WO2010010639A1 - Flame-retardant synthetic fiber, process for production of the same, flame-retarddant fiber composites and textile products - Google Patents

Flame-retardant synthetic fiber, process for production of the same, flame-retarddant fiber composites and textile products Download PDF

Info

Publication number
WO2010010639A1
WO2010010639A1 PCT/JP2008/065832 JP2008065832W WO2010010639A1 WO 2010010639 A1 WO2010010639 A1 WO 2010010639A1 JP 2008065832 W JP2008065832 W JP 2008065832W WO 2010010639 A1 WO2010010639 A1 WO 2010010639A1
Authority
WO
WIPO (PCT)
Prior art keywords
flame
fiber
mass
parts
synthetic fiber
Prior art date
Application number
PCT/JP2008/065832
Other languages
French (fr)
Japanese (ja)
Inventor
田中健
羽木裕康
戎敏明
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to PCT/JP2009/062454 priority Critical patent/WO2010010815A1/en
Priority to JP2009549329A priority patent/JP4457182B2/en
Priority to CN2009801227804A priority patent/CN102066625B/en
Priority to TW98123876A priority patent/TWI408266B/en
Priority to US12/506,647 priority patent/US8003555B2/en
Publication of WO2010010639A1 publication Critical patent/WO2010010639A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/28Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/40Modacrylic fibres, i.e. containing 35 to 85% acrylonitrile
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/07Addition of substances to the spinning solution or to the melt for making fire- or flame-proof filaments

Definitions

  • the present invention expresses an extremely high degree of carbonization, shape retention, and self-extinguishing properties at the time of combustion, so that it can be suitably used for textile products that require high flame retardancy, such as bedding and furniture.
  • the present invention relates to a flame retardant synthetic fiber having flame retardancy, a method for producing the same, and a flame retardant fiber composite.
  • flammable materials such as cotton, polyester and urethane foam are often used for the interior and surface for comfort and design at the time of use.
  • flammable materials such as cotton, polyester and urethane foam
  • the flame-retardant material needs to maintain the comfort and design of products such as bedding and furniture.
  • polyester fiber which is an inexpensive material, melts when burned, when it is made only with polyester fiber, a hole is formed and the structure cannot be maintained, and it is used for the bedding and furniture described above. Cotton and urethane foam flared, and the performance was insufficient. Although there are flame retardant polyester fibers containing phosphorus atoms and the like, the behavior at the time of combustion was finally melted as described above, and the performance was insufficient.
  • the method of obtaining highly flame-retardant modacrylic fiber by adding antimony trioxide, antimony pentoxide, magnesium oxide, etc. to the spinning dope can provide flame retardancy, but has a shielding property against flame and heat.
  • One of these performances that is, flame retardancy and satisfying flame and heat barrier properties, is a crosslinked highly flame retardant acrylic fiber to which a polymer containing glycidyl methacrylate is added (patent) Document 1) When exposed to a strong flame such as a burner flame, the fiber itself may decompose and eventually pass through the flame.
  • Patent Document 2 a highly flame-retardant modacrylic fiber added with a solid phase flame retardant represented by water glass or zinc oxide (Patent Document 2), these fibers are excellent in fire extinguishing performance and flame blocking performance.
  • the carbonized film formed during combustion is hard, and depending on the type of furniture and bedding and the shape of the burning part, the shrinkage of the fiber is large, so stress is applied to the carbonized film during combustion, cracking occurs in the carbonized film, and a little In some cases, the carbonized film was perforated by a load of.
  • a modacrylic fiber has been proposed in which zinc oxide and a condensed phosphate compound are added and the carbonization rate at the time of shrinkage is controlled so that cracks are hardly generated (Patent Document 3).
  • Patent Document 3 a modacrylic fiber has been proposed in which zinc oxide and a condensed phosphate compound are added and the carbonization rate at the time of shrinkage is controlled so that cracks are hardly generated.
  • Patent Document 4 a manufacturing method for obtaining acrylic synthetic fibers having good heat shrinkage resistance by performing wet heat tension heat treatment has been proposed (Patent Document 4).
  • the residual shrinkage stress cannot be removed sufficiently to apply heat treatment in a tension state, and the shrinkage can be suppressed at a relatively low temperature of 160 ° C., but it shrinks significantly at a high temperature of 200 ° C. or more like a flame.
  • a flame retardance was inferior.
  • it is not considered at all to be mixed with other fibers necessary as a practical fiber product it cannot be used as a practical flame retardant material.
  • a flame retardant fiber composite comprising a highly flame retardant halogen-containing fiber and a non-flame retardant fiber to which a large amount of a flame retardant is added (Patent Document 5), and an essentially flame-retardant fiber and a halogen-containing fiber
  • Patent Document 6 A flame-retardant nonwoven fabric having a bulky structure composed of, for example, has been proposed.
  • the form before combustion such as a fabric or a woven fabric cannot be maintained at the time of combustion, and a desired flame retardancy, in particular, a flame shielding property cannot be ensured, and a plurality of limited types of fibers are further limited.
  • the fiber content is not high, high flame retardancy cannot be obtained, which may hinder the product design and manufacturing process.
  • heat-resistant fibers and inherently flame-retardant fibers have the desired flame retardancy. Easy, but the fibers themselves are often hard and brittle, and handling is extremely difficult and costly.
  • high flame retardancy cannot be obtained unless the fiber mixing ratio is limited, and in terms of product design and manufacturing. There is a problem in the process.
  • the present invention provides a flame retardant synthetic fiber that satisfies high flame retardancy and high flame shielding properties, a method for producing the same, a flame retardant fiber composite, and a fiber product.
  • the flame-retardant synthetic fiber of the present invention comprises 30 to 70 parts by mass of acrylonitrile, 70 to 30 parts by mass of a halogen-containing vinylidene monomer and / or a halogen-containing vinyl monomer, and a copolymer thereof with 100 parts by mass of the polymer.
  • the method for producing a flame-retardant synthetic fiber according to the present invention comprises 30 to 70 parts by mass of acrylonitrile, 70 to 30 parts by mass of a halogen-containing vinylidene monomer and / or a halogen-containing vinyl monomer, and 100 parts by mass of a polymer.
  • the shrinkage variation when the temperature was raised from 50 ° C. to 300 ° C. under a load of 0.0054 mN / dtex was 45% or less. It is characterized by obtaining a certain flame-retardant synthetic fiber.
  • the flame-retardant fiber composite of the present invention is 10% by mass or more of the above-mentioned flame-retardant synthetic fiber and 90% by mass of at least one kind of fiber selected from natural fibers, recycled fibers, and synthetic fibers other than the above-mentioned flame-retardant synthetic fibers. It includes the following.
  • the fiber product of the present invention is characterized by containing the above-mentioned flame-retardant synthetic fiber.
  • FIG. 1 is an overall view showing the structure of a flame retardant evaluation specimen in one embodiment of the present invention.
  • FIG. 2 is a side sectional view showing the structure of the flame retardant evaluation specimen of FIG.
  • FIG. 3 is an overall view showing the structure of a flame retardant evaluation specimen in another example of the present invention.
  • FIG. 4 is a side sectional view showing the structure of the flame retardant evaluation specimen of FIG.
  • FIG. 5 is a graph showing the shrinkage behavior when the halogen-containing fiber obtained in Production Example 10 which is an example product of the present invention and the fiber of the comparative example product are heated.
  • FIG. 6 is a graph showing a shrinkage pattern of the flame-retardant synthetic fiber in one example of the present invention.
  • FIG. 7 is a graph showing the shrinkage pattern of the flame retardant synthetic fiber of the comparative example.
  • FIG. 8 is a graph showing the shrinkage pattern of the flame retardant synthetic fiber of the comparative example.
  • FIG. 9 is a graph showing a shrinkage pattern of a flame-retardant synthetic fiber in another example of the present invention.
  • FIG. 10 is a graph showing a shrinkage pattern of a flame-retardant synthetic fiber in still another example of the present invention.
  • FIG. 11 is a graph showing a shrinkage pattern of a flame-retardant synthetic fiber in still another example of the present invention.
  • FIG. 12 is a graph showing the shrinkage pattern of the flame retardant synthetic fiber of the comparative example.
  • the present inventors have promoted dehalogenation reaction and carbonization reaction on synthetic fibers containing acrylonitrile and halogen-containing vinylidene and / or halogen-containing vinyl monomer.
  • the present inventors have found that this can be done and have completed the present invention.
  • the polymer (1) of the present invention comprises 30 to 70 parts by mass of acrylonitrile, 70 to 30 parts by mass of a halogen-containing vinylidene monomer and / or halogen-containing vinyl monomer, and a copolymer thereof with 100 parts by mass of the polymer. Contains 0-10 parts by weight of possible vinylic monomers.
  • containing 0 to 10 parts by mass of a vinyl monomer copolymerizable with means that 30 to 70% by mass of acrylonitrile, halogen-containing vinylidene monomer and / or halogen with respect to the total mass of the polymer (1). This means that it contains 70 to 30% by mass of the contained vinyl monomer and 0 to 10% by mass of the vinyl monomer copolymerizable therewith.
  • the acrylonitrile content is 30 to 70 parts by mass, heat resistance necessary for fiberization can be obtained and flame retardancy can be achieved.
  • the acrylonitrile content is preferably 40 to 60 parts by mass, more preferably 40 to 46 parts by mass. When the acrylonitrile content is in the range of 40 to 60 parts by mass, the fiber is less colored.
  • polymer (1) containing 0 to 10 parts by mass include a copolymer of acrylonitrile and one or more halogen-containing vinylidene monomers such as acrylonitrile-vinylidene chloride and acrylonitrile-vinylidene chloride-vinylidene fluoride.
  • a copolymer of at least one halogen-containing vinylidene monomer such as vinylidene chloride, vinylidene bromide, and vinylidene fluoride with acrylonitrile and a vinyl monomer copolymerizable therewith. It is not limited to. Further, one or more of the above copolymers may be appropriately mixed and used.
  • vinyl monomers copolymerizable therewith examples include acrylic acid and esters thereof, methacrylic acid and esters thereof, acrylamide, methacrylamide, vinyl acetate, vinyl sulfonic acid and salts thereof, methallyl sulfonic acid and salts thereof.
  • Styrene sulfonic acid and its salt, 2-acrylamido-2-methyl sulfonic acid and its salt, and one or more of them are used.
  • it is preferable that at least one of them is a sulfonic acid group-containing vinyl monomer because dyeability is improved.
  • polymer (1) containing 30 to 70 parts by mass of the acrylonitrile, 70 to 30 parts by mass of the halogen-containing vinylidene monomer, and 0 to 10 parts by mass of a vinyl monomer copolymerizable therewith
  • the following polymers may be mentioned.
  • Copolymer containing 51 parts by weight of acrylonitrile, 48 parts by weight of vinylidene chloride and 1 part by weight of sodium styrenesulfonate (2) 43 parts by weight of acrylonitrile, 56.1 parts by weight of vinylidene chloride, 2-acrylamido-2-methyl Copolymer containing 0.9 part by weight of sodium propanesulfonate (3) 57 parts by weight of acrylonitrile, 41 parts by weight of vinylidene chloride, copolymer containing 2 parts by weight of sodium allyl sulfonate (4) 60 parts by weight of acrylonitrile, A copolymer containing 30 parts by weight of vinylidene chloride, 10 parts by weight of sodium 2-acrylamido-2-methylpropanesulfonate (5) 55 parts by weight of acrylonitrile, 43 parts by weight of vinylidene chloride, 2 parts by weight of sodium methallylsulfonate Copolymer (6) 69 parts by weight of acrylonitrile,
  • the copolymer can be obtained by a known polymerization method.
  • the polymerization method includes bulk polymerization, suspension polymerization, emulsion polymerization, solution polymerization, and the like, and the polymerization form includes, but is not limited to, continuous, batch, and semi-batch.
  • emulsion polymerization and solution polymerization are preferable as polymerization methods, and continuous and semi-batch methods are preferable as polymerization forms.
  • the at least one metal compound (2) that promotes the dehalogenation reaction during combustion and the carbonization reaction during combustion of the polymer (1) of the present invention includes zinc oxide that promotes both the dehalogenation reaction and the carbonization reaction. , Zinc carbonate, zinc sulfide, zinc borate, zinc phosphate, zinc stannate, metastannic acid, tungsten oxide, zirconium oxide, tin oxide, copper oxide, copper phosphate, indium trioxide and barium titanate (2 -1) or an antimony compound that promotes a dehalogenation reaction with the metal compound (2-1), iron oxide, iron phosphate, iron oxalate, iron sulfide, metastannic acid, molybdenum oxide, bismuth trioxide, bismuth oxychloride
  • a metal compound (2-2) selected from copper iodide can be used in combination.
  • the metal compound (2-1) promotes the dehalogenation reaction at the time of combustion of the polymer (1), promotes the production of a polyene that is a precursor of the carbonization reaction at the time of combustion, and further, a metal halogen produced by dehalogenation. It is believed that the chemical compound catalyzes the polyene structure to promote carbonization.
  • a compound that causes a dehalogenation reaction at 200 ° C. or lower is preferable from the viewpoint of the subsequent promotion of carbonization.
  • at least one selected from zinc oxide, zinc stannate, zinc carbonate, and tin oxide is preferable.
  • the metal compound (2-1) may be used alone or in combination of one or more. Further, a polymer (1) selected from a metal compound (2-1) and an antimony compound, iron oxide, iron phosphate, iron oxalate, iron sulfide, molybdenum oxide, bismuth trioxide, bismuth oxychloride, and copper iodide.
  • a metal compound (2-2) that promotes the dehalogenation reaction during combustion can also be used in combination.
  • the metal compound (2-2) that promotes the dehalogenation reaction of the polymer (1) promotes the formation of a polyene that is a precursor of the carbonization reaction by promoting the dehalogenation reaction of the polymer (1).
  • the single use of the metal compound (2-2) is not effective in the present invention because it does not have the ability to promote carbonization from the generated polyene structure.
  • an antimony compound is particularly preferable.
  • the antimony compound not only promotes the dehalogenation reaction during combustion of the polymer (1), but the antimony halide produced by dehalogenation becomes a gas in a wide temperature range during combustion, and this gas traps radicals. Works to suppress combustion, that is, exhibits fire extinguishing performance.
  • antimony compounds include, but are not limited to, antimony oxide compounds such as antimony trioxide, antimony tetraoxide, and antimony pentoxide, inorganic antimony compounds such as antimonic acid and salts thereof, and antimony oxychloride. is not. These may be used in combination. Among these, antimony trioxide and antimony pentoxide are preferable from the viewpoints of performance and industrial availability.
  • the addition amount of the metal compound (2) is 30 to 70 parts by mass of acrylonitrile, 70 to 30 parts by mass of a halogen-containing vinylidene monomer and / or a halogen-containing vinyl monomer, and a vinyl monomer copolymerizable therewith.
  • 0.05 to 50 parts by mass is preferable with respect to 100 parts by mass of the polymer (1) containing 0 to 10 parts by mass.
  • about a lower limit, 0.1 mass part is more preferable, and 1 mass part is still more preferable.
  • about an upper limit, 40 mass parts is more preferable, and 30 mass parts is still more preferable.
  • the amount of the metal compound (2) used is 0.05 to 50 parts by mass, there is an effect of carbonizing the polymer at the time of combustion (carbonization effect), and the carbonization necessary for obtaining the desired high flame retardance performance. An effect can be obtained and a desired shrinkage rate can be obtained. In the preferred range, the above-mentioned effects are further increased.
  • the amount of the metal compound (2-1) added is 30 to 70 parts by mass of acrylonitrile, 70 to 30 parts by mass of a halogen-containing vinylidene monomer and / or a halogen-containing vinyl monomer, and a vinyl-based monomer copolymerizable therewith.
  • 0.05 to 50 parts by mass is preferable with respect to 100 parts by mass of the polymer (1) containing 0 to 10 parts by mass of the monomer.
  • About a lower limit, 0.1 mass part is more preferable, and 1 mass part is still more preferable.
  • about an upper limit, 40 mass parts is more preferable, and 30 mass parts is still more preferable.
  • the amount of the metal compound (2-1) used is 0.05 to 50 parts by mass, there is an effect of carbonizing the polymer at the time of combustion (carbonization effect), and the necessary carbonization to obtain the desired high flame resistance performance. An effect can be obtained and a desired shrinkage rate can be obtained. In the preferred range, the above-mentioned effects are further increased.
  • the addition amount of the metal compound (2-2) is 30 to 70 parts by mass of acrylonitrile, 70 to 30 parts by mass of a halogen-containing vinylidene monomer and / or a halogen-containing vinyl monomer, and a vinyl-based monomer copolymerizable therewith. 0 to 50 parts by weight, preferably 3 to 40 parts by weight, and more preferably 5 to 30 parts by weight with respect to 100 parts by weight of the polymer (1) containing 0 to 10 parts by weight of the monomer. Even if it is 0 parts by mass, the desired flame retardant performance may be achieved, but since the self-extinguishing effect is small, it is 3 parts by mass or more when used for applications that require a higher level of self-extinguishing effect. It is preferable to add 40 parts by mass or less.
  • the average particle size of the metal compound (2) is preferably 3 ⁇ m or less, and more preferably 2 ⁇ m or less.
  • the average particle size of the metal compound (2) is 3 ⁇ m or less, troubles such as nozzle clogging in the production process of the fiber obtained by adding the metal compound component to the halogen-containing polymer, improvement of the fiber strength, From the viewpoint of dispersion of the metal compound component particles.
  • the minimum in the average particle diameter of a metal compound (2) is not specifically limited, 0.01 micrometer or more is preferable from the point of handling property, and 0.05 micrometer or more is more preferable.
  • the metal compound (2) may be subjected to chemical modification on the particle surface in order to improve blocking properties, or may be used in a state dispersed in water or an organic solvent.
  • the average particle diameter means a median diameter. As a method for measuring the median diameter, a light scattering method can be used.
  • the flame-retardant synthetic fiber of the present invention preferably further contains 0.1 to 20 parts by mass of an epoxy group-containing compound with respect to 100 parts by mass of the polymer (1).
  • an epoxy group-containing compound By including an epoxy group-containing compound, it is crosslinked by drying or heat treatment in the fiber production process, a polymer crosslinked structure is formed in the fiber, and fiber shrinkage can be further suppressed.
  • the epoxy group-containing compound may be a glycidyl ether type, a glycidyl amine type, a glycidyl ester type, a cyclic aliphatic type, or a copolymer containing these.
  • a glycidyl ether type a glycidyl amine type, a glycidyl ester type, a cyclic aliphatic type, or a copolymer containing these.
  • polyglycidyl methacrylate weight average molecular weight 3000 to 100,000
  • the heat treatment of the present invention includes relaxation heat treatment and tension heat treatment.
  • the relaxation heat treatment referred to in the present invention means that, for example, assuming that the heat treatment is applied when the yarn (fiber bundle) moves between the two rollers, the two rollers are identical under the temperature condition in which the fibers do not contract. This refers to heat treatment in the state of the yarn when moving between rollers when the rotation speed is set (constant length state), or in the state where the moving yarn is more slack (relaxed state). Even when the fiber contracts between the two rollers by heat treatment, if the tension applied to the fiber is at the same level as the above state, relaxation heat treatment is performed.
  • the tension heat treatment referred to in the present invention is a state other than the state of the yarn in the relaxation heat treatment, for example, when the two rollers are moved at the same rotational speed under temperature conditions where the fibers do not contract.
  • the heat treatment is in a tension state equivalent to the yarn state in the relaxation heat treatment, the heat treatment is a relaxation heat treatment, and if the heat treatment is in the tension state equivalent to the yarn state in the tension heat treatment, the tension is It becomes heat treatment.
  • any of a general heat treatment method, a dry heat treatment method and a wet heat treatment method is possible.
  • examples of the wet heat treatment method include, but are not limited to, a heat steam treatment method and a wet heat pressure steam treatment method.
  • the fiber state during the heat treatment may be either relaxed or tensioned.
  • the relaxed state includes a constant length state.
  • a relaxation heat treatment method, a heated steam relaxation heat treatment method, and a wet heat pressurized steam relaxation heat treatment method are preferred, and a dry heat relaxation heat treatment method and a wet heat pressurized steam relaxation heat treatment method are more preferred. Further, a heat treatment step may be formed by combining a plurality of these methods and fiber states.
  • the heat treatment of the flame-retardant synthetic fiber can reduce the spinning residual shrinkage stress as the treatment temperature is higher.
  • the heat necessary for heat transfer to the inside of the fiber even at a temperature lower than the softening temperature or decomposition temperature of the flame-retardant synthetic fiber enables sufficient heat treatment without coloring or strength reduction.
  • the said heat processing can be performed by a continuous type or batch type process.
  • a heated steam treatment method and a wet heat pressurized steam treatment method are preferable, and when using a copolymer having acrylonitrile of 50 parts by mass or less, a dry heat treatment method, The wet heat pressurized steam treatment method is preferred.
  • the heat treatment temperature is 120 to 200 ° C., preferably 140 to 180 ° C., more preferably 150 to 170 ° C. for the dry heat treatment method, and 80 to 160 ° C. for the wet heat pressurized steam treatment method.
  • the temperature is preferably 90 to 150 ° C., more preferably 100 to 140 ° C., and 140 to 230 ° C., preferably 150 to 210 ° C., more preferably 160 to 190 ° C. in the case of the heat steam treatment method.
  • the dry heat treatment method is 180 to 260 ° C, preferably 180 to 240 ° C
  • the wet heat pressure steam treatment method is 150 to 230 ° C, preferably 160 to 210 ° C.
  • the temperature is 160 to 250 ° C, preferably 170 to 220 ° C.
  • the upper limit of the heat treatment temperature is not particularly limited, but is 300 ° C., preferably 250 ° C., more preferably 220 ° C. from the viewpoint of coloring of the flame-retardant synthetic fiber and an industrial viewpoint.
  • the heat treatment is preferably a relaxation heat treatment, a dry heat tension heat treatment at 180 ° C. or higher, or a wet heat tension heat treatment at 150 ° C. or higher.
  • a flame-retardant synthetic fiber having a shrinkage variation of 45% or less when the temperature is raised from 50 ° C. to 300 ° C. under a load of 0.0054 mN / dtex is easily obtained.
  • a relaxation heat treatment is more preferable.
  • the heat treatment referred to in the present invention refers to reducing or removing the spinning shrinkage stress by shrinking the fiber under heating.
  • the flame retardant synthetic fiber after the spinning and before the heat treatment, has a shrinkage variation of 45% or less when the temperature is increased from 50 ° C. to 300 ° C. under a load of 0.0054 mN / dtex. Stretching may be performed.
  • shrinkage fluctuation shrinkage rate at point b ⁇ shrinkage rate at point b ′. 3.
  • contraction fluctuation shrinkage rate indicated by an arrow (shrinking fluctuation ⁇ when extending and contracting). 4).
  • Point a in the figure is the softening start point. Between points a and b, shrinkage due to stress relaxation, shrinkage due to dehalogenation, and “elongation” due to softening occur, but shrinkage prevails over elongation.
  • the shrinkage pattern may be such that carbonization occurs again at a certain temperature or higher and shrinks (maintains the shape).
  • the shrinkage rate at the point b ′ in the figure is more preferably 0% or more. 6).
  • the contraction pattern of the fiber of the comparative example is shown in FIGS.
  • FIG. 7 is not preferable because it will be stretched or cut when the temperature is raised.
  • FIG. 8 shows excellent carbonization ability and monotonically shrinks with temperature, but the shrinkage due to stress relaxation (points a and b in the figure) is too large. Since it becomes above, it is not preferable.
  • the flame retardant synthetic fiber of the present invention may include other additives such as an antistatic agent, a thermal coloring inhibitor, a light resistance improver, a whiteness improver, a devitrification inhibitor, a colorant, and a flame retardant as necessary. May be included.
  • the flame-retardant synthetic fiber of the present invention comprises 30 to 70 parts by mass of acrylonitrile, 70 to 30 parts by mass of a halogen-containing vinylidene monomer and / or a halogen-containing vinyl monomer, and a copolymer thereof with 100 parts by mass of the polymer.
  • a polymer containing 0 to 10 parts by mass of a vinyl-based monomer that can be used is produced by a known production method such as a wet spinning method, a dry spinning method, or a semi-dry semi-wet method.
  • the above polymer is dissolved in a solvent such as N, N-dimethylformamide, N, N-dimethylacetamide, acetone, rhodium salt aqueous solution, dimethyl sulfoxide, nitric acid aqueous solution, and then extruded into a coagulation bath through a nozzle.
  • the product is obtained by coagulation with water, followed by washing with water, drying, stretching and heat treatment, and if necessary, crimping and cutting.
  • the solvent is preferably N, N-dimethylformamide, N, N-dimethylacetamide, or acetone, and more preferably N, N-dimethylformamide or acetone because of industrial handling.
  • the flame-retardant synthetic fiber of the present invention may be a short fiber or a long fiber, and can be appropriately selected in the method of use.
  • the fineness is appropriately selected depending on the use of the composite used and the fiber product, but is preferably 1 to 50 dtex, more preferably 1.5 to 30 dtex, and still more preferably 1.7 to 15 dtex.
  • the cut length is appropriately selected depending on the use of the composite and the textile product.
  • a short-cut fiber fiber length 0.1 to 5 mm
  • a short fiber fiber length 38 to 128 mm
  • a long fiber (filament) that is not cut at all can be mentioned.
  • short fibers having a fiber length of about 38 to 76 mm are preferable.
  • the fineness of other fibers may be the same, and it may be thin or thick.
  • the flame-retardant synthetic fiber of the present invention can be combined with other fibers, particularly polyester fibers.
  • Metal compound (2-1) As the metal compound (2-1), for example, zinc oxide, zinc oxide is said to have a function of promoting the dehalogenation reaction of the flame-retardant synthetic fiber. .
  • zinc halide produced by dehalogenation or dehydrohalogenation in the case of chlorine, zinc chloride (ZnCl 2 ) acts catalytically on the polyene structure to promote carbonization (the residue during combustion is a form-retaining component)
  • it is thought to contribute to the triazine ring formation reaction of acrylonitrile (fibers shrink by cyclization).
  • Such an effect is exhibited not only in zinc oxide but also in other zinc compounds, organic zinc compounds such as zinc carbamate and zinc octylate, or some metal oxides such as tin oxide and copper oxide.
  • the carbide generated as a result of the carbonization and cyclization promoting action by the metal compound (2-1) is strong and allows the presence of a residue, particularly a residue retaining the fiber form.
  • shrinkage factors during heating include: a. Shrinkage due to carbonization; b. There are two possible causes: shrinkage due to spinning residual stress. Of these, a. Shrinkage due to carbonization is caused by dehalogenation reaction from the copolymer and triazine ring formation of acrylonitrile. This is a chemical reaction derived from the copolymer composition, and it is difficult to suppress shrinkage due to this reaction.
  • Shrinkage due to spinning residual shrinkage stress is due to residual strain applied to the fiber during solidification and drawing operations in the fiber manufacturing process, and the fiber manufacturing conditions, particularly the heat treatment conditions in the fiber manufacturing process, should be selected as appropriate. Can be suppressed.
  • the heat treatment method include relaxation heat treatment, tension heat treatment at 150 ° C. or higher in wet heat, and tension heat treatment at 180 ° C. or higher in dry heat. Of these, relaxation heat treatment is preferred as a heat treatment method for sufficiently suppressing the spinning residual stress. By applying these heat treatments, the residual shrinkage stress in spinning can be suppressed, and the shrinkage fluctuation during heating (combustion), that is, when the temperature is raised from 50 ° C. to 300 ° C.
  • the flame-retardant synthetic fiber of the present invention has a softening temperature and a dehalogenation start temperature (decomposition point) close to each other, the dehalogenation reaction occurs when the heat treatment temperature is raised, or the fiber is colored or given sufficient heat treatment. May be difficult.
  • the heat treatment temperature can be set to the decomposition temperature or lower.
  • sufficient heat treatment can be performed even at a temperature equal to or lower than the softening point temperature under a pressurized moist heat condition.
  • the flame retardant synthesis of the present invention after spinning and before heat treatment.
  • the fiber may be stretched.
  • the total draw ratio ( stretch ratio (%) ⁇ (100 ⁇ relaxation ratio (%)) ⁇ 0.01) obtained by multiplying the stretch ratio by the relaxation ratio (magnification), which is the ratio at which the fiber shrinks during heat treatment, It is preferably less than 4.8 times, and more preferably less than 4.2 times.
  • the flame-retardant synthetic fiber of the present invention can be used alone or in combination with natural fiber, recycled fiber, other synthetic fiber, or the like.
  • the flame retardant fiber composite of the present invention means a composite formed by combining the flame retardant synthetic fiber of the present invention and other fibers.
  • the flame-retardant fiber composite is 10% by mass or more of the above-mentioned flame-retardant synthetic fiber and 90 masses of at least one kind of fiber selected from natural fibers, recycled fibers, and synthetic fibers other than the above-mentioned flame-retardant synthetic fibers. % Or less included.
  • the upper limit of the content of the flame retardant synthetic fiber in the flame retardant fiber composite is preferably 90% by mass or less, and at least one selected from natural fibers, recycled fibers, and synthetic fibers other than the flame retardant synthetic fibers.
  • the lower limit of the fiber content is preferably 10% by mass or more.
  • Natural fibers include cotton fiber, kapok fiber, flax fiber, cannabis fiber, ramie fiber, jute fiber, manila fiber, kenaf fiber, wool fiber, mohair fiber, cashmere fiber, camel fiber, alpaca fiber, angora fiber, silk fiber, etc.
  • regenerated fibers include regenerated cellulose fibers (rayon, polynosic, trade name “Cupura” manufactured by Asahi Kasei Co., Ltd., product names “Tencel” and “lenting modal” manufactured by Asahi Kasei), regenerated collagen fibers, regenerated protein fibers, cellulose acetate fibers, There are promix fibers.
  • Synthetic fibers include polyester fiber, polyamide fiber, polylactic acid fiber, acrylic fiber, polyolefin fiber, polyvinyl alcohol fiber, polyvinyl chloride fiber, polyvinylidene chloride fiber (trade name "Saran” manufactured by Asahi Kasei Fibers), polyclar fiber, polyethylene Fiber (trade name “Dyneema” manufactured by Toyobo Co., Ltd.), polyurethane fiber, polyoxymethylene fiber, polytetrafluoroethylene fiber, aramid fiber (trade names “Kevlar” manufactured by DuPont, “Nomex”), “Technola” manufactured by Teijin Limited ”,“ Twaron ”,“ Conex ”), benzoate fiber, polyphenylene sulfide fiber (trade name“ Procon ”manufactured by Toyobo Co., Ltd.), polyether ether ketone fiber, polybenzazole fiber, polyimide fiber (trade name, manufactured by Toyobo Co., Ltd.) “
  • Synthetic fibers include flame retardant polyester (trade name “Hheim” manufactured by Toyobo Co., Ltd., product name “Trevira CS” manufactured by Trevira), polyethylene naphthalate fiber (trade name “Teonex” manufactured by Teijin Limited), and melamine fiber (Vasofil Fibers).
  • cotton fiber, rayon fiber, water glass-containing rayon fiber, polyester fiber, and aramid fiber are preferable, polyester fiber is particularly preferable, the cost is low, and in the case of a nonwoven fabric, it is bulky.
  • cotton fiber, rayon fiber, water glass-containing rayon fiber, and aramid fiber are preferable in that they can further impart flame retardancy.
  • the synthetic fiber other than the flame-retardant synthetic fiber is a polyester fiber, and the content in the flame-retardant fiber composite is 40% by mass or more. The upper limit is preferably 90% by mass or less.
  • the flame retardant fiber composite includes mixed cotton, mixed spinning, mixed fiber, aligned yarn, synthetic yarn, core sheath and other composite yarn, union, union, lamination, etc.
  • Examples of cotton for filling include open cotton, ball cotton, web, and molded cotton.
  • Nonwoven fabrics include wet papermaking nonwoven fabrics, carded nonwoven fabrics, airlaid nonwoven fabrics, thermal bond nonwoven fabrics, chemically bonded nonwoven fabrics, needle punched nonwoven fabrics, hydroentangled nonwoven fabrics, and stitch bond nonwoven fabrics.
  • Thermal bond nonwoven fabric and needle punched nonwoven fabric are industrially inexpensive.
  • the nonwoven fabric may have any of a uniform structure, a clear laminated structure, and an unclear laminated structure in the thickness, width, and length directions.
  • the knitting includes round knitting, weft knitting, warp knitting, pile knitting, etc., flat knitting, tengu knitting, rib knitting, smooth knitting (double-sided knitting), rubber knitting, pearl knitting, denby knitting, cord knitting, atlas knitting, There are chain structures, inserted tissues, and the like. Tengu and ribs are excellent in texture as products.
  • the textile product contains the flame retardant synthetic fiber.
  • the textile products include the following. (1) Clothing and daily necessities Clothing (including outerwear, underwear, sweaters, vests, trousers, etc.), gloves, socks, mufflers, hats, bedding, pillows, cushions, stuffed animals, etc. (2) Special clothing Protective clothing, fire fighting clothing (3) Interior materials Chair upholstery, curtains, wallpaper, carpets, etc. (4) Industrial materials Filters, flameproof stuffing, lining materials, etc.
  • a textile product of the present invention is used to produce bedding or furniture such as a bed mattress, pillow, comforter, bed spread, mattress pad, futon, cushion, chair, etc.
  • a fabric upholstered product having excellent properties such as texture, touch, color tone, and hygroscopicity can be obtained.
  • the bed mattress include a pocket coil mattress in which a metal coil is used, a box coil mattress, an insulator in which styrene or urethane resin is foamed, or a mattress in which low-rebound urethane is used. . Due to the flame retardancy of the flame retardant synthetic fiber of the present invention, it is possible to prevent the spread of fire to the internal structure of the mattress.
  • any mattress of the structure a mattress excellent in texture and touch as well as flame retardancy is obtained.
  • chairs used indoors, tools, benches, side chairs, armchairs, lounge chairs / sofas, seat units (sectional chairs, separate chairs), rocking chairs, folding chairs, stacking chairs, swivel chairs, or outdoors Automotive seats, marine seats, aircraft seats, train seats, etc. used for vehicle seats, etc., but these also prevent the spread of internal fire as well as the appearance and feel required for normal furniture It is possible to obtain a flame retardant product having the function of
  • the fabric containing the flame retardant synthetic fiber and / or the flame retardant fiber composite of the present invention (hereinafter referred to as the fabric of the present invention) for a flame retardant upholstered product is as follows. It may be used in a form, or may be sandwiched in the form of a woven fabric, a knitted fabric or a non-woven fabric between a fabric on the surface and an internal structure such as urethane foam or stuffed cotton. When used for the surface fabric, the fabric of the present invention may be used instead of the conventional surface fabric.
  • the surface fabric when a woven fabric or a knitted fabric is sandwiched between the surface fabric and the internal structure, the surface fabric may be sandwiched in a manner of overlapping two sheets, or the internal structure may be covered with the fabric of the present invention.
  • sandwiching the fabric of the present invention between the surface fabric and the internal structure be sure to cover the entire internal structure with the fabric of the present invention on the outside of the internal structure at least for the part that contacts the surface fabric. Apply the surface fabric from above.
  • the evaluation method for promoting the dehalogenation reaction was carried out as follows using a differential heat / thermogravimetry (trade name “TG / DTA220” manufactured by Seiko Instruments Inc.).
  • evaluation method for carbonization reaction promotion The evaluation method of carbonization reaction acceleration was carried out as follows using a differential heat / thermogravimetry (trade name “TG / DTA220” manufactured by Seiko Instruments Inc.).
  • This spinning dope was extruded into a 30% acetone aqueous solution using a nozzle having a nozzle hole diameter of 0.10 mm and a hole number of 1000 holes, washed with water while being stretched, dried at 120 ° C., and further at 123 ° C. in wet heat and pressurized steam for 15 minutes. Then, a relaxation treatment was performed in a non-tensioned state, and a halogen-containing fiber was obtained by further cutting. At this time, the total draw ratio was 2.6 times. The obtained fiber was a fine fiber having a fineness of 7.8 dtex and a cut length of 64 mm.
  • This spinning dope is extruded into a 30% acetone aqueous solution using a nozzle having a nozzle hole diameter of 0.10 mm and a hole number of 1000 holes, washed with water while being stretched, dried at 120 ° C., and then at 170 ° C. for 2 minutes in a state of no tension.
  • the total draw ratio was 3.0 times.
  • the obtained fiber was a fine fiber having a fineness of 7.8 dtex and a cut length of 64 mm.
  • This spinning dope is extruded into a 30% acetone aqueous solution using a nozzle having a nozzle hole diameter of 0.10 mm and a hole number of 1000 holes, washed with water while being stretched, dried at 120 ° C., and then at 170 ° C. for 2 minutes in a state of no tension.
  • the total draw ratio was 3.0 times.
  • the obtained fiber was a fine fiber having a fineness of 7.8 dtex and a cut length of 64 mm.
  • This spinning stock solution was extruded into a 30% acetone aqueous solution using a nozzle having a nozzle hole diameter of 0.10 mm and a hole number of 1000 holes, washed with water while being stretched, dried at 120 ° C., and further dried at 185 ° C. for 2 minutes.
  • the total draw ratio was 3.0 times.
  • the obtained fiber was a fine fiber having a fineness of 7.8 dtex and a cut length of 64 mm.
  • This spinning dope was extruded into a 30% acetone aqueous solution using a nozzle with a nozzle hole diameter of 0.10 mm and a hole number of 1000 holes, washed with water while being stretched, dried at 120 ° C., and further dried at 150 ° C. for 15 minutes in wet heat pressurized steam.
  • the halogen-containing fiber was obtained by further heat-cutting and heat-treating. At this time, the total draw ratio was 4.5 times.
  • the obtained fiber was a fine fiber having a fineness of 7.8 dtex and a cut length of 64 mm.
  • This spinning dope is extruded into a 30% acetone aqueous solution using a nozzle with a nozzle hole diameter of 0.10 mm and a hole number of 1000 holes, washed with water while being stretched, dried at 120 ° C., and further cut without performing a relaxation treatment. To obtain a halogen-containing fiber. At this time, the total draw ratio was 3.0 times. The obtained fiber was a fine fiber having a fineness of 7.8 dtex and a cut length of 64 mm.
  • This spinning dope was extruded into a 30% acetone aqueous solution using a nozzle having a nozzle hole diameter of 0.10 mm and a hole number of 1000 holes, washed with water while being stretched, dried at 120 ° C., and further at 123 ° C. in wet heat and pressurized steam for 15 minutes. Then, a relaxation treatment was performed in a non-tensioned state, and a halogen-containing fiber was obtained by further cutting. At this time, the total draw ratio was 2.6 times. The obtained fiber was a fine fiber having a fineness of 7.8 dtex and a cut length of 64 mm.
  • This spinning dope was extruded into a 30% acetone aqueous solution using a nozzle having a nozzle hole diameter of 0.10 mm and a hole number of 1000 holes, washed with water while being stretched, dried at 120 ° C., and further at 123 ° C. in wet heat and pressurized steam for 15 minutes. Then, a relaxation treatment was performed in a non-tensioned state, and a halogen-containing fiber was obtained by further cutting. At this time, the total draw ratio was 2.6 times. The obtained fiber was a fine fiber having a fineness of 7.8 dtex and a cut length of 64 mm.
  • This spinning dope was extruded into a 30% acetone aqueous solution using a nozzle having a nozzle hole diameter of 0.10 mm and a hole number of 1000 holes, washed with water while being stretched, dried at 120 ° C., and further at 123 ° C. in wet heat and pressurized steam for 15 minutes. Then, a relaxation treatment was performed in a non-tensioned state, and further cut to obtain a halogen-containing fiber. At this time, the total draw ratio was 2.6 times. The obtained fiber was a fine fiber having a fineness of 7.8 dtex and a cut length of 64 mm.
  • This spinning dope was extruded into a 30% acetone aqueous solution using a nozzle with a nozzle hole diameter of 0.10 mm and a hole number of 1000 holes, washed with water while being stretched, dried at 120 ° C., and further dried at 15 ° C. at 123 ° C.
  • a halogen-containing fiber was obtained by performing a relaxation treatment in a state of no tension for a minute and further cutting. At this time, the total draw ratio was 2.6 times.
  • the obtained fiber was a fine fiber having a fineness of 7.8 dtex and a cut length of 64 mm.
  • This spinning dope was extruded into a 30% acetone aqueous solution using a nozzle having a nozzle hole diameter of 0.10 mm and a hole number of 1000 holes, washed with water while being stretched, dried at 120 ° C., and further at 123 ° C. in wet heat and pressurized steam for 15 minutes. Then, a relaxation treatment was performed in a non-tensioned state, and further cut to obtain a halogen-containing fiber. At this time, the total draw ratio was 2.6 times. The obtained fiber was a fine fiber having a fineness of 7.8 dtex and a cut length of 64 mm.
  • This spinning dope is extruded into a 30% acetone aqueous solution using a nozzle having a nozzle hole diameter of 0.10 mm and a hole number of 1000 holes, washed with water while being stretched, dried at 120 ° C., and then at 170 ° C. for 2 minutes in a state of no tension.
  • the total draw ratio was 2.6 times.
  • the obtained fiber was a fine fiber having a fineness of 7.8 dtex and a cut length of 64 mm.
  • This spinning stock solution was extruded into a 30% acetone aqueous solution using a nozzle having a nozzle hole diameter of 0.10 mm and a hole number of 1000 holes, washed with water while being stretched, dried at 120 ° C., and further dried at 170 ° C. for 2 minutes.
  • the total draw ratio was 5.0 times.
  • the obtained fiber was a fine fiber having a fineness of 7.8 dtex and a cut length of 64 mm.
  • This spinning dope was extruded into a 55% dimethylformamide aqueous solution using a nozzle having a nozzle hole diameter of 0.06 mm, washed with water while being stretched, dried at 130 ° C., stretched, and further subjected to wet heat tension treatment at 140 ° C. for 15 minutes. Further, a halogen-containing fiber was obtained by cutting. At this time, the total draw ratio was 4.8 times. Further, the obtained fiber was a short fiber having a fineness of 1.7 dtex and a cut length of 64 mm.
  • This spinning dope is extruded into a 60% dimethylformamide aqueous solution using a nozzle having a nozzle hole diameter of 0.06 mm, washed with water while being stretched, dried at 130 ° C., further subjected to wet heat tension treatment at 130 ° C. for 15 minutes, and further cut. Thus, a halogen-containing fiber was obtained. At this time, the total draw ratio was 5.1 times. The obtained fiber was a fine fiber having a fineness of 2.2 dtex and a cut length of 64 mm.
  • the obtained fiber was a fine fiber having a fineness of 7.8 dtex and a cut length of 64 mm.
  • Tetron fineness 6 dtex, cut length 51 mm
  • TORAY which is a general-purpose polyester fiber as a polyester fiber
  • SAFMET a fineness of 4.4 dtex, a cut length of 51 mm, a melting point of 110 ° C.
  • General purpose rayon and / or para-aramid fiber (trade name “Kevlar” manufactured by Dupont).
  • FIGS. 3 The structure of a pillow top type mattress is shown in FIGS. Two polyurethane foams (type 360S manufactured by Toyo Rubber Industries Co., Ltd.) (1), 30 cm long x 45 cm wide x 1.9 cm thick x 1.9 cm thick, density 1.27 cm, density 30 cm long
  • One 22 kg / m3 polyurethane foam type 360S manufactured by Toyo Tire & Rubber Co., Ltd.
  • one non-woven fabric (3) prepared by the method for preparing a non-flammability evaluation test non-woven fabric
  • outer surface fabric 4)
  • a nylon thread (5) is used to quilt at a quilting interval of 20 cm, and the polyurethane foam having a thickness of 15 cm (type 360 manufactured by Toyo Tire & Rubber Co., Ltd.) S) (6) was laminated to produce a pillow top type mattress specimen.
  • FIGS. 4 Method for Producing Tight Top Type Mattress Specimen
  • the structure of a tight top type mattress specimen is shown in FIGS.
  • One piece of fabric (weight per unit area: 120 g / m 2 ) selected from cloth and a structure laminated as shown in FIG. 4 is quilted with a nylon thread (5) at a quilting interval of 20 cm, and this is polyurethane foam (Toyo
  • a tight top type mattress test specimen was prepared by pasting onto a rubber industry type 360S) (6).
  • Pillow specimen preparation method Manufacture of batting
  • Product name “Tetron” fineness 6 dtex, cut length 51 mm
  • TORAY which is a general-purpose polyester fiber as a halogen-containing fiber and a polyester-based fiber produced by the production methods shown in Production Examples 5, 11, and 22 above.
  • It was used. These fibers were opened with a card at a blending ratio shown in Table 3 below to form a web, and multilayered to produce batting.
  • a spun yarn with a metric count of 34 was obtained by blending 50% by weight of cotton fiber and 50% by weight of polyester fiber.
  • a plain weave fabric having a basis weight of 120 g / m 2 was produced from this spun yarn by a known method.
  • the produced batting is cut into a length of about 30.5 cm and a width of about 30.5 cm.
  • the batting is sandwiched between fabrics (side ground) cut to about 38.1cm in length and 38.1cm in width, and a plate with a weight of 325g is placed on it, and the height of the cushion is 89mm (3.5inch) or more and 102mm (4.0inch) ) Was adjusted so as to be within the range, and the four sides were closed with a cut yarn to produce a flame retardant evaluation cushion.
  • Specimen preparation method assuming fabric
  • the halogen-containing fibers and cotton prepared by the production methods shown in the above Production Examples 5, 11, and 22 are mixed so as to have a predetermined mixture ratio shown in Table 3 below, and opened by a card.
  • a needle punched nonwoven fabric with a predetermined basis weight was produced by a normal needle punch method.
  • the prepared needle punched nonwoven fabric was thermally compressed at 150 ° C. for 300 seconds with a hot press machine to prepare a test specimen having a thickness of 2 mm, which was used as a specimen assuming a cloth.
  • Method for preparing test specimen of knit fabric A predetermined amount of the halogen-containing fiber and cotton fiber prepared in the production example are mixed to produce a spun yarn (meter count 34), and a predetermined circular knitting machine is used. A knit fabric having
  • Panel test evaluation method The test was conducted according to the combustion test method for the upper surface of the bed of 16 CFR 1633 in the United States. Briefly explaining the combustion test method on the upper surface of the bed of US 16CFR1633, a T-shaped burner was set horizontally at 39 mm from the upper surface of the bed, propane gas was used as the combustion gas, the gas pressure was 101 KPa, The flow rate is 12.9 L / min, and it is a test method for flaming for 70 seconds. The evaluation of flame retardancy was as follows. A rank pass: When tested by the above test method, self-extinguishing and no cracks or holes were found in the exposed part.
  • Rank B Same as above, but self-extinguishing, but a crack of less than 1 cm occurred in the part exposed to flame.
  • C rank Same as above, but self-extinguishing, but a crack of 1 cm or more occurred in the part exposed to the flame.
  • D rank pass Same as above, once ignited the internal flammable urethane, but immediately disappeared and finally self-extinguished. Fail: Same as above, the internal flammable urethane was ignited, the fire was forcibly extinguished, and the test was stopped.
  • a pearlite plate with a length of 200 mm ⁇ width 200 mm ⁇ thickness 10 mm was prepared by making a hole with a diameter of 15 cm at the center, and was prepared based on a method for preparing a thermal bond nonwoven fabric for flame retardant evaluation test.
  • a nonwoven fabric was placed, and four sides were fixed with clips so that the nonwoven fabric for flame retardancy evaluation test did not shrink during heating.
  • the sample is placed on the gas stove (trade name “PA-10H-2”, manufactured by Paloma Kogyo Co., Ltd.) with the surface of the non-woven fabric for flame retardant evaluation test facing upward, and the center of the sample and the center of the burner are 40 mm from the burner surface. Set to fit.
  • the fuel gas used was propane with a purity of 99% or more, the flame height was 25 mm, and the flame contact time was 180 seconds. At this time, the case where there was no through hole or crack in the carbonized layer of the non-woven fabric for flame retardancy evaluation test, or the case where there was no through hole but there was a crack, was accepted, and the case where there was a hole or crack was rejected.
  • JIS L1091 A-4 Test Evaluation Method The evaluation of the fabric was performed based on the JIS L1091 A-4 method. Five test specimens (8.9 cm long ⁇ 25.4 cm wide) prepared by a test specimen preparation method assuming a cloth were prepared and set on a support frame. Next, the test body is vertically held in a vertical combustion tester compliant with the JIS L1091 A-4 test, and the distance from the tip of the Bunsen burner mounted at an angle of 25 ° to the center of the lower end of the test body is 17 mm. The positions of the burner and the specimen were adjusted so that A flame was contacted to the sample, and when the sample ignited, it was measured with a stopwatch.
  • a halogen-containing fiber was prepared by adding the metal compound (2-1), metal compound (2-2), and epoxy group compound in the amounts shown in Table 2 below, and a thermal bond for flame retardancy evaluation test
  • the halogen-containing fiber is 0.05 to 50 parts by weight of metal oxide (2), particularly 0.05 to 0.05 parts by weight of metal compound (2-1), relative to 100 parts by weight of polymer (1).
  • the temperature was raised from 50 ° C. to 300 ° C. under a load of 0.0054 mN / dtex by containing 50 parts by mass and being subjected to relaxation treatment at 123 ° C. for 15 minutes in wet heat and pressurized steam under no tension.
  • the shrinkage fluctuation was 45% or less, the combustion test result using the flame retardant test specimen was good, and the pass / fail judgment was acceptable.
  • the halogen-containing fiber is 0.05 to 50 parts by mass of the metal oxide (2), particularly 0.05 to 0.05 parts by mass of the metal compound (2-1) with respect to 100 parts by mass of the polymer (1). It contains ⁇ 50 parts by mass and is subjected to dry heat treatment at 170 ° C for 2 minutes in a no-tension state, so that the shrinkage variation when the temperature is raised from 50 ° C to 300 ° C under a load of 0.0054 mN / dtex. It became 45% or less, the combustion test result using the flame retardant evaluation specimen was good, and the pass / fail judgment was acceptable.
  • Example 12 as described above, the combustion test result using the flame retardant evaluation specimen was good and the pass / fail judgment was acceptable, but the halogen-containing fiber was acrylonitrile 38%, vinylidene chloride 61. Since a copolymer comprising 1% and p-styrene sulfonic acid soda 0.9% was used, the heat resistance was inferior to that of the other examples, and the fibers were fused to each other during spinning, particularly during the relaxation treatment. Since it became hard, when the nonwoven fabric for flame-retardant evaluation was produced, the opening property was bad, and the nonwoven fabric in which the halogen-containing fiber, the polyester fiber, and the heat-fused polyester fiber were uniformly mixed could not be produced.
  • the halogen-containing fiber is 0.05 to 50 parts by mass of the metal oxide (2), particularly 0.05 to 50 parts by mass of the metal compound (2-1) with respect to 100 parts by mass of the polymer (1). Contained in parts by mass and subjected to a dry heat treatment in tension at 185 ° C for 2 minutes, the shrinkage variation when the temperature is raised from 50 ° C to 300 ° C under a load of 0.0054 mN / dtex is 45% or less. The combustion test results using the flame retardant test specimen were good, and the pass / fail judgment was acceptable.
  • the halogen-containing fiber is 0.05 to 50 parts by mass of the metal oxide (2), particularly 0.05 to 50 parts by mass of the metal compound (2-1) with respect to 100 parts by mass of the polymer (1). Contained in parts by mass and subjected to wet heat treatment at 150 ° C. for 15 minutes in a tension state, the shrinkage variation when the temperature is raised from 50 ° C. to 300 ° C. under a load of 0.0054 mN / dtex is 45% or less. Thus, the result of the combustion test using the flame retardant evaluation specimen was good, and the pass / fail judgment was acceptable.
  • the halogen-containing fiber is 0.05 to 50 parts by mass of the metal oxide (2), particularly 0.05 to 50 parts by mass of the metal compound (2-1) with respect to 100 parts by mass of the polymer (1).
  • the halogen-containing fiber has a shrinkage variation of 45% or less when the temperature is raised from 50 ° C. to 300 ° C., and a combustion test using a flame retardant test specimen The result was good, the result of the combustion test using the flame retardant test specimen was good, and the pass / fail judgment was acceptable.
  • cresol novolac epoxy resin was used as the epoxy group compound instead of polyglycidyl methacrylate, but the shrinkage variation when the temperature was increased from 50 ° C. to 300 ° C. under a load of 0.0054 mN / dtex was 45%.
  • the results of the combustion test using the flame retardant evaluation specimen were good, and the pass / fail judgment was acceptable.
  • antimony pentoxide and copper iodide were used in place of antimony trioxide, respectively.
  • a load of 0.0054 mN / dtex 50 ° C. to 300 ° C.
  • the shrinkage variation when the temperature was increased to 45% or less the combustion test result using the flame retardant evaluation specimen was good, and the pass / fail judgment was acceptable.
  • Examples 19 and 20 tin oxide and zinc carbonate were used instead of zinc oxide as the metal compound (2-1), respectively, but the temperature was increased from 50 ° C. to 300 ° C. under a load of 0.0054 mN / dtex. The shrinkage fluctuation when raised was 45% or less, the combustion test result using the flame retardant evaluation specimen was good, and the pass / fail judgment was acceptable.
  • Comparative Examples 1 to 10 In Comparative Example 1, relaxation heat treatment was applied. However, since the flame-retardant synthetic fiber does not contain the metal compound (2-1), the temperature was increased from 50 ° C. to 300 ° C. under a load of 0.0054 mN / dtex. The shrinkage fluctuation when it was raised was 47%, which was 45% or more. Therefore, in the combustion test evaluation using the flame retardant test specimen, a hole is formed in the flame retardant nonwoven fabric used in the flame retardant test specimen during the combustion test, and the internal flammable urethane is ignited. However, because the test was stopped by forcibly extinguishing the fire, it failed.
  • the flame-retardant synthetic fiber had a shrinkage variation of 28% and 45% or less, but does not contain the metal compound (2-1).
  • the combustion test evaluation used at the time of the combustion test, there was a hole in the non-woven fabric for flame retardant evaluation used in the test specimen for flame retardant evaluation, the internal flammable urethane was ignited, the fire was forcibly extinguished, and the test was stopped. As a result, it was rejected.
  • the halogen-containing fiber contains zinc oxide as the metal compound (2-1).
  • the halogen-containing fiber was subjected to a dry heat treatment at 170 ° C. for 2 minutes in a tension state, so that the load was 0.0054 mN / dtex.
  • the shrinkage variation was 67%, which was 45% or more. Therefore, during the combustion test, a crack occurred in the test body, and fire started from there and ignited the internal flammable urethane.
  • the halogen-containing fiber contains zinc oxide as the metal compound (2-1), but under a load of 0.0054 mN / dtex by wet heat treatment at 140 ° C. for 15 minutes in a tension state.
  • the shrinkage variation was 48%, which was 45% or more. Therefore, during the combustion test, a crack occurred in the test body, and fire started from there and ignited the internal flammable urethane.
  • the halogen-containing fiber did not contain the metal compound (2-1), and was wet-heat treated in a tension state at 130 ° C. for 15 minutes. Therefore, under a load of 0.0054 mN / dtex, Shrinkage fluctuations when the temperature was raised from 50 ° C. to 300 ° C. were 93% and 68%, respectively, and were 45% or more. Therefore, in the combustion test evaluation using the flame retardant test specimen, a hole is formed in the flame retardant nonwoven fabric used in the flame retardant test specimen during the combustion test, and the internal flammable urethane is ignited. However, because the test was stopped by forcibly extinguishing the fire, it failed.
  • the halogen-containing fiber contains metastannic acid as the metal compound (2-1).
  • the moisture-containing fiber was subjected to a wet heat treatment at 130 ° C. for 15 minutes to obtain a load of 0.0054 mN / dtex.
  • the shrinkage variation when the temperature was raised from 50 ° C. to 300 ° C. was 62%, which was 45% or more. Therefore, during the combustion test, a crack occurred in the test body, and fire started from there, and the internal flammable urethane was ignited.
  • the halogen-containing fiber had a total draw ratio of less than 4.8 times during spinning, but was wet-heat treated under tension at 130 ° C. for 15 minutes and further contained a metal compound (2-1). Therefore, the shrinkage variation when the temperature was increased from 50 ° C. to 300 ° C. under a load of 0.0054 mN / dtex was 63%, which was 45% or more. Therefore, in the combustion test evaluation using the flame retardant test specimen, a hole is formed in the flame retardant nonwoven fabric used in the flame retardant test specimen during the combustion test, and the internal flammable urethane is ignited. However, the test was stopped because the fire was forcibly extinguished, so it failed.
  • Comparative Example 10 contains aluminum hydroxide as the metal compound but does not contain the metal compound (2-1), so the temperature was raised from 50 ° C. to 300 ° C. under a load of 0.0054 mN / dtex. The shrinkage fluctuation at that time was 46%, which was 45% or more. Therefore, in the combustion test evaluation using the flame retardant test specimen, a hole is formed in the flame retardant nonwoven fabric used in the flame retardant test specimen during the combustion test, and the internal flammable urethane is ignited. However, the test was stopped because the fire was forcibly extinguished, so it failed.
  • Example 21 to 47 the mixing ratio of the halogen-containing fiber produced in Production Example 5 or 11 which is the flame-retardant synthetic fiber of the present invention in the fiber composite is 10% or more, and other components included in the fiber composite are included. Regardless of the type of fiber and the structure of the product, in various tests, excellent flame retardancy was exhibited, and all passed.
  • Comparative Examples 11 to 20 since the halogen-containing fiber produced in Production Example 22 that does not contain the metal compound (2-1) that promotes carbonization during combustion of the polymer (1) is used, The exam also failed.
  • Comparative Examples 21 to 26 the halogen-containing fiber produced in Production Example 5 which is the flame-retardant synthetic fiber of the present invention is used, but the mixture ratio of the halogen-containing fiber in the fiber composite is less than 10%. Both tests failed.
  • Table 2 summarizes the flame retardant combustion test results of Examples 1 to 20 and Comparative Examples 1 to 10.
  • Table 3 summarizes the results of flame retardant combustion tests of Examples 21 to 47 and Comparative Examples 11 to 26.
  • FIG. 5 shows the halogen-containing fiber (A) obtained in Production Example 10 which is a flame-retardant synthetic fiber of the present invention, the current product modacrylic fiber (trade name “Protex-M” manufactured by Kaneka Corporation) (B),
  • Each of the halogen-containing fibers (C) obtained in Production Example 29, which is a comparative product in the present invention, takes about 3 mm of 3333 dtex (decitex), and is heated in the atmosphere at a rate of temperature increase of 20 ° C./min, 18 mN.
  • the results of measuring the shrinkage behavior from 50 ° C. to 300 ° C. or higher under load are shown.
  • the current product (B) as a comparative product shrinks from around about 180 ° C., peaks at about 205 ° C., then turns into elongation and cuts at about 250 ° C.
  • the fiber (C) obtained in Production Example 29 as a comparative example product greatly shrinks to about 200 ° C. when it exceeds about 180 ° C.
  • the fiber (A) obtained in Production Example 10 which is a product of the present invention gradually shrinks from above about 170 ° C., but the shrinkage rate is lower than that of the fiber (C), and It remains without being carbonized and cut.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Artificial Filaments (AREA)
  • Woven Fabrics (AREA)

Abstract

The invention provides a flame-retardant synthetic fiber having high flame retardance and high flame barrier properties, a process for the production of the fiber, and flame-retardant fiber composites. A flame-retardant synthetic fiber which comprises 100 parts by mass of a polymer (1) comprising 30 to 70 parts by mass of acrylonitrile, 70 to 30 parts by mass of a halogen-containing vinylidene monomer, and 0 to 10 parts by mass of a vinyl monomer copolymerizable with both and at least one metal compound (2) capable of accelerating the dehalogenation and carbonization in the combustion of the polymer (1) and which exhibits a shrinkage variation of 45% or below as determined by raising the temperature from 50°C to 300°C under a load of 0.0054mN/dtex.

Description

難燃性合成繊維とその製造方法、難燃繊維複合体及び繊維製品Flame-retardant synthetic fiber and method for producing the same, flame-retardant fiber composite and fiber product
 本発明は、燃焼時に極めて高度な炭化性、形態保持性、自己消火性を発現することで、寝具や家具などに用いられる高度な難燃性を必要とする繊維製品に好適に使用できる高度な難燃性を有する難燃性合成繊維とその製造方法及び難燃繊維複合体に関する。 The present invention expresses an extremely high degree of carbonization, shape retention, and self-extinguishing properties at the time of combustion, so that it can be suitably used for textile products that require high flame retardancy, such as bedding and furniture. The present invention relates to a flame retardant synthetic fiber having flame retardancy, a method for producing the same, and a flame retardant fiber composite.
 近年、衣食住の安全性確保の要求が強まり、防炎の観点より難燃素材の必要性が高まってきている。そのような中で、特に発生時に人的被害が大きい就寝中の火災を防止するため、寝具や家具などに使用される素材への難燃性付与の必要性が高まってきている。 In recent years, the demand for ensuring the safety of clothing, food and shelter has increased, and the need for flame retardant materials has increased from the viewpoint of flameproofing. Under such circumstances, in order to prevent a fire during sleeping, which causes great human damage at the time of occurrence, there is an increasing need for imparting flame retardancy to materials used for bedding and furniture.
 これら寝具や家具などの布張り製品においては、使用時の快適さや意匠性のために綿やポリエステル、ウレタンフォームなどの易燃性素材がその内部や表面に用いられる事が多い。それらの難燃性の確保には、適切な難燃素材をこれら製品中に使用することで、その易燃性素材への着炎を長時間にわたり防止する高度な難燃性を具備することが重要である。また、その難燃素材は、これら寝具や家具などの製品の快適性や意匠性を保持する必要もある。 In these upholstered products such as bedding and furniture, flammable materials such as cotton, polyester and urethane foam are often used for the interior and surface for comfort and design at the time of use. In order to ensure the flame retardancy, by using appropriate flame retardant materials in these products, it is necessary to have advanced flame retardancy that prevents the flame retardant materials from flaming for a long time. is important. In addition, the flame-retardant material needs to maintain the comfort and design of products such as bedding and furniture.
 この難燃素材として、繊維を使用する難燃繊維素材としては、過去様々な難燃性繊維や防炎薬剤が検討されてきたが、この高度な難燃性と寝具や家具などの製品に求められる快適性や意匠性といった要件を充分に兼ね合わせたものは未だ現れていない。 As this flame retardant material, various flame retardant fibers and flame retardants have been studied in the past as a flame retardant fiber material using fiber. This high flame retardant and demand for products such as bedding and furniture. Nothing has yet emerged that fully combines requirements such as comfort and design.
 例えば綿布には、防炎薬剤を塗布する、いわゆる後加工防炎という手法があるが、防炎薬剤の付着の均一化、付着による布の硬化、洗濯による脱離、安全性などの問題があった。 For example, there is a technique called so-called post-processing flame proofing that applies a flame retardant to cotton fabric, but there are problems such as uniform adhesion of the flame retardant, hardening of the fabric due to adhesion, detachment due to washing, and safety. It was.
 また、安価な素材であるポリエステル系繊維は、燃焼時に溶融するため、ポリエステル系繊維のみで布帛にした際、穴が空き、構造を維持することができず、前述の寝具や家具などに用いられる綿やウレタンフォームへ着炎してしまい、性能としては不充分であった。リン原子などを含有させた難燃ポリエステル繊維もあるが、燃焼時の挙動は前述と同様に最終的には溶融してしまい、性能としては不充分であった。 In addition, since polyester fiber, which is an inexpensive material, melts when burned, when it is made only with polyester fiber, a hole is formed and the structure cannot be maintained, and it is used for the bedding and furniture described above. Cotton and urethane foam flared, and the performance was insufficient. Although there are flame retardant polyester fibers containing phosphorus atoms and the like, the behavior at the time of combustion was finally melted as described above, and the performance was insufficient.
 また、三酸化アンチモンや五酸化アンチモン、酸化マグネシウムなどを紡糸原液に添加して高難燃モダクリル繊維を得る方法は、難燃性を付与することはできるが、炎や熱に対しての遮蔽性は満足するに至らない問題があった。これらの性能、即ち、難燃性を付与し且つ炎や熱に対しての遮断性を満足するものとして、グリシジルメタクリレートを含有する重合体を添加した架橋高難燃アクリル系繊維があるが(特許文献1)、バーナー炎のような強力な炎で晒された場合、繊維自体が分解してしまい、最終的に炎を通してしまう場合があった。 In addition, the method of obtaining highly flame-retardant modacrylic fiber by adding antimony trioxide, antimony pentoxide, magnesium oxide, etc. to the spinning dope can provide flame retardancy, but has a shielding property against flame and heat. There was a problem that was not satisfactory. One of these performances, that is, flame retardancy and satisfying flame and heat barrier properties, is a crosslinked highly flame retardant acrylic fiber to which a polymer containing glycidyl methacrylate is added (patent) Document 1) When exposed to a strong flame such as a burner flame, the fiber itself may decompose and eventually pass through the flame.
 また、水ガラスや酸化亜鉛などに代表される固相難燃剤を添加した高難燃炎遮断性モダクリル繊維があるが(特許文献2)、これらの繊維は消火性能や炎遮断性能には優れるものの、燃焼時に形成される炭化膜が硬く、家具や寝具の種類や燃焼箇所の形によっては繊維の収縮変動が大きいために燃焼時の炭化膜に応力がかかり、炭化膜にクラックが生じたり、少しの荷重で炭化膜に穴明きが生じたりする場合があった。この問題を解決する手段として、酸化亜鉛及び縮合リン酸塩系化合物を添加し、収縮時の炭化速度を制御することで、クラックを生じにくくしたモダクリル繊維が提案されているが(特許文献3)、これらの繊維を使用する際には、複数かつ限定された種類の繊維で、更に限定された繊維混率でなければ高度な難燃性が得られないという問題があった。 Moreover, although there exists a highly flame-retardant modacrylic fiber added with a solid phase flame retardant represented by water glass or zinc oxide (Patent Document 2), these fibers are excellent in fire extinguishing performance and flame blocking performance. The carbonized film formed during combustion is hard, and depending on the type of furniture and bedding and the shape of the burning part, the shrinkage of the fiber is large, so stress is applied to the carbonized film during combustion, cracking occurs in the carbonized film, and a little In some cases, the carbonized film was perforated by a load of. As a means for solving this problem, a modacrylic fiber has been proposed in which zinc oxide and a condensed phosphate compound are added and the carbonization rate at the time of shrinkage is controlled so that cracks are hardly generated (Patent Document 3). When these fibers are used, there is a problem that a high degree of flame retardancy cannot be obtained with a plurality of and limited types of fibers and a more limited fiber mixture ratio.
 また湿熱緊張熱処理を施すことで耐熱収縮性が良好なアクリル系合成繊維を得る製造方法も提案されている(特許文献4)。しかしながら緊張状態で熱処理を付与するために残留収縮応力を十分に除去できず、160℃という比較的低温での収縮抑制は可能であるが、炎のような200℃以上の高温下では著しく収縮する結果、難燃性が劣るという問題があった。また実用繊維製品として必要な他繊維との混用も一切考慮されていないことから、実用的な難燃素材としての使用に耐えうるものでない。 Also, a manufacturing method for obtaining acrylic synthetic fibers having good heat shrinkage resistance by performing wet heat tension heat treatment has been proposed (Patent Document 4). However, the residual shrinkage stress cannot be removed sufficiently to apply heat treatment in a tension state, and the shrinkage can be suppressed at a relatively low temperature of 160 ° C., but it shrinks significantly at a high temperature of 200 ° C. or more like a flame. As a result, there existed a problem that a flame retardance was inferior. Further, since it is not considered at all to be mixed with other fibers necessary as a practical fiber product, it cannot be used as a practical flame retardant material.
 難燃剤を大量に添加した高度に難燃化された含ハロゲン繊維と非難燃繊維とを組み合わせた難燃繊維複合体(特許文献5)、更に本質的に難燃性である繊維と含ハロゲン繊維などから構成される嵩高さを有する難燃性不織布(特許文献6)が各々提案されている。 A flame retardant fiber composite comprising a highly flame retardant halogen-containing fiber and a non-flame retardant fiber to which a large amount of a flame retardant is added (Patent Document 5), and an essentially flame-retardant fiber and a halogen-containing fiber A flame-retardant nonwoven fabric (Patent Document 6) having a bulky structure composed of, for example, has been proposed.
 しかし、これらの方法では、燃焼時に布帛や織物といった燃焼前の形態が保持できず所望の難燃性、特に炎遮蔽性を確保できないこと、複数かつ限定された種類の繊維で、更に限定された繊維混率でなければ高度な難燃性が得られず製品意匠上や製造工程上支障があること、一般的に耐熱性繊維や本質的に難燃性である繊維は所望の難燃性を得やすいが、繊維自体が硬く脆い場合が多く生地製造加工時の取扱が極めて難しい上にコストが高いこと、更に限定された繊維混率でなければ高度な難燃性が得られず製品意匠上や製造工程上支障がある。 However, in these methods, the form before combustion such as a fabric or a woven fabric cannot be maintained at the time of combustion, and a desired flame retardancy, in particular, a flame shielding property cannot be ensured, and a plurality of limited types of fibers are further limited. If the fiber content is not high, high flame retardancy cannot be obtained, which may hinder the product design and manufacturing process. Generally, heat-resistant fibers and inherently flame-retardant fibers have the desired flame retardancy. Easy, but the fibers themselves are often hard and brittle, and handling is extremely difficult and costly. In addition, high flame retardancy cannot be obtained unless the fiber mixing ratio is limited, and in terms of product design and manufacturing. There is a problem in the process.
特開2005-179876号公報JP 2005-179876 A 特開2006-225805号公報JP 2006-225805 A 特開2007-291570号公報JP 2007-291570 A 特開昭58-156014号公報JP 58-156014 A 特開昭61-89339号公報JP 61-89339 A 米国特許7259117号明細書US Pat. No. 7,259,117
 本発明は、前記従来の問題を解決するため、高い難燃性、高度な炎遮蔽性を満足する難燃性合成繊維とその製造方法、難燃繊維複合体及び繊維製品を提供する。 In order to solve the above-mentioned conventional problems, the present invention provides a flame retardant synthetic fiber that satisfies high flame retardancy and high flame shielding properties, a method for producing the same, a flame retardant fiber composite, and a fiber product.
 本発明の難燃性合成繊維は、重合体100質量部において、アクリロニトリル30~70質量部、ハロゲン含有ビニリデン単量体及び/又はハロゲン含有ビニル単量体70~30質量部、及びこれらと共重合可能なビニル系単量体0~10質量部を含有する重合体(1)と、前記重合体(1)の燃焼時の脱ハロゲン反応及び燃焼時の炭化反応を促進する少なくとも1種の金属化合物(2)とを含み、0.0054mN/dtexの荷重下、50℃から300℃まで温度を上げたときの収縮変動が45%以下であることを特徴とする。 The flame-retardant synthetic fiber of the present invention comprises 30 to 70 parts by mass of acrylonitrile, 70 to 30 parts by mass of a halogen-containing vinylidene monomer and / or a halogen-containing vinyl monomer, and a copolymer thereof with 100 parts by mass of the polymer. Polymer (1) containing 0 to 10 parts by mass of vinyl-based monomer, and at least one metal compound that promotes dehalogenation reaction during combustion and carbonization reaction during combustion of said polymer (1) (2), and the shrinkage variation when the temperature is increased from 50 ° C. to 300 ° C. under a load of 0.0054 mN / dtex is 45% or less.
 本発明の難燃性合成繊維の製造方法は、重合体100質量部において、アクリロニトリル30~70質量部、ハロゲン含有ビニリデン単量体及び/又はハロゲン含有ビニル単量体70~30質量部、及びこれらと共重合可能なビニル系単量体0~10質量部を含有する重合体(1)と、前記重合体(1)の燃焼時の脱ハロゲン反応及び燃焼時の炭化反応を促進する少なくとも1種の金属化合物(2)とを含む組成物を紡出した後、熱処理することにより、0.0054mN/dtexの荷重下、50℃から300℃まで温度を上げたときの収縮変動が45%以下である難燃性合成繊維を得ることを特徴とする。 The method for producing a flame-retardant synthetic fiber according to the present invention comprises 30 to 70 parts by mass of acrylonitrile, 70 to 30 parts by mass of a halogen-containing vinylidene monomer and / or a halogen-containing vinyl monomer, and 100 parts by mass of a polymer. A polymer (1) containing 0 to 10 parts by mass of a vinyl monomer copolymerizable with the polymer, and at least one kind of promoting the dehalogenation reaction during combustion and the carbonization reaction during combustion of the polymer (1) After spinning a composition containing the metal compound (2), the shrinkage variation when the temperature was raised from 50 ° C. to 300 ° C. under a load of 0.0054 mN / dtex was 45% or less. It is characterized by obtaining a certain flame-retardant synthetic fiber.
 本発明の難燃繊維複合体は、前記の難燃性合成繊維10質量%以上と、天然繊維、再生繊維及び前記難燃性合成繊維以外の合成繊維から選ばれる少なくとも1種の繊維90質量%以下を含むことを特徴とする。 The flame-retardant fiber composite of the present invention is 10% by mass or more of the above-mentioned flame-retardant synthetic fiber and 90% by mass of at least one kind of fiber selected from natural fibers, recycled fibers, and synthetic fibers other than the above-mentioned flame-retardant synthetic fibers. It includes the following.
 本発明の繊維製品は、前記の難燃性合成繊維を含むことを特徴とする。 The fiber product of the present invention is characterized by containing the above-mentioned flame-retardant synthetic fiber.
 本発明によれば、高い難燃性、高度な炎遮蔽性を有する繊維製品を得ることができる。 According to the present invention, it is possible to obtain a textile product having high flame retardancy and high flame shielding properties.
図1は本発明の一実施例における難燃性評価用試験体の構造を示す全体図である。FIG. 1 is an overall view showing the structure of a flame retardant evaluation specimen in one embodiment of the present invention. 図2は図1の難燃性評価用試験体の構造を示す側断面図である。FIG. 2 is a side sectional view showing the structure of the flame retardant evaluation specimen of FIG. 図3は本発明の他の一実施例における難燃性評価用試験体の構造を示す全体図である。FIG. 3 is an overall view showing the structure of a flame retardant evaluation specimen in another example of the present invention. 図4は図3の難燃性評価用試験体の構造を示す側断面図である。FIG. 4 is a side sectional view showing the structure of the flame retardant evaluation specimen of FIG. 図5は本発明の実施例品である製造例10で得られたハロゲン含有繊維と比較例品の繊維を加熱したときの収縮挙動を示すグラフである。FIG. 5 is a graph showing the shrinkage behavior when the halogen-containing fiber obtained in Production Example 10 which is an example product of the present invention and the fiber of the comparative example product are heated. 図6は本発明の一実施例における難燃性合成繊維の収縮パターンを示すグラフである。FIG. 6 is a graph showing a shrinkage pattern of the flame-retardant synthetic fiber in one example of the present invention. 図7は比較例の難燃性合成繊維の収縮パターンを示すグラフである。FIG. 7 is a graph showing the shrinkage pattern of the flame retardant synthetic fiber of the comparative example. 図8は比較例の難燃性合成繊維の収縮パターンを示すグラフである。FIG. 8 is a graph showing the shrinkage pattern of the flame retardant synthetic fiber of the comparative example. 図9は本発明の別の実施例における難燃性合成繊維の収縮パターンを示すグラフである。FIG. 9 is a graph showing a shrinkage pattern of a flame-retardant synthetic fiber in another example of the present invention. 図10は本発明の更に別の実施例における難燃性合成繊維の収縮パターンを示すグラフである。FIG. 10 is a graph showing a shrinkage pattern of a flame-retardant synthetic fiber in still another example of the present invention. 図11は本発明の更に別の実施例における難燃性合成繊維の収縮パターンを示すグラフである。FIG. 11 is a graph showing a shrinkage pattern of a flame-retardant synthetic fiber in still another example of the present invention. 図12は比較例の難燃性合成繊維の収縮パターンを示すグラフである。FIG. 12 is a graph showing the shrinkage pattern of the flame retardant synthetic fiber of the comparative example.
符号の説明Explanation of symbols
 1、2、6 ポリウレタンフォーム
 3 不織布
 4 外層表面生地
 5 ナイロン糸
1, 2, 6 Polyurethane foam 3 Non-woven fabric 4 Outer surface fabric 5 Nylon yarn
 本発明者らは、前記問題を解決するため鋭意検討を重ねた結果、アクリロニトリルとハロゲン含有ビニリデン及び/又はハロゲン含有ビニル単量体を含有する合成繊維に脱ハロゲン反応及び炭化反応を促進する少なくとも1種の金属化合物を含有させ、0.0054mN/dtexの荷重下、50℃から300℃まで温度を上げたときの収縮変動が45%以下となるようにすることで、高度な難燃性を獲得できることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventors have promoted dehalogenation reaction and carbonization reaction on synthetic fibers containing acrylonitrile and halogen-containing vinylidene and / or halogen-containing vinyl monomer. Accommodating high flame retardance by containing a metal compound of various types and making the shrinkage variation less than 45% when the temperature is raised from 50 ° C to 300 ° C under a load of 0.0054mN / dtex. The present inventors have found that this can be done and have completed the present invention.
 本発明の重合体(1)は、重合体100質量部において、アクリロニトリル30~70質量部、ハロゲン含有ビニリデン単量体及び/又はハロゲン含有ビニル単量体70~30質量部、及びこれらと共重合可能なビニル系単量体0~10質量部を含む。なお、本発明の重合体(1)において、「重合体100質量部において、アクリロニトリル30~70質量部、ハロゲン含有ビニリデン単量体及び/又はハロゲン含有ビニル単量体70~30質量部、及びこれらと共重合可能なビニル系単量体0~10質量部を含有する」とは、重合体(1)の全体質量に対し、アクリロニトリル30~70質量%、ハロゲン含有ビニリデン単量体及び/又はハロゲン含有ビニル単量体70~30質量%、及びこれらと共重合可能なビニル系単量体0~10質量%を含むことを意味する。前記アクリロニトリル含有量が30~70質量部であると、繊維化するのに必要な耐熱性が得られ、かつ難燃化もできる。好ましいアクリロニトリル含有量は40~60質量部であり、更に好ましくは40~46質量部である。アクリロニトリル含有量が40~60質量部の範囲であれば、繊維の着色がより少なくなる。 The polymer (1) of the present invention comprises 30 to 70 parts by mass of acrylonitrile, 70 to 30 parts by mass of a halogen-containing vinylidene monomer and / or halogen-containing vinyl monomer, and a copolymer thereof with 100 parts by mass of the polymer. Contains 0-10 parts by weight of possible vinylic monomers. In the polymer (1) of the present invention, “in 100 parts by mass of the polymer, 30 to 70 parts by mass of acrylonitrile, 70 to 30 parts by mass of the halogen-containing vinylidene monomer and / or halogen-containing vinyl monomer, and these The term “containing 0 to 10 parts by mass of a vinyl monomer copolymerizable with” means that 30 to 70% by mass of acrylonitrile, halogen-containing vinylidene monomer and / or halogen with respect to the total mass of the polymer (1). This means that it contains 70 to 30% by mass of the contained vinyl monomer and 0 to 10% by mass of the vinyl monomer copolymerizable therewith. When the acrylonitrile content is 30 to 70 parts by mass, heat resistance necessary for fiberization can be obtained and flame retardancy can be achieved. The acrylonitrile content is preferably 40 to 60 parts by mass, more preferably 40 to 46 parts by mass. When the acrylonitrile content is in the range of 40 to 60 parts by mass, the fiber is less colored.
 このような重合体100質量部において、アクリロニトリル30~70質量部、ハロゲン含有ビニリデン単量体及び/又はハロゲン含有ビニル単量体70~30質量部、及びこれらと共重合可能なビニル系単量体0~10質量部を含有する重合体(1)としては、例えばアクリロニトリル-塩化ビニリデン、アクリロニトリル-塩化ビニリデン-フッ化ビニリデンなどのハロゲン含有ビニリデン系単量体の1種以上とアクリロニトリルとの共重合体;塩化ビニリデン、臭化ビニリデン、フッ化ビニリデンなどのハロゲン含有ビニリデン系単量体の1種以上とアクリロニトリル及びこれらと共重合可能なビニル系単量体との共重合体などがあげられるが、これらに限定されるものではない。また、一種以上の前記共重合体を適宜混合して使用してもよい。 In 100 parts by mass of such a polymer, 30 to 70 parts by mass of acrylonitrile, 70 to 30 parts by mass of a halogen-containing vinylidene monomer and / or a halogen-containing vinyl monomer, and a vinyl monomer copolymerizable therewith Examples of the polymer (1) containing 0 to 10 parts by mass include a copolymer of acrylonitrile and one or more halogen-containing vinylidene monomers such as acrylonitrile-vinylidene chloride and acrylonitrile-vinylidene chloride-vinylidene fluoride. A copolymer of at least one halogen-containing vinylidene monomer such as vinylidene chloride, vinylidene bromide, and vinylidene fluoride with acrylonitrile and a vinyl monomer copolymerizable therewith. It is not limited to. Further, one or more of the above copolymers may be appropriately mixed and used.
 前記それらと共重合可能なビニル系単量体としては、例えばアクリル酸及びそのエステル、メタクリル酸及びそのエステル、アクリルアミド、メタクリルアミド、酢酸ビニル、ビニルスルホン酸及びその塩、メタリルスルホン酸及びその塩、スチレンスルホン酸及びその塩、2-アクリルアミド-2-メチルスルホン酸及びその塩などがあげられ、それらの1種又は2種以上が用いられる。また、そのうち少なくとも1種がスルホン酸基含有ビニル系単量体の場合には、染色性が向上するため好ましい。 Examples of the vinyl monomers copolymerizable therewith include acrylic acid and esters thereof, methacrylic acid and esters thereof, acrylamide, methacrylamide, vinyl acetate, vinyl sulfonic acid and salts thereof, methallyl sulfonic acid and salts thereof. Styrene sulfonic acid and its salt, 2-acrylamido-2-methyl sulfonic acid and its salt, and one or more of them are used. In addition, it is preferable that at least one of them is a sulfonic acid group-containing vinyl monomer because dyeability is improved.
 前記アクリロニトリル30~70質量部、ハロゲン含有ビニリデン単量体70~30質量部、及びこれらと共重合可能なビニル系単量体0~10質量部を含有する重合体(1)の具体例としては、例えば下記の重合体が挙げられる。
(1)アクリロニトリル51質量部、塩化ビニリデン48質量部、スチレンスルホン酸ソーダ1質量部を含有する共重合体
(2)アクリロニトリル43質量部、塩化ビニリデン56.1質量部、2-アクリルアミド-2-メチルプロパンスルホン酸ソーダ0.9質量部を含有する共重合体
(3)アクリロニトリル57質量部、塩化ビニリデン41質量部、アリルスルホン酸ナトリウム2質量部を含有する共重合体
(4)アクリロニトリル60質量部、塩化ビニリデン30質量部、2-アクリルアミド-2-メチルプロパンスルホン酸ナトリウム10質量部を含有する共重合体
(5)アクリロニトリル55質量部、塩化ビニリデン43質量部、メタリルスルホン酸ナトリウム2質量部を含有する共重合体
(6)アクリロニトリル69質量部、塩化ビニリデン16質量部、2-アクリルアミド-2-メチルプロパンスルホン酸ナトリウム15質量部を含有する共重合体と、アクリロニトリル58質量部、塩化ビニリデン42質量部を含有する共重合体を質量比1/10で混合(混合系ではアクリロニトリル59質量部、塩化ビニリデン39.6質量部、2-アクリルアミド-2-メチルプロパンスルホン酸ソーダ1.4質量部)
(7)アクリロニトリル56質量部、塩化ビニリデン42質量部、2-アクリルアミド-2-メチルプロパンスルホン酸ソーダ2質量部を含有する共重合体。
Specific examples of the polymer (1) containing 30 to 70 parts by mass of the acrylonitrile, 70 to 30 parts by mass of the halogen-containing vinylidene monomer, and 0 to 10 parts by mass of a vinyl monomer copolymerizable therewith For example, the following polymers may be mentioned.
(1) Copolymer containing 51 parts by weight of acrylonitrile, 48 parts by weight of vinylidene chloride and 1 part by weight of sodium styrenesulfonate (2) 43 parts by weight of acrylonitrile, 56.1 parts by weight of vinylidene chloride, 2-acrylamido-2-methyl Copolymer containing 0.9 part by weight of sodium propanesulfonate (3) 57 parts by weight of acrylonitrile, 41 parts by weight of vinylidene chloride, copolymer containing 2 parts by weight of sodium allyl sulfonate (4) 60 parts by weight of acrylonitrile, A copolymer containing 30 parts by weight of vinylidene chloride, 10 parts by weight of sodium 2-acrylamido-2-methylpropanesulfonate (5) 55 parts by weight of acrylonitrile, 43 parts by weight of vinylidene chloride, 2 parts by weight of sodium methallylsulfonate Copolymer (6) 69 parts by weight of acrylonitrile, salt A copolymer containing 16 parts by mass of vinylidene and 15 parts by mass of sodium 2-acrylamido-2-methylpropanesulfonate, and a copolymer containing 58 parts by mass of acrylonitrile and 42 parts by mass of vinylidene chloride in a mass ratio of 1/10. Mixed (59 parts by weight of acrylonitrile, 39.6 parts by weight of vinylidene chloride, 1.4 parts by weight of sodium 2-acrylamido-2-methylpropanesulfonate in the mixed system)
(7) A copolymer containing 56 parts by mass of acrylonitrile, 42 parts by mass of vinylidene chloride, and 2 parts by mass of sodium 2-acrylamido-2-methylpropanesulfonate.
 前記共重合体は、既知の重合方法で得ることができる。例えば、重合方式としては塊状重合、懸濁重合、乳化重合、溶液重合などが、重合形態としては連続式、回分式、半回分式などが挙げられるがこれらに限定されるものではない。この中でも工業的視点から、重合方式としては乳化重合と溶液重合が、重合形態としては連続式と半回分式が好ましい。 The copolymer can be obtained by a known polymerization method. For example, the polymerization method includes bulk polymerization, suspension polymerization, emulsion polymerization, solution polymerization, and the like, and the polymerization form includes, but is not limited to, continuous, batch, and semi-batch. Among these, from an industrial point of view, emulsion polymerization and solution polymerization are preferable as polymerization methods, and continuous and semi-batch methods are preferable as polymerization forms.
 本発明の重合体(1)の燃焼時の脱ハロゲン反応及び燃焼時の炭化反応を促進する少なくとも1種の金属化合物(2)としては、脱ハロゲン反応及び炭化反応の両反応を促進する酸化亜鉛、炭酸亜鉛、硫化亜鉛、硼酸亜鉛、燐酸亜鉛、錫酸亜鉛、メタ錫酸、酸化タングステン、酸化ジルコニウム、酸化錫、酸化銅、燐酸銅、三酸化インジウム、チタン酸バリウムより選ばれる金属化合物(2-1)、又は、前記金属化合物(2-1)と脱ハロゲン反応を促進するアンチモン化合物、酸化鉄、燐酸鉄、蓚酸鉄、硫化鉄、メタ錫酸、酸化モリブデン、三酸化ビスマス、オキシ塩化ビスマス、ヨウ化銅より選ばれる金属化合物(2-2)を組合わせて使用することができる。 The at least one metal compound (2) that promotes the dehalogenation reaction during combustion and the carbonization reaction during combustion of the polymer (1) of the present invention includes zinc oxide that promotes both the dehalogenation reaction and the carbonization reaction. , Zinc carbonate, zinc sulfide, zinc borate, zinc phosphate, zinc stannate, metastannic acid, tungsten oxide, zirconium oxide, tin oxide, copper oxide, copper phosphate, indium trioxide and barium titanate (2 -1) or an antimony compound that promotes a dehalogenation reaction with the metal compound (2-1), iron oxide, iron phosphate, iron oxalate, iron sulfide, metastannic acid, molybdenum oxide, bismuth trioxide, bismuth oxychloride A metal compound (2-2) selected from copper iodide can be used in combination.
 金属化合物(2-1)は重合体(1)の燃焼時の脱ハロゲン反応を促進し、燃焼時の炭化反応の前駆体となるポリエンの生成を促進し、更に、脱ハロゲンによって生成する金属ハロゲン化物がポリエン構造に触媒的に作用して炭化を促進すると考えられる。金属化合物(2-1)としては、脱ハロゲン反応を200℃以下で生じさせる化合物がその後の炭化促進の面から好ましい。特に酸化亜鉛、錫酸亜鉛、炭酸亜鉛、及び酸化錫から選ばれる少なくとも一つが好ましい。 The metal compound (2-1) promotes the dehalogenation reaction at the time of combustion of the polymer (1), promotes the production of a polyene that is a precursor of the carbonization reaction at the time of combustion, and further, a metal halogen produced by dehalogenation. It is believed that the chemical compound catalyzes the polyene structure to promote carbonization. As the metal compound (2-1), a compound that causes a dehalogenation reaction at 200 ° C. or lower is preferable from the viewpoint of the subsequent promotion of carbonization. In particular, at least one selected from zinc oxide, zinc stannate, zinc carbonate, and tin oxide is preferable.
 金属化合物(2-1)は単独の使用の他、一種以上を組み合わせて使用してもよい。また、金属化合物(2-1)と、アンチモン化合物、酸化鉄、燐酸鉄、蓚酸鉄、硫化鉄、酸化モリブデン、三酸化ビスマス、オキシ塩化ビスマス、ヨウ化銅より選ばれる、重合体(1)の燃焼時の脱ハロゲン反応を促進する金属化合物(2-2)を組み合わせて使用することもできる。重合体(1)の脱ハロゲン反応を促進する金属化合物(2-2)は、重合体(1)の脱ハロゲン反応を促進することで、炭化反応の前駆体となるポリエンの生成を促進するが、一方で、生成したポリエン構造からの炭化を促進する能力を併せ持たないため、金属化合物(2-2)の単独使用は、本発明において有効ではない。 The metal compound (2-1) may be used alone or in combination of one or more. Further, a polymer (1) selected from a metal compound (2-1) and an antimony compound, iron oxide, iron phosphate, iron oxalate, iron sulfide, molybdenum oxide, bismuth trioxide, bismuth oxychloride, and copper iodide. A metal compound (2-2) that promotes the dehalogenation reaction during combustion can also be used in combination. The metal compound (2-2) that promotes the dehalogenation reaction of the polymer (1) promotes the formation of a polyene that is a precursor of the carbonization reaction by promoting the dehalogenation reaction of the polymer (1). On the other hand, the single use of the metal compound (2-2) is not effective in the present invention because it does not have the ability to promote carbonization from the generated polyene structure.
 金属化合物(2-2)としては、特に、アンチモン化合物が好ましい。アンチモン化合物は、重合体(1)の燃焼時の脱ハロゲン反応を促進するだけでなく、脱ハロゲンによって生成するアンチモンハロゲン化物が、燃焼時の幅広い温度領域でガスとなり、このガスがラジカルを捕捉し燃焼を抑制する働き、即ち消火性能を発揮する。 As the metal compound (2-2), an antimony compound is particularly preferable. The antimony compound not only promotes the dehalogenation reaction during combustion of the polymer (1), but the antimony halide produced by dehalogenation becomes a gas in a wide temperature range during combustion, and this gas traps radicals. Works to suppress combustion, that is, exhibits fire extinguishing performance.
 前記アンチモン化合物としては、三酸化アンチモン、四酸化アンチモン、五酸化アンチモンなどの酸化アンチモン化合物、アンチモン酸やその塩類、オキシ塩化アンチモンなどの無機アンチモン化合物などを挙げることができるがこれらに限定されるものではない。またこれらを組み合わせて使用してもよい。中でも、三酸化アンチモン及び五酸化アンチモンが、性能や工業的入手性の観点から好ましい。 Examples of the antimony compounds include, but are not limited to, antimony oxide compounds such as antimony trioxide, antimony tetraoxide, and antimony pentoxide, inorganic antimony compounds such as antimonic acid and salts thereof, and antimony oxychloride. is not. These may be used in combination. Among these, antimony trioxide and antimony pentoxide are preferable from the viewpoints of performance and industrial availability.
 金属化合物(2)の添加量は、アクリロニトリル30~70質量部、ハロゲン含有ビニリデン単量体及び/又はハロゲン含有ビニル単量体70~30質量部、及びこれらと共重合可能なビニル系単量体0~10質量部を含有する重合体(1)100質量部に対して0.05~50質量部が好ましい。下限値については、0.1質量部がより好ましく、1質量部が更に好ましい。また、上限値については、40質量部がより好ましく、30質量部が更に好ましい。金属化合物(2)の使用量が0.05~50質量部であると、燃焼時に重合体を炭化させる効果(炭化効果)があり、所望とする高度な難燃性能を得るのに必要な炭化効果を得ることができ、所望の収縮率が得られる。好ましい範囲では更に前記の作用効果が高くなる。 The addition amount of the metal compound (2) is 30 to 70 parts by mass of acrylonitrile, 70 to 30 parts by mass of a halogen-containing vinylidene monomer and / or a halogen-containing vinyl monomer, and a vinyl monomer copolymerizable therewith. 0.05 to 50 parts by mass is preferable with respect to 100 parts by mass of the polymer (1) containing 0 to 10 parts by mass. About a lower limit, 0.1 mass part is more preferable, and 1 mass part is still more preferable. Moreover, about an upper limit, 40 mass parts is more preferable, and 30 mass parts is still more preferable. When the amount of the metal compound (2) used is 0.05 to 50 parts by mass, there is an effect of carbonizing the polymer at the time of combustion (carbonization effect), and the carbonization necessary for obtaining the desired high flame retardance performance. An effect can be obtained and a desired shrinkage rate can be obtained. In the preferred range, the above-mentioned effects are further increased.
 金属化合物(2-1)の添加量は、アクリロニトリル30~70質量部、ハロゲン含有ビニリデン単量体及び/又はハロゲン含有ビニル単量体70~30質量部、及びこれらと共重合可能なビニル系単量体0~10質量部を含有する重合体(1)100質量部に対して0.05~50質量部が好ましい。下限値については、0.1質量部がより好ましく、1質量部が更に好ましい。また、上限値については、40質量部がより好ましく、30質量部が更に好ましい。金属化合物(2-1)の使用量が0.05~50質量部であると、燃焼時に重合体を炭化させる効果(炭化効果)があり、所望とする高度な難燃性能を得る必要な炭化効果を得ることができ、所望の収縮率が得られる。好ましい範囲では更に前記の作用効果が高くなる。 The amount of the metal compound (2-1) added is 30 to 70 parts by mass of acrylonitrile, 70 to 30 parts by mass of a halogen-containing vinylidene monomer and / or a halogen-containing vinyl monomer, and a vinyl-based monomer copolymerizable therewith. 0.05 to 50 parts by mass is preferable with respect to 100 parts by mass of the polymer (1) containing 0 to 10 parts by mass of the monomer. About a lower limit, 0.1 mass part is more preferable, and 1 mass part is still more preferable. Moreover, about an upper limit, 40 mass parts is more preferable, and 30 mass parts is still more preferable. When the amount of the metal compound (2-1) used is 0.05 to 50 parts by mass, there is an effect of carbonizing the polymer at the time of combustion (carbonization effect), and the necessary carbonization to obtain the desired high flame resistance performance. An effect can be obtained and a desired shrinkage rate can be obtained. In the preferred range, the above-mentioned effects are further increased.
 金属化合物(2-2)の添加量は、アクリロニトリル30~70質量部、ハロゲン含有ビニリデン単量体及び/又はハロゲン含有ビニル単量体70~30質量部、及びこれらと共重合可能なビニル系単量体0~10質量部を含有する重合体(1)100質量部に対し、0~50質量部、好ましくは3~40質量部、更に好ましくは5~30質量部である。0質量部であっても所望とする難燃性能が達成される場合もあるが、自己消火効果が少ないため更に高度な自己消火効果を要求される用途に使用する場合には、3質量部以上40質量部以下添加することが好ましい。 The addition amount of the metal compound (2-2) is 30 to 70 parts by mass of acrylonitrile, 70 to 30 parts by mass of a halogen-containing vinylidene monomer and / or a halogen-containing vinyl monomer, and a vinyl-based monomer copolymerizable therewith. 0 to 50 parts by weight, preferably 3 to 40 parts by weight, and more preferably 5 to 30 parts by weight with respect to 100 parts by weight of the polymer (1) containing 0 to 10 parts by weight of the monomer. Even if it is 0 parts by mass, the desired flame retardant performance may be achieved, but since the self-extinguishing effect is small, it is 3 parts by mass or more when used for applications that require a higher level of self-extinguishing effect. It is preferable to add 40 parts by mass or less.
 金属化合物(2)の平均粒子径としては、3μm以下であることが好ましく、2μm以下がより好ましい。金属化合物(2)の平均粒子径が3μm以下であると、ハロゲン含有重合体に金属化合物成分を添加してなる繊維の製造工程上におけるノズル詰りなどのトラブル回避、繊維の強度向上、繊維中での金属化合物成分粒子の分散などの点から好ましい。金属化合物(2)の平均粒子径における下限は、特に限定されないが、ハンドリング性の点から0.01μm以上が好ましく、0.05μm以上がより好ましい。更に前記金属化合物(2)は、ブロッキング性改善のために粒子表面に化学的修飾を施してもよく、水中や有機溶媒中に分散した状態で使用してもよい。ここで平均粒子径とは、メジアン径のことを意味する。メジアン径の測定方法としては、光散乱法を用いることができる。 The average particle size of the metal compound (2) is preferably 3 μm or less, and more preferably 2 μm or less. When the average particle size of the metal compound (2) is 3 μm or less, troubles such as nozzle clogging in the production process of the fiber obtained by adding the metal compound component to the halogen-containing polymer, improvement of the fiber strength, From the viewpoint of dispersion of the metal compound component particles. Although the minimum in the average particle diameter of a metal compound (2) is not specifically limited, 0.01 micrometer or more is preferable from the point of handling property, and 0.05 micrometer or more is more preferable. Furthermore, the metal compound (2) may be subjected to chemical modification on the particle surface in order to improve blocking properties, or may be used in a state dispersed in water or an organic solvent. Here, the average particle diameter means a median diameter. As a method for measuring the median diameter, a light scattering method can be used.
 本発明の難燃性合成繊維は、前記重合体(1)100質量部に対し、更にエポキシ基含有化合物0.1~20質量部を含むことが好ましい。エポキシ基含有化合物を含むことにより、繊維製造工程中の乾燥又は熱処理により架橋し、繊維中に高分子架橋構造が形成され、繊維の収縮がより抑制され得る。 The flame-retardant synthetic fiber of the present invention preferably further contains 0.1 to 20 parts by mass of an epoxy group-containing compound with respect to 100 parts by mass of the polymer (1). By including an epoxy group-containing compound, it is crosslinked by drying or heat treatment in the fiber production process, a polymer crosslinked structure is formed in the fiber, and fiber shrinkage can be further suppressed.
 前記エポキシ基含有化合物としては、グリシジルエーテルタイプ、グリシジルアミンタイプ、グリシジルエステルタイプ、環状脂肪族タイプ、又はこれらを含有する共重合体であってもよい。紡糸浴への溶出、単位重量辺りの反応基(エポキシ基)の数を考慮すると、グリシジルエステルタイプとしては、例えば、ポリグリシジルメタクリレート(重量平均分子量3000~100000)が好ましく用いられる。 The epoxy group-containing compound may be a glycidyl ether type, a glycidyl amine type, a glycidyl ester type, a cyclic aliphatic type, or a copolymer containing these. Considering elution into the spinning bath and the number of reactive groups (epoxy groups) per unit weight, for example, polyglycidyl methacrylate (weight average molecular weight 3000 to 100,000) is preferably used as the glycidyl ester type.
 本発明の熱処理には、弛緩熱処理と緊張熱処理がある。本発明でいう弛緩熱処理とは、例えば、2つのローラー間を糸条(繊維の束)が移動する際に熱処理を付与することを想定すると、繊維が収縮しない温度条件下で2つのローラーを同一回転速度とした場合にローラー間を移動する際の糸条の状態(定長状態)、又はこれよりも移動する糸条が弛んでいる状態(弛緩状態)での熱処理を指す。なお、熱処理によって2つのローラー間で繊維が収縮する場合にも、繊維にかかる張力が上記状態と同レベルであれば、弛緩熱処理となる。また、本発明でいう緊張熱処理とは、上記弛緩熱処理における糸条の状態以外の状態、例えば、繊維が収縮しない温度条件下で2つのローラーを同一回転速度とした場合にローラー間を移動する際の糸条の状態(定長状態)を超えてより繊維にかかる張力が大きい状態(緊張状態)での熱処理を指す。なお、熱処理によって2つのローラー間で繊維が収縮する場合にも、繊維にかかる張力が上記状態と同レベルであれば緊張熱処理となる。そして、ローラーを使用しない場合も、弛緩熱処理における糸条の状態と同等の張力状態での熱処理であれば弛緩熱処理となり、緊張熱処理における糸条の状態と同等の張力状態での熱処理であれば緊張熱処理となる。 The heat treatment of the present invention includes relaxation heat treatment and tension heat treatment. The relaxation heat treatment referred to in the present invention means that, for example, assuming that the heat treatment is applied when the yarn (fiber bundle) moves between the two rollers, the two rollers are identical under the temperature condition in which the fibers do not contract. This refers to heat treatment in the state of the yarn when moving between rollers when the rotation speed is set (constant length state), or in the state where the moving yarn is more slack (relaxed state). Even when the fiber contracts between the two rollers by heat treatment, if the tension applied to the fiber is at the same level as the above state, relaxation heat treatment is performed. The tension heat treatment referred to in the present invention is a state other than the state of the yarn in the relaxation heat treatment, for example, when the two rollers are moved at the same rotational speed under temperature conditions where the fibers do not contract. The heat treatment in the state (tensile state) where the tension applied to the fiber is larger than the yarn state (constant length state). Even when the fiber contracts between the two rollers by the heat treatment, if the tension applied to the fiber is at the same level as the above state, the tension heat treatment is performed. Even when no roller is used, if the heat treatment is in a tension state equivalent to the yarn state in the relaxation heat treatment, the heat treatment is a relaxation heat treatment, and if the heat treatment is in the tension state equivalent to the yarn state in the tension heat treatment, the tension is It becomes heat treatment.
 本発明の難燃性合成繊維の熱処理方法としては、一般的な熱処理方法である乾熱処理法、湿熱処理法の何れの方法も可能である。更に湿熱処理法としては、加熱水蒸気処理法、湿熱加圧蒸気処理法が挙げられるがこれに限定されるものではない。熱処理時の繊維の状態としては、弛緩、緊張の何れの状態であってもよい。なお、ここで、弛緩状態とは、定長状態を含む。これらの組合せとして、乾熱緊張熱処理法、乾熱弛緩熱処理法、加熱水蒸気緊張熱処理法、加熱水蒸気弛緩熱処理法、湿熱加圧蒸気緊張熱処理法、湿熱加圧蒸気弛緩熱処理法が挙げられ、乾熱弛緩熱処理法、加熱水蒸気弛緩熱処理法、湿熱加圧蒸気弛緩熱処理法が好ましく、更には乾熱弛緩熱処理法、湿熱加圧蒸気弛緩熱処理法が好ましい。またこれらの方法や繊維の状態を複数組合せて熱処理工程を形成してもよい。 As the heat treatment method for the flame-retardant synthetic fiber of the present invention, any of a general heat treatment method, a dry heat treatment method and a wet heat treatment method, is possible. Furthermore, examples of the wet heat treatment method include, but are not limited to, a heat steam treatment method and a wet heat pressure steam treatment method. The fiber state during the heat treatment may be either relaxed or tensioned. Here, the relaxed state includes a constant length state. These combinations include dry heat tension heat treatment, dry heat relaxation heat treatment, heated steam tension heat treatment, heated steam relaxation heat treatment, wet heat pressurized steam tension heat treatment, wet heat pressurized steam relaxation heat treatment, and dry heat. A relaxation heat treatment method, a heated steam relaxation heat treatment method, and a wet heat pressurized steam relaxation heat treatment method are preferred, and a dry heat relaxation heat treatment method and a wet heat pressurized steam relaxation heat treatment method are more preferred. Further, a heat treatment step may be formed by combining a plurality of these methods and fiber states.
 一般に、難燃性合成繊維の熱処理は、処理温度が高い程、紡糸残留収縮応力を低減することが可能となるが、特に湿熱処理、更には湿熱加圧蒸気中で処理した場合には、熱処理に必要な熱が難燃性合成繊維の軟化温度や分解温度以下でも繊維内部まで伝わるため、着色や強度低下することなく充分な熱処理が可能となる。上記熱処理は、連続式又はバッチ式処理で行うことができる。特に、アクリロニトリルが50質量部を超える共重合体を用いる場合は、加熱水蒸気処理法、湿熱加圧蒸気処理法が好ましく、アクリロニトリルが50質量部以下の共重合体を用いる場合は、乾熱処理法、湿熱加圧蒸気処理法が好ましい。何れも繊維の着色が少ないからである。熱処理温度は、弛緩熱処理の場合、乾熱処理法であれば120~200℃、好ましくは140~180℃、更に好ましくは150~170℃であり、湿熱加圧蒸気処理法であれば80~160℃、好ましくは90~150℃、更に好ましくは100~140℃であり、加熱水蒸気処理法であれば140~230℃、好ましくは150~210℃、更に好ましくは160~190℃である。緊張熱処理の場合、乾熱処理法であれば180~260℃、好ましくは180~240℃であり、湿熱加圧蒸気処理法であれば150~230℃、好ましくは160~210℃であり、加熱水蒸気処理法であれば160~250℃、好ましくは170~220℃である。熱処理温度の上限は特に限定されないが、前記難燃性合成繊維の着色及び工業的観点から300℃、好ましくは250℃、更に好ましくは220℃である。 In general, the heat treatment of the flame-retardant synthetic fiber can reduce the spinning residual shrinkage stress as the treatment temperature is higher. The heat necessary for heat transfer to the inside of the fiber even at a temperature lower than the softening temperature or decomposition temperature of the flame-retardant synthetic fiber enables sufficient heat treatment without coloring or strength reduction. The said heat processing can be performed by a continuous type or batch type process. In particular, when using a copolymer in which acrylonitrile exceeds 50 parts by mass, a heated steam treatment method and a wet heat pressurized steam treatment method are preferable, and when using a copolymer having acrylonitrile of 50 parts by mass or less, a dry heat treatment method, The wet heat pressurized steam treatment method is preferred. This is because all of them are less colored. In the case of the relaxation heat treatment, the heat treatment temperature is 120 to 200 ° C., preferably 140 to 180 ° C., more preferably 150 to 170 ° C. for the dry heat treatment method, and 80 to 160 ° C. for the wet heat pressurized steam treatment method. The temperature is preferably 90 to 150 ° C., more preferably 100 to 140 ° C., and 140 to 230 ° C., preferably 150 to 210 ° C., more preferably 160 to 190 ° C. in the case of the heat steam treatment method. In the case of the tension heat treatment, the dry heat treatment method is 180 to 260 ° C, preferably 180 to 240 ° C, and the wet heat pressure steam treatment method is 150 to 230 ° C, preferably 160 to 210 ° C. In the case of a treatment method, the temperature is 160 to 250 ° C, preferably 170 to 220 ° C. The upper limit of the heat treatment temperature is not particularly limited, but is 300 ° C., preferably 250 ° C., more preferably 220 ° C. from the viewpoint of coloring of the flame-retardant synthetic fiber and an industrial viewpoint.
 本発明において、熱処理としては弛緩熱処理あるいは180℃以上の乾熱緊張熱処理又は150℃以上の湿熱緊張熱処理することが好ましい。0.0054mN/dtexの荷重下、50℃から300℃まで温度を上げたときの収縮変動が45%以下である難燃性合成繊維が得られやすい。また、熱処理としては弛緩熱処理することがより好ましい。なお、本発明でいう熱処理とは、加熱下で繊維を収縮させ、紡糸収縮応力を軽減、除去する事を指す。 In the present invention, the heat treatment is preferably a relaxation heat treatment, a dry heat tension heat treatment at 180 ° C. or higher, or a wet heat tension heat treatment at 150 ° C. or higher. A flame-retardant synthetic fiber having a shrinkage variation of 45% or less when the temperature is raised from 50 ° C. to 300 ° C. under a load of 0.0054 mN / dtex is easily obtained. As the heat treatment, a relaxation heat treatment is more preferable. The heat treatment referred to in the present invention refers to reducing or removing the spinning shrinkage stress by shrinking the fiber under heating.
 本発明において、難燃性合成繊維の0.0054mN/dtexの荷重下、50℃から300℃まで温度を上げたときの収縮変動が45%以下となる範囲であれば、紡出後、熱処理前に延伸を行っても構わない。 In the present invention, after the spinning and before the heat treatment, the flame retardant synthetic fiber has a shrinkage variation of 45% or less when the temperature is increased from 50 ° C. to 300 ° C. under a load of 0.0054 mN / dtex. Stretching may be performed.
 50℃から300℃まで温度を上げたときの収縮変動とは、50℃から300℃の温度範囲において、収縮率の最も高い点と最も低い点の差分を言う。例えば図6~12中の矢印で示す差分である。具体的に説明すると次のとおりである。
1.例えば、図6や図8のように、温度上昇と共に単調収縮する場合は、収縮変動=c点(i.e.300℃)の収縮率になる。
2.図9~12のように、収縮した後に一度伸びて、再び収縮するような場合は、一度伸びた時の伸び具合により、図9では、収縮変動=c点の収縮率、図10では、収縮変動=b点の収縮率、図11、12では、収縮変動=b点の収縮率-b’点の収縮率になる。
3.図7のように、収縮した後に単調に伸びる、あるいは伸びて途中で切れるような場合には、収縮変動=矢印に示す収縮率(伸びて切れた場合は収縮変動∞)になる。
4.図中のa点は、軟化開始点。a点~b点の間では、応力緩和による収縮と脱ハロゲンによる収縮と軟化による「伸び」が起きているが、伸びよりも収縮の方が勝っている。b点以降、脱ハロゲンによる収縮、炭化による収縮(形状維持)、軟化による「伸び」の競争となるが、次のパターンになる。
(1)炭化能力が優れる場合、収縮(あるいは形状維持)の方が伸びに勝り、図6や図8のような収縮パターンとなる。
(2)炭化能力がやや劣る場合、b点付近では伸びが勝るが、温度上昇と共に炭化が勝り、ある点(図中b’点)で再び収縮し始める(図9、10、11、12)。
(3)炭化能力がない場合、b点以降、伸びが勝り、図7の収縮パターンとなる。
5.本発明において実施例の難燃性合成繊維の収縮パターンは4つある(図6、図9、図10、図11)。本発明において実施例の難燃性合成繊維の収縮パターンで最も好ましいのは図6であり、次に図9、その次に図10、図11である。図6のように応力緩和による収縮と脱ハロゲンによる収縮が小さく、且つ炭化能力が強く、単調収縮するのが最も好ましい収縮パターンであるが、図9,10,11のように、若干炭化能力が劣り、炭化の前に軟化により伸びたとしても、ある温度以上で再び炭化が起こって収縮(形状維持)するような収縮パターンであってもよい。但し、図中b’点における収縮率は0%以上であることがより好ましい。
6.これに対し、比較例の繊維の収縮パターンは図7、図8、図12である。比較例の繊維の収縮パターンにおいて、図7は温度を上げると、伸びきってしまうあるいは切れてしまうので、好ましくない。図8は炭化能力に優れ、温度と共に単調収縮するものの、応力緩和による収縮(図中a~b点)が大きすぎ、結果として50℃から300℃まで温度を上げたときの収縮変動が45%以上となるので好ましくない。図12は図9、10と同じ収縮パターンであるが、炭化能力が弱く、伸びが勝り、収縮変動(b点の収縮率-b’点の収縮率)が45%を越えるため、好ましくない。
The shrinkage fluctuation when the temperature is raised from 50 ° C. to 300 ° C. means the difference between the highest point and the lowest point of the shrinkage rate in the temperature range of 50 ° C. to 300 ° C. For example, it is the difference indicated by the arrows in FIGS. Specifically, it is as follows.
1. For example, as shown in FIGS. 6 and 8, in the case of monotonous shrinkage as the temperature rises, the shrinkage variation = shrinkage rate at point c (ie 300 ° C.).
2. As shown in FIGS. 9 to 12, in the case of once expanding after contracting and contracting again, in FIG. 9, the contraction fluctuation = the contraction rate at the point c in FIG. Fluctuation = shrinkage rate at point b. In FIGS. 11 and 12, shrinkage fluctuation = shrinkage rate at point b−shrinkage rate at point b ′.
3. As shown in FIG. 7, when contracting monotonously after contracting, or extending and cutting in the middle, contraction fluctuation = shrinkage rate indicated by an arrow (shrinking fluctuation ∞ when extending and contracting).
4). Point a in the figure is the softening start point. Between points a and b, shrinkage due to stress relaxation, shrinkage due to dehalogenation, and “elongation” due to softening occur, but shrinkage prevails over elongation. From the point b onward, it becomes a competition of shrinkage due to dehalogenation, shrinkage due to carbonization (maintenance of shape), and “elongation” due to softening, but the following pattern is obtained.
(1) When carbonization ability is excellent, shrinkage (or shape maintenance) is superior to elongation, and a shrinkage pattern as shown in FIGS. 6 and 8 is obtained.
(2) When the carbonization ability is slightly inferior, the elongation is superior in the vicinity of the point b, but the carbonization is superior as the temperature rises and starts to contract again at a certain point (the point b ′ in the figure) (FIGS. 9, 10, 11, 12). .
(3) When there is no carbonization ability, after the point b, the elongation increases and the contraction pattern of FIG. 7 is obtained.
5). In the present invention, there are four shrinkage patterns of the flame-retardant synthetic fibers of the examples (FIGS. 6, 9, 10, and 11). In the present invention, the most preferable shrinkage pattern of the flame-retardant synthetic fiber of the example is FIG. 6, then FIG. 9, and then FIG. 10, FIG. The shrinkage due to stress relaxation and the shrinkage due to dehalogenation are small as shown in FIG. 6 and the carbonization ability is strong, and the most preferable shrinkage pattern is the monotonous shrinkage. However, as shown in FIGS. Inferior, even if stretched by softening before carbonization, the shrinkage pattern may be such that carbonization occurs again at a certain temperature or higher and shrinks (maintains the shape). However, the shrinkage rate at the point b ′ in the figure is more preferably 0% or more.
6). On the other hand, the contraction pattern of the fiber of the comparative example is shown in FIGS. In the shrinkage pattern of the fiber of the comparative example, FIG. 7 is not preferable because it will be stretched or cut when the temperature is raised. FIG. 8 shows excellent carbonization ability and monotonically shrinks with temperature, but the shrinkage due to stress relaxation (points a and b in the figure) is too large. Since it becomes above, it is not preferable. FIG. 12 shows the same shrinkage pattern as FIGS. 9 and 10, but is not preferable because the carbonization ability is weak, the elongation is excellent, and the shrinkage fluctuation (shrinkage rate at point b−shrinkage rate at point b ′) exceeds 45%.
 本発明の難燃性合成繊維には、必要に応じて帯電防止剤、熱着色防止剤、耐光性向上剤、白度向上剤、失透性防止剤、着色剤、難燃剤といったその他の添加剤を含有させてもよい。 The flame retardant synthetic fiber of the present invention may include other additives such as an antistatic agent, a thermal coloring inhibitor, a light resistance improver, a whiteness improver, a devitrification inhibitor, a colorant, and a flame retardant as necessary. May be included.
 本発明の難燃性合成繊維は、重合体100質量部において、アクリロニトリル30~70質量部、ハロゲン含有ビニリデン単量体及び/又はハロゲン含有ビニル単量体70~30質量部、及びこれらと共重合可能なビニル系単量体0~10質量部を含有する重合体を用い、湿式紡糸法、乾式紡糸法、半乾半湿式法などの公知の製造方法で製造される。例えば湿式紡糸法では、上記重合体をN,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、アセトン、ロダン塩水溶液、ジメチルスルホキシド、硝酸水溶液などの溶媒に溶解後、ノズルを通じて凝固浴に押出すことで凝固させ、次いで水洗、乾燥、延伸、熱処理し、必要であれば捲縮を付与して切断することで製品を得る。前記溶媒は、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、アセトンが好ましく、更にはN,N-ジメチルホルムアミド、アセトンが工業的にハンドリングができることから好ましい。 The flame-retardant synthetic fiber of the present invention comprises 30 to 70 parts by mass of acrylonitrile, 70 to 30 parts by mass of a halogen-containing vinylidene monomer and / or a halogen-containing vinyl monomer, and a copolymer thereof with 100 parts by mass of the polymer. A polymer containing 0 to 10 parts by mass of a vinyl-based monomer that can be used is produced by a known production method such as a wet spinning method, a dry spinning method, or a semi-dry semi-wet method. For example, in the wet spinning method, the above polymer is dissolved in a solvent such as N, N-dimethylformamide, N, N-dimethylacetamide, acetone, rhodium salt aqueous solution, dimethyl sulfoxide, nitric acid aqueous solution, and then extruded into a coagulation bath through a nozzle. The product is obtained by coagulation with water, followed by washing with water, drying, stretching and heat treatment, and if necessary, crimping and cutting. The solvent is preferably N, N-dimethylformamide, N, N-dimethylacetamide, or acetone, and more preferably N, N-dimethylformamide or acetone because of industrial handling.
 本発明の難燃性合成繊維は、短繊維でも長繊維でもよく、使用方法において適宜選択することが可能である。繊度は、使用される複合体、繊維製品の用途により適宜選択されるが、1~50dtexが好ましく、1.5~30dtexがより好ましく、1.7~15dtexが更に好ましい。カット長は、複合体、繊維製品の用途により適宜選択される。例えば、ショートカットファイバー(繊維長0.1~5mm)や短繊維(繊維長38~128mm)、あるいは全くカットされていない長繊維(フィラメント)が挙げられる。この中でも繊維長38~76mm程度の短繊維が好ましい。但し、他の繊維と組み合わせるときは、他の繊維の繊度と同等でも良く、細くても太くてもよい。本発明の難燃性合成繊維は、他の繊維、特にポリエステル繊維と複合させることが可能である。 The flame-retardant synthetic fiber of the present invention may be a short fiber or a long fiber, and can be appropriately selected in the method of use. The fineness is appropriately selected depending on the use of the composite used and the fiber product, but is preferably 1 to 50 dtex, more preferably 1.5 to 30 dtex, and still more preferably 1.7 to 15 dtex. The cut length is appropriately selected depending on the use of the composite and the textile product. For example, a short-cut fiber (fiber length 0.1 to 5 mm), a short fiber (fiber length 38 to 128 mm), or a long fiber (filament) that is not cut at all can be mentioned. Among these, short fibers having a fiber length of about 38 to 76 mm are preferable. However, when combined with other fibers, the fineness of other fibers may be the same, and it may be thin or thick. The flame-retardant synthetic fiber of the present invention can be combined with other fibers, particularly polyester fibers.
 本発明の難燃性合成繊維における難燃メカニズムを説明する。 The flame retardant mechanism in the flame retardant synthetic fiber of the present invention will be described.
(1)金属化合物(2-1)について
 金属化合物(2-1)として、例えば酸化亜鉛を挙げると、酸化亜鉛は難燃性合成繊維の脱ハロゲン反応を促進する働きがあると言われている。また、脱ハロゲン、脱ハロゲン化水素により生成するハロゲン化亜鉛(塩素の場合、塩化亜鉛(ZnCl))はポリエン構造に触媒的に作用して炭化を促進する(燃焼時の残渣が形態保持成分となる)だけでなく、アクリロニトリルのトリアジン環形成反応(環化により繊維は収縮する)にも寄与すると考えられている。このような効果は、酸化亜鉛だけでなく、他の亜鉛化合物、カルバミン酸亜鉛やオクチル酸亜鉛などの有機亜鉛化合物、あるいは酸化錫や酸化銅など、一部の金属酸化物でも発揮される。また、金属化合物(2-1)による炭化、環化促進作用の結果として生じた炭化物は強固であり、残渣、特に繊維形態を保持した残渣の存在を可能とする。このような、加熱時の残渣、特に繊維形態を保持した残渣が残存する繊維を使用した布帛、不織布などの複合体に炎を当てた場合、この残渣により炎を遮断することができる。
(1) Metal compound (2-1) As the metal compound (2-1), for example, zinc oxide, zinc oxide is said to have a function of promoting the dehalogenation reaction of the flame-retardant synthetic fiber. . In addition, zinc halide produced by dehalogenation or dehydrohalogenation (in the case of chlorine, zinc chloride (ZnCl 2 )) acts catalytically on the polyene structure to promote carbonization (the residue during combustion is a form-retaining component) In addition, it is thought to contribute to the triazine ring formation reaction of acrylonitrile (fibers shrink by cyclization). Such an effect is exhibited not only in zinc oxide but also in other zinc compounds, organic zinc compounds such as zinc carbamate and zinc octylate, or some metal oxides such as tin oxide and copper oxide. In addition, the carbide generated as a result of the carbonization and cyclization promoting action by the metal compound (2-1) is strong and allows the presence of a residue, particularly a residue retaining the fiber form. When a flame is applied to such a composite body such as a fabric or a nonwoven fabric using a fiber in which a residue remaining during heating, in particular, a residue retaining a fiber form remains, the flame can be blocked by the residue.
(2)0.0054mN/dtexの荷重下、50℃から300℃まで温度を上げたときの収縮変動を45%以下とすることについて
 一般にハロゲン含有繊維は、加熱(燃焼)時に一旦収縮し、その後伸張する挙動を示す。加熱(燃焼)時の収縮要因としては、a.炭化による収縮と、b.紡糸残留応力による収縮、の2要因が考えられる。このうち、a.炭化による収縮は、共重合体からの脱ハロゲン反応、アクリロニトリルのトリアジン環形成に起因する。これは、共重合体組成に由来する化学的な反応であり、この反応による収縮を抑制することは難しい。一方、b.紡糸残留収縮応力による収縮は、繊維製造過程での凝固や延伸操作時に繊維に付与される残留歪に起因するものであり、繊維の製造条件、特に繊維製造過程での熱処理条件を適宜選択することで抑制することが可能となる。熱処理方法としては、弛緩熱処理、湿熱150℃以上の緊張熱処理、乾熱180℃以上の緊張熱処理が挙げられる。この内、紡糸残留応力を充分に抑制する熱処理方法として、弛緩熱処理が好ましい。これらの熱処理を施すことにより、紡糸残留収縮応力を抑えることができ、加熱(燃焼)時の収縮変動、即ち、0.0054mN/dtexの荷重下、50℃から300℃まで温度を上げたときの収縮変動を45%以下にすることができる。0.0054mN/dtexの荷重下、50℃から300℃まで温度を上げたときの収縮変動が45%以下であれば、高い難燃性、高度な炎遮蔽性を発現する。例えば米国のベッドの燃焼試験16CFR1633において、燃焼時、繊維収縮が抑制され、炎に晒された部分に穴が空いたり、歪によりクラックが生じそこから炎が入って内部易燃性構造物に着火して試験に不合格となる場合も無く好ましい。本発明の難燃性合成繊維は軟化温度と脱ハロゲン開始温度(分解点)が近接しているため、熱処理温度を上げると脱ハロゲン反応が生じることで繊維に着色をきたしたり、充分な熱処理付与が難しい場合がある。この解決策としては、本発明の難燃性合成繊維のアクリロニトリル含有量を下げて軟化点を下げる手法があり、これによれば熱処理温度を分解温度以下に設定することができる。その他、加圧湿熱条件下であれば、軟化点温度以下でも充分な熱処理をおこなうこともできる。
 尚、0.0054mN/dtexの荷重下、50℃から300℃まで温度を上げたときの収縮変動が45%以下になる範囲であれば、紡出後、熱処理前に本発明の難燃性合成繊維に延伸をかけても構わない。この場合、延伸倍率に熱処理時に繊維が収縮する割合である緩和率(倍率)を乗じたトータル延伸倍率(=延伸倍率(%)×(100-緩和率(%))×0.01)が、4.8倍未満であることが好ましく、更には4.2倍未満であることがより好ましい。これにより紡糸残留収縮応力が更に抑制でき、より高い難燃性を得ることができる。
(2) About shrinkage fluctuation when the temperature is raised from 50 ° C. to 300 ° C. under a load of 0.0054 mN / dtex, 45% or less Generally, halogen-containing fibers are once shrunk during heating (combustion), and then Extensive behavior is shown. The shrinkage factors during heating (combustion) include: a. Shrinkage due to carbonization; b. There are two possible causes: shrinkage due to spinning residual stress. Of these, a. Shrinkage due to carbonization is caused by dehalogenation reaction from the copolymer and triazine ring formation of acrylonitrile. This is a chemical reaction derived from the copolymer composition, and it is difficult to suppress shrinkage due to this reaction. On the other hand, b. Shrinkage due to spinning residual shrinkage stress is due to residual strain applied to the fiber during solidification and drawing operations in the fiber manufacturing process, and the fiber manufacturing conditions, particularly the heat treatment conditions in the fiber manufacturing process, should be selected as appropriate. Can be suppressed. Examples of the heat treatment method include relaxation heat treatment, tension heat treatment at 150 ° C. or higher in wet heat, and tension heat treatment at 180 ° C. or higher in dry heat. Of these, relaxation heat treatment is preferred as a heat treatment method for sufficiently suppressing the spinning residual stress. By applying these heat treatments, the residual shrinkage stress in spinning can be suppressed, and the shrinkage fluctuation during heating (combustion), that is, when the temperature is raised from 50 ° C. to 300 ° C. under a load of 0.0054 mN / dtex. Shrinkage variation can be reduced to 45% or less. If the shrinkage variation when the temperature is raised from 50 ° C. to 300 ° C. under a load of 0.0054 mN / dtex is 45% or less, high flame retardancy and high flame shielding properties are exhibited. For example, in the combustion test 16CFR1633 in the United States, fiber shrinkage is suppressed during combustion, and there is a hole in the exposed part of the flame, a crack is generated due to distortion, and a flame enters from there to ignite the internal flammable structure. Therefore, it is preferable because it does not fail the test. Since the flame-retardant synthetic fiber of the present invention has a softening temperature and a dehalogenation start temperature (decomposition point) close to each other, the dehalogenation reaction occurs when the heat treatment temperature is raised, or the fiber is colored or given sufficient heat treatment. May be difficult. As a solution to this, there is a technique of lowering the softening point by lowering the acrylonitrile content of the flame-retardant synthetic fiber of the present invention, and according to this, the heat treatment temperature can be set to the decomposition temperature or lower. In addition, sufficient heat treatment can be performed even at a temperature equal to or lower than the softening point temperature under a pressurized moist heat condition.
In addition, if the range of shrinkage variation is 45% or less when the temperature is raised from 50 ° C. to 300 ° C. under a load of 0.0054 mN / dtex, the flame retardant synthesis of the present invention after spinning and before heat treatment. The fiber may be stretched. In this case, the total draw ratio (= stretch ratio (%) × (100−relaxation ratio (%)) × 0.01) obtained by multiplying the stretch ratio by the relaxation ratio (magnification), which is the ratio at which the fiber shrinks during heat treatment, It is preferably less than 4.8 times, and more preferably less than 4.2 times. Thereby, the spinning residual shrinkage stress can be further suppressed, and higher flame retardancy can be obtained.
(3)エポキシ基を含有するポリマー(一例としてポリグリシジルメタクリレート(pGMA))の収縮抑制メカニズムについて
 pGMAを紡糸プロセス中で反応させ、繊維中に高分子架橋構造を導入することで、収縮を抑制する。pGMAは乾燥又は熱処理の熱で架橋するが、酸触媒が存在すれば、更に架橋が進むと考えられる。本発明の難燃性合成繊維に含まれる金属酸化物(三酸化アンチモン(Sb)、酸化亜鉛(ZnO))は、繊維に含まれる重合体中のハロゲンを奪いハロゲン化物(塩素の場合SbCl,ZnCl)となるが、これらは酸触媒としてpGMAの架橋を促進すると考えられている。
(3) About shrinkage suppression mechanism of polymer containing epoxy group (for example, polyglycidyl methacrylate (pGMA)) Inhibition of shrinkage by reacting pGMA in spinning process and introducing polymer cross-linked structure into fiber . pGMA is cross-linked by the heat of drying or heat treatment, but if an acid catalyst is present, it is considered that cross-linking proceeds further. The metal oxide (antimony trioxide (Sb 2 O 3 ), zinc oxide (ZnO)) contained in the flame-retardant synthetic fiber of the present invention deprives the halogen in the polymer contained in the fiber (in the case of chlorine). SbCl 3 , ZnCl 2 ), which are believed to promote cross-linking of pGMA as an acid catalyst.
 本発明の難燃性合成繊維は、単独使用はもちろん可能であり、天然繊維、再生繊維、他の合成繊維などと組み合わせて使用することも可能である。 The flame-retardant synthetic fiber of the present invention can be used alone or in combination with natural fiber, recycled fiber, other synthetic fiber, or the like.
 本発明の難燃繊維複合体とは、本発明の難燃性合成繊維と他の繊維とを組み合わせて複合体を形成したものをいう。本発明において、難燃繊維複合体は、前記の難燃性合成繊維10質量%以上と、天然繊維、再生繊維及び前記難燃性合成繊維以外の合成繊維から選ばれる少なくとも1種の繊維90質量%以下を含む。また、前記難燃繊維複合体における難燃性合成繊維の含有量の上限は90質量%以下が好ましく、天然繊維、再生繊維及び前記難燃性合成繊維以外の合成繊維から選ばれる少なくとも1種の繊維の含有量の下限は10質量%以上が好ましい。 The flame retardant fiber composite of the present invention means a composite formed by combining the flame retardant synthetic fiber of the present invention and other fibers. In the present invention, the flame-retardant fiber composite is 10% by mass or more of the above-mentioned flame-retardant synthetic fiber and 90 masses of at least one kind of fiber selected from natural fibers, recycled fibers, and synthetic fibers other than the above-mentioned flame-retardant synthetic fibers. % Or less included. Further, the upper limit of the content of the flame retardant synthetic fiber in the flame retardant fiber composite is preferably 90% by mass or less, and at least one selected from natural fibers, recycled fibers, and synthetic fibers other than the flame retardant synthetic fibers. The lower limit of the fiber content is preferably 10% by mass or more.
 天然繊維としては、木綿繊維、カポック繊維、亜麻繊維、大麻繊維、ラミー繊維、ジュート繊維、マニラ麻繊維、ケナフ繊維、羊毛繊維、モヘア繊維、カシミヤ繊維、ラクダ繊維、アルパカ繊維、アンゴラ繊維、絹繊維などがある。再生繊維としては、再生セルロース繊維(レーヨン、ポリノジック、旭化成社製商品名“キュプラ”、レンチング社製商品名“テンセル”、同“レンチングモダール”)、再生コラーゲン繊維、再生タンパク繊維、酢酸セルロース繊維、プロミックス繊維などがある。合成繊維としては、ポリエステル繊維、ポリアミド繊維、ポリ乳酸繊維、アクリル繊維、ポリオレフィン繊維、ポリビニルアルコール繊維、ポリ塩化ビニル繊維、ポリ塩化ビニリデン繊維(旭化成せんい社製商品名“サラン”)、ポリクラール繊維、ポリエチレン繊維(東洋紡社製商品名“ダイニーマ”)、ポリウレタン繊維、ポリオキシメチレン繊維、ポリテトラフルオロエチレン繊維、アラミド繊維(デュポン社製商品名“ケブラー”、同“ノーメックス”、帝人社製商品名“テクノーラ”、同“トワロン”、同“コーネックス”)、ベンゾエート繊維、ポリフェニレンスルフィド繊維(東洋紡社製商品名“プロコン”)、ポリエーテルエーテルケトン繊維、ポリベンズアゾール繊維、ポリイミド繊維(東洋紡社製商品名“P84”)、ポリアミドイミド繊維(ケルメル社製商品名“ケルメル”)などがある。更に、再生繊維として、特殊再生セルロース繊維(水ガラスを含有するレーヨン繊維:サテリ社製商品名“ヴィジル”、ダイワボウ社製商品名“FRコロナ”)、難燃剤を塗布した後加工難燃セルロース繊維、素材難燃レーヨン繊維(レンチング社製商品名“レンチングFR”)などがある。合成繊維として、難燃ポリエステル(東洋紡社製商品名“ハイム”、トレビラ社製商品名“トレビラCS”)、ポリエチレンナフタレート繊維(帝人社製商品名“テオネックス”)、メラミン繊維(バソフィルファイバー社製商品名“バソフィル”)、アクリレート繊維(東洋紡社製商品名“モイスケア”)、ポリベンズオキサイド繊維(東洋紡社製商品名“ザイロン”)などがある。その他、酸化アクリル繊維、炭素繊維、ガラス繊維、活性炭素繊維などがある。 Natural fibers include cotton fiber, kapok fiber, flax fiber, cannabis fiber, ramie fiber, jute fiber, manila fiber, kenaf fiber, wool fiber, mohair fiber, cashmere fiber, camel fiber, alpaca fiber, angora fiber, silk fiber, etc. There is. Examples of regenerated fibers include regenerated cellulose fibers (rayon, polynosic, trade name “Cupura” manufactured by Asahi Kasei Co., Ltd., product names “Tencel” and “lenting modal” manufactured by Asahi Kasei), regenerated collagen fibers, regenerated protein fibers, cellulose acetate fibers, There are promix fibers. Synthetic fibers include polyester fiber, polyamide fiber, polylactic acid fiber, acrylic fiber, polyolefin fiber, polyvinyl alcohol fiber, polyvinyl chloride fiber, polyvinylidene chloride fiber (trade name "Saran" manufactured by Asahi Kasei Fibers), polyclar fiber, polyethylene Fiber (trade name “Dyneema” manufactured by Toyobo Co., Ltd.), polyurethane fiber, polyoxymethylene fiber, polytetrafluoroethylene fiber, aramid fiber (trade names “Kevlar” manufactured by DuPont, “Nomex”), “Technola” manufactured by Teijin Limited ”,“ Twaron ”,“ Conex ”), benzoate fiber, polyphenylene sulfide fiber (trade name“ Procon ”manufactured by Toyobo Co., Ltd.), polyether ether ketone fiber, polybenzazole fiber, polyimide fiber (trade name, manufactured by Toyobo Co., Ltd.) “P84”), Riamidoimido fiber (Kerumeru trade name "Kerumeru"), and the like. Furthermore, specially regenerated cellulose fiber (rayon fiber containing water glass: trade name “Vigil” manufactured by Satellite, trade name “FR Corona” manufactured by Daiwabo Co., Ltd.), a fire retardant, and post-processed flame retardant cellulose fiber And flame retardant rayon fiber (trade name “Lentining FR” manufactured by Lenzing). Synthetic fibers include flame retardant polyester (trade name “Hheim” manufactured by Toyobo Co., Ltd., product name “Trevira CS” manufactured by Trevira), polyethylene naphthalate fiber (trade name “Teonex” manufactured by Teijin Limited), and melamine fiber (Vasofil Fibers). Product name “Vasofil”), acrylate fiber (trade name “MOISCARE” manufactured by Toyobo Co., Ltd.), and polybenzoxide fiber (trade name “Zyron” manufactured by Toyobo Co., Ltd.). In addition, there are oxidized acrylic fiber, carbon fiber, glass fiber, activated carbon fiber and the like.
 このうち、木綿繊維、レーヨン繊維、水ガラス含有レーヨン繊維、ポリエステル繊維、アラミド繊維が好ましく、特に好ましくはポリエステル繊維であり、コストも安く、特に不織布の場合、嵩高性を有する。また、木綿繊維、レーヨン繊維、水ガラス含有レーヨン繊維、アラミド繊維は、難燃性を更に付与できる点で好ましい。前記難燃性合成繊維以外の合成繊維がポリエステル系繊維であり、かつ難燃繊維複合体中の含有量が40質量%以上であることが好ましい。また、上限値は90質量%以下が好ましい。 Among these, cotton fiber, rayon fiber, water glass-containing rayon fiber, polyester fiber, and aramid fiber are preferable, polyester fiber is particularly preferable, the cost is low, and in the case of a nonwoven fabric, it is bulky. Moreover, cotton fiber, rayon fiber, water glass-containing rayon fiber, and aramid fiber are preferable in that they can further impart flame retardancy. It is preferable that the synthetic fiber other than the flame-retardant synthetic fiber is a polyester fiber, and the content in the flame-retardant fiber composite is 40% by mass or more. The upper limit is preferably 90% by mass or less.
 本発明において、難燃繊維複合体としては、混綿、混紡、混繊、引き揃え糸、合糸、芯鞘などの複合糸、交織、交編、積層などがあり、具体的形態としては、詰め物などの綿、不織布、織物、編み物、レース編、組み物などがある。 In the present invention, the flame retardant fiber composite includes mixed cotton, mixed spinning, mixed fiber, aligned yarn, synthetic yarn, core sheath and other composite yarn, union, union, lamination, etc. Cotton, non-woven fabric, woven fabric, knitted fabric, lace knitted fabric, braided fabric, etc.
 詰め物などの綿としては、開繊綿、玉綿、ウエブ、成形された綿などがある。 Examples of cotton for filling include open cotton, ball cotton, web, and molded cotton.
 不織布としては、湿式抄造不織布、カード不織布、エアレイ不織布、サーマルボンド不織布、化学的接着不織布、ニードルパンチ不織布、水流交絡不織布、ステッチボンド不織布などがある。サーマルボンド不織布、ニードルパンチ不織布が工業的に安価である。また不織布は、厚み、幅、長さ方向に均一構造、明確な積層構造、不明確な積層構造の何れを有していてもよい。 Nonwoven fabrics include wet papermaking nonwoven fabrics, carded nonwoven fabrics, airlaid nonwoven fabrics, thermal bond nonwoven fabrics, chemically bonded nonwoven fabrics, needle punched nonwoven fabrics, hydroentangled nonwoven fabrics, and stitch bond nonwoven fabrics. Thermal bond nonwoven fabric and needle punched nonwoven fabric are industrially inexpensive. The nonwoven fabric may have any of a uniform structure, a clear laminated structure, and an unclear laminated structure in the thickness, width, and length directions.
 織物としては、平織、斜文織、朱子織、変化平織、変化斜文織、変化朱子織、変わり織、紋織、片重ね織、二重組織、多重組織、経パイル織、緯パイル織、絡み織などがある。平織、朱子織、紋織が、商品としての風合いや強度などに優れる。 As the woven fabric, plain weave, oblique weave, satin weave, altered plain weave, altered oblique weave, altered satin weave, alter weave, crest weave, single layer weave, double structure, multiple structure, warp pile weft, weft pile weave, entanglement There are weaving. Plain weave, satin weave and crest weave are excellent in texture and strength as products.
 編み物としては、丸編、緯編、経編、パイル編などを含み、平編、天竺編、リブ編、スムース編(両面編)、ゴム編、パール編、デンビー組織、コード組織、アトラス組織、鎖組織、挿入組織などがある。天竺編、リブ編が、商品としての風合いに優れる。 The knitting includes round knitting, weft knitting, warp knitting, pile knitting, etc., flat knitting, tengu knitting, rib knitting, smooth knitting (double-sided knitting), rubber knitting, pearl knitting, denby knitting, cord knitting, atlas knitting, There are chain structures, inserted tissues, and the like. Tengu and ribs are excellent in texture as products.
 本発明において、繊維製品は、前記難燃性合成繊維を含む。前記繊維製品としては、一例として次のようなものがある。
(1)衣類及び日用品材料
 衣服(上着、下着、セーター、ベスト、ズボンなどを含む)、手袋、靴下、マフラー、帽子、寝具、枕、クッション、ぬいぐるみなど
(2)特殊服
 防護服、消防服、作業服、防寒服など
(3)インテリア材料
 椅子張り、カーテン、壁紙、カーペットなど
(4)産業資材
 フィルター、耐炎詰め物、ライニング材など。
In the present invention, the textile product contains the flame retardant synthetic fiber. Examples of the textile products include the following.
(1) Clothing and daily necessities Clothing (including outerwear, underwear, sweaters, vests, trousers, etc.), gloves, socks, mufflers, hats, bedding, pillows, cushions, stuffed animals, etc. (2) Special clothing Protective clothing, fire fighting clothing (3) Interior materials Chair upholstery, curtains, wallpaper, carpets, etc. (4) Industrial materials Filters, flameproof stuffing, lining materials, etc.
 例えば、本発明の繊維製品を用いて寝具又は家具、例えば、ベッドマットレス、ピロー、コンフォーター、ベッドスプレッド、マットレスパッド、フトン、クッション、椅子などの難燃性布張り製品を製造すると、難燃性を有しつつ、風合い、触感、色調、吸湿性などの優れた特性を有する布張り製品を得ることができる。ベッドマットレスとしては、例えば、金属製のコイルが内部に用いられたポケットコイルマットレス、ボックスコイルマットレス、あるいはスチレンやウレタン樹脂などを発泡させたインシュレーターや低反発ウレタンが内部に使用されたマットレスなどがある。本発明の難燃性合成繊維の難燃性により、前記マットレス内部の構造体への延焼が防止できるため、何れの構造のマットレスにおいても、難燃性と同時に風合いや触感に優れたマットレスを得ることができる。椅子としては、屋内にて使用される、ストゥール、ベンチ、サイドチェア、アームチェア、ラウンジチェア・ソファー、シートユニット(セクショナルチェア、セパレートチェア)、ロッキングチェア、フォールディングチェア、スタッキングチェア、スィーブルチェア、あるいは屋外で車両用座席などに使用される、自動車シート、船舶用座席、航空機用座席、列車用座席などが挙げられるが、これらにおいても通常の家具として要求される外観や触感と同時に内部の延焼を防止する機能を有する難燃性製品を得ることができる。 For example, if a textile product of the present invention is used to produce bedding or furniture such as a bed mattress, pillow, comforter, bed spread, mattress pad, futon, cushion, chair, etc. A fabric upholstered product having excellent properties such as texture, touch, color tone, and hygroscopicity can be obtained. Examples of the bed mattress include a pocket coil mattress in which a metal coil is used, a box coil mattress, an insulator in which styrene or urethane resin is foamed, or a mattress in which low-rebound urethane is used. . Due to the flame retardancy of the flame retardant synthetic fiber of the present invention, it is possible to prevent the spread of fire to the internal structure of the mattress. Therefore, in any mattress of the structure, a mattress excellent in texture and touch as well as flame retardancy is obtained. be able to. As chairs, used indoors, tools, benches, side chairs, armchairs, lounge chairs / sofas, seat units (sectional chairs, separate chairs), rocking chairs, folding chairs, stacking chairs, swivel chairs, or outdoors Automotive seats, marine seats, aircraft seats, train seats, etc. used for vehicle seats, etc., but these also prevent the spread of internal fire as well as the appearance and feel required for normal furniture It is possible to obtain a flame retardant product having the function of
 難燃性布張り製品に対する本発明の難燃性合成繊維及び/又は難燃繊維複合体を含む生地(以下、本発明の生地という。)の用い方としては、表面の布地に織物や編物の形態で用いてもよいし、表面の布地と内部構造物、例えばウレタンフォームや詰め綿の間に織物、編物、不織布の形態で挟み込んでもよい。表面の布地に用いる場合には、従来の表面の布地に替えて本発明の生地を用いればよい。また、表面生地と内部構造物の間に織物や編物を挟む場合には、表面生地を2枚重ねる要領で挟み込んでもよいし、内部構造物を本発明の生地で覆ってもよい。表面生地と内部構造物の間に本発明の生地として挟む場合には、内部構造物全体に、少なくとも表面の布地と接する部分については、必ず内部構造物の外側に本発明の生地をかぶせ、その上から表面の布地を張る。 The use of the fabric containing the flame retardant synthetic fiber and / or the flame retardant fiber composite of the present invention (hereinafter referred to as the fabric of the present invention) for a flame retardant upholstered product is as follows. It may be used in a form, or may be sandwiched in the form of a woven fabric, a knitted fabric or a non-woven fabric between a fabric on the surface and an internal structure such as urethane foam or stuffed cotton. When used for the surface fabric, the fabric of the present invention may be used instead of the conventional surface fabric. Further, when a woven fabric or a knitted fabric is sandwiched between the surface fabric and the internal structure, the surface fabric may be sandwiched in a manner of overlapping two sheets, or the internal structure may be covered with the fabric of the present invention. When sandwiching the fabric of the present invention between the surface fabric and the internal structure, be sure to cover the entire internal structure with the fabric of the present invention on the outside of the internal structure at least for the part that contacts the surface fabric. Apply the surface fabric from above.
 以下、実施例により本発明を更に詳しく説明するが、本発明はかかる実施例に限定されるものではない。なお、下記の実施例中で「%」は「質量%」を意味する。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to such examples. In the following examples, “%” means “mass%”.
 (脱ハロゲン反応促進の評価方法)
 脱ハロゲン反応促進の評価方法は示差熱・熱重量測定計(セイコーインスツルメント(株)社製、商品名“TG/DTA220”)を用いて以下のように実施した。
(Evaluation method for promoting dehalogenation reaction)
The evaluation method for promoting the dehalogenation reaction was carried out as follows using a differential heat / thermogravimetry (trade name “TG / DTA220” manufactured by Seiko Instruments Inc.).
 アクリロニトリル51.5質量部、ハロゲン含有ビニリデン単量体47.4質量部及びスチレンスルホン酸ナトリウム1.1質量部からなる重合体(1)5mgを空気条件下(ガス流量:200ml/min、昇温速度:20℃/min)で加熱した際、重量減少が始まる温度、即ち脱ハロゲン開始温度を測定した。その結果、脱ハロゲン開始温度は243℃であった。 5 mg of a polymer (1) consisting of 51.5 parts by mass of acrylonitrile, 47.4 parts by mass of a halogen-containing vinylidene monomer and 1.1 parts by mass of sodium styrenesulfonate was added under air conditions (gas flow rate: 200 ml / min, temperature rise) When heating at a rate of 20 ° C./min), the temperature at which weight loss starts, that is, the dehalogenation start temperature was measured. As a result, the dehalogenation start temperature was 243 ° C.
 次に、上記重合体(1)100質量部に対し、表1に示す金属化合物を10質量部添加し、十分に混合した試料5mgを、空気条件下(ガス流量:200ml/min、昇温速度:20℃/min)で加熱した。その際、重量減少が始まる温度、即ち脱ハロゲン開始温度が、243℃未満である場合、脱ハロゲン反応が促進されていると判断し、Aとした。また、脱ハロゲン開始温度が243℃以上である場合、脱ハロゲン反応は促進されていないと判断し、Bとした。各金属化合物の評価結果を表1に示す。 Next, with respect to 100 parts by mass of the polymer (1), 10 parts by mass of the metal compound shown in Table 1 was added, and 5 mg of a sufficiently mixed sample was subjected to air conditions (gas flow rate: 200 ml / min, heating rate) : 20 ° C./min). At that time, when the temperature at which weight reduction starts, that is, the dehalogenation start temperature was less than 243 ° C., it was judged that the dehalogenation reaction was promoted, and was set to A. Further, when the dehalogenation start temperature was 243 ° C. or higher, it was determined that the dehalogenation reaction was not promoted, and was set to B. The evaluation results of each metal compound are shown in Table 1.
 (炭化反応促進の評価方法)
 炭化反応促進の評価方法は示差熱・熱重量測定計(セイコーインスツルメント(株)社製、商品名“TG/DTA220”)を用いて以下のように実施した。
(Evaluation method for carbonization reaction promotion)
The evaluation method of carbonization reaction acceleration was carried out as follows using a differential heat / thermogravimetry (trade name “TG / DTA220” manufactured by Seiko Instruments Inc.).
 アクリロニトリル51.5質量部、ハロゲン含有ビニリデン単量体47.4質量部及びスチレンスルホン酸ナトリウム1.1質量部からなる重合体(1)5mgを空気条件下(ガス流量:200ml/min、昇温速度:20℃/min)で加熱した際、500℃における残重量率を測定した。その結果、残重量率は52%であった。 5 mg of a polymer (1) consisting of 51.5 parts by mass of acrylonitrile, 47.4 parts by mass of a halogen-containing vinylidene monomer and 1.1 parts by mass of sodium styrenesulfonate was added under air conditions (gas flow rate: 200 ml / min, temperature rise) When heated at a rate of 20 ° C./min), the residual weight ratio at 500 ° C. was measured. As a result, the remaining weight ratio was 52%.
 次に、上記重合体(1)100質量部に対し、表1に示す金属化合物を10質量部添加し、十分に混合した試料5mgを、空気条件下(ガス流量:200ml/min、昇温速度:20℃/min)で加熱した。その際、500℃における残重量率が、47%以上である場合、炭化反応が促進されていると判断し、Aとした。また、500℃における残重量率が、47%未満である場合、炭化反応は促進されていないと判断し、Bとした。各金属化合物の評価結果を下記表1に示す。 Next, with respect to 100 parts by mass of the polymer (1), 10 parts by mass of the metal compound shown in Table 1 was added, and 5 mg of a sufficiently mixed sample was subjected to air conditions (gas flow rate: 200 ml / min, heating rate) : 20 ° C./min). At that time, when the remaining weight ratio at 500 ° C. was 47% or more, it was judged that the carbonization reaction was promoted, and was set to A. Moreover, when the remaining weight ratio in 500 degreeC was less than 47%, it judged that the carbonization reaction was not accelerated | stimulated and was set as B. The evaluation results of each metal compound are shown in Table 1 below.
 [表1]
Figure JPOXMLDOC01-appb-I000001
[Table 1]
Figure JPOXMLDOC01-appb-I000001
 (ハロゲン含有繊維の製造例1~9)
 アクリロニトリル51%、塩化ビニリデン48%及びp-スチレンスルホン酸ソーダ1%よりなる共重合体をアセトンに樹脂濃度が30%になるように溶解させ、得られた樹脂溶液の樹脂質量に対して下記表2に示す添加量において金属化合物(2-1)として酸化亜鉛(酸化亜鉛JIS3種)、金属化合物(2-2)として三酸化アンチモン、エポキシ基含有化合物としてポリグリシジルメタクリレート(重量平均分子量40000)を添加し、紡糸原液とした。この紡糸原液をノズル孔径0.10mm及び孔数1000ホールのノズルを用い、30%アセトン水溶液中へ押し出し、延伸しつつ水洗したのち120℃で乾燥し、更に湿熱加圧蒸気中123℃で15分間、無緊張の状態で弛緩処理し、更に切断することでハロゲン含有繊維を得た。この時、トータル延伸倍率は2.6倍であった。また、得られた繊維は繊度7.8dtexであり、カット長64mmの短繊維であった。
(Production Examples 1 to 9 of halogen-containing fiber)
A copolymer consisting of 51% acrylonitrile, 48% vinylidene chloride and 1% p-styrene sulfonic acid soda was dissolved in acetone to a resin concentration of 30%. 2, zinc oxide (3 types of zinc oxide JIS) as the metal compound (2-1), antimony trioxide as the metal compound (2-2), and polyglycidyl methacrylate (weight average molecular weight 40000) as the epoxy group-containing compound. Added to make a spinning dope. This spinning dope was extruded into a 30% acetone aqueous solution using a nozzle having a nozzle hole diameter of 0.10 mm and a hole number of 1000 holes, washed with water while being stretched, dried at 120 ° C., and further at 123 ° C. in wet heat and pressurized steam for 15 minutes. Then, a relaxation treatment was performed in a non-tensioned state, and a halogen-containing fiber was obtained by further cutting. At this time, the total draw ratio was 2.6 times. The obtained fiber was a fine fiber having a fineness of 7.8 dtex and a cut length of 64 mm.
 (ハロゲン含有繊維の製造例10、11)
 アクリロニトリル43%、塩化ビニリデン56%及びp-スチレンスルホン酸ソーダ1%よりなる共重合体をアセトンに樹脂濃度が30%になるように溶解させ、得られた樹脂溶液の樹脂質量に対して下記表2に示す添加量において金属化合物(2-1)として酸化亜鉛(酸化亜鉛JIS3種)、金属化合物(2-2)として三酸化アンチモン、エポキシ基含有化合物としてポリグリシジルメタクリレート(重量平均分子量40000)を添加し、紡糸原液とした。この紡糸原液をノズル孔径0.10mm及び孔数1000ホールのノズルを用い、30%アセトン水溶液中へ押し出し、延伸しつつ水洗したのち120℃で乾燥し、更に170℃で2分間、無緊張の状態で乾熱弛緩処理し、更に切断することでハロゲン含有繊維を得た。この時、トータル延伸倍率は3.0倍であった。また、得られた繊維は繊度7.8dtexであり、カット長64mmの短繊維であった。
(Production Examples 10 and 11 of halogen-containing fiber)
A copolymer consisting of 43% acrylonitrile, 56% vinylidene chloride and 1% sodium p-styrene sulfonate was dissolved in acetone so that the resin concentration was 30%. 2, zinc oxide (3 types of zinc oxide JIS) as the metal compound (2-1), antimony trioxide as the metal compound (2-2), and polyglycidyl methacrylate (weight average molecular weight 40000) as the epoxy group-containing compound. Added to make a spinning dope. This spinning dope is extruded into a 30% acetone aqueous solution using a nozzle having a nozzle hole diameter of 0.10 mm and a hole number of 1000 holes, washed with water while being stretched, dried at 120 ° C., and then at 170 ° C. for 2 minutes in a state of no tension. Was subjected to dry heat relaxation treatment and further cut to obtain a halogen-containing fiber. At this time, the total draw ratio was 3.0 times. The obtained fiber was a fine fiber having a fineness of 7.8 dtex and a cut length of 64 mm.
 (ハロゲン含有繊維の製造例12)
 アクリロニトリル38%、塩化ビニリデン61%及びp-スチレンスルホン酸ソーダ1%よりなる共重合体をアセトンに樹脂濃度が30%になるように溶解させ、得られた樹脂溶液の樹脂質量に対して下記表2に示す添加量において金属化合物(2-1)として酸化亜鉛(酸化亜鉛JIS3種)、金属化合物(2-2)として三酸化アンチモン、エポキシ基含有化合物としてポリグリシジルメタクリレート(重量平均分子量40000)を添加し、紡糸原液とした。この紡糸原液をノズル孔径0.10mm及び孔数1000ホールのノズルを用い、30%アセトン水溶液中へ押し出し、延伸しつつ水洗したのち120℃で乾燥し、更に170℃で2分間、無緊張の状態で乾熱弛緩処理し、更に切断することでハロゲン含有繊維を得た。この時、トータル延伸倍率は3.0倍であった。また、得られた繊維は繊度7.8dtexであり、カット長64mmの短繊維であった。
(Production Example 12 of halogen-containing fiber)
A copolymer consisting of 38% acrylonitrile, 61% vinylidene chloride and 1% p-styrene sulfonic acid soda was dissolved in acetone so that the resin concentration would be 30%. 2, zinc oxide (3 types of zinc oxide JIS) as the metal compound (2-1), antimony trioxide as the metal compound (2-2), and polyglycidyl methacrylate (weight average molecular weight 40000) as the epoxy group-containing compound. Added to make a spinning dope. This spinning dope is extruded into a 30% acetone aqueous solution using a nozzle having a nozzle hole diameter of 0.10 mm and a hole number of 1000 holes, washed with water while being stretched, dried at 120 ° C., and then at 170 ° C. for 2 minutes in a state of no tension. Was subjected to dry heat relaxation treatment and further cut to obtain a halogen-containing fiber. At this time, the total draw ratio was 3.0 times. The obtained fiber was a fine fiber having a fineness of 7.8 dtex and a cut length of 64 mm.
 (ハロゲン含有繊維の製造例13)
 アクリロニトリル51%、塩化ビニリデン48%及びp-スチレンスルホン酸ソーダ1%よりなる共重合体をアセトンに樹脂濃度が30%になるように溶解させ、得られた樹脂溶液の樹脂質量に対して下記表2に示す添加量において金属化合物(2-1)として酸化亜鉛(酸化亜鉛JIS3種)、金属化合物(2-2)として三酸化アンチモン、エポキシ基含有化合物としてポリグリシジルメタクリレート(重量平均分子量40000)を添加し、紡糸原液とした。この紡糸原液をノズル孔径0.10mm及び孔数1000ホールのノズルを用い、30%アセトン水溶液中へ押し出し、延伸しつつ水洗したのち120℃で乾燥し、更に185℃で2分間、乾熱緊張熱処理して、トータル延伸倍率は3.0倍であった。また、得られた繊維は繊度7.8dtexであり、カット長64mmの短繊維であった。
(Production Example 13 of halogen-containing fiber)
A copolymer consisting of 51% acrylonitrile, 48% vinylidene chloride and 1% p-styrene sulfonic acid soda was dissolved in acetone to a resin concentration of 30%. 2, zinc oxide (3 types of zinc oxide JIS) as the metal compound (2-1), antimony trioxide as the metal compound (2-2), and polyglycidyl methacrylate (weight average molecular weight 40000) as the epoxy group-containing compound. Added to make a spinning dope. This spinning stock solution was extruded into a 30% acetone aqueous solution using a nozzle having a nozzle hole diameter of 0.10 mm and a hole number of 1000 holes, washed with water while being stretched, dried at 120 ° C., and further dried at 185 ° C. for 2 minutes. The total draw ratio was 3.0 times. The obtained fiber was a fine fiber having a fineness of 7.8 dtex and a cut length of 64 mm.
 (ハロゲン含有繊維の製造例14)
 アクリロニトリル51%、塩化ビニリデン48%及びp-スチレンスルホン酸ソーダ1%よりなる共重合体をアセトンに樹脂濃度が30%になるように溶解させ、得られた樹脂溶液の樹脂質量に対して下記表2に示す添加量において金属化合物(2-1)として酸化亜鉛(酸化亜鉛JIS3種)、金属化合物(2-2)として三酸化アンチモン、エポキシ基含有化合物としてポリグリシジルメタクリレート(重量平均分子量40000)を添加し、紡糸原液とした。この紡糸原液をノズル孔径0.10mm及び孔数1000ホールのノズルを用い、30%アセトン水溶液中へ押し出し、延伸しつつ水洗したのち120℃で乾燥し、更に湿熱加圧蒸気中150℃で15分間、湿熱緊張熱処理して、更に切断することでハロゲン含有繊維を得た。この時、トータル延伸倍率は4.5倍であった。また、得られた繊維は繊度7.8dtexであり、カット長64mmの短繊維であった。
(Production Example 14 of halogen-containing fiber)
A copolymer consisting of 51% acrylonitrile, 48% vinylidene chloride and 1% p-styrene sulfonic acid soda was dissolved in acetone to a resin concentration of 30%. 2, zinc oxide (3 types of zinc oxide JIS) as the metal compound (2-1), antimony trioxide as the metal compound (2-2), and polyglycidyl methacrylate (weight average molecular weight 40000) as the epoxy group-containing compound. Added to make a spinning dope. This spinning dope was extruded into a 30% acetone aqueous solution using a nozzle with a nozzle hole diameter of 0.10 mm and a hole number of 1000 holes, washed with water while being stretched, dried at 120 ° C., and further dried at 150 ° C. for 15 minutes in wet heat pressurized steam. The halogen-containing fiber was obtained by further heat-cutting and heat-treating. At this time, the total draw ratio was 4.5 times. The obtained fiber was a fine fiber having a fineness of 7.8 dtex and a cut length of 64 mm.
 (ハロゲン含有繊維の製造例15)
 アクリロニトリル51%、塩化ビニリデン48%及びp-スチレンスルホン酸ソーダ1%よりなる共重合体をアセトンに樹脂濃度が30%になるように溶解させ、得られた樹脂溶液の樹脂質量に対して下記表2に示す添加量において金属化合物(2-1)として酸化亜鉛(酸化亜鉛JIS3種)、金属化合物(2-2)として三酸化アンチモン、エポキシ基含有化合物としてポリグリシジルメタクリレート(重量平均分子量40000)を添加し、紡糸原液とした。この紡糸原液をノズル孔径0.10mm及び孔数1000ホールのノズルを用い、30%アセトン水溶液中へ押し出し、延伸しつつ水洗したのち120℃で乾燥し、弛緩処理は行なわずに、更に切断することでハロゲン含有繊維を得た。この時、トータル延伸倍率は3.0倍であった。また、得られた繊維は繊度7.8dtexであり、カット長64mmの短繊維であった。
(Production Example 15 of halogen-containing fiber)
A copolymer consisting of 51% acrylonitrile, 48% vinylidene chloride and 1% p-styrene sulfonic acid soda was dissolved in acetone to a resin concentration of 30%. 2, zinc oxide (3 types of zinc oxide JIS) as the metal compound (2-1), antimony trioxide as the metal compound (2-2), and polyglycidyl methacrylate (weight average molecular weight 40000) as the epoxy group-containing compound. Added to make a spinning dope. This spinning dope is extruded into a 30% acetone aqueous solution using a nozzle with a nozzle hole diameter of 0.10 mm and a hole number of 1000 holes, washed with water while being stretched, dried at 120 ° C., and further cut without performing a relaxation treatment. To obtain a halogen-containing fiber. At this time, the total draw ratio was 3.0 times. The obtained fiber was a fine fiber having a fineness of 7.8 dtex and a cut length of 64 mm.
 (ハロゲン含有繊維の製造例16)
 アクリロニトリル51%、塩化ビニリデン48%及びp-スチレンスルホン酸ソーダ1%よりなる共重合体をアセトンに樹脂濃度が30%になるように溶解させ、得られた樹脂溶液の樹脂質量に対して下記表2に示す添加量において金属化合物(2-1)として酸化亜鉛(酸化亜鉛JIS3種)、金属化合物(2-2)として三酸化アンチモン、エポキシ基含有化合物としてクレゾールノボラックエポキシ(日本化薬社製商品名“EOCN-104S”)を添加し、紡糸原液とした。この紡糸原液をノズル孔径0.10mm及び孔数1000ホールのノズルを用い、30%アセトン水溶液中へ押し出し、延伸しつつ水洗したのち120℃で乾燥し、更に湿熱加圧蒸気中123℃で15分間、無緊張の状態で弛緩処理し、更に切断することでハロゲン含有繊維を得た。この時、トータル延伸倍率は2.6倍であった。また、得られた繊維は繊度7.8dtexであり、カット長64mmの短繊維であった。
(Production Example 16 of halogen-containing fiber)
A copolymer consisting of 51% acrylonitrile, 48% vinylidene chloride and 1% p-styrene sulfonic acid soda was dissolved in acetone to a resin concentration of 30%. In addition amounts shown in 2, zinc oxide (3 types of zinc oxide JIS) as the metal compound (2-1), antimony trioxide as the metal compound (2-2), cresol novolac epoxy as the epoxy group-containing compound (product of Nippon Kayaku Co., Ltd.) The name “EOCN-104S”) was added to give a spinning dope. This spinning dope was extruded into a 30% acetone aqueous solution using a nozzle having a nozzle hole diameter of 0.10 mm and a hole number of 1000 holes, washed with water while being stretched, dried at 120 ° C., and further at 123 ° C. in wet heat and pressurized steam for 15 minutes. Then, a relaxation treatment was performed in a non-tensioned state, and a halogen-containing fiber was obtained by further cutting. At this time, the total draw ratio was 2.6 times. The obtained fiber was a fine fiber having a fineness of 7.8 dtex and a cut length of 64 mm.
 (ハロゲン含有繊維の製造例17)
 アクリロニトリル51%、塩化ビニリデン48%及びp-スチレンスルホン酸ソーダ1%よりなる共重合体をアセトンに樹脂濃度が30%になるように溶解させ、得られた樹脂溶液の樹脂質量に対して下記表2に示す添加量において金属化合物(2-1)として酸化亜鉛(酸化亜鉛JIS3種)、金属化合物(2-2)として五酸化アンチモン、エポキシ基含有化合物としてポリグリシジルメタクリレート(重量平均分子量40000)を添加し、紡糸原液とした。この紡糸原液をノズル孔径0.10mm及び孔数1000ホールのノズルを用い、30%アセトン水溶液中へ押し出し、延伸しつつ水洗したのち120℃で乾燥し、更に湿熱加圧蒸気中123℃で15分間、無緊張の状態で弛緩処理し、更に切断することでハロゲン含有繊維を得た。この時、トータル延伸倍率は2.6倍であった。また、得られた繊維は繊度7.8dtexであり、カット長64mmの短繊維であった。
(Production Example 17 of halogen-containing fiber)
A copolymer consisting of 51% acrylonitrile, 48% vinylidene chloride and 1% p-styrene sulfonic acid soda was dissolved in acetone to a resin concentration of 30%. 2, zinc oxide (3 types of zinc oxide JIS) as the metal compound (2-1), antimony pentoxide as the metal compound (2-2), and polyglycidyl methacrylate (weight average molecular weight 40000) as the epoxy group-containing compound. Added to make a spinning dope. This spinning dope was extruded into a 30% acetone aqueous solution using a nozzle having a nozzle hole diameter of 0.10 mm and a hole number of 1000 holes, washed with water while being stretched, dried at 120 ° C., and further at 123 ° C. in wet heat and pressurized steam for 15 minutes. Then, a relaxation treatment was performed in a non-tensioned state, and a halogen-containing fiber was obtained by further cutting. At this time, the total draw ratio was 2.6 times. The obtained fiber was a fine fiber having a fineness of 7.8 dtex and a cut length of 64 mm.
 (ハロゲン含有繊維の製造例18)
 アクリロニトリル51%、塩化ビニリデン48%及びp-スチレンスルホン酸ソーダ1%よりなる共重合体をアセトンに樹脂濃度が30%になるように溶解させ、得られた樹脂溶液の樹脂質量に対して下記表2に示す添加量において金属化合物(2-1)として酸化亜鉛(酸化亜鉛JIS3種)、金属化合物(2-2)としてヨウ化銅、エポキシ基含有化合物としてポリグリシジルメタクリレート(重量平均分子量40000)を添加し、紡糸原液とした。この紡糸原液をノズル孔径0.10mm及び孔数1000ホールのノズルを用い、30%アセトン水溶液中へ押し出し、延伸しつつ水洗したのち120℃で乾燥し、更に湿熱加圧蒸気中123℃で15分間、無緊張の状態で弛緩処理し、更に切断することでハロゲン含有繊維を得た。この時、トータル延伸倍率は2.6倍であった。また、得られた繊維は繊度7.8dtexであり、カット長64mmの短繊維であった。
(Production Example 18 of halogen-containing fiber)
A copolymer consisting of 51% acrylonitrile, 48% vinylidene chloride and 1% p-styrene sulfonic acid soda was dissolved in acetone to a resin concentration of 30%. 2, zinc oxide (3 types of zinc oxide JIS) as metal compound (2-1), copper iodide as metal compound (2-2), and polyglycidyl methacrylate (weight average molecular weight 40000) as epoxy group-containing compound. Added to make a spinning dope. This spinning dope was extruded into a 30% acetone aqueous solution using a nozzle having a nozzle hole diameter of 0.10 mm and a hole number of 1000 holes, washed with water while being stretched, dried at 120 ° C., and further at 123 ° C. in wet heat and pressurized steam for 15 minutes. Then, a relaxation treatment was performed in a non-tensioned state, and further cut to obtain a halogen-containing fiber. At this time, the total draw ratio was 2.6 times. The obtained fiber was a fine fiber having a fineness of 7.8 dtex and a cut length of 64 mm.
 (ハロゲン含有繊維の製造例19)
 アクリロニトリル51%、塩化ビニリデン48%及びp-スチレンスルホン酸ソーダ1%よりなる共重合体をアセトンに樹脂濃度が30%になるように溶解させ、得られた樹脂溶液の樹脂質量に対して下記表2に示す添加量において金属化合物(2-1)として酸化錫、金属化合物(2-2)として三酸化アンチモン、エポキシ基含有化合物としてポリグリシジルメタクリレート(重量平均分子量40000)を添加し、紡糸原液とした。この紡糸原液をノズル孔径0.10mm及び孔数1000ホールのノズルを用い、30%アセトン水溶液中へ押し出し、延伸しつつ水洗したのち120℃で乾燥し、更に湿熱加圧蒸気中、123℃で15分間、無緊張の状態で弛緩処理し、更に切断することでハロゲン含有繊維を得た。この時、トータル延伸倍率は2.6倍であった。また、得られた繊維は繊度7.8dtexであり、カット長64mmの短繊維であった。
(Production Example 19 of halogen-containing fiber)
A copolymer consisting of 51% acrylonitrile, 48% vinylidene chloride and 1% p-styrene sulfonic acid soda was dissolved in acetone to a resin concentration of 30%. 2, tin oxide as the metal compound (2-1), antimony trioxide as the metal compound (2-2), and polyglycidyl methacrylate (weight average molecular weight 40000) as the epoxy group-containing compound were added. did. This spinning dope was extruded into a 30% acetone aqueous solution using a nozzle with a nozzle hole diameter of 0.10 mm and a hole number of 1000 holes, washed with water while being stretched, dried at 120 ° C., and further dried at 15 ° C. at 123 ° C. A halogen-containing fiber was obtained by performing a relaxation treatment in a state of no tension for a minute and further cutting. At this time, the total draw ratio was 2.6 times. The obtained fiber was a fine fiber having a fineness of 7.8 dtex and a cut length of 64 mm.
 (ハロゲン含有繊維の製造例20)
 アクリロニトリル51%、塩化ビニリデン48%及びp-スチレンスルホン酸ソーダ1%よりなる共重合体をアセトンに樹脂濃度が30%になるように溶解させ、得られた樹脂溶液の樹脂質量に対して下記表2に示す添加量において金属化合物(2-1)として炭酸亜鉛、金属化合物(2-2)として三酸化アンチモン、エポキシ基含有化合物としてポリグリシジルメタクリレート(重量平均分子量40000)を添加し、紡糸原液とした。この紡糸原液をノズル孔径0.10mm及び孔数1000ホールのノズルを用い、30%アセトン水溶液中へ押し出し、延伸しつつ水洗したのち120℃で乾燥し、更に湿熱加圧蒸気中123℃で15分間、無緊張の状態で弛緩処理し、更に切断することでハロゲン含有繊維を得た。この時、トータル延伸倍率は2.6倍であった。また、得られた繊維は繊度7.8dtexであり、カット長64mmの短繊維であった。
(Production Example 20 of halogen-containing fiber)
A copolymer consisting of 51% acrylonitrile, 48% vinylidene chloride and 1% p-styrene sulfonic acid soda was dissolved in acetone to a resin concentration of 30%. 2, zinc carbonate as the metal compound (2-1), antimony trioxide as the metal compound (2-2), and polyglycidyl methacrylate (weight average molecular weight 40000) as the epoxy group-containing compound were added. did. This spinning dope was extruded into a 30% acetone aqueous solution using a nozzle having a nozzle hole diameter of 0.10 mm and a hole number of 1000 holes, washed with water while being stretched, dried at 120 ° C., and further at 123 ° C. in wet heat and pressurized steam for 15 minutes. Then, a relaxation treatment was performed in a non-tensioned state, and further cut to obtain a halogen-containing fiber. At this time, the total draw ratio was 2.6 times. The obtained fiber was a fine fiber having a fineness of 7.8 dtex and a cut length of 64 mm.
 (ハロゲン含有繊維の製造例21、22)
 アクリロニトリル51%、塩化ビニリデン48%及びp-スチレンスルホン酸ソーダ1%よりなる共重合体をアセトンに樹脂濃度が30%になるように溶解させ、得られた樹脂溶液の樹脂質量に対して下記表2に示す添加量において金属化合物(2-2)として三酸化アンチモン、エポキシ基含有化合物としてポリグリシジルメタクリレート(重量平均分子量40000)を添加し、紡糸原液とした。この紡糸原液をノズル孔径0.10mm及び孔数1000ホールのノズルを用い、30%アセトン水溶液中へ押し出し、延伸しつつ水洗したのち120℃で乾燥し、更に170℃で2分間、無緊張の状態で乾熱弛緩処理し、更に切断することでハロゲン含有繊維を得た。この時、トータル延伸倍率は2.6倍であった。また、得られた繊維は繊度7.8dtexであり、カット長64mmの短繊維であった。
(Production Examples 21 and 22 of halogen-containing fibers)
A copolymer consisting of 51% acrylonitrile, 48% vinylidene chloride and 1% p-styrene sulfonic acid soda was dissolved in acetone to a resin concentration of 30%. In the addition amount shown in 2, antimony trioxide was added as the metal compound (2-2), and polyglycidyl methacrylate (weight average molecular weight 40000) was added as the epoxy group-containing compound to prepare a spinning dope. This spinning dope is extruded into a 30% acetone aqueous solution using a nozzle having a nozzle hole diameter of 0.10 mm and a hole number of 1000 holes, washed with water while being stretched, dried at 120 ° C., and then at 170 ° C. for 2 minutes in a state of no tension. Was subjected to dry heat relaxation treatment and further cut to obtain a halogen-containing fiber. At this time, the total draw ratio was 2.6 times. The obtained fiber was a fine fiber having a fineness of 7.8 dtex and a cut length of 64 mm.
 (ハロゲン含有繊維の製造例23)
 アクリロニトリル51%、塩化ビニリデン48%及びp-スチレンスルホン酸ソーダ1%よりなる共重合体をアセトンに樹脂濃度が30%になるように溶解させ、得られた樹脂溶液の樹脂質量に対して下記表2に示す添加量において金属化合物(2-1)として酸化亜鉛(酸化亜鉛JIS3種)、金属化合物(2-2)として三酸化アンチモンを添加し、紡糸原液とした。この紡糸原液をノズル孔径0.10mm及び孔数1000ホールのノズルを用い、30%アセトン水溶液中へ押し出し、延伸しつつ水洗したのち120℃で乾燥し、更に170℃で2分間、乾熱緊張熱処理して、トータル延伸倍率は5.0倍であった。また、得られた繊維は繊度7.8dtexであり、カット長64mmの短繊維であった。
(Production Example 23 of Halogen-Containing Fiber)
A copolymer consisting of 51% acrylonitrile, 48% vinylidene chloride and 1% p-styrene sulfonic acid soda was dissolved in acetone to a resin concentration of 30%. Zinc oxide (3 types of zinc oxide JIS) was added as the metal compound (2-1) in the addition amount shown in 2, and antimony trioxide was added as the metal compound (2-2) to obtain a spinning dope. This spinning stock solution was extruded into a 30% acetone aqueous solution using a nozzle having a nozzle hole diameter of 0.10 mm and a hole number of 1000 holes, washed with water while being stretched, dried at 120 ° C., and further dried at 170 ° C. for 2 minutes. The total draw ratio was 5.0 times. The obtained fiber was a fine fiber having a fineness of 7.8 dtex and a cut length of 64 mm.
 (ハロゲン含有繊維の製造例24)
 アクリロニトリル51%、塩化ビニリデン48%及びp-スチレンスルホン酸ソーダ1%よりなる共重合体をジメチルホルムアミドに樹脂濃度23%になるように溶解させ、得られた樹脂溶液の樹脂質量に対して下記表2に示す添加量において金属化合物(2-1)として酸化亜鉛(酸化亜鉛JIS3種)、金属化合物(2-2)として三酸化アンチモン、エポキシ基含有化合物としてポリグリシジルメタクリレート(重量平均分子量40000)を添加し、紡糸原液とした。この紡糸原液をノズル孔径0.06mmのノズルを用い、55%ジメチルホルムアミド水溶液中へ押し出し、延伸しつつ水洗したのち130℃で乾燥後、延伸し、更に140℃で15分間、湿熱緊張処理し、更に切断することでハロゲン含有繊維を得た。この時、トータル延伸倍率は4.8倍であった。また、得られた繊維は繊度1.7dtexであり、カット長64mmの短繊維であった。
(Production Example 24 of Halogen-Containing Fiber)
A copolymer consisting of 51% acrylonitrile, 48% vinylidene chloride and 1% sodium p-styrene sulfonate was dissolved in dimethylformamide so that the resin concentration was 23%. 2, zinc oxide (3 types of zinc oxide JIS) as the metal compound (2-1), antimony trioxide as the metal compound (2-2), and polyglycidyl methacrylate (weight average molecular weight 40000) as the epoxy group-containing compound. Added to make a spinning dope. This spinning dope was extruded into a 55% dimethylformamide aqueous solution using a nozzle having a nozzle hole diameter of 0.06 mm, washed with water while being stretched, dried at 130 ° C., stretched, and further subjected to wet heat tension treatment at 140 ° C. for 15 minutes. Further, a halogen-containing fiber was obtained by cutting. At this time, the total draw ratio was 4.8 times. Further, the obtained fiber was a short fiber having a fineness of 1.7 dtex and a cut length of 64 mm.
 (ハロゲン含有繊維の製造例25)
 アクリロニトリル57%、塩化ビニリデン41%及びアリルスルホン酸ソーダ2%よりなる共重合体をジメチルホルムアミドに樹脂濃度25%になるように溶解させ、得られた樹脂溶液の樹脂質量に対して下記表2に示す添加量において金属化合物(2-2)として三酸化アンチモンを添加し紡糸原液を得た。この紡糸原液をノズル孔径0.06mmのノズルを用い、55%ジメチルホルムアミド水溶液中へ押し出し、延伸しつつ水洗したのち130℃で乾燥後、延伸し、更に130℃で15分間、湿熱緊張処理し、更に切断することでハロゲン含有繊維を得た。この時、トータル延伸倍率は6.0倍であった。また、得られた繊維は繊度1.7dtexであり、カット長64mmの短繊維であった。
(Production Example 25 of halogen-containing fiber)
A copolymer consisting of 57% acrylonitrile, 41% vinylidene chloride and 2% sodium allyl sulfonate is dissolved in dimethylformamide so that the resin concentration is 25%. The resin mass of the resulting resin solution is as shown in Table 2 below. Antimony trioxide was added as a metal compound (2-2) in the addition amount shown to obtain a spinning dope. This spinning dope was extruded into a 55% dimethylformamide aqueous solution using a nozzle having a nozzle hole diameter of 0.06 mm, washed with water while being stretched, dried at 130 ° C., stretched, and further subjected to wet heat tension treatment at 130 ° C. for 15 minutes. Further, a halogen-containing fiber was obtained by cutting. At this time, the total draw ratio was 6.0 times. Further, the obtained fiber was a short fiber having a fineness of 1.7 dtex and a cut length of 64 mm.
 (ハロゲン含有繊維の製造例26)
 アクリロニトリル60%、塩化ビニル30%及びアリルスルホン酸ソーダ10%よりなる共重合体2部、アクリロニトリル42%、塩化ビニル57%及びp-スチレンスルホン酸ソーダ1%よりなる共重合体22部をジメチルホルムアミドに樹脂濃度23%になるように溶解させ、得られた樹脂溶液の樹脂質量に対して下記表2に示す添加量において金属化合物(2-1)としてメタ錫酸を添加し、紡糸原液とした。この紡糸原液をノズル孔径0.06mmのノズルを用い、60%ジメチルホルムアミド水溶液中へ押し出し、延伸しつつ水洗したのち130℃で乾燥後、更に130℃で15分間、湿熱緊張処理し、更に切断することでハロゲン含有繊維を得た。この時、トータル延伸倍率は5.1倍であった。また、得られた繊維は繊度2.2dtexであり、カット長64mmの短繊維であった。
(Production Example 26 of Halogen-Containing Fiber)
2 parts of a copolymer composed of 60% acrylonitrile, 30% vinyl chloride and 10% sodium allyl sulfonate, 22 parts of a copolymer composed of 42% acrylonitrile, 57% vinyl chloride and 1% sodium p-styrene sulfonate The resin stock solution was dissolved to a concentration of 23%, and metastannic acid was added as a metal compound (2-1) in the addition amount shown in Table 2 below with respect to the resin mass of the obtained resin solution to obtain a spinning stock solution. . This spinning dope is extruded into a 60% dimethylformamide aqueous solution using a nozzle having a nozzle hole diameter of 0.06 mm, washed with water while being stretched, dried at 130 ° C., further subjected to wet heat tension treatment at 130 ° C. for 15 minutes, and further cut. Thus, a halogen-containing fiber was obtained. At this time, the total draw ratio was 5.1 times. The obtained fiber was a fine fiber having a fineness of 2.2 dtex and a cut length of 64 mm.
 (ハロゲン含有繊維の製造例27)
 アクリロニトリル55%、塩化ビニリデン43%及びアリルスルホン酸ソーダ2%よりなる共重合体をジメチルスルホキシドに樹脂濃度23.5%になるよう溶解させ、得られた樹脂溶液の樹脂質量に対して下記表2に示す添加量において金属化合物(2-2)として三酸化アンチモンを添加し、紡糸原液を得た。この紡糸原液をノズル孔径0.065mmのノズルを用い、55%ジメチルスルホキシド水溶液中へ押し出し、延伸しつつ水洗したのち130℃で乾燥後、更に160℃で15分間、湿熱緊張処理し、更に切断することでハロゲン含有繊維を得た。この時、トータル延伸倍率は4.8倍であった。また、得られた繊維は繊度2.2dtexであり、カット長64mmの短繊維であった。
(Production Example 27 of halogen-containing fiber)
A copolymer consisting of 55% acrylonitrile, 43% vinylidene chloride and 2% sodium allyl sulfonate was dissolved in dimethyl sulfoxide to a resin concentration of 23.5%. Antimony trioxide was added as a metal compound (2-2) in the addition amount shown in the following to obtain a spinning dope. This spinning dope is extruded into a 55% dimethyl sulfoxide aqueous solution using a nozzle having a nozzle hole diameter of 0.065 mm, washed with water while being stretched, dried at 130 ° C., further subjected to wet heat tension treatment at 160 ° C. for 15 minutes, and further cut. Thus, a halogen-containing fiber was obtained. At this time, the total draw ratio was 4.8 times. The obtained fiber was a fine fiber having a fineness of 2.2 dtex and a cut length of 64 mm.
 (ハロゲン含有繊維の製造例28)
 アクリロニトリル55%、塩化ビニリデン43%及びアリルスルホン酸ソーダ2%よりなる共重合体をジメチルスルホキシドに樹脂濃度23.5%となるよう溶解させ、得られた樹脂溶液の樹脂質量に対して下記表2に示す添加量において金属化合物(2-2)として三酸化アンチモンを添加し、紡糸原液を得た。この紡糸原液をノズル孔径0.065mmのノズルを用い、55%ジメチルスルホキシド水溶液中へ押し出し、延伸しつつ水洗したのち130℃で乾燥後、更に160℃で15分間、湿熱緊張処理し、更に切断することでハロゲン含有繊維を得た。この時、トータル延伸倍率は4.2倍であった。また、得られた繊維は繊度2.2dtexであり、カット長64mmの短繊維であった。
(Production Example 28 of Halogen-Containing Fiber)
A copolymer consisting of 55% acrylonitrile, 43% vinylidene chloride and 2% sodium allyl sulfonate was dissolved in dimethyl sulfoxide to a resin concentration of 23.5%. Antimony trioxide was added as a metal compound (2-2) in the addition amount shown in the following to obtain a spinning dope. This spinning dope is extruded into a 55% dimethyl sulfoxide aqueous solution using a nozzle having a nozzle hole diameter of 0.065 mm, washed with water while being stretched, dried at 130 ° C., further subjected to wet heat tension treatment at 160 ° C. for 15 minutes, and further cut. Thus, a halogen-containing fiber was obtained. At this time, the total draw ratio was 4.2 times. The obtained fiber was a fine fiber having a fineness of 2.2 dtex and a cut length of 64 mm.
 (ハロゲン含有繊維の製造例29)
 アクリロニトリル55%、塩化ビニリデン43%及びアリルスルホン酸ソーダ2%よりなる共重合体をジメチルスルホキシドに樹脂濃度23.5%となるよう溶解させ、得られた樹脂溶液の樹脂質量に対して下記表2に示す添加量において金属化合物(2-1)として酸化亜鉛(酸化亜鉛JIS3種)を添加し、紡糸原液を得た。この紡糸原液をノズル孔径0.065mmのノズルを用い、55%ジメチルスルホキシド水溶液中へ押し出し、延伸しつつ水洗したのち130℃で乾燥後、更に160℃で2分間、湿熱緊張処理し、更に切断することでハロゲン含有繊維を得た。この時、トータル延伸倍率は4.8倍であった。また、得られた繊維は繊度2.2dtexであり、カット長64mmの短繊維であった。
(Production example 29 of halogen-containing fiber)
A copolymer consisting of 55% acrylonitrile, 43% vinylidene chloride and 2% sodium allyl sulfonate was dissolved in dimethyl sulfoxide to a resin concentration of 23.5%. Zinc oxide (3 kinds of zinc oxide JIS) was added as a metal compound (2-1) in the addition amount shown in FIG. This spinning dope is extruded into a 55% dimethyl sulfoxide aqueous solution using a nozzle having a nozzle hole diameter of 0.065 mm, washed with water while being stretched, dried at 130 ° C., further subjected to wet heat tension treatment at 160 ° C. for 2 minutes, and further cut. Thus, a halogen-containing fiber was obtained. At this time, the total draw ratio was 4.8 times. The obtained fiber was a fine fiber having a fineness of 2.2 dtex and a cut length of 64 mm.
 (ハロゲン含有繊維の製造例30)
 アクリロニトリル51%、塩化ビニリデン48%及びp-スチレンスルホン酸ソーダ1%よりなる共重合体をアセトンに樹脂濃度が30%になるように溶解させ、得られた樹脂溶液の樹脂質量に対して下記表2に示す添加量において、金属化合物(2-2)として三酸化アンチモン、その他金属化合物として水酸化アルミニウムを添加し、紡糸原液とした。この紡糸原液をノズル孔径0.10mm及び孔数1000ホールのノズルを用い、30%アセトン水溶液中へ押し出し、延伸しつつ水洗したのち120℃で乾燥し、更に湿熱加圧蒸気中123℃で15分間、無緊張の状態で弛緩処理し、更に切断することでハロゲン含有繊維を得た。この時、トータル延伸倍率は2.6倍であった。また、得られた繊維は繊度7.8dtexであり、カット長64mmの短繊維であった。
(Production Example 30 of Halogen-Containing Fiber)
A copolymer consisting of 51% acrylonitrile, 48% vinylidene chloride and 1% p-styrene sulfonic acid soda was dissolved in acetone to a resin concentration of 30%. In the addition amount shown in 2, antimony trioxide was added as the metal compound (2-2), and aluminum hydroxide was added as the other metal compound to prepare a spinning dope. This spinning dope was extruded into a 30% acetone aqueous solution using a nozzle having a nozzle hole diameter of 0.10 mm and a hole number of 1000 holes, washed with water while being stretched, dried at 120 ° C., and further at 123 ° C. in wet heat and pressurized steam for 15 minutes. Then, a relaxation treatment was performed in a non-tensioned state, and a halogen-containing fiber was obtained by further cutting. At this time, the total draw ratio was 2.6 times. The obtained fiber was a fine fiber having a fineness of 7.8 dtex and a cut length of 64 mm.
 (難燃性評価用試験体の作製方法)
 難燃性合成繊維、難燃性複合体及びそれを用いた繊維製品の難燃性の評価は難燃性評価用試験体を以下の方法で試料を作製して実施した。
(Production method of flame retardant evaluation specimen)
The flame retardancy evaluation of the flame retardant synthetic fiber, the flame retardant composite, and the fiber product using the same was carried out by preparing a sample for flame retardancy evaluation using the following method.
1.難燃性評価試験用サーマルボンド不織布の作製方法
 以下に示す繊維が下記表2及び表3に示される所定の混率となるように混合し、カードにより開繊した後、通常の熱融着方式により、所定の目付けのサーマルボンド不織布を作製した。
 前記ハロゲン含有繊維製造例1~29に示す製造方法で作製したハロゲン含有繊維、 ポリエステル系繊維として汎用的なポリエステル繊維である東レ(TORAY)社製の商品名“テトロン”(繊度6dtex、カット長51mm、以下において、reg.PETともいう。)、熱融着ポリエステル繊維である東レ(TORAY)社製商品名“サフメット”(繊度4.4dtex、カット長51mm、融点110℃、以下において、melt PETともいう。)、汎用的なレーヨン及び/又はパラ系アラミド繊維(Dupont社製商品名“ケブラー”)。
1. Preparation Method of Thermal Bond Nonwoven for Flame Retardancy Evaluation Test After the fibers shown below are mixed so as to have the predetermined mixing ratios shown in Tables 2 and 3 below, the fibers are opened with a card, and then by a normal heat fusion method. A thermal bond nonwoven fabric with a predetermined basis weight was produced.
Halogen-containing fibers produced by the production methods shown in the above-mentioned halogen-containing fiber production examples 1 to 29, a product name “Tetron” (fineness 6 dtex, cut length 51 mm) manufactured by TORAY which is a general-purpose polyester fiber as a polyester fiber In the following, it is also referred to as “reg.PET”), a trade name “SAFMET” (a fineness of 4.4 dtex, a cut length of 51 mm, a melting point of 110 ° C.), which is a heat-bonded polyester fiber, and a melt PET. General purpose rayon and / or para-aramid fiber (trade name “Kevlar” manufactured by Dupont).
2.難燃性評価試験用ニードルパンチ不織布の作製方法
 上記製造例5、11、22に示す製造方法で作製したハロゲン含有繊維と、ポリエステル系繊維として汎用的なポリエステル繊維である東レ(TORAY)社製の商品名“テトロン”(繊度6dtex、カット長51mm)を、上記繊維が下記表2~3に示される所定の混率となるように混合し、カードにより開繊した後、通常のニードルパンチ方式により所定の目付けのニードルパンチ不織布を作製した。
2. Method for producing needle punched nonwoven fabric for flame retardancy evaluation test The halogen-containing fibers produced by the production methods shown in Production Examples 5, 11, and 22 above and manufactured by Toray Co., Ltd. which is a general-purpose polyester fiber as a polyester fiber The product name “Tetron” (fineness: 6 dtex, cut length: 51 mm) was mixed so that the fibers had the predetermined mixing ratios shown in Tables 2 to 3 below, opened with a card, and then specified with a normal needle punch method. A needle punched nonwoven fabric with a basis weight of 1 was prepared.
3.ピロートップ型マットレス試験体の作製方法
 ピロートップ型マットレスの構造を図1及び図2に示す。縦30cm×横45cm×厚さ1.9cm、密度22kg/m3のポリウレタンフォーム(東洋ゴム工業(株)製タイプ360S)(1)を2枚、縦30cm×横45cm×厚さ1.27cm、密度22kg/m3のポリウレタンフォーム(東洋ゴム工業(株)製タイプ360S)(2)を1枚、難燃性評価試験用不織布の作製方法により作製した不織布(3)を1枚、外層の表面生地(4)としてポリエステル/ポリプロピレン製織布、ポリエステル製織布、レーヨン/ポリエステル製織布、コットン織布より選ばれる生地(目付け120g/m)を1枚、図2のように重ねた構造物をナイロン糸(5)を用いキルティング間隔20cmでキルティングし、それを厚さ15cmのポリウレタンフォーム(東洋ゴム工業(株)製タイプ360S)(6)に張り合わせ、ピロートップ型マットレス試験体を作製した。
3. Method for Producing Pillow Top Type Mattress Specimens The structure of a pillow top type mattress is shown in FIGS. Two polyurethane foams (type 360S manufactured by Toyo Rubber Industries Co., Ltd.) (1), 30 cm long x 45 cm wide x 1.9 cm thick x 1.9 cm thick, density 1.27 cm, density 30 cm long One 22 kg / m3 polyurethane foam (type 360S manufactured by Toyo Tire & Rubber Co., Ltd.) (2), one non-woven fabric (3) prepared by the method for preparing a non-flammability evaluation test non-woven fabric, and outer surface fabric ( 4) A structure in which one piece of fabric selected from polyester / polypropylene woven fabric, polyester woven fabric, rayon / polyester woven fabric, and cotton woven fabric (weighing 120 g / m 2 ) is stacked as shown in FIG. A nylon thread (5) is used to quilt at a quilting interval of 20 cm, and the polyurethane foam having a thickness of 15 cm (type 360 manufactured by Toyo Tire & Rubber Co., Ltd.) S) (6) was laminated to produce a pillow top type mattress specimen.
4.タイトトップ型マットレス試験体の作製方法
 タイトトップ型マットレス試験体の構造を図3及び図4に示す。難燃性評価試験用不織布の作製方法により作製した不織布(3)を1枚、外層の表面生地(4)としてポリエステル/ポリプロピレン製織布、ポリエステル製織布、レーヨン/ポリエステル製織布、コットン織布より選ばれる生地(目付け120g/m)を1枚、図4のように重ねた構造物をナイロン糸(5)を用いキルティング間隔20cmでキルティングし、それを厚さ15cmのポリウレタンフォーム(東洋ゴム工業(株)製タイプ360S)(6)に張り合わせ、タイトトップ型マットレス試験体を作製した。
4). Method for Producing Tight Top Type Mattress Specimen The structure of a tight top type mattress specimen is shown in FIGS. One nonwoven fabric (3) produced by the method for producing a flame retardant evaluation test nonwoven fabric, and polyester / polypropylene woven fabric, polyester woven fabric, rayon / polyester woven fabric, cotton woven as the outer surface fabric (4) One piece of fabric (weight per unit area: 120 g / m 2 ) selected from cloth and a structure laminated as shown in FIG. 4 is quilted with a nylon thread (5) at a quilting interval of 20 cm, and this is polyurethane foam (Toyo A tight top type mattress test specimen was prepared by pasting onto a rubber industry type 360S) (6).
5.枕の試験体作製方法
 (中綿の製造)
 上記製造例5、11、及び22に示す製造方法で作製したハロゲン含有繊維及びポリエステル系繊維として汎用的なポリエステル繊維である東レ(TORAY)社製の商品名“テトロン”(繊度6dtex、カット長51mm)を使用した。これらの繊維を下記表3に示す混率でカードにより開繊してウェブ状にし、多層化して中綿を作製した。
 (側地の作製)
 木綿繊維50重量%とポリエステル繊維50重量%を混紡によりメートル番手34番手の紡績糸を得た。この紡績糸を周知の方法により、目付け120g/mの平織り生地を作製した。
 (難燃性評価用クッションの作製方法)
 作製した中綿を、縦約30.5cm×横約30.5cmにカットする。その中綿を縦約38.1cm×横約38.1cmにカットした生地(側地)に挟み込み、重さ325gのプレートを載せてクッションの高さが89mm(3.5inch)以上102mm(4.0inch)以内となるように調整し、4辺をカタン糸を用いて閉じ、難燃性評価用クッションを作製した。
5). Pillow specimen preparation method (Manufacture of batting)
Product name “Tetron” (fineness 6 dtex, cut length 51 mm) manufactured by TORAY, which is a general-purpose polyester fiber as a halogen-containing fiber and a polyester-based fiber produced by the production methods shown in Production Examples 5, 11, and 22 above. )It was used. These fibers were opened with a card at a blending ratio shown in Table 3 below to form a web, and multilayered to produce batting.
(Production of side land)
A spun yarn with a metric count of 34 was obtained by blending 50% by weight of cotton fiber and 50% by weight of polyester fiber. A plain weave fabric having a basis weight of 120 g / m 2 was produced from this spun yarn by a known method.
(Production method of the flame retardant cushion)
The produced batting is cut into a length of about 30.5 cm and a width of about 30.5 cm. The batting is sandwiched between fabrics (side ground) cut to about 38.1cm in length and 38.1cm in width, and a plate with a weight of 325g is placed on it, and the height of the cushion is 89mm (3.5inch) or more and 102mm (4.0inch) ) Was adjusted so as to be within the range, and the four sides were closed with a cut yarn to produce a flame retardant evaluation cushion.
6.生地を想定した試験体作製方法
 上記製造例5、11及び22に示す製造方法で作製したハロゲン含有繊維及びコットンを、下記表3に示される所定の混率となるように混合し、カードにより開繊した後、通常のニードルパンチ方式により所定の目付けのニードルパンチ不織布を作製した。作製したニードルパンチ不織布を熱プレス機で150℃、300秒間熱圧縮させることにより、厚み2mmの試験体を作製し、これを生地を想定した試験体とした。
6). Specimen preparation method assuming fabric The halogen-containing fibers and cotton prepared by the production methods shown in the above Production Examples 5, 11, and 22 are mixed so as to have a predetermined mixture ratio shown in Table 3 below, and opened by a card. After that, a needle punched nonwoven fabric with a predetermined basis weight was produced by a normal needle punch method. The prepared needle punched nonwoven fabric was thermally compressed at 150 ° C. for 300 seconds with a hot press machine to prepare a test specimen having a thickness of 2 mm, which was used as a specimen assuming a cloth.
7.ニット生地の試験体作製方法
 製造例で作製したハロゲン含有繊維と木綿繊維を所定量混合し混紡の紡績糸(メートル番手34番手)を作製し、周知の円形のメリヤス編み機を用いて、所定の混率を有するニット生地を作製した。
7). Method for preparing test specimen of knit fabric A predetermined amount of the halogen-containing fiber and cotton fiber prepared in the production example are mixed to produce a spun yarn (meter count 34), and a predetermined circular knitting machine is used. A knit fabric having
 (難燃性評価方法)
 実施例における難燃性合成繊維の難燃性能は難燃性評価用試験体の作製の手順において作製した試験体を使用した。
(Flame retardance evaluation method)
For the flame retardancy performance of the flame retardant synthetic fiber in the examples, a test specimen prepared in the procedure for preparing a flame retardant evaluation specimen was used.
1.パネル試験評価法
 米国のベッドの燃焼試験方法16CFR1633のベッド上面の燃焼試験方法に従って実施した。米国16CFR1633のベッド上面の燃焼試験方法を簡単に説明すると、ベッドの上面から39mmの所に水平にT字型のバーナーをセットし、燃焼ガスはプロパンガスを使用し、ガス圧力は101KPaで、ガス流量は12.9L/minで、70秒間着炎する試験方法である。難燃性の評価は次のようにした。
Aランクの合格:上記試験方法で試験した際、自己消火し、且つ、炎に晒された部分にクラックや穴があいていなかった。
Bランクの合格:同、自己消火するが炎に晒された部分に1cm未満のクラックが生じた。
Cランクの合格:同、自己消火するが炎に晒された部分に1cm以上のクラックが生じた。
Dランクの合格:同、一度内部易燃性ウレタンに着火するが、直ぐに消え、最終的に自己消火した。
不合格:同、内部易燃性ウレタンに着火し、強制的に消火し試験を中止した。
1. Panel test evaluation method The test was conducted according to the combustion test method for the upper surface of the bed of 16 CFR 1633 in the United States. Briefly explaining the combustion test method on the upper surface of the bed of US 16CFR1633, a T-shaped burner was set horizontally at 39 mm from the upper surface of the bed, propane gas was used as the combustion gas, the gas pressure was 101 KPa, The flow rate is 12.9 L / min, and it is a test method for flaming for 70 seconds. The evaluation of flame retardancy was as follows.
A rank pass: When tested by the above test method, self-extinguishing and no cracks or holes were found in the exposed part.
Rank B: Same as above, but self-extinguishing, but a crack of less than 1 cm occurred in the part exposed to flame.
C rank: Same as above, but self-extinguishing, but a crack of 1 cm or more occurred in the part exposed to the flame.
D rank pass: Same as above, once ignited the internal flammable urethane, but immediately disappeared and finally self-extinguished.
Fail: Same as above, the internal flammable urethane was ignited, the fire was forcibly extinguished, and the test was stopped.
2.コンロ試験評価法
 縦200mm×横200mm×厚さ10mmのパーライト板の中心に直径15cmの穴をあけたものを準備し、その上に難燃性評価試験用サーマルボンド不織布の作製方法に基づき作製した不織布を置き、加熱時に難燃性評価試験用不織布が収縮しないよう4辺をクリップで固定した。この試料を難燃性評価試験用不織布の面を上にして、ガスコンロ((株)パロマ工業製商品名“PA-10H-2”)にバーナー面より40mmの所に試料の中心とバーナーの中心が合うようにセットした。燃料ガスは純度99%以上のプロパンを用い、炎の高さは25mmとし、接炎時間は180秒とした。この時に難燃性評価試験用不織布の炭化層に貫通した穴もひびもない場合、若しくは貫通した穴はないがひびがある場合を合格とし、穴もひびもある場合を不合格とした。
2. Stove test evaluation method A pearlite plate with a length of 200 mm × width 200 mm × thickness 10 mm was prepared by making a hole with a diameter of 15 cm at the center, and was prepared based on a method for preparing a thermal bond nonwoven fabric for flame retardant evaluation test. A nonwoven fabric was placed, and four sides were fixed with clips so that the nonwoven fabric for flame retardancy evaluation test did not shrink during heating. The sample is placed on the gas stove (trade name “PA-10H-2”, manufactured by Paloma Kogyo Co., Ltd.) with the surface of the non-woven fabric for flame retardant evaluation test facing upward, and the center of the sample and the center of the burner are 40 mm from the burner surface. Set to fit. The fuel gas used was propane with a purity of 99% or more, the flame height was 25 mm, and the flame contact time was 180 seconds. At this time, the case where there was no through hole or crack in the carbonized layer of the non-woven fabric for flame retardancy evaluation test, or the case where there was no through hole but there was a crack, was accepted, and the case where there was a hole or crack was rejected.
3.TB604試験評価法
 難燃性は米国カリフォルニア州の燃焼試験方法Technical Bulletin604の2004年10月発行のドラフト(TB604)Section2に基づいて実施した。米国カリフォルニア州のTB604燃焼試験方法を簡単に説明すると、枕類やクッション類を対象とした試験の場合、水平にした前記難燃性評価用クッションの一つの角より下側3/4インチの所から35mmの炎を20秒間着炎する。6分後の重量減少率が25重量%以下であれば合格である。下記表3において重量減少率が25重量%以内のものを合格、25重量%を越えるものを不合格とした。使用するバーナーチューブは内径6.5mm、外形8mm、長さ200mmである。燃料ガスは純度99%以上のブタンガスで、ブタンガス流量は45ml/minで炎の高さは約35mmである。
3. TB604 Test Evaluation Method Flame retardancy was carried out based on a draft (TB604) Section 2 published in October 2004 by the combustion test method Technical Bulletin 604 in California, USA. The TB604 combustion test method in California, USA will be briefly described. In the test for pillows and cushions, the test piece is 3/4 inch below one corner of the flame retardant evaluation cushion that is leveled. A 35 mm flame is applied for 20 seconds. If the weight loss rate after 6 minutes is 25% by weight or less, it is acceptable. In Table 3 below, those having a weight reduction rate of 25% by weight or less were accepted, and those exceeding 25% by weight were rejected. The burner tube used has an inner diameter of 6.5 mm, an outer diameter of 8 mm, and a length of 200 mm. The fuel gas is butane gas with a purity of 99% or more, the butane gas flow rate is 45 ml / min, and the flame height is about 35 mm.
4.JIS L1091 A-4試験評価法
 生地の評価は、JIS L1091 A-4法に基づき実施した。生地を想定した試験体作製方法により作製した試験体(縦8.9cm×横25.4cm)を各5枚用意し、支持枠にセットした。次に、JIS L1091 A-4試験に準拠した垂直法燃焼試験機に試験体を垂直に保持し、垂直方向に25°傾けて取付けられたブンゼンバーナーの先端から試験体の下端中央部までが17mmとなるようにバーナーと試験体の位置を調整した。サンプルに炎を接炎し、サンプルが着火したらストップウォッチで測り、着炎12秒後、バーナーをサンプルから離した。次に、試験後の試験体炭化部分の片側に重り(0.25ポンド)を引っ掛け、反対の端を持ってゆっくり引き上げた時に破れた部分までを炭化長として測定し、炭化長が最大254mm未満、平均178mm以下の場合を合格とし、それ以外を不合格として判定した。
4). JIS L1091 A-4 Test Evaluation Method The evaluation of the fabric was performed based on the JIS L1091 A-4 method. Five test specimens (8.9 cm long × 25.4 cm wide) prepared by a test specimen preparation method assuming a cloth were prepared and set on a support frame. Next, the test body is vertically held in a vertical combustion tester compliant with the JIS L1091 A-4 test, and the distance from the tip of the Bunsen burner mounted at an angle of 25 ° to the center of the lower end of the test body is 17 mm. The positions of the burner and the specimen were adjusted so that A flame was contacted to the sample, and when the sample ignited, it was measured with a stopwatch. Next, a weight (0.25 lb) was hooked on one side of the carbonized part of the test specimen after the test, and the part torn when it was slowly pulled up with the opposite end was measured as the carbonized length, and the carbonized length was less than 254 mm at maximum The case where the average was 178 mm or less was determined to be acceptable, and the others were determined to be unacceptable.
 (繊維収縮率の測定方法)
 上記製造例に従って作製したハロゲン含有繊維、3333dtex(デシテックス)を約5mmとり、TMA(熱応力歪測定装置(セイコーインスツルメンツ(株)製商品名“TMA/SS150C”、使用ガス:窒素、ガス流量:30L/min、昇温速度:20℃/min、荷重18mN)にて測定した。初期サンプル長をXとし、任意温度でのサンプル長をYとすると、繊維収縮率は以下の式によって表される。
繊維収縮率(%)=100-[(100×Y)/X]
(Measurement method of fiber shrinkage)
About 5 mm of halogen-containing fiber, 3333 dtex (decitex), prepared according to the above production example, is taken, and TMA (thermal stress strain measuring device (trade name “TMA / SS150C” manufactured by Seiko Instruments Inc.), gas used: nitrogen, gas flow rate: 30 L / Min, temperature increase rate: 20 ° C./min, load 18 mN) When the initial sample length is X and the sample length at an arbitrary temperature is Y, the fiber shrinkage is expressed by the following equation.
Fiber shrinkage (%) = 100 − [(100 × Y) / X]
 (実施例1~20)
 製造例1~20に従い、金属化合物(2-1)、金属化合物(2-2)、エポキシ基化合物を下記表2の量で添加したハロゲン含有繊維を作製し、難燃性評価試験用サーマルボンド不織布を所定の混率(ハロゲン含有繊維:レギュラーポリエステル繊維(reg.PET):メルトポリエステル繊維(mPET)=50:30:20、目付け280g/m)で作製し、この不織布を用いたピロートップ型マットレス試験体を用いた難燃性評価、及び熱応力歪測定による繊維収縮率測定を実施した。結果を下記表2に示す。
(Examples 1 to 20)
According to Production Examples 1 to 20, a halogen-containing fiber was prepared by adding the metal compound (2-1), metal compound (2-2), and epoxy group compound in the amounts shown in Table 2 below, and a thermal bond for flame retardancy evaluation test A non-woven fabric is prepared with a predetermined mixing ratio (halogen-containing fiber: regular polyester fiber (reg. PET): melt polyester fiber (mPET) = 50: 30: 20, basis weight 280 g / m 2 ), and a pillow top type using this nonwoven fabric. Flame retardant evaluation using a mattress specimen and fiber shrinkage measurement by thermal stress strain measurement were performed. The results are shown in Table 2 below.
 実施例1~9では、ハロゲン含有繊維は、重合体(1)100質量部に対して金属酸化物(2)を0.05~50質量部、特に金属化合物(2-1)を0.05~50質量部含有し、かつ湿熱加圧蒸気中123℃で15分間、無緊張の状態で弛緩処理されたことで、0.0054mN/dtexの荷重下、50℃から300℃まで温度を上げたときの収縮変動が45%以下となり、難燃性評価用試験体を用いた燃焼試験結果は良好であり、合否判定は合格であった。 In Examples 1 to 9, the halogen-containing fiber is 0.05 to 50 parts by weight of metal oxide (2), particularly 0.05 to 0.05 parts by weight of metal compound (2-1), relative to 100 parts by weight of polymer (1). The temperature was raised from 50 ° C. to 300 ° C. under a load of 0.0054 mN / dtex by containing 50 parts by mass and being subjected to relaxation treatment at 123 ° C. for 15 minutes in wet heat and pressurized steam under no tension. The shrinkage fluctuation was 45% or less, the combustion test result using the flame retardant test specimen was good, and the pass / fail judgment was acceptable.
 実施例10~12では、ハロゲン含有繊維は、重合体(1)100質量部に対して金属酸化物(2)を0.05~50質量部、特に金属化合物(2-1)を0.05~50質量部含有し、かつ170℃で2分間、無緊張の状態で乾熱処理されたことで、0.0054mN/dtexの荷重下、50℃から300℃まで温度を上げたときの収縮変動が45%以下でなり、難燃性評価用試験体を用いた燃焼試験結果は良好であり、合否判定は合格であった。 In Examples 10 to 12, the halogen-containing fiber is 0.05 to 50 parts by mass of the metal oxide (2), particularly 0.05 to 0.05 parts by mass of the metal compound (2-1) with respect to 100 parts by mass of the polymer (1). It contains ~ 50 parts by mass and is subjected to dry heat treatment at 170 ° C for 2 minutes in a no-tension state, so that the shrinkage variation when the temperature is raised from 50 ° C to 300 ° C under a load of 0.0054 mN / dtex. It became 45% or less, the combustion test result using the flame retardant evaluation specimen was good, and the pass / fail judgment was acceptable.
 なお、実施例12では、上記のとおり、難燃性評価用試験体を用いた燃焼試験結果は良好であり、合否判定は合格であったが、ハロゲン含有繊維としてアクリロニトリル38%、塩化ビニリデン61.1%及びp-スチレンスルホン酸ソーダ0.9%よりなる共重合体を用いたため、他の実施例と比較して耐熱性が劣り、紡糸の際、特に弛緩処理時に繊維同士が融着し、硬くなったため、難燃性評価用不織布の作製時、開繊性が悪く、ハロゲン含有繊維とポリエステル繊維、及び熱融着ポリエステル繊維が均一に混ざり合った不織布を作製することができなかった。 In Example 12, as described above, the combustion test result using the flame retardant evaluation specimen was good and the pass / fail judgment was acceptable, but the halogen-containing fiber was acrylonitrile 38%, vinylidene chloride 61. Since a copolymer comprising 1% and p-styrene sulfonic acid soda 0.9% was used, the heat resistance was inferior to that of the other examples, and the fibers were fused to each other during spinning, particularly during the relaxation treatment. Since it became hard, when the nonwoven fabric for flame-retardant evaluation was produced, the opening property was bad, and the nonwoven fabric in which the halogen-containing fiber, the polyester fiber, and the heat-fused polyester fiber were uniformly mixed could not be produced.
 実施例13では、ハロゲン含有繊維は、重合体(1)100質量部に対して金属酸化物(2)を0.05~50質量部、特に金属化合物(2-1)を0.05~50質量部含有し、かつ185℃で2分間、緊張状態で乾熱処理されたことで0.0054mN/dtexの荷重下、50℃から300℃まで温度を上げたときの収縮変動が45%以下でなり、難燃性評価用試験体を用いた燃焼試験結果は良好であり、合否判定は合格であった。 In Example 13, the halogen-containing fiber is 0.05 to 50 parts by mass of the metal oxide (2), particularly 0.05 to 50 parts by mass of the metal compound (2-1) with respect to 100 parts by mass of the polymer (1). Contained in parts by mass and subjected to a dry heat treatment in tension at 185 ° C for 2 minutes, the shrinkage variation when the temperature is raised from 50 ° C to 300 ° C under a load of 0.0054 mN / dtex is 45% or less. The combustion test results using the flame retardant test specimen were good, and the pass / fail judgment was acceptable.
 実施例14では、ハロゲン含有繊維は、重合体(1)100質量部に対して金属酸化物(2)を0.05~50質量部、特に金属化合物(2-1)を0.05~50質量部含有し、かつ150℃で15分間、緊張状態で湿熱処理されたことで、0.0054mN/dtexの荷重下、50℃から300℃まで温度を上げたときの収縮変動が45%以下でなり、難燃性評価用試験体を用いた燃焼試験結果は良好であり、合否判定は合格であった。 In Example 14, the halogen-containing fiber is 0.05 to 50 parts by mass of the metal oxide (2), particularly 0.05 to 50 parts by mass of the metal compound (2-1) with respect to 100 parts by mass of the polymer (1). Contained in parts by mass and subjected to wet heat treatment at 150 ° C. for 15 minutes in a tension state, the shrinkage variation when the temperature is raised from 50 ° C. to 300 ° C. under a load of 0.0054 mN / dtex is 45% or less. Thus, the result of the combustion test using the flame retardant evaluation specimen was good, and the pass / fail judgment was acceptable.
 実施例15では、ハロゲン含有繊維は、重合体(1)100質量部に対して金属酸化物(2)を0.05~50質量部、特に金属化合物(2-1)を0.05~50質量部含有し、かつ熱処理を行なわなかったが、ハロゲン含有繊維は50℃から300℃まで温度を上げたときの収縮変動が45%以下であり、難燃性評価用試験体を用いた燃焼試験結果は良好でなり難燃性評価用試験体を用いた燃焼試験結果は良好であり、合否判定は合格であった。 In Example 15, the halogen-containing fiber is 0.05 to 50 parts by mass of the metal oxide (2), particularly 0.05 to 50 parts by mass of the metal compound (2-1) with respect to 100 parts by mass of the polymer (1). Although contained by mass and not heat-treated, the halogen-containing fiber has a shrinkage variation of 45% or less when the temperature is raised from 50 ° C. to 300 ° C., and a combustion test using a flame retardant test specimen The result was good, the result of the combustion test using the flame retardant test specimen was good, and the pass / fail judgment was acceptable.
 実施例16では、エポキシ基化合物としてポリグリシジルメタクリレートの代わりにクレゾールノボラックエポキシ樹脂を用いたが、0.0054mN/dtexの荷重下、50℃から300℃まで温度を上げたときの収縮変動が45%以下であり、難燃性評価用試験体を用いた燃焼試験結果は良好であり、合否判定は合格であった。 In Example 16, cresol novolac epoxy resin was used as the epoxy group compound instead of polyglycidyl methacrylate, but the shrinkage variation when the temperature was increased from 50 ° C. to 300 ° C. under a load of 0.0054 mN / dtex was 45%. The results of the combustion test using the flame retardant evaluation specimen were good, and the pass / fail judgment was acceptable.
 実施例17、18では、金属化合物(2-2)として、三酸化アンチモンの代わりにそれぞれ、五酸化アンチモン、ヨウ化銅を用いたが、0.0054mN/dtexの荷重下、50℃から300℃まで温度を上げたときの収縮変動が45%以下であり、難燃性評価用試験体を用いた燃焼試験結果は良好であり、合否判定は合格であった。 In Examples 17 and 18, as the metal compound (2-2), antimony pentoxide and copper iodide were used in place of antimony trioxide, respectively. However, under a load of 0.0054 mN / dtex, 50 ° C. to 300 ° C. The shrinkage variation when the temperature was increased to 45% or less, the combustion test result using the flame retardant evaluation specimen was good, and the pass / fail judgment was acceptable.
 実施例19、20では、金属化合物(2-1)として、酸化亜鉛の代わりにそれぞれ、酸化錫、炭酸亜鉛を用いたが、0.0054mN/dtexの荷重下、50℃から300℃まで温度を上げたときの収縮変動が45%以下であり、難燃性評価用試験体を用いた燃焼試験結果は良好であり、合否判定は合格であった。 In Examples 19 and 20, tin oxide and zinc carbonate were used instead of zinc oxide as the metal compound (2-1), respectively, but the temperature was increased from 50 ° C. to 300 ° C. under a load of 0.0054 mN / dtex. The shrinkage fluctuation when raised was 45% or less, the combustion test result using the flame retardant evaluation specimen was good, and the pass / fail judgment was acceptable.
 (比較例1~10)
 比較例1では、弛緩熱処理を付与したが、難燃性合成繊維は、金属化合物(2-1)を含有していないため、0.0054mN/dtexの荷重下、50℃から300℃まで温度を上げたときの収縮変動が47%であり、45%以上となった。それゆえ、難燃性評価用試験体を用いた燃焼試験評価では、燃焼試験時、難燃性評価用試験体に用いた難燃性評価用不織布に穴があき、内部易燃性ウレタンに着火し、強制的に消火して試験を中止したので、不合格になった。
(Comparative Examples 1 to 10)
In Comparative Example 1, relaxation heat treatment was applied. However, since the flame-retardant synthetic fiber does not contain the metal compound (2-1), the temperature was increased from 50 ° C. to 300 ° C. under a load of 0.0054 mN / dtex. The shrinkage fluctuation when it was raised was 47%, which was 45% or more. Therefore, in the combustion test evaluation using the flame retardant test specimen, a hole is formed in the flame retardant nonwoven fabric used in the flame retardant test specimen during the combustion test, and the internal flammable urethane is ignited. However, because the test was stopped by forcibly extinguishing the fire, it failed.
 比較例2では、難燃性合成繊維は、収縮変動が28%であり、45%以下となったが、金属化合物(2-1)を含有していないため、難燃性評価用試験体を用いた燃焼試験評価では、燃焼試験時、難燃性評価用試験体に用いた難燃性評価用不織布に穴があき、内部易燃性ウレタンに着火し、強制的に消火して試験を中止したので、不合格になった。 In Comparative Example 2, the flame-retardant synthetic fiber had a shrinkage variation of 28% and 45% or less, but does not contain the metal compound (2-1). In the combustion test evaluation used, at the time of the combustion test, there was a hole in the non-woven fabric for flame retardant evaluation used in the test specimen for flame retardant evaluation, the internal flammable urethane was ignited, the fire was forcibly extinguished, and the test was stopped. As a result, it was rejected.
 比較例3では、ハロゲン含有繊維は、金属化合物(2-1)として酸化亜鉛を含有しているが、170℃で2分間、緊張状態で乾熱処理したことにより、0.0054mN/dtexの荷重下、50℃から300℃まで温度を上げたときの収縮変動が67%であり、45%以上となった。それゆえ、燃焼試験時に、試験体にクラックが発生し、そこから火が入って内部易燃性ウレタンに着炎したので、合否判定を不合格とした。 In Comparative Example 3, the halogen-containing fiber contains zinc oxide as the metal compound (2-1). However, the halogen-containing fiber was subjected to a dry heat treatment at 170 ° C. for 2 minutes in a tension state, so that the load was 0.0054 mN / dtex. When the temperature was raised from 50 ° C. to 300 ° C., the shrinkage variation was 67%, which was 45% or more. Therefore, during the combustion test, a crack occurred in the test body, and fire started from there and ignited the internal flammable urethane.
 比較例4では、ハロゲン含有繊維は、金属化合物(2-1)として酸化亜鉛を含有しているが、140℃で15分間、緊張状態で湿熱処理したことにより、0.0054mN/dtexの荷重下、50℃から300℃まで温度を上げたときの収縮変動が48%であり、45%以上となった。それゆえ、燃焼試験時に、試験体にクラックが発生し、そこから火が入って内部易燃性ウレタンに着炎したので、合否判定を不合格とした。 In Comparative Example 4, the halogen-containing fiber contains zinc oxide as the metal compound (2-1), but under a load of 0.0054 mN / dtex by wet heat treatment at 140 ° C. for 15 minutes in a tension state. When the temperature was raised from 50 ° C. to 300 ° C., the shrinkage variation was 48%, which was 45% or more. Therefore, during the combustion test, a crack occurred in the test body, and fire started from there and ignited the internal flammable urethane.
 比較例5、7では、ハロゲン含有繊維は、金属化合物(2-1)を含有しておらず、また、130℃で15分間、緊張状態で湿熱処理したため、0.0054mN/dtexの荷重下、50℃から300℃まで温度を上げたときの収縮変動がそれぞれ93%、68%であり、45%以上となった。それゆえ、難燃性評価用試験体を用いた燃焼試験評価では、燃焼試験時、難燃性評価用試験体に用いた難燃性評価用不織布に穴があき、内部易燃性ウレタンに着火し、強制的に消火して試験を中止したので、不合格になった。 In Comparative Examples 5 and 7, the halogen-containing fiber did not contain the metal compound (2-1), and was wet-heat treated in a tension state at 130 ° C. for 15 minutes. Therefore, under a load of 0.0054 mN / dtex, Shrinkage fluctuations when the temperature was raised from 50 ° C. to 300 ° C. were 93% and 68%, respectively, and were 45% or more. Therefore, in the combustion test evaluation using the flame retardant test specimen, a hole is formed in the flame retardant nonwoven fabric used in the flame retardant test specimen during the combustion test, and the internal flammable urethane is ignited. However, because the test was stopped by forcibly extinguishing the fire, it failed.
 比較例6では、ハロゲン含有繊維は、金属化合物(2-1)としてメタ錫酸を含有しているが、130℃で15分間、緊張状態で湿熱処理したことにより、0.0054mN/dtexの荷重下、50℃から300℃まで温度を上げたときの収縮変動が62%であり、45%以上となった。それゆえ、燃焼試験時に、試験体にクラックが発生し、そこから火が入って内部易燃性ウレタンに着炎したため、合否判定を不合格とした。 In Comparative Example 6, the halogen-containing fiber contains metastannic acid as the metal compound (2-1). However, the moisture-containing fiber was subjected to a wet heat treatment at 130 ° C. for 15 minutes to obtain a load of 0.0054 mN / dtex. The shrinkage variation when the temperature was raised from 50 ° C. to 300 ° C. was 62%, which was 45% or more. Therefore, during the combustion test, a crack occurred in the test body, and fire started from there, and the internal flammable urethane was ignited.
 比較例8では、ハロゲン含有繊維は、紡糸時のトータル延伸倍率が4.8倍未満ではあるが、130℃で15分間、緊張状態で湿熱処理したことや更に金属化合物(2-1)を含有していないため、0.0054mN/dtexの荷重下、50℃から300℃まで温度を上げたときの収縮変動が63%であり、45%以上となった。それゆえ、難燃性評価用試験体を用いた燃焼試験評価では、燃焼試験時、難燃性評価用試験体に用いた難燃性評価用不織布に穴があき、内部易燃性ウレタンに着火し、強制的に消火し試験を中止したので、不合格になった。 In Comparative Example 8, the halogen-containing fiber had a total draw ratio of less than 4.8 times during spinning, but was wet-heat treated under tension at 130 ° C. for 15 minutes and further contained a metal compound (2-1). Therefore, the shrinkage variation when the temperature was increased from 50 ° C. to 300 ° C. under a load of 0.0054 mN / dtex was 63%, which was 45% or more. Therefore, in the combustion test evaluation using the flame retardant test specimen, a hole is formed in the flame retardant nonwoven fabric used in the flame retardant test specimen during the combustion test, and the internal flammable urethane is ignited. However, the test was stopped because the fire was forcibly extinguished, so it failed.
 比較例9では、金属化合物(2-1)として酸化亜鉛を含有しているが、ハロゲン含有繊維は130℃で2分間、緊張状態で湿熱処理したことにより、0.0054mN/dtexの荷重下、50℃から300℃まで温度を上げたときの収縮変動が65%であり、45%以上となった。それゆえ、燃焼試験時に、試験体にクラックが発生し、そこから火が入って内部易燃性ウレタンに着炎したので、合否判定を不合格とした。 In Comparative Example 9, zinc oxide was contained as the metal compound (2-1), but the halogen-containing fiber was wet-heat treated in a tension state at 130 ° C. for 2 minutes, so that under a load of 0.0054 mN / dtex, When the temperature was raised from 50 ° C. to 300 ° C., the shrinkage variation was 65%, which was 45% or more. Therefore, during the combustion test, a crack occurred in the test body, and fire started from there and ignited the internal flammable urethane.
 比較例10は、金属化合物として水酸化アルミニウムを含有しているが、金属化合物(2-1)を含有していないため、0.0054mN/dtexの荷重下、50℃から300℃まで温度を上げたときの収縮変動が46%であり、45%以上となった。それゆえ、難燃性評価用試験体を用いた燃焼試験評価では、燃焼試験時、難燃性評価用試験体に用いた難燃性評価用不織布に穴があき、内部易燃性ウレタンに着火し、強制的に消火し試験を中止したので、不合格になった。 Comparative Example 10 contains aluminum hydroxide as the metal compound but does not contain the metal compound (2-1), so the temperature was raised from 50 ° C. to 300 ° C. under a load of 0.0054 mN / dtex. The shrinkage fluctuation at that time was 46%, which was 45% or more. Therefore, in the combustion test evaluation using the flame retardant test specimen, a hole is formed in the flame retardant nonwoven fabric used in the flame retardant test specimen during the combustion test, and the internal flammable urethane is ignited. However, the test was stopped because the fire was forcibly extinguished, so it failed.
 (実施例21~47、比較例11~26)
 実施例21~47では、繊維複合体における、本発明の難燃性合成繊維である製造例5又は11により作製したハロゲン含有繊維の混率が10%以上であり、繊維複合体に含まれる他の繊維種、製品の構造にかかわらず、各種試験において、優れた難燃性能を示し、何れも合格となった。一方、比較例11~20では、重合体(1)の燃焼時の炭化を促進する金属化合物(2-1)を含有していない製造例22により作製したハロゲン含有繊維を用いているため、何れの試験も不合格となった。また、比較例21~26では、本発明の難燃性合成繊維である製造例5により作製したハロゲン含有繊維を用いているが、繊維複合体におけるハロゲン含有繊維の混率が10%未満であるため、何れの試験も不合格となった。
(Examples 21 to 47, Comparative Examples 11 to 26)
In Examples 21 to 47, the mixing ratio of the halogen-containing fiber produced in Production Example 5 or 11 which is the flame-retardant synthetic fiber of the present invention in the fiber composite is 10% or more, and other components included in the fiber composite are included. Regardless of the type of fiber and the structure of the product, in various tests, excellent flame retardancy was exhibited, and all passed. On the other hand, in Comparative Examples 11 to 20, since the halogen-containing fiber produced in Production Example 22 that does not contain the metal compound (2-1) that promotes carbonization during combustion of the polymer (1) is used, The exam also failed. In Comparative Examples 21 to 26, the halogen-containing fiber produced in Production Example 5 which is the flame-retardant synthetic fiber of the present invention is used, but the mixture ratio of the halogen-containing fiber in the fiber composite is less than 10%. Both tests failed.
 下記表2に実施例1~20及び比較例1~10の難燃性燃焼試験結果をまとめて示す。下記表3に実施例21~47、及び比較例11~26の難燃性燃焼試験結果をまとめて示す。 Table 2 below summarizes the flame retardant combustion test results of Examples 1 to 20 and Comparative Examples 1 to 10. Table 3 below summarizes the results of flame retardant combustion tests of Examples 21 to 47 and Comparative Examples 11 to 26.
 [表2]
Figure JPOXMLDOC01-appb-I000002
[Table 2]
Figure JPOXMLDOC01-appb-I000002
 [表3]
Figure JPOXMLDOC01-appb-I000003
[Table 3]
Figure JPOXMLDOC01-appb-I000003
 図5は、本発明の難燃性合成繊維である製造例10で得られたハロゲン含有繊維(A)と、現行品のモダクリル繊維(カネカ社製商品名“Protex-M”)(B)と、本発明における比較例品である製造例29で得られたハロゲン含有繊維(C)とを、それぞれ、3333dtex(デシテックス)を約5mmとり、大気中、20℃/minの昇温速度、18mNの荷重下(通常の製品に掛かっているテンションに相当)にて50℃から300℃以上までの収縮挙動を測定した結果を示した。比較例品としての現行品(B)は約180℃を超えた付近から収縮し、約205℃付近でピークとなり、その後は伸びに転じて250℃付近で切断となる。また、比較例品としての製造例29で得られた繊維(C)は、約180℃を超えると約200℃までの間で大きく収縮する。これに対して本発明品である製造例10で得られた繊維(A)は、約170℃を超えたあたりから徐々に収縮するが、収縮率が繊維(C)と比較して低く、かつ炭化して切断されずに残存する。 FIG. 5 shows the halogen-containing fiber (A) obtained in Production Example 10 which is a flame-retardant synthetic fiber of the present invention, the current product modacrylic fiber (trade name “Protex-M” manufactured by Kaneka Corporation) (B), Each of the halogen-containing fibers (C) obtained in Production Example 29, which is a comparative product in the present invention, takes about 3 mm of 3333 dtex (decitex), and is heated in the atmosphere at a rate of temperature increase of 20 ° C./min, 18 mN. The results of measuring the shrinkage behavior from 50 ° C. to 300 ° C. or higher under load (corresponding to the tension applied to a normal product) are shown. The current product (B) as a comparative product shrinks from around about 180 ° C., peaks at about 205 ° C., then turns into elongation and cuts at about 250 ° C. Further, the fiber (C) obtained in Production Example 29 as a comparative example product greatly shrinks to about 200 ° C. when it exceeds about 180 ° C. In contrast, the fiber (A) obtained in Production Example 10 which is a product of the present invention gradually shrinks from above about 170 ° C., but the shrinkage rate is lower than that of the fiber (C), and It remains without being carbonized and cut.

Claims (19)

  1.  重合体100質量部において、アクリロニトリル30~70質量部、ハロゲン含有ビニリデン単量体及び/又はハロゲン含有ビニル単量体70~30質量部、及びこれらと共重合可能なビニル系単量体0~10質量部を含有する重合体(1)と、
     前記重合体(1)の燃焼時の脱ハロゲン反応及び燃焼時の炭化反応を促進する少なくとも1種の金属化合物(2)とを含み、
     0.0054mN/dtexの荷重下、50℃から300℃まで温度を上げたときの収縮変動が45%以下であることを特徴とする難燃性合成繊維。
    In 100 parts by mass of the polymer, 30 to 70 parts by mass of acrylonitrile, 70 to 30 parts by mass of the halogen-containing vinylidene monomer and / or halogen-containing vinyl monomer, and 0 to 10 vinyl monomers copolymerizable therewith A polymer (1) containing parts by weight;
    Including at least one metal compound (2) that promotes dehalogenation reaction during combustion and carbonization reaction during combustion of the polymer (1),
    A flame-retardant synthetic fiber having a shrinkage variation of 45% or less when the temperature is raised from 50 ° C to 300 ° C under a load of 0.0054 mN / dtex.
  2.  前記重合体(1)100質量部に対し、前記金属化合物(2)を0.05~50質量部含む請求項1に記載の難燃性合成繊維。 The flame-retardant synthetic fiber according to claim 1, comprising 0.05 to 50 parts by mass of the metal compound (2) with respect to 100 parts by mass of the polymer (1).
  3.  前記金属化合物(2)が脱ハロゲン反応及び炭化反応の両反応を促進する金属化合物(2-1)、又は前記金属化合物(2-1)と脱ハロゲン反応を促進する金属化合物(2-2)の組合わせからなる請求項1又は2に記載の難燃性合成繊維。 Metal compound (2-1) in which the metal compound (2) promotes both dehalogenation reaction and carbonization reaction, or metal compound (2-2) in which the metal compound (2-1) promotes dehalogenation reaction The flame-retardant synthetic fiber according to claim 1 or 2, comprising a combination of the following.
  4.  前記重合体(1)100質量部に対し、前記金属化合物(2-2)を5~30質量部含む請求項3に記載の難燃性合成繊維。 The flame-retardant synthetic fiber according to claim 3, comprising 5 to 30 parts by mass of the metal compound (2-2) with respect to 100 parts by mass of the polymer (1).
  5.  前記金属化合物(2-1)が、酸化亜鉛、炭酸亜鉛、硫化亜鉛、硼酸亜鉛、燐酸亜鉛、錫酸亜鉛、メタ錫酸、酸化タングステン、酸化ジルコニウム、酸化錫、酸化銅、燐酸銅、三酸化インジウム、チタン酸バリウムからなる群から選ばれる少なくとも一つである請求項3に記載の難燃性合成繊維。 The metal compound (2-1) is zinc oxide, zinc carbonate, zinc sulfide, zinc borate, zinc phosphate, zinc stannate, metastannic acid, tungsten oxide, zirconium oxide, tin oxide, copper oxide, copper phosphate, trioxide. The flame-retardant synthetic fiber according to claim 3, which is at least one selected from the group consisting of indium and barium titanate.
  6.  前記金属化合物(2-1)が、酸化亜鉛、錫酸亜鉛、炭酸亜鉛、及び酸化錫からなる群から選ばれる少なくとも一つである請求項5に記載の難燃性合成繊維。 The flame-retardant synthetic fiber according to claim 5, wherein the metal compound (2-1) is at least one selected from the group consisting of zinc oxide, zinc stannate, zinc carbonate, and tin oxide.
  7.  前記金属化合物(2-2)が、アンチモン化合物、酸化鉄、燐酸鉄、蓚酸鉄、硫化鉄、酸化モリブデン、三酸化ビスマス、オキシ塩化ビスマス、ヨウ化銅からなる群から選ばれる少なくとも一つである請求項3又は4に記載の難燃性合成繊維。 The metal compound (2-2) is at least one selected from the group consisting of an antimony compound, iron oxide, iron phosphate, iron oxalate, iron sulfide, molybdenum oxide, bismuth trioxide, bismuth oxychloride, and copper iodide. The flame-retardant synthetic fiber according to claim 3 or 4.
  8.  前記金属化合物(2-2)が、アンチモン化合物である請求項7に記載の難燃性合成繊維。 The flame-retardant synthetic fiber according to claim 7, wherein the metal compound (2-2) is an antimony compound.
  9.  前記重合体(1)100質量部に対し、更にエポキシ基含有化合物0.1~20質量部を含む請求項1に記載の難燃性合成繊維。 The flame-retardant synthetic fiber according to claim 1, further comprising 0.1 to 20 parts by mass of an epoxy group-containing compound with respect to 100 parts by mass of the polymer (1).
  10.  前記エポキシ基含有化合物は、グリシジルメタクリレートである請求項9に記載の難燃性合成繊維。 The flame retardant synthetic fiber according to claim 9, wherein the epoxy group-containing compound is glycidyl methacrylate.
  11.  前記重合体(1)が、アクリロニトリル40~60質量部、ハロゲン含有ビニリデン単量体及び/又はハロゲン含有ビニル単量体60~30質量部、及びこれらと共重合可能なビニル系単量体0~10質量部を含有する請求項1に記載の難燃性合成繊維。 The polymer (1) comprises 40 to 60 parts by mass of acrylonitrile, 60 to 30 parts by mass of a halogen-containing vinylidene monomer and / or a halogen-containing vinyl monomer, and 0 to 30% of a vinyl monomer copolymerizable therewith. The flame-retardant synthetic fiber according to claim 1, containing 10 parts by mass.
  12.  重合体100質量部において、アクリロニトリル30~70質量部、ハロゲン含有ビニリデン単量体及び/又はハロゲン含有ビニル単量体70~30質量部、及びこれらと共重合可能なビニル系単量体0~10質量部を含有する重合体(1)と、
     前記重合体(1)の燃焼時の脱ハロゲン反応及び燃焼時の炭化反応を促進する少なくとも1種の金属化合物(2)とを含む組成物を紡糸した後、熱処理することにより、0.0054mN/dtexの荷重下、50℃から300℃まで温度を上げたときの収縮変動が45%以下である難燃性合成繊維を得ることを特徴とする難燃性合成繊維の製造方法。
    In 100 parts by mass of the polymer, 30 to 70 parts by mass of acrylonitrile, 70 to 30 parts by mass of the halogen-containing vinylidene monomer and / or halogen-containing vinyl monomer, and 0 to 10 vinyl monomers copolymerizable therewith A polymer (1) containing parts by weight;
    A composition containing at least one metal compound (2) that promotes the dehalogenation reaction during combustion and the carbonization reaction during combustion of the polymer (1) is spun and then heat-treated, whereby 0.0054 mN / A method for producing a flame-retardant synthetic fiber, comprising obtaining a flame-retardant synthetic fiber having a shrinkage variation of 45% or less when the temperature is increased from 50 ° C to 300 ° C under a load of dtex.
  13.  前記熱処理が、140℃以上の乾熱、又は90℃以上の湿熱中での弛緩熱処理である請求項12に記載の難燃性合成繊維の製造方法。 The method for producing a flame-retardant synthetic fiber according to claim 12, wherein the heat treatment is a relaxation heat treatment in a dry heat of 140 ° C or higher or a wet heat of 90 ° C or higher.
  14.  前記熱処理が、180℃以上の乾熱、又は150℃以上の湿熱中での緊張熱処理である請求項12に記載の難燃性合成繊維の製造方法。 The method for producing a flame-retardant synthetic fiber according to claim 12, wherein the heat treatment is a tension heat treatment in a dry heat of 180 ° C or higher or a wet heat of 150 ° C or higher.
  15.  前記熱処理が、100℃以上の湿熱加圧蒸気中での弛緩熱処理である請求項12又は13に記載の難燃性合成繊維の製造方法。 The method for producing a flame-retardant synthetic fiber according to claim 12 or 13, wherein the heat treatment is a relaxation heat treatment in a wet heat pressurized steam at 100 ° C or higher.
  16.  前記重合体(1)100質量部に対し、前記金属化合物(2)を0.05~50質量部含む請求項12~15の何れか1項に記載の難燃性合成繊維の製造方法。 The method for producing a flame-retardant synthetic fiber according to any one of claims 12 to 15, comprising 0.05 to 50 parts by mass of the metal compound (2) with respect to 100 parts by mass of the polymer (1).
  17.  請求項1~11の何れか1項に記載の難燃性合成繊維10質量%以上と、天然繊維、再生繊維及び前記難燃性合成繊維以外の合成繊維からなる群から選ばれる少なくとも1種の繊維90質量%以下を含むことを特徴とする難燃繊維複合体。 12. At least one selected from the group consisting of 10% by mass or more of the flame retardant synthetic fiber according to any one of claims 1 to 11, and natural fiber, regenerated fiber, and synthetic fiber other than the flame retardant synthetic fiber. A flame-retardant fiber composite comprising 90% by mass or less of fibers.
  18.  前記難燃性合成繊維以外の合成繊維がポリエステル系繊維であり、かつ難燃繊維複合体中の含有量が40質量%以上である請求項17に記載の難燃繊維複合体。 The flame retardant fiber composite according to claim 17, wherein the synthetic fiber other than the flame retardant synthetic fiber is a polyester fiber, and the content in the flame retardant fiber composite is 40% by mass or more.
  19.  請求項1~11の何れか1項に記載の難燃性合成繊維を含む繊維製品。 A textile product comprising the flame-retardant synthetic fiber according to any one of claims 1 to 11.
PCT/JP2008/065832 2008-07-24 2008-09-03 Flame-retardant synthetic fiber, process for production of the same, flame-retarddant fiber composites and textile products WO2010010639A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2009/062454 WO2010010815A1 (en) 2008-07-24 2009-07-08 Flame-retardant synthetic fiber, flame-retardant fiber assembly, processes for production of both, and textile goods
JP2009549329A JP4457182B2 (en) 2008-07-24 2009-07-08 Flame retardant synthetic fiber, flame retardant fiber assembly, method for producing the same, and fiber product
CN2009801227804A CN102066625B (en) 2008-07-24 2009-07-08 Flame-retardant synthetic fiber, flame-retardant fiber assembly, processes for production of both, and textile goods
TW98123876A TWI408266B (en) 2008-07-24 2009-07-15 Flame retardant synthetic fiber, flame retardant fiber composite, production method therefor and textile product
US12/506,647 US8003555B2 (en) 2008-07-24 2009-07-21 Flame retardant synthetic fiber, flame retardant fiber composite, production method therefor and textile product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-191311 2008-07-24
JP2008191311 2008-07-24

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/062454 Continuation WO2010010815A1 (en) 2008-07-24 2009-07-08 Flame-retardant synthetic fiber, flame-retardant fiber assembly, processes for production of both, and textile goods

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/506,647 Continuation US8003555B2 (en) 2008-07-24 2009-07-21 Flame retardant synthetic fiber, flame retardant fiber composite, production method therefor and textile product

Publications (1)

Publication Number Publication Date
WO2010010639A1 true WO2010010639A1 (en) 2010-01-28

Family

ID=41570118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/065832 WO2010010639A1 (en) 2008-07-24 2008-09-03 Flame-retardant synthetic fiber, process for production of the same, flame-retarddant fiber composites and textile products

Country Status (1)

Country Link
WO (1) WO2010010639A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012207331A (en) * 2011-03-29 2012-10-25 Tb Kawashima Co Ltd Flame resistance carpet

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5182023A (en) * 1974-12-23 1976-07-19 Kanegafuchi Chemical Ind NANNENSEINISUGURETAAKURIRUKEIGOSEISENI
JPS53106825A (en) * 1977-02-28 1978-09-18 Kanegafuchi Chem Ind Co Ltd Production of crimp-self developing fiber
JPS61282420A (en) * 1985-05-31 1986-12-12 Asahi Chem Ind Co Ltd Flame-retardant acrylic synthetic yarn
JPH06287806A (en) * 1993-04-01 1994-10-11 Kanebo Ltd Acrylic synthetic fiber improved in flame retrardancy and its production
WO2000070133A1 (en) * 1999-05-18 2000-11-23 Kaneka Corporation Hollow, shrinkable fiber for pile and method for production thereof and file product
WO2001032968A1 (en) * 1999-11-04 2001-05-10 Kaneka Corporation Flame-retardant union fabric
JP2004197255A (en) * 2002-12-18 2004-07-15 Kanegafuchi Chem Ind Co Ltd Acrylic fiber having excellent weather resistance and high flame retardance and fabric thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5182023A (en) * 1974-12-23 1976-07-19 Kanegafuchi Chemical Ind NANNENSEINISUGURETAAKURIRUKEIGOSEISENI
JPS53106825A (en) * 1977-02-28 1978-09-18 Kanegafuchi Chem Ind Co Ltd Production of crimp-self developing fiber
JPS61282420A (en) * 1985-05-31 1986-12-12 Asahi Chem Ind Co Ltd Flame-retardant acrylic synthetic yarn
JPH06287806A (en) * 1993-04-01 1994-10-11 Kanebo Ltd Acrylic synthetic fiber improved in flame retrardancy and its production
WO2000070133A1 (en) * 1999-05-18 2000-11-23 Kaneka Corporation Hollow, shrinkable fiber for pile and method for production thereof and file product
WO2001032968A1 (en) * 1999-11-04 2001-05-10 Kaneka Corporation Flame-retardant union fabric
JP2004197255A (en) * 2002-12-18 2004-07-15 Kanegafuchi Chem Ind Co Ltd Acrylic fiber having excellent weather resistance and high flame retardance and fabric thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012207331A (en) * 2011-03-29 2012-10-25 Tb Kawashima Co Ltd Flame resistance carpet

Similar Documents

Publication Publication Date Title
JP4457182B2 (en) Flame retardant synthetic fiber, flame retardant fiber assembly, method for producing the same, and fiber product
WO2011089902A1 (en) Flame retardant fiber assembly, method for producing same, and fiber product
US8839496B2 (en) Flame blocking liner materials
US20050118919A1 (en) Flame blocking liner materials
WO2005103346A1 (en) Flame-retardant synthetic fiber and frame-retarded textile goods made by using the same
US20220167700A1 (en) Flame-retardant fiber composite and flame-retardant working clothes
US20230019403A1 (en) Cloth for mattress and method for manufacturing the same
EP1798318B1 (en) Flame-retardant synthetic fiber, flame-retardant fiber composite, and upholstered furniture product made with the same
WO2010010639A1 (en) Flame-retardant synthetic fiber, process for production of the same, flame-retarddant fiber composites and textile products
JP2008190048A (en) Flame-retardant nonwoven fabric and upholstered furniture product using the same
US20070237953A1 (en) Flame resistant synthetic fiber, flame resistant fiber composite and upholstered furniture products using the same
JP4346566B2 (en) Flame-retardant synthetic fiber, flame-retardant fiber composite using the flame-retardant synthetic fiber, and upholstered furniture products using the flame-retardant fiber composite
JP2007291571A (en) Flame-retardant synthetic fiber, flame-retardant fiber complex body and flame-retardant mattress using the same
WO2022181337A1 (en) Flame-resistant acrylic fibers, flame-resistant fiber composite, and flame-resistant mattress
WO2023100484A1 (en) Flame-retardant fabric, and flame retardant mattress including same
JP2024049407A (en) Flame-retardant acrylic synthetic fiber and flame-retardant fiber composite containing same
JP4777892B2 (en) Flame retardant synthetic fiber, flame retardant fiber composite and upholstered furniture product using the same
JP2007270411A (en) Flame-retardant synthetic fiber, flame-retardant fiber composite, and upholstered furniture product using the same
WO2023053802A1 (en) Incombustible upholstered furniture
JP2024049409A (en) Flame-retardant knitted fabric and flame-retardant mattress containing same
JP2009242957A (en) Flame-retardant synthetic fiber, flame shielding cloth using the same, and flame-retardant upholstered product
JPWO2006008958A1 (en) Flame-retardant synthetic fibers, flame-retardant fiber composites and upholstered furniture products using flame-retardant fiber composites
JP2007308849A (en) Flame-retardant synthetic fiber, frame-retardant fiber composite material and upholstered furniture using the same
JP2007169794A (en) Flame retardant synthetic fiber, flame retardant composite fiber and upholstered furniture product using the same
JP2007154338A (en) Flame-retardant fabric for cover

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08809887

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08809887

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP