WO2010010862A1 - Method for construction of artificial rnp nano-structure by utilizing rna-protein complex interaction motif - Google Patents

Method for construction of artificial rnp nano-structure by utilizing rna-protein complex interaction motif Download PDF

Info

Publication number
WO2010010862A1
WO2010010862A1 PCT/JP2009/063023 JP2009063023W WO2010010862A1 WO 2010010862 A1 WO2010010862 A1 WO 2010010862A1 JP 2009063023 W JP2009063023 W JP 2009063023W WO 2010010862 A1 WO2010010862 A1 WO 2010010862A1
Authority
WO
WIPO (PCT)
Prior art keywords
rna
protein
molecule
protein complex
base sequence
Prior art date
Application number
PCT/JP2009/063023
Other languages
French (fr)
Japanese (ja)
Inventor
丹 井上
博英 齊藤
博久 大野
Original Assignee
独立行政法人科学技術振興機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人科学技術振興機構 filed Critical 独立行政法人科学技術振興機構
Priority to JP2010521696A priority Critical patent/JPWO2010010862A1/en
Publication of WO2010010862A1 publication Critical patent/WO2010010862A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • C07H21/02Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with ribosyl as saccharide radical

Definitions

  • the present invention relates to a method for constructing an artificial RNP nanostructure using an RNA-protein complex interaction motif, and to induce a specific structural change of an RNA molecule using an RNA-protein complex interaction motif with a protein molecule. And a RNA molecule for use in this method.
  • nanoscale structures using biomolecules are being constructed, and in the field of protein engineering, new creation of enzymes by molecular design is being attempted.
  • the “material” used in these attempts is a nucleic acid or protein.
  • Non-Patent Document 1 Prior art of nanoscale structure construction using biomolecules is known. In this technique, formation of a DNA polyhedron combining three types of DNA strands has been reported (see Non-Patent Document 1). However, DNA has a simple structure and the design of the structure is easy, but there is a problem that there are few variations as a part for creating the structure.
  • RNA has a variety of structures and functions as compared to DNA, and the structure of the molecule itself is relatively simple. Therefore, RNA is more suitable for designing and synthesizing structures. However, it cannot be said that variations as a part for creating a structure are sufficient.
  • Protein is also considered as a biomolecular material, but there is a problem that it is difficult to design a molecule because the protein has a complicated structure.
  • An object of the present invention is to provide a method for designing and constructing an artificial RNA-protein nanostructure and inducing a structural change of an RNA molecule with a protein.
  • a method for inducing a specific structural change of an RNA molecule with a protein molecule, which comprises a base sequence derived from an RNA-protein complex interaction motif is a method characterized in that a protein molecule comprising an amino acid sequence that specifically binds to a base sequence derived from the RNA-protein complex interaction motif of the RNA molecule is added to a natural RNA molecule.
  • the amino acid sequence that specifically binds to the base sequence derived from the RNA-protein complex interaction motif of the RNA molecule refers to the protein derived from the RNA-protein complex interaction motif introduced into the RNA molecule.
  • the amino acid sequence which comprises comprises the amino acid sequence which introduce
  • the slight mutation refers to a mutation that does not affect the RNA-protein complex interaction.
  • the present invention is a non-natural RNA molecule comprising a base sequence derived from an RNA-protein complex interaction motif, which is an RNA molecule that specifically changes its structure.
  • the scaffold base sequence refers to a base sequence other than a base sequence derived from an RNA-protein complex interaction motif that causes a specific structural change.
  • kits for inducing a specific structural change of an RNA molecule with a protein molecule wherein the RNA molecule specifically changes its structure as described above,
  • a protein comprising a non-natural RNA molecule comprising a base sequence derived from an RNA-protein complex interaction motif and an amino acid sequence that specifically binds to the base sequence derived from the RNA-protein complex interaction motif of the RNA molecule A molecule.
  • the kit further includes an RNA molecule that competes with the formation of the RNA-protein complex.
  • the competing RNA has a base sequence derived from an RNA-protein complex interaction motif.
  • RNA-protein complex which is an RNA molecule having a specific structure change as described above, which is derived from an RNA-protein complex interaction motif.
  • a non-natural RNA molecule comprising a base sequence, an amino acid sequence that specifically binds to the base sequence derived from the RNA-protein complex interaction motif of the RNA molecule, and a protein molecule comprising a functional protein; including.
  • the functional protein is preferably one or more selected from a marker protein, a membrane-permeable protein, a protein specific to a tumor, a protein having a therapeutic effect, and an antibody that recognizes a specific cell surface.
  • RNA-protein complex nanostructure which comprises a non-naturally occurring sequence comprising a base sequence derived from an RNA-protein complex interaction motif.
  • a protein molecule comprising an amino acid sequence that specifically binds to a base sequence derived from an RNA-protein complex interaction motif of the RNA molecule and optionally a metal ion are added to the RNA molecule. To do.
  • RNA molecules that can be induced by proteins and structures composed of the RNA molecules can be constructed.
  • an RNA molecule that can be induced by a protein and a functional molecule that is a complex of the protein can be provided. Any of these methods or molecules are useful as materials for artificially constructing or reconfiguring biomolecules, multifunctional nanostructures, or genetic circuits.
  • FIG. 1 is a diagram schematically showing a method for inducing a structural change of an RNA molecule 1 with a protein molecule 2 according to the first embodiment.
  • FIG. 2 is a ribbon diagram showing a composite formed by L7Ae and Box C / D.
  • FIG. 3 (a) is a diagram schematically showing the state of an unfixed Box C / D arrangement, and (b) is a Box C / D fixed to a structure bent at 60 ° C. by L7Ae. It is a figure which shows the state of an arrangement
  • FIG. 4 is an enlarged schematic view of a bent portion of the Box C / D arrangement.
  • FIG. 3 is a diagram schematically showing a method for inducing a structural change of an RNA molecule 1 with a protein molecule 2 according to the first embodiment.
  • FIG. 2 is a ribbon diagram showing a composite formed by L7Ae and Box C / D.
  • (a) is a diagram schematically showing the state of an
  • FIG. 5 is a schematic diagram showing a regular octahedron structure formed by inducing RNA molecule 1 with protein molecule 2.
  • FIG. 6 is a diagram showing an RNA-protein complex in which functional protein molecules are arranged in RNA molecules.
  • FIG. 7 is a diagram schematically illustrating a method for arranging a plurality of different functional protein molecules on an RNA molecule according to the fourth embodiment.
  • FIG. 8 is a diagram showing the secondary structure of an RNA molecule depicted using Discovery Studio 2.0.
  • FIG. 9 is a diagram showing a primary sequence of an RNA molecule designed by a computer molecule in Example 1. (a) shows a primary sequence of Long chain, and (b) shows a primary sequence of Short chain.
  • FIG. 10 is a schematic diagram showing a regular octahedron structure formed by inducing RNA molecule 1 with protein molecule 2.
  • FIG. 6 is a diagram showing an RNA-protein complex in which functional protein molecules are arranged in RNA molecules.
  • FIG. 10 is a diagram showing the secondary structure of an RNA molecule designed by a computer molecule in Example 1.
  • FIG. 11 is a diagram showing the results of confirming the formation of the RNP structure by gel shift assay.
  • FIG. 12 is a photomicrograph showing the results of observing a solution containing only the buffer using an atomic force microscope.
  • FIG. 13 is a photomicrograph showing the result of observing a solution containing only RNA molecules using an atomic force microscope, and it can be seen that the RNA molecules exist in a circular shape.
  • FIG. 14 is a photomicrograph showing the result of observing a solution containing only L7Ae using an atomic force microscope, and L7Ae can be observed in the form of dots.
  • FIG. 15 is a photomicrograph showing the result of observing a solution containing an RNA molecule and L7Ae using an atomic force microscope, and it can be seen that a triangular structure is formed by the RNA molecule and L7Ae.
  • FIG. 16 is a diagram of a large L7-3kaku drawn using Discovery Studio 2.0, which is a triangle in which three L7Ae-BoxC / Ds are linked by 48 base pair RNA.
  • FIG. 17 is an L7-3kis ribbon diagram drawn using Discovery Studio 2.0, where one side of the triangle is 10 nm.
  • FIG. 18 is a diagram showing a hypothetical scheme of triangle formation by the L7Ae-BoxC / D motif and the Kissing-loop motif.
  • FIG. 16 is a diagram of a large L7-3kaku drawn using Discovery Studio 2.0, which is a triangle in which three L7Ae-BoxC / Ds are linked by 48 base pair RNA.
  • FIG. 17 is an L7-3kis ribbon diagram drawn using
  • FIG. 19 is a diagram of Delivery-3kaku drawn using Discovery Studio 2.0, where a fluorescent protein GFP is bound to one corner and a polyarginine motif is bound to two corners.
  • FIG. 20 is a diagram showing secondary structures of RNA molecules constituting divided Delivery-3kaku designed by computer molecules in Example 7.
  • RNA can form various three-dimensional structures.
  • RNA has an enzyme function, and the correlation between the function and structure has been elucidated in detail through the analysis of the three-dimensional structure.
  • RNA made of four basic units (bases) is formed by a simple construction principle. Therefore, RNA can be widely used for the design and construction of molecules having a highly three-dimensional structure as a nanoblock.
  • bases basic units
  • RNA-protein complex RNA-protein complex
  • the present inventors considered using an RNA-protein interaction motif (RNP) as a material for designing and constructing a functional molecule such as a nanoscale structure or enzyme, and an artificial material using this material.
  • RNP RNA-protein interaction motif
  • the present invention has been completed by constructing specific molecules and designing and creating nanostructures.
  • RNPs are structurally diverse compared to nucleic acids, and it is considered that complex structures that cannot be created only with nucleic acids can be designed and constructed relatively easily by designing RNA that is easy to design as a basic skeleton.
  • the present invention is a method for inducing a structural change of an RNA molecule with a protein, wherein the RNA molecule having a base sequence derived from an RNA-protein complex interaction motif is specific for the base sequence.
  • FIG. 1 The scheme of the method according to the present embodiment is schematically shown in FIG. According to the scheme shown in FIG. 1, in the absence of a protein, by adding protein 2 to RNA molecule 1 that exists in a circular shape, a triangular RNA molecule in which one protein 2 is bound to one corner is formed. Can be induced specifically.
  • FIG. 1 is schematic and this invention is not limited to the induction
  • the structure of an RNA molecule in which structural changes are induced by the present invention, a preparation method thereof, and a method for inducing structural changes of RNA molecules with proteins will be described in detail.
  • RNA molecule having base sequence derived from RNA-protein complex interaction motif The RNA molecule whose structural change is induced by a protein used in the method according to the present embodiment is an RNA molecule having a base sequence derived from an RNA-protein complex interaction motif. More specifically, the RNA molecule in which the structural change is induced according to the present embodiment is a non-sequence comprising a base sequence derived from an RNA-protein complex interaction motif and a scaffold base sequence that is another base sequence. It is a natural molecule. Each of the scaffold base sequence and the RNA-protein interaction motif can be extracted from the sequence of a naturally occurring molecule.
  • the base sequence derived from the RNA-protein complex interaction motif functions as a part that causes a structural change in the RNA molecule upon binding to the protein.
  • the scaffold base sequence is a part that acts as a skeleton of the nanostructure in the RNA molecule and does not cause a structural change.
  • the RNA molecule according to the present embodiment only needs to include a base sequence derived from an RNA-protein complex interaction motif, but preferably does not include a portion such as an RNA base sequence that binds nonspecifically to a protein.
  • RNA-protein complex interaction motif is the base known as the sequence on the RNA side of the interaction motif between RNA and protein in a natural and known RNA-protein complex.
  • a sequence and a base sequence that is a sequence on the RNA side in an artificial RNA-protein complex interaction motif obtained by an in vitro selection method (in vitro selection method) are included.
  • An RNA-protein complex is an association of protein and RNA that has been confirmed in large numbers in a living body, and is a 3D object having a complicated structure.
  • a base sequence derived from a natural RNA-protein complex interaction motif is usually composed of about 5 to 30 bases, and non-covalently, that is, by hydrogen bonding, with a specific amino acid sequence of a specific protein. It is known to form specific bonds.
  • the nucleotide sequences derived from such natural RNA-protein complex interaction motifs are shown in Tables 1 and 2 below, and a database available on the website: http: // gibk26. bse. kyutech. ac. jp / jouhou / image / dna-protein / rna / rna. From html, a motif that produces the desired structural change can be selected.
  • RNA-protein interaction motif preferably used in this embodiment is a motif whose X-ray crystal structure analysis or NMR structural analysis has already been performed, or a three-dimensional structure estimated from the three-dimensional structure of a homologous protein that has been subjected to structural analysis. It is a possible motif. Furthermore, it is desirable that the protein is a motif that specifically recognizes the secondary structure and base sequence of RNA.
  • the base sequence derived from an artificial RNA-protein complex interaction motif is a base sequence on the RNA side of an RNA-protein interaction motif in an artificially designed RNA-protein complex.
  • Such a base sequence is usually composed of about 5 to 30 bases, and forms a specific bond with a specific amino acid sequence of a specific protein non-covalently, that is, by hydrogen bonding. design.
  • the base sequences listed in Table 3 below are also known, and these can also be used as base sequences derived from the RNA-protein complex interaction motif of the present invention.
  • An artificial RNA-protein complex can be prepared by using a molecular design method, an in vitro evolution method, or a combination of both.
  • aptamers and ribozymes can be obtained by repeating functional reactions such as selecting functional RNA from a molecular library with various sequence diversity and amplifying and transcribing the gene (DNA). . Therefore, an RNA-protein interaction motif adapted to RNP having a target functional structure in advance in molecular design can be extracted from natural RNP molecules or artificially created by in vitro evolution.
  • the base sequence derived from the RNA-protein complex interaction motif preferably has a dissociation constant Kd of the RNA-protein complex from which the base sequence is derived from about 0.1 nM to about 1 ⁇ M. . This is because the RNA-protein interaction has a high affinity, and the state can be maintained even after the structural change is induced.
  • L7Ae derived from ultra-high heat sulfate-reducing archaea, which is known to be involved in RNA modification such as RNA methylation or pseudouridine formation (SEQ ID NO: 1) ) (Moore T et al., Structure Vol. 12, pp.
  • nucleotide sequences derived from these RNA-protein complex interaction motifs are determined, amino acid sequences derived from the same RNA-protein complex interaction motif are simultaneously determined, and these are specific under physiological conditions. And non-covalent binding occurs.
  • RNA-protein complex interaction motif is known to change the RNA structure before and after complex formation between RNA and protein.
  • a complex of 5′GGGCGUGAUGCGAAAGCUGACCCC3 ′ (SEQ ID NO: 4) (hereinafter referred to as BoxC / D), which is the base sequence to which L7Ae binds, explain.
  • BoxC / D 5′GGGCGUGAUGCGAAAGCUGACCCC3 ′
  • L7Ae and BoxC / D are known to form a complex as shown in FIG. 2 (Moore T et al., Structure Vol. 12, pp. 807-818 (2004)).
  • L7Ae is known to specifically bind to a Box C / D sequence in which the complementary sequence portion forms a double strand.
  • the Box C / D sequence in the form of a double strand is a molecule having a flexible, unfixed structure before L7Ae binds.
  • Such a state of the Box C / D arrangement is schematically shown in FIG.
  • the BoxC / D sequence and L7Ae interact to form a complex.
  • this Box C / D arrangement is fixed to a structure bent at 60 ° C.
  • the BoxC / D array and L7Ae in such a state are schematically shown in FIG.
  • the structure bent at 60 ° C. is formed around the base U of the sixth strand site from the 5 ′ side in the sequence.
  • the schematic diagram which expanded the bending part is shown in FIG. This is a specific structural change known for the RNA-protein complex interaction motif between the Box C / D sequence and L7Ae.
  • RNA-protein complex interaction motif between the Box C / D sequence and L7Ae is an example, and the other RNA-protein complex interaction motifs listed in the above table may each have specific structural changes.
  • Bacillus subtilis -derived S15 (RNA: GGGCGGCCUUCGGGCUAGACGGUGGGAGAGGCUUCGGCUGGUCCACCCGUGACGCUC (SEQ ID NO: 5)) (Protein: EmuPiaishikeiiikeikyukeibuiaikyuiefueiaruefuPijiditijiesutiibuikyubuieieruerutieruaruaienuarueruesuieichierukeibuieichikeikeidieichieichiesueichiarujierueruemuemubuijikyuRRRLLRYLQREDPERYRALIEKLGI (SEQ ID NO: 6)), an angle of
  • RNA GGCAGAGCUCUCGGGACAUUGCACCUGCC (CC: SEQ ID NO: 9)
  • protein AVPETRPNHTIYINNLNEKIKKKDHALKSFLDQKLDHALKGSQQLDDIFSSRKMRGDQ Such as FV (SEQ ID NO: 10)) is known.
  • one RNA molecule may be arranged with a plurality of identical nucleotide sequences derived from the RNA-protein complex interaction motif.
  • base sequences derived from different types of RNA-protein complex interaction motifs may be arranged in one RNA molecule. By arranging base sequences derived from different RNA-protein complex interaction motifs in one RNA molecule, multiple types of structural changes can be introduced into one RNA molecule, and multiple types of structural changes can be made. It is possible to guide.
  • the base sequence other than the base sequence derived from the RNA-protein complex interaction motif that constitutes the RNA molecule according to the present embodiment is a portion that does not cause a structural change.
  • it can also be said to be a part that serves as a scaffold for arranging a part that causes a structural change.
  • the base sequence that does not cause such a structural change may be an artificial base sequence or a naturally-derived base sequence.
  • Preferred sequences that do not cause structural changes include, for example, sequences that do not have a complicated three-dimensional structure, double strands formed by Watson-Crick base pairing, tRNA, 3-way junction, kissing-loop, and loop-receptor.
  • RNA-RNA interaction motifs include, but are not limited to.
  • the length, arrangement position, etc. of the base sequence that does not cause a structural change can be appropriately determined in relation to the base sequence derived from the RNA-protein complex interaction motif.
  • the manufacturing method of the RNA molecule used for this embodiment including determination of length, arrangement
  • the protein molecule that induces structural changes used in the method according to the present embodiment has an amino acid sequence derived from the same RNA-protein complex interaction motif as the base sequence derived from the RNA-protein complex interaction motif of the RNA molecule.
  • RNA-protein complex interaction motif specifically interacts with the base sequence derived from the RNA-protein complex interaction motif of the RNA molecule in which the structural change is induced. . That is, the RNA molecule and the protein molecule that induces a structural change are selected so as to form an RNA-protein complex.
  • RNA-protein complex interaction motif when selecting a base sequence derived from an RNA-protein complex interaction motif and an amino acid sequence derived from an RNA-protein complex interaction motif, a known RNA-protein complex interaction is selected.
  • a mutation may be introduced into the motif-derived sequence.
  • Those skilled in the art can appropriately determine and introduce mutations in the RNA-protein complex interaction motif that do not change the interaction characteristics. For example, a mutation of about 1 to 5 bases may be introduced only into the base sequence derived from the RNA-protein complex interaction motif, and 1 to 5 only into the amino acid sequence derived from the RNA-protein complex interaction motif. Mutations as large as peptides may be introduced, and mutations may be introduced into both. The number of such mutations varies depending on the RNA-protein complex interaction motif to be used, and is not limited to these values.
  • the protein molecule may be a fusion protein molecule containing a functional protein.
  • functional proteins include, but are not limited to, fluorescent proteins having a marker function, apoptosis-inducing proteins having a therapeutic effect, and the like.
  • Such a protein molecule can be appropriately produced by those skilled in the art using a vector or the like based on the known DNA sequence information of the desired protein.
  • RNA molecule from which the structural change is induced is a single RNA molecule with a plurality of different types of RNA-protein complex interaction motifs, the corresponding sequence
  • protein molecules having amino acid sequences derived from different types of RNA-protein complex interaction motifs are required.
  • Induction of structural changes in RNA molecules can be performed in a liquid. More specifically, it can be carried out as long as it is a liquid under physiological conditions of 4 to 80 ° C. and pH 3.5 to 10.5 under atmospheric pressure.
  • the method according to the present embodiment can be performed by mixing the protein molecule with a liquid under physiological conditions containing the RNA molecule.
  • the mixing amount can be determined by the number of base sequences derived from interacting RNA-protein complex interaction motifs on the RNA molecule, the molar ratio during interaction, and the like. Note that the molar ratio at the time of interaction of the RNA-protein complex is specific to each RNA-protein complex interaction motif.
  • RNA molecules [Induction of structural changes in RNA molecules]
  • a circular double-stranded RNA molecule having three BoxC / D sequences at regular intervals can be designed as an RNA molecule.
  • the L7Ae molecule is added in a molar amount of 3 times or more of the RNA molecule.
  • three L7Ae molecules bind to the double-stranded RNA molecule, and a structure having three 60-degree angles at equal intervals, that is, an equilateral triangle, is induced.
  • RNA molecules having three BoxC / D sequences at regular intervals and an L7Ae dimer in which two L7Ae molecules as proteins are fused can be designed as RNA molecules.
  • the RNA molecule in the absence of the L7Ae dimer, the RNA molecule is present in the fluid under physiological conditions as a circular RNA double-stranded molecule.
  • the L7Ae dimer is added in a molar amount so as to be 6 or more L7Ae dimers with respect to 4 molecules of double-stranded RNA molecules.
  • six L7Ae dimers bind to four RNA molecules, and a regular octahedral structure is induced.
  • FIG. 5 A schematic diagram in this case is shown in FIG. In FIG. 5, it is RNA molecules that constitute each side, and an L7Ae dimer is located at the apex. The formation of such an octahedron is performed spontaneously only by mixing the RNA molecule and the L7Ae dimer.
  • square RNP can be designed.
  • An RNA motif that binds to protein L1 is inserted into the vertices of the four sides of double-stranded RNA. In the presence of a protein ratio, it is expected to have a circular structure, but it can be expected that a square RNP molecule can be formed by binding the L1 protein to each vertex.
  • a specific structural change of a specific RNA molecule can be induced in the protein by designing the specific non-natural RNA molecule or protein molecule. Control of unnatural RNA molecular structure using such RNA-protein complex interaction motifs has not been reported so far, and it is used as a material for artificially constructing or reconfiguring biomolecules and genetic circuits. Promising as a tool for
  • RNA molecular material a method for producing an RNA molecular material
  • the above-described method for producing an RNA molecule having a specific structural change the step of selecting an RNA-protein complex interaction motif whose desired structural change is known, and the RNA molecule Determining a base sequence derived from the RNA-protein complex interaction motif and a scaffold base sequence by using a computer molecular modeling method, and determining the above And a step of producing RNA based on the base sequence obtained by the step.
  • the RNA molecule produced in this embodiment is an RNA molecule having the characteristics described in the first embodiment and whose structural change is induced by a protein molecule.
  • an RNA-protein complex interaction motif capable of realizing the structural change to be introduced is selected from the aforementioned table or database.
  • structural changes of RNA molecules that can be introduced with the RNA-protein complex interaction motif include 60 degree bend, 90 degree bend, change from double stranded RNA to single stranded RNA, single stranded RNA Examples include, but are not limited to, changes to double-stranded RNA.
  • a plurality of structural changes can be realized for one RNA molecule, and in this case, a plurality of different RNA-protein complex interaction motifs can be selected in combination.
  • RNA-protein complex interaction motifs can be introduced.
  • the step of determining the base sequence of the RNA molecular material can be performed by a computer molecular modeling method.
  • Commercially available molecular modeling software can be used for this.
  • computer molecular modeling first, a three-dimensional structure of a desired RNA-protein complex interaction motif is obtained. Then, one or a plurality of RNA-protein complex interaction motif-derived base sequences and RNA-protein complex interaction so that the RNA-protein complex after introduction of structural change forms a desired structure.
  • the base sequence other than the base sequence derived from the motif is determined. Base sequences other than the base sequence derived from the RNA-protein complex interaction motif serve as a scaffold for locating the base sequence derived from the RNA-protein complex interaction motif.
  • a sequence known not to form such a secondary structure or the like can be selected so as not to form a structure or a tertiary structure. Thereafter, the secondary structure that can be taken by the RNA having the designed sequence is predicted, and it is confirmed that the designed secondary structure is the most stable structure and does not take any other stable secondary structure.
  • the secondary structure prediction program mfold http://mfold.bioinfo.rpi.edu/cgi-bin/rna-form1.cgi) of the nucleic acid used on the web can be suitably used.
  • an RNA molecule is produced from the obtained base sequence by a known method. If a predetermined RNA sequence is given, it is common practice for those skilled in the art to produce RNA molecules based on this sequence. For example, template DNA is synthesized by PCR and transcription using RNA synthase is performed. RNA molecules can be produced by the reaction. In addition, RNA having a short chain length of about 30 bases can be directly synthesized by chemical synthesis. RNA molecules can be produced by such a method.
  • RNA molecule that induces a structural change thus produced can be used in the first embodiment, and can be used as a molecular material together with a protein molecule that induces a structural change as a kit described later. it can.
  • an RNA molecule that induces a structural change is designed and manufactured by combining a database of RNA-protein complex interaction motifs, a computer molecular modeling method, and a genetic engineering method. Can do. According to such a method, it is possible to design a molecule with high accuracy, and thus it is possible to easily and accurately design an RNA molecule in which a desired structural change is induced. Moreover, such RNA molecules can actually be produced in large quantities by genetic engineering methods. The method according to the second embodiment is very useful in producing a desired RNA molecule.
  • the present invention provides a kit for inducing a structural change of an RNA molecule with a protein molecule, wherein the RNA molecule specifically changes in structure as described above, and the RNA-protein that the RNA molecule has And a protein molecule comprising an amino acid sequence that specifically binds to a base sequence derived from a complex interaction motif.
  • the RNA molecule that specifically changes its structure and the protein molecule containing the amino acid sequence derived from the RNA-protein complex interaction motif may be any of those described in the first embodiment.
  • the kit according to the present embodiment may include an RNA molecule that competes for RNA-protein complex formation as an optional component.
  • a specific RNA base sequence competing for RNA-protein complex formation can have a base sequence derived from an RNA-protein complex interaction motif.
  • the RNA molecule specifically changing in structure and the protein molecule containing the amino acid sequence derived from the RNA-protein complex interaction motif included in the kit form a complex when mixed under predetermined conditions.
  • This bond is a stable and specific non-covalent bond by hydrogen bonding.
  • binding can be easily suppressed and formation of the RNP structure can be controlled.
  • the kit according to the third embodiment of the present invention can induce specific structural changes of RNA molecules under physiological conditions.
  • RNA molecules that compete for RNA-protein complex formation which is an optional component, enables reversible structural changes in the RNP nanostructure.
  • the functional RNA-protein complex described above is derived from an RNA molecule that specifically changes its structure, and an RNA-protein complex interaction motif possessed by the RNA molecule.
  • a protein molecule comprising an amino acid sequence that specifically binds to a base sequence and a functional protein.
  • FIG. 6 schematically shows a functional RNA-protein complex according to the fourth embodiment.
  • the complex shown in the figure has three vertices of a triangle composed of RNA molecules 1 each having a base sequence derived from an RNA-protein complex interaction motif in which the structural changes described in the first embodiment are induced on each side.
  • a fusion protein molecule comprising the amino acid sequence portion 2 that specifically binds to the base sequence and functional protein molecules 3, 4, and 5 is bound. All three functional protein molecules 3, 4 and 5 are different.
  • the functional protein refers to a protein having a predetermined function, for example, fluorescent proteins such as GFP and YFP, proteins having a membrane permeation function such as polyarginine motif, and tissue-specific functions.
  • fluorescent proteins such as GFP and YFP
  • proteins having a membrane permeation function such as polyarginine motif
  • tissue-specific functions include, but are not limited to, antibodies that specifically bind to the surface of cancer cells, such as proteins that bind to expressed membrane proteins, apoptosis-inducing proteins, and proteins that have a therapeutic effect on specific diseases. .
  • Such a complex is an RNA molecule designed as described in the first embodiment, and an amino acid sequence that specifically binds to a base sequence derived from an RNA-protein complex interaction motif introduced into the RNA molecule. It can be obtained by producing a fusion protein molecule in which any functional protein molecule is bound to the protein molecule to be contained, and mixing the RNA molecule and the fusion protein molecule. For example, when L7Ae-BoxC / D exemplified in the first embodiment is used as an RNA-protein complex interaction motif, a fusion protein molecule of an L7Ae protein and an arbitrary protein or peptide is prepared.
  • RNA-protein complex having any of a plurality of functions can be easily prepared simply by mixing with the RNA strand exemplified in one embodiment.
  • the number of functional protein molecules to be bound is changed by changing the molar ratio of the multiple types of functional protein molecules to be added. And can control the type.
  • the complex shown in FIG. 6 can be formed by adding a functional protein molecule to a circular RNA molecule 1 having three Box C / D sequences at regular intervals. It is obtained by adding sex protein molecules 3, 4, 5 in equimolar amounts.
  • FIG. 7 shows a schematic scheme for constructing a functional RNA-protein complex.
  • FIG. 7 is a scheme in the case of adding three different types of functional protein molecules 2a, 2b, and 2c to RNA molecules. In this way, each time one kind of protein molecule derived from an RNA-protein complex interaction motif fused with a functional protein molecule is added, the structure of the RNA molecule is changed, and finally the functional RNA of the desired shape— Protein complexes can be created.
  • RNA-protein complex for example, if a protein that binds to a membrane-permeable peptide or a tissue-specific membrane protein is used, the complex can be delivered to specific cells. Can be used. In addition, when a fluorescent protein such as GFP or YFP is used, there is an advantage that the delivery of the complex can be visualized and observed. Furthermore, it can be used as a therapeutic agent for delivering an apoptosis-inducing protein to cancer cells. Like the complex shown in FIG. 6, a complex in which a plurality of proteins having different functions are combined has all these advantages.
  • RNA and protein are bound by specific and non-covalent bonds, they can be made into a complex with a flexible binding mode as compared with conventional covalent bonds. Therefore, any protein having an RNA binding motif can be freely exchanged (installed), and modular engineering of a functional RNA-protein complex becomes possible.
  • RNA molecules designed by this method can form a stable double strand and protect the hydroxyl group of the terminal nucleotide from RNase present in the cell, as shown in the examples described later and FIG. become. For this reason, it can be expected to exist stably in the cell.
  • the present invention provides a method for producing an RNA-protein complex nanostructure according to the fifth embodiment, wherein an RNA molecule having a base sequence derived from an RNA-protein complex interaction motif is added to the RNA molecule.
  • a protein molecule containing an amino acid sequence that specifically binds to a base sequence derived from an RNA-protein complex interaction motif and, if necessary, a metal ion such as magnesium or calcium are added.
  • RNA-protein complex nanostructure a specific structural change of an RNA molecule is induced by a protein molecule to create an RNA-protein complex nanostructure.
  • a desired structure can be obtained by designing an RNA molecule, and specific structures include, but are not limited to, the equilateral triangle, regular octahedron, and square exemplified in the first embodiment.
  • Another example is a method for preparing an RNA-protein complex nanostructure by adding an RNA molecule, a protein molecule, and a metal ion.
  • This method is preferably used when a Kissing-loop sequence is introduced as a scaffold base sequence into an RNA molecule.
  • a structural change is introduced into one RNA molecule by a protein molecule to form one RNA-protein complex.
  • metal ions By adding metal ions, one RNA-protein complex interacts with another RNA-protein complex.
  • the metal ion can link RNA molecules non-covalently.
  • an RNA-protein complex nanostructure in which a plurality of RNA molecules are bound can be produced.
  • Such a substance that binds a plurality of molecules depends on the introduced motif or the like, but also includes an RNA loop receptor motif.
  • the protein molecule can be a fusion protein in which a functional protein is fused.
  • the fifth embodiment of the present invention it is possible not only to introduce a structural change into an RNA molecule to form a complex, but also to provide a method for creating a nanostructure by combining several complexes. it can. According to such a method, it is possible to create a larger number of desired nanostructures, and it can be said that it is easier to apply as a tool for artificially constructing biomolecules and genetic circuits.
  • Example A method of creating a nanostructure using RNP is shown. This technique is a technique that makes it easier to create nanoscale structures and functional molecules than when using only proteins or RNA alone. Specific experimental examples are given below.
  • Fig. 8 (a) is a view of L7-3 kaku ⁇ ⁇ depicted using Discovery Studio 2.0 from the top
  • Fig. 8 (b) is a triangular side view of Fig. 8 (a) rotated 90 degrees.
  • FIG. The RNA consists of 114 nt long chain (Fig. 9 (a)) and 150 nt short chain (Fig. 9 (b)).
  • Fig. 9 (a) By complementary pairing of these RNAs, circular RNA with three BoxC / Ds A chain is formed.
  • L7Ae By binding L7Ae to these BoxC / D sequences, it is expected that three positions of the circular RNA will be fixed at 60 degrees to form a triangle.
  • the length of one side of the formed RNA triangle is about 10 nm (FIG. 10).
  • Fulgidus was amplified using a restriction enzyme N using primers of L7Ae Fwd (5′-CTGACATATGTTACGTGAGATTTGAGGTTC-3 ′) (SEQ ID NO: 12), L7Ae Rev (5′-CTGACTCGAGTTACTTCTGGAGCCTTTTATC-3 ′) and SEQ ID NO: 13 It was prepared by integrating into a pET-28b + vector (Novagen) cut with XhoI. The expression purification method is shown below. First, E. coli BL21 (DE3) pLysS was transformed.
  • the obtained colonies were inoculated into 5 mL of LB medium containing 25 ⁇ g / mL kanamycin and 100 ⁇ g / mL chloramphenicol, and cultured with shaking at 37 ° C. overnight. Subsequently, the entire culture was inoculated into 500 mL of LB medium containing 25 ⁇ g / mL kanamycin and 100 ⁇ g / mL chloramphenicol. O. D. The culture was shaken at 37 ° C. until 600 reached 0.6 to 0.7, and then 500 ⁇ L of 1M IPTG was added (final concentration 1 mM) to induce expression, followed by overnight shaking at 30 ° C.
  • the cells were collected by centrifugation (4 ° C., 6000 rpm, 20 minutes), 5 mL of a sonication buffer (50 mM Na phosphate, 0.3 M NaCl, pH 8.0) was added, and sonication was performed to disrupt the cells. .
  • a sonication buffer 50 mM Na phosphate, 0.3 M NaCl, pH 8.0
  • the operation of applying ultrasonic waves for 15 seconds after cooling on ice was repeated 6 times. Thereafter, the impure protein was denatured at 80 ° C. for 15 minutes. Centrifugation (4 ° C., 6000 rpm, 20 minutes) was performed, the supernatant was collected, and the protein with a histidine tag was purified by a batch method using a Ni-NTA column (Qiagen).
  • the protein was concentrated using Microcon YM-3 (Millipore) and replaced with a dialysis buffer (20 mM Hepes-KOH, 1.5 mM MgCl 2 , 150 mM KCl, 5% glycerol, pH 7.5).
  • the protein concentration was determined by the Bradford method using a protein assay (BIO-RAD).
  • RNA The template DNA of long chain is L Fwd (10 ⁇ M, 5′-CTAATACGACTCACTATAGGGCGCAAAGGCCTGTAATCGGCGGTGATGCTGCTGCTGCTGCCTGCCTGCCTGCTGCTGCCTGCCTGCCTGCTGCTGCCTGCCTGCCTGCTGCTGCCTGC 1ng / ⁇ L, 5'-GGCCTGTAATCGGCGTGATGAGCCATGCGAGGAGGAAATGAAGTCCAATGGCGTGATGAGCCTCTACGGGAAGAGC- 3 ' SEQ ID NO: 16) 1 ⁇ L, KOD + (TOYOBO ) 1 ⁇ L, 10 ⁇ KOD + buffer 5 ⁇ L, 25mM MgSO 4 1.6 ⁇ L, 2.5mM dNT s 4 [mu] L, mixed ultrapure water 34.4 ⁇ L, 94 °C 15 seconds, 55 ° C.
  • PCR was performed in 15 cycles of 3 steps of 30 seconds at 68 ° C. for 60 seconds to synthesize template DNA.
  • Each template DNA was confirmed to be synthesized by 4% agarose gel electrophoresis, and purified by phenol extraction, diethyl ether extraction, and ethanol precipitation.
  • the purified template DNA was dissolved in 8 ⁇ L of ultrapure water and used for transcription.
  • MEGAshortscript (trademark) (Ambion) was used as follows. Template DNA 8 ⁇ L, T7 10 ⁇ Reaction Buffer 2 ⁇ L, T7 ATP Solution (75 mM) 2 ⁇ L (same for CTP, GTP, UTP) and T7 Enzyme Mix 2 ⁇ L were mixed overnight at 37 ° C.
  • TURBO DNase After the reaction, 1 ⁇ L of TURBO DNase was added and incubated at 37 ° C. for 1 hour to decompose the template DNA. 115 ⁇ L of ultrapure water and 15 ⁇ L ammonium acetate stop solution were added to the reaction solution, and further purified by phenol treatment, diethyl ether extraction, and ethanol precipitation. The precipitate was dissolved in 20 ⁇ L of a denaturing dye (80% formamide, 0.17% XC, 0.27% BPB) and separated by 10% polyacrylamide (1/30 bisacrylamide) denaturing gel electrophoresis.
  • a denaturing dye 80% formamide, 0.17% XC, 0.27% BPB
  • RNA was purified again by phenol extraction, diethyl ether extraction and ethanol precipitation, dissolved in ultrapure water and used in the subsequent experiments.
  • a sample for observation with an atomic force microscope was prepared as follows. Mix 2 ⁇ 5 ⁇ binding buffer (100 mM Hepes-KOH (pH 7.5), 750 mM KCl, 7.5 mM MgCl 2 , 10 mM DTT, 15% glycerol) 2 ⁇ L and short chain and long chain (both 10 ng / ⁇ L) 2 ⁇ L each The RNA was denatured by heating at 80 ° C. for 3 minutes, and then placed on ice to rapidly cool and fold.
  • RNA molecules (FIG. 13) that existed alone in an oval shape form a triangular structure when protein L7Ae and RNA molecules coexist (FIG. 15), and in the presence of protein L7Ae. Only in, a triangular structure as designed was confirmed.
  • FIG. 16 is a diagram of a large L7-3 kaku depicted using Discovery Studio 2.0. In this large L7-3 kaku, the triangle was composed of RNA double strands, and one side of the triangle formed by RNA was about 17 nm and 48 bp.
  • sequence of long chain is, 5'-GGACGAGCUGUACACCAUGGUGACCGCCGCCGGGCGUGAUGAGCUCCAAGGACCCCAACGAGAAGCGCGAUCACAUGAUCUACUUCGGCUUCGGCGUGAUGAGCCCUGUGCUGCUGCCCGAUAACCACUACCUGCCAUCACCCACGGCCCUGGGCGUGAUGAGCAUUCCACCCAGAGCGC-3 '(SEQ ID NO: 28, Artificial, 180nt), the sequence of short chain may, 5'-GGUGUACAGCUCGUCCGCUCUGGGUGGAAUGCUCUGACCCAGGGCCGUGGGUGAUGGCAGGUAGUGGUUAUCGGGCAGCAGCAC GGGCUCUGACCGAAGCCGAAGUAGAUCAUGUGAUCGCGCUUCUCGUUGGGGUCCUUGGAGCUCUGACCCGGCGGCGGUCACCAU-3 '
  • Template DNA long chain is, L Fwd (2 ⁇ M, 5'-CTAATACGACTCACTATAGGACGAGCTGTACACCATGGTGACCGCCGCCGGGCGTGATGAGCTCCAAGGACCCCAACGAGAAGCGCGATCACATGATCTACTTCGGCTT-3 ', SEQ ID NO: 30, Artificial, 109nt) 10 ⁇ L, L Rev (2 ⁇ M, 5'-GCGCTCTGGGTGGAATGCTCATCACGCCCAGGGCCGTGGGTGATGGCAGGTAGTGGTTATCGGGCAGCAGCACAGGGCTCATCACGCCGAAGCCGAAGTAGATCATGTG-3', SEQ ID NO: 31, Artificial, 109nt ) 10 ⁇ L, Ex Taq (Takar a) 0.5 ⁇ L, 10 ⁇ Ex Taq buffer 5 ⁇ L, 2.5 mM dNTPs 4 ⁇ L, and ultrapure water 21.5 ⁇ L are mixed, and 5 cycles PCR in 3 steps of 94 ° C.
  • Template DNA short chain is, S Fwd (2 ⁇ M, 5'-CTAATACGACTCACTATAGGTGTACAGCTCGTCCGCGCTCTGGGTGGAATGCTCTGACCCAGGGCCGTGGGTGATGGCAGGTAGTGGTTATCGGGCAGCAGCACA-3 '(SEQ ID NO: 32, Artificial, 105nt)) 10 ⁇ L, S Rev (2 ⁇ M, 5'-ATGGTGACCGCCGCCGGGTCAGAGCTCCAAGGACCCCAACGAGAAGCGCGATCACATGATCTACTTCGGCTTCGGTCAGAGCCCTGTGCTGCTGCCCGATAACC-3' (SEQ ID NO: 33, Artificial, 104 nt)) 10 ⁇ L, Ex Taq (Taka a) 0.5 ⁇ L, 10 ⁇ Ex Taq buffer 5 ⁇ L, 2.5 mM dNTPs 4 ⁇ L, and ultrapure water 21.5 ⁇ L are mixed, and 5-cycle PCR is performed in 3 steps of 94 ° C.
  • the synthesized template DNA strand was subjected to electrophoresis on a non-denaturing 6% acrylamide gel (1/30 bisacrylamide) to cut out a band of the desired size.
  • 500 ⁇ L of elution buffer (0.1% SDS, 0.3 M sodium acetate, pH 7.0) was added and incubated overnight at 37 ° C. to elute the DNA. Thereafter, phenol extraction, diethyl ether extraction and ethanol precipitation were performed, dissolved in 20 ⁇ L of ultrapure water, and 8 ⁇ L was used for the following transcription reaction.
  • the transfer was performed as follows using MEGAshortscript (trademark) (Ambion). A total of 20 ⁇ L of template DNA 8 ⁇ L, T7 10 ⁇ Reaction Buffer 2 ⁇ L, T7 ATP Solution (75 mM) 2 ⁇ L (same for CTP, GTP, UTP) and T7 Enzyme Mix 2 ⁇ L were reacted at 37 ° C. overnight. After the reaction, 1 ⁇ L of TURBO DNase was added and incubated at 37 ° C. for 15 minutes to decompose the template DNA.
  • a denaturing dye (80% formamide, 0.17% XC, 0.27% BPB) was added to the reaction solution and separated by 10% polyacrylamide (1/30 bisacrylamide) denaturing gel electrophoresis. A band of the desired size was cut out, 500 ⁇ L of elution buffer (0.1% SDS, 0.3 M sodium acetate, pH 7.0) was added, and the mixture was incubated overnight at 37 ° C. for elution. The eluted RNA was subjected to phenol extraction, diethyl ether extraction and ethanol precipitation, dissolved in ultrapure water, and used in the subsequent experiments.
  • elution buffer (0.1% SDS, 0.3 M sodium acetate, pH 7.0
  • RNA was confirmed by gel shift assay.
  • the final concentrations of the two kinds of RNA were 50 fmol / ⁇ L, 20 mM Hepes-KOH, 150 mM KCl, 1.5 mM MgCl 2 , 2 mM DTT, 3% glycerol, and 100 to 1000 nM protein as follows.
  • Example 4 Similar to Example 4, a sample was prepared as follows and observed with an atomic force microscope. 5 ⁇ binding buffer (100 mM Hepes-KOH (pH 7.5), 750 mM KCl, 7.5 mM MgCl 2 , 10 mM DTT, 15% glycerol) 2 ⁇ L and ultrapure water 6 ⁇ L, short chain and long chain (both 1 pmol / ⁇ L) 0 Each 5 ⁇ L was mixed and heated at 80 ° C. for 3 minutes to denature the RNA, and then placed at room temperature for 10 minutes for folding.
  • 5 ⁇ binding buffer 100 mM Hepes-KOH (pH 7.5), 750 mM KCl, 7.5 mM MgCl 2 , 10 mM DTT, 15% glycerol
  • FIG. 18 shows a hypothetical scheme of triangle formation by the L7Ae-BoxC / D motif and the Kissing-loop motif.
  • a loop-shaped RNA having a Box C / D motif at the center and forming a double strand is considered to exist in a loop shape in the absence of L7Ae or Mg 2+ ions.
  • L7Ae is added to this loop-shaped RNA, it is considered that the structure changes specifically to the bent-loop RNA exhibiting a 60-degree bent structure.
  • Mg 2+ ions are added, it is considered that a triangle is formed by the Kissing-loop motif.
  • FIG. 17 is a ribbon diagram of L7-3kiss drawn using Discovery Studio 2.0.
  • this L7-3kiss one triangle consists of three RNA strands, and the three RNA strands have the same sequence.
  • One side of the triangle formed by RNA was about 10 nm.
  • the three RNA strands exhibited a bent structure of 60 degrees by L7Ae, formed homotrimers by kissing-loop interaction, and became triangular.
  • RNA sequence of three identical RNAs was determined as CUACGGGAAGCGCGGCACCCCUAGAGGGCUCUGACCCCGAUGGGCACAGCGCGCAGCCCAUCCCGGGCGUGAUGAGCU (SEQ ID NO: 23).
  • RNAs were prepared using Discovery Studio 2.0 (Accelrys), which is molecular modeling software, so that the three L7Ae-BoxC / D motifs are coplanar and form an equilateral triangle.
  • Delivery-3 kaku was designed in which three chains of L7Ae were linked together, one of which was linked to the fluorescent protein GFP and the other was linked to the polyarginine motif.
  • FIG. 19 is a diagram of Delivery-3kaku drawn using Discovery Studio 2.0. In this Delivery-3kaku, L7Ae fused with the polyarginine motif is bound to the upper left corner and upper right corner, and L7Ae fused to the fluorescent protein GFP is bound to the lower left corner.
  • L7Ae fused to the fluorescent protein GFP is bound to the lower left corner.
  • results of computer molecular design, arrangement of long chain is, 5'-GGCGCAAAGGCCUGUAAUCGGCGUGAUGAGCCAUGCGAGGAGGAAAUGAAGUCCAAUGGCGUGAUGAGCCUCUACGGGAAGAGCAUGCCCAUCCGGGCGUGAUGAGCGUAGCAA-3 '(SEQ ID NO: 24), the sequence of short chain may, 5'-GGCCUUUGCGCCUUGCUACGCUCUGACCCGGAUGGGCAUGCUCUUCCCGUAGAGGCUCUGACCAUUGGACUUCAUUUCCUCCUCGCAUGGCUCUGACCGAUUACA-3' (SEQ ID NO: 25), L7Ae- fluorescent protein GFP
  • the peptide sequence is VPEDMQNEALSLLEKV ESGKVKKGTNETTKAVERGLAKLVYIAEDVDPPEIVAHLPLLCEEKNVPYIYVKSKNDLGRAVGIEVPCASAAIINEGELRKELGSLVEKIKGLQKPFTVSKGEELFTGVVPILVELDGDVNG
  • RNA is divided into three at the sides of the triangle, and a triangle is constructed by base pairing between the sticky ends of the side.
  • the three types of RNA-protein complexes are mixed to obtain Delivery-3kaku having one of three different proteins.
  • Each of the three parts consists of two RNA strands, and the entire triangle consists of a total of six types of RNA strands.
  • FIG. 20 is a diagram showing secondary structures of RNA molecules constituting divided Delivery-3kaku designed by computer molecules in Example 7.
  • RNAs constituting the divided Delivery-3kaku are the chain A-Long sequence, 5′-GGCGCAAAGGCCUGUAAUCGGUGCGAUGAGCCCAUGCGA-3 ′ (SEQ ID NO: 34, Artificial, 38nt), and the chain A-Shor sequence, respectively.
  • chain B-Long sequence is 5'-GGAGGAAAUGAGCCCAAUGGCGUGAUCCCArCUt h36, t-36 -GGCAUGCUCUUCCCGU GAGGCUCUGACCAUG-3 ′ (SEQ ID NO: 37, Artificial, 33 nt)
  • chain C-Long is 5′-GGAAGAGCAUGCCCAUCCGGGUGCGGAUGAGCGGUAGCAA-3 ′ (SEQ ID NO: 38, Artificial, 38nt), Shain-Cin It was determined as GGCCUUUGCGCCUUGCUACGCUCUGACCCCGAUG-3 ′ (SEQ ID NO: 39, Artificial, 34 nt).

Abstract

Disclosed is a method for constructing an artificial RNP nano-structure by utilizing an RNA-protein complex interaction motif.  Also disclosed is a method for inducing the change in structure of an RNA molecule with a protein.  Specifically disclosed is a method for inducing the specific change in structure of an RNA molecule with a protein molecule.  The method is characterized by adding a protein molecule which comprises an amino acid sequence capable of binding specifically to a nucleotide sequence derived from an RNA-protein complex interaction motif in a non-naturally occurring RNA molecule comprising the nucleotide sequence to the RNA molecule.

Description

RNA-蛋白質複合体相互作用モチーフを利用して人工RNPナノ構造体を構築する方法Method for constructing artificial RNP nanostructure using RNA-protein complex interaction motif
 本発明は、RNA-蛋白質複合体相互作用モチーフを利用して人工RNPナノ構造体を構築する方法、RNA-蛋白質複合体相互作用モチーフを利用したRNA分子の特異的な構造変化を蛋白質分子で誘導する方法、及びこの方法に用いるためのRNA分子に関する。 The present invention relates to a method for constructing an artificial RNP nanostructure using an RNA-protein complex interaction motif, and to induce a specific structural change of an RNA molecule using an RNA-protein complex interaction motif with a protein molecule. And a RNA molecule for use in this method.
 ポストゲノム科学の進展により、蛋白質やRNAなどの生体分子の構造、機能に関する情報が蓄積している。そのような増加していく情報を活用し、これまでの還元的、分析的な生物学とは対照的に、「合成」を通して生命システムを理解しようとする合成生物学(シンセティックバイオロジー)の気運が高まっている。中でも、生体分子や遺伝子回路を人工的に構成、または再構成することは、生命科学研究にとどまらず産業応用の面からも非常に注目されている。 With the progress of post-genomic science, information on the structure and function of biomolecules such as proteins and RNA has been accumulated. In contrast to conventional reductive and analytical biology, such an increasing amount of information is used to understand life systems through “synthesis”. Is growing. In particular, artificially constructing or reconfiguring biomolecules and genetic circuits has received much attention not only from life science research but also from the viewpoint of industrial applications.
 ナノテクノロジーの分野において生体分子を用いたナノスケール構造体の構築が行われており、また蛋白質工学の分野では分子設計による酵素の新規創成が試みられている。それらの試みにおいて使用されている「材料」は核酸あるいは蛋白質である。 In the field of nanotechnology, nanoscale structures using biomolecules are being constructed, and in the field of protein engineering, new creation of enzymes by molecular design is being attempted. The “material” used in these attempts is a nucleic acid or protein.
 生体分子を用いたナノスケール構造体構築の先行技術が知られている。この技術においては、三種類のDNA鎖を組み合わせたDNA多面体の形成が報告されている(非特許文献1を参照)。しかし、DNAは構造が単純であり、構造体の設計が容易である反面、構造体を作成する部品としてのバリエーションが少ないという問題があった。 Prior art of nanoscale structure construction using biomolecules is known. In this technique, formation of a DNA polyhedron combining three types of DNA strands has been reported (see Non-Patent Document 1). However, DNA has a simple structure and the design of the structure is easy, but there is a problem that there are few variations as a part for creating the structure.
 ほかに、RNAのKissing-loopと相補鎖間での二本鎖形成を利用したRNAジグソーパズルの作成が報告されている(非特許文献2を参照)。RNAはDNAと比較して多彩な構造、機能を有し、かつその分子自体の構造も比較的単純であるため、構造体の設計、合成により適している。しかし、構造体を作成する部品としてのバリエーションは十分であるとはいえない。 In addition, the creation of an RNA jigsaw puzzle using double strand formation between the kissing-loop and complementary strand of RNA has been reported (see Non-Patent Document 2). RNA has a variety of structures and functions as compared to DNA, and the structure of the molecule itself is relatively simple. Therefore, RNA is more suitable for designing and synthesizing structures. However, it cannot be said that variations as a part for creating a structure are sufficient.
 生体分子材料としては蛋白質も考えられるが、蛋白質は複雑な構造を持つため、分子設計するのが難しいという問題がある。 Protein is also considered as a biomolecular material, but there is a problem that it is difficult to design a molecule because the protein has a complicated structure.
 生体分子や遺伝子回路を人工的に構成、または再構成する材料として有用な、所望の構造変化が期待できる、有用な生体分子材料の報告は未だに存在しない。
He Y, Nature. 2008 Mar 13;452(7184):198-201. Chworos A, Science. 2004 Dec 17;306(5704):2068-72.
There are no reports of useful biomolecular materials that can be expected to undergo desired structural changes that are useful as materials for artificially constructing or reconfiguring biomolecules and genetic circuits.
He Y, Nature. 2008 Mar 13; 452 (7184): 198-201. Chworos A, Science. 2004 Dec 17; 306 (5704): 2068-72.
 本発明は、人工RNA-蛋白質ナノ構造体を設計、構築し、かつRNA分子の構造変化を蛋白質で誘導する方法を提供することを目的とする。 An object of the present invention is to provide a method for designing and constructing an artificial RNA-protein nanostructure and inducing a structural change of an RNA molecule with a protein.
 本発明は、上記課題を解決するためになされたものである。すなわち、本発明は、一実施の形態によれば、RNA分子の特異的な構造変化を蛋白質分子で誘導する方法であって、RNA-蛋白質複合体相互作用モチーフ由来の塩基配列を含んでなる非天然のRNA分子に、該RNA分子のRNA-蛋白質複合体相互作用モチーフ由来の塩基配列に特異的に結合するアミノ酸配列を含む蛋白質分子を添加することを特徴とする方法である。ここで、該RNA分子のRNA-蛋白質複合体相互作用モチーフ由来の塩基配列に特異的に結合するアミノ酸配列とは、該RNA分子に導入したRNA-蛋白質複合体相互作用モチーフに由来する、蛋白質を構成するアミノ酸配列をいい、また、該アミノ酸配列に若干の変異を導入したアミノ酸配列も含まれる。若干の変異とは、RNA-蛋白質複合体相互作用に影響を与えない程度の変異をいう。 The present invention has been made to solve the above problems. That is, according to one embodiment of the present invention, there is provided a method for inducing a specific structural change of an RNA molecule with a protein molecule, which comprises a base sequence derived from an RNA-protein complex interaction motif. This is a method characterized in that a protein molecule comprising an amino acid sequence that specifically binds to a base sequence derived from the RNA-protein complex interaction motif of the RNA molecule is added to a natural RNA molecule. Here, the amino acid sequence that specifically binds to the base sequence derived from the RNA-protein complex interaction motif of the RNA molecule refers to the protein derived from the RNA-protein complex interaction motif introduced into the RNA molecule. The amino acid sequence which comprises comprises the amino acid sequence which introduce | transduced some variation | mutation into this amino acid sequence. The slight mutation refers to a mutation that does not affect the RNA-protein complex interaction.
 本発明は、別の実施の形態によれば、特異的に構造変化するRNA分子であって、RNA-蛋白質複合体相互作用モチーフ由来の塩基配列を含んでなる非天然のRNA分子である。 According to another embodiment, the present invention is a non-natural RNA molecule comprising a base sequence derived from an RNA-protein complex interaction motif, which is an RNA molecule that specifically changes its structure.
 本発明は、また別の実施の形態によれば、上述の特異的に構造変化するRNA分子の製造方法であって、所望の構造変化が知られているRNA-蛋白質複合体相互作用モチーフを選択するステップと、RNA分子の塩基配列を決定するステップであって、上記RNA-蛋白質複合体相互作用モチーフ由来の塩基配列と、足場塩基配列とを、コンピュータ分子モデリング法を用いて配置することにより決定するステップと、上記決定するステップにより得られた塩基配列に基づき、RNA分子を製造するステップとを含む方法である。足場塩基配列とは、特異的な構造変化が生ずるRNA-蛋白質複合体相互作用モチーフ由来の塩基配列以外の塩基配列をいう。 According to another embodiment of the present invention, there is provided a method for producing an RNA molecule having a specific structure change as described above, wherein an RNA-protein complex interaction motif having a known structure change is selected. And determining the base sequence of the RNA molecule by arranging the base sequence derived from the RNA-protein complex interaction motif and the scaffold base sequence using a computer molecular modeling method. And a step of producing an RNA molecule based on the base sequence obtained by the determining step. The scaffold base sequence refers to a base sequence other than a base sequence derived from an RNA-protein complex interaction motif that causes a specific structural change.
 本発明は、さらにまた別の実施の形態によれば、RNA分子の特異的な構造変化を蛋白質分子で誘導するためのキットであって、上述の特異的に構造変化するRNA分子であって、RNA-蛋白質複合体相互作用モチーフ由来の塩基配列を含んでなる非天然のRNA分子と、該RNA分子のRNA-蛋白質複合体相互作用モチーフ由来の塩基配列に特異的に結合するアミノ酸配列を含む蛋白質分子とを含んでなる。 According to still another embodiment of the present invention, there is provided a kit for inducing a specific structural change of an RNA molecule with a protein molecule, wherein the RNA molecule specifically changes its structure as described above, A protein comprising a non-natural RNA molecule comprising a base sequence derived from an RNA-protein complex interaction motif and an amino acid sequence that specifically binds to the base sequence derived from the RNA-protein complex interaction motif of the RNA molecule A molecule.
 前記キットが、前記RNA-蛋白質複合体形成に競合するRNA分子をさらに含むことが好ましい。ここで、競合するRNAは、RNA-蛋白質複合体相互作用モチーフ由来の塩基配列を有するものである。 It is preferable that the kit further includes an RNA molecule that competes with the formation of the RNA-protein complex. Here, the competing RNA has a base sequence derived from an RNA-protein complex interaction motif.
 本発明は、さらにまた別の実施の形態によれば、機能性RNA-蛋白質複合体であって、上述の特異的に構造変化するRNA分子であって、RNA-蛋白質複合体相互作用モチーフ由来の塩基配列を含んでなる非天然のRNA分子と、該RNA分子のRNA-蛋白質複合体相互作用モチーフ由来の塩基配列に特異的に結合するアミノ酸配列と、機能性蛋白質とを含んでなる蛋白質分子とを含む。 According to still another embodiment of the present invention, there is provided a functional RNA-protein complex, which is an RNA molecule having a specific structure change as described above, which is derived from an RNA-protein complex interaction motif. A non-natural RNA molecule comprising a base sequence, an amino acid sequence that specifically binds to the base sequence derived from the RNA-protein complex interaction motif of the RNA molecule, and a protein molecule comprising a functional protein; including.
 前記機能性蛋白質が、マーカー蛋白質、膜透過性蛋白質、腫瘍に特異的な蛋白質、治療効果を有する蛋白質、特定の細胞表面を認識する抗体から選択される一以上であることが好ましい。 The functional protein is preferably one or more selected from a marker protein, a membrane-permeable protein, a protein specific to a tumor, a protein having a therapeutic effect, and an antibody that recognizes a specific cell surface.
 本発明は、さらにまた別の実施の形態によれば、RNA-蛋白質複合体ナノ構造体を作成する方法であって、RNA-蛋白質複合体相互作用モチーフ由来の塩基配列を含んでなる非天然のRNA分子に、該RNA分子のRNA-蛋白質複合体相互作用モチーフ由来の塩基配列に特異的に結合するアミノ酸配列を含んでなる蛋白質分子と、任意選択的に金属イオンとを添加することを特徴とする。 According to yet another embodiment of the present invention, there is provided a method for producing an RNA-protein complex nanostructure, which comprises a non-naturally occurring sequence comprising a base sequence derived from an RNA-protein complex interaction motif. A protein molecule comprising an amino acid sequence that specifically binds to a base sequence derived from an RNA-protein complex interaction motif of the RNA molecule and optionally a metal ion are added to the RNA molecule. To do.
 本発明の効果として、RNA分子の構造変化を蛋白質で誘導することができる。また、蛋白質により誘導可能なRNA分子、及びそのRNA分子からなる構造体を構築することができる。さらには、蛋白質により誘導可能なRNA分子と、該蛋白質との複合体による機能性分子を提供することができる。これらの方法または、分子は、いずれも、生体分子、多機能性ナノ構造体、または遺伝子回路を人工的に構成、または再構成する材料として有用である。 As an effect of the present invention, structural changes in RNA molecules can be induced by proteins. In addition, RNA molecules that can be induced by proteins and structures composed of the RNA molecules can be constructed. Furthermore, an RNA molecule that can be induced by a protein and a functional molecule that is a complex of the protein can be provided. Any of these methods or molecules are useful as materials for artificially constructing or reconfiguring biomolecules, multifunctional nanostructures, or genetic circuits.
図1は、第1実施形態による、RNA分子1の構造変化を蛋白質分子2で誘導する方法を概略的に示す図である。FIG. 1 is a diagram schematically showing a method for inducing a structural change of an RNA molecule 1 with a protein molecule 2 according to the first embodiment. 図2は、L7AeとBoxC/Dとにより形成される複合体を示すリボンダイアグラムである。FIG. 2 is a ribbon diagram showing a composite formed by L7Ae and Box C / D. 図3中、(a)は、固定されていない状態のBoxC/D配列の状態を概略的に示す図であり、(b)は、L7Aeにより60℃に屈曲した構造に固定されたBoxC/D配列の状態を概略的に示す図である。In FIG. 3, (a) is a diagram schematically showing the state of an unfixed Box C / D arrangement, and (b) is a Box C / D fixed to a structure bent at 60 ° C. by L7Ae. It is a figure which shows the state of an arrangement | sequence roughly. 図4は、BoxC/D配列の屈曲部分を拡大した模式図である。FIG. 4 is an enlarged schematic view of a bent portion of the Box C / D arrangement. 図5は、RNA分子1が蛋白質分子2で誘導されてできた正八面体の構造体を示す模式図である。FIG. 5 is a schematic diagram showing a regular octahedron structure formed by inducing RNA molecule 1 with protein molecule 2. 図6は、機能性蛋白質分子がRNA分子に配置されたRNA-蛋白質複合体を示す図である。FIG. 6 is a diagram showing an RNA-protein complex in which functional protein molecules are arranged in RNA molecules. 図7は、第4実施形態による、RNA分子に複数の異なる機能性蛋白質分子を配置する方法を概略的に示す図である。FIG. 7 is a diagram schematically illustrating a method for arranging a plurality of different functional protein molecules on an RNA molecule according to the fourth embodiment. 図8は、Discovery Studio 2.0を用いて描写したRNA分子の二次構造を示す図である。FIG. 8 is a diagram showing the secondary structure of an RNA molecule depicted using Discovery Studio 2.0. 図9は、実施例1においてコンピュータ分子設計した、RNA分子の一次配列を示す図であり、(a)はLong chainの一次配列を示し、(b)Short chainの一次配列を示す図である。FIG. 9 is a diagram showing a primary sequence of an RNA molecule designed by a computer molecule in Example 1. (a) shows a primary sequence of Long chain, and (b) shows a primary sequence of Short chain. 図10は、実施例1においてコンピュータ分子設計した、RNA分子の二次構造を示す図である。FIG. 10 is a diagram showing the secondary structure of an RNA molecule designed by a computer molecule in Example 1. 図11は、ゲルシフトアッセイによるRNP構造体形成を確認した結果を示す図である。FIG. 11 is a diagram showing the results of confirming the formation of the RNP structure by gel shift assay. 図12は、原子間力顕微鏡を用いて、バッファーのみを含む溶液を観察した結果を示す顕微鏡写真である。FIG. 12 is a photomicrograph showing the results of observing a solution containing only the buffer using an atomic force microscope. 図13は、原子間力顕微鏡を用いて、RNA分子のみを含む溶液を観察した結果を示す顕微鏡写真であり、RNA分子は環状で存在することがわかる。FIG. 13 is a photomicrograph showing the result of observing a solution containing only RNA molecules using an atomic force microscope, and it can be seen that the RNA molecules exist in a circular shape. 図14は、原子間力顕微鏡を用いて、L7Aeのみを含む溶液を観察した結果を示す顕微鏡写真であり、L7Aeは点状に観察できる。FIG. 14 is a photomicrograph showing the result of observing a solution containing only L7Ae using an atomic force microscope, and L7Ae can be observed in the form of dots. 図15は、原子間力顕微鏡を用いて、RNA分子とL7Aeを含む溶液を観察した結果を示す顕微鏡写真であり、RNA分子とL7Aeによる三角形の構造体が生成していることがわかる。FIG. 15 is a photomicrograph showing the result of observing a solution containing an RNA molecule and L7Ae using an atomic force microscope, and it can be seen that a triangular structure is formed by the RNA molecule and L7Ae. 図16は、Discovery Studio 2.0を用いて描写した大きなL7-3kakuの図であり、3つのL7Ae-BoxC/Dを48塩基対のRNAで連結した三角形である。FIG. 16 is a diagram of a large L7-3kaku drawn using Discovery Studio 2.0, which is a triangle in which three L7Ae-BoxC / Ds are linked by 48 base pair RNA. 図17は、Discovery Studio 2.0を用いて描写したL7-3kissのリボンダイアグラムであり、三角形の一辺は10nmである。FIG. 17 is an L7-3kis ribbon diagram drawn using Discovery Studio 2.0, where one side of the triangle is 10 nm. 図18は、L7Ae-BoxC/D モチーフ、Kissing-loopモチーフによる三角形形成の仮定的なスキームを示す図である。FIG. 18 is a diagram showing a hypothetical scheme of triangle formation by the L7Ae-BoxC / D motif and the Kissing-loop motif. 図19は、Discovery Studio 2.0を用いて描写したDelivery-3kakuの図であり、一つの角には蛍光蛋白質GFPが結合しており、二つの角にはポリアルギニンモチーフが結合している。FIG. 19 is a diagram of Delivery-3kaku drawn using Discovery Studio 2.0, where a fluorescent protein GFP is bound to one corner and a polyarginine motif is bound to two corners. 図20は、実施例7においてコンピュータ分子設計した、分割したDelivery-3kakuを構成するRNA分子の二次構造を示す図である。FIG. 20 is a diagram showing secondary structures of RNA molecules constituting divided Delivery-3kaku designed by computer molecules in Example 7.
 1  RNA分子
 2  蛋白質分子
 2a 融合蛋白質分子
 2b 融合蛋白質分子
 2c 融合蛋白質分子
 3  機能性蛋白質分子
 4  機能性蛋白質分子
 5  機能性蛋白質分子
1 RNA molecule 2 Protein molecule 2a Fusion protein molecule 2b Fusion protein molecule 2c Fusion protein molecule 3 Functional protein molecule 4 Functional protein molecule 5 Functional protein molecule
 以下に、本発明を、実施形態を挙げて詳細に説明する。しかし、以下の説明は本発明を限定するものではない。 Hereinafter, the present invention will be described in detail with reference to embodiments. However, the following description does not limit the present invention.
 20世紀後半から現在に至る、分子生物学の急速な発展により、膨大な数の遺伝子が同定され、それらがコードする蛋白質を中心に、さまざまな生体高分子の機能が明らかにされて来た。さらにはDNA、RNAおよび蛋白質の詳細な立体構造が解明され、それらは分子間の相互作用および選択的な化学反応により機能することが原子レベルで証明された。よって、これらの相互作用および化学反応を自在に制御することができれば、新しい病気治療法や、エネルギー問題などを解決する方法が開発できるはずである。 The rapid development of molecular biology from the second half of the 20th century to the present has identified an enormous number of genes, and the functions of various biopolymers have been clarified, centering on the proteins encoded by them. Furthermore, detailed three-dimensional structures of DNA, RNA and proteins were elucidated, and it was proved at the atomic level that they function by intermolecular interactions and selective chemical reactions. Therefore, if these interactions and chemical reactions can be freely controlled, a new disease treatment method and a method for solving energy problems should be developed.
 これを実現する手法としては、ターゲットとなる分子の機能を、分子間相互作用により、直接制御する機能をもつ新しい分子をデザイン・作成し、それにより細胞や組織を制御することがあげられる。RNAは多様な立体構造を形成できる。蛋白質に加え、RNAには酵素機能をもつものがあり、その機能と構造の相関関係は、立体構造の解析を通じて詳細に解明されて来た。また、4種の基本ユニット(塩基)で作られるRNAは、シンプルな構築原理により形成される。よって、ナノブロックとしての高度な立体構造を持つ分子の設計・構築に広くRNAを用いることができる。しかしながら、RNA単独では、モチーフの数に限りがあり、作成できる構造が限定されている。一方、20種もの基本ユニット(アミノ酸)で作られる蛋白質は、RNAよりはるかに多彩かつ複雑な立体構造および機能をもつ。現在、天然の蛋白質の構造が、膨大な数、高分解能で解析されているものの、その分子設計・構築は難しく、単純な構造を持つものに限られている。これらから、現時点では、ナノスケールで、複雑な機能と構造を持つ3Dオブジェクトとしては、RNP(RNA-蛋白質複合体)を設計・構築することが、現実的であり、具体的には「分子設計により作成する人工RNA」と「天然の構造既知の蛋白質」を組み合わせることが、分子デザインによる機能をもつ分子の開発へ向けての実現性の高い手法である。 As a method for realizing this, it is possible to design and create a new molecule having a function of directly controlling the function of the target molecule by intermolecular interaction, thereby controlling cells and tissues. RNA can form various three-dimensional structures. In addition to proteins, RNA has an enzyme function, and the correlation between the function and structure has been elucidated in detail through the analysis of the three-dimensional structure. In addition, RNA made of four basic units (bases) is formed by a simple construction principle. Therefore, RNA can be widely used for the design and construction of molecules having a highly three-dimensional structure as a nanoblock. However, RNA alone has a limited number of motifs, and the structures that can be created are limited. On the other hand, a protein made up of 20 types of basic units (amino acids) has much more various and complicated three-dimensional structures and functions than RNA. At present, the structure of natural proteins has been analyzed with a large number and high resolution, but its molecular design and construction is difficult, and it is limited to those having simple structures. Therefore, at present, it is realistic to design and construct RNP (RNA-protein complex) as a 3D object with a complex function and structure at the nanoscale. Combining the “artificial RNA created by” and “naturally known protein” is a highly feasible method for developing molecules with functions based on molecular design.
 本発明者らは、ナノスケールの構造体や酵素のような機能性分子を設計・構築するための材料として、RNA-蛋白質相互作用モチーフ(RNP)を用いることを考え、この材料を応用した人工的な分子を構築し、ナノ構造体を設計、及び作成することにより、発明を完成するに至った。核酸に比べてRNPは構造的に多様であり、設計の容易なRNAを基本骨格として設計することで、核酸のみでは作れない複雑な構造も比較的容易に設計・構築できると考えられる。 The present inventors considered using an RNA-protein interaction motif (RNP) as a material for designing and constructing a functional molecule such as a nanoscale structure or enzyme, and an artificial material using this material. The present invention has been completed by constructing specific molecules and designing and creating nanostructures. RNPs are structurally diverse compared to nucleic acids, and it is considered that complex structures that cannot be created only with nucleic acids can be designed and constructed relatively easily by designing RNA that is easy to design as a basic skeleton.
 本発明は、第1実施形態によれば、RNA分子の構造変化を蛋白質で誘導する方法であって、RNA-蛋白質複合体相互作用モチーフ由来の塩基配列を有するRNA分子に、該塩基配列に特異的に結合する蛋白質を含む分子を添加する工程から構成される。 The present invention, according to the first embodiment, is a method for inducing a structural change of an RNA molecule with a protein, wherein the RNA molecule having a base sequence derived from an RNA-protein complex interaction motif is specific for the base sequence. A step of adding a molecule containing a protein that binds automatically.
 本実施形態による方法のスキームを、図1に概略的に示す。図1に示すスキームによれば、蛋白質の非存在下において、環状で存在するRNA分子1に、蛋白質2を添加することによって、一つの角に一つの蛋白質2が結合した三角形状のRNA分子に、特異的に誘導することができる。なお、図1は、概略的なものであって、本発明は、特定の形状から、別の特定の形状への誘導に限定されるものではない。以下に、本発明により構造変化が誘導されるRNA分子の構成、その調製方法、及びRNA分子の構造変化を蛋白質で誘導する方法について詳細に説明する。 The scheme of the method according to the present embodiment is schematically shown in FIG. According to the scheme shown in FIG. 1, in the absence of a protein, by adding protein 2 to RNA molecule 1 that exists in a circular shape, a triangular RNA molecule in which one protein 2 is bound to one corner is formed. Can be induced specifically. In addition, FIG. 1 is schematic and this invention is not limited to the induction | guidance | derivation from another specific shape to another specific shape. Hereinafter, the structure of an RNA molecule in which structural changes are induced by the present invention, a preparation method thereof, and a method for inducing structural changes of RNA molecules with proteins will be described in detail.
[RNA-蛋白質複合体相互作用モチーフ由来の塩基配列を有するRNA分子の構成]
 本実施形態による方法において用いる、蛋白質によりその構造変化が誘導されるRNA分子は、RNA-蛋白質複合体相互作用モチーフ由来の塩基配列を有するRNA分子である。さらに具体的には、本実施形態による構造変化が誘導されるRNA分子は、RNA-蛋白質複合体相互作用モチーフ由来の塩基配列と、それ以外の塩基配列である足場塩基配列とを含んでなる非天然の分子である。なお、足場塩基配列、RNA-蛋白質相互作用モチーフの各々は、天然に存在する分子の配列から抽出することができる。RNA-蛋白質複合体相互作用モチーフ由来の塩基配列は、RNA分子において、蛋白質との結合により構造変化を生ずる部分として機能する。足場塩基配列は、RNA分子において、ナノ構造体の骨格として作用し、構造変化を生じない部分である。本実施形態によるRNA分子は、RNA-蛋白質複合体相互作用モチーフ由来の塩基配列を含むものであればよいが、蛋白質に非特異的に結合するRNA塩基配列などの部分を含まないことが好ましい。
[Configuration of RNA molecule having base sequence derived from RNA-protein complex interaction motif]
The RNA molecule whose structural change is induced by a protein used in the method according to the present embodiment is an RNA molecule having a base sequence derived from an RNA-protein complex interaction motif. More specifically, the RNA molecule in which the structural change is induced according to the present embodiment is a non-sequence comprising a base sequence derived from an RNA-protein complex interaction motif and a scaffold base sequence that is another base sequence. It is a natural molecule. Each of the scaffold base sequence and the RNA-protein interaction motif can be extracted from the sequence of a naturally occurring molecule. The base sequence derived from the RNA-protein complex interaction motif functions as a part that causes a structural change in the RNA molecule upon binding to the protein. The scaffold base sequence is a part that acts as a skeleton of the nanostructure in the RNA molecule and does not cause a structural change. The RNA molecule according to the present embodiment only needs to include a base sequence derived from an RNA-protein complex interaction motif, but preferably does not include a portion such as an RNA base sequence that binds nonspecifically to a protein.
[1.RNA-蛋白質複合体相互作用モチーフ由来の塩基配列]
 ここで、RNA-蛋白質複合体相互作用モチーフ由来の塩基配列とは、天然の、既知のRNA-蛋白質複合体における、RNAと蛋白質との相互作用モチーフの、RNA側の配列として知られている塩基配列と、試験管内進化法(in vitro selection法)により得られた人工的なRNA-蛋白質複合体相互作用モチーフにおけるRNA側の配列である塩基配列とが含まれる。RNA-蛋白質複合体とは、生体において多数確認されている蛋白質とRNAとの会合体であり、複雑な構造を持つ3Dオブジェクトである。
[1. Base sequence derived from RNA-protein complex interaction motif]
Here, the base sequence derived from the RNA-protein complex interaction motif is the base known as the sequence on the RNA side of the interaction motif between RNA and protein in a natural and known RNA-protein complex. A sequence and a base sequence that is a sequence on the RNA side in an artificial RNA-protein complex interaction motif obtained by an in vitro selection method (in vitro selection method) are included. An RNA-protein complex is an association of protein and RNA that has been confirmed in large numbers in a living body, and is a 3D object having a complicated structure.
 天然のRNA-蛋白質複合体相互作用モチーフ由来の塩基配列は、通常、約5~30塩基で構成されており、特定の蛋白質の特定のアミノ酸配列と、非共有結合的に、すなわち水素結合により、特異的な結合を形成することが知られている。このような天然のRNA-蛋白質複合体相互作用モチーフ由来の塩基配列は、以下の表1及び表2、及びウェブサイト上で利用できるデータベース:http://gibk26.bse.kyutech.ac.jp/jouhou/image/dna-protein/rna/rna.htmlから、所望の構造変化を生ずるモチーフを選択することができる。本実施形態において好ましく用いられるRNA-蛋白質相互作用モチーフは、X線結晶構造解析またはNMRによる構造解析が既に行われているモチーフ、あるいは構造解析がなされている相同蛋白質の立体構造から立体構造を推定可能なモチーフである。さらに、蛋白質がRNAの二次構造及び塩基配列を特異的に認識するモチーフであることがのぞましい。 A base sequence derived from a natural RNA-protein complex interaction motif is usually composed of about 5 to 30 bases, and non-covalently, that is, by hydrogen bonding, with a specific amino acid sequence of a specific protein. It is known to form specific bonds. The nucleotide sequences derived from such natural RNA-protein complex interaction motifs are shown in Tables 1 and 2 below, and a database available on the website: http: // gibk26. bse. kyutech. ac. jp / jouhou / image / dna-protein / rna / rna. From html, a motif that produces the desired structural change can be selected. The RNA-protein interaction motif preferably used in this embodiment is a motif whose X-ray crystal structure analysis or NMR structural analysis has already been performed, or a three-dimensional structure estimated from the three-dimensional structure of a homologous protein that has been subjected to structural analysis. It is a possible motif. Furthermore, it is desirable that the protein is a motif that specifically recognizes the secondary structure and base sequence of RNA.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 人工のRNA-蛋白質複合体相互作用モチーフ由来の塩基配列とは、人工的に設計したRNA-蛋白質複合体における、RNAと蛋白質との相互作用モチーフの、RNA側の塩基配列である。このような塩基配列は、通常、約5~30塩基で構成されており、特定の蛋白質の特定のアミノ酸配列と、非共有結合的に、すなわち水素結合により、特異的な結合を形成するように設計する。また、以下の表3に挙げる塩基配列も知られており、これらもまた本発明のRNA-蛋白質複合体相互作用モチーフ由来の塩基配列として用いることができる。 The base sequence derived from an artificial RNA-protein complex interaction motif is a base sequence on the RNA side of an RNA-protein interaction motif in an artificially designed RNA-protein complex. Such a base sequence is usually composed of about 5 to 30 bases, and forms a specific bond with a specific amino acid sequence of a specific protein non-covalently, that is, by hydrogen bonding. design. The base sequences listed in Table 3 below are also known, and these can also be used as base sequences derived from the RNA-protein complex interaction motif of the present invention.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 人工のRNA-蛋白質複合体は、分子デザイン方法、または試験管内進化法、あるいはそれらの両方を併用することで作成することができる。試験管内進化法では、様々な配列多様性をもつ分子ライブラリーから、機能性RNAを選別し、その遺伝子(DNA)を増幅、転写するといった反応を繰り返すことで、アプタマーやリボザイムを得ることができる。従って、分子デザインであらかじめ目的の機能構造をもったRNPに適応したRNA-蛋白質相互作用モチーフを天然RNP分子から抽出、または試験管内進化法により人工的に作成することが可能となる。 An artificial RNA-protein complex can be prepared by using a molecular design method, an in vitro evolution method, or a combination of both. In the in vitro evolution method, aptamers and ribozymes can be obtained by repeating functional reactions such as selecting functional RNA from a molecular library with various sequence diversity and amplifying and transcribing the gene (DNA). . Therefore, an RNA-protein interaction motif adapted to RNP having a target functional structure in advance in molecular design can be extracted from natural RNP molecules or artificially created by in vitro evolution.
 本実施形態において、RNA-蛋白質複合体相互作用モチーフ由来の塩基配列は、その塩基配列の由来となるRNA-蛋白質複合体の解離定数Kdが、約0.1nM~約1μM程度であるものが好ましい。この理由は、RNA-蛋白質相互作用の親和性が高く、構造変化を誘導した後も、その状態を保持することが可能となるからである。 In the present embodiment, the base sequence derived from the RNA-protein complex interaction motif preferably has a dissociation constant Kd of the RNA-protein complex from which the base sequence is derived from about 0.1 nM to about 1 μM. . This is because the RNA-protein interaction has a high affinity, and the state can be maintained even after the structural change is induced.
 具体的なRNA-蛋白質複合体相互作用モチーフ由来の塩基配列としては、RNAのメチル化やシュードウリジン化といったRNA修飾に関わることが知られている、超高熱硫酸還元古細菌由来L7Ae(配列番号1)(Moore T et al., Structure Vol. 12, pp. 807-818 (2004))が結合する塩基配列である、5’GGGCGUGAUGCGAAAGCUGACCC3’(配列番号2)、アミノアシル化を行う酵素であって、自身のmRNAに結合し、翻訳を阻害するフィードバック阻害を持つことが知られている、大腸菌由来Threonyl-tRNA synthetase(Cell (Cambridge, Mass.) v97, pp.371-381 (1999))が結合する塩基配列である、5’GGCGUAUGUGAUCUUUCGUGUGGGUCACCACUGCGCC3’などの塩基配列(配列番号3)が挙げられるが、これらには限定されない。 As a specific base sequence derived from an RNA-protein complex interaction motif, L7Ae derived from ultra-high heat sulfate-reducing archaea, which is known to be involved in RNA modification such as RNA methylation or pseudouridine formation (SEQ ID NO: 1) ) (Moore T et al., Structure Vol. 12, pp. 807-818 (2004)) is a base sequence to which 5′GGGGGUGAUGCGGAAAGCUGACCCC3 ′ (SEQ ID NO: 2), an enzyme that performs aminoacylation Escherichia coli-derived Threonyl-tRNA synthetase (Cell (Cambridge, Mass.) V97, pp.371-381 (19), which is known to have feedback inhibition that inhibits translation and inhibits translation. 9)) is a nucleotide sequence that binds, 5'JijishijiyueiyujiyujieiyuCUUUCGUGUGGGUCACCACUGCGCC3 'including but nucleotide sequences, such as (SEQ ID NO: 3), but is not limited to.
 なお、これらのRNA-蛋白質複合体相互作用モチーフ由来の塩基配列が決まると、同一のRNA-蛋白質複合体相互作用モチーフに由来するアミノ酸配列は同時に決定され、これらは、生理条件下で、特異的、かつ非共有結合的な結合を生ずる。 When the nucleotide sequences derived from these RNA-protein complex interaction motifs are determined, amino acid sequences derived from the same RNA-protein complex interaction motif are simultaneously determined, and these are specific under physiological conditions. And non-covalent binding occurs.
 ところで、このような天然のもしくは人工のRNA-蛋白質複合体相互作用モチーフは、RNAと、蛋白質とが複合体を形成する前と、複合体形成後では、RNAの構造が変化することが知られている。上記L7Aeが結合する塩基配列である、5’GGGCGUGAUGCGAAAGCUGACCC3’(配列番号4)(以下、BoxC/Dという)と、L7Aeとの複合体を例に挙げて、その複合体形成時の構造変化につき、説明する。L7AeとBoxC/Dとは、図2のような複合体を形成することが知られている(Moore T et al., Structure Vol. 12, pp. 807-818 (2004))。特に、L7Aeは、相補配列部分が二本鎖を形成した状態のBoxC/D配列に特異的に結合することが知られている。 By the way, such a natural or artificial RNA-protein complex interaction motif is known to change the RNA structure before and after complex formation between RNA and protein. ing. Regarding the structural change during the formation of the complex, taking as an example a complex of 5′GGGCGUGAUGCGAAAGCUGACCCC3 ′ (SEQ ID NO: 4) (hereinafter referred to as BoxC / D), which is the base sequence to which L7Ae binds, explain. L7Ae and BoxC / D are known to form a complex as shown in FIG. 2 (Moore T et al., Structure Vol. 12, pp. 807-818 (2004)). In particular, L7Ae is known to specifically bind to a Box C / D sequence in which the complementary sequence portion forms a double strand.
 二本鎖を形成した状態のBoxC/D配列は、L7Aeが結合する前は、フレキシブルな固定されない構造をもつ分子である。このようなBoxC/D配列の状態を、図3(a)に、概略的に示す。ここで、二本鎖を形成したBoxC/D配列に、L7Aeを添加すると、BoxC/D配列とL7Aeとが相互作用して、複合体を形成する。すると、このBoxC/D配列は60℃に屈曲した構造に固定される。このような状態におけるBoxC/D配列とL7Aeとを、図3(b)に、概略的に示す。さらに、詳細にみると、この60℃に屈曲した構造は、上記配列中、5’側から6番目のsingle strand部位の塩基Uを中心にして、形成される。屈曲部分を拡大した模式図を、図4に示す。これが、BoxC/D配列とL7AeとのRNA-蛋白質複合体相互作用モチーフにおいて知られている特異的な構造変化である。 The Box C / D sequence in the form of a double strand is a molecule having a flexible, unfixed structure before L7Ae binds. Such a state of the Box C / D arrangement is schematically shown in FIG. Here, when L7Ae is added to the BoxC / D sequence forming a double strand, the BoxC / D sequence and L7Ae interact to form a complex. Then, this Box C / D arrangement is fixed to a structure bent at 60 ° C. The BoxC / D array and L7Ae in such a state are schematically shown in FIG. In more detail, the structure bent at 60 ° C. is formed around the base U of the sixth strand site from the 5 ′ side in the sequence. The schematic diagram which expanded the bending part is shown in FIG. This is a specific structural change known for the RNA-protein complex interaction motif between the Box C / D sequence and L7Ae.
 なお、BoxC/D配列とL7AeとのRNA-蛋白質複合体相互作用モチーフは一例であり、上記表に挙げたそのほかのRNA-蛋白質複合体相互作用モチーフも、それぞれ特異的な構造変化をすることが知られている。例えば、3-way junction(3-ウエイージャンクション)構造をとる、バチルス菌由来S15(RNA:GGGCGGCCUUCGGGCUAGACGGUGGGAGAGGCUUCGGCUGGUCCACCCGUGACGCUC(配列番号5))(蛋白質:MPICKEEKQKVIQEFARFPGDTGSTEVQVALLTLRINRLSEHLKVHKKDHHSHRGLLMMVGQRRRLLRYLQREDPERYRALIEKLGI(配列番号6))、蛋白質の結合により角度が90度に折れ曲がった構造をとる、高度好熱性細菌由来L1蛋白質(RNA:GGGAGUGAAGGAGGCUUCGGCCGCGAAACUUCACUCCC(配列番号7))(蛋白質:PKHGKRYRALLEKVDPNKIYTIDEAAHLVKELATAKFDETVEVHAKLGIDPRRSDQNVRGTVSLPHGLGKQVRVLAIAKGEKIKEAEEAGADYVGGEEIIQKILDGWMDFDAVVATPDVMGAVGSKLGRILGPRGLLPNPKAGTVGFNIGEIIREIKAGRIEFRNDKTGAIHAPVGKASFPPEKLADNIRAFIRALEAHKPEGAKGTFLRSVYVTTTMGPSVRINPHS(配列番号8))(Nevskaya, N.,Tishchenko, S.,Volchkov, S.,Kljashtorny, V.,Nikonova, E.,Nikonov, O.,Nikulin, A.,Kohrer, C.,Piendl, W.,Zimmermann, R.,Stockley, P.,Garber, M.,Nikonov, S. (2006) New insights into the interaction of ribosomal protein L1 with RNA. J.Mol.Biol.  355: 747-759)、RNA二本鎖が60度に折れ曲がった構造をとる、ヒト由来U1A(RNA:GGCAGAGUCCUUCGGGACAUUGCACCUGCC(配列番号9))(蛋白質:AVPETRPNHTIYINNLNEKIKKDELKKSLHAIFSRFGQILDILVSRSLKMRGQAFVIFKEVSSATNALRSMQGFPFYDKPMRIQYAKTDSDIIAKMKGTFV(配列番号10))などが知られている。 The RNA-protein complex interaction motif between the Box C / D sequence and L7Ae is an example, and the other RNA-protein complex interaction motifs listed in the above table may each have specific structural changes. Are known. For example, taking a 3-way junction (3- way over junction) structure, Bacillus subtilis -derived S15 (RNA: GGGCGGCCUUCGGGCUAGACGGUGGGAGAGGCUUCGGCUGGUCCACCCGUGACGCUC (SEQ ID NO: 5)) (Protein: EmuPiaishikeiiikeikyukeibuiaikyuiefueiaruefuPijiditijiesutiibuikyubuieieruerutieruaruaienuarueruesuieichierukeibuieichikeikeidieichieichiesueichiarujierueruemuemubuijikyuRRRLLRYLQREDPERYRALIEKLGI (SEQ ID NO: 6)), an angle of 90 degrees by binding proteins A highly thermophilic bacterium-derived L1 protein (RNA: GGGAGUGAAGGAGGCUUCGGCCGCGAAACUUCACUCCC (SEQ ID NO: 7)) (protein: PKGHGRYRALLEKVD) EnukeiaiwaitiaidiieieieichierubuikeiierueitieikeiefudiitibuiibuieichieikeierujiaidiPiaruaruesudikyuenubuiarujitibuiesueruPieichijierujikeikyubuiarubuierueiaieikeijiikeiaikeiieiiieijieidiwaibuijijiiiaiaikyukeiaierudijidaburyuemudiefudieibuibuieitiPidibuiemujieibuijiesukeierujiaruaieruJipiarujierueruPienupikeieijitibuijiefuenuaijiiaiaiaruiaikeieijiaruaiiefuaruenudikeitijieiaieichieiPibuijikeieiesuefuPiPiikeierueidienuaiarueiefuaiarueieruieieichikeiPiijiAKGTFLRSVYVTTTMGPSVRINPHS (SEQ ID NO: 8)) (Nevskaya, N., Tishchenko, S., Volchkov, S., Kljashtorny, V., Nikonova, E., Nikonov, O., Nikulin, A., Kohrer, C., Piendl W., Zimmermann, R., Stockley, P., Garber, M., Nikonov, S. (2006) New insights into the interaction protein.7.Jul. Human-derived U1A (RNA: GGCAGAGCUCUCUCGGGACAUUGCACCUGCC (CC: SEQ ID NO: 9)) (protein: AVPETRPNHTIYINNLNEKIKKKDHALKSFLDQKLDHALKGSQQLDDIFSSRKMRGDQ Such as FV (SEQ ID NO: 10)) is known.
 本実施形態においては、一つのRNA分子に、同一の複数のRNA-蛋白質複合体相互作用モチーフ由来の塩基配列が配置されていてもよい。または、一つのRNA分子に、異なる複数の種類のRNA-蛋白質複合体相互作用モチーフ由来の塩基配列が配置されていてもよい。一つのRNA分子に、異なる複数のRNA-蛋白質複合体相互作用モチーフ由来の塩基配列を配置することで、一つのRNA分子に対し、複数種類の構造変化部分を導入し、複数種類の構造変化を誘導することが可能となる。 In this embodiment, one RNA molecule may be arranged with a plurality of identical nucleotide sequences derived from the RNA-protein complex interaction motif. Alternatively, base sequences derived from different types of RNA-protein complex interaction motifs may be arranged in one RNA molecule. By arranging base sequences derived from different RNA-protein complex interaction motifs in one RNA molecule, multiple types of structural changes can be introduced into one RNA molecule, and multiple types of structural changes can be made. It is possible to guide.
[RNA-蛋白質複合体相互作用モチーフ由来の塩基配列以外の塩基配列]
 本実施形態によるRNA分子を構成する、RNA-蛋白質複合体相互作用モチーフ由来の塩基配列以外の塩基配列は、構造変化を生じない部分である。別の表現としては、構造変化を生ずる部分を配置するための、足場となる部分ともいえる。このような構造変化を生じない塩基配列は、人工的な塩基配列であってもよく、または天然由来の塩基配列であってもよい。構造変化を生じない部分として好ましい配列は、例えば、複雑な立体構造をとらない配列、ワトソン-クリック型の塩基対形成による二本鎖、tRNA、3-way junction、kissing-loopやloop-receptorのようなRNA-RNA相互作用モチーフ等が挙げられるが、これらには限定されない。構造変化を生じない部分である塩基配列は、RNA-蛋白質複合体相互作用モチーフ由来の塩基配列との関係で、その長さ、配置位置等を適宜決定することができる。なお、長さ、配置位置等の決定を含めた本実施形態に用いるRNA分子の製造方法は、後述する。
[Base sequence other than base sequence derived from RNA-protein complex interaction motif]
The base sequence other than the base sequence derived from the RNA-protein complex interaction motif that constitutes the RNA molecule according to the present embodiment is a portion that does not cause a structural change. As another expression, it can also be said to be a part that serves as a scaffold for arranging a part that causes a structural change. The base sequence that does not cause such a structural change may be an artificial base sequence or a naturally-derived base sequence. Preferred sequences that do not cause structural changes include, for example, sequences that do not have a complicated three-dimensional structure, double strands formed by Watson-Crick base pairing, tRNA, 3-way junction, kissing-loop, and loop-receptor. Examples of such RNA-RNA interaction motifs include, but are not limited to. The length, arrangement position, etc. of the base sequence that does not cause a structural change can be appropriately determined in relation to the base sequence derived from the RNA-protein complex interaction motif. In addition, the manufacturing method of the RNA molecule used for this embodiment including determination of length, arrangement | positioning position, etc. is mentioned later.
[構造変化を誘導する蛋白質分子]
 本実施形態による方法において用いる、構造変化を誘導する蛋白質分子は、上記RNA分子のRNA-蛋白質複合体相互作用モチーフ由来の塩基配列と同一のRNA-蛋白質複合体相互作用モチーフに由来するアミノ酸配列を含む蛋白質分子である。ここで、RNA-蛋白質複合体相互作用モチーフ由来のアミノ酸配列は、構造変化が誘導されるRNA分子が有するRNA-蛋白質複合体相互作用モチーフ由来の塩基配列と、特異的に相互作用するものである。すなわち、RNA分子と、構造変化を誘導する蛋白質分子とは、RNA-蛋白質複合体を形成するように選択される。
 なお、本実施形態において、RNA-蛋白質複合体相互作用モチーフ由来の塩基配列と、RNA-蛋白質複合体相互作用モチーフ由来のアミノ酸配列とを選択する際には、既知のRNA-蛋白質複合体相互作用モチーフ由来の配列に、変異を導入したものであってもよい。当業者であれば、RNA-蛋白質複合体相互作用モチーフにおいて、相互作用特性を変えない範囲の変異を、適宜決定し、導入することができる。例えば、RNA-蛋白質複合体相互作用モチーフ由来の塩基配列のみに1~5塩基程度の変異を導入してもよい場合があり、RNA-蛋白質複合体相互作用モチーフ由来のアミノ酸配列のみに1~5ペプチド程度の変異を導入してもよく、両方に変異を導入することも可能である。なお、このような変異の数は、使用するRNA-蛋白質複合体相互作用モチーフによっても異なり、これらの値に限定されるものではない。
[Protein molecules that induce structural changes]
The protein molecule that induces structural changes used in the method according to the present embodiment has an amino acid sequence derived from the same RNA-protein complex interaction motif as the base sequence derived from the RNA-protein complex interaction motif of the RNA molecule. Contains protein molecules. Here, the amino acid sequence derived from the RNA-protein complex interaction motif specifically interacts with the base sequence derived from the RNA-protein complex interaction motif of the RNA molecule in which the structural change is induced. . That is, the RNA molecule and the protein molecule that induces a structural change are selected so as to form an RNA-protein complex.
In this embodiment, when selecting a base sequence derived from an RNA-protein complex interaction motif and an amino acid sequence derived from an RNA-protein complex interaction motif, a known RNA-protein complex interaction is selected. A mutation may be introduced into the motif-derived sequence. Those skilled in the art can appropriately determine and introduce mutations in the RNA-protein complex interaction motif that do not change the interaction characteristics. For example, a mutation of about 1 to 5 bases may be introduced only into the base sequence derived from the RNA-protein complex interaction motif, and 1 to 5 only into the amino acid sequence derived from the RNA-protein complex interaction motif. Mutations as large as peptides may be introduced, and mutations may be introduced into both. The number of such mutations varies depending on the RNA-protein complex interaction motif to be used, and is not limited to these values.
 蛋白質分子は、そのようなアミノ酸配列を有するものであれば、そのほかに機能性蛋白質を含む、融合蛋白質分子であってもよい。機能性蛋白質としては、マーカー機能を有する蛍光蛋白質類、治療効果を有するアポトーシス誘導型蛋白質等が挙げられるが、これらには限定されない。このような蛋白質分子は、所望の蛋白質の既知のDNA配列情報に基づき、ベクター等を用いて、当業者が適宜製造することができる。 As long as the protein molecule has such an amino acid sequence, it may be a fusion protein molecule containing a functional protein. Examples of functional proteins include, but are not limited to, fluorescent proteins having a marker function, apoptosis-inducing proteins having a therapeutic effect, and the like. Such a protein molecule can be appropriately produced by those skilled in the art using a vector or the like based on the known DNA sequence information of the desired protein.
 なお、構造変化が誘導されるRNA分子が、一つのRNA分子に、異なる複数の種類のRNA-蛋白質複合体相互作用モチーフ由来の塩基配列が配置されているものである場合には、それぞれに対応する、異なる複数の種類のRNA-蛋白質複合体相互作用モチーフ由来のアミノ酸配列を有する蛋白質分子が必要となる。 If the RNA molecule from which the structural change is induced is a single RNA molecule with a plurality of different types of RNA-protein complex interaction motifs, the corresponding sequence Thus, protein molecules having amino acid sequences derived from different types of RNA-protein complex interaction motifs are required.
[RNA分子の構造変化の誘導]
 RNA分子の構造変化の誘導は、液体中で行うことができる。さらに詳細には、大気圧下、4~80℃、pH3.5~10.5の生理条件下の液体であれば行うことができる。本実施形態による方法は、上記RNA分子を含む生理条件下の液体に、上記蛋白質分子を混合することで行うことができる。混合量は、RNA分子上の相互作用するRNA-蛋白質複合体相互作用モチーフ由来の塩基配列の数、相互作用時のモル比等によって決定することがでる。なお、RNA-蛋白質複合体の相互作用時のモル比は、各RNA-蛋白質複合体相互作用モチーフに固有である。
[Induction of structural changes in RNA molecules]
Induction of the structural change of the RNA molecule can be performed in a liquid. More specifically, it can be carried out as long as it is a liquid under physiological conditions of 4 to 80 ° C. and pH 3.5 to 10.5 under atmospheric pressure. The method according to the present embodiment can be performed by mixing the protein molecule with a liquid under physiological conditions containing the RNA molecule. The mixing amount can be determined by the number of base sequences derived from interacting RNA-protein complex interaction motifs on the RNA molecule, the molar ratio during interaction, and the like. Note that the molar ratio at the time of interaction of the RNA-protein complex is specific to each RNA-protein complex interaction motif.
[RNA分子の構造変化の誘導の確認]
 本実施形態にかかる方法においては、RNA分子の構造変化の誘導が実際に行われたかを確認することができる。確認は、蛋白質分子を混合する前と後とで、RNA分子を含む溶液を、当業者には既知の所定の方法でサンプルにし、ゲル電気泳動法や原子間力顕微鏡で観察することにより、実施することができる。原子間力顕微鏡によれば、原子レベルで構造を視認することができるため、RNA分子に導入したRNA-蛋白質複合体相互作用モチーフから予測される構造変化が生じているのか否かを簡単に判別することができる。
[Confirmation of induction of structural changes in RNA molecules]
In the method according to the present embodiment, it can be confirmed whether the induction of the structural change of the RNA molecule has actually been performed. Confirmation is performed by mixing the solution containing RNA molecules before and after mixing the protein molecules, using a predetermined method known to those skilled in the art, and observing with a gel electrophoresis method or an atomic force microscope. can do. Atomic force microscopy allows the structure to be visualized at the atomic level, so it is easy to determine whether there is a structural change predicted from the RNA-protein complex interaction motif introduced into the RNA molecule. can do.
[RNA分子の構造変化の誘導例]
 次に、蛋白質によるRNA分子の特異的な構造変化の誘導例を挙げて説明する。
 一例として、RNA分子として、上記BoxC/D配列を等間隔で3つ有する環状の二本鎖RNA分子を設計することができる。この場合、蛋白質の非存在下では、環状のRNA二本鎖分子として、生理条件下の液体中に存在する。ここに、L7Ae分子を、RNA分子の三倍モル量以上添加する。これによって、3つのL7Ae分子が二本鎖RNA分子に結合し、60度の角を等間隔で三つ持った構造体、すなわち正三角形が誘導される。
[Induction of structural changes in RNA molecules]
Next, an example of inducing a specific structural change of an RNA molecule by a protein will be described.
As an example, a circular double-stranded RNA molecule having three BoxC / D sequences at regular intervals can be designed as an RNA molecule. In this case, in the absence of protein, it exists as a circular RNA double-stranded molecule in a liquid under physiological conditions. Here, the L7Ae molecule is added in a molar amount of 3 times or more of the RNA molecule. As a result, three L7Ae molecules bind to the double-stranded RNA molecule, and a structure having three 60-degree angles at equal intervals, that is, an equilateral triangle, is induced.
 別の例として、RNA分子として、上記BoxC/D配列を等間隔で3つ有する環状の二本鎖RNA分子と、蛋白質であるL7Ae分子が二つ融合したL7Aeダイマーとを設計することができる。この場合、L7Aeダイマーの非存在下では、RNA分子は、環状のRNA二本鎖分子として、生理条件下の液体中に存在する。ここに、L7Aeダイマーを、二本鎖RNA分子4分子に対し、L7Aeダイマー6分子以上となるようなモル量で添加する。これによって、6個のL7Aeダイマーが、四分子のRNA分子に結合し、正八面体の構造体が誘導される。この場合の模式図を、図5に示す。図5において、各辺を構成するのが、RNA分子であり、頂点に位置するのが、L7Aeダイマーである。このような正八面体の形成は、RNA分子とL7Aeダイマーを混合するだけで、自発的に行われるものである。 As another example, a circular double-stranded RNA molecule having three BoxC / D sequences at regular intervals and an L7Ae dimer in which two L7Ae molecules as proteins are fused can be designed as RNA molecules. In this case, in the absence of the L7Ae dimer, the RNA molecule is present in the fluid under physiological conditions as a circular RNA double-stranded molecule. Here, the L7Ae dimer is added in a molar amount so as to be 6 or more L7Ae dimers with respect to 4 molecules of double-stranded RNA molecules. As a result, six L7Ae dimers bind to four RNA molecules, and a regular octahedral structure is induced. A schematic diagram in this case is shown in FIG. In FIG. 5, it is RNA molecules that constitute each side, and an L7Ae dimer is located at the apex. The formation of such an octahedron is performed spontaneously only by mixing the RNA molecule and the L7Ae dimer.
 また、正方形のRNPをデザインすることもできる。蛋白質L1に結合するRNAモチーフを二本鎖RNAの4辺の頂点に挿入する。蛋白質比存在下では、環状の構造をとると予想されるが、L1蛋白質が各頂点に結合することで、正方形状のRNP分子が形成できると予想できる。 Also, square RNP can be designed. An RNA motif that binds to protein L1 is inserted into the vertices of the four sides of double-stranded RNA. In the presence of a protein ratio, it is expected to have a circular structure, but it can be expected that a square RNP molecule can be formed by binding the L1 protein to each vertex.
 本発明の第1実施形態による方法によれば、特定の非天然のRNA分子、蛋白質分子を設計することにより、特定のRNA分子の特異的な構造変化を蛋白質で誘導することができる。このようなRNA-蛋白質複合体相互作用モチーフを利用した、非天然のRNA分子構造の制御はこれまでに報告がなく、生体分子や遺伝子回路を人工的に構成、または再構成する材料等に用いるためのツールとして、有望である。 According to the method of the first embodiment of the present invention, a specific structural change of a specific RNA molecule can be induced in the protein by designing the specific non-natural RNA molecule or protein molecule. Control of unnatural RNA molecular structure using such RNA-protein complex interaction motifs has not been reported so far, and it is used as a material for artificially constructing or reconfiguring biomolecules and genetic circuits. Promising as a tool for
 次に、本発明の第2実施形態として、RNA分子材料を製造する方法につき、説明する。第2実施形態によれば、上述の特異的に構造変化するRNA分子の製造方法であって、所望の構造変化が知られているRNA-蛋白質複合体相互作用モチーフを選択するステップと、RNA分子の塩基配列を決定するステップであって、上記RNA-蛋白質複合体相互作用モチーフ由来の塩基配列と、足場塩基配列とを、コンピュータ分子モデリング法を用いて配置することにより決定するステップと、上記決定するステップにより得られた塩基配列に基づき、RNAを製造するステップとを含む。 Next, a method for producing an RNA molecular material will be described as a second embodiment of the present invention. According to the second embodiment, the above-described method for producing an RNA molecule having a specific structural change, the step of selecting an RNA-protein complex interaction motif whose desired structural change is known, and the RNA molecule Determining a base sequence derived from the RNA-protein complex interaction motif and a scaffold base sequence by using a computer molecular modeling method, and determining the above And a step of producing RNA based on the base sequence obtained by the step.
 本実施形態において製造するRNA分子は、上記第一の形態で述べた特徴を有する、蛋白質分子によりその構造変化が誘導されるRNA分子である。 The RNA molecule produced in this embodiment is an RNA molecule having the characteristics described in the first embodiment and whose structural change is induced by a protein molecule.
 所望の構造変化が知られているRNA-蛋白質複合体相互作用モチーフを選択するステップでは、導入したい構造変化を実現しうるRNA-蛋白質複合体相互作用モチーフを、前述の表またはデータベースから選択する。例えば、RNA-蛋白質複合体相互作用モチーフで導入可能なRNA分子の構造変化としては、60度の屈曲、90度の屈曲、二本鎖RNAから一本鎖RNAへの変化、一本鎖RNAから二本鎖RNAへの変化等が挙げられるが、これらには限定されない。一つのRNA分子に対して、複数の構造変化を実現させることもでき、その場合には、所望の、複数の異なるRNA-蛋白質複合体相互作用モチーフを組み合わせて選択することができ、複数の同一のRNA-蛋白質複合体相互作用モチーフを導入することができる。 In the step of selecting an RNA-protein complex interaction motif whose desired structural change is known, an RNA-protein complex interaction motif capable of realizing the structural change to be introduced is selected from the aforementioned table or database. For example, structural changes of RNA molecules that can be introduced with the RNA-protein complex interaction motif include 60 degree bend, 90 degree bend, change from double stranded RNA to single stranded RNA, single stranded RNA Examples include, but are not limited to, changes to double-stranded RNA. A plurality of structural changes can be realized for one RNA molecule, and in this case, a plurality of different RNA-protein complex interaction motifs can be selected in combination. RNA-protein complex interaction motifs can be introduced.
 RNA分子材料の塩基配列を決定するステップは、コンピュータ分子モデリング法により行うことができる。これには、市販の分子モデリングソフトウェアを用いることができる。コンピュータ分子モデリングにおいては、まず、所望のRNA-蛋白質複合体相互作用モチーフの三次元立体構造を取得する。そして、構造変化導入後のRNA-蛋白質複合体が、所望の構造体を形成するように、一つまたは複数のRNA-蛋白質複合体相互作用モチーフ由来の塩基配列と、RNA-蛋白質複合体相互作用モチーフ由来の塩基配列以外の塩基配列とを決定してゆく。RNA-蛋白質複合体相互作用モチーフ由来の塩基配列以外の塩基配列は、特には、RNA-蛋白質複合体相互作用モチーフ由来の塩基配列を配置するための足場としての役割を果たすため、望ましくない二次構造や三次構造等を形成しないように、そのような二次構造等を形成しないことが既知の配列を選択することができる。その後、設計された配列を持つRNAが取りうる二次構造を予測し、設計した二次構造が最も安定な構造であることおよび他に安定な二次構造をとらないことを確認する。これには、web上で使用する核酸の二次構造予測プログラムmfold(http://mfold.bioinfo.rpi.edu/cgi-bin/rna-form1.cgi)を好適に用いることができる。 The step of determining the base sequence of the RNA molecular material can be performed by a computer molecular modeling method. Commercially available molecular modeling software can be used for this. In computer molecular modeling, first, a three-dimensional structure of a desired RNA-protein complex interaction motif is obtained. Then, one or a plurality of RNA-protein complex interaction motif-derived base sequences and RNA-protein complex interaction so that the RNA-protein complex after introduction of structural change forms a desired structure. The base sequence other than the base sequence derived from the motif is determined. Base sequences other than the base sequence derived from the RNA-protein complex interaction motif serve as a scaffold for locating the base sequence derived from the RNA-protein complex interaction motif. A sequence known not to form such a secondary structure or the like can be selected so as not to form a structure or a tertiary structure. Thereafter, the secondary structure that can be taken by the RNA having the designed sequence is predicted, and it is confirmed that the designed secondary structure is the most stable structure and does not take any other stable secondary structure. For this, the secondary structure prediction program mfold (http://mfold.bioinfo.rpi.edu/cgi-bin/rna-form1.cgi) of the nucleic acid used on the web can be suitably used.
 上記決定するステップにより得られた塩基配列に基づき、RNA分子を製造するステップでは、得られた塩基配列から、既知の方法によって、RNA分子を製造する。所定のRNA配列が与えられていれば、これに基づいてRNA分子を製造することは当業者には通常行われることであり、例えば、PCRによって鋳型DNAを合成し、RNA合成酵素を用いた転写反応によりRNA分子を製造することができる。そのほかに、約30塩基程度の短い鎖長RNAであれば、化学合成法により直接RNAを合成することもできる。このような方法により、RNA分子を製造することができる。 In the step of producing an RNA molecule based on the base sequence obtained by the determining step, an RNA molecule is produced from the obtained base sequence by a known method. If a predetermined RNA sequence is given, it is common practice for those skilled in the art to produce RNA molecules based on this sequence. For example, template DNA is synthesized by PCR and transcription using RNA synthase is performed. RNA molecules can be produced by the reaction. In addition, RNA having a short chain length of about 30 bases can be directly synthesized by chemical synthesis. RNA molecules can be produced by such a method.
 このようにして製造された構造変化が誘導されるRNA分子は、第1実施形態に用いることができるほか、後述するキットとして、構造変化を誘導する蛋白質分子と一緒に、分子材料として用いることができる。 The RNA molecule that induces a structural change thus produced can be used in the first embodiment, and can be used as a molecular material together with a protein molecule that induces a structural change as a kit described later. it can.
 本発明の第2実施形態によれば、RNA-蛋白質複合体相互作用モチーフのデータベース、コンピュータ分子モデリング法、遺伝子工学的方法を組み合わせて、構造変化が誘導されるRNA分子を設計し、製造することができる。かかる方法によれば、高い精度で分子設計をすることができるため、所望の構造変化が誘導されるRNA分子を、容易に、かつ正確に設計することができる。また、遺伝子工学的方法により、そのようなRNA分子を実際に大量に生産することができる。第2実施形態による方法は、所望のRNA分子を製造する際に、非常に有用である。 According to the second embodiment of the present invention, an RNA molecule that induces a structural change is designed and manufactured by combining a database of RNA-protein complex interaction motifs, a computer molecular modeling method, and a genetic engineering method. Can do. According to such a method, it is possible to design a molecule with high accuracy, and thus it is possible to easily and accurately design an RNA molecule in which a desired structural change is induced. Moreover, such RNA molecules can actually be produced in large quantities by genetic engineering methods. The method according to the second embodiment is very useful in producing a desired RNA molecule.
 本発明は、第3実施形態によれば、RNA分子の構造変化を蛋白質分子で誘導するためのキットであって、上述の特異的に構造変化するRNA分子と、該RNA分子が有するRNA-蛋白質複合体相互作用モチーフ由来の塩基配列に特異的に結合するアミノ酸配列を含む蛋白質分子とを含んでなる。 According to the third embodiment, the present invention provides a kit for inducing a structural change of an RNA molecule with a protein molecule, wherein the RNA molecule specifically changes in structure as described above, and the RNA-protein that the RNA molecule has And a protein molecule comprising an amino acid sequence that specifically binds to a base sequence derived from a complex interaction motif.
 このようなキットにおいて、特異的に構造変化するRNA分子及びRNA-蛋白質複合体相互作用モチーフ由来のアミノ酸配列を含む蛋白質分子は、上記第1実施形態において説明した任意のものであってよい。 In such a kit, the RNA molecule that specifically changes its structure and the protein molecule containing the amino acid sequence derived from the RNA-protein complex interaction motif may be any of those described in the first embodiment.
 本実施形態によるキットには、任意的な構成成分として、RNA-蛋白質複合体形成に競合するRNA分子を含んでもよい。具体的なRNA-蛋白質複合体形成に競合するRNAの塩基配列は、RNA-蛋白質複合体相互作用モチーフ由来の塩基配列を有するものとすることができる。 The kit according to the present embodiment may include an RNA molecule that competes for RNA-protein complex formation as an optional component. A specific RNA base sequence competing for RNA-protein complex formation can have a base sequence derived from an RNA-protein complex interaction motif.
 本実施形態において、キットに含まれる特異的に構造変化するRNA分子及びRNA-蛋白質複合体相互作用モチーフ由来のアミノ酸配列を含む蛋白質分子は、所定の条件下で混合すると複合体を形成する。この結合は水素結合による安定な、かつ特異的な非共有結合である。しかし、この溶液に、RNA-蛋白質複合体形成に競合するRNA分子を添加することによって、簡単に結合を抑制し、RNP構造の形成を制御することができる。 In the present embodiment, the RNA molecule specifically changing in structure and the protein molecule containing the amino acid sequence derived from the RNA-protein complex interaction motif included in the kit form a complex when mixed under predetermined conditions. This bond is a stable and specific non-covalent bond by hydrogen bonding. However, by adding an RNA molecule that competes for RNA-protein complex formation to this solution, binding can be easily suppressed and formation of the RNP structure can be controlled.
 本発明の第3実施形態にかかるキットによれば、生理条件下でRNA分子の特異的な構造変化を誘導することができる。また、任意選択的な成分であるRNA-蛋白質複合体形成に競合するRNA分子を含むことにより、RNPナノ構造の可逆的な構造変化が可能になる。 The kit according to the third embodiment of the present invention can induce specific structural changes of RNA molecules under physiological conditions. In addition, the inclusion of RNA molecules that compete for RNA-protein complex formation, which is an optional component, enables reversible structural changes in the RNP nanostructure.
 本発明は、第4実施形態によれば、上述の機能性RNA-蛋白質複合体であって、特異的に構造変化するRNA分子と、該RNA分子が有するRNA-蛋白質複合体相互作用モチーフ由来の塩基配列に特異的に結合するアミノ酸配列と、機能性蛋白質とを含む蛋白質分子とを含んでなる。 According to the fourth embodiment of the present invention, the functional RNA-protein complex described above is derived from an RNA molecule that specifically changes its structure, and an RNA-protein complex interaction motif possessed by the RNA molecule. A protein molecule comprising an amino acid sequence that specifically binds to a base sequence and a functional protein.
 図6に、第4実施形態による機能性RNA-蛋白質複合体を模式的に示す。図示する複合体は、各辺が第1実施形態において詳述した構造変化が誘導される、RNA-蛋白質複合体相互作用モチーフ由来の塩基配列を有するRNA分子1から構成される三角形の3つの頂点に、当該塩基配列に特異的に結合するアミノ酸配列部分2と、機能性蛋白質分子3、4、5とを含んでなる融合蛋白質分子が結合している。機能性蛋白質分子3、4、5は3つとも種類が異なっている。 FIG. 6 schematically shows a functional RNA-protein complex according to the fourth embodiment. The complex shown in the figure has three vertices of a triangle composed of RNA molecules 1 each having a base sequence derived from an RNA-protein complex interaction motif in which the structural changes described in the first embodiment are induced on each side. In addition, a fusion protein molecule comprising the amino acid sequence portion 2 that specifically binds to the base sequence and functional protein molecules 3, 4, and 5 is bound. All three functional protein molecules 3, 4 and 5 are different.
 ここで、機能性蛋白質とは、所定の機能が知られている蛋白質のことをいい、例えば、GFP、YFPなどの蛍光蛋白質類、ポリアルギニンモチーフなどの膜透過性機能を有する蛋白質類、組織特異的に発現している膜蛋白質に結合する蛋白質類、アポトーシス誘導蛋白質等、特定の疾患に治療効果を有する蛋白質等、癌細胞表面に特異的に結合する抗体が挙げられるが、これらには限定されない。 Here, the functional protein refers to a protein having a predetermined function, for example, fluorescent proteins such as GFP and YFP, proteins having a membrane permeation function such as polyarginine motif, and tissue-specific functions. Examples include, but are not limited to, antibodies that specifically bind to the surface of cancer cells, such as proteins that bind to expressed membrane proteins, apoptosis-inducing proteins, and proteins that have a therapeutic effect on specific diseases. .
 このような複合体は、第1実施形態で説明したようにRNA分子を設計し、かつ該RNA分子に導入したRNA-蛋白質複合体相互作用モチーフ由来の塩基配列に特異的に結合するアミノ酸配列を含む蛋白質分子に、任意の機能性蛋白質分子を結合させた融合蛋白質分子を製造し、RNA分子と融合蛋白質分子とを混合することで得ることができる。たとえば、第1実施形態で例示したL7Ae-BoxC/DをRNA-蛋白質複合体相互作用モチーフとして用いる場合には、L7Ae蛋白質と任意の蛋白質またはペプチドとの融合蛋白質分子を作製しておけば、第1実施形態で例示したRNA鎖と混合するだけで、任意の複数の機能を持つRNA-蛋白質複合体が容易に作製できる。このように、複数種類の機能性蛋白質分子を、一つのRNA分子に結合させる場合には、添加する複数種類の機能性蛋白質分子のモル比を変化させることで、結合する機能性蛋白質分子の数や種類を制御することができる。例えば、図6に示す複合体は、BoxC/D配列を等間隔に3つ有する環状のRNA分子1に、機能性蛋白質分子を添加することによって形成させることができるが、この複合体は、機能性蛋白質分子3、4、5を、等モルで加えることにより得られる。また、図示はしないが、図6と同じRNA分子を用いた場合でも、機能性蛋白質分子3、4のみが、1:2の比率で結合した複合体を形成させたい場合には、機能性蛋白質分子3と、機能性蛋白質分子4とを、1:2の比率で添加することで、三角形の一つの角に機能性蛋白質分子3が、三角形の残り二つの角に機能性蛋白質分子4が結合した複合体を形成することができる。 Such a complex is an RNA molecule designed as described in the first embodiment, and an amino acid sequence that specifically binds to a base sequence derived from an RNA-protein complex interaction motif introduced into the RNA molecule. It can be obtained by producing a fusion protein molecule in which any functional protein molecule is bound to the protein molecule to be contained, and mixing the RNA molecule and the fusion protein molecule. For example, when L7Ae-BoxC / D exemplified in the first embodiment is used as an RNA-protein complex interaction motif, a fusion protein molecule of an L7Ae protein and an arbitrary protein or peptide is prepared. An RNA-protein complex having any of a plurality of functions can be easily prepared simply by mixing with the RNA strand exemplified in one embodiment. Thus, when multiple types of functional protein molecules are bound to one RNA molecule, the number of functional protein molecules to be bound is changed by changing the molar ratio of the multiple types of functional protein molecules to be added. And can control the type. For example, the complex shown in FIG. 6 can be formed by adding a functional protein molecule to a circular RNA molecule 1 having three Box C / D sequences at regular intervals. It is obtained by adding sex protein molecules 3, 4, 5 in equimolar amounts. Although not shown in the figure, even when the same RNA molecule as in FIG. 6 is used, if it is desired to form a complex in which only functional protein molecules 3 and 4 are bound at a ratio of 1: 2, By adding molecule 3 and functional protein molecule 4 at a ratio of 1: 2, functional protein molecule 3 is bound to one corner of the triangle and functional protein molecule 4 is bound to the other two corners of the triangle. A complex can be formed.
 機能性RNA-蛋白質複合体構築の概略的なスキームを、図7に示す。図7は、RNA分子に、異なる三種の機能性蛋白質分子2a、2b、2cを添加する場合のスキームである。このように、機能性蛋白質分子が融合したRNA-蛋白質複合体相互作用モチーフ由来の蛋白質分子を一種類添加するたびに、RNA分子の構造を変化させ、最終的に所望の形状の機能性RNA-蛋白質複合体を作成することができる。 Fig. 7 shows a schematic scheme for constructing a functional RNA-protein complex. FIG. 7 is a scheme in the case of adding three different types of functional protein molecules 2a, 2b, and 2c to RNA molecules. In this way, each time one kind of protein molecule derived from an RNA-protein complex interaction motif fused with a functional protein molecule is added, the structure of the RNA molecule is changed, and finally the functional RNA of the desired shape— Protein complexes can be created.
 機能性RNA-蛋白質複合体の作製において、たとえば、膜透過性ペプチドや組織特異的に発現している膜蛋白質に結合する蛋白質を用いれば、特定の細胞へと上記のような複合体を届けるデリバリーに利用することができる。また、GFPやYFPなどの蛍光蛋白質を用いれば、複合体のデリバリーを可視化して観察できるという利点もある。さらに、アポトーシス誘導蛋白質を癌細胞に届けるといった治療薬としての利用が考えられる。図6に示す複合体のように、複数の異なる機能の蛋白質を結合した複合体は、これらの利点を全て併せ持つものといえる。また、RNAと蛋白質とは、特異的、かつ非共有結合的な結合により結合されているため、従来の共有結合的な結合と比較して、フレキシブルな結合態様による複合体とすることができる。したがって、RNA結合モチーフをもつ任意の蛋白質を自在に交換(インストール)することができ、機能性RNA-蛋白質複合体のモジュラーエンジニアリングが可能となる。また、本手法で設計したRNA分子は、後述の実施例、図16でも示されるように、安定な二本鎖を形成し、末端ヌクレオチドの水酸基を細胞内に存在するRNaseから保護することが可能になる。このため、細胞内で安定に存在することが期待できる。 In the production of a functional RNA-protein complex, for example, if a protein that binds to a membrane-permeable peptide or a tissue-specific membrane protein is used, the complex can be delivered to specific cells. Can be used. In addition, when a fluorescent protein such as GFP or YFP is used, there is an advantage that the delivery of the complex can be visualized and observed. Furthermore, it can be used as a therapeutic agent for delivering an apoptosis-inducing protein to cancer cells. Like the complex shown in FIG. 6, a complex in which a plurality of proteins having different functions are combined has all these advantages. Furthermore, since RNA and protein are bound by specific and non-covalent bonds, they can be made into a complex with a flexible binding mode as compared with conventional covalent bonds. Therefore, any protein having an RNA binding motif can be freely exchanged (installed), and modular engineering of a functional RNA-protein complex becomes possible. In addition, RNA molecules designed by this method can form a stable double strand and protect the hydroxyl group of the terminal nucleotide from RNase present in the cell, as shown in the examples described later and FIG. become. For this reason, it can be expected to exist stably in the cell.
 本発明は、第5実施形態によれば、RNA-蛋白質複合体ナノ構造体を作成する方法であって、RNA-蛋白質複合体相互作用モチーフ由来の塩基配列を有するRNA分子に、該RNA分子のRNA-蛋白質複合体相互作用モチーフ由来の塩基配列に特異的に結合するアミノ酸配列を含む蛋白質分子と、必要な場合には、マグネシウムやカルシウムなどの金属イオンとを添加することを特徴とする。 The present invention provides a method for producing an RNA-protein complex nanostructure according to the fifth embodiment, wherein an RNA molecule having a base sequence derived from an RNA-protein complex interaction motif is added to the RNA molecule. A protein molecule containing an amino acid sequence that specifically binds to a base sequence derived from an RNA-protein complex interaction motif and, if necessary, a metal ion such as magnesium or calcium are added.
 本実施形態においては、第1実施形態と同様に、RNA分子の特異的な構造変化を蛋白質分子で誘導することにより、RNA-蛋白質複合体ナノ構造体を作成する。RNA分子の設計により所望の構造体を得ることができ、具体的な構造体としては、第1実施形態で例示した正三角形、正八面体、正方形等が挙げられるが、これらには限定されない。 In this embodiment, as in the first embodiment, a specific structural change of an RNA molecule is induced by a protein molecule to create an RNA-protein complex nanostructure. A desired structure can be obtained by designing an RNA molecule, and specific structures include, but are not limited to, the equilateral triangle, regular octahedron, and square exemplified in the first embodiment.
 別の例として、RNA分子と、蛋白質分子と、金属イオンとを添加することによる、RNA-蛋白質複合体ナノ構造体の作成方法を挙げることもできる。この方法は、RNA分子に足場塩基配列として、Kissing-loop配列を導入した場合に好ましく用いられる。このとき、一つのRNA分子は、蛋白質分子により構造変化が導入されて、一つのRNA-蛋白質複合体を形成する。そして、金属イオンの添加によって、一つのRNA-蛋白質複合体は、別のRNA-蛋白質複合体と相互作用する。このような、Kissing-loop配列を用いた場合に、金属イオンはRNA分子同士を、非共有結合的に連結することができる。これにより、複数のRNA分子が結合したRNA-蛋白質複合体ナノ構造体を製造することができる。このような、複数の分子を結合する物質は、導入されるモチーフ等にもよるが、ほかに、RNAループ・レセプターモチーフが挙げられる。 Another example is a method for preparing an RNA-protein complex nanostructure by adding an RNA molecule, a protein molecule, and a metal ion. This method is preferably used when a Kissing-loop sequence is introduced as a scaffold base sequence into an RNA molecule. At this time, a structural change is introduced into one RNA molecule by a protein molecule to form one RNA-protein complex. By adding metal ions, one RNA-protein complex interacts with another RNA-protein complex. When such a Kissing-loop sequence is used, the metal ion can link RNA molecules non-covalently. Thereby, an RNA-protein complex nanostructure in which a plurality of RNA molecules are bound can be produced. Such a substance that binds a plurality of molecules depends on the introduced motif or the like, but also includes an RNA loop receptor motif.
 この場合にも、第4実施形態で説明したのと同様に、蛋白質分子を、機能性蛋白質を融合させた融合蛋白質とすることができる。 Also in this case, as described in the fourth embodiment, the protein molecule can be a fusion protein in which a functional protein is fused.
 本発明の第5実施形態によれば、単にRNA分子に構造変化を導入し、複合体を形成するのみならず、いくつかの複合体を組み合わせてナノ構造体を作成する方法を提供することができる。このような方法によれば、より多くの所望のナノ構造体を作成することができ、生体分子や遺伝子回路を人工的に構成するためのツールとしてより応用しやすいといえる。 According to the fifth embodiment of the present invention, it is possible not only to introduce a structural change into an RNA molecule to form a complex, but also to provide a method for creating a nanostructure by combining several complexes. it can. According to such a method, it is possible to create a larger number of desired nanostructures, and it can be said that it is easier to apply as a tool for artificially constructing biomolecules and genetic circuits.
[実施例]
 RNPを用いたナノ構造体創製の方法を示す。本手法は、蛋白質のみあるいはRNAのみを用いる場合よりも容易に、ナノスケールの構造体や機能性分子の創製が行える技術である。以下に、具体的実験例を挙げる。
[Example]
A method of creating a nanostructure using RNP is shown. This technique is a technique that makes it easier to create nanoscale structures and functional molecules than when using only proteins or RNA alone. Specific experimental examples are given below.
[RNPナノ構造体のコンピュータ分子設計]
 RNPナノ構造体の分子設計には分子モデリングソフトウェアであるDiscovery Studio 2.0(Accelrys社)を用いた。まず、分子設計に用いるRNPモチーフの三次元立体構造として、L7Ae-BoxC/Dの構造が記述されたpdbファイルをThe RCSB Protein Data Bank(http://www.rcsb.org/pdb/home/home.do)より取得した(PDB ID:1RLG)。取得したファイルに含まれるBoxC/Dの3塩基目、5塩基目および21塩基目の5’ブロモウリジンは、実際に合成するRNAに合わせてウリジンに置換した。配列任意の直鎖状の二本鎖AへリックスRNAの分子モデルを生成し、頂点となる3つのL7Ae-BoxC/Dが同一平面状に配置されるように二本鎖の長さを調節し辺部分に挿入した。BoxC/Dを連結する二本鎖の長さは26塩基対である。辺部分の二本鎖の配列は、望まない二次構造を形成しないよう、類似の試みを行ったR. P. GoodmanらのDNA四面体の辺の配列に置換した(Science, 2005, 310, 1661-1665)。
[Computer molecular design of RNP nanostructures]
For the molecular design of the RNP nanostructure, Discovery Studio 2.0 (Accelrys), which is molecular modeling software, was used. First, as a three-dimensional structure of the RNP motif used for molecular design, a pdb file in which the structure of L7Ae-BoxC / D is described is The RCSB Protein Data Bank (http://www.rcsb.org/pdb/home/home/ Do) (PDB ID: 1RLG). The 3 ′, 5th and 21st base 5 ′ bromouridines of Box C / D contained in the obtained file were substituted with uridine in accordance with the RNA to be actually synthesized. Generate a molecular model of linear double-stranded A helix RNA of any sequence, and adjust the length of the double strand so that the three L7Ae-Box C / Ds at the top are arranged in the same plane Inserted in the side part. The length of the duplex connecting Box C / D is 26 base pairs. A similar attempt was made so that the double-stranded sequences of the sides do not form unwanted secondary structures. P. It was replaced with the sequence of the sides of the DNA tetrahedron of Goodman et al. (Science, 2005, 310, 1661-1665).
 図8(a)は、Discovery Studio 2.0を用いて描写した L7-3kaku を上面から見た図であり、図8(b)は、図8(a)を90度回転させた三角形側面の図である。RNAは114 ntのlong chain(図9(a))および150 ntのshort chain(図9(b))からなり、これらのRNAの相補的な対合により、3つのBoxC/Dを持つ環状RNA鎖が形成される。これらのBoxC/D配列にL7Aeが結合することで環状になったRNAの三箇所が60度に固定され三角形が形成されると期待される。形成されるRNA三角形の一辺の長さは約10nmである(図10)。分子モデルを設計した後、モデルの構造の妥当性を評価するため、Minimization Protocolを用いてエネルギー最小化計算を行った。設計した分子モデルの構造とエネルギー最小化計算後の構造を重ね合わせたところ構造上の差異はほとんどなかったため、設計した分子モデルはエネルギー的に安定であることが確認できた。 Fig. 8 (a) is a view of L7-3 kaku し た depicted using Discovery Studio 2.0 from the top, and Fig. 8 (b) is a triangular side view of Fig. 8 (a) rotated 90 degrees. FIG. The RNA consists of 114 nt long chain (Fig. 9 (a)) and 150 nt short chain (Fig. 9 (b)). By complementary pairing of these RNAs, circular RNA with three BoxC / Ds A chain is formed. By binding L7Ae to these BoxC / D sequences, it is expected that three positions of the circular RNA will be fixed at 60 degrees to form a triangle. The length of one side of the formed RNA triangle is about 10 nm (FIG. 10). After designing the molecular model, energy minimization calculation was performed using Minimization Protocol to evaluate the validity of the model structure. When the structure of the designed molecular model and the structure after the energy minimization calculation were superimposed, there was almost no structural difference, so it was confirmed that the designed molecular model was stable in terms of energy.
[RNPナノ構造体の合成・構築]
[L7Aeの作製]
 RNA-蛋白質複合体相互作用モチーフの蛋白質、L7AeはAlexander Huttenhofer氏から譲り受けたプラスミド(配列番号11)を利用して発現させた。そのプラスミドはA.Fulgidus氏からL7Ae Fwd(5’-CTGACATATGTACGTGAGATTTGAGGTTC-3’)(配列番号12)、L7Ae Rev(5’-CTGACTCGAGTTACTTCTGAAGGCCTTTAATC-3’)(配列番号13)のプライマーを使って増幅したインサートを、制限酵素NdeIおよびXhoIで切断したpET-28b+ベクター(Novagen)に組み込み作製されていた。発現精製法は以下に示す。まず、大腸菌BL21(DE3)pLysSに形質転換した。得られたコロニーを25μg/mLカナマイシン、100μg/mLクロラムフェニコールを含むLB培地5mLに植菌し、37℃で一晩振蕩培養した。続いて培養液全量を25μg/mLカナマイシン、100μg/mLクロラムフェニコールを含むLB培地500mLに植え継いだ。O.D.600が0.6~0.7になるまで37℃で振蕩培養し、その後、発現誘導をするため1M IPTGを500μL加え(最終濃度1mM)、30℃で一晩振蕩培養した。遠心分離(4℃、6000rpm、20分)で菌体を回収し、ソニケーションバッファー(50mM Na phosphate、0.3M NaCl、pH8.0)5mLを加え、超音波処理を行い、菌体を破砕した。なお、超音波処理は、氷上で冷却後、15秒間超音波を当てる、という操作を6回繰り返した。その後、80℃、15分で、不純蛋白質を変性させた。遠心分離(4℃、6000rpm、20分)を行い、上清を回収し、ヒスチジンタグが付いた蛋白質をNi-NTAカラム(Qiagen)を用いてバッチ法により精製した。具体的には、まず上清とNi-NTA 1mLを混合し、4℃で1時間撹拌を行った。その後、カラムに充填し、washバッファー(50mM Na phosphate、0.3M NaCl、20mM imidazole、pH8.0)4mLで2回洗浄した。50mM、100mM、200mM、300mMのimidazoleを含む溶出バッファー(50mM Na phosphate、0.3M NaCl、pH8.0にimidazoleを加えて作製)を1mLずつ2回で段階的に溶出させた。確認は17% SDS-PAGEにより行った。続いて、マイクロコンYM-3(Millipore)を用いて、蛋白質の濃縮を行い、透析バッファー(20mM Hepes-KOH、1.5mM MgCl、150mM KCl、5% グリセロール、pH7.5)に置換した。また、蛋白質の濃度はプロテインアッセイ(BIO-RAD)を用い、Bradford法で決定した。
[Synthesis and construction of RNP nanostructures]
[Production of L7Ae]
The protein of the RNA-protein complex interaction motif, L7Ae, was expressed using a plasmid (SEQ ID NO: 11) received from Alexander Huttenhofer. The plasmid is A.I. Fulgidus was amplified using a restriction enzyme N using primers of L7Ae Fwd (5′-CTGACATATGTTACGTGAGATTTGAGGTTC-3 ′) (SEQ ID NO: 12), L7Ae Rev (5′-CTGACTCGAGTTACTTCTGGAGCCTTTTATC-3 ′) and SEQ ID NO: 13 It was prepared by integrating into a pET-28b + vector (Novagen) cut with XhoI. The expression purification method is shown below. First, E. coli BL21 (DE3) pLysS was transformed. The obtained colonies were inoculated into 5 mL of LB medium containing 25 μg / mL kanamycin and 100 μg / mL chloramphenicol, and cultured with shaking at 37 ° C. overnight. Subsequently, the entire culture was inoculated into 500 mL of LB medium containing 25 μg / mL kanamycin and 100 μg / mL chloramphenicol. O. D. The culture was shaken at 37 ° C. until 600 reached 0.6 to 0.7, and then 500 μL of 1M IPTG was added (final concentration 1 mM) to induce expression, followed by overnight shaking at 30 ° C. The cells were collected by centrifugation (4 ° C., 6000 rpm, 20 minutes), 5 mL of a sonication buffer (50 mM Na phosphate, 0.3 M NaCl, pH 8.0) was added, and sonication was performed to disrupt the cells. . In the ultrasonic treatment, the operation of applying ultrasonic waves for 15 seconds after cooling on ice was repeated 6 times. Thereafter, the impure protein was denatured at 80 ° C. for 15 minutes. Centrifugation (4 ° C., 6000 rpm, 20 minutes) was performed, the supernatant was collected, and the protein with a histidine tag was purified by a batch method using a Ni-NTA column (Qiagen). Specifically, first, the supernatant and 1 mL of Ni-NTA were mixed and stirred at 4 ° C. for 1 hour. Thereafter, the column was packed and washed twice with 4 mL of wash buffer (50 mM Na phosphate, 0.3 M NaCl, 20 mM imidazole, pH 8.0). An elution buffer containing 50 mM, 100 mM, 200 mM, and 300 mM imidazole (prepared by adding imidazole to 50 mM Naphosphate, 0.3 M NaCl, pH 8.0) was eluted stepwise in 1 mL steps. Confirmation was performed by 17% SDS-PAGE. Subsequently, the protein was concentrated using Microcon YM-3 (Millipore) and replaced with a dialysis buffer (20 mM Hepes-KOH, 1.5 mM MgCl 2 , 150 mM KCl, 5% glycerol, pH 7.5). The protein concentration was determined by the Bradford method using a protein assay (BIO-RAD).
[RNAの合成]
 long chainの鋳型DNAは、L Fwd(10μM、5’-CTAATACGACTCACTATAGGCGCAAAGGCCTGTAATCGGCGTGATG-3’配列番号14)1.5μL、L Rev(10μM、5’-TTGCTACGCTCATCACGCCCGGATGGGCATGCTCTTCCCGTAGAGGCTC-3’配列番号15)1.5μL、L template(1ng/μL、5’-GGCCTGTAATCGGCGTGATGAGCCATGCGAGGAGGAAATGAAGTCCAATGGCGTGATGAGCCTCTACGGGAAGAGC-3’配列番号16)1μL、KOD(TOYOBO)1μL、10×KOD buffer 5μL、25mM MgSO 1.6μL、2.5mM dNTPs 4μL、超純水34.4μLを混合し、94℃ 15秒、55℃ 30秒、68℃ 60秒の3ステップで15サイクルPCRを行い作製した。short chainの鋳型DNA合成は、まずS template(1ng/μL、5’-GCCTTTGCGCCTTGCTACGCTCTGACCCGGATGGGCATGCTCTTCCCGTAGAGGCTCTGACCATTGGACTTC-3’配列番号17)1μL、S Rev(10μM、5’-TGTAATCGGTCAGAGCCATGCGAGGAGGAAATGAAGTCCAATGGTCAGAG-3’配列番号18)5μL、Ex Taq(Takara)1μL、10×Ex Taq buffer 10μL、2.5mM dNTPs 8μL、超純水75μLを混合し、94℃ 30秒、55℃ 30秒、68℃ 30秒の3ステップで5サイクルPCRを行った。合成されたDNA鎖は、フェノール抽出、ジエチルエーテル抽出、エタノール沈殿を行い精製した。
[Synthesis of RNA]
The template DNA of long chain is L Fwd (10 μM, 5′-CTAATACGACTCACTATAGGGCGCAAAGGCCTGTAATCGGCGGTGATGCTGCTGCTGCTGCCTGCCTGCCTGCTGCTGCCTGCCTGCCTGCTGCTGCCTGCCTGCCTGCTGCTGCCTGC 1ng / μL, 5'-GGCCTGTAATCGGCGTGATGAGCCATGCGAGGAGGAAATGAAGTCCAATGGCGTGATGAGCCTCTACGGGAAGAGC- 3 ' SEQ ID NO: 16) 1μL, KOD + (TOYOBO ) 1μL, 10 × KOD + buffer 5μL, 25mM MgSO 4 1.6μL, 2.5mM dNT s 4 [mu] L, mixed ultrapure water 34.4μL, 94 ℃ 15 seconds, 55 ° C. 30 seconds, to prepare perform 15 cycles of PCR in three steps of 68 ° C. 60 seconds. Template DNA synthesis short chain, first S template (1ng / μL, 5'-GCCTTTGCGCCTTGCTACGCTCTGACCCGGATGGGCATGCTCTTCCCGTAGAGGCTCTGACCATTGGACTTC-3 'SEQ ID NO: 17) 1μL, S Rev (10μM, 5'-TGTAATCGGTCAGAGCCATGCGAGGAGGAAATGAAGTCCAATGGTCAGAG-3' SEQ ID NO: 18) 5μL, Ex Taq ( Takara) 1 μL, 10 × Ex Taq buffer 10 μL, 2.5 mM dNTPs 8 μL, and ultrapure water 75 μL were mixed, and 5-cycle PCR was performed in 3 steps of 94 ° C. for 30 seconds, 55 ° C. for 30 seconds, and 68 ° C. for 30 seconds. The synthesized DNA strand was purified by phenol extraction, diethyl ether extraction, and ethanol precipitation.
 次に、このDNA(1ng/μL)1μLを鋳型とし、S Fwd(10μM、5’-CTAATACGACTCACTATAGGCCTTTGCGCCTTGCTACG-3’配列番号19)1.5μL、S new Rev(10μM、5’-TGTAATCGGTCAGAGCCATGCGAGG-3’配列番号20)1.5μL、KOD(TOYOBO)1μL、10×KOD buffer 5μL、25mM MgSO 1.6μL、2.5mM dNTPs 4μL、超純水34.4μLを混合し、94℃ 15秒、55℃ 30秒、68℃ 60秒の3ステップを15サイクルでPCRを行い、鋳型DNAを合成した。それぞれの鋳型DNAは、4%アガロースゲル電気泳動で合成できたことを確認し、フェノール抽出、ジエチルエーテル抽出、エタノール沈殿を行い精製した。精製した鋳型DNAは8μLの超純水に溶解し、転写に用いた。転写にはMEGAshortscript(商標) (Ambion)を用い、以下の通り行った。鋳型DNA 8μL、T7 10×Reaction Buffer 2μL、T7 ATP Solution(75mM) 2μL(CTP、GTP、UTPに関しても同様)、T7 Enzyme Mix 2μLを混合した全20μLを37℃で一晩反応させた。反応後は、TURBO DNase 1μL加え、37℃で1時間インキュベートし、鋳型DNAを分解させた。反応液に、115μLの超純水と15μL酢酸アンモニウムストップ溶液を加え、さらにフェノール処理、ジエチルエーテル抽出、エタノール沈殿を行い精製した。沈殿を20μLの変性色素(80%ホルムアミド、0.17% XC、0.27% BPB)に溶解し、10% ポリアクリルアミド(1/30 ビスアクリルアミド)変性ゲル電気泳動で分離した。目的のサイズのバンドを切り出し、500μLの溶出緩衝液(0.3M 酢酸ナトリウム、pH 7.0)を加え、37℃で一晩インキュベートし溶出した。溶出したRNAは再びフェノール抽出、ジエチルエーテル抽出およびエタノール沈殿を行って精製し、超純水に溶かして以降の実験に用いた。 Next, using 1 μL of this DNA (1 ng / μL) as a template, 1.5 μL of S Fwd (10 μM, 5′-CTAATACGACTCACTATAGGCCTTTGCGCCCTGCTACCG-3 ′ SEQ ID NO: 19), S new Rev (10 μM, 5′-TGTAATCGGTCAGAGCCATGCGGAG sequence 20) 1.5 μL, KOD + (TOYOBO) 1 μL, 10 × KOD + buffer 5 μL, 25 mM MgSO 4 1.6 μL, 2.5 mM dNTPs 4 μL, ultrapure water 34.4 μL, 94 ° C. 15 seconds, 55 ° C. PCR was performed in 15 cycles of 3 steps of 30 seconds at 68 ° C. for 60 seconds to synthesize template DNA. Each template DNA was confirmed to be synthesized by 4% agarose gel electrophoresis, and purified by phenol extraction, diethyl ether extraction, and ethanol precipitation. The purified template DNA was dissolved in 8 μL of ultrapure water and used for transcription. For transcription, MEGAshortscript (trademark) (Ambion) was used as follows. Template DNA 8 μL, T7 10 × Reaction Buffer 2 μL, T7 ATP Solution (75 mM) 2 μL (same for CTP, GTP, UTP) and T7 Enzyme Mix 2 μL were mixed overnight at 37 ° C. After the reaction, 1 μL of TURBO DNase was added and incubated at 37 ° C. for 1 hour to decompose the template DNA. 115 μL of ultrapure water and 15 μL ammonium acetate stop solution were added to the reaction solution, and further purified by phenol treatment, diethyl ether extraction, and ethanol precipitation. The precipitate was dissolved in 20 μL of a denaturing dye (80% formamide, 0.17% XC, 0.27% BPB) and separated by 10% polyacrylamide (1/30 bisacrylamide) denaturing gel electrophoresis. A band of the desired size was cut out, 500 μL of elution buffer (0.3 M sodium acetate, pH 7.0) was added, and incubated at 37 ° C. overnight to elute. The eluted RNA was purified again by phenol extraction, diethyl ether extraction and ethanol precipitation, dissolved in ultrapure water and used in the subsequent experiments.
[ゲルシフトアッセイによるRNP構造体形成の確認]
 RNAと蛋白質の結合の確認は、二種類のRNAの濃度がそれぞれ2ng/μL、20mM Hepes-KOH、150mM KCl、1.5mM MgCl、2mM DTT、3%グリセロール、蛋白質100~1000nMの反応条件で、以下のように行った。5×binding buffer(100mM Hepes-KOH(pH7.5)、750mM KCl、7.5mM MgCl、10mM DTT、15% グリセロール)2μLと、short chainおよびlong chain(ともに10ng/μL)2μLずつを混合し、80℃で3分間加熱してRNAを変性させた後、氷上に置いて急冷してフォールディングさせた。L7Aeを加え、超純水で反応液量を10μLにし、氷上で15分間静置してRNAとL7Ae(100nM、300nM、1000nM)を結合させた。色素(0.25% BPB、0.25% XC、30% グリセロール)を1μL加え、非変性5%ポリアクリルアミドゲルに重層し、4℃で3~4時間電気泳動を行った。泳動後、ゲルをSYBR Greenで染色し、FLA-7000(FUJI FILM)でバンドを確認した。結果を図11に示す。その結果、short chainとlong chainが結合したRNAに3つのL7Aeが結合していることが示唆された。
[Confirmation of RNP structure formation by gel shift assay]
Confirmation of the binding of RNA and protein was performed under the reaction conditions of 2 ng / μL, 20 mM Hepes-KOH, 150 mM KCl, 1.5 mM MgCl 2 , 2 mM DTT, 3% glycerol, and protein 100-1000 nM, respectively. The following was performed. 2 μL of 5 × binding buffer (100 mM Hepes-KOH (pH 7.5), 750 mM KCl, 7.5 mM MgCl 2 , 10 mM DTT, 15% glycerol) and 2 μL of short chain and long chain (both 10 ng / μL) After heating at 80 ° C. for 3 minutes to denature the RNA, it was placed on ice and rapidly cooled to fold. L7Ae was added, the reaction solution volume was adjusted to 10 μL with ultrapure water, and the mixture was allowed to stand on ice for 15 minutes to bind RNA and L7Ae (100 nM, 300 nM, 1000 nM). 1 μL of dye (0.25% BPB, 0.25% XC, 30% glycerol) was added, layered on a non-denaturing 5% polyacrylamide gel, and subjected to electrophoresis at 4 ° C. for 3 to 4 hours. After electrophoresis, the gel was stained with SYBR Green, and the band was confirmed with FLA-7000 (FUJI FILM). The results are shown in FIG. As a result, it was suggested that three L7Ae were bound to RNA in which short chain and long chain were bound.
[原子間力顕微鏡による構造体の観察]
 原子間力顕微鏡で観察するための試料は以下のように調製した。5×binding buffer(100mM Hepes-KOH(pH7.5)、750mM KCl、7.5mM MgCl、10mM DTT、15% グリセロール)2μLとshort chainおよびlong chain(ともに10ng/μL)2μLずつを混合し、80 ℃で3分間加熱してRNAを変性させた後、氷上に置いて急冷してフォールディングさせた。3μLの超純水と1μLの10μM L7Ae(最終濃度1000nM)を混合後、氷上で15分間静置してRNAとL7Aeを結合させた。反応液2μLに10mM HEPES-KOH(pH7.5)18μLを加えて10倍に希釈し、一回の測定にはこの希釈液10μLを使用した。試料は雲母基板上に固定化して観察した。まず、雲母基盤表面に20μLの10mMスペルミジンを滴下し、室温で10分間静置した。窒素ガスでスペルミジンを吹き飛ばして乾燥させた後、試料10μLを滴下して室温で10分間静置し、試料を雲母片表面に付着させた。1mLの超純水で雲母片表面を洗い流し、窒素ガスを吹き当てて乾燥させた。この雲母基盤を原子間力顕微鏡(Veeco社製)にセットして走査し、500nm×500nmのスケールで画像化した。原子間力顕微鏡の制御及び画像の処理にはNano scope(Veeco社製)を用いた。結果を図12、図13、図14、図15に示す。その結果、単独では楕円状で存在したRNA分子(図13)が、蛋白質L7AeとRNA分子とが共存した場合(図15)には三角形の構造体を形成することが観察でき、蛋白質L7Ae存在下でのみ設計通りの三角形の構造体が確認できた。
[Observation of structure with atomic force microscope]
A sample for observation with an atomic force microscope was prepared as follows. Mix 2 × 5 × binding buffer (100 mM Hepes-KOH (pH 7.5), 750 mM KCl, 7.5 mM MgCl 2 , 10 mM DTT, 15% glycerol) 2 μL and short chain and long chain (both 10 ng / μL) 2 μL each The RNA was denatured by heating at 80 ° C. for 3 minutes, and then placed on ice to rapidly cool and fold. After mixing 3 μL of ultrapure water and 1 μL of 10 μM L7Ae (final concentration 1000 nM), the mixture was allowed to stand on ice for 15 minutes to bind RNA and L7Ae. 18 μL of 10 mM HEPES-KOH (pH 7.5) was added to 2 μL of the reaction solution to dilute it 10 times, and 10 μL of this diluted solution was used for one measurement. The sample was immobilized on a mica substrate and observed. First, 20 μL of 10 mM spermidine was dropped on the surface of the mica substrate and allowed to stand at room temperature for 10 minutes. After spermidine was blown off with nitrogen gas and dried, 10 μL of the sample was dropped and allowed to stand at room temperature for 10 minutes to adhere the sample to the mica piece surface. The surface of the mica piece was washed away with 1 mL of ultrapure water, and dried by blowing nitrogen gas. The mica substrate was set on an atomic force microscope (manufactured by Veeco), scanned, and imaged on a scale of 500 nm × 500 nm. Nanoscope (manufactured by Veeco) was used for control of the atomic force microscope and image processing. The results are shown in FIG. 12, FIG. 13, FIG. 14, and FIG. As a result, it can be observed that RNA molecules (FIG. 13) that existed alone in an oval shape form a triangular structure when protein L7Ae and RNA molecules coexist (FIG. 15), and in the presence of protein L7Ae. Only in, a triangular structure as designed was confirmed.
 また、得られた画像をもとに、観察されたRNAまたはRNP構造体の粒径および高さの分布を測定し解析した。その結果、RNAのみの場合(サンプル数N=121、粒径の平均値=26.15nm、標準偏差σ=4.62、高さの平均値=1.80nm、標準偏差σ=0.66)と比較して、L7Ae添加時の方が分布のばらつき(標準偏差)が小さく、粒径、高さともに一定の値付近に収束していた(サンプル数N=122、粒径の平均値=24.26nm、標準偏差σ=2.68、高さの平均値=1.24nm、標準偏差σ=0.20)。この実験解析から、それのみでは強固な単一の構造を取り得ない、フレキシブルな構造をもつRNAが、L7Ae蛋白質と結合することにより設計通りの三角形構造を安定に形成したことが明らかとなった。 Further, based on the obtained image, the particle size and height distribution of the observed RNA or RNP structure were measured and analyzed. As a result, in the case of RNA alone (number of samples N = 121, average value of particle size = 26.15 nm, standard deviation σ = 4.62, average value of height = 1.80 nm, standard deviation σ = 0.66) In comparison with L7Ae, the dispersion (standard deviation) of the distribution was smaller, and both the particle size and height converged to a certain value (number of samples N = 122, average value of particle size = 24). .26 nm, standard deviation σ = 2.68, average height = 1.24 nm, standard deviation σ = 0.20). From this experimental analysis, it was clarified that RNA having a flexible structure, which cannot take a strong single structure by itself, stably formed a triangular structure as designed by binding to the L7Ae protein.
[大きなL7-3kakuのコンピュータ分子設計]
 実施例1と同様に、分子モデリングソフトウェアであるDiscovery Studio 2.0(Accelrys社)を用いて、3つのL7Ae-BoxC/Dモチーフが同一平面状で正三角形を形成するよう、48bpのRNA二本鎖でつないだ大きなL7-3kakuを設計した。図16は、Discovery Studio 2.0を用いて描写した大きなL7-3kakuの図である。この大きなL7-3kakuにおいて、三角形はRNA二本鎖で構成され、RNAが形成する三角形の一辺は約17nm、48bpであった。
[Large L7-3 kaku computer molecular design]
In the same manner as in Example 1, two 48 bp RNAs were prepared using Discovery Studio 2.0 (Accelrys), which is molecular modeling software, so that the three L7Ae-BoxC / D motifs form a regular triangle in the same plane. A large L7-3 kaku connected by a chain was designed. FIG. 16 is a diagram of a large L7-3 kaku depicted using Discovery Studio 2.0. In this large L7-3 kaku, the triangle was composed of RNA double strands, and one side of the triangle formed by RNA was about 17 nm and 48 bp.
 コンピュータ分子設計の結果、long chainの配列は、GGCGCAAAGGCCUGUAAUCGGGCGCCGAGCGGCGUGAUGAGCUGUUCACCGGCAUCGUGCCCAUCAUGCGAGGAGGAAAUGAAGUCCAAUGGCGUGAUGAGCCUCUACGGGAAGAGCAUGCCCAUCCGCCUGAUCGAGCUGAAUGGCGAUGGCGUGAUGAGCAUGGUGAGCAAGUAGCAA(配列番号21)、short chainの配列は、GGCCUUUGCGCCUUGCUACUUGCUCACCAUGCUCUGACCAUCGCCAUUCAGCUCGAUCAGGCGGAUGGGCAUGCUCUUCCCGUAGAGGCUCUGACCAUUGGACUUCAUUUCCUCCUCGCAUGAUGGGCACGAUGCCGGUGAACAGCUCUGACCGCUCGGCGCCCGAUUACA(配列番号22)と決定された。 Results of computer molecular design, arrangement of long chain is, JijishijishieieieijijishishiyujiyueieiyushijijijishijishishijieijishijijishijiyujieiyujieijishiyujiyuyushieishishijijishieiyushijiyujishishishieiyushieiyujishijieijijieijijieieieiyujieieijiyushishieieiyujijishijiyujieiyujieijishishiyushiyueishijijijieieijieijishieiyujishishishieiyushishijishishiyujieiyushijieijishiyujieieiyujijishijieiyujijishijiyuGAUGAGCAUGGUGAGCAAGUAGCAA (SEQ ID NO: 21), the sequence of short chain is, JijishishiyuyuyujishijishishiyuyujishiyueishiyuyujishiyushieishishieiyujishiyushiyujieishishieiyushijishishieiyuyushieijishiyushijieiyushieijijishijijieiyujijijishieiyujiCUCUUCCCGUAGAGGCUCUGACCAU It was determined to JijieishiyuyushieiyuyuyushishiyushishiyushijishieiyujieiyujijijishieishijieiyujishishijijiyujieieishieijishiUCUGACCGCUCGGCGCCCGAUUACA (SEQ ID NO: 22).
 また、異なる配列の組み合わせから構成される、大きなL7-3kakuを設計及び作成した。その際に利用したlong chain及びshort chainの配列は以下の通りである。long chainの配列は、5’-GGACGAGCUGUACACCAUGGUGACCGCCGCCGGGCGUGAUGAGCUCCAAGGACCCCAACGAGAAGCGCGAUCACAUGAUCUACUUCGGCUUCGGCGUGAUGAGCCCUGUGCUGCUGCCCGAUAACCACUACCUGCCAUCACCCACGGCCCUGGGCGUGAUGAGCAUUCCACCCAGAGCGC-3’(配列番号28、Artificial、180nt)に、short chainの配列は、5’-GGUGUACAGCUCGUCCGCGCUCUGGGUGGAAUGCUCUGACCCAGGGCCGUGGGUGAUGGCAGGUAGUGGUUAUCGGGCAGCAGCACAGGGCUCUGACCGAAGCCGAAGUAGAUCAUGUGAUCGCGCUUCUCGUUGGGGUCCUUGGAGCUCUGACCCGGCGGCGGUCACCAU-3’(配列番号29、Artificial、171nt)を作成した。 Also, a large L7-3 kaku composed of a combination of different sequences was designed and created. The arrangement of long chain and short chain used at that time is as follows. Sequence of long chain is, 5'-GGACGAGCUGUACACCAUGGUGACCGCCGCCGGGCGUGAUGAGCUCCAAGGACCCCAACGAGAAGCGCGAUCACAUGAUCUACUUCGGCUUCGGCGUGAUGAGCCCUGUGCUGCUGCCCGAUAACCACUACCUGCCAUCACCCACGGCCCUGGGCGUGAUGAGCAUUCCACCCAGAGCGC-3 '(SEQ ID NO: 28, Artificial, 180nt), the sequence of short chain may, 5'-GGUGUACAGCUCGUCCGCGCUCUGGGUGGAAUGCUCUGACCCAGGGCCGUGGGUGAUGGCAGGUAGUGGUUAUCGGGCAGCAGCAC GGGCUCUGACCGAAGCCGAAGUAGAUCAUGUGAUCGCGCUUCUCGUUGGGGUCCUUGGAGCUCUGACCCGGCGGCGGUCACCAU-3 '(SEQ ID NO: 29, Artificial, 171nt) was created.
 [RNAの合成]
 long chainの鋳型DNAは、L Fwd(2μM、5’-CTAATACGACTCACTATAGGACGAGCTGTACACCATGGTGACCGCCGCCGGGCGTGATGAGCTCCAAGGACCCCAACGAGAAGCGCGATCACATGATCTACTTCGGCTT-3’、配列番号30、Artificial、109nt)10μL、L Rev(2μM、5’-GCGCTCTGGGTGGAATGCTCATCACGCCCAGGGCCGTGGGTGATGGCAGGTAGTGGTTATCGGGCAGCAGCACAGGGCTCATCACGCCGAAGCCGAAGTAGATCATGTG-3’、配列番号31、Artificial、109nt)10μL、Ex Taq(Takara)0.5μL、10×Ex Taq buffer 5μL、2.5mM dNTPs 4μL、超純水21.5μLを混合し、94℃ 30秒間、48℃ 1分間、72℃ 30秒間の3ステップで5サイクルPCRを行い作製した。
[Synthesis of RNA]
Template DNA long chain is, L Fwd (2μM, 5'-CTAATACGACTCACTATAGGACGAGCTGTACACCATGGTGACCGCCGCCGGGCGTGATGAGCTCCAAGGACCCCAACGAGAAGCGCGATCACATGATCTACTTCGGCTT-3 ', SEQ ID NO: 30, Artificial, 109nt) 10μL, L Rev (2μM, 5'-GCGCTCTGGGTGGAATGCTCATCACGCCCAGGGCCGTGGGTGATGGCAGGTAGTGGTTATCGGGCAGCAGCACAGGGCTCATCACGCCGAAGCCGAAGTAGATCATGTG-3', SEQ ID NO: 31, Artificial, 109nt ) 10 μL, Ex Taq (Takar a) 0.5 μL, 10 × Ex Taq buffer 5 μL, 2.5 mM dNTPs 4 μL, and ultrapure water 21.5 μL are mixed, and 5 cycles PCR in 3 steps of 94 ° C. for 30 seconds, 48 ° C. for 1 minute, 72 ° C. for 30 seconds It produced by doing.
 short chainの鋳型DNAは、S Fwd(2μM、5’-CTAATACGACTCACTATAGGTGTACAGCTCGTCCGCGCTCTGGGTGGAATGCTCTGACCCAGGGCCGTGGGTGATGGCAGGTAGTGGTTATCGGGCAGCAGCACA-3’(配列番号32、Artificial、105nt))10μL、S Rev(2μM、5’-ATGGTGACCGCCGCCGGGTCAGAGCTCCAAGGACCCCAACGAGAAGCGCGATCACATGATCTACTTCGGCTTCGGTCAGAGCCCTGTGCTGCTGCCCGATAACC-3’(配列番号33、Artificial、104nt))10μL、Ex Taq(Takara)0.5μL、10×Ex Taq buffer 5μL、2.5mM dNTPs 4μL、超純水21.5μLを混合し、94℃ 30秒間、56℃ 1分間、72℃ 30秒間の3ステップで5サイクルPCRを行い作製した。合成された鋳型DNA鎖は、非変性6%アクリルアミドゲル(1/30 ビスアクリルアミド)で電気泳動を行い、目的のサイズのバンドを切り出した。切り出したゲル片に500μLの溶出緩衝液(0.1% SDS、0.3M 酢酸ナトリウム、pH 7.0)を加え、37℃で一晩インキュベートしDNAを溶出した。その後フェノール抽出、ジエチルエーテル抽出およびエタノール沈殿を行い、20μLの超純水に溶かして、8μLを以下の転写反応に用いた。 Template DNA short chain is, S Fwd (2μM, 5'-CTAATACGACTCACTATAGGTGTACAGCTCGTCCGCGCTCTGGGTGGAATGCTCTGACCCAGGGCCGTGGGTGATGGCAGGTAGTGGTTATCGGGCAGCAGCACA-3 '(SEQ ID NO: 32, Artificial, 105nt)) 10μL, S Rev (2μM, 5'-ATGGTGACCGCCGCCGGGTCAGAGCTCCAAGGACCCCAACGAGAAGCGCGATCACATGATCTACTTCGGCTTCGGTCAGAGCCCTGTGCTGCTGCCCGATAACC-3' (SEQ ID NO: 33, Artificial, 104 nt)) 10 μL, Ex Taq (Taka a) 0.5 μL, 10 × Ex Taq buffer 5 μL, 2.5 mM dNTPs 4 μL, and ultrapure water 21.5 μL are mixed, and 5-cycle PCR is performed in 3 steps of 94 ° C. for 30 seconds, 56 ° C. for 1 minute, and 72 ° C. for 30 seconds. It produced by doing. The synthesized template DNA strand was subjected to electrophoresis on a non-denaturing 6% acrylamide gel (1/30 bisacrylamide) to cut out a band of the desired size. To the excised gel piece, 500 μL of elution buffer (0.1% SDS, 0.3 M sodium acetate, pH 7.0) was added and incubated overnight at 37 ° C. to elute the DNA. Thereafter, phenol extraction, diethyl ether extraction and ethanol precipitation were performed, dissolved in 20 μL of ultrapure water, and 8 μL was used for the following transcription reaction.
 転写にはMEGAshortscript(商標)(Ambion)を用い、以下の通り行った。鋳型DNA 8μL、T7 10×Reaction Buffer 2μL、T7 ATP Solution(75mM) 2μL(CTP、GTP、UTPに関しても同様)、T7 Enzyme Mix 2μLを混合した全20μLを37℃で一晩反応させた。反応後は、TURBO DNase 1μL加え、37℃で15分間インキュベートし、鋳型DNAを分解させた。反応液に20μLの変性色素(80%ホルムアミド、0.17% XC、 0.27% BPB)を加え、10% ポリアクリルアミド(1/30 ビスアクリルアミド)変性ゲル電気泳動で分離した。目的のサイズのバンドを切り出し、500μLの溶出緩衝液(0.1% SDS、0.3M 酢酸ナトリウム、pH 7.0)を加え、37℃で一晩インキュベートし溶出した。溶出したRNAはフェノール抽出、ジエチルエーテル抽出およびエタノール沈殿を行い、超純水に溶かして以降の実験に用いた。 The transfer was performed as follows using MEGAshortscript (trademark) (Ambion). A total of 20 μL of template DNA 8 μL, T7 10 × Reaction Buffer 2 μL, T7 ATP Solution (75 mM) 2 μL (same for CTP, GTP, UTP) and T7 Enzyme Mix 2 μL were reacted at 37 ° C. overnight. After the reaction, 1 μL of TURBO DNase was added and incubated at 37 ° C. for 15 minutes to decompose the template DNA. 20 μL of a denaturing dye (80% formamide, 0.17% XC, 0.27% BPB) was added to the reaction solution and separated by 10% polyacrylamide (1/30 bisacrylamide) denaturing gel electrophoresis. A band of the desired size was cut out, 500 μL of elution buffer (0.1% SDS, 0.3 M sodium acetate, pH 7.0) was added, and the mixture was incubated overnight at 37 ° C. for elution. The eluted RNA was subjected to phenol extraction, diethyl ether extraction and ethanol precipitation, dissolved in ultrapure water, and used in the subsequent experiments.
 [ゲルシフトアッセイによるRNP構造体形成の確認]
 実施例3と同様に、RNAと蛋白質の結合をゲルシフトアッセイで確認した。二種類のRNAの最終濃度はそれぞれ50fmol/μL、20mM Hepes-KOH、150mM KCl、1.5mM MgCl、2mM DTT、3%グリセロール、蛋白質100~1000nMの反応条件で、以下のように行った。5×binding buffer(100mM Hepes-KOH(pH7.5)、750mM KCl、7.5mM MgCl、10mM DTT、15% グリセロール)2μLと超純水6μL、short chainおよびlong chain(ともに1pmol/μL)0.5μLずつを混合し、80℃で3分間加熱してRNAを変性させた後、氷上に置いて急冷してフォールディングさせた。1μLのL7Aeを加え、氷上で15分間静置してRNAとL7Ae(最終濃度100nM、300nM、500nM、1000nM)を結合させた。色素(0.25% BPB、0.25% XC、30% グリセロール)を1μL加え、非変性5%ポリアクリルアミドゲルに重層し、室温で3~4時間電気泳動を行った。泳動後、ゲルをSYBR GreenIIで染色し、FLA-7000(FUJI FILM)でバンドを確認した。その結果、long chainとshort chainが結合したRNAに3つのL7Aeが結合していることが示唆された。
[Confirmation of RNP structure formation by gel shift assay]
As in Example 3, the binding between RNA and protein was confirmed by gel shift assay. The final concentrations of the two kinds of RNA were 50 fmol / μL, 20 mM Hepes-KOH, 150 mM KCl, 1.5 mM MgCl 2 , 2 mM DTT, 3% glycerol, and 100 to 1000 nM protein as follows. 5 × binding buffer (100 mM Hepes-KOH (pH 7.5), 750 mM KCl, 7.5 mM MgCl 2 , 10 mM DTT, 15% glycerol) 2 μL and ultrapure water 6 μL, short chain and long chain (both 1 pmol / μL) 0 Each 5 μL was mixed and heated at 80 ° C. for 3 minutes to denature the RNA, then placed on ice and rapidly cooled to fold. 1 μL of L7Ae was added and allowed to stand on ice for 15 minutes to bind RNA and L7Ae (final concentrations 100 nM, 300 nM, 500 nM, 1000 nM). 1 μL of dye (0.25% BPB, 0.25% XC, 30% glycerol) was added, layered on a non-denaturing 5% polyacrylamide gel, and subjected to electrophoresis at room temperature for 3 to 4 hours. After electrophoresis, the gel was stained with SYBR Green II, and the band was confirmed with FLA-7000 (FUJI FILM). As a result, it was suggested that three L7Ae were bound to the RNA in which long chain and short chain were bound.
 [原子間力顕微鏡による構造体の観察]
 実施例4と同様に、試料を以下のように調製し原子間力顕微鏡で観察した。5×binding buffer(100mM Hepes-KOH(pH7.5)、750mM KCl、7.5mM MgCl、10mM DTT、15% グリセロール)2μLと超純水6μL、short chainおよびlong chain(ともに1pmol/μL)0.5μLずつを混合し、80 ℃で3分間加熱してRNAを変性させた後、室温に10分間置きフォールディングさせた。1μLの7.5μM L7Ae(最終濃度750nM)を混合後、室温で15分間静置してRNAとL7Aeを結合させた。反応液2μLに10mM HEPES-KOH(pH7.5)18μLを加えて10倍に希釈し、一回の測定にはこの希釈液10μLを使用した。試料は雲母基板上に固定化して観察した。まず、雲母基盤表面に20μLの10mMスペルミジンを滴下し、室温で10分間静置した。窒素ガスでスペルミジンを吹き飛ばして乾燥させた後、試料10μLを滴下して室温で10分間静置し、試料を雲母片表面に付着させた。1mLの超純水で雲母片表面を洗い流し、窒素ガスを吹き当てて乾燥させた。この雲母基盤を原子間力顕微鏡(Veeco社製)にセットして走査した。原子間力顕微鏡の制御及び画像の処理にはNano scope(Veeco社製)を用いた。その結果、RNAのみの場合には、RNA同士が自己集合または会合したと考えられる大きな環状構造体や直鎖状の構造体が観察された。対して、L7Ae存在下ではそれらの構造体の減少と、コンピューターデザイン通りの三角形構造体の形成が観察され、L7Ae存在下で設計通りにRNP構造体形成が行われていることが確認できた。
[Observation of structure with atomic force microscope]
Similar to Example 4, a sample was prepared as follows and observed with an atomic force microscope. 5 × binding buffer (100 mM Hepes-KOH (pH 7.5), 750 mM KCl, 7.5 mM MgCl 2 , 10 mM DTT, 15% glycerol) 2 μL and ultrapure water 6 μL, short chain and long chain (both 1 pmol / μL) 0 Each 5 μL was mixed and heated at 80 ° C. for 3 minutes to denature the RNA, and then placed at room temperature for 10 minutes for folding. After mixing 1 μL of 7.5 μM L7Ae (final concentration 750 nM), the mixture was allowed to stand at room temperature for 15 minutes to bind RNA and L7Ae. 18 μL of 10 mM HEPES-KOH (pH 7.5) was added to 2 μL of the reaction solution to dilute it 10 times, and 10 μL of this diluted solution was used for one measurement. The sample was immobilized on a mica substrate and observed. First, 20 μL of 10 mM spermidine was dropped on the surface of the mica substrate and allowed to stand at room temperature for 10 minutes. After spermidine was blown off with nitrogen gas and dried, 10 μL of the sample was dropped and allowed to stand at room temperature for 10 minutes to adhere the sample to the mica piece surface. The surface of the mica piece was washed away with 1 mL of ultrapure water, and dried by blowing nitrogen gas. The mica substrate was set on an atomic force microscope (Veeco) and scanned. Nanoscope (manufactured by Veeco) was used for control of the atomic force microscope and image processing. As a result, in the case of RNA alone, large circular structures and linear structures that were considered to be self-assembled or associated with each other were observed. On the other hand, in the presence of L7Ae, a decrease in those structures and formation of a triangular structure as designed by computer were observed, and it was confirmed that the formation of RNP structure was performed as designed in the presence of L7Ae.
[L7-3kissのコンピュータ分子設計]
 実施例1と同様に、分子モデリングソフトウェアであるDiscovery Studio 2.0(Accelrys社)を用いて、3つのL7Ae-BoxC/DモチーフをKissing-loopモチーフでつないだ三角形である、L7-3kissを設計した。Kissing-loopモチーフは、Crystal structures of coaxially stacked kissing complexes of the HIV-1 RNA dimerization initiation site, Eric Ennifar, Philippe Walter, Bernard Ehresmann, Chantal Ehresmann and Philippe Dumas, Nature Structural Biology, Vol.8, Number 12, 1064-1068,2001により知られており、互いに逆相補配列を持つ二つのループが、ループ間での塩基対形成とスタッキングで安定に結合したモチーフである。このL7-3kissは、RNP モチーフおよびRNA-RNA相互作用モチーフを利用した構造変化制御の例として設計した。
[Computer molecular design of L7-3kiss]
Similarly to Example 1, Discovery Studio 2.0 (Accelrys), which is molecular modeling software, was used to design L7-3kiss, which is a triangle formed by connecting three L7Ae-BoxC / D motifs with a Kissing-loop motif. did. Kissing-loop motif, Crystal structures of coaxially stacked kissing complexes of the HIV-1 RNA dimerization initiation site, Eric Ennifar, Philippe Walter, Bernard Ehresmann, Chantal Ehresmann and Philippe Dumas, Nature Structural Biology, Vol. 8, Number 12, 1064-1068, 2001, which is a motif in which two loops having mutually opposite complementary sequences are stably bound by base pairing and stacking between the loops. This L7-3kiss was designed as an example of structural change control using the RNP motif and the RNA-RNA interaction motif.
 設計の前提として、図18に、L7Ae-BoxC/D モチーフ、Kissing-loopモチーフによる三角形形成の仮定的なスキームを示す。中央部にBoxC/Dモチーフを有し、二本鎖を形成するループ状のRNAは、L7AeやMg2+イオンの非存在下では、ループ状で存在すると考えられる。このループ状のRNAに、L7Aeを添加すると、60度の屈曲構造を呈する屈曲ループRNAに、特異的に構造変化すると考えられる。さらに、Mg2+イオンを添加すると、Kissing-loopモチーフにより、三角形を形成すると考えられる。なお、ループ状のRNAに、L7Aeを添加することなく、Mg2+イオンのみを添加すると、ループ状のRNAのままで、Kissing-loopモチーフにより相互作用し、非特異的な様々な形状を構成すると考えられる。この方法では、前の設計と異なり、短いRNAのフラグメントを混ぜただけで自己集合して、構造体を形成できるという利点がある。 As a design premise, FIG. 18 shows a hypothetical scheme of triangle formation by the L7Ae-BoxC / D motif and the Kissing-loop motif. A loop-shaped RNA having a Box C / D motif at the center and forming a double strand is considered to exist in a loop shape in the absence of L7Ae or Mg 2+ ions. When L7Ae is added to this loop-shaped RNA, it is considered that the structure changes specifically to the bent-loop RNA exhibiting a 60-degree bent structure. Further, when Mg 2+ ions are added, it is considered that a triangle is formed by the Kissing-loop motif. In addition, when only Mg 2+ ions are added to loop-shaped RNA without adding L7Ae, the loop-shaped RNA remains as it is and interacts with the kissing-loop motif to form various non-specific shapes. Conceivable. Unlike the previous design, this method has the advantage that a structure can be formed by self-assembly just by mixing short RNA fragments.
 図17は、Discovery Studio 2.0を用いて描写したL7-3kissのリボンダイアグラムである。このL7-3kissにおいて、一つの三角形は3つのRNA鎖からなり、3つのRNA鎖は同一の配列とした。RNAが形成する三角形の一辺は約10nmであった。3つのRNA鎖は、L7Aeにより、60度の屈曲構造を呈し、kissing-loop相互作用によりホモトリマーを形成し、三角形となった。 FIG. 17 is a ribbon diagram of L7-3kiss drawn using Discovery Studio 2.0. In this L7-3kiss, one triangle consists of three RNA strands, and the three RNA strands have the same sequence. One side of the triangle formed by RNA was about 10 nm. The three RNA strands exhibited a bent structure of 60 degrees by L7Ae, formed homotrimers by kissing-loop interaction, and became triangular.
 コンピュータ分子設計の結果、3つの同一のRNAの配列は、CUACGGGAAGCGCGCACCCGUAGAGGCUCUGACCCGGAUGGGCAAGCGCGCAGCCCAUCCGGGCGUGAUGAGCCU(配列番号23)と決定された。 As a result of computer molecular design, the sequence of three identical RNAs was determined as CUACGGGAAGCGCGGCACCCCUAGAGGGCUCUGACCCCGAUGGGCACAGCGCGCAGCCCAUCCCGGGCGUGAUGAGCU (SEQ ID NO: 23).
[Delivery-3kakuのコンピュータ分子設計]
 実施例1と同様に、分子モデリングソフトウェアであるDiscovery Studio 2.0(Accelrys社)を用いて、3つのL7Ae-BoxC/Dモチーフが同一平面状で正三角形を形成するよう、26bpのRNA二本鎖でつなぎ、かつ3つのL7Aeのうち、一つには蛍光蛋白質GFPを結合させ、二つにはポリアルギニンモチーフを結合させた、Delivery-3kakuを設計した。図19は、Discovery Studio 2.0を用いて描写したDelivery-3kakuの図である。図中、左上の角、及び右上の角に、ポリアルギニンモチーフが融合したL7Aeが結合しており、左下の角に蛍光蛋白質GFPが融合したL7Aeが結合している、このDelivery-3kakuにおいて、三角形はRNA二本鎖で構成され、RNAが形成する三角形の一辺は約10nmであった。
[Computer molecular design of Delivery-3kaku]
Similarly to Example 1, two 26 bp RNAs were prepared using Discovery Studio 2.0 (Accelrys), which is molecular modeling software, so that the three L7Ae-BoxC / D motifs are coplanar and form an equilateral triangle. Delivery-3 kaku was designed in which three chains of L7Ae were linked together, one of which was linked to the fluorescent protein GFP and the other was linked to the polyarginine motif. FIG. 19 is a diagram of Delivery-3kaku drawn using Discovery Studio 2.0. In this Delivery-3kaku, L7Ae fused with the polyarginine motif is bound to the upper left corner and upper right corner, and L7Ae fused to the fluorescent protein GFP is bound to the lower left corner. Was composed of RNA duplex, and one side of the triangle formed by RNA was about 10 nm.
 コンピュータ分子設計の結果、long chainの配列は、5’-GGCGCAAAGGCCUGUAAUCGGCGUGAUGAGCCAUGCGAGGAGGAAAUGAAGUCCAAUGGCGUGAUGAGCCUCUACGGGAAGAGCAUGCCCAUCCGGGCGUGAUGAGCGUAGCAA-3’(配列番号24)、short chainの配列は、5‘-GGCCUUUGCGCCUUGCUACGCUCUGACCCGGAUGGGCAUGCUCUUCCCGUAGAGGCUCUGACCAUUGGACUUCAUUUCCUCCUCGCAUGGCUCUGACCGAUUACA-3’(配列番号25)、L7Ae-蛍光蛋白質GFPのペプチド配列は、VPEDMQNEALSLLEKVRESGKVKKGTNETTKAVERGLAKLVYIAEDVDPPEIVAHLPLLCEEKNVPYIYVKSKNDLGRAVGIEVPCASAAIINEGELRKELGSLVEKIKGLQKPFTVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLGVQCFSRYPDHMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNILGHKLEYNYNSHNVYIMADKQKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSYQSALSKDPNEKRDHMVLLEFVTAAGITLGMDELY(配列番号26)、L7Ae-ポリアルギニンモチーフのペプチド配列は、EDMQNEALSLLEKVRESGKVKKGTNETTKAVERGLAKLVYIAEDVDPPEIVAHLPLLCEEKNVPYIYVKSKNDLGRAVGIEVPCASAAIINEGELRKELGSLVEKIKGLQKRRRRRRRRRRR(配列番号27)と決定された。 Results of computer molecular design, arrangement of long chain is, 5'-GGCGCAAAGGCCUGUAAUCGGCGUGAUGAGCCAUGCGAGGAGGAAAUGAAGUCCAAUGGCGUGAUGAGCCUCUACGGGAAGAGCAUGCCCAUCCGGGCGUGAUGAGCGUAGCAA-3 '(SEQ ID NO: 24), the sequence of short chain may, 5'-GGCCUUUGCGCCUUGCUACGCUCUGACCCGGAUGGGCAUGCUCUUCCCGUAGAGGCUCUGACCAUUGGACUUCAUUUCCUCCUCGCAUGGCUCUGACCGAUUACA-3' (SEQ ID NO: 25), L7Ae- fluorescent protein GFP The peptide sequence is VPEDMQNEALSLLEKV ESGKVKKGTNETTKAVERGLAKLVYIAEDVDPPEIVAHLPLLCEEKNVPYIYVKSKNDLGRAVGIEVPCASAAIINEGELRKELGSLVEKIKGLQKPFTVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLGVQCFSRYPDHMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNILGHKLEYNYNSHNVYIMADKQKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSYQSALSKDPNEKRDHMVLLEFVTAAGITLGMDE Y (SEQ ID NO: 26), L7Ae- polyarginine motif peptide sequences were determined with IdiemukyuenuieieruesuerueruikeibuiaruiesujikeibuikeikeijitienuititikeieibuiiarujierueikeierubuiwaiaieiidibuidiPiPiiaibuieieichieruPieruerushiiikeienubuiPiwaiaiwaibuikeiesukeienudierujiarueibuijiaiibuiPishieiesueieiaiaienuijiieruarukeiELGSLVEKIKGLQKRRRRRRRRRRR (SEQ ID NO: 27).
 また、3箇所の頂点部位に確実に3種類の異なるL7Ae融合蛋白質を結合させるため、分割したDelivery-3kakuの設計も行った。RNAを三角形の辺部分で3つに分割したもので、辺部分の粘着末端間の塩基対形成により三角形が構築される。それぞれの頂点ごとにL7Ae融合蛋白質を結合させた後、それら3種類のRNA-蛋白質複合体を混合することにより、3つの異なる蛋白質を1つずつ持つDelivery-3kakuが得られる。3つのパーツはそれぞれ2本のRNA鎖からなり、三角形全体は計6種類のRNA鎖からなる。図20は、実施例7においてコンピュータ分子設計した、分割したDelivery-3kakuを構成するRNA分子の二次構造を示す図である。 In addition, in order to bind three different L7Ae fusion proteins to the three apex sites without fail, a divided Delivery-3kaku was also designed. RNA is divided into three at the sides of the triangle, and a triangle is constructed by base pairing between the sticky ends of the side. After binding the L7Ae fusion protein for each vertex, the three types of RNA-protein complexes are mixed to obtain Delivery-3kaku having one of three different proteins. Each of the three parts consists of two RNA strands, and the entire triangle consists of a total of six types of RNA strands. FIG. 20 is a diagram showing secondary structures of RNA molecules constituting divided Delivery-3kaku designed by computer molecules in Example 7.
 分割したDelivery-3kakuを構成する6種類のRNAはそれぞれ、chain A-Longの配列は、5’-GGCGCAAAGGCCUGUAAUCGGUGCGAUGAGCCAUGCGA-3’(配列番号34、Artificial、38nt)、chain A-Shortの配列は、5’-GGCUUCAUUUCCUCCUCGCAUGGCUCUGACCGAUUACA-3’(配列番号35、Artificial、38nt)、chain B-Longの配列は、5’-GGAGGAAAUGAAGCCCAAUGGCGUGAUGAGCCUCUACG-3’(配列番号36、Artificial、38nt)、chain B-Shortの配列は、5’-GGCAUGCUCUUCCCGUAGAGGCUCUGACCAUUG-3’(配列番号37、Artificial、33nt)、chain C-Longの配列は、5’-GGAAGAGCAUGCCCAUCCGGGUGCGAUGAGCGUAGCAA-3’(配列番号38、Artificial、38nt)、chain C-Shortの配列は、5’-GGCCUUUGCGCCUUGCUACGCUCUGACCCGGAUG-3’(配列番号39、Artificial、34nt)と決定された。 The six RNAs constituting the divided Delivery-3kaku are the chain A-Long sequence, 5′-GGCGCAAAGGCCUGUAAUCGGUGCGAUGAGCCCAUGCGA-3 ′ (SEQ ID NO: 34, Artificial, 38nt), and the chain A-Shor sequence, respectively. -GGCUUCAUUCUCCUCCUCCGCAUGGCUCUGACCGAUUACA-3 '(SEQ ID NO: 35, Artificial, 38nt), chain B-Long sequence is 5'-GGAGGAAAUGAGCCCAAUGGCGUGAUCCCArCUt h36, t-36 -GGCAUGCUCUUCCCGU GAGGCUCUGACCAUG-3 ′ (SEQ ID NO: 37, Artificial, 33 nt), chain C-Long is 5′-GGAAGAGCAUGCCCAUCCGGGUGCGGAUGAGCGGUAGCAA-3 ′ (SEQ ID NO: 38, Artificial, 38nt), Shain-Cin It was determined as GGCCUUUGCGCCUUGCUACGCUCUGACCCCGAUG-3 ′ (SEQ ID NO: 39, Artificial, 34 nt).

Claims (8)

  1.  RNA分子の特異的な構造変化を蛋白質分子で誘導する方法であって、
     RNA-蛋白質複合体相互作用モチーフ由来の塩基配列を含んでなる非天然のRNA分子に、該RNA分子のRNA-蛋白質複合体相互作用モチーフ由来の塩基配列に特異的に結合するアミノ酸配列を含む蛋白質分子を添加することを特徴とする方法。
    A method for inducing specific structural changes in RNA molecules with protein molecules,
    A protein comprising a non-natural RNA molecule comprising a base sequence derived from an RNA-protein complex interaction motif and an amino acid sequence that specifically binds to the base sequence derived from the RNA-protein complex interaction motif of the RNA molecule Adding a molecule.
  2.  特異的に構造変化するRNA分子であって、RNA-蛋白質複合体相互作用モチーフ由来の塩基配列を含んでなる非天然のRNA分子。 An RNA molecule that changes its structure specifically and is a non-natural RNA molecule comprising a base sequence derived from an RNA-protein complex interaction motif.
  3.  請求項2に記載の特異的に構造変化するRNA分子の製造方法であって、
     所望の構造変化が知られているRNA-蛋白質複合体相互作用モチーフを選択するステップと、
     RNA分子の塩基配列を決定するステップであって、上記RNA-蛋白質複合体相互作用モチーフ由来の塩基配列と、足場塩基配列とを、コンピュータ分子モデリング法を用いて配置することにより決定するステップと、
     上記決定するステップにより得られた塩基配列に基づき、RNA分子を製造するステップと
    を含む方法。
    A method for producing a specifically structurally changing RNA molecule according to claim 2, comprising:
    Selecting an RNA-protein complex interaction motif whose known structural change is known;
    Determining a base sequence of an RNA molecule, wherein the base sequence derived from the RNA-protein complex interaction motif and a scaffold base sequence are arranged by using a computer molecular modeling method; and
    And a step of producing an RNA molecule based on the base sequence obtained by the determining step.
  4.  請求項2に記載の特異的に構造変化するRNA分子であって、RNA-蛋白質複合体相互作用モチーフ由来の塩基配列を含んでなる非天然のRNA分子と、
     該RNA分子のRNA-蛋白質複合体相互作用モチーフ由来の塩基配列に特異的に結合するアミノ酸配列を含む蛋白質分子と
    を含んでなる、RNA分子の特異的な構造変化を蛋白質分子で誘導するためのキット。
    A non-natural RNA molecule comprising a base sequence derived from an RNA-protein complex interaction motif, wherein the RNA molecule specifically changes in structure according to claim 2;
    A protein molecule comprising an amino acid sequence that specifically binds to a base sequence derived from the RNA-protein complex interaction motif of the RNA molecule, for inducing a specific structural change of the RNA molecule with the protein molecule kit.
  5.  前記RNA-蛋白質複合体形成に競合するRNA分子をさらに含む請求項4に記載のキット。 The kit according to claim 4, further comprising an RNA molecule that competes with the RNA-protein complex formation.
  6.  請求項2に記載の特異的に構造変化するRNA分子であって、RNA-蛋白質複合体相互作用モチーフ由来の塩基配列を含んでなる非天然のRNA分子と、
     該RNA分子のRNA-蛋白質複合体相互作用モチーフ由来の塩基配列に特異的に結合するアミノ酸配列と、機能性蛋白質とを含んでなる蛋白質分子と
    を含む機能性RNA-蛋白質複合体。
    A non-natural RNA molecule comprising a base sequence derived from an RNA-protein complex interaction motif, wherein the RNA molecule specifically changes in structure according to claim 2;
    A functional RNA-protein complex comprising an amino acid sequence that specifically binds to a base sequence derived from the RNA-protein complex interaction motif of the RNA molecule, and a protein molecule comprising a functional protein.
  7.  前記機能性蛋白質が、マーカー蛋白質、膜透過性蛋白質、腫瘍に特異的な蛋白質、治療効果を有する蛋白質、特定の細胞表面を認識する抗体から選択される一以上である請求項7に記載の機能性RNA-蛋白質複合体。 The function according to claim 7, wherein the functional protein is one or more selected from a marker protein, a membrane-permeable protein, a protein specific to a tumor, a protein having a therapeutic effect, and an antibody that recognizes a specific cell surface. Sex RNA-protein complex.
  8.  RNA-蛋白質複合体ナノ構造体を作成する方法であって、
     RNA-蛋白質複合体相互作用モチーフ由来の塩基配列を含んでなる非天然のRNA分子に、該RNA分子のRNA-蛋白質複合体相互作用モチーフ由来の塩基配列に特異的に結合するアミノ酸配列を含んでなる蛋白質分子と、任意選択的に金属イオンとを添加することを特徴とする方法。
    A method for producing an RNA-protein complex nanostructure comprising:
    A non-natural RNA molecule comprising a base sequence derived from an RNA-protein complex interaction motif contains an amino acid sequence that specifically binds to the base sequence derived from the RNA-protein complex interaction motif of the RNA molecule. A method comprising adding a protein molecule and optionally a metal ion.
PCT/JP2009/063023 2008-07-22 2009-07-21 Method for construction of artificial rnp nano-structure by utilizing rna-protein complex interaction motif WO2010010862A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010521696A JPWO2010010862A1 (en) 2008-07-22 2009-07-21 Method for constructing artificial RNP nanostructure using RNA-protein complex interaction motif

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-188241 2008-07-22
JP2008188241 2008-07-22

Publications (1)

Publication Number Publication Date
WO2010010862A1 true WO2010010862A1 (en) 2010-01-28

Family

ID=41570323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/063023 WO2010010862A1 (en) 2008-07-22 2009-07-21 Method for construction of artificial rnp nano-structure by utilizing rna-protein complex interaction motif

Country Status (2)

Country Link
JP (1) JPWO2010010862A1 (en)
WO (1) WO2010010862A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016006628A1 (en) * 2014-07-09 2016-01-14 国立大学法人京都大学 Rna-protein complex, and rna and protein delivery system using same
WO2017010568A1 (en) * 2015-07-16 2017-01-19 国立大学法人京都大学 Rna-protein complex and use thereof
CN107072183A (en) * 2014-07-14 2017-08-18 华盛顿州立大学 The NANOS for eliminating germ line cell is knocked out
JP2020191806A (en) * 2019-05-27 2020-12-03 国立研究開発法人理化学研究所 Nano device, force sensor, force measuring method and reagent kit

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KUMAR P. ET AL.: "RNA no Kozo Henka ga Idenshi no Switch o ON ni suru", SANSOKEN TODAY, vol. 5, no. 5, 2005, pages 20 - 21 *
KUMAREVEL T. ET AL.: "Structural basis of HutP mediated anti-termination and roles of the Mg2+ ion and L-histidine ligand.", NATURE, vol. 434, no. 7030, 2005, pages 183 - 191 *
SURYADI J. ET AL.: "The crystal structure of the Methanocaldococcus jannaschii multifunctional L7Ae RNA-binding protein reveals an induced-fit interaction with the box C/D RNAs.", BIOCHEMISTRY, vol. 44, no. 28, 2005, pages 9657 - 9672 *
TOMOAKI HARA ET AL.: "RNP Motif L7Ae/Box C/D o Riyo shita Tanpakushitsu Oto Seigyo System no Kochiku", DAI 10 KAI NIPPON RNA GAKKAI NENKAI YOSHISHU, 23 July 2008 (2008-07-23), pages 141 - (P-41) *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016006628A1 (en) * 2014-07-09 2016-01-14 国立大学法人京都大学 Rna-protein complex, and rna and protein delivery system using same
JPWO2016006628A1 (en) * 2014-07-09 2017-04-27 国立大学法人京都大学 RNA-protein complex and RNA and protein delivery system thereby
JP2020022497A (en) * 2014-07-09 2020-02-13 国立大学法人京都大学 Rna-protein complex and delivery system for rna and protein thereby
CN107072183A (en) * 2014-07-14 2017-08-18 华盛顿州立大学 The NANOS for eliminating germ line cell is knocked out
WO2017010568A1 (en) * 2015-07-16 2017-01-19 国立大学法人京都大学 Rna-protein complex and use thereof
JPWO2017010568A1 (en) * 2015-07-16 2018-04-26 国立大学法人京都大学 RNA-protein complexes and uses thereof
JP2020191806A (en) * 2019-05-27 2020-12-03 国立研究開発法人理化学研究所 Nano device, force sensor, force measuring method and reagent kit
JP7272643B2 (en) 2019-05-27 2023-05-12 国立研究開発法人理化学研究所 Nanodevices, force sensors, force measurement methods, and reagent kits

Also Published As

Publication number Publication date
JPWO2010010862A1 (en) 2012-01-05

Similar Documents

Publication Publication Date Title
Hu et al. From DNA nanotechnology to material systems engineering
Fischlechner et al. Viruses as building blocks for materials and devices
Luo et al. Protein assembly: versatile approaches to construct highly ordered nanostructures
US9678080B2 (en) Bis-biotinylation tags
JP5538691B2 (en) Protein-responsive translational control system using RNA-protein interaction motifs
Murphy et al. An improved method for the in vitro evolution of aptamers and applications in protein detection and purification
Yang et al. Diverse protein assembly driven by metal and chelating amino acids with selectivity and tunability
Liu et al. Branched kissing loops for the construction of diverse RNA homooligomeric nanostructures
Ruigrok et al. Characterization of aptamer-protein complexes by X-ray crystallography and alternative approaches
Bai et al. Covalently-assembled single-chain protein nanostructures with ultra-high stability
WO2010010862A1 (en) Method for construction of artificial rnp nano-structure by utilizing rna-protein complex interaction motif
WO2017089570A1 (en) Molecular robot
JP7199512B2 (en) Methods of conjugation of biomolecules and novel uses of gold donors for biomolecular complex formation
Wang et al. Rolling circle transcription-amplified hierarchically structured organic–inorganic hybrid RNA flowers for enzyme immobilization
Mittmann et al. A magnetosome-based platform for flow biocatalysis
Laniado et al. Geometric lessons and design strategies for nanoscale protein cages
Bae et al. Effect of DNA flexibility on complex formation of a cationic nanoparticle with double-stranded DNA
Ohno et al. Designed regular tetragon-shaped RNA–protein complexes with ribosomal protein L1 for bionanotechnology and synthetic biology
Kim et al. Metal-mediated protein assembly using a genetically incorporated metal-chelating amino acid
Babaee et al. DARPin Ec1-LMWP protein scaffold in targeted delivery of siRNA molecules through EpCAM cancer stem cell marker
de Raad et al. A solid-phase platform for combinatorial and scarless multipart gene assembly
JP4106441B2 (en) Method for forming stable complex of transcription product and translation product of DNA encoding arbitrary polypeptide, nucleic acid construct used in the method, complex formed by the method, and functionality utilizing the method Screening of protein and mRNA or DNA encoding the protein
Flores et al. RNA and RNA–protein complex crystallography and its challenges
Ohno et al. Design, assembly, and evaluation of RNA–Protein nanostructures
Du et al. Nucleic acid-based scaffold systems and application in enzyme cascade catalysis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09800376

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2010521696

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09800376

Country of ref document: EP

Kind code of ref document: A1