WO2010006534A1 - 一种实现分组微波数据流量整形的方法、装置和系统 - Google Patents

一种实现分组微波数据流量整形的方法、装置和系统 Download PDF

Info

Publication number
WO2010006534A1
WO2010006534A1 PCT/CN2009/072441 CN2009072441W WO2010006534A1 WO 2010006534 A1 WO2010006534 A1 WO 2010006534A1 CN 2009072441 W CN2009072441 W CN 2009072441W WO 2010006534 A1 WO2010006534 A1 WO 2010006534A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
traffic shaping
information
air interface
burst length
Prior art date
Application number
PCT/CN2009/072441
Other languages
English (en)
French (fr)
Inventor
蒲剑
宋晓斌
陈耀明
张贻华
王建军
孙正显
涂拥军
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2010006534A1 publication Critical patent/WO2010006534A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/22Traffic shaping

Definitions

  • the present invention relates to the field of packet microwave transmission, and in particular, to a method, device and system for implementing packet microwave data traffic shaping. Background technique
  • the packet wave supporting AM function can dynamically adjust the air interface transmission bandwidth.
  • the device can use the high modulation mode to provide large bandwidth transmission capability.
  • the device can use the low modulation mode to improve the anti-interference ability of the link and ensure the transmission quality of important user data, so that it can adapt to IP well.
  • the network application requirements of packet service bursts and dynamic traffic changes under the network, which not only ensure the stable transmission of real-time services such as VOIP (voice over IP) and video services, but also make full use of the air interface bandwidth to transmit ordinary Background class data services.
  • a new generation of packet microwave systems usually adopts a modular design.
  • an existing packet microwave system implementation uses a two-level data exchange structure, in which an interface unit is constructed by a central data exchange module and multiple service interface modules.
  • the connection completes the service forwarding scheduling function of the entire system; wherein the intermediate frequency modulation module and the data exchange module combine to form a microwave intermediate frequency interface unit, and the microwave intermediate frequency interface
  • the data exchange module in the unit is connected on the one hand to the central data exchange module and on the other hand to the intermediate frequency modulation module.
  • the central data exchange module receives the packet service sent from each interface unit, classifies the service according to the priority class, and puts it into the corresponding priority queue, and the output scheduler follows the priority scheduling policy, and the queue is from each
  • the packet service of the service interface unit is aggregated and output to an interface connected to the microwave IF interface unit, such as a GE (Gigabit Ethernet) interface.
  • the data exchange module in the microwave IF interface unit receives the packet service through the interface connected to the central data exchange module, such as the GE interface, classifies the traffic according to the priority of the service, and puts it into the corresponding priority queue, and the output scheduler performs the scheduling policy according to the priority.
  • the packet service in the queue is scheduled to be output, and the output packet service is traffic-shaped according to the current microwave air interface bandwidth. For example, when the data exchange module output traffic exceeds the allowable transmission rate of the air interface bandwidth, the data exchange module is based on the priority.
  • the scheduling policy discards the low-priority services so that the transmitted service traffic meets the service rate requirements of the current air interface bandwidth.
  • the packet service output after the traffic shaping is encapsulated in the intermediate frequency modulation module, multiplexed into frames, and then processed by the intermediate frequency interface to the microwave unit for transmission to the remote end.
  • the central data exchange module does not perform traffic shaping processing on the output packet service during the IF modulation module enabling the AM function to change the modulation mode.
  • a technical problem to be solved by embodiments of the present invention is to provide a method, apparatus, and system for implementing packet microwave data traffic shaping. It can improve the effect of traffic shaping processing.
  • an embodiment of the present invention provides a method for implementing packet microwave data traffic shaping, the method comprising:
  • the traffic shaping control information includes microwave air interface transmission bandwidth information and burst length information, and the burst length information defines a maximum data amount of the buffered packet service data;
  • the embodiment of the present invention further provides a data exchange unit that implements packet microwave data traffic shaping, including:
  • the first receiving unit is configured to receive traffic shaping control information, where the traffic shaping control information includes microwave air interface transmission bandwidth information and burst length information, and the commitment burst length defines a maximum data volume of the buffered packet service data. ;
  • the shaping unit is configured to perform output traffic shaping processing on the packet service data according to the traffic shaping control information.
  • the embodiment of the present invention further provides an intermediate frequency modulation unit for implementing packet microwave data traffic shaping, including:
  • a calculating unit configured to calculate the obtained burst length information according to the microwave air interface transmission bandwidth information and the pre-configured maximum transmission unit number
  • a first sending unit configured to send, to the data switching unit, traffic shaping control information including the microwave air interface transmission bandwidth and the length information of the burst length.
  • an embodiment of the present invention further provides a control unit, including:
  • a second receiving unit configured to receive microwave air interface transmission bandwidth information
  • a calculating unit configured to obtain, according to the microwave air interface transmission bandwidth information received by the second receiving unit and the pre-configured maximum transmission unit number, the burst length information
  • a second sending unit configured to send, to the data exchange unit, the traffic shaping information including the microwave air interface transmission bandwidth information received by the receiving unit and the committed burst length information calculated by the computing unit.
  • the embodiment of the present invention further provides a system for implementing packet microwave transmission control, including: an intermediate frequency modulation unit, configured to obtain the commitment burst length information according to a microwave air interface transmission bandwidth and a pre-configured maximum transmission unit number calculation. Transmitting the traffic shaping control information including the microwave air interface transmission bandwidth and the committed burst length information;
  • a data exchange unit configured to receive the traffic shaping control information sent by the intermediate frequency modulation unit, and perform output traffic shaping processing on the packet service data according to the traffic shaping control information.
  • the embodiment of the present invention further provides another system for implementing packet microwave transmission control, including:
  • An intermediate frequency modulation unit configured to obtain a microwave air interface transmission bandwidth information
  • a control unit configured to receive the microwave air interface transmission bandwidth information sent by the intermediate frequency modulation unit, calculate, according to the received microwave air interface transmission bandwidth information and a pre-configured maximum transmission unit number, obtain a burst length information, and Transmitting, by the received microwave air interface transmission bandwidth information, the traffic shaping control information of the burst length information;
  • a data exchange unit configured to perform output traffic shaping processing on the packet service data according to the traffic shaping control information sent by the control unit.
  • the bandwidth information is transmitted through the microwave air interface and the data traffic shaping processing of the committed burst length information packet service can improve the effect of the traffic shaping processing.
  • FIG. 1 is a schematic structural diagram of a system for implementing packet microwave transmission control according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic structural diagram of a system for implementing packet microwave transmission control according to Embodiment 2 of the present invention
  • FIG. 3 is a schematic implementation of Embodiment 3 of the present invention
  • FIG. 4 is a schematic flow chart of a method for implementing packet microwave data traffic shaping according to Embodiment 4 of the present invention.
  • FIG. 5 is a schematic flow chart of a method for implementing packet microwave data traffic shaping according to Embodiment 5 of the present invention. detailed description
  • a system for implementing packet microwave transmission control according to Embodiment 1 of the present invention includes a data exchange unit 1 and an intermediate frequency modulation unit 2.
  • the intermediate frequency modulation unit 2 is configured to obtain, according to the microwave air interface transmission bandwidth and the pre-configured maximum transmission unit number, the obtained burst length information, and the packet
  • the traffic shaping control information including the microwave air interface transmission bandwidth and the commitment burst length information is transmitted to the data exchange unit 1.
  • the data exchange unit 1 is configured to receive traffic shaping control information sent by the intermediate frequency modulation unit 2, and perform output traffic shaping processing on the packet service data according to the traffic shaping control information.
  • the data exchange unit 1 includes a first receiving unit 11 for receiving traffic shaping control information, where the traffic shaping control information includes microwave air interface transmission bandwidth information and burst length information, and the commitment burst The length defines a maximum amount of data of the buffered packet service data.
  • the shaping unit 12 is configured to perform output traffic shaping processing on the packet service data according to the traffic shaping control information.
  • the IF modulation unit 2 specifically includes a calculation unit 21, configured to obtain the burst length information according to the microwave air interface transmission bandwidth and the pre-configured maximum transmission unit number.
  • the bandwidth of the microwave interface is obtained by the bandwidth acquisition unit of the intermediate frequency modulation unit 2, and the acquisition unit is a prior art content, and details are not described herein.
  • the first sending unit 22 is configured to send traffic shaping control information including the microwave air interface transmission bandwidth and the committed burst length information to the data exchange unit 1.
  • the buffer unit 23 is configured to buffer the packet service data after the traffic shaping unit 1 performs traffic shaping processing.
  • the first determining processing unit 24 is configured to determine whether the amount of packet service data buffered by the buffer unit reaches a preset upper limit value, and if the determination is yes, send a pause to the data exchange unit 1 to send the buffer to the cache unit to be cached. Information that groups business data.
  • the second determining processing unit 25 is configured to determine whether the amount of packet service data buffered by the buffer unit reaches a preset lower limit value, and when the determination is yes, notify the data exchange unit 1 to send the packet service data to be buffered to the buffer unit. .
  • the intermediate frequency modulation unit 2 dynamically adjusts the microwave air interface transmission bandwidth by using an adaptive modulation technology, and the calculation unit 21 transmits the bandwidth according to the microwave air interface and the pre-configured maximum transmission unit number (MTU, Maximum).
  • MTU maximum transmission unit number
  • the transport unit maximum transfer unit calculates the obtained burst length information.
  • the method for calculating the burst length information is specifically: first calculating the number of bytes of the transmitted data corresponding to the transmission time equal to 1 ms under the current air interface transmission bandwidth, and using the number of bytes as the calculated commitment burst
  • the length value is the committed burst length value as the committed burst length information.
  • the default MTU parameter value of the IF modulation module is configured to be 1522 bytes.
  • the first sending unit 22 After obtaining the committed burst length information according to the received microwave air interface transmission bandwidth information and the pre-configured maximum transmission unit number, the first sending unit 22 includes the microwave air interface transmission bandwidth and the commitment burst length.
  • the traffic shaping control information of the information is sent to the data exchange unit 1.
  • the traffic shaping control information may be sent to the data switching unit 1 in the form of a traffic shaping control frame.
  • the first receiving unit 11 of the data exchange unit 1 receives the traffic shaping control information including the microwave air interface transmission bandwidth information and the burst length information sent by the intermediate frequency modulation unit 2, wherein the burst length defines the buffered packet service.
  • the shaping unit 12 performs output traffic shaping processing on the packet service data according to the traffic shaping control information, and specifically, the shaping unit 12 performs output traffic shaping processing on the packet service data according to the traffic shaping control information, specifically Adjusting an output rate of the data switching unit 1 according to the microwave air interface transmission bandwidth information in the traffic shaping control information, and determining, according to the committed burst length information in the traffic shaping control information, a maximum data amount of the buffered packet service data;
  • the air interface bandwidth is small, it is necessary to set the burst length value to be small, to avoid excessive long-frame packet occupying the transmission bandwidth, so that the CES (circuit emulation service) service cannot be transmitted in time to generate additional Delay jitter, resulting in End-to-end transmission performance of CES services is degrade
  • the buffer unit 23 in the intermediate frequency modulation unit 2 buffers the packet service data processed by the data switching unit 1 after the traffic shaping unit 1 performs the packet service data buffer, and the first determination processing unit 24 determines the buffer unit. Whether the amount of the buffered packet service data reaches a preset upper limit value, and when it is judged as YES, sends a pause to the data exchange unit 1 to send the packet to be cached to the buffer unit. After receiving the information of the packet service data to be buffered to the buffer unit, the data exchange unit 1 stops transmitting the packet service data after the traffic shaping process to the intermediate frequency modulation unit 2, and the buffer unit The packet service data in 23 will continue to be modulated by the intermediate frequency modulation unit 2 into an intermediate frequency signal output.
  • the second determination processing unit 25 determines whether the packet service data amount buffered by the buffer unit 23 reaches a preset lower limit value, and when the determination is yes, notifies the data exchange unit 1 to the The buffer unit 23 sends the packet service data to be buffered, and after receiving the notification, the data exchange unit 1 continues to send the packet service data after the traffic shaping processing to the intermediate frequency modulation unit 2.
  • the upper limit value of the buffer unit 23 or the lower limit value of the buffer unit 23 is set according to the current microwave air interface transmission bandwidth.
  • the IF modulation unit may be further configured to perform packet processing on the packet service data output after the traffic shaping, multiplex into a frame, and then output the IF interface by the intermediate frequency interface.
  • a system for implementing packet microwave transmission control according to Embodiment 2 of the present invention includes a data exchange unit 1, an intermediate frequency modulation unit 4, and a control unit 3.
  • the intermediate frequency modulation unit 4 is configured to obtain the bandwidth information of the microwave air interface.
  • the control unit 3 is configured to receive the microwave air interface transmission bandwidth information sent by the intermediate frequency modulation unit, and obtain the burst length information according to the received microwave air interface transmission bandwidth information and a pre-configured maximum transmission unit number. And transmitting traffic shaping control information including the received microwave air interface transmission bandwidth information and the calculated commitment burst length information.
  • the data exchange unit 1 is configured to receive traffic shaping control information sent by the intermediate frequency modulation unit, and perform output traffic shaping processing on the packet service data according to the traffic shaping control information.
  • the intermediate frequency modulation unit 4 is further configured to receive the packet service data after the traffic shaping process sent by the data switching unit 1.
  • the intermediate frequency modulation unit 4 does not use the flow adjustment information frame to notify the data exchange unit 1 to modify the output flow parameter; instead, through the internal control bus of the system, the intermediate frequency modulation unit will The bandwidth adjustment information (air interface transmission bandwidth) notifies the control unit, and the control unit calculates the relevant commitment burst length value according to the calculation method described in the first embodiment, and writes it into the output port configuration parameter of the data exchange unit.
  • the bandwidth adjustment information air interface transmission bandwidth
  • the data exchange unit 1 includes a first receiving unit 11 for receiving traffic shaping control information, where the traffic shaping control information includes microwave air interface transmission bandwidth information and burst length information, and the commitment burst The length defines the maximum amount of data for the buffered packet service data.
  • Shaping unit 12 configured to perform output traffic shaping processing on the packet service data according to the traffic shaping control information.
  • the control unit 3 specifically includes a second receiving unit 31, configured to receive microwave air interface transmission bandwidth information sent by the intermediate frequency modulation unit.
  • the calculating unit 32 is configured to obtain the commitment burst length information according to the microwave air interface transmission bandwidth information received by the second receiving unit 31 and the pre-configured maximum transmission unit number.
  • the second sending unit 33 is configured to send, to the data exchange unit, traffic shaping control information including the microwave air interface transmission bandwidth information received by the receiving unit and the committed burst length information calculated by the computing unit.
  • the intermediate frequency modulation unit 4 obtains the microwave air interface transmission bandwidth information and sends the information to the control unit 3 through the control bus, and the second receiving unit 31 of the control unit 3 passes The control bus receives the microwave air interface transmission bandwidth information sent by the intermediate frequency modulation unit 4, and the calculation unit 32 calculates and obtains the burst according to the microwave air interface transmission bandwidth information received by the second receiving unit 31 and the pre-configured maximum transmission unit number. Length information.
  • the calculation rule of the commitment burst length information is specifically: first, the number of bytes of the transmission data corresponding to the transmission time equal to 1 ms under the current air interface transmission bandwidth, and the number of bytes is used as the calculated commitment burst length value.
  • the committed burst length value is used as the committed burst length information.
  • the default MTU parameter value of the IF modulation module is configured to be 1522 bytes.
  • the calculated value of the committed burst length is still The default is 1522 bytes for calculation.
  • the air interface transmission bandwidth is 10 Mb/s
  • take n 6
  • MTU 1522 bytes
  • obtain a promise burst according to the committed burst length value (bytes) (air interface transmission bandwidth Mb/sx lms ) ⁇ 8
  • the second sending unit 33 After obtaining the commitment burst length information according to the received microwave air interface transmission bandwidth information and the pre-configured maximum transmission unit number, the second sending unit 33 includes the microwave air interface transmission bandwidth and the commitment burst length.
  • the traffic shaping control information of the information is sent to the data exchange unit 1 through the control bus.
  • the first receiving unit 11 of the data exchange unit 1 receives the traffic shaping control information including the microwave air interface transmission bandwidth information and the burst length information sent by the control unit 3, wherein the commitment burst length defines the maximum of the buffered packet service data.
  • the shaping unit 12 performs an output traffic shaping process on the packet service data according to the traffic shaping control information, specifically, adjusting the output rate of the data switching unit 1 according to the microwave air interface transmission bandwidth information in the traffic shaping control information, according to the
  • the burst length information in the traffic shaping control information limits the maximum length of the transmitted packet service data to limit the number of consecutively output long-frame packets.
  • the air interface bandwidth is small, the commitment burst length needs to be set. The value is small, and the excessive long-frame packet occupies the transmission bandwidth, so that the CES (circuit emulation service) service cannot be transmitted in time to generate additional delay jitter, which leads to poor end-to-end transmission performance of the CES service.
  • the burst length value can be appropriately set, and the data type long frame service can be transmitted as much as possible while ensuring the CES service transmission performance.
  • the IF modulation unit may be further configured to perform packet processing on the packet service data output after the traffic shaping, multiplex into a frame, and then output the IF interface by the intermediate frequency interface.
  • a method for grouping microwave rate control according to Embodiment 3 of the present invention includes the following steps:
  • Step S301 Receive traffic shaping control information.
  • the traffic shaping control information includes microwave air interface transmission bandwidth information and committed burst length information, where the burst length defines a maximum data amount of the buffered packet service data; in specific implementation, the traffic shaping control information is modulated by an intermediate frequency
  • the unit transmits or is sent by the control unit via the control bus.
  • Step S302 Perform output traffic shaping processing on the packet service data according to the traffic shaping control information.
  • the data exchange unit output rate is adjusted according to the microwave air interface transmission bandwidth information in the traffic shaping control information, and the maximum length of the transmitted packet service data is restricted according to the burst length information in the traffic shaping control information.
  • the service burst length parameter value needs to be set small to avoid excessive long-frame packet occupying the transmission bandwidth, so that CES (Circuit emulation service, circuit simulation) Service) The service cannot be transmitted in time to generate additional delay jitter, which leads to poor end-to-end transmission performance of the CES service.
  • the service burst length parameter value may be set to a larger value, and the data type long frame service may be transmitted as much as possible while ensuring the CES service transmission performance.
  • the burst length information may be calculated by the intermediate frequency modulation unit, or may be calculated by the control unit, and the two cases are described in detail below.
  • a method for grouping microwave rate control according to Embodiment 4 of the present invention includes the following steps:
  • Step S401 Receive microwave air interface transmission bandwidth information sent by the intermediate frequency modulation unit. Specifically, the control unit receives the microwave air interface transmission bandwidth information sent by the intermediate frequency modulation unit.
  • Step S402 Calculate the burst length information according to the microwave air interface transmission bandwidth information and the pre-configured maximum transmission unit number. Specifically, the control unit calculates the burst length information according to the microwave air interface transmission bandwidth information and the pre-configured maximum transmission unit number, and the calculation rule of the burst length information is elaborated in the implementation one, This is not repeated.
  • Step S403 Send the traffic shaping control information including the microwave air interface transmission bandwidth information and the burst length information to the data exchange unit.
  • Embodiment 5 Referring to FIG. 5, a method for implementing packet microwave rate control according to Embodiment 5 of the present invention includes the following steps:
  • Step S501 Calculate the commitment burst length information according to the microwave air interface transmission bandwidth and the pre-configured maximum transmission unit number.
  • the intermediate frequency modulation unit calculates the commitment burst length information according to the current microwave air interface transmission bandwidth and the pre-configured maximum transmission unit number, and the calculation rule of the burst length information is elaborated in Embodiment 1. It will not be repeated here.
  • Step S502 Send the traffic shaping control information including the microwave air interface transmission bandwidth and the burst length information to the data exchange unit.
  • Step S503 receiving traffic shaping control information.
  • the data switching unit receives the traffic shaping control information sent by the intermediate frequency modulation unit, where the traffic shaping control information includes microwave air interface transmission bandwidth information and committed burst length information, where the committed burst length defines a maximum data of the buffered packet service data. the amount.
  • Step S504 Perform output traffic shaping processing on the packet service data according to the traffic shaping control information.
  • Step S505 the packet service data after the output traffic shaping process is sent to the intermediate frequency modulation unit.
  • Step S506 the intermediate frequency modulation unit receives the packet traffic data after the traffic shaping process sent by the data switching unit.
  • Step S507 buffering the received packet traffic data after the traffic shaping process.
  • Step S508 determining whether the buffered packet service data amount reaches a preset upper limit value. If the determination is yes, step S509 is performed; if the determination is no, step S506 is performed.
  • Step S509 Send information to the data switching unit that pauses receiving the packet service data to be buffered.
  • step S510 it is determined whether the buffered packet service data amount reaches a preset lower limit value. If the determination is yes, step S511 is performed; if the determination is no, step S506 is performed.
  • Step S511 Send a notification to the data exchange unit to receive the packet service data to be buffered.
  • step S510 is performed only after the determination in step S508 is YES. There is no necessary sequence between step S508 and step S509.
  • Step S509 may be performed first, or step S508 may be performed first. Specifically, it may be determined whether the upper limit value of the data amount is reached, and then it is determined whether the lower limit value of the data amount is reached. It is also possible to first determine whether the lower limit value of the data amount is reached, and then determine whether the upper limit value of the data amount is reached.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).
  • the traffic adjustment is realized by using the primary data exchange unit architecture, the processing delay of the packet service in the device and the functional complexity of the system are reduced, and the equipment cost is reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

一种实现分组微波数据流量整形的方法、 装置和系统
本申请要求于 2008 年 7 月 16 日提交中国专利局、 申请号为 200810029509.3、 发明名称为"一种实现分组微波数据流量整形的方法、 装置 和系统"的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及分组微波传输领域, 尤其涉及一种实现分组微波数据流量整形 的方法、 装置和系统。 背景技术
随着移动 3G、 NGN网络技术的演进以及业务模型向语音、 视频、 数据的 多媒体综合应用转型的发展, 网络向全 IP网演进发展, IP化分组业务的一个应 用特征就是业务突发、 流量不固定, 这样, 继续使用传统的基于固定传送带宽 的 PDH/SDH ( Plesiochronous Digital Hierarchy/Synchronous Digital Hierarchy, 准同步 /同步数字序列)微波已不能很好地满足网络 IP化应用的需求, 因此业 界提出了釆用分组传送技术的点到点固定微波系统, 通常称为分组微波。
分组微波除了使用 CAR ( Committed Access Rate , 承诺接入速率)、 CoS ( Class of Service, 业务分类)、 按优先级队列调度等分组处理技术, 使用端到 端连接管理如 MPLS、 PWE3等网络技术外, 还要求具备 AM ( Adaptive
Modulation, 自适应调制)技术, 支持 AM功能的分组 波可动态地调整空口 传送带宽, 当空口链路质量较好时(比如天晴的时候), 设备可以釆用高调制 模式提供大带宽传送能力; 当空口链路质量恶化时(比如大雨, 大雾的时候), 设备可以釆用低调制模式,提高链路的抗干扰能力,保证重要用户数据的传输 质量, 由此可以艮好地适应 IP化网络下分组业务突发、 流量动态变化的组网应 用需求, 既保障了实时性业务如 VOIP ( Voice Over IP , IP语音电话)、 Video业 务的稳定传送, 也可以充分利用空口带宽传送普通的背景类数据业务。
新一代的分组微波系统通常釆用了模块化设计方式, 比如, 现有的一个分 组微波系统实现方案使用了两级数据交换结构,其中的中央数据交换模块与多 个业务接口模块构建的接口单元连接, 完成整个系统的业务转发调度功能; 其 中的中频调制模块与数据交换模块结合构成微波中频接口单元,微波中频接口 单元中的数据交换模块一方面与中央数据交换模块连接,另一方面与中频调制 模块连接。
中央数据交换模块接收从各个接口单元发送的分组业务, 对业务按照优先 级类别进行分类处理后放入到相对应的优先级队列中,由输出调度器按照优先 级调度策略,将队列中来自各个业务接口单元的分组业务汇聚后输出到与微波 中频接口单元连接的接口中如 GE ( Gigabit Ethernet, 千兆以太网)接口。
微波中频接口单元中数据交换模块通过与中央数据交换模块连接的接口 如 GE接口接收分组业务, 根据业务的优先级进行分类后放入到对应的优先级 队列中,输出调度器按照优先级调度策略将队列中分组业务进行调度输出, 同 时还根据当前的微波空口带宽对输出的分组业务进行流量整形,比如当数据交 换模块输出流量超过空口带宽允许的发送速率时,所述数据交换模块根据优先 级调度策略对低优先级业务进行丟弃处理,以使传输的业务流量符合当前空口 带宽下业务速率的要求。流量整形后输出的分组业务在中频调制模块中经封装 处理、 复用成帧后再经中频调制处理由中频接口输出到微波单元发送到远端。 而中央数据交换模块在中频调制模块启用 AM功能改变调制模式期间不对输出 的分组业务进行流量整形处理。
但是本发明的发明人在实施本发明的技术方案时发现, 现有技术釆用分级 调度丟弃低优先级数据包的方式进行流量整形处理,这样进行的流量整形处理 效果较差。 发明内容
本发明实施例所要解决的技术问题在于,提供一种实现分组微波数据流量 整形的方法、 装置和系统。 可以提高流量整形处理的效果。
为了解决上述技术问题,本发明实施例提供了一种实现分组微波数据流量 整形的方法, 该方法包括:
接收流量整形控制信息,所述流量整形控制信息包括微波空口传送带宽信 息和承 i若突发长度信息,所述承 i若突发长度信息限定緩存的分组业务数据的最 大数据量;
根据所述流量整形控制信息对分组业务数据进行输出流量整形处理。 相应的,本发明实施例还提供了一种实现分组微波数据流量整形的数据交 换单元, 包括:
第一接收单元, 用于接收流量整形控制信息, 所述流量整形控制信息包括 微波空口传送带宽信息和承 i若突发长度信息,所述承诺突发长度限定緩存的分 组业务数据的最大数据量;
整形单元,用于根据所述流量整形控制信息对分组业务数据进行输出流量 整形处理。
相应的,本发明实施例还提供了一种实现分组微波数据流量整形的中频调 制单元, 包括:
计算单元,用于根据微波空口传送带宽信息和预先配置的最大传送单元数 计算获得承诺突发长度信息;
第一发送单元,用于向数据交换单元发送包括所述微波空口传送带宽和所 述承 i若突发长度信息的流量整形控制信息。
相应的, 本发明实施例还提供了一种控制单元, 包括:
第二接收单元, 用于接收微波空口传送带宽信息;
计算单元,用于根据所述第二接收单元接收的微波空口传送带宽信息和预 先配置的最大传送单元数获得承 i若突发长度信息;
第二发送单元,用于将包括所述接收单元接收的微波空口传送带宽信息和 所述计算单元计算的承诺突发长度信息的流量整形控制信息发送给数据交换 单元。
相应的,本发明实施例还提供了一种实现分组微波传输控制的系统,包括: 中频调制单元,用于根据微波空口传送带宽和预先配置的最大传送单元数 计算获得所述承诺突发长度信息,并将包括所述微波空口传送带宽和所述承诺 突发长度信息的流量整形控制信息发送出去;
数据交换单元, 用于接收所述中频调制单元发送的所述流量整形控制信 息, 并根据所述流量整形控制信息对分组业务数据进行输出流量整形处理。
相应的, 本发明实施例还提供了另一种实现分组微波传输控制的系统, 包 括:
中频调制单元, 用于获得微波空口传送带宽信息; 控制单元, 用于接收所述中频调制单元发送的所述微波空口传送带宽信 息,根据所述接收的微波空口传送带宽信息和预先配置的最大传送单元数计算 获得承 i若突发长度信息,并发送包括所述接收的微波空口传送带宽信息和所述 承 i若突发长度信息的流量整形控制信息;
数据交换单元,用于根据所述控制单元发送的所述流量整形控制信息对分 组业务数据进行输出流量整形处理。
本发明实施例通过微波空口传送带宽信息和承诺突发长度信息分组业务 数据流量整形处理, 可以提高流量整形处理的效果。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施 例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地, 下面描述 中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付 出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1是本发明实施例一的实现分组微波传输控制的系统的结构示意图; 图 2是本发明实施例二的实现分组微波传输控制的系统的结构示意图; 图 3 是本发明实施例三的实现分组微波数据流量整形的方法的流程示意 图;
图 4是本发明实施例四的实现分组微波数据流量整形的方法的流程示意 图;
图 5 是本发明实施例五的实现分组微波数据流量整形的方法的流程示意 图。 具体实施方式
为使本发明的目的、技术方案和优点更加清楚, 下面将结合附图对本发明 作进一步地详细描述。
实施例一、 参照图 1 , 本发明实施例一的实现分组微波传输控制的系统包 括数据交换单元 1和中频调制单元 2。 中频调制单元 2, 用于根据微波空口传 送带宽和预先配置的最大传送单元数计算获得所述承 i若突发长度信息,并将包 括所述微波空口传送带宽和所述承诺突发长度信息的流量整形控制信息发送 至数据交换单元 1。 所述数据交换单元 1 , 用于接收所述中频调制单元 2发送 的流量整形控制信息,并根据所述流量整形控制信息对分组业务数据进行输出 流量整形处理。
结合图 1 ,数据交换单元 1具体包括第一接收单元 11 , 用于接收流量整形 控制信息,所述流量整形控制信息包括微波空口传送带宽信息和承 i若突发长度 信息, 所述承诺突发长度限定緩存的分组业务数据的最大数据量; 整形单元 12, 用于根据所述流量整形控制信息对分组业务数据进行输出流量整形处理。
中频调制单元 2具体包括计算单元 21 , 用于根据微波空口传送带宽和预 先配置的最大传送单元数计算获得所述承 i若突发长度信息。其中, 所述微波空 口传送带宽由中频调制单元 2的带宽获取单元获得,该获取单元为现有技术内 容, 在此不赘述。 第一发送单元 22 , 用于将包括所述微波空口传送带宽和所 述承诺突发长度信息的流量整形控制信息发送给数据交换单元 1。 緩存单元 23 , 用于緩存经所述数据交换单元 1流量整形处理后的分组业务数据。 第一判 断处理单元 24, 用于判断所述緩冲单元緩存的分组业务数据量是否达到预设 上限值, 判断为是时, 向数据交换单元 1发送暂停向所述緩存单元发送待緩存 的分组业务数据的信息。 第二判断处理单元 25 , 用于判断所述緩存单元緩存 的分组业务数据量是否达到预设下限值, 判断为是时, 通知数据交换单元 1 向所述緩存单元发送待緩存的分组业务数据。
具体实施时, 当微波空口链路质量改变时, 中频调制单元 2使用自适应调 制技术动态地调整微波空口传送带宽, 计算单元 21根据微波空口传送带宽和 预先配置的最大传送单元数 ( MTU , Maximum transport unit , 最大传送单元) 计算获得所述承诺突发长度信息。
所述承 i若突发长度信息的计算方法具体为:先计算出在当前空口传送带宽 下, 传送时间等于 1ms 时对应的发送数据字节数, 以该字节数作为计算出的 承诺突发长度值, 以承诺突发长度值作为承诺突发长度信息。承诺突发长度值 (字节) = (空口传送带宽 Mb/sx lms ) ÷8, 然后根据以下规则决定最终的承 i若突发长度值, 当计算出的承 i若突发长度值≤ ( 1 xMTU + nx64 ) 时, 取承 i若 突发长度值 = l xMTU + n <64 (字节), 当计算出的 (l xMTU + nx64 ) <承 诺突发长度值 < 32000时,取当前计算出的承 i若突发长度值, 当计算出的承 i若 突发长度值≥ 32000时, 取承诺突发长度值 = 32000 (字节)。 其中, n为可以 设置的整数值, 一般建议 n = 6, 中频调制模块缺省 MTU参数值配置为 1522 字节, 当中频模块 MTU配置小于 1522字节时, 承 i若突发长度的计算值仍按 照缺省 1522 字节进行计算。 例如, 当空口传送带宽为 10Mb/s 时, 取 n=6,MTU=1522 字节, 根据承诺突发长度值 (字节) = (空口传送带宽 Mb/s lms ) ÷8得出承 i若突发长度为 1250, 小于 ( 1 x 1522 + 6x64 ) =1906, 则 最终承诺突发长度值为 1906。
当根据所述接收的微波空口传送带宽信息和预先配置的最大传送单元数 计算获得所述承诺突发长度信息后, 第一发送单元 22将包括所述微波空口传 送带宽和所述承诺突发长度信息的流量整形控制信息发送给数据交换单元 1 , 在具体实现过程中所述流量整形控制信息可以使用流量整形控制帧的形式发 送给数据交换单元 1。
数据交换单元 1的第一接收单元 11接收自中频调制单元 2发送的包括微 波空口传送带宽信息和承 i若突发长度信息的流量整形控制信息,其中承 i若突发 长度限定緩存的分组业务数据的最大数据量; 整形单元 12根据所述流量整形 控制信息对分组业务数据进行输出流量整形处理, 具体为整形单元 12根据所 述流量整形控制信息对分组业务数据进行输出流量整形处理,具体为根据所述 流量整形控制信息中的微波空口传送带宽信息调整数据交换单元 1 的输出速 率,根据所述流量整形控制信息中的承诺突发长度信息用于限定緩存的分组业 务数据的最大数据量; 在实施时, 当空口带宽小时, 需要设置承 i若突发长度值 小, 避免过多的长帧分组占据发送带宽, 使 CES ( Circuit emulation service, 电路仿真业务) 业务不能及时传送而产生额外的时延抖动, 从而导致 CES业 务端到端传送性能变差。当空口带宽大时,可适当设置承 i若突发长度值大一些, 在保证 CES业务传送性能时还可以尽可能多的传送数据类长帧业务。
此外, 中频调制单元 2中的緩存单元 23緩存经所述数据交换单元 1流量 整形处理后的分组业务数据,在进行分组业务数据緩存的同时, 第一判断处理 单元 24将判断所述緩冲单元 23緩存的分组业务数据量是否达到预设上限值, 判断为是时,向数据交换单元 1发送暂停向所述緩存单元发送待緩存的分组业 务数据的信息,数据交换单元 1接到所述暂停向所述緩存单元发送待緩存的分 组业务数据的信息后,停止向中频调制单元 2发送经流量整形处理后的分组业 务数据, 而緩存单元 23中的分组业务数据将继续通过中频调制单元 2调制成 中频信号输出。 随着緩存中的分组业务数据减少, 第二判断处理单元 25将判 断所述緩存单元 23緩存的分组业务数据量是否达到预设下限值,判断为是时, 通知数据交换单元 1向所述緩存单元 23发送待緩存的分组业务数据, 数据交 换单元 1接到所述通知后继续向中频调制单元 2发送经流量整形处理后的分组 业务数据。所述緩存单元 23上限值或緩存单元 23下限值根据当前微波空口传 送带宽进行设定。
具体实现中,所述中频调制单元还可用于对流量整形后输出的分组业务数 据进行经封装处理、 复用成帧后再经中频调制处理由中频接口输出。
实施例二、 参照图 2, 本发明实施例二实现分组微波传输控制的系统包括 数据交换单元 1、 中频调制单元 4及控制单元 3。 中频调制单元 4, 用于获得 微波空口传送带宽信息。 控制单元 3 , 用于接收所述中频调制单元发送的微波 空口传送带宽信息,根据所述接收的微波空口传送带宽信息和预先配置的最大 传送单元数计算获得所述承 i若突发长度信息,并发送包括所述接收的微波空口 传送带宽信息和所述计算的承诺突发长度信息的流量整形控制信息。数据交换 单元 1 , 用于接收所述中频调制单元发送的流量整形控制信息, 并根据所述流 量整形控制信息对分组业务数据进行输出流量整形处理。 另外, 中频调制单元 4, 还用于接收所述数据交换单元 1发送的进行流量整形处理后的分组业务数 据。
也就是说, 与本发明实施例一不同的是, 中频调制单元 4并不是使用流量 调整信息帧来通知数据交换单元 1修改输出流量参数;而是通过系统内部的控 制总线, 由中频调制单元将带宽调整信息(空口传送带宽)通知控制单元, 再 由控制单元根据实施例一中描述的计算方法计算得到相关的承诺突发长度值, 并写入到数据交换单元的输出端口配置参数中。
结合图 2,数据交换单元 1具体包括第一接收单元 11 , 用于接收流量整形 控制信息,所述流量整形控制信息包括微波空口传送带宽信息和承 i若突发长度 信息, 所述承诺突发长度限定緩存的分组业务数据的最大数据量。 整形单元 12, 用于根据所述流量整形控制信息对分组业务数据进行输出流量整形处理。 控制单元 3具体包括第二接收单元 31 , 用于接收中频调制单元发送的微 波空口传送带宽信息。 计算单元 32 , 用于根据所述第二接收单元 31接收的微 波空口传送带宽信息和预先配置的最大传送单元数计算获得所述承诺突发长 度信息。 第二发送单元 33 , 用于将包括所述接收单元接收的微波空口传送带 宽信息和所述计算单元计算的承诺突发长度信息的流量整形控制信息发送给 数据交换单元。
具体实施时, 当微波空口链路质量改变进行自适应调整时, 中频调制单元 4获得微波空口传送带宽信息并将所述通过控制总线发送给控制单元 3 , 控制 单元 3的第二接收单元 31通过控制总线接收中频调制单元 4发送的微波空口 传送带宽信息,计算单元 32根据所述第二接收单元 31接收的微波空口传送带 宽信息和预先配置的最大传送单元数计算获得所述承 i若突发长度信息。
所述承诺突发长度信息的计算规则具体为先计算出在当前空口传送带宽 下, 传送时间等于 1ms 时对应的发送数据字节数, 以该字节数作为计算出的 承诺突发长度值, 以承诺突发长度值作为承诺突发长度信息。承诺突发长度值 (字节) = (空口传送带宽 Mb/sx lms ) ÷8, 然后根据以下规则决定最终的承 诺突发长度值, 当计算出的承诺突发长度值≤ ( 1 xMTU + nx64 ), 取承诺突发 长度值 = l xMTU + n 64 (字节), 当计算出的 ( l xMTU + n 64 ) <承诺突 发长度值 < 32000, 取当前计算出的承诺突发长度值, 当计算出的承诺突发长 度值≥ 32000, 取承 i若突发长度值 = 32000 (字节)。 其中, n为可以设置的整 数值, 一般建议 n = 6, 中频调制模块缺省 MTU参数值配置为 1522字节, 当 中频模块 MTU配置小于 1522字节时,承诺突发长度的计算值仍按照缺省 1522 字节进行计算。例如, 当空口传送带宽为 10Mb/s时,取 n=6,MTU=1522字节, 根据承诺突发长度值(字节) = (空口传送带宽 Mb/sx lms ) ÷8得出承诺突发 长度为 1250, 小于( 1 x 1522 + 6x64 ) =1906, 则最终承 i若突发长度值为 1906。
当根据所述接收的微波空口传送带宽信息和预先配置的最大传送单元数 计算获得所述承诺突发长度信息后, 第二发送单元 33将包括所述微波空口传 送带宽和所述承诺突发长度信息的流量整形控制信息通过控制总线发送给数 据交换单元 1 , 数据交换单元 1的第一接收单元 11接收自控制单元 3发送的包括微波空 口传送带宽信息和承 i若突发长度信息的流量整形控制信息,其中承诺突发长度 限定緩存的分组业务数据的最大数据量; 整形单元 12根据所述流量整形控制 信息对分组业务数据进行输出流量整形处理,具体为根据所述流量整形控制信 息中的微波空口传送带宽信息调整数据交换单元 1的输出速率,根据所述流量 整形控制信息中的承 i若突发长度信息限制传输的分组业务数据的最大长度,以 限制连续输出的长帧分组的数量, 在实施时, 当空口带宽小时, 需要设置承诺 突发长度值小,避免过多的长帧分组占据发送带宽,使 CES ( Circuit emulation service, 电路仿真业务)业务不能及时传送而产生额外的时延抖动, 从而导致 CES业务端到端传送性能变差。 当空口带宽大时,可适当设置承 i若突发长度值 大一些,在保证 CES业务传送性能时还可以尽可能多的传送数据类长帧业务。
具体实现中,所述中频调制单元还可用于对流量整形后输出的分组业务数 据进行经封装处理、 复用成帧后再经中频调制处理由中频接口输出。
实施例三、 参照图 3 , 本发明实施例三的一种分组微波速率控制的方法, 包括以下步骤:
步骤 S301 , 接收流量整形控制信息。
所述流量整形控制信息包括微波空口传送带宽信息和承诺突发长度信息 , 所述承 i若突发长度限定緩存的分组业务数据的最大数据量;具体实施时所述流 量整形控制信息由中频调制单元发送或由控制单元通过控制总线发送。
步骤 S302 , 根据流量整形控制信息对分组业务数据进行输出流量整形处 理。
具体实施时根据所述流量整形控制信息中的微波空口传送带宽信息调整 数据交换单元输出速率,根据所述流量整形控制信息中的承 i若突发长度信息限 制传输的分组业务数据的最大长度, 以限制连续输出的长帧分组的数量,在实 施时, 当空口带宽小时, 需要设置业务突发长度参数值小, 避免过多的长帧分 组占据发送带宽, 使 CES ( Circuit emulation service, 电路仿真业务) 业务不 能及时传送而产生额外的时延抖动,从而导致 CES业务端到端传送性能变差。 当空口带宽大时, 可适当设置业务突发长度参数值大一些, 在保证 CES业务 传送性能时还可以尽可能多的传送数据类长帧业务。 其中, 所述承 i若突发长度信息可以由中频调制单元计算得到,也可以由控 制单元计算得到, 下面分别对这两种情况进行详细地描述。
实施例四、 参照图 4 , 本发明实施例四的一种分组微波速率控制的方法, 包括以下步骤:
步骤 S401 , 接收自中频调制单元发送的微波空口传送带宽信息。 具体实 现为控制单元接收自中频调制单元发送的微波空口传送带宽信息。
步骤 S402, 根据微波空口传送带宽信息和预先配置的最大传送单元数计 算获得所述承 i若突发长度信息。具体实现为控制单元根据微波空口传送带宽信 息和预先配置的最大传送单元数计算获得承 i若突发长度信息,所述承 i若突发长 度信息的计算规则在实施一中已详细阐述, 在此不再重复。
步骤 S403 , 将包括微波空口传送带宽信息和承 i若突发长度信息的流量整 形控制信息发送给数据交换单元。
实施例五、 参照图 5, 本发明实施例五实现分组微波速率控制的方法, 包 括以下步骤:
步骤 S501 , 根据微波空口传送带宽和预先配置的最大传送单元数计算获 得所述承诺突发长度信息。
具体为,中频调制单元根据当前微波空口传送带宽和预先配置的最大传送 单元数计算获得所述承诺突发长度信息,所述承 i若突发长度信息的计算规则在 实施一中已详细阐述, 在此不再重复。
步骤 S502, 将包括微波空口传送带宽和承 i若突发长度信息的流量整形控 制信息发送给数据交换单元。
步骤 S503 , 接收流量整形控制信息。
具体为数据交换单元接收中频调制单元发送的流量整形控制信息,所述流 量整形控制信息包括微波空口传送带宽信息和承诺突发长度信息,所述承诺突 发长度限定緩存的分组业务数据的最大数据量。
步骤 S504, 根据流量整形控制信息对分组业务数据进行输出流量整形处 理。
步骤 S505 , 将进行输出流量整形处理后的分组业务数据发送给中频调制 单元。 步骤 S506, 中频调制单元接收数据交换单元发送的经流量整形处理后的 分组业务数据。
步骤 S507, 将接收的经流量整形处理后的分组业务数据緩存。
步骤 S508 , 判断緩存的分组业务数据量是否达到预设上限值, 判断为是 时 , 执行步骤 S509; 如果判断为否, 执行步骤 S506。
步骤 S509, 向数据交换单元发送暂停接收待緩存的分组业务数据的信息。 步骤 S510, 判断緩存的分组业务数据量是否达到预设下限值, 判断为是 时, 执行步骤 S511 ; 如果判断为否, 执行步骤 S506。
步骤 S511 , 向数据交换单元发送接收待緩存的分组业务数据的通知。 具体实现中, 步骤 S510只在步骤 S508判断为是后才执行。 步骤 S508和 步骤 S509之间没有必然的先后顺序, 可先执行步骤 S509, 也可先执行步骤 S508。 具体为, 可先判断是否达到数据量的上限值, 再判断是否达到数据量的 下限值; 也可先判断是否达到数据量的下限值,再判断是否达到数据量的上限 值。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程 , 是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算 机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。 其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory, ROM )或随机存储记忆体 ( Random Access Memory, RAM )等。
釆用本发明,通过使用一级数据交换单元架构实现流量调节, 减少了分组 业务在设备内的处理时延以及系统的功能复杂度, 降低了设备成本。
以上所揭露的仅为本发明较佳实施例而已,当然不能以此来限定本发明之 权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

Claims

权 利 要 求
1、 一种实现分组微波数据流量整形的方法, 其特征在于, 包括: 接收流量整形控制信息,所述流量整形控制信息包括微波空口传送带宽信 息和承 i若突发长度信息,所述承 i若突发长度信息用于限定緩存的分组业务数据 的最大数据量;
根据所述流量整形控制信息对分组业务数据进行输出流量整形处理。
2、 如权利要求 1所述的方法, 其特征在于:
所述承诺突发长度信息根据所述微波空口传送带宽信息和预先配置的最 大传送单元数计算获得。
3、 如权利要求 1所述的方法, 其特征在于, 所述接收流量整形控制信息 包括:
接收以流量整形控制帧发送的流量整形控制信息。
4、 如权利要求 1所述的方法, 其特征在于, 还包括:
将经所述经流量整形处理的分组业务数据进行緩存。
5、 如权利要求 4所述的方法, 其特征在于, 还包括:
判断緩存的分组业务数据量是否达到预设上限值, 判断为是时,发送暂停 接收待緩存的分组业务数据的信息。
6、 如权利要求 4或 5所述的方法, 其特征在于, 还包括:
判断緩存的分组业务数据量是否达到预设下限值, 判断为是时,发送接收 待緩存的分组业务数据的通知。
7、 一种实现分组微波数据流量整形的数据交换单元, 其特征在于, 包括: 第一接收单元, 用于接收流量整形控制信息, 所述流量整形控制信息包括 微波空口传送带宽信息和承 i若突发长度信息,所述承诺突发长度用于限定緩存 的分组业务数据的最大数据量;
整形单元,用于根据所述流量整形控制信息对分组业务数据进行输出流量 整形处理。
8、 一种实现分组微波数据流量整形的中频调制单元, 其特征在于, 包括: 计算单元,用于根据微波空口传送带宽信息和预先配置的最大传送单元数 计算获得承诺突发长度信息;
第一发送单元,用于向数据交换单元发送包括所述微波空口传送带宽和所 述承 i若突发长度信息的流量整形控制信息。
9、 如权利要求 8所述的中频调制单元, 其特征在于, 还包括:
緩存单元, 用于接收流量整形处理后的分组业务数据, 并緩存所述分组业 务数据。
10、 如权利要求 9所述的中频调制单元, 其特征在于, 还包括: 第一判断处理单元, 用于判断所述分组业务数据量是否达到预设上限值, 判断为是时, 发送暂停接收所述分组业务数据的指示信息。
11、 如权利要求 9或 10所述的中频调制单元, 其特征在于, 还包括: 第二判断处理单元, 用于判断所述分组业务数据量是否达到预设下限值, 判断为是时, 发送继续接收所述分组业务数据的指示信息。
12、 一种控制单元, 其特征在于, 包括:
第二接收单元, 用于接收微波空口传送带宽信息;
计算单元,用于根据所述第二接收单元接收的微波空口传送带宽信息和预 先配置的最大传送单元数获得承 i若突发长度信息;
第二发送单元,用于将包括所述接收单元接收的微波空口传送带宽信息和 所述计算单元计算的承诺突发长度信息的流量整形控制信息发送给数据交换 单元。
13、 一种实现分组微波传输控制的系统, 其特征在于, 包括: 中频调制单元,用于根据微波空口传送带宽和预先配置的最大传送单元数 计算获得所述承诺突发长度信息,并将包括所述微波空口传送带宽和所述承诺 突发长度信息的流量整形控制信息发送出去;
数据交换单元, 用于接收所述中频调制单元发送的所述流量整形控制信 息, 并根据所述流量整形控制信息对分组业务数据进行输出流量整形处理。
14、 一种实现分组微波传输控制的系统, 其特征在于, 包括:
中频调制单元, 用于获得微波空口传送带宽信息;
控制单元, 用于接收所述中频调制单元发送的所述微波空口传送带宽信 息,根据所述接收的微波空口传送带宽信息和预先配置的最大传送单元数计算 获得承 i若突发长度信息,并发送包括所述接收的微波空口传送带宽信息和所述 承 i若突发长度信息的流量整形控制信息;
数据交换单元,用于根据所述控制单元发送的所述流量整形控制信息对分 组业务数据进行输出流量整形处理。
PCT/CN2009/072441 2008-07-16 2009-06-25 一种实现分组微波数据流量整形的方法、装置和系统 WO2010006534A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2008100295093A CN101471876B (zh) 2008-07-16 2008-07-16 一种实现分组微波数据流量整形的方法、装置和系统
CN200810029509.3 2008-07-16

Publications (1)

Publication Number Publication Date
WO2010006534A1 true WO2010006534A1 (zh) 2010-01-21

Family

ID=40829013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/072441 WO2010006534A1 (zh) 2008-07-16 2009-06-25 一种实现分组微波数据流量整形的方法、装置和系统

Country Status (2)

Country Link
CN (1) CN101471876B (zh)
WO (1) WO2010006534A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110290554A (zh) * 2019-06-28 2019-09-27 京信通信系统(中国)有限公司 数据传输处理方法、装置和通信设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030032427A1 (en) * 2001-08-09 2003-02-13 William Walsh Dynamic queue depth management in a satellite terminal for bandwidth allocations in a broadband satellite communications system
CN1618244A (zh) * 2001-12-05 2005-05-18 高通股份有限公司 基站控制器和基站收发机间的流控制方法和系统
US7016302B1 (en) * 2000-08-16 2006-03-21 Ironbridge Networks, Inc. Apparatus and method for controlling queuing of data at a node on a network
US20070171830A1 (en) * 2006-01-26 2007-07-26 Nokia Corporation Apparatus, method and computer program product providing radio network controller internal dynamic HSDPA flow control using one of fixed or calculated scaling factors

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7016302B1 (en) * 2000-08-16 2006-03-21 Ironbridge Networks, Inc. Apparatus and method for controlling queuing of data at a node on a network
US20030032427A1 (en) * 2001-08-09 2003-02-13 William Walsh Dynamic queue depth management in a satellite terminal for bandwidth allocations in a broadband satellite communications system
CN1618244A (zh) * 2001-12-05 2005-05-18 高通股份有限公司 基站控制器和基站收发机间的流控制方法和系统
US20070171830A1 (en) * 2006-01-26 2007-07-26 Nokia Corporation Apparatus, method and computer program product providing radio network controller internal dynamic HSDPA flow control using one of fixed or calculated scaling factors

Also Published As

Publication number Publication date
CN101471876A (zh) 2009-07-01
CN101471876B (zh) 2010-07-07

Similar Documents

Publication Publication Date Title
US12010016B2 (en) Data stream transmission method and device
US8189463B2 (en) Method for realizing backpressure of masses of ports and device thereof
CN113726671B (zh) 一种网络拥塞控制方法及相关产品
CN109905326A (zh) 一种基于拥塞程度因子的速率下降参数优化方法
WO2006096823A2 (en) Communication system and techniques for transmission from source to destination
CN101909208A (zh) 一种适用于cdma2000的视频无线传输控制方法
CN105142002A (zh) 音/视频直播方法、装置及控制方法、装置
CN1759571A (zh) 在无线网络中通过信令通知以优化速率控制方案的方法和通信系统
WO2023098367A1 (zh) 网桥端到端的确定性转发方法、网桥发送端及接收端
GB2423219A (en) A proxy device interposed between a server and a wireless client controls a characteristic of the server depending on the quality of the link to the client
CN110868359A (zh) 一种网络拥塞控制方法
EP3395023A1 (en) Dynamically optimized queue in data routing
Trad et al. Adaptive VoIP transmission over heterogeneous wired/wireless networks
WO2019029220A1 (zh) 网络设备
WO2012155557A1 (zh) 一种异构网络中业务流的同步传输方法及系统
WO2014000467A1 (zh) 一种网络虚拟化系统中带宽调整的方法及装置
WO2018081937A1 (zh) 一种确定音视频数据编码速率的方法、终端以及存储介质
WO2010006534A1 (zh) 一种实现分组微波数据流量整形的方法、装置和系统
CN112751776A (zh) 拥塞控制方法和相关装置
WO2008154859A1 (fr) Procédé, système et appareil permettant de réaliser un mécanisme d&#39;utilisateur de ligne dédiée inverse
Gorius et al. Dynamic media streaming over wireless and mobile ip networks
Bahnasy et al. CPRI over Ethernet: Towards fronthaul/backhaul multiplexing
Borzouie et al. Improve the quality of services to help congestion control flows to send a video in wireless multimedia sensor networks
KR100440575B1 (ko) 실시간 화상 데이터 전송을 위한 트래픽 특성화방법
Wang et al. Adaptive packet aggregation for header compression in vehicular wireless networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09797381

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09797381

Country of ref document: EP

Kind code of ref document: A1