WO2010013341A1 - Swing structure - Google Patents
Swing structure Download PDFInfo
- Publication number
- WO2010013341A1 WO2010013341A1 PCT/JP2008/063776 JP2008063776W WO2010013341A1 WO 2010013341 A1 WO2010013341 A1 WO 2010013341A1 JP 2008063776 W JP2008063776 W JP 2008063776W WO 2010013341 A1 WO2010013341 A1 WO 2010013341A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fixing ring
- ring
- slide block
- slide blocks
- turning
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C29/00—Bearings for parts moving only linearly
- F16C29/005—Guide rails or tracks for a linear bearing, i.e. adapted for movement of a carriage or bearing body there along
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C19/00—Bearings with rolling contact, for exclusively rotary movement
- F16C19/50—Other types of ball or roller bearings
- F16C19/502—Other types of ball or roller bearings with rolling elements in rows not forming a full circle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C29/00—Bearings for parts moving only linearly
- F16C29/04—Ball or roller bearings
- F16C29/06—Ball or roller bearings in which the rolling bodies circulate partly without carrying load
- F16C29/0633—Ball or roller bearings in which the rolling bodies circulate partly without carrying load with a bearing body defining a U-shaped carriage, i.e. surrounding a guide rail or track on three sides
- F16C29/0635—Ball or roller bearings in which the rolling bodies circulate partly without carrying load with a bearing body defining a U-shaped carriage, i.e. surrounding a guide rail or track on three sides whereby the return paths are provided as bores in a main body of the U-shaped carriage, e.g. the main body of the U-shaped carriage is a single part with end caps provided at each end
- F16C29/0638—Ball or roller bearings in which the rolling bodies circulate partly without carrying load with a bearing body defining a U-shaped carriage, i.e. surrounding a guide rail or track on three sides whereby the return paths are provided as bores in a main body of the U-shaped carriage, e.g. the main body of the U-shaped carriage is a single part with end caps provided at each end with balls
- F16C29/0642—Ball or roller bearings in which the rolling bodies circulate partly without carrying load with a bearing body defining a U-shaped carriage, i.e. surrounding a guide rail or track on three sides whereby the return paths are provided as bores in a main body of the U-shaped carriage, e.g. the main body of the U-shaped carriage is a single part with end caps provided at each end with balls with four rows of balls
- F16C29/0647—Ball or roller bearings in which the rolling bodies circulate partly without carrying load with a bearing body defining a U-shaped carriage, i.e. surrounding a guide rail or track on three sides whereby the return paths are provided as bores in a main body of the U-shaped carriage, e.g. the main body of the U-shaped carriage is a single part with end caps provided at each end with balls with four rows of balls with load directions in X-arrangement
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2300/00—Application independent of particular apparatuses
- F16C2300/10—Application independent of particular apparatuses related to size
- F16C2300/14—Large applications, e.g. bearings having an inner diameter exceeding 500 mm
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2360/00—Engines or pumps
- F16C2360/31—Wind motors
Definitions
- the present invention relates to a turning structure for supporting an upper turning body so as to be turnable with respect to a lower structure.
- a nacelle in which a wind turbine is rotatably supported with respect to a tower of a wind power generation apparatus according to a wind direction.
- the present invention relates to a turning structure or a turning structure for turning an upper frame including a driver's seat with respect to a truck frame in a construction machine represented by a power shovel or the like.
- a nacelle that houses a windmill and a generator that is rotationally driven by the windmill is mounted on the top of the tower, and this nacelle is attached to the tower according to the wind direction so that the windmill receives wind force from the front.
- this nacelle is configured to perform yaw turning (turning on a substantially horizontal plane).
- a swivel bearing in which an inner ring and an outer ring are combined via a plurality of balls or rollers is used, and either the inner ring or the outer ring is a tower, and the other is It is fixed to the nacelle (Japanese Patent Laid-Open No. 2007-107411).
- the slewing bearing used in the slewing structure includes an outer ring in which a rolling surface of a rolling element is formed along an inner circumferential surface, and an inner ring in which a rolling surface facing the rolling surface on the outer ring side is formed on the outer circumferential surface. And a large number of rolling elements that roll while applying a load between the outer ring and the inner ring. Either a ball or a roller can be used as the rolling element, but when a roller is used instead of a ball, the inner ring and the outer ring are not separated from each other by a load.
- the wind turbine generator has been increased in size to increase the rated output, and accordingly, the wind turbine diameter has increased and the nacelle tends to increase in size. For this reason, the diameter of the slewing bearing used in the slewing structure is remarkably increased, and there is a case where a huge slewing bearing having a diameter of 4 m or more is required.
- the conventional slewing bearing has a continuous arrangement of rolling elements between the inner ring and the outer ring, and even if the load acts from any direction of 360 ° around the slewing bearing, the load is equalized. It was possible to load. However, assuming a situation in which a slewing bearing is actually used, for example, in a slewing structure of a nacelle of a wind power generator, since a windmill is attached to one side of the nacelle, a large load acts locally on the slewing bearing. Will be. Also, in the swing structure of a construction machine, since the counter weight is mounted on the upper frame of the construction machine, the swing bearing that supports the swing of the upper frame is locally corresponding to the mounting position of the counter weight.
- a heavy load is acting. That is, in an actual turning structure in which the upper turning body is supported with respect to the lower structure, a load is often applied locally to the inner ring and outer ring of the turning bearing. It is considered that the need to load equally in any direction of 360 ° is poor.
- the present invention has been made in view of such problems, and the object of the present invention is to make it possible to easily produce a structure with a large turning diameter at low cost and to carry it easily. Is to provide.
- Another object of the present invention is to provide a turning structure capable of optimally distributing the load-loading ability around 360 ° around the turning center in accordance with various uses of the turning structure.
- the present invention relates to a lower structure, an upper swing body arranged to be rotatable with respect to the lower structure, and a swing bearing mechanism interposed between the lower structure and the upper swing body.
- It is the turning structure which consists of.
- the slewing bearing mechanism is composed of a plurality of arc-shaped track rails having a constant curvature, and an endless annular fixed ring in which these track rails are continuously arranged on the lower structure, and a large number of rolling elements. And at least three or more slide blocks that can be freely moved along the fixing ring in a state where the upper rotating body is supported.
- the slewing bearing mechanism is composed of an endless annular fixing ring assembled from a plurality of arcuate track rails and at least three or more slide blocks assembled to the fixing rail. Therefore, even when a very large-diameter turning structure is required, the turning structure can be easily constructed by increasing the number of arc-shaped track rails and the number of slide blocks. That is, unlike the conventional slewing bearing, there is no need for special equipment for producing large-diameter inner rings and outer rings, and it is not necessary to prepare a steel material having a length suitable for the circumference of the fixed ring. Therefore, it is possible to easily and inexpensively produce a turning structure having a large turning diameter.
- the number of slide blocks to be assembled to the fixing ring can be changed as appropriate according to the diameter of the fixing ring, the weight of the upper swing body, etc., as long as the number is three or more. It is. Also, the reason for limiting the number of slide blocks to at least three or more is that depending on the arrangement of the slide blocks with respect to the fixed ring, if there are only two slide blocks, it is difficult to determine the pivot center of the upper swing body, and the swing motion of the upper swing body is not possible. This is because it becomes stable.
- the fixing ring is formed in an annular shape by arranging a plurality of arc-shaped track rails in the lower structure, it can be handled as individual arc-shaped track rails until being arranged in the lower structure, It becomes possible to carry it easily.
- the slide block assembled to the fixing ring can be arranged at arbitrary positions on the circumference of the fixing ring, the slide block is arranged with respect to the load application point from the upper swing body to the lower structure. Therefore, it is possible to increase the load carrying capacity more easily than the conventional slewing bearing.
- FIG. 1 It is a front view which shows the wind power generator which can apply the turning structure of this invention. It is the schematic which shows the turning structure of the wind power generator shown in FIG. It is a perspective view which shows an example of the turning bearing mechanism in the turning structure of this invention. It is a perspective view which shows the combination of the arc-shaped track rail and slide block which comprise the turning bearing mechanism shown in FIG. It is a semi-sectional view showing another example of an arcuate track rail. It is a top view which shows the example which arrange
- FIG. 1 shows an example of a wind turbine generator 1 to which the turning structure of the present invention can be applied.
- the wind turbine generator 1 includes a windmill 2, a nacelle 3 that houses a generator driven by the windmill 2, and a tower 4 that supports the nacelle 3 in a yaw-turnable manner.
- the windmill 2 is rotatably held at a predetermined height from the ground by a tower 4, and is rotated by wind energy to rotationally drive a generator housed in the nacelle 3.
- the generator converts rotational energy generated in the windmill 2 into electrical energy, and transmits the electrical energy to ground equipment such as a transformer through a power transmission line stored in the tower 4.
- Rotating bearing mechanism 5 is provided between nacelle 3 as the upper rotating body and the uppermost part of tower 4 as the lower structure in order to forcibly wind windmill 2 upwind.
- the slewing bearing mechanism 5 includes an endless annular fixing ring 7 disposed via a substrate plate 6 with respect to the uppermost portion of the tower 4, and the fixing ring 7 via a large number of balls.
- a plurality of slide blocks 8 assembled to each other, and a turntable 9 that supports the nacelle 3 is fixed to the slide blocks 8.
- a tooth row is provided along the circumferential direction on the outer peripheral surface of the fixing ring 7, and a pinion gear 10 is engaged with the tooth row.
- the pinion gear 10 is configured to be arbitrarily rotated by a motor 11 mounted on the turning table 9, and when the motor 11 rotates the pinion gear 10, the turning table 9 makes a yaw turn with respect to the tower 4.
- the nacelle 3 that rotatably supports the windmill 2 can be directed in an arbitrary direction.
- FIG. 3 is a perspective view showing the fixed ring 7 and the slide block 8 constituting the slewing bearing mechanism 5.
- the fixing ring 7 is formed by continuously arranging a plurality of arc-shaped track rails 70, and each track rail 70 is formed in an arc shape with a constant curvature.
- the fixed ring 7 is formed by continuously arranging three track rails 70.
- a tooth row 71 that meshes with the pinion gear 10 is directly formed on the outer peripheral side surface of each track rail 70 by machining. That is, the fixing ring 7 functions as a gear ring having external teeth. It is also possible to provide a tooth row on the inner peripheral side surface of the track rail 70 and to engage the pinion gear 10 with the tooth row.
- FIG. 4 is a perspective view showing details of each track rail 70 formed in an arc shape and the slide block 8 assembled to the track rail 70.
- the track rail 70 is formed in an arc shape with a predetermined curvature radius R with respect to the center O of the fixed ring 7, and a cross section perpendicular to the longitudinal direction is formed in a substantially rectangular shape.
- Two ball rolling grooves 72 are respectively formed along the longitudinal direction on the inner peripheral side surface and the outer peripheral side surface, and a total of four ball rolling grooves 72 are formed. Further, the above-described tooth row 71 is formed below the outer peripheral side surface of the track rail 70.
- the slide block 8 has an infinite circulation path of the ball 80 rolling in the ball rolling groove 72 of the track rail 70, and the ball 80 circulates in the infinite circulation path, so that the slide block 8 is It is possible to move continuously along the track rail 70.
- the two track rails 70 that are in contact with each other have continuous ball rolling grooves 72, and the slide block 8 moves from the track rail 70 to the adjacent track rail 70 and moves. can do. Therefore, the slide block 8 can freely circulate around the fixing ring 7 composed of a plurality of track rails 70.
- the slide block 8 is assembled to the track rail 70 via a large number of balls 80, but a large number of rollers are used instead of the balls 80. It is also possible to use it.
- the allowable load load of the slide block can be set larger, which is advantageous when the weight of the upper swing body is large.
- the slide block 8 is assembled to the track rail 70 by a ball train rolling on four ball rolling grooves 72 formed on the track rail 70, and the track rail 70 and slide block of each ball train are assembled.
- the contact direction with respect to 8 is inclined at 45 ° with respect to the substrate plate 6, for example. That is, the slide block 8 can move along the track rail 70 while applying a load acting in any direction except the circumferential direction of the fixing ring 7. From this, it is possible to apply a preload to the ball 80 provided in the slide block 8, and the preload amount can be adjusted by changing the ball diameter.
- the preload amount as described above, when a load is applied to the slide block 8, the displacement amount of the slide block 8 relative to the track rail 70, and hence the displacement amount of the turning table 9 relative to the substrate plate 6 can be reduced. Is possible.
- this turning table 9 corresponds to the upper turning body in the present invention.
- the turning table 9 is only allowed to turn around the center O of the fixing ring 7.
- FIG. 5 shows another example of the arcuate track rail 70 constituting the fixing ring 7.
- the track rail 70 is not directly fixed to the uppermost substrate plate 6 of the tower 4, but is fixed to the substrate plate 6 via a gear ring 73 having a tooth row 71 on the outer peripheral side surface.
- the tooth rail 71 is not formed on the track rail 70 itself, and the pinion gear 10 is configured to mesh with the tooth row 71 of the gear ring 73.
- the gear ring 73 may be formed in an endless annular shape, but in consideration of difficulty in transportation and production, it is preferable to configure a plurality of arc-shaped parts in combination like the track rail 70.
- 5 denotes a bolt that passes through the gear ring 73 and fastens the track rail 70 to the substrate plate 6.
- the swivel table 9 to which the slide block 8 is fixed is allowed only to swivel around the center O of the fixed ring 7.
- the meshing pinion gear 10 is rotated by the motor 11, the turning table 9 performs a turning motion with respect to the substrate plate 6 according to the amount of rotation of the motor 11. That is, the nacelle 3 of the wind power generator 1 as the upper swing body can be swung on the tower 4 as the lower structure, and the windmill can be directed in an arbitrary direction.
- a fixed ring 7 having a diameter of 4 m or more is required as the slewing bearing mechanism 5 for supporting the yaw slewing of the nacelle 3.
- the fixed ring 7 is composed of a plurality of arcuate track rails 70 in the turning structure of the present invention, even if the fixed ring 7 has a larger diameter, the circumferential direction of the fixed ring 7 By increasing the number of divisions, that is, the number of arc-shaped track rails 70, it is possible to easily cope with the problem.
- the steel material for producing the fixing ring 7 can be divided into the number of the arc-shaped track rails 70, it is easy to obtain. Therefore, according to the turning structure of the present invention, it is possible to easily and inexpensively produce a turning structure having a large turning diameter.
- the fixed ring 7 is constructed by combining a plurality of arc-shaped track rails 70, the slewing bearing mechanism 5 can be easily transported even when a slewing structure having a large slewing diameter is constructed. is there.
- the plurality of slide blocks 8 assembled to the fixing ring 7 may be arranged at equal intervals along the circumferential direction of the fixing ring 7, but it is not always necessary to arrange them at equal intervals, and the upper swing Arbitrary arrangements can be adopted according to the point of action and the magnitude of the load from the body to the lower structure.
- the turning table 9 that supports the nacelle 3 has a maximum load at a position close to the windmill 2. It is thought that is acting.
- the slide blocks 8 are not arranged at equal intervals along the circumferential direction of the fixed ring 7, but are arranged in a concentrated manner at the point of application of a large load, so that It is possible to reduce the number of assembling bases of the slide block 8 and reduce the cost required for manufacturing the turning structure.
- the endless annular fixing ring 7 is configured by combining the plurality of arc-shaped track rails 70 in this way, the roundness of the fixing ring 7 is ensured if the positioning of each arc-shaped track rail 70 is poor. Becomes difficult.
- the roundness of the fixing ring 7 deteriorates, when the three or more slide blocks 8 assembled to the fixing ring 7 are fixed to a single turning table 9, the turning table 9 becomes heavy.
- the roundness of the fixing ring 7 is extremely bad, the turning ring 9 cannot be rotated.
- the plurality of slide blocks 8 assembled to the fixing ring 7 are divided into a plurality of groups along the circumferential direction of the fixing ring 7, and the slide blocks 8 are provided for each group. It is conceivable to vary the preload amount of the ball 80.
- FIG. 6 is a plan view of the slewing bearing mechanism 5 showing a case where four slide blocks 8 a to 8 d are combined with the fixing ring 7. These four slide blocks are divided into two groups G1 and G2, and the amount of preload applied to the balls of the slide blocks 8a and 8b belonging to the group G1 is the ball of the slide blocks 8c and 8d belonging to the group G2. It is set to be larger than the preload amount given to.
- the slide blocks 8a and 8b belonging to the group G1 since the preload amount of the ball is set large, even if a large load acts on the slide blocks 8a and 8b from the turning table 9, the slide blocks 8a and 8b are fixed. There is no significant displacement with respect to the ring 7.
- the preload amount of the ball is set to be small or no preload is applied, so that the slide blocks 8c and 8d are attached to the fixed ring 7 more than the slide blocks 8a and 8b in the group G1. On the other hand, it can be displaced greatly.
- the turning table 9 has the slide block 8a of the group G1. , 8b on the fixed ring 7 as a reference, during such movement of the rotary table 9, the slide blocks 8c, 8d of the group G2 are fixed while absorbing the roundness error of the fixed ring 7. It moves on the ring 7. Therefore, even if the roundness of the fixing ring 7 is poor, it is possible to give a smooth and smooth turning motion to the turning table 9.
- FIG. 7 is a plan view of the slewing bearing mechanism 5 showing a case where six slide blocks 8a to 8f are combined with the fixed ring 7.
- FIG. These six slide blocks are divided into four groups G1 to G4.
- the groups G1 and G3 have one slide block, and the groups G2 and G3 have two slide blocks.
- the amount of preload given to the ball of the slide block 8a belonging to the group G1 is the maximum compared to other groups
- the amount of preload given to the ball of the slide block 8d belonging to the group G3 is the other.
- the preload amount applied to the balls of the slide blocks 8b, 8c, 8e, and 8f belonging to the groups G2 and G4 is about the middle of the preload amounts in the groups G1 and G3.
- a group G1 that gives the maximum preload amount to the ball of the slide block As shown in the example of FIG. 7, among a plurality of groups G1 to G4 formed by dividing a plurality of slide blocks 8a to 8f, a group G1 that gives the maximum preload amount to the ball of the slide block; The group G3 to which the minimum amount of preload is given is opposed to the center of the fixing ring 7. As described above, when the group G1 having the maximum preload amount and the group G3 having the minimum preload amount are arranged with the center of the fixing ring 7 interposed therebetween, these groups do not have the center of the fixing ring 7 interposed therebetween.
- the error amount of the roundness of the fixing ring 7 that can be absorbed by the slide block 8d having the minimum preload amount can be increased. Therefore, even if the roundness of the fixing ring 7 is poor, it is possible to cause the turning table 9 to perform the turning motion more smoothly.
- the group to which the maximum preload amount is given to the ball 80 of the slide block 8 is the swivel table. 9 is preferably located immediately below the point of load application to 9. For example, if the slewing bearing mechanism 5 shown in FIG. 7 is applied to the slewing structure of the wind turbine generator 1 shown in FIGS. 1 and 2, the slide block 8a of the group G1 is closest to the windmill 2. Next, the arrangement of the slide blocks 8a to 8f with respect to the turning table 9 is determined.
- FIG. 6 and 7 show an example in which a plurality of slide blocks are arranged at equal intervals along the circumferential direction of the fixing ring 7.
- FIG. 8 shows an example in which a plurality of slide blocks 8a to 8e are arranged at unequal intervals along the circumferential direction of the fixing ring 7, and are fixed to the turning table in this arrangement state.
- the five slide blocks 8a to 8e assembled to the fixing ring are divided into two groups G1 and G2, and the amount of preload applied to the balls of the slide blocks 8a to 8c belonging to the group G1 belongs to the group G2. It is set to be larger than the preload amount applied to the balls of the slide blocks 8d and 8e.
- the slide blocks 8a to 8c belonging to the group G1 are arranged at equal intervals.
- the arrangement interval is set smaller than the interval between the slide block 8c belonging to the group G1 and the slide block 8d belonging to the group G2.
- the arrangement interval of the slide blocks 8d and 8e belonging to the group G2 is also set smaller than the interval between the slide block 8c belonging to the group G1 and the slide block 8d belonging to the group G2.
- the arrangement of the slide block shown in FIG. 8 is effective for reliably receiving the load acting on the turning table 9. That is, by providing the group G1 directly below the point of application of the load to the turning table 9, it is possible to provide a turning bearing mechanism that is optimal for the weight arrangement of the upper turning body supported by the turning table. It is possible to avoid useless arrangement and reduce the number of slide blocks incorporated in the fixing ring.
- the group G1 that gives the maximum preload amount to the ball of the slide block and the group G2 that gives a smaller preload amount face each other across the center of the fixing ring 7.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Bearings For Parts Moving Linearly (AREA)
Abstract
Provided is a swing structure which realizes production of a structure having a large swing diameter easily and inexpensively, which is easy to carry, and which realizes optimal distribution of load capacity in 360˚ around the center of swing according to various kinds of use. The swing structure is composed of a lower structure (4), an upper swing body (3) disposed swingably with respect to the lower structure (4), and a swing bearing mechanism (5) interposed between the lower structure (4) and the upper swing body (3). The swing bearing mechanism (5) is composed of an endless ring-formed fixed ring (7) and at least three slide blocks (8). The endless ring-formed fixed ring (7) is composed of a plurality of circular track rails (70) which have a fixed curvature and which are arranged continuously on the lower structure (4). The three slide blocks (8) are assembled to the fixed ring (7) through many rolling bodies (80) and movable freely along the fixed ring (7) while carrying the upper swing body (3).
Description
本発明は、上部旋回体を下部構造体に対して旋回可能に支承するための旋回構造に係り、例えば、風力発電装置のタワーに対して風車を回転自在に支承したナセルを風向きに応じてヨー旋回させるための構造、あるいはパワーショベル等に代表される建設機械においてトラックフレームに対して運転席を含めた上部フレームを旋回させるための旋回構造に関する。
The present invention relates to a turning structure for supporting an upper turning body so as to be turnable with respect to a lower structure. For example, a nacelle in which a wind turbine is rotatably supported with respect to a tower of a wind power generation apparatus according to a wind direction. The present invention relates to a turning structure or a turning structure for turning an upper frame including a driver's seat with respect to a truck frame in a construction machine represented by a power shovel or the like.
例えば、風力発電装置においては、風車及びこの風車により回転駆動される発電機を収容したナセルがタワー上部に搭載されており、このナセルは風車が正面から風力を受けるよう、風向きに応じてタワーに対してヨー旋回(略水平面上の旋回)するように構成されている。
For example, in a wind turbine generator, a nacelle that houses a windmill and a generator that is rotationally driven by the windmill is mounted on the top of the tower, and this nacelle is attached to the tower according to the wind direction so that the windmill receives wind force from the front. On the other hand, it is configured to perform yaw turning (turning on a substantially horizontal plane).
そして、前記ナセルをタワーに対してヨー旋回させる構造としては、複数のボール又はローラを介して内輪と外輪とを組み合わせた旋回軸受が使用されており、内輪又は外輪の一方がタワーに、他方がナセルに固定されるようになっている(特開2007-107411)。
And as a structure for yawing the nacelle with respect to the tower, a swivel bearing in which an inner ring and an outer ring are combined via a plurality of balls or rollers is used, and either the inner ring or the outer ring is a tower, and the other is It is fixed to the nacelle (Japanese Patent Laid-Open No. 2007-107411).
一方、パワーショベルやクレーンなどの建設機械においても、下部構造体であるトラックフレームに対して運転席やカウンタウェイトを備えた上部フレームが旋回可能に搭載されており、かかる旋回構造として前記旋回軸受が使用されている(特開2005-61574)。
On the other hand, in construction machines such as power shovels and cranes, an upper frame having a driver's seat and a counterweight is turnably mounted on a track frame that is a lower structure. (Japanese Patent Laid-Open No. 2005-61574).
前記旋回構造に使用される旋回軸受は、内周面に沿って転動体の転走面が形成された外輪と、外輪側の転走面に対向する転走面が外周面に形成された内輪と、これら外輪と内輪との間で荷重を負荷しながら転走する多数の転動体とから構成されている。転動体としてはボール又はローラのいずれを使用することも可能であるが、ボールではなくローラを使用する場合には、荷重によって内輪と外輪が分離することのないよう、1条の転走面に対してローラをクロスローラ構造で配置するか、あるいは転走面を複列とし、各転走面でローラの傾斜方向を異ならせる必要がある。
特開2007-107411
特開2005-61574
The slewing bearing used in the slewing structure includes an outer ring in which a rolling surface of a rolling element is formed along an inner circumferential surface, and an inner ring in which a rolling surface facing the rolling surface on the outer ring side is formed on the outer circumferential surface. And a large number of rolling elements that roll while applying a load between the outer ring and the inner ring. Either a ball or a roller can be used as the rolling element, but when a roller is used instead of a ball, the inner ring and the outer ring are not separated from each other by a load. On the other hand, it is necessary to arrange the rollers in a cross-roller structure, or to make the rolling surfaces in double rows and to make the inclination directions of the rollers different on each rolling surface.
JP2007-107411A JP-A-2005-61574
近年、前記風力発電装置は定格出力の増強を図るための大型化が進行しており、それに伴って風車直径が増大し、ナセルが大型化する傾向にある。このため、前記旋回構造に使用される旋回軸受も大径化が著しく、直径4m以上の巨大な旋回軸受が必要とされるケースも発生している。
In recent years, the wind turbine generator has been increased in size to increase the rated output, and accordingly, the wind turbine diameter has increased and the nacelle tends to increase in size. For this reason, the diameter of the slewing bearing used in the slewing structure is remarkably increased, and there is a case where a huge slewing bearing having a diameter of 4 m or more is required.
しかし、そのような巨大な旋回軸受の内輪及び外輪の生産には特殊な設備が必要であり、また、生産に適した大径の鋼材を調達しなければならないことから、生産コストが嵩むといった問題があった。また、近年は地球温暖化問題との関係から、風力発電等の自然エネルギか注目されており、風力発電装置に対する需要が増大化する傾向にあるが、前述した大径の旋回軸受は短期間で大量に生産することはできず、需要に対して供給が追いつかないといった問題点があった。加えて、そのように大型の旋回軸受は運搬が困難であり、更なる大型化が進行した場合には、運搬が不可能になる事態も想定される。このような問題点は建設機械の旋回構造についても同じである。
However, the production of the inner ring and outer ring of such a huge slewing bearing requires special equipment, and has to procure a large-diameter steel material suitable for production, which increases production costs. was there. In recent years, natural energy such as wind power generation has attracted attention due to the relationship with the global warming problem, and there is a tendency for demand for wind power generation equipment to increase. There was a problem that it was impossible to produce in large quantities and supply could not keep up with demand. In addition, such a large-sized slewing bearing is difficult to transport, and when further enlargement proceeds, it may be impossible to transport. Such problems also apply to the turning structure of construction machines.
ところで、従来の旋回軸受は内輪と外輪との間に絶え間なく転動体を配列したものであり、旋回軸受の周囲360°のどの方向から荷重が作用した場合であっても、かかる荷重を同等に負荷することが可能であった。しかし、実際に旋回軸受を使用する場面を想定すると、例えば風力発電装置のナセルの旋回構造においては、ナセルの片側に風車が取り付けられることから、旋回軸受には局所的に大きな荷重が作用していることになる。また、建設機械の旋回構造においても、かかる建設機械の上部フレームにはカウンタウェイトが搭載されていることから、上部フレームの旋回を支承する旋回軸受にはカウンタウェイトの搭載位置に対応して局所的な荷重が作用している。すなわち、下部構造体に対して上部旋回体を支承する実際の旋回構造では、旋回軸受の内輪及び外輪に対して局所的に荷重が作用する場合が殆どであり、かかる旋回構造では旋回中心の周囲360°のいずれの方向に関しても同等に荷重を負荷する必要に乏しいものと考えられる。
By the way, the conventional slewing bearing has a continuous arrangement of rolling elements between the inner ring and the outer ring, and even if the load acts from any direction of 360 ° around the slewing bearing, the load is equalized. It was possible to load. However, assuming a situation in which a slewing bearing is actually used, for example, in a slewing structure of a nacelle of a wind power generator, since a windmill is attached to one side of the nacelle, a large load acts locally on the slewing bearing. Will be. Also, in the swing structure of a construction machine, since the counter weight is mounted on the upper frame of the construction machine, the swing bearing that supports the swing of the upper frame is locally corresponding to the mounting position of the counter weight. A heavy load is acting. That is, in an actual turning structure in which the upper turning body is supported with respect to the lower structure, a load is often applied locally to the inner ring and outer ring of the turning bearing. It is considered that the need to load equally in any direction of 360 ° is poor.
本発明はこのような問題点に鑑みなされたものであり、その目的とするところは、旋回直径の大きな構造を容易に且つ低コストで生産することが可能であり、しかも運搬が容易な旋回構造を提供することにある。
The present invention has been made in view of such problems, and the object of the present invention is to make it possible to easily produce a structure with a large turning diameter at low cost and to carry it easily. Is to provide.
また、本発明の他の目的は、旋回構造の各種用途に応じ、旋回中心の周囲360°における荷重負荷能力を最適に分布させることが可能な旋回構造を提供することにある。
Another object of the present invention is to provide a turning structure capable of optimally distributing the load-loading ability around 360 ° around the turning center in accordance with various uses of the turning structure.
すなわち、本発明は、下部構造体と、この下部構造体に対して旋回可能に配設された上部旋回体と、これら下部構造体と上部旋回体との間に介装される旋回ベアリング機構とからなる旋回構造である。前記旋回ベアリング機構は、一定曲率の複数の円弧状軌道レールから構成され、これら軌道レールを前記下部構造体上に連続的に配置してなる無端円環状の固定リングと、多数の転動体を介して前記固定リングに組付けられ、前記上部旋回体を担持した状態で前記固定リングに沿って自在に移動可能な少なくとも3基以上のスライドブロックと、から構成されている。
That is, the present invention relates to a lower structure, an upper swing body arranged to be rotatable with respect to the lower structure, and a swing bearing mechanism interposed between the lower structure and the upper swing body. It is the turning structure which consists of. The slewing bearing mechanism is composed of a plurality of arc-shaped track rails having a constant curvature, and an endless annular fixed ring in which these track rails are continuously arranged on the lower structure, and a large number of rolling elements. And at least three or more slide blocks that can be freely moved along the fixing ring in a state where the upper rotating body is supported.
このような本発明によれば、旋回ベアリング機構は複数の円弧状軌道レールから組み立てられる無端円環状の固定リングと、この固定レールに組付けられる少なくとも3基以上のスライドブロックとから構成されているので、極めて大径の旋回構造が必要とされる場合であっても、円弧状軌道レールの本数及びスライドブロックの個数を増加させることにより、容易に旋回構造を構築することが可能である。すなわち、従来の旋回軸受のように、大径の内輪及び外輪を生産するための特別な設備が必要なく、また、固定リングの周長に適した長さの鋼材を準備する必要もない。従って、旋回直径の大きな旋回構造を容易に且つ低コストで生産することが可能となる。
According to the present invention as described above, the slewing bearing mechanism is composed of an endless annular fixing ring assembled from a plurality of arcuate track rails and at least three or more slide blocks assembled to the fixing rail. Therefore, even when a very large-diameter turning structure is required, the turning structure can be easily constructed by increasing the number of arc-shaped track rails and the number of slide blocks. That is, unlike the conventional slewing bearing, there is no need for special equipment for producing large-diameter inner rings and outer rings, and it is not necessary to prepare a steel material having a length suitable for the circumference of the fixed ring. Therefore, it is possible to easily and inexpensively produce a turning structure having a large turning diameter.
尚、本発明において固定リングに組付けられるスライドブロックの数は、3基以上の複数基であれば、固定リングの直径、上部旋回体の重量などに応じ、その数を適宜変更することが可能である。また、スライドブロックの数を少なくとも3基以上と限定した理由は、固定リングに対するスライドブロックの配置によっては、2基のみだと上部旋回体の旋回中心が定まり難く、上部旋回体の旋回運動が不安定になるからである。
In the present invention, the number of slide blocks to be assembled to the fixing ring can be changed as appropriate according to the diameter of the fixing ring, the weight of the upper swing body, etc., as long as the number is three or more. It is. Also, the reason for limiting the number of slide blocks to at least three or more is that depending on the arrangement of the slide blocks with respect to the fixed ring, if there are only two slide blocks, it is difficult to determine the pivot center of the upper swing body, and the swing motion of the upper swing body is not possible. This is because it becomes stable.
また、前記固定リングは複数の円弧状軌道レールを下部構造体に配置することによって円環状に作られることから、下部構造体に配置されるまでは個々の円弧状軌道レールとして取り扱うことができ、運搬を容易に行うことが可能となる。
Further, since the fixing ring is formed in an annular shape by arranging a plurality of arc-shaped track rails in the lower structure, it can be handled as individual arc-shaped track rails until being arranged in the lower structure, It becomes possible to carry it easily.
更に、固定リングに対して組付けられる複数のスライドブロックは、かかる固定リングの円周上の任意の位置に配置できることから、上部旋回体から下部構造体に対する荷重作用点に対して前記スライドブロックを重点的に配置することが可能であり、従来の旋回軸受に比べて荷重の負荷能力を容易に増強することが可能となる。
Further, since the plurality of slide blocks assembled to the fixing ring can be arranged at arbitrary positions on the circumference of the fixing ring, the slide block is arranged with respect to the load application point from the upper swing body to the lower structure. Therefore, it is possible to increase the load carrying capacity more easily than the conventional slewing bearing.
以下、添付図面に沿って本発明の旋回構造を詳細に説明する。
Hereinafter, the turning structure of the present invention will be described in detail with reference to the accompanying drawings.
図1は本発明の旋回構造を適用可能な風力発電装置1の一例を示すものである。この風力発電装置1は、風車2と、この風車2によって駆動される発電機を収容したナセル3と、このナセル3をヨー旋回可能に支持するタワー4とを具備している。前記風車2はタワー4によって地上から所定の高さに回転自在に保持され、風力エネルギによって回転して、前記ナセル3に収容された発電機を回転駆動するように構成されている。そして、前記発電機は風車2で発生した回転エネルギを電気エネルギに変換し、かかる電気エネルギを前記タワー4内に格納された送電線を通して変圧器などの地上設備に送電するようになっている。
FIG. 1 shows an example of a wind turbine generator 1 to which the turning structure of the present invention can be applied. The wind turbine generator 1 includes a windmill 2, a nacelle 3 that houses a generator driven by the windmill 2, and a tower 4 that supports the nacelle 3 in a yaw-turnable manner. The windmill 2 is rotatably held at a predetermined height from the ground by a tower 4, and is rotated by wind energy to rotationally drive a generator housed in the nacelle 3. The generator converts rotational energy generated in the windmill 2 into electrical energy, and transmits the electrical energy to ground equipment such as a transformer through a power transmission line stored in the tower 4.
風車2を風上へ強制的にヨー旋回させるため、上部旋回体としてのナセル3と下部構造体としてのタワー4の最上部との間には旋回ベアリング機構5が設けられている。
Rotating bearing mechanism 5 is provided between nacelle 3 as the upper rotating body and the uppermost part of tower 4 as the lower structure in order to forcibly wind windmill 2 upwind.
図2に示すように、かかる旋回ベアリング機構5は、タワー4の最上部に対して基板プレート6を介して配置された無端円環状の固定リング7と、多数のボールを介してこの固定リング7に組付けられた複数のスライドブロック8とから構成され、これらスライドブロック8には前記ナセル3を支持する旋回テーブル9が固定されている。
As shown in FIG. 2, the slewing bearing mechanism 5 includes an endless annular fixing ring 7 disposed via a substrate plate 6 with respect to the uppermost portion of the tower 4, and the fixing ring 7 via a large number of balls. A plurality of slide blocks 8 assembled to each other, and a turntable 9 that supports the nacelle 3 is fixed to the slide blocks 8.
また、前記固定リング7の外周面には周方向に沿って歯列が設けられ、この歯列にはピニオンギヤ10が噛み合っている。このピニオンギヤ10は前記旋回テーブル9に搭載されたモータ11によって任意の回転が与えられるように構成されており、モータ11がピニオンギヤ10を回転させると、旋回テーブル9がタワー4に対してヨー旋回し、風車2を回転自在に支承したナセル3を任意の方向へ向けることができるようになっている。
Further, a tooth row is provided along the circumferential direction on the outer peripheral surface of the fixing ring 7, and a pinion gear 10 is engaged with the tooth row. The pinion gear 10 is configured to be arbitrarily rotated by a motor 11 mounted on the turning table 9, and when the motor 11 rotates the pinion gear 10, the turning table 9 makes a yaw turn with respect to the tower 4. The nacelle 3 that rotatably supports the windmill 2 can be directed in an arbitrary direction.
図3は、前記旋回ベアリング機構5を構成する固定リング7とスライドブロック8を示す斜視図である。前記固定リング7は複数本の円弧状軌道レール70を連続的に配置したものであり、各軌道レール70は一定の曲率で円弧状に形成されている。図3に示す例では3本の軌道レール70を連続的に配置して固定リング7を形成している。また、各軌道レール70の外周側面には前記ピニオンギヤ10と噛み合う歯列71が機械加工によって直接形成されている。すなわち、前記固定リング7は外歯を有するギヤリングとして機能している。尚、軌道レール70の内周側面に歯列を設け、かかる歯列に対してピニオンギヤ10を噛み合わせて構成することも可能である。
FIG. 3 is a perspective view showing the fixed ring 7 and the slide block 8 constituting the slewing bearing mechanism 5. The fixing ring 7 is formed by continuously arranging a plurality of arc-shaped track rails 70, and each track rail 70 is formed in an arc shape with a constant curvature. In the example shown in FIG. 3, the fixed ring 7 is formed by continuously arranging three track rails 70. A tooth row 71 that meshes with the pinion gear 10 is directly formed on the outer peripheral side surface of each track rail 70 by machining. That is, the fixing ring 7 functions as a gear ring having external teeth. It is also possible to provide a tooth row on the inner peripheral side surface of the track rail 70 and to engage the pinion gear 10 with the tooth row.
図4は、円弧状に形成された各軌道レール70と、この軌道レール70に組付けられたスライドブロック8の詳細を示す斜視図である。前記軌道レール70は固定リング7の中心Oに対して所定の曲率半径Rで円弧状に形成されており、長手方向に垂直な断面は略矩形状に形成されている。内周側面及び外周側面には長手方向に沿って2条のボール転走溝72が夫々形成されており、計4条のボール転走溝72が形成されている。また、軌道レール70の外周側面の下方には前述した歯列71が形成されている。
FIG. 4 is a perspective view showing details of each track rail 70 formed in an arc shape and the slide block 8 assembled to the track rail 70. The track rail 70 is formed in an arc shape with a predetermined curvature radius R with respect to the center O of the fixed ring 7, and a cross section perpendicular to the longitudinal direction is formed in a substantially rectangular shape. Two ball rolling grooves 72 are respectively formed along the longitudinal direction on the inner peripheral side surface and the outer peripheral side surface, and a total of four ball rolling grooves 72 are formed. Further, the above-described tooth row 71 is formed below the outer peripheral side surface of the track rail 70.
一方、前記スライドブロック8は軌道レール70のボール転走溝72を転走するボール80の無限循環路を具備しており、ボール80が当該無限循環路内を循環することで、スライドブロック8が軌道レール70に沿って連続的に移動することが可能となっている。また、図3に示すように、端部同士を接した2本の軌道レール70はボール転走溝72が連続しており、スライドブロック8は軌道レール70から隣接する軌道レール70へ乗り移って移動することができる。従って、スライドブロック8は複数の軌道レール70から構成された固定リング7を自由に周回することが可能である。
On the other hand, the slide block 8 has an infinite circulation path of the ball 80 rolling in the ball rolling groove 72 of the track rail 70, and the ball 80 circulates in the infinite circulation path, so that the slide block 8 is It is possible to move continuously along the track rail 70. As shown in FIG. 3, the two track rails 70 that are in contact with each other have continuous ball rolling grooves 72, and the slide block 8 moves from the track rail 70 to the adjacent track rail 70 and moves. can do. Therefore, the slide block 8 can freely circulate around the fixing ring 7 composed of a plurality of track rails 70.
尚、図4に示した軌道レール70とスライドブロック8の組み合わせでは、かかるスライドブロック8が多数のボール80を介して軌道レール70に組付けられているが、ボール80に代えて多数のローラを用いることも可能である。ローラを使用した場合の方が、スライドブロックの許容負荷荷重は大きく設定することが可能となり、上部旋回体の重量が大きな場合に有利である。
In the combination of the track rail 70 and the slide block 8 shown in FIG. 4, the slide block 8 is assembled to the track rail 70 via a large number of balls 80, but a large number of rollers are used instead of the balls 80. It is also possible to use it. When the roller is used, the allowable load load of the slide block can be set larger, which is advantageous when the weight of the upper swing body is large.
また、前記スライドブロック8は軌道レール70に形成された4条のボール転走溝72を転走するボール列によって該軌道レール70に組付けられており、各ボール列の軌道レール70及びスライドブロック8に対する接触方向は基板プレート6に対して例えば45°で傾斜している。すなわち、スライドブロック8は、固定リング7の周方向を除き、あらゆる方向へ作用する荷重を負荷しながら軌道レール70に沿って移動可能である。このことから、スライドブロック8に具備されたボール80には予圧を与えることが可能であり、ボール径を変更することで予圧量を調整することができる。そのような予圧量の調整を行うことで、スライドブロック8に荷重が作用した場合に、軌道レール70に対するスライドブロック8の変位量、ひいては基板プレート6に対する旋回テーブル9の変位量を小さくすることが可能である。
The slide block 8 is assembled to the track rail 70 by a ball train rolling on four ball rolling grooves 72 formed on the track rail 70, and the track rail 70 and slide block of each ball train are assembled. The contact direction with respect to 8 is inclined at 45 ° with respect to the substrate plate 6, for example. That is, the slide block 8 can move along the track rail 70 while applying a load acting in any direction except the circumferential direction of the fixing ring 7. From this, it is possible to apply a preload to the ball 80 provided in the slide block 8, and the preload amount can be adjusted by changing the ball diameter. By adjusting the preload amount as described above, when a load is applied to the slide block 8, the displacement amount of the slide block 8 relative to the track rail 70, and hence the displacement amount of the turning table 9 relative to the substrate plate 6 can be reduced. Is possible.
前記固定リング7には3基以上のスライドブロック8が組付けられているが(図3に示す例では4基)、これらスライドブロック8は単一の旋回テーブル9に固定されている(図2参照)。すなわち、この旋回テーブル9が本発明における上部旋回体に相当する。固定リング7に組付けられた複数のスライドブロック8が旋回テーブル9に固定された結果として、かかる旋回テーブル9には固定リング7の中心Oの周囲における旋回運動のみが許容されている。
Although three or more slide blocks 8 are assembled to the fixing ring 7 (four in the example shown in FIG. 3), these slide blocks 8 are fixed to a single turning table 9 (FIG. 2). reference). That is, this turning table 9 corresponds to the upper turning body in the present invention. As a result of the plurality of slide blocks 8 assembled to the fixing ring 7 being fixed to the turning table 9, the turning table 9 is only allowed to turn around the center O of the fixing ring 7.
図5は固定リング7を構成する円弧状軌道レール70の他の例を示すものである。この図5に示す例では、軌道レール70がタワー4の最上部の基板プレート6に対して直接固定されるのではなく、外周側面に歯列71を有するギヤリング73を介して基板プレート6に固定されている。このため、軌道レール70そのものには歯列71が形成されておらず、前記ピニオンギヤ10はギヤリング73の歯列71と噛み合うように構成されている。このギヤリング73は無端の円環状に形成しても差し支えないが、運搬や生産の困難性を考慮した場合、軌道レール70と同様に、複数の円弧状部品を組み合わせて構成するのが好ましい。尚、図5中の符号74はギヤリング73を貫通して軌道レール70を基板プレート6に締結するボルトである。
FIG. 5 shows another example of the arcuate track rail 70 constituting the fixing ring 7. In the example shown in FIG. 5, the track rail 70 is not directly fixed to the uppermost substrate plate 6 of the tower 4, but is fixed to the substrate plate 6 via a gear ring 73 having a tooth row 71 on the outer peripheral side surface. Has been. Therefore, the tooth rail 71 is not formed on the track rail 70 itself, and the pinion gear 10 is configured to mesh with the tooth row 71 of the gear ring 73. The gear ring 73 may be formed in an endless annular shape, but in consideration of difficulty in transportation and production, it is preferable to configure a plurality of arc-shaped parts in combination like the track rail 70. 5 denotes a bolt that passes through the gear ring 73 and fastens the track rail 70 to the substrate plate 6.
そして、以上のように構成された旋回構造では、スライドブロック8が固定された旋回テーブル9は固定リング7の中心Oの周囲における旋回運動のみが許容されており、固定リング7の歯列71に噛み合うピニオンギヤ10をモータ11で回転させると、モータ11の回転量に応じて旋回テーブル9が基板プレート6に対して旋回運動を行うことになる。すなわち、上部旋回体としての風力発電装置1のナセル3を下部構造体としてのタワー4上で旋回させ、風車を任意の方向へ向けることができる。
In the swivel structure configured as described above, the swivel table 9 to which the slide block 8 is fixed is allowed only to swivel around the center O of the fixed ring 7. When the meshing pinion gear 10 is rotated by the motor 11, the turning table 9 performs a turning motion with respect to the substrate plate 6 according to the amount of rotation of the motor 11. That is, the nacelle 3 of the wind power generator 1 as the upper swing body can be swung on the tower 4 as the lower structure, and the windmill can be directed in an arbitrary direction.
風力発電装置1の大型化に伴い、前記ナセル3のヨー旋回を支承する旋回ベアリング機構5としては直径4m以上の固定リング7が必要とされている。この点に関し、本発明の旋回構造では固定リング7が複数の円弧状軌道レール70から構成されているので、かかる固定リング7が大径化した場合であっても、固定リング7の周方向の分割数、すなわち円弧状軌道レール70の本数を増やすことにより、容易に対応することが可能である。また、固定リング7を生産するための鋼材も円弧状軌道レール70の本数に分割することができるので、入手が容易である。従って、本発明の旋回構造によれば、旋回直径の大きな旋回構造を容易に且つ低コストで生産することが可能となる。
As the wind power generator 1 is increased in size, a fixed ring 7 having a diameter of 4 m or more is required as the slewing bearing mechanism 5 for supporting the yaw slewing of the nacelle 3. In this regard, since the fixed ring 7 is composed of a plurality of arcuate track rails 70 in the turning structure of the present invention, even if the fixed ring 7 has a larger diameter, the circumferential direction of the fixed ring 7 By increasing the number of divisions, that is, the number of arc-shaped track rails 70, it is possible to easily cope with the problem. Moreover, since the steel material for producing the fixing ring 7 can be divided into the number of the arc-shaped track rails 70, it is easy to obtain. Therefore, according to the turning structure of the present invention, it is possible to easily and inexpensively produce a turning structure having a large turning diameter.
また、固定リング7は複数の円弧状軌道レール70を組み合わせて構築されるので、旋回直径の大きな旋回構造を構築する場合であっても、旋回ベアリング機構5の運搬を容易に行うことが可能である。
Further, since the fixed ring 7 is constructed by combining a plurality of arc-shaped track rails 70, the slewing bearing mechanism 5 can be easily transported even when a slewing structure having a large slewing diameter is constructed. is there.
更に、固定リング7に組付けられる複数のスライドブロック8は、かかる固定リング7の周方向に沿って均等な間隔で配置しても良いが、必ずしも均等な間隔で配置する必要はなく、上部旋回体から下部構造体に対しての荷重の作用点及びその大きさに従い、任意の配置を採用することが可能である。例えば、図1及び図3に示した風力発電装置1では、ナセル3の先端に風車が支承されていることから、ナセル3を支持する旋回テーブル9には風車2の近接した位置において最大の荷重が作用しているものと考えられる。このため、固定リング7の周方向に沿って均等な間隔でスライドブロック8を配置するのではなく、大きな荷重の作用点に対してスライドブロック8を集中的に配置することで、固定リング7に対するスライドブロック8の組み付け基数を軽減し、旋回構造の製作に必要なコストの低減化を図ることが可能となる。
Furthermore, the plurality of slide blocks 8 assembled to the fixing ring 7 may be arranged at equal intervals along the circumferential direction of the fixing ring 7, but it is not always necessary to arrange them at equal intervals, and the upper swing Arbitrary arrangements can be adopted according to the point of action and the magnitude of the load from the body to the lower structure. For example, in the wind turbine generator 1 shown in FIGS. 1 and 3, since the windmill is supported at the tip of the nacelle 3, the turning table 9 that supports the nacelle 3 has a maximum load at a position close to the windmill 2. It is thought that is acting. For this reason, the slide blocks 8 are not arranged at equal intervals along the circumferential direction of the fixed ring 7, but are arranged in a concentrated manner at the point of application of a large load, so that It is possible to reduce the number of assembling bases of the slide block 8 and reduce the cost required for manufacturing the turning structure.
ところで、このように複数の円弧状軌道レール70を組み合わせて無端円環状の固定リング7を構成した場合、各円弧状軌道レール70の位置決めが悪いと、固定リング7の真円度を確保することが困難となってしまう。そして、固定リング7の真円度が悪化すると、かかる固定リング7に組付けられた3基以上のスライドブロック8を単一の旋回テーブル9に固定した場合に、旋回テーブル9の回転が重くなり、固定リング7の真円度が極端に悪い場合には、旋回リング9の回転が不能となってしまう。
By the way, when the endless annular fixing ring 7 is configured by combining the plurality of arc-shaped track rails 70 in this way, the roundness of the fixing ring 7 is ensured if the positioning of each arc-shaped track rail 70 is poor. Becomes difficult. When the roundness of the fixing ring 7 deteriorates, when the three or more slide blocks 8 assembled to the fixing ring 7 are fixed to a single turning table 9, the turning table 9 becomes heavy. When the roundness of the fixing ring 7 is extremely bad, the turning ring 9 cannot be rotated.
このような不具合を回避する方策として、固定リング7に対して組み付けた複数のスライドブロック8を固定リング7の周方向に沿って複数のグループに分割し、グループ毎にスライドブロック8に具備されたボール80の予圧量を異ならせることが考えられる。
As a measure for avoiding such a problem, the plurality of slide blocks 8 assembled to the fixing ring 7 are divided into a plurality of groups along the circumferential direction of the fixing ring 7, and the slide blocks 8 are provided for each group. It is conceivable to vary the preload amount of the ball 80.
図6は、固定リング7に対して4基のスライドブロック8a~8dが組み合わされている場合を示す旋回ベアリング機構5の平面図である。これら4基のスライドブロックは2基ずつのグループG1及びG2に分割されており、グループG1に属するスライドブロック8a,8bのボールに与えられる予圧量は、グループG2に属するスライドブロック8c,8dのボールに与えられる予圧量よりも大きく設定されている。
FIG. 6 is a plan view of the slewing bearing mechanism 5 showing a case where four slide blocks 8 a to 8 d are combined with the fixing ring 7. These four slide blocks are divided into two groups G1 and G2, and the amount of preload applied to the balls of the slide blocks 8a and 8b belonging to the group G1 is the ball of the slide blocks 8c and 8d belonging to the group G2. It is set to be larger than the preload amount given to.
グループG1に属するスライドブロック8a,8bではボールの予圧量を大きく設定しているので、旋回テーブル9からこれらスライドブロック8a,8bに対して大きな荷重が作用したとしても、スライドブロック8a,8bが固定リング7に対して大きく変位することはない。その一方、グループG2に属するスライドブロック8c,8dではボールの予圧量を小さく設定し、あるいは予圧を与えていないので、スライドブロック8c,8dはグループG1のスライドブロック8a,8bよりも固定リング7に対して大きく変位することが可能である。
In the slide blocks 8a and 8b belonging to the group G1, since the preload amount of the ball is set large, even if a large load acts on the slide blocks 8a and 8b from the turning table 9, the slide blocks 8a and 8b are fixed. There is no significant displacement with respect to the ring 7. On the other hand, in the slide blocks 8c and 8d belonging to the group G2, the preload amount of the ball is set to be small or no preload is applied, so that the slide blocks 8c and 8d are attached to the fixed ring 7 more than the slide blocks 8a and 8b in the group G1. On the other hand, it can be displaced greatly.
このため、固定リング7をなす各軌道レール70の基板プレート6上での取付け位置精度が低く、固定リング7の真円度が悪い場合であっても、旋回テーブル9はグループG1のスライドブロック8a,8bを基準として固定リング7上で旋回運動を行い、そのような旋回テーブル9の運動中において、グループG2のスライドブロック8c,8dは固定リング7の真円度の誤差を吸収しながら当該固定リング7上を移動することになる。従って、固定リング7の真円度が悪い場合であっても、旋回テーブル9に対して無理のない円滑な旋回運動を与えることが可能となる。
For this reason, even if the mounting position accuracy of each track rail 70 forming the fixing ring 7 on the substrate plate 6 is low and the roundness of the fixing ring 7 is poor, the turning table 9 has the slide block 8a of the group G1. , 8b on the fixed ring 7 as a reference, during such movement of the rotary table 9, the slide blocks 8c, 8d of the group G2 are fixed while absorbing the roundness error of the fixed ring 7. It moves on the ring 7. Therefore, even if the roundness of the fixing ring 7 is poor, it is possible to give a smooth and smooth turning motion to the turning table 9.
一方、図7は、固定リング7に対して6基のスライドブロック8a~8fが組み合わされている場合を示す旋回ベアリング機構5の平面図である。これら6基のスライドブロックは4つのグループG1~G4に分割されており、グループG1及びG3は1基のスライドブロックを、グループG2及びG3は2基のスライドブロックを具備している。これらグループG1~G4のうち、グループG1に属するスライドブロック8aのボールに与えられる予圧量は他のグループと比較して最大であり、グループG3に属するスライドブロック8dのボールに与えられる予圧量が他のグループと比較して最小である。また、グループG2及びG4に属するスライドブロック8b,8c,8e,8fのボールに与えられる予圧量はグループG1とグループG3における予圧量の中間程度である。
On the other hand, FIG. 7 is a plan view of the slewing bearing mechanism 5 showing a case where six slide blocks 8a to 8f are combined with the fixed ring 7. FIG. These six slide blocks are divided into four groups G1 to G4. The groups G1 and G3 have one slide block, and the groups G2 and G3 have two slide blocks. Among these groups G1 to G4, the amount of preload given to the ball of the slide block 8a belonging to the group G1 is the maximum compared to other groups, and the amount of preload given to the ball of the slide block 8d belonging to the group G3 is the other. Minimal compared to the group. Further, the preload amount applied to the balls of the slide blocks 8b, 8c, 8e, and 8f belonging to the groups G2 and G4 is about the middle of the preload amounts in the groups G1 and G3.
この図7の例に示されるように、複数のスライドブロック8a~8fを分割して形成した複数のグループG1~G4のうち、スライドブロックのボールに対して最大の予圧量を与えたグループG1と最小の予圧量を与えたグループG3は、前記固定リング7の中心を挟んで対峙している。このように、最大の予圧量を与えたグループG1と最小の予圧量を与えたグループG3が固定リング7の中心を挟んで配置されると、これらグループが固定リング7の中心を挟むことなく当該固定リング7の円周上で隣接した場合と比較して、最小予圧量のスライドブロック8dが吸収しうる固定リング7の真円度の誤差量を高めることができる。従って、固定リング7の真円度が悪い場合であっても、一層円滑に旋回テーブル9に旋回運動を行わせることが可能となる。
As shown in the example of FIG. 7, among a plurality of groups G1 to G4 formed by dividing a plurality of slide blocks 8a to 8f, a group G1 that gives the maximum preload amount to the ball of the slide block; The group G3 to which the minimum amount of preload is given is opposed to the center of the fixing ring 7. As described above, when the group G1 having the maximum preload amount and the group G3 having the minimum preload amount are arranged with the center of the fixing ring 7 interposed therebetween, these groups do not have the center of the fixing ring 7 interposed therebetween. Compared to the case where the fixing ring 7 is adjacent on the circumference, the error amount of the roundness of the fixing ring 7 that can be absorbed by the slide block 8d having the minimum preload amount can be increased. Therefore, even if the roundness of the fixing ring 7 is poor, it is possible to cause the turning table 9 to perform the turning motion more smoothly.
このことは、4つのスライドブロック8a~8dを2つのグループに分割した図6に示す例でも同じである。すなわち、図6に示す例でも、スライドブロックのボールに対して最大の予圧量を与えたグループG1とそれよりも小さな予圧量を与えたグループG2は、前記固定リング7の中心を挟んで対峙しており、最小予圧量のスライドブロック8c,8dが吸収しうる固定リング7の真円度の誤差量を高めることが可能となっている。
This is the same in the example shown in FIG. 6 in which the four slide blocks 8a to 8d are divided into two groups. That is, in the example shown in FIG. 6, the group G1 that gives the maximum preload amount to the ball of the slide block and the group G2 that gives a smaller preload amount face each other across the center of the fixing ring 7. Therefore, it is possible to increase the error amount of the roundness of the fixing ring 7 that can be absorbed by the slide blocks 8c and 8d having the minimum preload amount.
また、旋回テーブル9に作用する荷重を確実に受け止め、かかる旋回テーブル9の変位を抑えるといった観点からすれば、スライドブロック8のボール80に対して最大の予圧量が与えられたグループは、旋回テーブル9に対する荷重作用点の直下に位置していることが好ましい。例えば、図1及び図2に示す風力発電装置1の旋回構造に対して図7に示す旋回ベアリング機構5を適用するのであれば、グループG1のスライドブロック8aが風車2に対して最も近接するように、旋回テーブル9に対する各スライドブロック8a~8fの配置を決定する。
Further, from the viewpoint of reliably receiving the load acting on the swivel table 9 and suppressing the displacement of the swivel table 9, the group to which the maximum preload amount is given to the ball 80 of the slide block 8 is the swivel table. 9 is preferably located immediately below the point of load application to 9. For example, if the slewing bearing mechanism 5 shown in FIG. 7 is applied to the slewing structure of the wind turbine generator 1 shown in FIGS. 1 and 2, the slide block 8a of the group G1 is closest to the windmill 2. Next, the arrangement of the slide blocks 8a to 8f with respect to the turning table 9 is determined.
図6及び図7は複数のスライドブロックが固定リング7の周方向に沿って均等な間隔で配置された例を示していた。これに対し、図8は、複数のスライドブロック8a~8eが固定リング7の周方向に沿って不均等な間隔で配置され、この配置状態のまま旋回テーブルに固定された例を示している。固定リングに組付けられた5基のスライドブロック8a~8eは2つのグループG1及びG2に分割されており、グループG1に属するスライドブロック8a~8cのボールに与えられる予圧量は、グループG2に属するスライドブロック8d,8eのボールに与えられる予圧量よりも大きく設定されている。また、グループG1に属するスライドブロック8a~8cは等間隔で配列されているが、この配列間隔はグループG1に属するスライドブロック8cとグループG2に属するスライドブロック8dとの間隔よりも小さく設定されている。更に、グループG2に属するスライドブロック8d及び8eの配列間隔もグループG1に属するスライドブロック8cとグループG2に属するスライドブロック8dとの間隔よりも小さく設定されている。
6 and 7 show an example in which a plurality of slide blocks are arranged at equal intervals along the circumferential direction of the fixing ring 7. On the other hand, FIG. 8 shows an example in which a plurality of slide blocks 8a to 8e are arranged at unequal intervals along the circumferential direction of the fixing ring 7, and are fixed to the turning table in this arrangement state. The five slide blocks 8a to 8e assembled to the fixing ring are divided into two groups G1 and G2, and the amount of preload applied to the balls of the slide blocks 8a to 8c belonging to the group G1 belongs to the group G2. It is set to be larger than the preload amount applied to the balls of the slide blocks 8d and 8e. The slide blocks 8a to 8c belonging to the group G1 are arranged at equal intervals. The arrangement interval is set smaller than the interval between the slide block 8c belonging to the group G1 and the slide block 8d belonging to the group G2. . Further, the arrangement interval of the slide blocks 8d and 8e belonging to the group G2 is also set smaller than the interval between the slide block 8c belonging to the group G1 and the slide block 8d belonging to the group G2.
このような図8に示すスライドブロックの配置は、旋回テーブル9に作用する荷重を確実に受け止めるために有効である。すなわち、旋回テーブル9に対する荷重作用点の直下にグループG1を設けることにより、旋回テーブルに支持された上部旋回体の重量配置に最適な旋回ベアリング機構とすることができ、固定リング上におけるスライドブロックの無駄な配置を回避し、固定リングに組み込むスライドブロックの数を軽減することが可能となる。
The arrangement of the slide block shown in FIG. 8 is effective for reliably receiving the load acting on the turning table 9. That is, by providing the group G1 directly below the point of application of the load to the turning table 9, it is possible to provide a turning bearing mechanism that is optimal for the weight arrangement of the upper turning body supported by the turning table. It is possible to avoid useless arrangement and reduce the number of slide blocks incorporated in the fixing ring.
また、この図8に示す例でも、スライドブロックのボールに対して最大の予圧量を与えたグループG1とそれよりも小さな予圧量を与えたグループG2は、前記固定リング7の中心を挟んで対峙しており、最小予圧量のスライドブロック8d,8eが吸収しうる固定リング7の真円度の誤差量を高めることが可能となっている。すなわち、固定リング7の真円度が悪い場合であっても、旋回テーブル9に対して無理のない円滑な旋回運動を与えることが可能となっている。
In the example shown in FIG. 8, the group G1 that gives the maximum preload amount to the ball of the slide block and the group G2 that gives a smaller preload amount face each other across the center of the fixing ring 7. Thus, it is possible to increase the error amount of the roundness of the fixing ring 7 that can be absorbed by the slide blocks 8d and 8e having the minimum preload amount. That is, even if the roundness of the fixing ring 7 is poor, it is possible to give a smooth turning motion without difficulty to the turning table 9.
Claims (6)
- 下部構造体(4)と、この下部構造体(4)に対して旋回可能に配設された上部旋回体(3)と、これら下部構造体(4)と上部旋回体(3)との間に介装される旋回ベアリング機構(5)と、からなる旋回構造において、
前記旋回ベアリング機構(5)は、
一定曲率の複数の円弧状軌道レール(70)から構成され、これら軌道レール(70)を前記下部構造体(4)上に連続的に配置してなる無端状の固定リング(7)と、
多数の転動体(80)を介して前記固定リング(7)に組付けられ、前記上部旋回体(3)を担持した状態で前記固定リング(7)に沿って自在に移動可能な少なくとも3基以上のスライドブロック(8)と、から構成されることを特徴とする旋回構造。 The lower structure (4), the upper structure (3) arranged to be rotatable with respect to the lower structure (4), and between the lower structure (4) and the upper structure (3) In a swivel structure comprising a swivel bearing mechanism (5) interposed between
The slewing bearing mechanism (5)
An endless fixing ring (7) comprising a plurality of arc-shaped track rails (70) having a constant curvature, and these track rails (70) are continuously arranged on the lower structure (4);
At least three groups that are assembled to the fixing ring (7) via a large number of rolling elements (80) and are movable freely along the fixing ring (7) in a state where the upper revolving body (3) is supported. A swivel structure comprising the above slide block (8). - 前記スライドブロック(8)を固定リング(7)の周方向に沿って複数のグループ(G1,G2)に分割し、グループ毎にスライドブロック(8)の転動体(80)の予圧量を異ならせたことを特徴とする請求項1記載の旋回構造。 The slide block (8) is divided into a plurality of groups (G1, G2) along the circumferential direction of the fixing ring (7), and the preload amount of the rolling element (80) of the slide block (8) is varied for each group. The swivel structure according to claim 1.
- 前記スライドブロック(8)が形成する複数のグループ(G1,G2,G3,G4)のうち、前記スライドブロック(8)の転動体(80)に対して最大の予圧量を与えたグループ(G1)と最小の予圧量を与えたグループ(G3)は、前記固定リング(7)の中心を挟んで対峙していることを特徴とする請求項2記載の旋回構造。 Of the plurality of groups (G1, G2, G3, G4) formed by the slide block (8), the group (G1) that gave the maximum amount of preload to the rolling elements (80) of the slide block (8) The swivel structure according to claim 2, characterized in that the group (G3) to which the minimum amount of preload is applied faces each other across the center of the fixing ring (7).
- 前記複数のスライドブロック(8)を固定リング(7)の周方向に沿って均等な間隔で配置したことを特徴とする請求項2記載の旋回構造。 The swivel structure according to claim 2, wherein the plurality of slide blocks (8) are arranged at equal intervals along the circumferential direction of the fixing ring (7).
- 各グループ内におけるスライドブロック(7)の配置間隔を隣接するグループの間隔よりも小さく設定したことを特徴とする請求項2記載の旋回構造。 The swivel structure according to claim 2, wherein an arrangement interval of the slide blocks (7) in each group is set smaller than an interval between adjacent groups.
- 内周面又は外周面に歯列を有するギヤリング(73)が前記固定リング(7)の軸方向に隣接して前記下部構造体に配設されると共に、かかるギヤリング(73)の歯列と噛み合うピニオンギヤ(10)及びこれを回転駆動するモータ(11)が前記上部旋回体(3)に設けられていることを特徴とする請求項1記載の旋回構造。 A gear ring (73) having a tooth row on the inner peripheral surface or the outer peripheral surface is disposed in the lower structure adjacent to the axial direction of the fixing ring (7) and meshes with the tooth row of the gear ring (73). The turning structure according to claim 1, wherein a pinion gear (10) and a motor (11) for rotationally driving the pinion gear (10) are provided in the upper turning body (3).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2008/063776 WO2010013341A1 (en) | 2008-07-31 | 2008-07-31 | Swing structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2008/063776 WO2010013341A1 (en) | 2008-07-31 | 2008-07-31 | Swing structure |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010013341A1 true WO2010013341A1 (en) | 2010-02-04 |
Family
ID=41610063
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2008/063776 WO2010013341A1 (en) | 2008-07-31 | 2008-07-31 | Swing structure |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2010013341A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009031624A1 (en) * | 2009-07-03 | 2011-01-13 | Aktiebolaget Skf | bearing arrangement |
WO2011155416A1 (en) * | 2010-06-11 | 2011-12-15 | Thk株式会社 | Rotation structure, horizontal-shaft wind power generation device, and motion guide device |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59208218A (en) * | 1983-05-11 | 1984-11-26 | Hiroshi Teramachi | Revolving bearing |
JPH0554817U (en) * | 1991-11-06 | 1993-07-23 | テイエチケー株式会社 | Curved sliding bearing |
JPH05248434A (en) * | 1991-03-29 | 1993-09-24 | Honda Motor Co Ltd | Sliding device |
JPH09125736A (en) * | 1995-10-27 | 1997-05-13 | Thk Kk | Rotary table device |
JP2005205549A (en) * | 2004-01-23 | 2005-08-04 | Thk Co Ltd | Rotary table device |
JP2008057679A (en) * | 2006-08-31 | 2008-03-13 | Ckd Corp | Slide actuator |
-
2008
- 2008-07-31 WO PCT/JP2008/063776 patent/WO2010013341A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59208218A (en) * | 1983-05-11 | 1984-11-26 | Hiroshi Teramachi | Revolving bearing |
JPH05248434A (en) * | 1991-03-29 | 1993-09-24 | Honda Motor Co Ltd | Sliding device |
JPH0554817U (en) * | 1991-11-06 | 1993-07-23 | テイエチケー株式会社 | Curved sliding bearing |
JPH09125736A (en) * | 1995-10-27 | 1997-05-13 | Thk Kk | Rotary table device |
JP2005205549A (en) * | 2004-01-23 | 2005-08-04 | Thk Co Ltd | Rotary table device |
JP2008057679A (en) * | 2006-08-31 | 2008-03-13 | Ckd Corp | Slide actuator |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009031624A1 (en) * | 2009-07-03 | 2011-01-13 | Aktiebolaget Skf | bearing arrangement |
DE102009031624B4 (en) * | 2009-07-03 | 2011-04-07 | Aktiebolaget Skf | bearing arrangement |
WO2011155416A1 (en) * | 2010-06-11 | 2011-12-15 | Thk株式会社 | Rotation structure, horizontal-shaft wind power generation device, and motion guide device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4484964B2 (en) | Slewing ring | |
CN101646907B (en) | Biaxial solar tracker | |
KR101022104B1 (en) | Slewing bearing structure | |
CN102227558B (en) | Wind-driven generator device | |
WO2010146654A1 (en) | Wind-driven generator | |
CN100400228C (en) | Rotary table apparatus | |
CN101700609B (en) | Rotator for welding box-shaped structural member | |
US20090257697A1 (en) | Bearing And Method For Transferring Forces Through A Bearing Of A Wind Turbine | |
JP4964052B2 (en) | Swivel structure | |
EP1977126A1 (en) | A bearing, a wind turbine and methods of manufacturing a bearing | |
CA2666793A1 (en) | Pitch actuator for wind turbine generator, and wind turbine generator | |
US20120261920A1 (en) | Rotary motor actuator and horizontal axis wind turbine | |
JPH0471704A (en) | Roll stand for rolling mill | |
WO2010013341A1 (en) | Swing structure | |
JP2013137074A (en) | Bearing for wind power generator and wind power generator | |
ES2913418T3 (en) | multi-row bearing | |
GB2474933A (en) | Vertical axis wind turbine | |
JP4745438B2 (en) | Swivel structure and horizontal wind turbine using the same | |
CN208870193U (en) | A kind of rotating supporting device | |
JP2011511159A (en) | Bulk material dispensing and filling equipment | |
CN103274187A (en) | Roller device and have its pipe belt conveyor | |
TW201102494A (en) | Wind power generator | |
CN107324226A (en) | Carry column and cantilever arrangement | |
CN104858086A (en) | Heavy-type turntable device | |
WO2011155416A1 (en) | Rotation structure, horizontal-shaft wind power generation device, and motion guide device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08791991 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 08791991 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |