WO2010009118A1 - Systems and methods for producing oil and/or gas - Google Patents

Systems and methods for producing oil and/or gas Download PDF

Info

Publication number
WO2010009118A1
WO2010009118A1 PCT/US2009/050530 US2009050530W WO2010009118A1 WO 2010009118 A1 WO2010009118 A1 WO 2010009118A1 US 2009050530 W US2009050530 W US 2009050530W WO 2010009118 A1 WO2010009118 A1 WO 2010009118A1
Authority
WO
WIPO (PCT)
Prior art keywords
well
formation
oil recovery
formulation
gas
Prior art date
Application number
PCT/US2009/050530
Other languages
English (en)
French (fr)
Inventor
Claudia Van Den Berg
Paul Clinton
Kees Van Gelder
Carolus Matthias Anna Maria Mesters
Patrick Guy Monin
Gerard Mulder
Raul Valdez
Dean Chien Wang
Original Assignee
Shell Oil Company
Shell Internationale Research Maatschappij B.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Oil Company, Shell Internationale Research Maatschappij B.V. filed Critical Shell Oil Company
Priority to EP09798649A priority Critical patent/EP2318651A1/en
Priority to RU2011105154/03A priority patent/RU2510454C2/ru
Priority to US13/054,416 priority patent/US20110180254A1/en
Priority to MX2011000563A priority patent/MX2011000563A/es
Priority to CN2009801309912A priority patent/CN102119258A/zh
Priority to BRPI0916419A priority patent/BRPI0916419A2/pt
Priority to CA2730284A priority patent/CA2730284A1/en
Priority to AU2009271072A priority patent/AU2009271072B2/en
Publication of WO2010009118A1 publication Critical patent/WO2010009118A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/30Specific pattern of wells, e.g. optimising the spacing of wells

Definitions

  • the present disclosure relates to systems and methods for producing oil and/or gas. Background of the Invention
  • EOR Enhanced Oil Recovery
  • thermal thermal
  • chemical/polymer chemical/polymer
  • gas injection gas injection
  • System 100 includes underground formation 102, underground formation 104, underground formation 106, and underground formation 108.
  • Production facility 110 is provided at the surface.
  • Well 112 traverses formations 102 and 104, and terminates in formation 106.
  • the portion of formation 106 is shown at 114.
  • Oil and gas are produced from formation 106 through well 112, to production facility 110. Gas and liquid are separated from each other, gas is stored in gas storage 116 and liquid is stored in liquid storage 118.
  • U.S. Patent Number 7,225,866 discloses that an oil shale formation may be treated using an in situ thermal process. A mixture of hydrocarbons, H 2 , and/or other formation fluids may be produced from the formation. Heat may be applied to the formation to raise a temperature of a portion of the formation to a pyrolysis temperature. Heat sources may be used to heat the formation. The heat sources may be positioned within the formation in a selected pattern.
  • the invention provides a system for producing oil and/or gas from an underground formation comprising a first well in the formation; a mechanism to inject a miscible enhanced oil recovery formulation into the first well; a second well in the formation; a mechanism to produce oil and/or gas from the second well; wherein the first well and the second well comprise an interior of the system; a plurality of containment wells exterior to the first well and the second well; and a mechanism to inject a containment agent into the containment wells.
  • the invention provides a method for producing oil and/or gas comprising injecting a carbon disulfide formulation into a formation from a first well; producing oil and/or gas from the formation from a second well; and injecting a containment agent into the formation from a plurality of containment wells.
  • the method also includes recovering carbon disulfide formulation from the oil and/or gas, if present, and then injecting at least a portion of the recovered carbon disulfide formulation into the formation.
  • the invention provides a method for producing oil and/or gas comprising injecting a miscible enhanced oil recovery formulation into a formation from a first well; producing oil and/or gas from the formation from a second well; and injecting a containment agent into the formation from plurality of containment wells.
  • Advantages of the invention include one or more of the following:
  • Improved systems and methods for enhanced recovery of hydrocarbons from a formation with a fluid containing a miscible solvent Improved compositions and/or techniques for secondary recovery of hydrocarbons.
  • Figure 1 illustrates an oil and/or gas production system.
  • Figure 2a illustrates a well pattern.
  • Figures 2b and 2c illustrate the well pattern of Figure 2a during enhanced oil recovery processes.
  • FIGS 3a-3c illustrate oil and/or gas production systems.
  • Figure 4 illustrates a well pattern.
  • Array 200 includes well group 202 (denoted by horizontal lines) and well group 204 (denoted by diagonal lines).
  • Array 200 defines a production area, enclosed by the rectangle.
  • Array 200 defines an interior of the system. Exterior to array 200 are located a plurality of containment wells 250.
  • Each well in well group 202 has horizontal distance 230 from the adjacent well in well group 202.
  • Each well in well group 202 has vertical distance 232 from the adjacent well in well group 202.
  • Each well in well group 204 has horizontal distance 236 from the adjacent well in well group 204.
  • Each well in well group 204 has vertical distance 238 from the adjacent well in well group 204.
  • array may be composed of vertical wells that are perpendicular to the earth's surface, horizontal wells that are parallel to the earth's surface, or wells that are inclined at some other angle, for example 30 to 60 degrees with respect to the earth's surface.
  • Each well in well group 202 is distance 234 from the adjacent wells in well group 204.
  • Each well in well group 204 is distance 234 from the adjacent wells in well group 202.
  • each well in well group 202 is surrounded by four wells in well group 204. In some embodiments, each well in well group 204 is surrounded by four wells in well group 202.
  • horizontal distance 230 is from about 5 to about 1000 meters, or from about 10 to about 500 meters, or from about 20 to about 250 meters, or from about 30 to about 200 meters, or from about 50 to about 150 meters, or from about 90 to about 120 meters, or about 100 meters.
  • vertical distance 232 is from about 5 to about 1000 meters, or from about 10 to about 500 meters, or from about 20 to about 250 meters, or from about 30 to about 200 meters, or from about 50 to about 150 meters, or from about 90 to about 120 meters, or about 100 meters.
  • horizontal distance 236 is from about 5 to about 1000 meters, or from about 10 to about 500 meters, or from about 20 to about 250 meters, or from about 30 to about 200 meters, or from about 50 to about 150 meters, or from about 90 to about 120 meters, or about 100 meters.
  • vertical distance 238 is from about 5 to about 1000 meters, or from about 10 to about 500 meters, or from about 20 to about 250 meters, or from about 30 to about 200 meters, or from about 50 to about 150 meters, or from about 90 to about 120 meters, or about 100 meters.
  • distance 234 is from about 5 to about 1000 meters, or from about 10 to about 500 meters, or from about 20 to about 250 meters, or from about 30 to about 200 meters, or from about 50 to about 150 meters, or from about 90 to about 120 meters, or about 100 meters.
  • array of wells 200 may have from about 10 to about 1000 wells, for example from about 5 to about 500 wells in well group 202, and from about 5 to about 500 wells in well group 204. There may be provided from about 2 to about 1000 containment wells 250, for example from about 5 to about 500, or from about 10 to about 200.
  • array of wells 200 is seen as a top view with well group 202 and well group 204 being vertical wells spaced on a piece of land. In some embodiments, array of wells 200 is seen as a cross-sectional side view with well group 202 and well group 204 being horizontal wells spaced within a formation.
  • the recovery of oil and/or gas with array of wells 200 from an underground formation may be accomplished by any known method. Suitable methods include subsea production, surface production, primary, secondary, or tertiary production. The selection of the method used to recover the oil and/or gas from the underground formation is not critical.
  • the containment of oil and/or gas and/or an enhanced oil recovery agent with containment wells 250 may be accomplished by any known method. Suitable methods include pumping water, a peroxide such as hydrogen peroxide or a solution of hydrogen peroxide in water, carbon dioxide, natural gas or other gaseous or liquid hydrocarbons, nitrogen, air, brine, or other liquids or gases into containment wells 250. In another embodiment, containment wells 250 may be used to create a freeze wall barrier. One suitable freeze wall barrier is disclosed in U.S. Patent Number 7,225,866 is herein incorporated by reference in its entirety. The selection of the method used to contain oil and/or gas and/or an enhanced oil recovery agent with containment wells 250 is not critical.
  • oil and/or gas may be recovered from a formation into a well, and flow through the well and flowline to a facility.
  • enhanced oil recovery with the use of an agent for example steam, water, a surfactant, a polymer flood, and/or a miscible agent such as a carbon disulfide formulation or carbon dioxide, may be used to increase the flow of oil and/or gas from the formation.
  • oil and/or gas recovered from a formation may include a sulfur compound.
  • the sulfur compound may include hydrogen sulfide, mercaptans, sulfides and disulfides other than hydrogen disulfide, or heterocyclic sulfur compounds for example thiophenes, benzothiophenes, or substituted and condensed ring dibenzothiophenes, or mixtures thereof.
  • a sulfur compound from the formation may be converted into a carbon disulfide formulation.
  • the conversion of at least a portion of the sulfur compound into a carbon disulfide formulation may be accomplished by any known method. Suitable methods may include oxidation reaction of the sulfur compound to sulfur and/or sulfur dioxides, and by reaction of sulfur and/or sulfur dioxide with carbon and/or a carbon containing compound to form the carbon disulfide formulation. The selection of the method used to convert at least a portion of the sulfur compound into a carbon disulfide formulation is not critical.
  • a suitable miscible enhanced oil recovery agent may be a carbon disulfide formulation.
  • the carbon disulfide formulation may include carbon disulfide and/or carbon disulfide derivatives for example, thiocarbonates, xanthates and mixtures thereof; and optionally one or more of the following: hydrogen sulfide, sulfur, carbon dioxide, hydrocarbons, and mixtures thereof.
  • array of wells 200 is illustrated.
  • Array 200 includes well group 202 (denoted by horizontal lines) and well group 204 (denoted by diagonal lines). Containment wells 250 are provided about array of wells 200.
  • a miscible enhanced oil recovery agent is injected into well group 204, and oil is recovered from well group 202. As illustrated, the miscible enhanced oil recovery agent has injection profile 208, and oil recovery profile 206 is being produced to well group 202.
  • a containment agent is injected into containment wells 250. As illustrated, the containment agent has an injection profile about each of the containment wells 250. Containment agent may be used to force miscible enhanced oil recovery agent and/or oil and/or gas towards producing well group 202.
  • a miscible enhanced oil recovery agent is injected into well group 202, and oil is recovered from well group 204. As illustrated, the miscible enhanced oil recovery agent has injection profile 206, and oil recovery profile 208 is being produced to well group 204.
  • a containment agent is injected into containment wells 250. As illustrated, the containment agent has an injection profile about each of the containment wells 250. Containment agent may be used to force miscible enhanced oil recovery agent and/or oil and/or gas towards producing well group 204.
  • well group 202 may be used for injecting a miscible enhanced oil recovery agent, and well group 204 may be used for producing oil and/or gas from the formation for a first time period; then well group 204 may be used for injecting a miscible enhanced oil recovery agent, and well group 202 may be used for producing oil and/or gas from the formation for a second time period, where the first and second time periods comprise a cycle.
  • multiple cycles may be conducted which include alternating well groups 202 and 204 between injecting a miscible enhanced oil recovery agent, and producing oil and/or gas from the formation, where one well group is injecting and the other is producing for a first time period, and then they are switched for a second time period.
  • a cycle may be from about 12 hours to about 1 year, or from about 3 days to about 6 months, or from about 5 days to about 3 months.
  • each cycle may increase in time, for example each cycle may be from about 5% to about 10% longer than the previous cycle, for example about 8% longer.
  • a miscible enhanced oil recovery agent or a mixture including a miscible enhanced oil recovery agent may be injected at the beginning of a cycle, and an immiscible enhanced oil recovery agent or a mixture including an immiscible enhanced oil recovery agent may be injected at the end of the cycle.
  • the beginning of a cycle may be the first 10% to about 80% of a cycle, or the first 20% to about 60% of a cycle, the first 25% to about 40% of a cycle, and the end may be the remainder of the cycle.
  • suitable miscible enhanced oil recovery agents include carbon disulfide, hydrogen sulfide, carbon dioxide, octane, pentane, LPG, C2-C6 aliphatic hydrocarbons, nitrogen, diesel, mineral spirits, naptha solvent, asphalt solvent, kerosene, acetone, xylene, thchloroethane, or mixtures of two or more of the preceding, or other miscible enhanced oil recovery agents as are known in the art.
  • suitable miscible enhanced oil recovery agents are first contact miscible or multiple contact miscible with oil in the formation.
  • suitable immiscible enhanced oil recovery agents include water in gas or liquid form, air, mixtures of two or more of the preceding, or other immiscible enhanced oil recovery agents as are known in the art. In some embodiments, suitable immiscible enhanced oil recovery agents are not first contact miscible or multiple contact miscible with oil in the formation.
  • an immiscible enhanced oil recovery agent and/or a miscible enhanced oil recovery agent may be used as a containment agent and injected into containment wells 250.
  • immiscible and/or miscible enhanced oil recovery agents injected into the formation may be recovered from the produced oil and/or gas and re-injected into the formation.
  • oil as present in the formation prior to the injection of any enhanced oil recovery agents has a viscosity of at least about 100 centipoise, or at least about 500 centipoise, or at least about 1000 centipoise, or at least about 2000 centipoise, or at least about 5000 centipoise, or at least about 10,000 centipoise. In some embodiments, oil as present in the formation prior to the injection of any enhanced oil recovery agents has a viscosity of up to about 5,000,000 centipoise, or up to about 2,000,000 centipoise, or up to about 1 ,000,000 centipoise, or up to about 500,000 centipoise.
  • Figure 2c is a viscosity of up to about 5,000,000 centipoise, or up to about 2,000,000 centipoise, or up to about 1 ,000,000 centipoise, or up to about 500,000 centipoise.
  • array of wells 200 is illustrated.
  • Array 200 includes well group 202 (denoted by horizontal lines) and well group 204 (denoted by diagonal lines). Containment wells 250 are located exterior to array 200 to form a perimeter about array 200.
  • a miscible enhanced oil recovery agent is injected into well group 204, and oil is recovered from well group 202. As illustrated, the miscible enhanced oil recovery agent has injection profile 208 with overlap 210 with oil recovery profile 206, which is being produced to well group 202.
  • a containment agent is injected into containment wells 250. As illustrated, the containment agent has an injection profile about each of the containment wells 250. Containment agent may be used to force miscible enhanced oil recovery agent and/or oil and/or gas towards producing well group 202.
  • containment agent injection profile may overlap with one or more of injection profile 208 and oil recovery profile 206 so that enhanced oil recovery agent is contained within array 200; and/or so that oil and/or gas is contained within array 200; and/or so that containment agent is produced to well group 202.
  • a miscible enhanced oil recovery agent is injected into well group 202, and oil is recovered from well group 204. As illustrated, the miscible enhanced oil recovery agent has injection profile 206 with overlap 210 with oil recovery profile 208, which is being produced to well group 204.
  • a containment agent is injected into containment wells 250. As illustrated, the containment agent has an injection profile about each of the containment wells 250. Containment agent may be used to force miscible enhanced oil recovery agent and/or oil and/or gas towards producing well group 204.
  • containment agent injection profile may overlap with one or more of injection profile 208 and oil recovery profile 206 so that enhanced oil recovery agent is contained within array 200; and/or so that oil and/or gas is contained within array 200; and/or so that containment agent is produced to well group 204.
  • Releasing at least a portion of the miscible enhanced oil recovery agent and/or other liquids and/or gases may be accomplished by any known method.
  • One suitable method is injecting the miscible enhanced oil recovery formulation into a single conduit in a single well, allowing carbon disulfide formulation to soak, and then pumping out at least a portion of the carbon disulfide formulation with gas and/or liquids.
  • Another suitable method is injecting the miscible enhanced oil recovery formulation into a first well, and pumping out at least a portion of the miscible enhanced oil recovery formulation with gas and/or liquids through a second well.
  • the selection of the method used to inject at least a portion of the miscible enhanced oil recovery formulation and/or other liquids and/or gases is not critical.
  • the miscible enhanced oil recovery formulation and/or other liquids and/or gases may be pumped into a formation at a pressure up to the fracture pressure of the formation.
  • the miscible enhanced oil recovery formulation may be mixed in with oil and/or gas in a formation to form a mixture which may be recovered from a well.
  • a quantity of the miscible enhanced oil recovery formulation may be injected into a well, followed by another component to force carbon the formulation across the formation.
  • air, water in liquid or vapor form, carbon dioxide, other gases, other liquids, and/or mixtures thereof may be used to force the miscible enhanced oil recovery formulation across the formation.
  • the miscible enhanced oil recovery formulation may be heated prior to being injected into the formation to lower the viscosity of fluids in the formation, for example heavy oils, paraffins, asphaltenes, etc.
  • the miscible enhanced oil recovery formulation may be heated and/or boiled while within the formation, with the use of a heated fluid or a heater, to lower the viscosity of fluids in the formation.
  • heated water and/or steam may be used to heat and/or vaporize the miscible enhanced oil recovery formulation in the formation.
  • the miscible enhanced oil recovery formulation may be heated and/or boiled while within the formation, with the use of a heater.
  • a heater is disclosed in copending United States Patent Application having serial number 10/693,816, filed on October 24, 2003, and having attorney docket number TH2557. United States Patent Application having serial number 10/693,816 is herein incorporated by reference in its entirety.
  • System 300 includes underground formation 302, underground formation 304, underground formation 306, and underground formation 308.
  • Facility 310 is provided at the surface.
  • Well 312 traverses formations 302 and 304, and has openings in formation 306. Portions 314 of formation 306 may be optionally fractured and/or perforated.
  • oil and gas from formation 306 is produced into portions 314, into well 312, and travels up to facility 310.
  • Facility 310 then separates gas, which is sent to gas processing 316, and liquid, which is sent to liquid storage 318.
  • Facility 310 also includes miscible enhanced oil recovery formulation storage 330.
  • miscible enhanced oil recovery formulation may be pumped down well 312 that is shown by the down arrow and pumped into formation 306.
  • Miscible enhanced oil recovery formulation may be left to soak in formation for a period of time from about 1 hour to about 15 days, for example from about 5 to about 50 hours.
  • Containment well 350 with injection mechanism 352 and containment well 360 with injection mechanism 362 may be provided to contain miscible enhanced oil recovery formulation between containment well 350 and containment well 360.
  • Injection mechanisms 352 and 362 may be used to inject a containment agent, for example a refrigerant to create a freeze wall, cement, liquid sulfur, or a liquid or gas such as water, peroxide, a peroxide solution, carbon dioxide, natural gas, other Ci - Ci5 hydrocarbons, nitrogen, or air.
  • a containment agent for example a refrigerant to create a freeze wall, cement, liquid sulfur, or a liquid or gas such as water, peroxide, a peroxide solution, carbon dioxide, natural gas, other Ci - Ci5 hydrocarbons, nitrogen, or air.
  • miscible enhanced oil recovery formulation and oil and/or gas is then produced back up well 312 to facility 310.
  • Facility 310 is adapted to separate and/or recycle miscible enhanced oil recovery formulation, for example by boiling the formulation, condensing it or filtering or reacting it, then re-injecting the formulation into well 312, for example by repeating the soaking cycle shown in Figures 3a and 3b from about 2 to about 5 times.
  • miscible enhanced oil recovery formulation may be pumped into formation 306 below the fracture pressure of the formation, for example from about 40% to about 90% of the fracture pressure.
  • 306 may be representative of a well in well group 202, and well 312 as shown in Figure 3b producing from formation 306 may be representative of a well in well group 204.
  • well 312 as shown in Figure 3a injecting into formation 306 may be representative of a well in well group 204, and well 312 as shown in
  • Figure 3b producing from formation 306 may be representative of a well in well group 202.
  • System 400 includes underground formation 402, formation 404, formation 406, and formation 408.
  • Production facility 410 is provided at the surface.
  • Well 412 traverses formation 402 and 404 has openings at formation 406. Portions of formation 414 may be optionally fractured and/or perforated.
  • Gas and liquid may be separated, and gas may be sent to gas storage 416, and liquid may be sent to liquid storage 418.
  • Production facility 410 is able to produce and/or store miscible enhanced oil recovery formulation, which may be produced and stored in production / storage 430.
  • Hydrogen sulfide and/or other sulfur containing compounds from well 412 may be sent to miscible enhanced oil recovery formulation production / storage 430.
  • Miscible enhanced oil recovery formulation is pumped down well 432, to portions 434 of formation 406.
  • Miscible enhanced oil recovery formulation traverses formation 406 to aid in the production of oil and gas, and then the miscible enhanced oil recovery formulation, oil and/or gas may all be produced to well 412, to production facility 410.
  • Miscible enhanced oil recovery formulation may then be recycled, for example by boiling the formulation, condensing it or filtering or reacting it, then re-injecting the formulation into well 432.
  • Containment well 450 with injection mechanism 452 and containment well 460 with injection mechanism 462 may be provided to contain miscible enhanced oil recovery formulation between containment well 450 and containment well 460.
  • Injection mechanisms 452 and 462 may be used to inject a containment agent, for example a refrigerant to create a freeze wall, or a liquid or gas such as water, peroxide, a peroxide solution, carbon dioxide, natural gas, other Ci - Ci 5 hydrocarbons, nitrogen, or air, or mixtures thereof.
  • a quantity of miscible enhanced oil recovery formulation or miscible enhanced oil recovery formulation mixed with other components may be injected into well 432, followed by another component to force miscible enhanced oil recovery formulation or miscible enhanced oil recovery formulation mixed with other components across formation 406, for example air; water in gas or liquid form; water mixed with one or more salts, polymers, and/or surfactants; carbon dioxide; other gases; other liquids; and/or mixtures thereof.
  • well 412 which is producing oil and/or gas is representative of a well in well group 202
  • well 432 which is being used to inject miscible enhanced oil recovery formulation is representative of a well in well group 204.
  • well 412 which is producing oil and/or gas is representative of a well in well group 204
  • well 432 which is being used to inject miscible enhanced oil recovery formulation is representative of a well in well group 202.
  • Array 500 includes well group 502 (denoted by horizontal lines) and well group 504 (denoted by diagonal lines).
  • Array 500 defines a production area, enclosed by the rectangle.
  • Array 500 defines an interior of the system. Exterior to array 500 are located internal containment wells 550, and external containment wells 552. Other arrays of containment wells may also be provided (not shown).
  • a containment agent may be injected into internal containment wells 550 and external containment wells 552.
  • a containment agent may be injected into external containment wells 552, and the containment agent, oil and/or gas, and/or an enhanced oil recovery agent may be produced from internal containment wells 550.
  • Each well in well group 502 has horizontal distance 530 from the adjacent well in well group 502.
  • Each well in well group 502 has vertical distance 532 from the adjacent well in well group 502.
  • Each well in well group 504 has horizontal distance 536 from the adjacent well in well group 504.
  • Each well in well group 504 has vertical distance 538 from the adjacent well in well group 504.
  • Each well in well group 502 is distance 534 from the adjacent wells in well group 504.
  • Each well in well group 504 is distance 534 from the adjacent wells in well group 502.
  • each well in well group 502 is surrounded by four wells in well group 504.
  • each well in well group 504 is surrounded by four wells in well group 502.
  • oil and/or gas produced may be transported to a refinery and/or a treatment facility.
  • the oil and/or gas may be processed to produce commercial products such as transportation fuels such as gasoline and diesel, heating fuel, lubricants, chemicals, and/or polymers.
  • Processing may include distilling and/or fractionally distilling the oil and/or gas to produce one or more distillate fractions.
  • the oil and/or gas, and/or the one or more distillate fractions may be subjected to a process of one or more of the following: catalytic cracking, hydrocracking, hydrotreating, coking, thermal cracking, distilling, reforming, polymerization, isomehzation, alkylation, blending, and dewaxing.
  • a system for producing oil and/or gas from an underground formation comprising a first well in the formation; a mechanism to inject a miscible enhanced oil recovery formulation into the first well; a second well in the formation; a mechanism to produce oil and/or gas from the second well; wherein the first well and the second well comprise an interior of the system; a plurality of containment wells exterior to the first well and the second well; and a mechanism to inject a containment agent into the containment wells.
  • the first well is at a distance of 10 meters to 1 kilometer from the second well.
  • the underground formation is beneath a body of water.
  • the system also includes a mechanism for injecting an immiscible enhanced oil recovery formulation into the formation, after the miscible enhanced oil recovery formulation has been released into the formation.
  • the system also includes a miscible enhanced oil recovery formulation selected from the group consisting of a carbon disulfide formulation, hydrogen sulfide, carbon dioxide, octane, pentane, LPG, C2-C6 aliphatic hydrocarbons, nitrogen, diesel, mineral spirits, naptha solvent, asphalt solvent, kerosene, acetone, xylene, trichloroethane, and mixtures thereof.
  • the system also includes an immiscible enhanced oil recovery formulation selected from the group consisting of water in gas or liquid form, air, and mixtures thereof.
  • the system also includes a first array of wells comprising from 5 to 500 wells, and a second array of wells comprising from 5 to 500 wells.
  • the system also includes a miscible enhanced oil recovery formulation comprising a carbon disulfide formulation.
  • the system also includes a mechanism for producing a carbon disulfide formulation.
  • the underground formation comprises an oil having a viscosity from 100 to 5,000,000 centipoise.
  • the first well comprises a miscible enhanced oil recovery formulation profile in the formation
  • the second well comprises an oil recovery profile in the formation, the system further comprising an overlap between the miscible enhanced oil recovery formulation profile and the oil recovery profile.
  • the containment agent is selected from the group consisting of a refrigerant, water, brine, peroxide, peroxide solutions, nitrogen, air, carbon dioxide, natural gas, other C1 - C15 hydrocarbons, and mixtures thereof.
  • the containment agent comprises water.
  • the second well produces the containment agent.
  • the second well produces the containment agent, the miscible enhanced oil recovery formulation, and oil and/or gas.
  • a method for producing oil and/or gas comprising injecting a carbon disulfide formulation into a formation from a first well; producing oil and/or gas from the formation from a second well; and injecting a containment agent into the formation from a plurality of containment wells.
  • the method also includes recovering carbon disulfide formulation from the oil and/or gas, if present, and then injecting at least a portion of the recovered carbon disulfide formulation into the formation.
  • injecting the carbon disulfide formulation comprises injecting at least a portion of the carbon disulfide formulation into the formation in a mixture with one or more of hydrocarbons; sulfur compounds other than carbon disulfide; carbon dioxide; carbon monoxide; or mixtures thereof.
  • the method also includes heating the carbon disulfide formulation prior to injecting the carbon disulfide formulation into the formation, or while within the formation.
  • the carbon disulfide formulation is injected at a pressure from 0 to 37,000 kilopascals above the initial reservoir pressure, measured prior to when carbon disulfide injection begins.
  • the underground formation comprises a permeability from 0.0001 to 15 Darcies, for example a permeability from 0.001 to 1 Darcy.
  • any oil, as present in the underground formation prior to the injecting the carbon disulfide formulation has a sulfur content from 0.5% to 5%, for example from 1 % to 3%.
  • the method also includes converting at least a portion of the recovered oil and/or gas into a material selected from the group consisting of transportation fuels such as gasoline and diesel, heating fuel, lubricants, chemicals, and/or polymers.
  • a method for producing oil and/or gas comprising injecting a miscible enhanced oil recovery formulation into a formation from a first well; producing oil and/or gas from the formation from a second well; and injecting a containment agent into the formation from plurality of containment wells.
  • the method also includes injecting an immiscible enhanced oil recovery formulation after injecting the miscible enhanced oil recovery formulation, to push the miscible enhanced oil recovery formulation through the formation.
  • the miscible enhanced oil recovery formulation comprises a carbon disulfide formulation.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
PCT/US2009/050530 2008-07-14 2009-07-14 Systems and methods for producing oil and/or gas WO2010009118A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP09798649A EP2318651A1 (en) 2008-07-14 2009-07-14 Systems and methods for producing oil and/or gas
RU2011105154/03A RU2510454C2 (ru) 2008-07-14 2009-07-14 Система и способ добычи нефти и/или газа (варианты)
US13/054,416 US20110180254A1 (en) 2008-07-14 2009-07-14 Systems and methods for producing oil and/or gas
MX2011000563A MX2011000563A (es) 2008-07-14 2009-07-14 Sistemas y metodos para producir petroleo y/o gas.
CN2009801309912A CN102119258A (zh) 2008-07-14 2009-07-14 用于生产油和/或气的系统和方法
BRPI0916419A BRPI0916419A2 (pt) 2008-07-14 2009-07-14 sistema e método para produzir petróleo e/ou gás
CA2730284A CA2730284A1 (en) 2008-07-14 2009-07-14 Systems and methods for producing oil and/or gas
AU2009271072A AU2009271072B2 (en) 2008-07-14 2009-07-14 Systems and methods for producing oil and/or gas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US8040508P 2008-07-14 2008-07-14
US61/080,405 2008-07-14

Publications (1)

Publication Number Publication Date
WO2010009118A1 true WO2010009118A1 (en) 2010-01-21

Family

ID=41550689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2009/050530 WO2010009118A1 (en) 2008-07-14 2009-07-14 Systems and methods for producing oil and/or gas

Country Status (9)

Country Link
US (1) US20110180254A1 (ru)
EP (1) EP2318651A1 (ru)
CN (1) CN102119258A (ru)
AU (1) AU2009271072B2 (ru)
BR (1) BRPI0916419A2 (ru)
CA (1) CA2730284A1 (ru)
MX (1) MX2011000563A (ru)
RU (1) RU2510454C2 (ru)
WO (1) WO2010009118A1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120205127A1 (en) * 2011-02-11 2012-08-16 Simon Gittins Selective displacement of water in pressure communication with a hydrocarbon reservoir
US20120205096A1 (en) * 2011-02-11 2012-08-16 Cenovus Energy Inc. Method for displacement of water from a porous and permeable formation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106545321B (zh) * 2015-09-18 2019-06-07 中国石油化工股份有限公司 一种重力辅助驱油的方法及其应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7225866B2 (en) * 2001-04-24 2007-06-05 Shell Oil Company In situ thermal processing of an oil shale formation using a pattern of heat sources
US20080087425A1 (en) * 2006-08-10 2008-04-17 Chia-Fu Hsu Methods for producing oil and/or gas

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2798556A (en) * 1953-06-08 1957-07-09 Exxon Research Engineering Co Secondary recovery process
US2994372A (en) * 1957-12-18 1961-08-01 Jersey Prod Res Co Method of increasing recovery from oil reservoirs
US3101782A (en) * 1960-06-13 1963-08-27 Pure Oil Co Reverse-flow solvent flooding method
US3402768A (en) * 1967-03-29 1968-09-24 Continental Oil Co Oil recovery method using a nine-spot well pattern
US3512585A (en) * 1968-08-08 1970-05-19 Texaco Inc Method of recovering hydrocarbons by in situ vaporization of connate water
US3554282A (en) * 1969-04-01 1971-01-12 Texaco Inc Method for improving the sweep of underground reservoirs by exploiting individual reservoir segments
US3729053A (en) * 1972-01-05 1973-04-24 Amoco Prod Co Method for increasing permeability of oil-bearing formations
US3838737A (en) * 1973-05-04 1974-10-01 Texaco Inc Petroleum production technique
US3840073A (en) * 1973-05-04 1974-10-08 Texaco Inc Miscible displacement of petroleum
US3837399A (en) * 1973-05-04 1974-09-24 Texaco Inc Combined multiple solvent miscible flooding water injection technique for use in petroleum formations
US3823777A (en) * 1973-05-04 1974-07-16 Texaco Inc Multiple solvent miscible flooding technique for use in petroleum formation over-laying and in contact with water saturated porous formations
US3838738A (en) * 1973-05-04 1974-10-01 Texaco Inc Method for recovering petroleum from viscous petroleum containing formations including tar sands
US4008764A (en) * 1974-03-07 1977-02-22 Texaco Inc. Carrier gas vaporized solvent oil recovery method
US3983939A (en) * 1975-10-31 1976-10-05 Texaco Inc. Method for recovering viscous petroleum
US4182416A (en) * 1978-03-27 1980-01-08 Phillips Petroleum Company Induced oil recovery process
US4465136A (en) * 1982-07-28 1984-08-14 Joseph D. Windisch Process for enhanced oil recovery from subterranean formations
US4744417A (en) * 1987-05-21 1988-05-17 Mobil Oil Corporation Method for effectively handling CO2 -hydrocarbon gas mixture in a miscible CO2 flood for oil recovery
US5320170A (en) * 1992-07-30 1994-06-14 Texaco Inc. Oil recovery process employing horizontal and vertical wells in a modified inverted 5-spot pattern
RU2070962C1 (ru) * 1992-08-21 1996-12-27 Научно-исследовательский и проектный институт по использованию геотермальных и гидроминеральных ресурсов Способ разработки геотермального месторождения
RU2092679C1 (ru) * 1992-10-12 1997-10-10 Государственная академия нефти и газа им.И.М.Губкина Способ разработки нефтяных месторождений
SG125065A1 (en) * 2001-10-31 2006-09-29 Seagate Technology Llc Method to determine encroachment at spin stand
WO2006115965A2 (en) * 2005-04-21 2006-11-02 Shell Internationale Research Maatschappij B.V. Systems and methods for producing oil and/or gas
MX2008013512A (es) * 2006-04-27 2009-03-06 Shell Int Research Sistemas y metodos para producir combustible y/o gas.
US8136590B2 (en) * 2006-05-22 2012-03-20 Shell Oil Company Systems and methods for producing oil and/or gas
CN101004132A (zh) * 2007-01-04 2007-07-25 中国石油大学(华东) 注空气辅助蒸汽吞吐稠油开采技术
CN201041023Y (zh) * 2007-05-29 2008-03-26 中国石油天然气股份有限公司 气液混注法降液面诱喷施工装置
RU2475632C2 (ru) * 2007-10-31 2013-02-20 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Система и способ добычи нефти и/или газа (варианты)
US8102613B2 (en) * 2009-09-25 2012-01-24 Hitachi Global Storage Technologies Netherlands B.V. System, method and apparatus for determining track pitch in a hard disk drive to satisfy the requirements of both off-track capacity and adjacent track erasure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7225866B2 (en) * 2001-04-24 2007-06-05 Shell Oil Company In situ thermal processing of an oil shale formation using a pattern of heat sources
US20080087425A1 (en) * 2006-08-10 2008-04-17 Chia-Fu Hsu Methods for producing oil and/or gas

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120205127A1 (en) * 2011-02-11 2012-08-16 Simon Gittins Selective displacement of water in pressure communication with a hydrocarbon reservoir
US20120205096A1 (en) * 2011-02-11 2012-08-16 Cenovus Energy Inc. Method for displacement of water from a porous and permeable formation
US8985231B2 (en) * 2011-02-11 2015-03-24 Cenovus Energy, Inc. Selective displacement of water in pressure communication with a hydrocarbon reservoir

Also Published As

Publication number Publication date
CA2730284A1 (en) 2010-01-21
RU2510454C2 (ru) 2014-03-27
MX2011000563A (es) 2011-03-30
AU2009271072B2 (en) 2012-10-11
US20110180254A1 (en) 2011-07-28
BRPI0916419A2 (pt) 2017-03-21
EP2318651A1 (en) 2011-05-11
RU2011105154A (ru) 2012-08-20
AU2009271072A1 (en) 2010-01-21
CN102119258A (zh) 2011-07-06

Similar Documents

Publication Publication Date Title
US8136590B2 (en) Systems and methods for producing oil and/or gas
CA2693942C (en) Methods for producing oil and/or gas
US8596371B2 (en) Methods for producing oil and/or gas
US20110108269A1 (en) Systems and methods for producing oil and/or gas
US7926561B2 (en) Systems and methods for producing oil and/or gas
US8869891B2 (en) Systems and methods for producing oil and/or gas
US20120067571A1 (en) Methods for producing oil and/or gas
AU2009271072B2 (en) Systems and methods for producing oil and/or gas

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980130991.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09798649

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2730284

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2009798649

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009798649

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2011/000563

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009271072

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2009271072

Country of ref document: AU

Date of ref document: 20090714

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011105154

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 13054416

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0916419

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110114