WO2010006528A1 - 一种伪线建立方法、装置和系统 - Google Patents

一种伪线建立方法、装置和系统 Download PDF

Info

Publication number
WO2010006528A1
WO2010006528A1 PCT/CN2009/071904 CN2009071904W WO2010006528A1 WO 2010006528 A1 WO2010006528 A1 WO 2010006528A1 CN 2009071904 W CN2009071904 W CN 2009071904W WO 2010006528 A1 WO2010006528 A1 WO 2010006528A1
Authority
WO
WIPO (PCT)
Prior art keywords
pseudowire
tunnel
label
local
mapping message
Prior art date
Application number
PCT/CN2009/071904
Other languages
English (en)
French (fr)
Inventor
曹玮
朱明明
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to ES09797375T priority Critical patent/ES2422265T3/es
Priority to EP09797375.4A priority patent/EP2299637B1/en
Publication of WO2010006528A1 publication Critical patent/WO2010006528A1/zh
Priority to US12/982,571 priority patent/US8718062B2/en
Priority to US14/218,019 priority patent/US9001832B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/74Address processing for routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4633Interconnection of networks using encapsulation techniques, e.g. tunneling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/50Routing or path finding of packets in data switching networks using label swapping, e.g. multi-protocol label switch [MPLS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/68Pseudowire emulation, e.g. IETF WG PWE3
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L2212/00Encapsulation of packets

Definitions

  • the present invention relates to the field of communications, and in particular, to a method, an apparatus, and a system for establishing a pseudowire. Background technique
  • PW Pseudo Wire
  • LDP Label Distribution Protocol
  • the LSP Label Switching Path
  • the establishment of the LSP tunnel is independent of the PW.
  • the Provider Edge (PE, Provider Edge) PE1 and PE2 mutually send a pseudo-line label request message (Label Request) to establish an LDP peer relationship. body.
  • Label Request For the establishment of a pseudowire from PE2 to PE1, PE1 sends a pseudowire label mapping message a (LMa, Label Mapping a) to PE2.
  • the forwarding equivalence class type length value (FEC TLV, Forwarding Equivalence Class Type Length Value) carried in the LMa may be a general pseudowire identifier FEC TLV (0x81) or a pseudowire identifier FEC TLV (0x80).
  • the universal pseudowire includes at least an Attachment Group Identifier (AGI), a Source Attachment Individual Identifier (SAII), and a Target Attachment Individual Identifier (TAII). In addition, it may also include information such as the address of the two parties, the interface parameters, the group identifier (group ID), the transmission direct connection circuit, and the PE capability.
  • AGI Attachment Group Identifier
  • SAII Source Attachment Individual Identifier
  • TAIII Target Attachment Individual Identifier
  • the pseudowire includes at least the PW ID, and may also include a double Information such as the square address, the direct connection circuit, and the PE capability.
  • the PE2 After receiving the LMa, the PE2 matches the pseudowire corresponding to the locality of the PE2 according to the AGI, SAII, TAII, or PW ID in the message, and uses the corresponding pseudowire as the pseudowire label of the pseudowire multiplexing layer. At this time, a pseudowire from PE2 to PE1 is established.
  • PE2 When PE2 does not match the corresponding pseudowire, PE2 sends a corresponding label release message ( Release) to PE1, and carries the status code "Unassigned/Unrecognized TAI", ending with the status code "Unassigned/Unrecognized TAI" deal with.
  • Release a label release message
  • PE2 After the pseudowires of PE2 to PE1 are successfully established, if PE2 does not send the pseudowire label mapping message b (LMb, Label Mapping b) from PE2 to PE1 before receiving the LMa, it needs to establish a pseudo from PE1 to PE2.
  • LMb pseudowire label mapping message
  • the line, its establishment process is similar to the above.
  • PE2 has sent LMb to PE1 before receiving LMa, it does not need to establish a pseudowire from PE1 to PE2 to complete the processing.
  • the PEs at both ends have no association when selecting a label switching path tunnel, and cannot guarantee high quality pseudowire services. For example, if the pseudowire service is required to provide the same level of QoS guarantee in both directions, this requires the PEs at both ends to automatically select the LSP tunnel with the same level of QoS guarantee.
  • the prior art cannot complete this process.
  • the MPLS TP pseudowire service may need to carry the pseudowire on a bidirectional LSP tunnel. Since the PEs at both ends can independently select the bidirectional label switching path tunnel, the two label switching paths selected may be different. Meet the above needs. Summary of the invention
  • the present invention provides a pseudowire establishing method, apparatus and system capable of establishing pseudowires having mutual correlation on a label switched path tunnel.
  • the first label mapping message carries a pseudo line identifier, a pseudo line parameter, and a label switching path tunnel information selected by a sender of the first label mapping message;
  • the pseudo line identifier matches a local pseudo line
  • the pseudowire parameter is negotiated with the parameter of the matched local pseudowire;
  • the label switching path tunnel information matches the local tunnel;
  • the pseudowire identifier and the label switching path tunnel information match successfully, the matched local tunnel and the matched local pseudowire are bound, and when the pseudowire parameter negotiation succeeds, the pseudowire is established.
  • the embodiment of the present invention further discloses a pseudowire establishing apparatus based on the foregoing method, the apparatus comprising: a receiving unit 1 configured to receive a first label mapping message, where the first label mapping message carries the sending of the first label mapping message The pseudowire identifier, the pseudowire parameter, and the label switched path tunnel information selected by the party;
  • a pseudowire matching unit 2 configured to match the pseudowire identifier to match a local pseudowire
  • a parameter negotiation unit 3 configured to negotiate, according to the pseudowire parameter, a parameter of the matched local pseudowire;
  • the tunnel matching unit 4 is configured to match the local tunnel according to the label switching path tunnel information
  • the binding unit 5 is configured to bind the matching when the pseudowire identifier and the label switching path tunnel information match successfully. a local tunnel and the matching local pseudowire;
  • the pseudowire establishing unit 6 is configured to establish a pseudowire after the negotiation of the pseudowire parameter is successful, and the binding unit (5) is successfully bound.
  • the embodiment of the present invention further discloses a pseudowire establishing system based on the foregoing method, including:
  • a first node configured to send a first label mapping message, where the first label mapping message includes a pseudowire identifier selected by the first node, a pseudowire parameter, and label switching path tunnel information;
  • a second node configured to receive the first label mapping message, and match the local pseudowire according to the pseudowire identifier; negotiate with the parameter of the matched local pseudowire according to the pseudowire parameter;
  • the path tunnel information matches the local tunnel; when the pseudowire identifier and the label switching path tunnel information match successfully, the matching local tunnel and the matched local pseudowire are bound.
  • the method, device, and system for establishing a pseudowire carry the LSP tunnel information, so that the two parties establish mutual correlation with the LSP tunnel when establishing the pseudowire, thereby enhancing the reliability of the information transmission process. And solved the double by carrying the information containing the bidirectional LSP tunnel The party cannot guarantee the problem of establishing a pseudowire on the same bidirectional LSP tunnel.
  • FIG. 1 is a schematic diagram of a process of establishing a pseudowire using LDP in the prior art
  • FIG. 2 is a schematic flowchart of a method for establishing a pseudowire according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a TLV format of a bidirectional LSP tunnel according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a type of a sub-TLV of a bidirectional LSP tunnel according to an embodiment of the present invention
  • FIG. 6 is a schematic flowchart of another method for establishing a pseudowire according to an embodiment of the present invention
  • FIG. 8 is a schematic flowchart of a method for establishing a pseudowire according to an embodiment of the present invention
  • FIG. 9 is a schematic flowchart of a method for establishing a pseudowire according to an embodiment of the present invention
  • FIG. 10 is a schematic flowchart of another method for establishing a pseudowire according to an embodiment of the present invention
  • FIG. 11 is a schematic flowchart of a method for establishing a pseudowire according to an embodiment of the present invention
  • an embodiment of the present invention provides a method for establishing a pseudowire, including:
  • Step 21 Receive a first label mapping message, where the first label mapping message carries a pseudo line identifier, a pseudo line parameter, and label switching path tunnel information selected by a sender of the first label mapping message.
  • the label switching path tunnel information includes a label switching path tunnel identifier and tunnel information.
  • the label switched path tunnel in the label switching path tunnel information is a unidirectional or bidirectional label switched path tunnel.
  • the matched local tunnel is the one-way or two-way label switched path tunnel.
  • Step 22 Match the local pseudowire according to the pseudowire identifier.
  • Step 23 Negotiate according to the pseudowire parameter and the parameter of the matched local pseudowire.
  • Step 24 Match the local tunnel according to the label switching path tunnel information.
  • Step 25 When the pseudowire identifier and the label switching path tunnel information match successfully, the matching local tunnel and the matched local pseudowire are bound.
  • the label switching path tunnel information is unsuccessful, the first label translation message is sent to the sender of the first label mapping message, and the label distribution protocol status code of the first label translation message carries Assigned/unrecognized two-way label switched path tunnel".
  • step 23 may be after step 25 after step 24, or may be after step 24 and step 25.
  • Step 26 After the pseudowire parameter negotiation succeeds, and the matched local pseudowire and the matched local tunnel are successfully bound, the pseudowire is established.
  • the second label mapping message is sent to the sender of the first label mapping message, and the second label mapping message carries the matched local pseudowire information and the matched local tunnel information.
  • PE1 is the egress node and PE2 is the ingress node.
  • PE1 selects a pseudowire to prepare to establish a pseudowire from PE2 to PE1.
  • 200A PE1 selects a bidirectional LSP tunnel for this pseudowire.
  • the LMc sends the label mapping message to the PE2, and the LMc carries the pseudowire identifier, the pseudowire parameter, and the bidirectional LSP tunnel information.
  • the pseudowire information may be carried in a forwarding equivalence class type length value (FEC TLV, Forwarding Equivalence Class Type Length Value) in the LMc, and the pseudowire information may be a general pseudowire identifier FEC TLV (0x81) or a pseudo Line identification FEC TLV ( 0x80 ).
  • the LMc can carry the bidirectional LSP tunnel information, and can be implemented in various manners, which is not specifically limited in the embodiment of the present invention.
  • the bidirectional LSP tunnel information can be represented by a bidirectional LSP tunnel identifier and tunnel information.
  • the bidirectional LSP tunnel identifier is used to identify a bidirectional LSP tunnel. If the information is included, the pseudowire established by the two parties is based on the same LSP tunnel.
  • the tunnel information is at least a binary group consisting of a tunnel ID ( Tunnel ID) and a label switched path identifier (LSP ID).
  • the tunnel information may also include a four-tuple consisting of a tunnel identifier, a label switched path identifier, a tunnel end point address, a tunnel sender address, or a 13 ⁇ 4 lane.
  • a quintuple consisting of a standard port, a label switching path identifier, a tunnel destination address, a tunnel source address, and an extended tunnel ID.
  • the bidirectional LSP tunnel information may be carried by the PW FEC TLV in the LMc.
  • the bidirectional LSP tunnel information may be carried in the PW FEC TLV as a bidirectional LSP tunnel TLV.
  • FIG. 3 is a schematic diagram of a format of a bidirectional LSP tunnel TLV.
  • the bidirectional LSP tunnel TLV includes a common TLV head unit and a variable length range unit. "Type", the field follows the encoding requirements of the LDP TLV by the Internet Assigned Numbers Authority (IANA), and the value does not conflict with the existing legal value.
  • the bidirectional LSP tunnel information can be represented by the bidirectional LSP tunnel identity and the tunnel information.
  • the bidirectional LSP tunnel identifier is carried by the "Bi-directional LSP Tunnel TLV" field, and the tunnel information exists in the "Value” field of the bidirectional LSP tunnel TLV and is carried by the sub-TLV of the bidirectional LSP tunnel TLV, as shown in FIG.
  • FIG. As shown in the figure: Considering the 4-byte alignment of the LSP tunnel TLV format, for the 4-byte or 6-byte IPV4 or IPV6 address type, add 2 bytes to 0 at its starting position.
  • PE1 encapsulates at least the bidirectional LSP tunnel identity and tunnel information into the bidirectional LSP tunnel TLV. Then, the bidirectional LSP tunnel TLV, the pseudowire, the pseudowire parameter, and the two optional addresses are The information is encapsulated into the PW FEC TLV, that is, encapsulated into the pseudowire identification FEC TLV or the universal pseudowire identification FEC TLV.
  • the specific encapsulation mode of the above-mentioned bidirectional LSP tunnel TLV and the position in the PW FEC TLV are not limited.
  • PE2 receives the label mapping message LMc.
  • the PE2 matches the local pseudowire and the local LSP tunnel according to the pseudowire identifier and the bidirectional LSP tunnel information in the LMc. After the matching is successful, the PE3 is bound to the pseudowire and the bidirectional LSP tunnel carried in the LMc.
  • the label mapping message is sent by the PE2.
  • the LMd is sent to the PE1.
  • the LMd carries the bound pseudowire identifier and the bidirectional LSP tunnel information.
  • the encapsulation format of the LMd is the same as the encapsulation format of the LMC in step 300A, that is, the PE1 will be
  • the selected tunnel information and the bidirectional LSP tunnel identifier in the bidirectional LSP tunnel information are encapsulated into the bidirectional LSP tunnel TLV, and then encapsulated into the PW FEC and the LMd respectively.
  • the pseudowire establishment process ends.
  • the above 500A is further classified into the following two types according to the manner in which PE1 and PE2 send label mapping messages:
  • the PE2 matches the local pseudowire information according to the pseudowire identifier in the LMc, for example, according to the AGI, SAIL, or PW ID information of the LMc, and matches the local pseudowire of the PE2. If the corresponding local pseudowire is not matched, a first label release message is generated, and the LDP status code in the first label release message carries an "unassigned/unrecognized TAI"", turn to 506.
  • the PE2 performs the pseudowire parameter negotiation according to the pseudowire parameters in the LMc, for example, the pseudowire attribute parameter and the pseudowire interface parameter, that is, the PE2 negotiates according to the parameter of the PE1 in the LMc and the matching local pseudowire parameter. If the parameter negotiation is unsuccessful, the second label release message is generated, and the corresponding LDP status code is set in the second label release message according to the corresponding negotiation result, and is transferred to 506.
  • the PE2 matches the local bidirectional LSP tunnel according to the bidirectional LSP tunnel information in the LMc.
  • a third label release message is generated, and the LDP status code of the third label release message carries an "unallocated/unrecognized bidirectional LSP tunnel (Unassigned/Unrecognized bi- Directional LSP Tunnel ) " , go to 506.
  • the above-mentioned "unallocated/unrecognized bidirectional LSP tunnel” is a new type added to the LDP status code in the embodiment of the present invention, and the new type follows the LDP state coding specification, and the value does not conflict with the existing legal value.
  • ⁇ 2 binds the successfully matched pseudowire in 501 to the successfully matched bidirectional LSP tunnel in 503.
  • ⁇ 2 uses the pseudo-line successfully matched in 501 as the pseudo-line label of the pseudo-line multiplex layer, and thus the pseudo-line from ⁇ 2 to PE1 is established.
  • ⁇ 2 sends the first label translation message, the second label translation message, or the third label translation message to PE1. At this point, the ⁇ 2 to PE1 direction pseudowire is not successfully established.
  • PE2 compares the bidirectional LSP tunnel information of the LMc with the bidirectional LSP tunnel information that is locally bound and identified in the LMc. If they are consistent, it indicates that a pseudo under the bidirectional LSP bearer has been established. Line, go to 700; If they are inconsistent, compare the two-node "NODE ID (such as IP address)" to determine the selected bidirectional LSP tunnel and go to 500A.
  • NODE ID such as IP address
  • the PE1 when a node with a large IP address is used as an egress node, in a specific implementation of the embodiment of the present invention, after the LMc is received by the PE2, the PE1 is inconsistent with the bidirectional LSP tunnel that is bound and identified in the LMc. By comparing the local IP address with the IP address of PE1. If the IP address of the PE1 is greater than the local IP address, the local bidirectional LSP tunnel is modified to be the bidirectional LSP tunnel selected by the PE1, and the PE2 resends the label mapping message e (LMe) carrying the newly selected bidirectional LSP tunnel information.
  • LMe label mapping message
  • the LME carries the bidirectional LSP tunnel selected by the PE1, and ends the pseudowire establishment process; if the IP address of the PE1 is smaller than the IP address of the PE2, the local binding bidirectional is not modified.
  • LSP tunnel information after PE1 receives the LMc sent by PE2, and then PE1 modifies and selects the bidirectional LSP tunnel selected by PE2 as the bidirectional LSP tunnel selected by PE1.
  • the nodes PE1 and PE2 have specified that the two-way LSP tunnel is selected by PE1 or PE2 before both parties send a label mapping message to the opposite end. For example, forcing a node to be specified or specifying a node with a higher/lower Node ID to initiate a label mapping message first.
  • the label mapping message is first initiated by the node PE1 with the higher Node ID according to the above rule, and the PE2 must receive the label mapping message of the PE1 before deciding whether to send the label mapping.
  • PE2 After PE2 receives the LMc sent by PE1, it proceeds to step 500 to perform the corresponding steps.
  • PE1 is the egress node and PE2 is the ingress node.
  • PE1 selects a pseudowire to prepare to establish a pseudowire from PE2 to PE1.
  • PE1 selects a LSP tunnel a ( LSPa ) from PE1 to PE2 for the pseudowire selected in 100. It also recommends a reverse tunnel from PE2 to PE1 LSP tunnel b ( LSPb ) for PE2.
  • LSPa LSP tunnel a
  • LSPb LSP tunnel b
  • PEl has the ability to select LSP tunnels in both directions.
  • the customer edge provides the requirements to PE1:
  • the pseudowire service has the same multi-protocol label switching in both directions - traffic engineering (MPLS-TE, Multi-Protocol Label Switching Traffic Engineering) capability guarantee.
  • MPLS-TE Multi-Protocol Label Switching Traffic Engineering
  • PE1 has the ability to select LSP tunnels in two directions.
  • PE1 selects an MPLS-TE-capable LSP1 from PE1 to PE2.
  • PE1 hopes that PE2 can also select a reverse LSP with the same MPLS-TE guarantee.
  • PE1 recommends to PE2 that it has the same LSP1.
  • Reverse LSP2 guaranteed by MPLS-TE.
  • PE1 wants to select an LSP4 P tunnel that is different from the LSP3 path.
  • PE1 recommends the LSP4 to PE2.
  • PE1 sends a label mapping message LMc to PE2, and the LMc carries the pseudowire identifier, the pseudowire parameter, and the LSPb tunnel information.
  • the LMc can carry the LSP tunnel information, and can be implemented in various manners, which is not specifically limited in the embodiment of the present invention.
  • the LSP tunnel information can be represented by an LSP tunnel identifier and tunnel information.
  • the LSP tunnel identifier is used to identify an LSP tunnel.
  • the tunnel information is at least a binary group consisting of a tunnel ID ( Tunnel ID) and a label switched path identifier (LSP ID).
  • the tunnel information may also include a four-tuple consisting of a tunnel identifier, a label switched path identifier, a tunnel end point address, a tunnel sender address, or a 13 ⁇ 4 lane.
  • a quintuple consisting of a standard port, a label switching path identifier, a tunnel destination address, a tunnel source address, and an extended tunnel ID.
  • the LSP tunnel information may be carried by the PW FEC TLV in the LMc.
  • the LSP tunnel information may be carried in the PW FEC TLV as an LSP tunnel TLV.
  • the LSP tunnel TLV includes a common TLV header unit and a variable length value domain unit.
  • the "Type" field follows the encoding requirements of the LDP TLV by the Internet Assigned Numbers Authority (IANA), and the value does not conflict with the existing legal value.
  • the LSP tunnel identifier is carried by the "PW LSP Tunnel TLV" field, and the tunnel information exists in the "Value" field of the LSP tunnel TLV and is carried by the sub-TLV of the LSP tunnel TLV.
  • the LSP tunnel TLV format 4-byte alignment for 4-byte or 6-byte IPV4 Or the IPV6 address type, adding 2 bytes to 0 at its starting position.
  • PE1 encapsulates at least the LSP tunnel identifier and tunnel information into the LSP tunnel TLV. Then, the LSP P ramp TLV, the pseudowire, the pseudowire parameter, and the two optional addresses are encapsulated into the PW FEC TLV, that is, encapsulated into the pseudowire identifier FEC TLV or the universal pseudowire identifier FEC TLV.
  • the specific encapsulation mode of the LSP tunnel TLV and the location in the PW FEC TLV are not limited.
  • PE2 receives the label mapping message LMc.
  • the PE2 matches the local pseudowire and the local LSP tunnel according to the pseudowire identifier and the LSP tunnel information in the LMc. After the match is successful, the pseudowires carried in the LMc are bound to the LSP tunnels in the direction from PE2 to PE1.
  • the PE2 negotiates with the local pseudowire parameter according to the pseudowire parameter in the LMc, and the pseudowire is bound to the LSP tunnel, the pseudowire from the PE2 to the PE1 direction is established.
  • PE2 sends a label mapping message ( Label Mapping d ) LMd to PE1.
  • the LMd may include the tunnel information of LSPa' from PE1 to PE2 recommended by PE2.
  • the PE2 encapsulates the tunnel information and the LSP tunnel identifier of the recommended LSPa into the LSP tunnel TLV, and then encapsulates them into the PW FEC and LMd.
  • the LMd sent by the MPLS tunnel from the PE2 to the PE1 does not carry the LSP tunnel information; or the LMd does not carry the LSPa when the tunnel information selected by the PE1 is determined by negotiation.
  • the PE2 matches the local pseudowire information according to the pseudowire identifier in the LMc, for example, according to the AGI, SAIL, or PW ID information of the LMc, and matches the local pseudowire of the PE2. If the corresponding local pseudowire is not matched, a first label release message is generated, and the LDP status code in the first label release message carries an "unassigned/unrecognized TAI" ", turn to 907.
  • PE2 is based on pseudowire parameters in the LMc, such as pseudowire attribute parameters, pseudowire interface parameters, and the like. Pseudo-line parameter negotiation is performed, that is, PE2 negotiates with the local parameters according to the parameters of PE1 in LMc. If the parameter negotiation is unsuccessful, the second label release message is generated, and the corresponding LDP status code is set in the second label release message according to the corresponding negotiation result, and is transferred to 907.
  • the PE2 matches the local LSP tunnel according to the tunnel LSPb recommended by PE1 in PE1.
  • the third label release message is generated, and the LDP status code of the third label release message carries an "Unassigned/Unrecognized LSP Tunnel". , turn to 907.
  • the above-mentioned "unallocated/unrecognized bidirectional LSP tunnel” is a new type added to the LDP status code in the embodiment of the present invention, and the new type follows the IANA LDP state coding specification, and the value does not conflict with the existing legal value.
  • PE2 selects an LSP tunnel.
  • PE2 passively accepts that the LSP tunnel recommended by PE1 for PE2 is the selected LSP tunnel.
  • the PE1 included in the LMc sent to PE2 is the recommended tunnel LSPb of PE2 to be the tunnel used by PE2.
  • PE2 negotiates with PE1 to determine the LSP tunnel selected by PE2.
  • PE2 has selected a unidirectional LSP tunnel b from PE2 to PE1, (LSPb'), and also to PE1 according to the MPLS-TE capability or load balancing required by the Customer Edge (CE). It is recommended that a unidirectional LSP tunnel a from PE1 to PE2, (LSPa'), but LMd is not sent, PE1 and PE2 determine which node to use by comparing the "NODE ID (such as IP address) of the two nodes. The outgoing LSP tunnel is valid. For example, the node that forcibly defines a node or specifies that the node with the higher/lower Node ID first initiates the label mapping message, and the peer selects the LSP tunnel recommended in the label mapping message.
  • NODE ID such as IP address
  • the PE2 needs to send the label mapping message d (LMd, Label Mapping d) to the PE1.
  • the LMd carries the LSP tunnel information of the LSP tunnel a, LSPa, which is recommended by PE1. It is represented by LSP tunnel identification and tunnel information.
  • LSPa' tunnel The manner in which the information is carried and the manner in which it is packaged are as described in 300.
  • the PE2 binds the successfully matched pseudowire in the 901 to the LSP tunnel selected from the PE2 to the PE1 in the 904.
  • PE2 uses the pseudowire successfully matched in 901 as the pseudowire label of the pseudowire multiplexing layer. At this point, the pseudowire from PE2 to PE1 is established.
  • the PE2 sends the first label translation message, the second label translation message, or the third label translation message to the PE1. At this point, the pseudo line in the PE2 to PE1 direction is not successfully established.
  • the establishment of the pseudowire in the PE1 to PE2 direction is the same as the process of establishing the pseudowire in the PE2 to PE1 direction, and will not be described in detail in this embodiment.
  • An embodiment of the present invention further provides a pseudowire establishing apparatus implemented by the foregoing method.
  • the pseudowire establishing apparatus includes:
  • the receiving unit 1 is configured to receive a first label mapping message, where the first label mapping message carries a pseudo line identifier, a pseudo line parameter, and a label switching path tunnel information selected by a sender of the first label mapping message.
  • the pseudowire matching unit 2 is configured to match the pseudowire identifier to the local pseudowire.
  • the pseudowire identification in the received label mapping message LMc matches the local pseudowire; for example, pseudowire matching is performed according to AGI, SAII and UI information or VC ID information in the LMc. If the corresponding local pseudowire is not matched, a first label release message is generated, and the LDP status code in the first label release message carries an "unassigned/unrecognized TAI" " repeat
  • the parameter negotiation unit 3 is configured to negotiate the parameters of the pseudowire parameters with the matched local pseudowires. That is: for when the pseudowire matching is successful, according to the pseudowire information in the label mapping message LMc, If the parameter negotiation is unsuccessful, the second label release message is generated, and the corresponding LDP status code is set in the second label release message according to the corresponding negotiation result;
  • the tunnel matching unit 4 is configured to match the label switching path tunnel information to the local tunnel.
  • the LDP status code of the translated message carries "unassigned/Unrecognized LSP Tunnel"
  • the binding unit 5 is configured to bind the matched local tunnel and the matched local pseudowire when the pseudowire identifier and the label switching path tunnel information match successfully.
  • the matching local tunnel may be a label switched path tunnel selected by a sender of the first label mapping message, or a label switched path tunnel determined by negotiation with a sender of the first label mapping message.
  • the pseudowire establishing unit 6 is configured to: when the pseudowire parameter negotiation succeeds, and the binding unit 5 is successfully bound, the successfully matched pseudowire is used as a pseudowire label of the pseudowire multiplexing layer, and a pseudowire is established.
  • the pseudowire establishing apparatus provided by the embodiment of the present invention further includes:
  • the sending unit 7 is configured to send a second label mapping message to the sender of the first label mapping message after the pseudo line establishing unit 6 establishes the pseudo line, where the second label mapping message carries the pseudo line information and the The label switching path tunnel information used is selected. as well as,
  • the binding and decoding unit 9 is configured to release the binding of the matched local tunnel and the matched local pseudowire when the negotiation between the pseudowire parameter and the parameter of the matched local pseudowire is unsuccessful.
  • the label switching path tunnel in the label switching path tunnel information may be a unidirectional or bidirectional label switching path tunnel.
  • the local tunnel matched by the tunnel matching unit 4 may be the one-way or two-way. Label switched path tunnel.
  • the embodiment of the invention also discloses a pseudowire establishing system, which comprises:
  • a first node configured to send a first label mapping message, where the first label mapping message includes a pseudo line identifier selected by the first node, a pseudowire parameter, and label switching path tunnel information; a second node, configured to receive the first label mapping message, and match the local pseudowire according to the pseudowire identifier; negotiate with the parameter of the matched local pseudowire according to the pseudowire parameter;
  • the path tunnel information matches the local tunnel; when the pseudowire identifier and the label switching path tunnel information match successfully, the matching local tunnel and the matched local pseudowire are bound.
  • the matching local tunnel may be a label switched path tunnel selected by the first node, or a label switched path tunnel determined by the second node and the first node to negotiate.
  • the second node is further configured to send a second label mapping message to the first node after the pseudowire is established, where the second label mapping message carries the matched local pseudowire information and the matched local Tunnel information.
  • the second node is further configured to generate a first label release message when the pseudo line identifier does not match the corresponding local pseudo line, and the LDP status code in the first label release message carries “unallocated/not The identified target connection identifier (Unassigned/Unrecognized TAI)"; when the negotiation between the pseudowire parameter and the matching local pseudowire parameter is unsuccessful, a second tag release message is generated, and the second tag is translated according to the corresponding negotiation result.
  • Unassigned/Unrecognized TAI Unassigned/Unrecognized TAI
  • the second node is further configured to negotiate with the local pseudowire parameter according to the pseudowire parameter; when the pseudowire parameter and the local pseudowire parameter are unsuccessful, the matching local tunnel and the matching are released. The binding of the local pseudowire.
  • the label switching path tunnel in the label switching path tunnel information may be a bidirectional label switching path tunnel.
  • the matching local tunnel of the tunnel matching unit 4 may be the bidirectional label switching path tunnel.
  • the band contains the LSP tunnel information, so that when the two parties establish the pseudowire, the LSP tunnel selection is related to each other, which enhances the reliability of the information transmission process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Description

一种伪线建立方法、 装置和系统 本申请要求了 2008年 7月 17 日提交的、 申请号为 200810141666.3、 发 明名称为 "一种伪线建立方法、 装置和系统" 的中国申请的优先权; 和要求 了 2008年 8月 29日提交的、 申请号为 200810214839.X、 发明名称为 "一种 伪线建立方法、 装置和系统" 的中国申请的优先权, 其全部内容通过引用结 合在本申请中。 技术领域
本发明涉及通信领域, 尤其涉及一种伪线建立方法、 装置和系统。 背景技术
伪线(PW, Pseudo Wire )是一种在分组交换网络上模拟各种点到点业务 的技术, 目前 PW的建立使用标签分配协议( LDP, Label distribution Protocol ) 来完成, 并且 PW需承载在标签交换路径(LSP, Label Switching Path ) 隧道 上, 而 LSP隧道的建立是独立于 PW的。
以使用 LDP伪线建立的过程为例, 如图 1所示, 首先,由提供商边缘路由 器 ( PE, Provider Edge ) PE1、 PE2互发伪线标签请求消息 (Label Request), 以便建立 LDP对等体。 对于从 PE2到 PE1方向的伪线建立, 由 PE1向 PE2 发送伪线标签映射消息 a ( LMa, Label Mapping a )。 携带在 LMa中的转发等 价类类型长度数值 ( FEC TLV, Forwarding Equivalence Class Type Length Value )可以是通用伪线标识 FEC TLV ( 0x81 )或者伪线标识 FEC TLV ( 0x80 )。
如果采用通用伪线标识 FEC TLV, 其至少包括连接组标识符 (AGI, Attachment Group Identifier ), 源连接个体标识符 ( SAII, Source Attachment Individual Identifier )和目标连接个体标识符( TAII, Target Attachment Individual Identifier ), 此外, 还可以包括双方地址、 接口参数、 组标识符 (group ID )、 传送直连电路和 PE能力等信息。
如果采用伪线标识 FEC TLV, 其至少包括 PW ID, 此外, 还可以包括双 方地址、 传送直连电路和 PE能力等信息。
PE2收到 LMa后 , 根据该消息中的 AGI、 SAII、 TAII或者 PW ID , 匹配 到 PE2本地对应的伪线, 并以所述对应的伪线作为伪线复用层的伪线标签。 此时, PE2到 PE1方向的伪线建立。
当 PE2 没有匹配到对应的伪线, PE2 向 PE1 发送相应的标签译放消息 ( Release ) , 并携带状态码"未分配 /未识另' j 的 目 标连接个体 (Unassigned/Unrecognized TAI)" , 结束处理。
当 PE2到 PE1的伪线建立成功后, 如果 PE2收到 LMa之前, 没有发送 过由 PE2向 PE1的伪线标签映射消息 b ( LMb, Label Mapping b ), 还需建立 从 PE1到 PE2方向的伪线, 其建立过程和上述类似。
如果 PE2在收到 LMa之前, 已经向 PE1发送过 LMb, 则不需再建立从 PE1到 PE2方向的伪线, 结束处理。
发明人在研究过程中发现, 现有技术中至少存在如下问题: 两端 PE在选 择标签交换路径隧道时没有关联性, 无法保障高质量的伪线业务。 例如, 如 果要求伪线业务在两个方向上都能提供相同级别的 QoS保证,这需要两端 PE 自动选择具有相同等级 QoS保证的 LSP隧道, 现有技术是无法完成这个过程 的。 又如, MPLS TP的伪线业务, 可能需要将伪线承载在一条双向 LSP隧道 上, 由于两端的 PE都能独立选择双向标签交换路径隧道, 会导致选出的两条 标签交换路径不同, 无法满足上述需求。 发明内容
有鉴于此, 本发明提供了一种伪线建立方法、 装置和系统, 能够在标签 交换路径隧道上建立具有相互关联性的伪线。
本发明实施例公开的一种伪线建立的方法, 包括:
接收第一标签映射消息, 所述第一标签映射消息携带所述第一标签映射 消息的发送方选择的伪线标识、 伪线参数和标签交换路径隧道信息; 所述伪 线标识匹配本地伪线; 所述伪线参数与所述匹配的本地伪线的参数进行协商; 所述标签交换路径隧道信息匹配本地隧道;
当所述伪线标识和所述标签交换路径隧道信息匹配成功时, 绑定所述匹 配的本地隧道和所述匹配的本地伪线, 并当所述伪线参数协商成功时, 伪线 建立。
本发明实施例还公开了基于上述方法的伪线建立装置, 该装置包括: 接收单元 1 , 用于接收第一标签映射消息, 所述第一标签映射消息携带所 述第一标签映射消息的发送方选择的伪线标识、 伪线参数和标签交换路径隧 道信息;
伪线匹配单元 2, 用于 居所述伪线标识匹配本地伪线;
参数协商单元 3 , 用于根据所述伪线参数与所述匹配的本地伪线的参数进 行协商;
隧道匹配单元 4, 用于根据所述标签交换路径隧道信息匹配本地隧道; 绑定单元 5 , 用于当所述伪线标识和所述标签交换路径隧道信息匹配成功 时, 绑定所述匹配的本地隧道和所述匹配的本地伪线;
伪线建立单元 6, 用于当所述伪线参数协商成功, 且所述绑定单元 (5 ) 绑定成功后, 建立伪线。
本发明实施例还公开了基于上述方法的伪线建立系统, 包括:
第一节点, 用于发送第一标签映射消息, 所述第一标签映射消息包括所 述第一节点选择的伪线标识、 伪线参数和标签交换路径隧道信息;
第二节点, 用于接收所述第一标签映射消息, 根据所述伪线标识匹配本 地伪线; 根据所述伪线参数与所述匹配的本地伪线的参数进行协商; 根据所 述标签交换路径隧道信息匹配本地隧道; 当所述伪线标识和所述标签交换路 径隧道信息匹配成功时, 绑定所述匹配的本地隧道和所述匹配的本地伪线。
本发明实施例所公开的伪线建立的方法、 装置和系统, 通过携带包含有 LSP隧道信息, 使得双方在建立伪线时, 对 LSP隧道产生相互的关联性, 增强 了信息传输过程的可靠性; 并且通过携带包含双向 LSP隧道的信息, 解决了双 方无法保证在同一双向 LSP隧道上建立伪线的问题。 附图说明
图 1 为现有技术中使用 LDP建立伪线过程的示意图;
图 2 为发明实施例提供的一种伪线建立方法的流程示意图;
图 3 为本发明实施例中提供的双向 LSP隧道 TLV格式示意图; 图 4 为本发明实施例中提供的双向 LSP隧道的子 TLV的类型示意图; 图 5 为本发明实施例中提供的一伪线建立方法的流程示意图;
图 6 为本发明实施例中提供的另一伪线建立方法的流程示意图; 图 Ί 为本发明实施例中提供的再一伪线建立方法的流程示意图; 图 8 为本发明实施例中提供的单向 LSP隧道 TLV格式示意图; 图 9 为本发明实施例中提供的一伪线建立方法的流程示意图;
图 10为本发明实施例中提供的另一伪线建立方法的流程示意图; 图 11 为本发明实施例中提供的再一伪线建立方法的流程示意图; 图 12 为本发明实施例中提供的一种伪线建立装置的构成示意图。 具体实施方式
为使本发明的技术方案和有益效果更加清楚, 下面参照附图列举实施例 进行详细说明:
参见图 2, 本发明实施例提供一种伪线建立的方法, 包括:
步骤 21 , 接收第一标签映射消息, 所述第一标签映射消息携带所述第一 标签映射消息的发送方选择的伪线标识、 伪线参数和标签交换路径隧道信息。
在本发明实施例的具体实现时, 所述标签交换路径隧道信息包括标签交 换路径隧道标识和隧道信息。 且所述标签交换路径隧道信息中的标签交换路 径隧道为单向或双向标签交换路径隧道, 相应地, 所述匹配的本地隧道为所 述单向或双向标签交换路径隧道。
步骤 22, 根据所述伪线标识匹配本地伪线。 步骤 23 , 根据所述伪线参数与所述匹配的本地伪线的参数进行协商。 步骤 24, 根据所述标签交换路径隧道信息匹配本地隧道。
步骤 25, 当所述伪线标识和所述标签交换路径隧道信息匹配成功时, 绑 定所述匹配的本地隧道和所述匹配的本地伪线。
当所述标签交换路径隧道信息匹配不成功时, 发送第一标签译放消息给 所述第一标签映射消息的发送方, 所述第一标签译放消息的标签分配协议状 态码中携带"未分配 /未识别的双向标签交换路径隧道"。
需要说明的是, 步骤 23可以在步骤 24之后步骤 25之前, 或可以在步骤 24和步骤 25之后。
步骤 26, 当所述伪线参数协商成功, 且所述匹配的本地伪线和所述匹配 的本地隧道绑定成功后, 伪线建立。
当所述伪线参数协商不成功, 将所述匹配的本地伪线和所述匹配的本地 隧道的绑定进行译放。
当伪线建立之后, 发送第二标签映射消息给所述第一标签映射消息的发 送方, 所述第二标签映射消息携带所述匹配的本地伪线信息和所述匹配的本 地隧道信息。
下面以建立一条从 PE2到 PE1方向的双向伪线为例进行说明,其中, PE1 是出口节点、 PE2是入口节点。
100A: PE1选择一条伪线, 以用来准备建立从 PE2到 PE1方向的伪线。 200A: PE1为这条伪线选择一条双向 LSP隧道。
300A: PE1发送标签映射消息 LMc给 PE2, 该 LMc携带该伪线标识、 伪线参数和该双向 LSP隧道信息。
该 LMc如何携带伪线标识, 可以有多种实现方式。 本发明实施例不做具 体限定。例如,伪线信息可以在 LMc中的转发等价类类型长度数值(FEC TLV, Forwarding Equivalence Class Type Length Value )来携带, 且所述伪线信息可 以是通用伪线标识 FEC TLV ( 0x81 )或者伪线标识 FEC TLV ( 0x80 )。 该 LMc如何携带该双向 LSP隧道信息, 可以有多种实现方式, 本发明实 施例不做具体限定。 通常, 该双向 LSP隧道信息可以用双向 LSP隧道标识和 隧道信息来表示。
所述双向 LSP隧道标识用来标识建立双向 LSP隧道, 如果含有该信息, 则表示双方建立的伪线基于同一条 LSP隧道。
为标识全局的唯——条隧道, 该隧道信息至少由包含隧道标识 ( Tunnel ID )和标签交换路径标识(LSP ID )构成的二元组。 除此之外, 该隧道信息 还可以包含由隧道标识、 标签交换路径标识、 隧道目的地址( tunnel end point address )、 P遂道源地址 ( tunnel sender address )构成的四元组,或者由 1¾道标口、、 标签交换路径标识、 隧道目的地址、 隧道源地址、 扩展隧道标识 (Extended Tunnel ID )构成的五元组。
在本发明实施例的具体实现时,该双向 LSP隧道信息可以通过 LMc中的 PW FEC TLV来携带 , 例如该双向 LSP隧道信息可以在 PW FEC TLV中以双 向 LSP隧道 TLV携带, 可参考图 3 , 但不限于此格式, 图 3为双向 LSP隧道 TLV的格式示意图。 该双向 LSP隧道 TLV包括公共的 TLV头单元和可变长 度值域单元。 "类型 (Type ),,字段遵循互联网号码分配委员会 (IANA, Internet Assigned Numbers Authority)对 LDP TLV的编码规定, 取值不与现有合法数值 冲突。
如上所述,双向 LSP隧道信息可以由双向 LSP隧道标识和隧道信息表示。 双向 LSP隧道标识由" Bi-directional LSP Tunnel TLV"字段承载,所述隧道信息 存在于双向 LSP隧道 TLV的"数值 ( Value ) "字段并由该双向 LSP隧道 TLV 的 sub-TLV承载, 如图 4所示: 其中, 考虑到 LSP tunnel TLV格式 4字节对 齐, 对于 4字节或者 6字节的 IPV4或者 IPV6地址类型, 在其起始位置增加 2字节为 0。
PE1将至少包括双向 LSP隧道标识和隧道信息封装到双向 LSP隧道 TLV 中。 然后, 将所述双向 LSP隧道 TLV、 所述伪线、 伪线参数和双方可选地址 等信息封装到 PW FEC TLV中, 即封装到伪线标识 FEC TLV或者通用伪线标 识 FEC TLV中。
上述双向 LSP隧道 TLV的具体封装方式和在 PW FEC TLV中的位置不作 限定。
400A: PE2接收所述标签映射消息 LMc。
500A: PE2根据 LMc中的伪线标识和双向 LSP隧道信息匹配本地伪线及 本地 LSP隧道, 匹配成功后绑定 LMc中所携带的伪线和双向 LSP隧道。
当 PE2根据 LMc中的伪线参数与本地伪线参数进行协商成功,且所述伪 线和所述双向标签交换路径隧道绑定后, 伪线建立。
600A: PE2发送标签映射消息 ( Label Mapping d ) LMd给 PE1 , 该 LMd 携带所绑定的伪线标识和双向 LSP 隧道信息, LMd 的封装格式相同于步骤 300A中 LMc的封装格式, 即: PE1将包括双向 LSP隧道信息中已选定隧道 信息和双向 LSP隧道标识封装到双向 LSP隧道 TLV中, 依次再分别封装到 PW FEC以及 LMd中。
700: PE1收到 LMd后, 如果 LMd中的双向 LSP隧道标识和 LMc所标 识的双向 LSP隧道信息一样, 则表明建立了双向 LSP承载的伪线, 该伪线建 立过程结束。
上述 500A中, 根据 PE1与 PE2发送标签映射消息方式的不同, 进一步 分为以下两种:
( 1 ) 当 PE2根据 LMc被动地匹配及绑定本地伪线和 LSP隧道, 其具体 过程如图 5所示, 包括:
501 : PE2根据 LMc中的伪线标识匹配本地伪线信息 , 例如 , 根据 LMc 的 AGI、 SAIL ΤΑΠ信息或者 PW ID信息, 与 PE2本地的伪线进行匹配。 如 果没有匹配到对应的本地伪线, 则生成第一标签译放消息, 该第一标签译放 消息中的 LDP 状态码携带 "未分配的 /未识别的 目标连接标识符 ( Unassigned/Unrecognized TAI ) ", 转 506。 502: PE2根据 LMc中的伪线参数,例如伪线属性参数、伪线接口参数等, 进行伪线参数协商, 即: PE2根据 LMc中 PE1的参数与匹配的本地伪线的参 数进行协商。 如果参数协商不成功, 则生成第二标签译放消息, 根据相应的 协商结果在该第二标签译放消息中设置对应的 LDP状态码, 转 506。
503: PE2根据 LMc中的双向 LSP隧道信息匹配本地的双向 LSP隧道。 当没有匹配到对应的本地双向 LSP隧道时, 生成第三标签译放消息, 在 该第三标签译放消息的 LDP 状态码中携带"未分配 /未识别的双向 LSP 隧道 ( Unassigned/Unrecognized bi-directional LSP Tunnel ) " , 转 506。
上述的"未分配 /未识别的双向 LSP隧道"为本发明实施例对 LDP状态码新 增加一个类型, 并且该新增类型遵循 ΙΑΝΑ对 LDP状态编码规定, 取值不与 现有合法数值冲突。
504: ΡΕ2将 501中匹配成功的伪线和 503中匹配成功的双向 LSP隧道进 行绑定。
505: ΡΕ2以 501中成功匹配的伪线作为伪线复用层的伪线标签, 至此, 从 ΡΕ2到 PE1方向的伪线建立。
506: ΡΕ2将第一标签译放消息、 第二标签译放消息, 或第三标签译放消 息中发送给 PE1 , 至此, ΡΕ2到 PE1方向的伪线没有建立成功。
具体实现过程中, 有可能将 502和 503进行调换, 如图 6所示; 或者 502 调至 504后面, 即: 参数协商发生在双向 LSP隧道和伪线绑定之后, 如果参 数协商失败, 那么在设置 LDP状态码之前还需将已绑定的双向 LSP隧道和伪 线译放, 如图 7所示。
( 2 )当 ΡΕ1、 ΡΕ2相互协商确定双向 LSP隧道,可以采用以下两种方式: 其一, 如果 ΡΕ2在收到 LMc之前, 已向 PE1 发送过标签映射消息 c, ( LMc' , Label Mapping c, ),则:
PE2将 LMc的双向 LSP隧道信息和本地已绑定且标识在 LMc,中的双向 LSP隧道信息进行比较。 如果一致, 则表明已经建立了双向 LSP承载下的伪 线, 转至 700; 如果不一致, 则采用比较双方节点 "NODE ID (例如 IP地址 ) " 的方式来决定所选用的双向 LSP隧道, 转至 500A。
例如, 当以 IP地址大的节点为出口节点时, 在本发明实施例的具体实现 时,当 PE2收到 LMc后 ,发现 PE1和本地已绑定且标识在 LMc,中的双向 LSP 隧道不一致, 通过比较本地 IP地址和 PE1的 IP地址。 如果发现 PE1的 IP地 址大于本地 IP地址,则修改本地已绑定的双向 LSP隧道为 PE1所选定的双向 LSP隧道, PE2重新发送携带新选定的双向 LSP隧道信息的标签映射消息 e ( LMe, Label Mapping e )给 PEl , 所述 LMe中携带有上述 PEl所选定的双 向 LSP隧道, 结束伪线建立过程; 如果发现 PE1的 IP地址小于 PE2的 IP地 址, 则不修改本地绑定的双向 LSP隧道信息, 待 PE1收到 PE2发送的 LMc, 之后, PE1修改并以上述 PE2所选定的双向 LSP隧道为 PE1所选的双向 LSP 隧道。
其二, 节点 PE1、 PE2在双方都未向对端发送标签映射消息之前, 就已经 规定由 PE1或者 PE2来选择双向 LSP隧道。 例如, 强制限定某一节点或规定 具有较高 /较低 Node ID的节点先发起标签映射消息。 在本实施例中, 根据上 述规定由 Node ID较高的节点 PE1先发起标签映射消息, PE2必须收到 PE1 的标签映射消息后再决定是否发送标签映射。 当 PE2接收到 PE1发送的 LMc 后, 则转步骤 500执行相应步骤。
下面再以建立一条从 PE2到 PE1方向的单向伪线为例进行说明, 其中, PE1是出口节点、 PE2是入口节点。
100B: PE1选择一条伪线, 以用来准备建立从 PE2到 PE1方向的伪线。
200B: PE1为 100中选出的伪线选择一条单向从 PE1到 PE2的 LSP隧道 a ( LSPa ), 也为 PE2推荐一条承载伪线的反向从 PE2到 PE1的 LSP隧道 b ( LSPb )。
PEl有能力选择两个方向的 LSP隧道, 例如, 客户边缘端向 PE1提出需 求: 伪线业务在两个方向上都具有相同的多协议标签交换-流量工程 ( MPLS-TE, Multi-Protocol Label Switching Traffic Engineering ) 能力保证, 此时 PE1有能力选择两个方向的 LSP隧道。 再如, 考虑到负载均衡, PE1希 望两个方向上的 LSP隧道要有不同的路径等。 具体来说, PE1选择了一条从 PE1到 PE2具有 MPLS-TE能力的 LSP1 , PE1希望 PE2也能选一条具有同样 MPLS-TE保证的反向 LSP, 此时, PE1 向 PE2推荐一条与 LSP1有着同样 MPLS-TE保证的反向 LSP2。 再如, 考虑到负载均衡, PE1 希望选择一条与 LSP3路径不同的 LSP4 P遂道, 同样, PE1向 PE2推荐该 LSP4。
300B: PE1发送标签映射消息 LMc给 PE2, 该 LMc携带该伪线标识、伪 线参数和 LSPb隧道信息。
该 LMc如何携带该 LSP隧道信息, 可以有多种实现方式, 本发明实施例 不做具体限定。 通常, 该 LSP隧道信息可以用 LSP隧道标识和隧道信息来表 示。 所述 LSP隧道标识用来标识建立 LSP隧道。
为标识全局的唯——条隧道, 该隧道信息至少由包含隧道标识 ( Tunnel ID )和标签交换路径标识(LSP ID )构成的二元组。 除此之外, 该隧道信息 还可以包含由隧道标识、 标签交换路径标识、 隧道目的地址( tunnel end point address )、 P遂道源地址 ( tunnel sender address )构成的四元组,或者由 1¾道标口、、 标签交换路径标识、 隧道目的地址、 隧道源地址、 扩展隧道标识 (Extended Tunnel ID )构成的五元组。
在本发明实施例的具体实现时, 该 LSP隧道信息可以通过 LMc中的 PW FEC TLV来携带, 例如该 LSP隧道信息可以在 PW FEC TLV中以 LSP隧道 TLV携带, 可参考图 8。 该 LSP隧道 TLV包括公共的 TLV头单元和可变长度 值域单元。 "类型 (Type ) "字段遵循互联网号码分配委员会 (IANA, Internet Assigned Numbers Authority)对 LDP TLV的编码规定, 取值不与现有合法数值 冲突。 LSP隧道标识由 "PW LSP Tunnel TLV"字段承载, 所述隧道信息存在于 LSP隧道 TLV的"数值 ( Value ) "字段并由该 LSP隧道 TLV的 sub-TLV承载。 其中,考虑到 LSP tunnel TLV格式 4字节对齐,对于 4字节或者 6字节的 IPV4 或者 IPV6地址类型, 在其起始位置增加 2字节为 0。
PE1将至少包括 LSP隧道标识和隧道信息封装到 LSP隧道 TLV中。然后, 将所述 LSP P遂道 TLV、所述伪线、伪线参数和双方可选地址等信息封装到 PW FEC TLV中 , 即封装到伪线标识 FEC TLV或者通用伪线标识 FEC TLV中。
上述 LSP隧道 TLV的具体封装方式和在 PW FEC TLV中的位置不作限 定。
400B: PE2接收所述标签映射消息 LMc。
500B: PE2根据 LMc中的伪线标识和 LSP隧道信息匹配本地伪线及本地 LSP隧道, 匹配成功后将 LMc中所携带的伪线和从 PE2到 PE1方向上的 LSP 隧道进行绑定。
当 PE2根据 LMc中的伪线参数与本地伪线参数进行协商成功,且所述伪 线和所述 LSP隧道绑定后 , 从 PE2到 PE1方向的伪线建立。
600B: PE2发送标签映射消息( Label Mapping d ) LMd给 PE1 ,其中 LMd 中可能会包括 PE2推荐的从 PE1到 PE2方向的 LSPa'的隧道信息。 PE2将包 括推荐的 LSPa,的隧道信息和 LSP隧道标识封装到 LSP隧道 TLV中, 依次再 分别封装到 PW FEC以及 LMd中。
更具体的, PE2没有能力推荐从 PE2到 PE1方向的 LSP隧道则发送的 LMd 中不会携带 LSP隧道信息;或者是通过协商决定使用 PE1选出的隧道信息时, LMd也可以不携带 LSPa'。
上述 500B中, 如图 9所示, 进一步分为:
901: PE2根据 LMc中的伪线标识匹配本地伪线信息 , 例如 , 根据 LMc 的 AGI、 SAIL ΤΑΠ信息或者 PW ID信息, 与 PE2本地的伪线进行匹配。 如 果没有匹配到对应的本地伪线, 则生成第一标签译放消息, 该第一标签译放 消息中的 LDP 状态码携带 "未分配的 /未识别的 目标连接标识符 ( Unassigned/Unrecognized TAI ) ", 转 907。
902: PE2根据 LMc中的伪线参数,例如伪线属性参数、伪线接口参数等, 进行伪线参数协商,即: PE2根据 LMc中 PE1的参数与本地的参数进行协商。 如果参数协商不成功, 则生成第二标签译放消息, 根据相应的协商结果在该 第二标签释放消息中设置对应的 LDP状态码, 转 907。
903: PE2根据 LMc中 PE1为 PE2推荐的隧道 LSPb匹配本地 LSP隧道。 当没有匹配到对应的本地 LSPb隧道时, 生成第三标签译放消息, 在该第 三标签释放消息的 LDP 状态码中携带"未分配 /未识别的 LSP 隧道 ( Unassigned/Unrecognized LSP Tunnel ) ',, 转 907。
上述的"未分配 /未识别的双向 LSP隧道"为本发明实施例对 LDP状态码新 增加一个类型, 并且该新增类型遵循 IANA对 LDP状态编码规定, 取值不与 现有合法数值冲突。
904: PE2选择一条 LSP隧道。
根据 PE2选择 LSP隧道方式的不同, 分为两类:
其一, PE2被动地接受 PE1为 PE2推荐的 LSP隧道为选定使用的 LSP隧 道, 例如, 发送给 PE2的 LMc中包括的 PE1为 PE2推荐隧道 LSPb成为 PE2 所使用的隧道;
其二, PE2与 PE1协商确定 PE2所选定使用的 LSP隧道。
例如, PE2才艮据本地客户边缘(CE, Customer Edge ) 所需的 MPLS-TE 能力或者负载均衡情况, 已经选择了一条单向从 PE2到 PE1 的 LSP隧道 b, ( LSPb' ), 也向 PE1推荐一条单向从 PE1到 PE2的 LSP隧道 a, ( LSPa' ) , 但是未发送 LMd, 则 PE1和 PE2以比较双方节点 "NODE ID (例如 IP地址 ),, 的方式来决定使用由哪个节点选出的 LSP隧道有效。 又如, 强制限定某一节 点或规定具有较高 /较低 Node ID的节点先发起标签映射消息, 且对端选定使 用所述标签映射消息中推荐的 LSP隧道。
如果 PE2选定使用 LSPb'隧道, 则 PE2需要发送标签映射消息 d ( LMd, Label Mapping d )给 PE1 ,所述 LMd中携带有 PE2为 PE1推荐的 LSP隧道 a,, LSPa,的 LSP隧道信息可以用 LSP隧道标识和隧道信息来表示。 LSPa'的隧道 信息的携带方式及其封装方式, 如 300中所述。
905: PE2将 901中匹配成功的伪线和 904中选定使用的单向从 PE2到 PE1 的 LSP隧道进行绑定。
906: PE2以 901中成功匹配的伪线作为伪线复用层的伪线标签, 至此, 从 PE2到 PE1方向的伪线建立。
907: PE2将第一标签译放消息、 第二标签译放消息, 或第三标签译放消 息中发送给 PE1 , 至此, PE2到 PE1方向的伪线没有建立成功。
对于 PE1到 PE2方向的伪线建立,与上述 PE2到 PE1方向的伪线建立的 过程相同, 本实施例将不再贅述。
具体实现过程中,有可能将 902和 903进行调换,如图 10所示;或者 902 调至 905后面, 即: 参数协商发生在 LSP隧道和伪线绑定之后, 如果参数协 商失败, 那么在设置 LDP状态码之前还需将已绑定的 LSP隧道和伪线译放, 如图 11所示。
本发明实施例还提供了采用上述方法实现的一种伪线建立装置, 如图 12 所示, 该伪线建立装置包括:
接收单元 1 , 用于接收第一标签映射消息, 所述第一标签映射消息携带所 述第一标签映射消息的发送方选择的伪线标识、 伪线参数和标签交换路径隧 道信息。
伪线匹配单元 2, 用于所述伪线标识匹配本地伪线。
即:根据所接收的标签映射消息 LMc中的伪线标识匹配本地伪线;例如, 根据 LMc中的 AGI, SAII和 ΤΑΠ信息或者 VC ID信息 , 进行伪线匹配。 如 果没有匹配到对应的本地伪线, 则生成第一标签译放消息, 该第一标签译放 消息中的 LDP 状态码携带 "未分配的 /未识别的 目标连接标识符 ( Unassigned/Unrecognized TAI ) "„
参数协商单元 3 , 用于所述伪线参数与匹配的本地伪线的参数进行协商。 即: 用于当伪线匹配成功时, 根据标签映射消息 LMc中的伪线信息, 进 行伪线参数协商, 如果参数协商不成功, 则生成第二标签译放消息, 根据相 应的协商结果在该第二标签译放消息中设置对应的 LDP状态码;
隧道匹配单元 4, 用于所述标签交换路径隧道信息匹配本地隧道。
即: 用于当伪线匹配成功时, 根据标签映射消息 LMc中的 LSP隧道信息 匹配本地 LSP隧道; 当没有匹配到对应的本地 LSP隧道时 , 生成第三标签译 放消息, 在该第三标签译放消息的 LDP状态码中携带"未分配 /未识别的 LSP (¾道 ( Unassigned/Unrecognized LSP Tunnel ) "„
绑定单元 5,用于当所述伪线标识和所述标签交换路径隧道信息匹配成功 时, 绑定所述匹配的本地隧道和所述匹配的本地伪线。
其中, 所述匹配的本地隧道, 可以是所述第一标签映射消息的发送方选 择的标签交换路径隧道, 或者是与所述第一标签映射消息的发送方协商确定 的标签交换路径隧道。
伪线建立单元 6, 用于当所述伪线参数协商成功, 且所述绑定单元 5绑定 成功时, 成功匹配的伪线作为伪线复用层的伪线标签, 建立伪线。
进一步地, 本发明实施例提供的伪线建立装置还包括:
发送单元 7, 用于伪线建立单元 6建立伪线后, 发送第二标签映射消息给 所述第一标签映射消息的发送方, 所述第二标签映射消息携带所述伪线信息 和所述选定使用的标签交换路径隧道信息。 以及,
绑定译放单元 9,用于当所述伪线参数与所述匹配的本地伪线的参数协商 不成功时, 释放所述匹配的本地隧道和所述匹配的本地伪线的绑定。
需要说明的是, 所述标签交换路径隧道信息中的标签交换路径隧道可以 为单向或双向标签交换路径隧道, 相应地, 所述隧道匹配单元 4 匹配的本地 隧道可以为所述单向或双向标签交换路径隧道。
本发明实施例还公开了一种伪线建立系统, 包括:
第一节点, 用于发送第一标签映射消息, 所述第一标签映射消息包括所 述第一节点选择的伪线标识、 伪线参数和标签交换路径隧道信息; 第二节点, 用于接收所述第一标签映射消息, 根据所述伪线标识匹配本 地伪线; 根据所述伪线参数与所述匹配的本地伪线的参数进行协商; 根据所 述标签交换路径隧道信息匹配本地隧道; 当所述伪线标识和所述标签交换路 径隧道信息匹配成功时, 绑定所述匹配的本地隧道和所述匹配的本地伪线。
所述匹配的本地隧道, 可以是所述第一节点选择的标签交换路径隧道, 或者是所述第二节点与所述第一节点协商确定的标签交换路径隧道。
所述第二节点, 还用于在伪线建立之后, 发送第二标签映射消息给所述 第一节点, 所述第二标签映射消息携带所述匹配的本地伪线信息和所述匹配 的本地隧道信息。
所述第二节点, 还用于当伪线标识没有匹配到对应的本地伪线, 则生成 第一标签译放消息, 该第一标签译放消息中的 LDP状态码携带"未分配的 /未 识别的目标连接标识符( Unassigned/Unrecognized TAI ) "; 当伪线参数与匹配 的本地伪线的参数协商不成功, 则生成第二标签译放消息, 根据相应的协商 结果在该第二标签译放消息中设置对应的 LDP状态码; 当标签交换路径隧道 信息没有匹配到对应的本地 LSP隧道时, 生成第三标签译放消息, 在该第三 标签释放消息的 LDP 状态码中携带"未分配 /未识别的双向 LSP 隧道 ( Unassigned/Unrecognized bi-directional LSP Tunnel ) "; 以、及发送所述第一标 签译放消息、 第二标签译放消息或第三标签译放消息给所述第一节点。 至此, 第二节点到第一节点方向的伪线没有建立成功。
所述第二节点还用于根据所述伪线参数与本地伪线参数进行协商; 当所 述伪线参数与本地伪线参数协商不成功时, 译放所述匹配的本地隧道和所述 匹配的本地伪线的绑定。
需要说明的是, 所述标签交换路径隧道信息中的标签交换路径隧道可以 为双向标签交换路径隧道, 相应地, 所述隧道匹配单元 4 匹配的本地隧道可 以为所述双向标签交换路径隧道。
可见, 本发明实施例所公开的一种伪线建立方法、 装置和系统, 通过携 带包含有 LSP隧道信息, 使得双方在建立伪线时, 对 LSP隧道的选择产生相 互的关联性, 增强了信息传输过程的可靠性; 并且通过携带包含双向 LSP隧 道的信息, 解决了双方无法保证在同一双向 LSP隧道上建立伪线的问题。
本领域普通技术人员可以理解上述实施例方法中的全部或部分是可以通 过程序指令相关的硬件来完成, 该程序可以存储于计算机可读取存储介质中, 该存储介质可以是 R O M / R A M、 磁碟, 光盘等。
以上只对发明的优选实施方式进行了描述, 本领域的技术人员在本发明 技术的方案范围内, 进行通常的变化和替换, 都应包含在本发明的保护范围 内。

Claims

权 利 要 求 书
1、 一种伪线建立的方法, 其特征在于, 所述方法包括:
接收第一标签映射消息, 所述第一标签映射消息携带所述第一标签映射消 息的发送方选择的伪线标识、 伪线参数和标签交换路径隧道信息;
所述伪线标识匹配本地伪线;
所述伪线参数与所述匹配的本地伪线的参数进行协商;
所述标签交换路径隧道信息匹配本地隧道;
当所述伪线标识和所述标签交换路径隧道信息匹配成功时, 绑定所述匹配 的本地隧道和所述匹配的本地伪线, 并当所述伪线参数协商成功时, 伪线建立。
2、 根据权利要求 1所述的方法, 其特征在于, 所述匹配的本地隧道, 是所 述第一标签映射消息的发送方选择的标签交换路径隧道, 或者是与所述第一标 签映射消息的发送方协商确定的标签交换路径隧道。
3、 根据权利要求 1所述的方法, 其特征在于, 还包括:
在伪线建立之后, 发送第二标签映射消息给所述第一标签映射消息的发送 方, 所述第二标签映射消息携带所述匹配的本地伪线信息和所述匹配的本地隧 道信息。
4、 根据权利要求 1所述的方法, 其特征在于, 还包括:
当所述伪线参数与所述匹配的本地伪线的参数协商不成功时, 将所述匹配 的本地隧道和所述匹配的本地伪线的绑定进行译放。
5、 根据权利要求 1所述的方法, 其特征在于, 所述标签交换路径隧道信息 包括标签交换路径隧道标识和隧道信息, 且所述标签交换路径隧道标识和所述 隧道信息封装在所述第一标签映射消息的伪线转发等价类类型-长度-数值中。
6、 根据权利要求 1-5中任一所述的方法, 其特征在于, 所述标签交换路径 隧道信息中的标签交换路径隧道为单向或双向标签交换路径隧道, 相应地, 所 述匹配的本地隧道为所述单向或双向标签交换路径隧道。
7、 一种伪线建立装置, 其特征在于, 包括:
接收单元(1 ), 用于接收第一标签映射消息, 所述第一标签映射消息携带 所述第一标签映射消息的发送方选择的伪线标识、 伪线参数和标签交换路径隧 道信息;
伪线匹配单元(2 ), 用于所述伪线标识匹配本地伪线;
参数协商单元(3 ), 用于所述伪线参数与所述匹配的本地伪线的参数进行 协商;
隧道匹配单元( 4 ), 用于所述标签交换路径隧道信息匹配本地隧道; 绑定单元 ( 5 ), 用于当所述伪线标识和所述标签交换路径隧道信息匹配成 功时, 绑定所述匹配的本地隧道和所述匹配的本地伪线;
伪线建立单元(6 ), 用于当所述伪线参数协商成功, 且所述绑定单元(5 ) 绑定成功后, 建立伪线。
8、 根据权利要求 7所述的装置, 其特征在于, 还包括:
发送单元(7 ), 用于伪线建立单元建立伪线后, 发送第二标签映射消息给 所述第一标签映射消息的发送方, 所述第二标签映射消息携带所述匹配的本地 伪线信息和所述匹配的本地隧道信息。
9、 根据权利要求 7所述的装置, 其特征在于, 所述装置还包括:
绑定译放单元(9 ), 用于当所述伪线参数与所述匹配的本地伪线的参数协 商不成功时, 释放所述匹配的本地隧道和所述匹配的本地伪线的绑定。
10、根据权利要求 7-9中任一所述的装置, 其特征在于, 所述标签交换路径 隧道信息中的标签交换路径隧道为单向或双向标签交换路径隧道, 相应地, 所 述隧道匹配单元( 4 ) 匹配的本地隧道为所述单向或双向标签交换路径隧道。
11、 一种伪线建立系统, 其特征在于, 包括:
第一节点, 用于发送第一标签映射消息, 所述第一标签映射消息包括所述 第一节点选择的伪线标识、 伪线参数和标签交换路径隧道信息;
第二节点, 用于接收所述第一标签映射消息, 根据所述伪线标识匹配本地 伪线; 根据所述伪线参数与所述匹配的本地伪线的参数进行协商; 根据所述标 签交换路径隧道信息匹配本地隧道; 当所述伪线标识和所述标签交换路径隧道 信息匹配成功时, 绑定所述匹配的本地隧道和所述匹配的本地伪线。
12、 根据权利要求 11所述的系统, 其特征在于, 所述第二节点, 还用于发 送第二标签映射消息给所述第一节点, 所述第二标签映射消息携带所述匹配的 本地伪线信息和所述匹配的本地隧道信息。
13、 根据权利要求 11所述的系统, 其特征在于, 所述第二节点还用于当所 述伪线参数与所述匹配的本地伪线的参数协商不成功时, 译放所述匹配的本地 隧道和所述匹配的本地伪线的绑定。
14、 根据权利要求 11-13中任一所述的系统, 其特征在于, 所述标签交换路 径隧道信息中的标签交换路径隧道为单向或双向标签交换路径隧道, 相应地, 所述匹配的本地隧道为所述单向或双向标签交换路径隧道。
PCT/CN2009/071904 2008-07-17 2009-05-21 一种伪线建立方法、装置和系统 WO2010006528A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
ES09797375T ES2422265T3 (es) 2008-07-17 2009-05-21 Método, dispositivo y sistema de establecimiento de pseudo-circuito
EP09797375.4A EP2299637B1 (en) 2008-07-17 2009-05-21 Pseudo wire establishing method, device and system
US12/982,571 US8718062B2 (en) 2008-07-17 2010-12-30 Method, device and system for establishing pseudo wire
US14/218,019 US9001832B2 (en) 2008-07-17 2014-03-18 Method, device and system for establishing pseudo wire

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN200810141666 2008-07-17
CN200810141666.3 2008-07-17
CN200810214839.X 2008-08-29
CN200810214839XA CN101631072B (zh) 2008-07-17 2008-08-29 一种伪线建立方法、装置和系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/982,571 Continuation US8718062B2 (en) 2008-07-17 2010-12-30 Method, device and system for establishing pseudo wire

Publications (1)

Publication Number Publication Date
WO2010006528A1 true WO2010006528A1 (zh) 2010-01-21

Family

ID=41550011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/071904 WO2010006528A1 (zh) 2008-07-17 2009-05-21 一种伪线建立方法、装置和系统

Country Status (5)

Country Link
US (2) US8718062B2 (zh)
EP (1) EP2299637B1 (zh)
CN (1) CN101631072B (zh)
ES (1) ES2422265T3 (zh)
WO (1) WO2010006528A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130286890A1 (en) * 2010-10-22 2013-10-31 Ran Chen Method and System for Implementing PW Control Bit Capability Negotiation

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102148738A (zh) * 2010-02-05 2011-08-10 华为技术有限公司 无缝多协议标签交换网络中标签分配方法、装置和系统
CN101800679B (zh) * 2010-03-10 2012-07-11 华为技术有限公司 一种报文丢包检测方法及系统
CN102316079B (zh) * 2010-06-29 2014-12-10 杭州华三通信技术有限公司 一种pbb网络中实现协议连接的方法、系统和beb设备
CN101924676B (zh) * 2010-08-20 2014-07-02 中兴通讯股份有限公司 一种控制字能力的协商方法及伪线建立设备
CN103621022B (zh) * 2010-09-03 2016-11-02 华为技术有限公司 针对虚拟专用局域网服务以使用流感知伪线的系统和方法
CN102394810A (zh) * 2011-10-14 2012-03-28 烽火通信科技股份有限公司 一种在ptn网络中实现伪线业务与通道动态关联的方法
US20130259057A1 (en) * 2012-03-30 2013-10-03 Alcatel-Lucent Usa Inc. Pseudowire groups in a packet switched network
CN102724117B (zh) 2012-06-06 2015-09-30 华为技术有限公司 多协议标签交换流量工程隧道建立方法及设备
CN102724118B (zh) 2012-06-06 2014-12-31 华为技术有限公司 标签分发方法及设备
CN103812745B (zh) * 2012-11-06 2017-10-03 新华三技术有限公司 L2vpn网络中的伪线创建方法及运营商网络边缘设备
US9106556B2 (en) * 2013-02-11 2015-08-11 Avaya Inc. Method to achieve the use of an external metric as the primary tie-breaker in intermediate system to intermediate system (ISIS) route selections
CN104104600B (zh) * 2013-04-01 2018-03-09 华为技术有限公司 一种lsp建立的方法及网络设备
CN105471725B (zh) * 2014-08-05 2019-01-22 新华三技术有限公司 穿越自治系统的路由方法和装置
CN105591771A (zh) * 2014-10-22 2016-05-18 中兴通讯股份有限公司 一种以太网业务配置方法及装置
CN105591868B (zh) * 2015-07-15 2019-03-15 新华三技术有限公司 一种虚拟专用网络vpn的接入方法和装置
US10200253B2 (en) * 2016-01-11 2019-02-05 Futurewei Technologies, Inc. Method of establishing relationships between sets of label switched paths and virtual networks
CN108886494B (zh) * 2016-03-31 2021-03-19 瑞典爱立信有限公司 使用中间系统到中间系统(is-is)的伪线建立和保持的方法和装置
EP3512164B1 (en) * 2016-09-30 2020-12-02 Huawei Technologies Co., Ltd. Pseudo wire load sharing method and apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101001196A (zh) * 2007-01-25 2007-07-18 华为技术有限公司 一种建立伪线隧道并利用其传送报文的方法和装置
CN101159668A (zh) * 2007-10-23 2008-04-09 中兴通讯股份有限公司 伪线和基于包交换传送设备网的创建方法
CN101212400A (zh) * 2006-12-25 2008-07-02 华为技术有限公司 一种协商伪线的双向转发检测会话区分符的方法及系统

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8014380B2 (en) * 2002-07-03 2011-09-06 Alcatel Lucent Method and system for automatically establishing a return label switched path
US7558194B2 (en) 2003-04-28 2009-07-07 Alcatel-Lucent Usa Inc. Virtual private network fault tolerance
US7440438B2 (en) * 2003-10-24 2008-10-21 Nortel Networks Limited Refresh and filtering mechanisms for LDP based VPLS and L2VPN solutions
US7436782B2 (en) * 2004-03-25 2008-10-14 Alcatel Lucent Full mesh LSP and full mesh T-LDP provisioning between provider edge routers in support of Layer-2 and Layer-3 virtual private network services
CN100473069C (zh) * 2004-07-12 2009-03-25 中兴通讯股份有限公司 支持伪线标签反射的二层虚拟专网设备和组网方法
US7733856B2 (en) * 2004-07-15 2010-06-08 Alcatel-Lucent Usa Inc. Obtaining path information related to a virtual private LAN services (VPLS) based network
US7516224B2 (en) * 2004-10-21 2009-04-07 Cisco Technology, Inc. Pseudowire termination directly on a router
US7974202B2 (en) * 2005-05-06 2011-07-05 Corrigent Systems, Ltd. Tunnel provisioning with link aggregation
US9124486B2 (en) * 2005-08-26 2015-09-01 RPX Clearinghouse, LLC Method for establishing multi segment pseudowire across domains having different pseudowire signaling protocol
US20070127479A1 (en) * 2005-12-05 2007-06-07 David Sinicrope A method and arrangement for distributed pseudo-wire signaling
US20070280267A1 (en) * 2006-03-03 2007-12-06 Nortel Networks Limited Completely Dry Pseudowires
US7613188B1 (en) * 2006-04-27 2009-11-03 Alcatel Lucent Ethernet VLL spoke termination at an IP interface
US7965656B1 (en) * 2006-05-31 2011-06-21 Cisco Technology, Inc. Building multipoint pseudo wires using a multipoint label distribution protocol (MLDP)
US7899044B2 (en) * 2006-06-08 2011-03-01 Alcatel Lucent Method and system for optimizing resources for establishing pseudo-wires in a multiprotocol label switching network
US7643499B2 (en) * 2006-06-30 2010-01-05 Alcatel Lucent Extending IP/MPLS services reachability over ATM backbone networks
US7782847B2 (en) * 2006-10-19 2010-08-24 Alcatel Lucent Method and system for verifying connectivity of multi-segment pseudo-wires by tracing
US7860022B2 (en) * 2006-12-21 2010-12-28 Verizon Patent And Licensing Inc. Multifunctional control channel for pseudowire emulation
CN101009627A (zh) * 2006-12-27 2007-08-01 华为技术有限公司 一种业务绑定的方法和设备
CN101584162B (zh) * 2007-01-17 2013-05-29 北方电讯网络有限公司 使以太网与mpls网络交互工作的方法和设备
EP1983701B1 (en) * 2007-04-17 2010-08-25 Alcatel Lucent Method and apparatus for reserving network resources for pseudo point-to-point connection
US7948900B2 (en) * 2007-05-10 2011-05-24 Alcatel Lucent Method and system for verifying connectivity of multi-segment pseudo-wires
US7773594B2 (en) * 2007-07-11 2010-08-10 Cisco Technology, Inc. Transferring DOCSIS frames using a label switching network
US7778190B2 (en) * 2007-09-28 2010-08-17 Fujitsu Limited Correlating label switched paths of a pseudowire
US8295278B2 (en) * 2007-12-18 2012-10-23 Ciena Corporation Systems and methods for pseudowire-in-pseudowire to transport pseudowire payload across packet switched networks
US8233378B2 (en) * 2008-05-15 2012-07-31 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for validating control and data plane association
US8743886B2 (en) * 2011-01-10 2014-06-03 Cisco Technology, Inc. Managing active edge devices in VPLS using BGP signaling

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101212400A (zh) * 2006-12-25 2008-07-02 华为技术有限公司 一种协商伪线的双向转发检测会话区分符的方法及系统
CN101001196A (zh) * 2007-01-25 2007-07-18 华为技术有限公司 一种建立伪线隧道并利用其传送报文的方法和装置
CN101159668A (zh) * 2007-10-23 2008-04-09 中兴通讯股份有限公司 伪线和基于包交换传送设备网的创建方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2299637A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130286890A1 (en) * 2010-10-22 2013-10-31 Ran Chen Method and System for Implementing PW Control Bit Capability Negotiation
US9191312B2 (en) * 2010-10-22 2015-11-17 Zte Corporation Method and system for implementing PW control bit capability negotiation

Also Published As

Publication number Publication date
US8718062B2 (en) 2014-05-06
CN101631072B (zh) 2012-04-04
EP2299637A1 (en) 2011-03-23
CN101631072A (zh) 2010-01-20
US20140198797A1 (en) 2014-07-17
US20120008622A1 (en) 2012-01-12
EP2299637B1 (en) 2013-05-01
ES2422265T3 (es) 2013-09-10
EP2299637A4 (en) 2011-08-10
US9001832B2 (en) 2015-04-07

Similar Documents

Publication Publication Date Title
WO2010006528A1 (zh) 一种伪线建立方法、装置和系统
EP1722523B1 (en) Apparatus and method for reserving session resource in IPv4/IPv6 combination network
Bradford et al. Preserving topology confidentiality in inter-domain path computation using a path-key-based mechanism
US20160006614A1 (en) Source Routing Using Path Computation Elements
WO2012106986A1 (zh) 流标签的协商方法、相关装置以及系统
WO2009135399A1 (zh) 一种建立隧道的方法以及实现隧道建立的系统
WO2013182059A1 (zh) 多协议标签交换流量工程隧道建立方法及设备
WO2008131686A1 (fr) Procédé et dispositif périphérique de fournisseur pour produire et traiter des données de pseudocâble
WO2013059991A1 (zh) 数据报文处理方法和系统、报文转发设备
WO2015054904A1 (zh) 转发报文的方法、控制器、转发设备和网络系统
WO2014194711A1 (zh) 报文处理方法、设备标签处理方法及设备
WO2017211164A1 (zh) 一种确定跨域标签交换路径隧道的方法、设备和系统
CN109218195A (zh) 一种实现双向segment routing隧道的方法及装置
WO2015032275A1 (zh) 隧道建立的方法及路由器
EP2621133B1 (en) Method and system for implementing pw control bit capability negotiation
WO2011103759A1 (zh) 关联的双向标签交换路径的创建方法及系统
WO2006102851A1 (fr) Procede d'information et de negociation de l'aptitude a surveiller propre a la commutation de label
WO2015000384A1 (zh) 一种标签处理的方法及装置
US9521072B2 (en) Method and network device for distributing multi-protocol label switching labels
WO2014180153A1 (zh) 建立标签交换路径的方法、设备及系统
WO2011015102A1 (zh) 关联通道能力协商方法和网络设备
WO2013139234A1 (zh) 一种组播传输方法、装置和网络系统
WO2010124537A1 (zh) 节点关联通道能力的协商方法及节点设备
WO2007030988A1 (fr) Procede destine a mettre en place un systeme et un tunnel d'ingenierie de trafic bidirectionnel ainsi que le routeur correspondant
JP6371399B2 (ja) インターフェースパラメーター同期方法及び装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09797375

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009797375

Country of ref document: EP