wheel bearing device that includes an inner member that is formed as a rotation-side member and a double row rolling element interposed between these opposing rolling surfaces, and that supports the wheel rotatably with respect to the vehicle body, A magnetic encoder that is fitted and attached to the outer peripheral surface near the end of the inner member and is inclined with respect to the axial direction so that the outer peripheral surface faces the end of the inner member, and An annular sensor holder which is attached to the outer member in a fitted state with a cored bar having a built-in magnetic sensor and which faces the inclined surface of the magnetic encoder in parallel via a gap; The sensor holder and the inner member at a position outside the bearing relative to the encoder And a sealing device for sealing the space between, the magnetic encoder, magnets to be detected portion has a thermoplastic elastomer magnetic encoder is a thermoplastic elastomer magnet by mixing magnetic powder into thermoplastic elastomers.
According to this configuration, the detected surface of the magnetic encoder is an outwardly inclined surface, a sensor holder incorporating a magnetic sensor facing the inclined surface is attached to the outer member, and the sealing device is disposed at a position outside the bearing relative to the magnetic encoder. Since it is provided, it is possible to prevent the magnetic encoder from being worn by foreign matters from the outside.
In particular, since a thermoplastic elastomer magnetic encoder is used as the magnetic encoder, unlike the rubber magnetic encoder, swelling is avoided even if the magnet portion comes into contact with grease as a lubricant. In addition, the stress inside the magnetic encoder due to the difference in linear expansion coefficient in a high and low temperature environment is smaller than a plastic magnetic encoder and is not cracked if it is a thermoplastic elastomer. As a result, wear, swelling and damage of the magnetic encoder can be prevented and accurate rotation detection is possible.
In addition, since the magnetic encoder has an inclined surface to be detected, the cross-sectional outline can be made triangular and the structure can be strengthened. Since the detection surface of the magnetic encoder is an inclined surface, the magnetic encoder is disposed at the same axial position as the sensor holder. Therefore, the axial length of the wheel bearing device with the rotation detecting device can be shortened by the axial length of the magnetic encoder, and the device can be made compact.
態様1にかかる回転検出装置付き車輪用軸受装置は、内周に複列の転走面が形成され固定側部材となる外方部材と、前記各転走面に対向する転走面が外周に形成され回転側部材となる内方部材と、これら対向する転走面間に介在した複列の転動体とを備え、車体に対して車輪を回転自在に支持する車輪用軸受装置であって、前記内方部材の端部付近の外周面に嵌合して取付けられ外周面が内方部材の端部側に向くように軸方向に対して傾斜した傾斜面とされた磁気エンコーダと、外周に有する芯金で前記外方部材に嵌合状態に取付けられて磁気センサを内蔵しこの磁気センサが前記磁気エンコーダの傾斜面に対して隙間を介して平行に対峙する円環状のセンサホルダと、磁気エンコーダよりも軸受外側位置で前記センサホルダと前記内方部材との間の空間を密封する密封装置とを備え、前記磁気エンコーダを、被検出部となる磁石が、熱可塑性エラストマーに磁性粉を混入させた熱可塑性エラストマー磁石である熱可塑性エラストマー磁気エンコーダとした。
この構成によると、磁気エンコーダの被検出面を外向きの傾斜面とし、この傾斜面に対峙する磁気センサを内蔵したセンサホルダを外方部材に取付け、磁気エンコーダよりも軸受外側位置に密封装置を設けたので、外部からの異物などにより磁気エンコーダが摩耗するのを防止できる。
特に、磁気エンコーダとして熱可塑性エラストマー磁気エンコーダを用いているので、ゴム磁気エンコーダと異なり、その磁石部が潤滑剤であるグリースに接触しても、膨潤することが回避される。また、高低温環境下での線膨張率差による磁気エンコーダ内部の応力も、プラスチック磁気エンコーダに比べて、熱可塑性エラストマーであれば小さくなり割れることはない。その結果、磁気エンコーダの摩耗・膨潤や損傷を防止して正確な回転検出が可能である。
また、磁気エンコーダは、被検出面を傾斜面としたので、断面概形を三角形状にできて構造を強化することができる。磁気エンコーダの被検出面が傾斜面であるため、センサホルダと同じ軸方向位置に磁気エンコーダが配置される。そのため、磁気エンコーダの軸方向長さ分だけ、回転検出装置付き車輪用軸受装置の軸方向長さを短くでき、装置のコンパクト化が可能となる。 [Aspect 1]
In the wheel bearing device with a rotation detection device according to the
According to this configuration, the detected surface of the magnetic encoder is an outwardly inclined surface, a sensor holder incorporating a magnetic sensor facing the inclined surface is attached to the outer member, and the sealing device is disposed at a position outside the bearing relative to the magnetic encoder. Since it is provided, it is possible to prevent the magnetic encoder from being worn by foreign matters from the outside.
In particular, since a thermoplastic elastomer magnetic encoder is used as the magnetic encoder, unlike the rubber magnetic encoder, swelling is avoided even if the magnet portion comes into contact with grease as a lubricant. In addition, the stress inside the magnetic encoder due to the difference in linear expansion coefficient in a high and low temperature environment is smaller than a plastic magnetic encoder and is not cracked if it is a thermoplastic elastomer. As a result, wear, swelling and damage of the magnetic encoder can be prevented and accurate rotation detection is possible.
In addition, since the magnetic encoder has an inclined surface to be detected, the cross-sectional outline can be made triangular and the structure can be strengthened. Since the detection surface of the magnetic encoder is an inclined surface, the magnetic encoder is disposed at the same axial position as the sensor holder. Therefore, the axial length of the wheel bearing device with the rotation detecting device can be shortened by the axial length of the magnetic encoder, and the device can be made compact.
[態様2]
態様1において、前記熱可塑性エラストマー磁気エンコーダは、前記熱可塑性エラストマー磁石が円周方向に磁極が並ぶ多極磁石であり、この多極磁石は磁性粉と熱可塑性樹脂とを含み、前記磁性粉含有熱可塑性樹脂の溶融粘度が30Pa・s以上1500Pa・s以下であっても良い。
熱可塑性エラストマー多極磁石の材料である磁性粉含有熱可塑性エラストマーは、溶融粘度が30Pa・sよりも小さいと、射出成形時においてバリが多量に発生し、適切に成形することが困難になる。また、熱可塑性エラストマーの溶融粘度が1500Pa・sよりも大きいと、熱可塑性エラストマーに磁性粉を混練することが困難となる。特に、磁性粉の割合を高くした場合に、混練不良が顕著となる。そこで、磁性粉含有熱可塑性エラストマーの溶融粘度を、30Pa・s以上で、1500Pa・s以下とすることにより、生産性の良好な熱可塑性エラストマー磁気エンコーダを得ることができる。また、熱可塑性エラストマー磁気エンコーダの生産性向上は、回転検出装置付き車輪用軸受装置の生産性向上にもつながる。 [Aspect 2]
In theaspect 1, the thermoplastic elastomer magnetic encoder is a multipolar magnet in which the thermoplastic elastomer magnet has magnetic poles arranged in a circumferential direction. The multipolar magnet includes magnetic powder and a thermoplastic resin, and includes the magnetic powder. The melt viscosity of the thermoplastic resin may be 30 Pa · s or more and 1500 Pa · s or less.
When the melt viscosity is less than 30 Pa · s, the magnetic powder-containing thermoplastic elastomer, which is a material for the thermoplastic elastomer multipolar magnet, generates a large amount of burrs during injection molding, making it difficult to mold appropriately. If the melt viscosity of the thermoplastic elastomer is greater than 1500 Pa · s, it becomes difficult to knead the magnetic powder into the thermoplastic elastomer. In particular, when the proportion of the magnetic powder is increased, the kneading failure becomes remarkable. Thus, by setting the melt viscosity of the magnetic powder-containing thermoplastic elastomer to 30 Pa · s or more and 1500 Pa · s or less, a thermoplastic elastomer magnetic encoder with good productivity can be obtained. Further, the productivity improvement of the thermoplastic elastomer magnetic encoder also leads to the improvement of the productivity of the wheel bearing device with the rotation detection device.
態様1において、前記熱可塑性エラストマー磁気エンコーダは、前記熱可塑性エラストマー磁石が円周方向に磁極が並ぶ多極磁石であり、この多極磁石は磁性粉と熱可塑性樹脂とを含み、前記磁性粉含有熱可塑性樹脂の溶融粘度が30Pa・s以上1500Pa・s以下であっても良い。
熱可塑性エラストマー多極磁石の材料である磁性粉含有熱可塑性エラストマーは、溶融粘度が30Pa・sよりも小さいと、射出成形時においてバリが多量に発生し、適切に成形することが困難になる。また、熱可塑性エラストマーの溶融粘度が1500Pa・sよりも大きいと、熱可塑性エラストマーに磁性粉を混練することが困難となる。特に、磁性粉の割合を高くした場合に、混練不良が顕著となる。そこで、磁性粉含有熱可塑性エラストマーの溶融粘度を、30Pa・s以上で、1500Pa・s以下とすることにより、生産性の良好な熱可塑性エラストマー磁気エンコーダを得ることができる。また、熱可塑性エラストマー磁気エンコーダの生産性向上は、回転検出装置付き車輪用軸受装置の生産性向上にもつながる。 [Aspect 2]
In the
When the melt viscosity is less than 30 Pa · s, the magnetic powder-containing thermoplastic elastomer, which is a material for the thermoplastic elastomer multipolar magnet, generates a large amount of burrs during injection molding, making it difficult to mold appropriately. If the melt viscosity of the thermoplastic elastomer is greater than 1500 Pa · s, it becomes difficult to knead the magnetic powder into the thermoplastic elastomer. In particular, when the proportion of the magnetic powder is increased, the kneading failure becomes remarkable. Thus, by setting the melt viscosity of the magnetic powder-containing thermoplastic elastomer to 30 Pa · s or more and 1500 Pa · s or less, a thermoplastic elastomer magnetic encoder with good productivity can be obtained. Further, the productivity improvement of the thermoplastic elastomer magnetic encoder also leads to the improvement of the productivity of the wheel bearing device with the rotation detection device.
[態様3]
態様2において、前記熱可塑性エラストマーは、エステル系、ウレタン系、塩ビ系、オレフィン系の群から選択される1つ以上の化合物を含むものであっても良い。
これらの熱可塑性エラストマーは、軸受に潤滑剤として使用されるグリースに高温浸漬された時でも非常に膨潤量が小さい(10%以下)ので、車輪用軸受装置に組み込まれる熱可塑性エラストマー磁気エンコーダの材料として特に有効である。 [Aspect 3]
InAspect 2, the thermoplastic elastomer may contain one or more compounds selected from the group consisting of ester, urethane, vinyl chloride and olefin.
Since these thermoplastic elastomers have a very small amount of swelling (less than 10%) even when they are immersed in grease used as a lubricant for bearings at high temperatures, they are materials for thermoplastic elastomer magnetic encoders incorporated in wheel bearing devices. As particularly effective.
態様2において、前記熱可塑性エラストマーは、エステル系、ウレタン系、塩ビ系、オレフィン系の群から選択される1つ以上の化合物を含むものであっても良い。
これらの熱可塑性エラストマーは、軸受に潤滑剤として使用されるグリースに高温浸漬された時でも非常に膨潤量が小さい(10%以下)ので、車輪用軸受装置に組み込まれる熱可塑性エラストマー磁気エンコーダの材料として特に有効である。 [Aspect 3]
In
Since these thermoplastic elastomers have a very small amount of swelling (less than 10%) even when they are immersed in grease used as a lubricant for bearings at high temperatures, they are materials for thermoplastic elastomer magnetic encoders incorporated in wheel bearing devices. As particularly effective.
[態様4]
態様2において、前記磁性粉がフェライト系磁性粉であっても良い。フェライト系磁性粉は酸化しにくいため、熱可塑性エラストマー磁気エンコーダの防食性を向上させることができる。 [Aspect 4]
InAspect 2, the magnetic powder may be a ferrite-based magnetic powder. Since ferrite magnetic powder is difficult to oxidize, the corrosion resistance of the thermoplastic elastomer magnetic encoder can be improved.
態様2において、前記磁性粉がフェライト系磁性粉であっても良い。フェライト系磁性粉は酸化しにくいため、熱可塑性エラストマー磁気エンコーダの防食性を向上させることができる。 [Aspect 4]
In
[態様5]
態様4において、前記磁性粉が異方性フェライト系磁性粉であっても良い。 [Aspect 5]
InAspect 4, the magnetic powder may be anisotropic ferrite magnetic powder.
態様4において、前記磁性粉が異方性フェライト系磁性粉であっても良い。 [Aspect 5]
In
[態様6]
態様1において、前記熱可塑性エラストマー磁気エンコーダの前記熱可塑性エラストマー磁石が射出成形品であっても良い。 [Aspect 6]
In theaspect 1, the thermoplastic elastomer magnet of the thermoplastic elastomer magnetic encoder may be an injection molded product.
態様1において、前記熱可塑性エラストマー磁気エンコーダの前記熱可塑性エラストマー磁石が射出成形品であっても良い。 [Aspect 6]
In the
[態様7]
態様6において、前記熱可塑性エラストマー磁石が射出成形品である場合、この熱可塑性エラストマー磁石は、射出成形において磁場成形したものであっても良い。すなわち、射出成形時に射出成形金型内で磁場成形したものであっても良い。このように磁場成形することにより、より磁束密度の大きな熱可塑性エラストマー磁気エンコーダを得ることができる。 [Aspect 7]
InAspect 6, when the thermoplastic elastomer magnet is an injection-molded product, the thermoplastic elastomer magnet may be formed by magnetic field molding in injection molding. That is, it may be formed by magnetic field molding in an injection mold during injection molding. By forming the magnetic field in this way, a thermoplastic elastomer magnetic encoder having a larger magnetic flux density can be obtained.
態様6において、前記熱可塑性エラストマー磁石が射出成形品である場合、この熱可塑性エラストマー磁石は、射出成形において磁場成形したものであっても良い。すなわち、射出成形時に射出成形金型内で磁場成形したものであっても良い。このように磁場成形することにより、より磁束密度の大きな熱可塑性エラストマー磁気エンコーダを得ることができる。 [Aspect 7]
In
[態様8]
態様1において、熱可塑性エラストマー磁気エンコーダは、前記内方部材の外周面に圧入して固定される内周面および前記傾斜面とされる外周面を有する円環状の熱可塑性エラストマー磁石の単体であっても良い。
このようにスリンガを持たない熱可塑性エラストマー磁石の単体で熱可塑性エラストマー磁気エンコーダを構成すると、熱可塑性エラストマー磁気エンコーダの低コスト化が可能になる。 [Aspect 8]
Inaspect 1, the thermoplastic elastomer magnetic encoder is a single annular thermoplastic elastomer magnet having an inner peripheral surface that is press-fitted and fixed to the outer peripheral surface of the inner member and an outer peripheral surface that is the inclined surface. May be.
Thus, if a thermoplastic elastomer magnetic encoder is constituted by a single thermoplastic elastomer magnet having no slinger, the cost of the thermoplastic elastomer magnetic encoder can be reduced.
態様1において、熱可塑性エラストマー磁気エンコーダは、前記内方部材の外周面に圧入して固定される内周面および前記傾斜面とされる外周面を有する円環状の熱可塑性エラストマー磁石の単体であっても良い。
このようにスリンガを持たない熱可塑性エラストマー磁石の単体で熱可塑性エラストマー磁気エンコーダを構成すると、熱可塑性エラストマー磁気エンコーダの低コスト化が可能になる。 [Aspect 8]
In
Thus, if a thermoplastic elastomer magnetic encoder is constituted by a single thermoplastic elastomer magnet having no slinger, the cost of the thermoplastic elastomer magnetic encoder can be reduced.
[態様9]
態様1において、前記熱可塑性エラストマー製磁気エンコーダは、前記内方部材の外周面に圧入して固定される円筒部およびこの円筒部の一端部から立ち上がる立板部からなる断面L字状のスリンガと、このスリンガの前記円筒部および立板部にわたって一体成形され前記傾斜面とされる外周面を有する熱可塑性エラストマー磁石とでなるものであっても良い。 [Aspect 9]
In theaspect 1, the thermoplastic elastomer magnetic encoder includes a cylindrical portion that is press-fitted and fixed to the outer peripheral surface of the inner member, and a slinger having an L-shaped cross section that includes a standing plate portion that rises from one end portion of the cylindrical portion. The slinger may be formed of a thermoplastic elastomer magnet having an outer peripheral surface integrally formed over the cylindrical portion and the standing plate portion of the slinger.
態様1において、前記熱可塑性エラストマー製磁気エンコーダは、前記内方部材の外周面に圧入して固定される円筒部およびこの円筒部の一端部から立ち上がる立板部からなる断面L字状のスリンガと、このスリンガの前記円筒部および立板部にわたって一体成形され前記傾斜面とされる外周面を有する熱可塑性エラストマー磁石とでなるものであっても良い。 [Aspect 9]
In the
[態様10]
態様9において、前記スリンガを有する前記熱可塑性エラストマー磁気エンコーダは、そのスリンガを配置した金型内に磁性粉含有熱可塑性エラストマーを射出して前記熱可塑性エラストマー磁石を一体成形したインサート成形品であっても良い。またスリンガと熱可塑性エラストマー磁石を別々に製作し、これらを接着して一体化した前記スリンガを有する熱可塑性エラストマー磁気エンコーダとしても良い。
この時の接着剤として、イソシアネート系、ウレタン系、エステル系、塩ビ系、ゴム系、シアノアクリレート系の接着剤を使用できる。特にウレタン系やシアノアクリレート系が好適である。 [Aspect 10]
InAspect 9, the thermoplastic elastomer magnetic encoder having the slinger is an insert-molded product in which the thermoplastic elastomer magnet is integrally molded by injecting a magnetic powder-containing thermoplastic elastomer into a mold in which the slinger is disposed. Also good. Alternatively, a slinger and a thermoplastic elastomer magnet may be manufactured separately, and a thermoplastic elastomer magnetic encoder having the slinger integrated by bonding them together may be used.
As an adhesive at this time, an isocyanate, urethane, ester, vinyl chloride, rubber, or cyanoacrylate adhesive can be used. In particular, urethane type and cyanoacrylate type are preferable.
態様9において、前記スリンガを有する前記熱可塑性エラストマー磁気エンコーダは、そのスリンガを配置した金型内に磁性粉含有熱可塑性エラストマーを射出して前記熱可塑性エラストマー磁石を一体成形したインサート成形品であっても良い。またスリンガと熱可塑性エラストマー磁石を別々に製作し、これらを接着して一体化した前記スリンガを有する熱可塑性エラストマー磁気エンコーダとしても良い。
この時の接着剤として、イソシアネート系、ウレタン系、エステル系、塩ビ系、ゴム系、シアノアクリレート系の接着剤を使用できる。特にウレタン系やシアノアクリレート系が好適である。 [Aspect 10]
In
As an adhesive at this time, an isocyanate, urethane, ester, vinyl chloride, rubber, or cyanoacrylate adhesive can be used. In particular, urethane type and cyanoacrylate type are preferable.
[態様11]
態様10において、熱可塑性エラストマー磁気エンコーダの射出成形にあたり、熱可塑性エラストマー磁石をインサート法で前記スリンガと一体成形する場合、前記スリンガ材料としては非磁性材料が好ましい。スリンガの材料として非磁性材料を用いることにより、磁性材料を用いた場合に比べて、熱可塑性エラストマー磁気エンコーダ中の磁性粉の配硬度が向上するために磁力を強くすることができる。
また、スリンガと熱可塑性エラストマー磁石を別々に製作し、これらを接着して一体化することにより、スリンガを有する熱可塑性エラストマー磁気エンコーダとする場合には、スリンガの材料として磁性材料を用いることにより、非磁性材料を用いた場合に比べて、磁力を強くすることができる。 [Aspect 11]
In theaspect 10, in the injection molding of the thermoplastic elastomer magnetic encoder, when the thermoplastic elastomer magnet is integrally formed with the slinger by an insert method, the slinger material is preferably a nonmagnetic material. By using a non-magnetic material as a material for the slinger, the magnetic powder distribution in the thermoplastic elastomer magnetic encoder is improved compared to the case where a magnetic material is used, so that the magnetic force can be increased.
In addition, by producing a slinger and a thermoplastic elastomer magnet separately, and bonding and integrating them, when a thermoplastic elastomer magnetic encoder having a slinger is used, by using a magnetic material as a slinger material, Compared with the case of using a nonmagnetic material, the magnetic force can be increased.
態様10において、熱可塑性エラストマー磁気エンコーダの射出成形にあたり、熱可塑性エラストマー磁石をインサート法で前記スリンガと一体成形する場合、前記スリンガ材料としては非磁性材料が好ましい。スリンガの材料として非磁性材料を用いることにより、磁性材料を用いた場合に比べて、熱可塑性エラストマー磁気エンコーダ中の磁性粉の配硬度が向上するために磁力を強くすることができる。
また、スリンガと熱可塑性エラストマー磁石を別々に製作し、これらを接着して一体化することにより、スリンガを有する熱可塑性エラストマー磁気エンコーダとする場合には、スリンガの材料として磁性材料を用いることにより、非磁性材料を用いた場合に比べて、磁力を強くすることができる。 [Aspect 11]
In the
In addition, by producing a slinger and a thermoplastic elastomer magnet separately, and bonding and integrating them, when a thermoplastic elastomer magnetic encoder having a slinger is used, by using a magnetic material as a slinger material, Compared with the case of using a nonmagnetic material, the magnetic force can be increased.
以上のとおり、図面を参照しながら好適な実施例を説明したが、当業者であれば、本件明細書を見て、自明な範囲内で種々の変更および修正を容易に想定するであろう。したがって、そのような変更および修正は、請求の範囲から定まる発明の範囲内のものと解釈される。
As described above, the preferred embodiments have been described with reference to the drawings. However, those skilled in the art will readily assume various changes and modifications within the obvious scope by looking at the present specification. Accordingly, such changes and modifications are to be construed as within the scope of the invention as defined by the appended claims.
1…外方部材
2…内方部材
3,4…転走面
5…転動体
8…密封装置
10a~10d,21aa,21ab…係合部
20…回転検出装置
21…プラスチック磁気エンコーダ
21A,21B…熱可塑性エラストマー磁気エンコーダ
22…スリンガ
22a…円筒部
22b…立板部
23…熱可塑性エラストマー多極磁石
23a…内周面
23b…傾斜面
24…磁気センサ
25…センサホルダ DESCRIPTION OFSYMBOLS 1 ... Outer member 2 ... Inner member 3, 4 ... Rolling surface 5 ... Rolling body 8 ... Sealing device 10a-10d, 21aa, 21ab ... Engagement part 20 ... Rotation detection device 21 ... Plastic magnetic encoder 21A, 21B ... Thermoplastic elastomer magnetic encoder 22 ... Slinger 22a ... Cylindrical portion 22b ... Standing plate portion 23 ... Thermoplastic elastomer multipolar magnet 23a ... Inner peripheral surface 23b ... Inclined surface 24 ... Magnetic sensor 25 ... Sensor holder
2…内方部材
3,4…転走面
5…転動体
8…密封装置
10a~10d,21aa,21ab…係合部
20…回転検出装置
21…プラスチック磁気エンコーダ
21A,21B…熱可塑性エラストマー磁気エンコーダ
22…スリンガ
22a…円筒部
22b…立板部
23…熱可塑性エラストマー多極磁石
23a…内周面
23b…傾斜面
24…磁気センサ
25…センサホルダ DESCRIPTION OF
Claims (12)
- 内周に複列の転走面が形成され固定側部材となる外方部材と、前記各転走面に対向する転走面が外周に形成され回転側部材となる内方部材と、これら対向する転走面間に介在した複列の転動体とを備え、車体に対して車輪を回転自在に支持する車輪用軸受装置であって、
前記内方部材の外周面に嵌合して取付けられた磁気エンコーダと、磁気センサを内蔵しその磁気センサが前記磁気エンコーダと所定隙間を介して軸方向に対峙するように前記外方部材に取付けられた円環状のセンサホルダと、前記磁気エンコーダよりも軸受外側位置で前記センサホルダと前記内方部材との間の空間を密封する密封装置とを備え、
前記磁気エンコーダをプラスチック磁気エンコーダとすると共に、この磁気エンコーダと前記内方部材のいずれか一方または両方に、これら両部材を互いに係合させて磁気エンコーダを軸方向に位置規制する係合部を形成した回転検出装置付き車輪用軸受装置。 An outer member that is a fixed side member with a double row rolling surface formed on the inner periphery, an inner member that is a rotating side member that has a rolling surface that faces each of the rolling surfaces on the outer periphery, and these facing members A double-row rolling element interposed between the rolling surfaces, and a wheel bearing device for rotatably supporting the wheel with respect to the vehicle body,
A magnetic encoder fitted to and attached to the outer peripheral surface of the inner member and a magnetic sensor are incorporated, and the magnetic sensor is attached to the outer member so as to face the magnetic encoder in the axial direction through a predetermined gap. An annular sensor holder, and a sealing device that seals a space between the sensor holder and the inner member at a position outside the bearing than the magnetic encoder,
The magnetic encoder is a plastic magnetic encoder, and one or both of the magnetic encoder and the inner member are engaged with each other to form an engaging portion that restricts the position of the magnetic encoder in the axial direction. A wheel bearing device with a rotation detection device. - 請求項1において、前記係合部が、前記内方部材の外周面に形成された凸部と、前記プラスチック磁気エンコーダの内周面に形成され前記凸部に係合する凹部とからなる回転検出装置付き車輪用軸受装置。 2. The rotation detection according to claim 1, wherein the engaging portion includes a convex portion formed on an outer peripheral surface of the inner member and a concave portion formed on an inner peripheral surface of the plastic magnetic encoder and engaged with the convex portion. Wheel bearing device with device.
- 請求項1において、前記係合部が、前記内方部材の外周面に形成された凹部と、前記プラスチック磁気エンコーダの内周面に形成され前記凹部に係合する凸部とからなる回転検出装置付き車輪用軸受装置。 The rotation detection device according to claim 1, wherein the engaging portion includes a concave portion formed on the outer peripheral surface of the inner member and a convex portion formed on the inner peripheral surface of the plastic magnetic encoder and engaged with the concave portion. Wheel bearing device with attached wheels.
- 請求項1において、前記係合部が、前記内方部材の外周面に形成され前記プラスチック磁気エンコーダの軸方向に向く幅面に係合する段差面からなる回転検出装置付き車輪用軸受装置。 2. The wheel bearing device with a rotation detecting device according to claim 1, wherein the engaging portion includes a stepped surface that is formed on an outer peripheral surface of the inner member and engages a width surface facing an axial direction of the plastic magnetic encoder.
- 請求項1において、前記プラスチック磁気エンコーダは、円周方向に磁極が並ぶ多極磁石を有する磁気エンコーダであり、前記多極磁石は磁性粉と熱可塑性樹脂とを含み、前記磁性粉含有熱可塑性樹脂の溶融粘度が30Pa・s以上1500Pa・s以下である回転検出装置付き車輪用軸受装置。 2. The magnetic encoder according to claim 1, wherein the plastic magnetic encoder is a magnetic encoder having a multipolar magnet in which magnetic poles are arranged in a circumferential direction, and the multipolar magnet includes magnetic powder and a thermoplastic resin. A wheel bearing device with a rotation detector having a melt viscosity of 30 Pa · s to 1500 Pa · s.
- 請求項5において、前記熱可塑性樹脂は、ポリアミド12、ポリアミド612、ポリアミド11、ポリフェニレンスルフィドの群から選択される1つ以上の化合物を含む回転検出装置付き車輪用軸受装置。 6. The wheel bearing device with a rotation detecting device according to claim 5, wherein the thermoplastic resin includes one or more compounds selected from the group consisting of polyamide 12, polyamide 612, polyamide 11, and polyphenylene sulfide.
- 請求項5において、前記磁性粉がフェライト系磁性粉である回転検出装置付き車輪用軸受装置。 6. The wheel bearing device with a rotation detector according to claim 5, wherein the magnetic powder is a ferrite magnetic powder.
- 請求項7において、前記磁性粉が異方性フェライト系磁性粉である回転検出装置付き車輪用軸受装置。 The wheel bearing device with a rotation detector according to claim 7, wherein the magnetic powder is an anisotropic ferrite magnetic powder.
- 請求項1において、前記プラスチック磁気エンコーダが射出成形品である回転検出装置付き車輪用軸受装置。 The wheel bearing device with a rotation detecting device according to claim 1, wherein the plastic magnetic encoder is an injection molded product.
- 請求項9において、前記プラスチック磁気エンコーダは射出成形において磁場成形したものである回転検出装置付き車輪用軸受装置。 10. The wheel bearing device with a rotation detector according to claim 9, wherein the plastic magnetic encoder is formed by magnetic field molding in injection molding.
- 請求項1において、前記プラスチック磁気エンコーダが軸方向に対して傾斜した傾斜面をもち、前記円環状のセンサホルダが前記プラスチック磁気エンコーダの傾斜面に対して所定間隔を介して平行に対峙するように、外方部材に装着された回転検出装置付き車輪用軸受装置。 2. The plastic magnetic encoder according to claim 1, wherein the plastic magnetic encoder has an inclined surface inclined with respect to an axial direction, and the annular sensor holder faces the inclined surface of the plastic magnetic encoder in parallel with a predetermined interval. A wheel bearing device with a rotation detection device mounted on the outer member.
- 請求項1において、前記磁気エンコーダとして、プラスチック磁気エンコーダに代えて、被検出部となる磁石が熱可塑性エラストマーに磁性粉を混入させた熱可塑性エラストマー磁石を備えた回転検出装置付き車輪用軸受装置。 2. The wheel bearing device with a rotation detecting device according to claim 1, wherein, as the magnetic encoder, instead of a plastic magnetic encoder, a magnet serving as a detected portion includes a thermoplastic elastomer magnet in which magnetic powder is mixed in a thermoplastic elastomer.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008193474A JP2010032303A (en) | 2008-07-28 | 2008-07-28 | Wheel bearing device with rotation detection device |
JP2008-193474 | 2008-07-28 | ||
JP2008207113A JP2010043907A (en) | 2008-08-11 | 2008-08-11 | Wheel bearing device with rotation detector |
JP2008-207113 | 2008-08-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010013411A1 true WO2010013411A1 (en) | 2010-02-04 |
Family
ID=41610126
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/003443 WO2010013411A1 (en) | 2008-07-28 | 2009-07-22 | Bearing device adapted for use in wheel and equipped with rotation sensing device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2010013411A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022095938A1 (en) * | 2020-11-06 | 2022-05-12 | 深圳市杉川机器人有限公司 | Mounting structure of hub motor encoder, and motor |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04133801A (en) * | 1990-09-25 | 1992-05-07 | Koyo Seiko Co Ltd | Bearing unit |
JP2006090354A (en) * | 2004-09-21 | 2006-04-06 | Ntn Corp | Wheel bearing device with rotation speed detection device |
JP2007218342A (en) * | 2006-02-16 | 2007-08-30 | Ntn Corp | Bearing device for driving wheel |
JP2007322213A (en) * | 2006-05-31 | 2007-12-13 | Ntn Corp | Bearing unit with rotation sensor |
JP2007333184A (en) * | 2006-06-19 | 2007-12-27 | Nsk Ltd | Rolling bearing |
JP2008122220A (en) * | 2006-11-13 | 2008-05-29 | Ntn Corp | Magnetic encoder and rolling bearing |
-
2009
- 2009-07-22 WO PCT/JP2009/003443 patent/WO2010013411A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04133801A (en) * | 1990-09-25 | 1992-05-07 | Koyo Seiko Co Ltd | Bearing unit |
JP2006090354A (en) * | 2004-09-21 | 2006-04-06 | Ntn Corp | Wheel bearing device with rotation speed detection device |
JP2007218342A (en) * | 2006-02-16 | 2007-08-30 | Ntn Corp | Bearing device for driving wheel |
JP2007322213A (en) * | 2006-05-31 | 2007-12-13 | Ntn Corp | Bearing unit with rotation sensor |
JP2007333184A (en) * | 2006-06-19 | 2007-12-27 | Nsk Ltd | Rolling bearing |
JP2008122220A (en) * | 2006-11-13 | 2008-05-29 | Ntn Corp | Magnetic encoder and rolling bearing |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022095938A1 (en) * | 2020-11-06 | 2022-05-12 | 深圳市杉川机器人有限公司 | Mounting structure of hub motor encoder, and motor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2009098851A1 (en) | Wheel bearing device with rotation detector | |
CN102575715B (en) | Bearing device for a wheel, equipped with a rotational-speed measurement device | |
KR20080113063A (en) | Sealing device | |
JP2012087858A (en) | Wheel bearing device | |
US20100027927A1 (en) | Sensor attaching sealing device and vehicle rolling bearing using the same | |
JP4893648B2 (en) | Rolling bearing unit with combination seal ring | |
JP2008309717A (en) | Magnetic encoder and rolling bearing unit equipped with the magnetic encoder | |
JP4682919B2 (en) | Manufacturing method of rolling bearing | |
JP2013221549A (en) | Wheel bearing device | |
JP5334820B2 (en) | Wheel bearing device with rotation speed detector | |
JP5834751B2 (en) | Magnetized pulsar ring, manufacturing method thereof, and rolling bearing device | |
WO2010013411A1 (en) | Bearing device adapted for use in wheel and equipped with rotation sensing device | |
JP2010032303A (en) | Wheel bearing device with rotation detection device | |
JP2016121729A (en) | Wheel bearing device with rotational speed detection device | |
JP2007333142A (en) | Rolling bearing | |
JP5274042B2 (en) | Wheel bearing device with rotation detector | |
JP4742796B2 (en) | Rolling bearing unit with rotation detector | |
JP5274041B2 (en) | Wheel bearing device with rotation detector | |
JP2013019529A (en) | Bearing device for wheel | |
JP2011242188A (en) | Wheel bearing device with rotational speed detector | |
JP2010043907A (en) | Wheel bearing device with rotation detector | |
JP2017067245A (en) | Pressure-insertion method of encoder ring and pressure-insertion method of sealing device having the encoder ring | |
JP5376811B2 (en) | Wheel bearing device with rotation detector | |
JP2007163397A (en) | Magnetized pulser ring | |
JP5028878B2 (en) | Multipole magnet encoder Sealing device with multipole magnet encoder Rolling bearing and wheel support bearing unit provided with the sealing device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09802660 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09802660 Country of ref document: EP Kind code of ref document: A1 |