WO2010005212A2 - Dye sensitive solar battery or sub-module, and sub-module sealing method - Google Patents

Dye sensitive solar battery or sub-module, and sub-module sealing method Download PDF

Info

Publication number
WO2010005212A2
WO2010005212A2 PCT/KR2009/003663 KR2009003663W WO2010005212A2 WO 2010005212 A2 WO2010005212 A2 WO 2010005212A2 KR 2009003663 W KR2009003663 W KR 2009003663W WO 2010005212 A2 WO2010005212 A2 WO 2010005212A2
Authority
WO
WIPO (PCT)
Prior art keywords
dye
solar cell
sensitized solar
submodule
substrate
Prior art date
Application number
PCT/KR2009/003663
Other languages
French (fr)
Korean (ko)
Other versions
WO2010005212A3 (en
WO2010005212A9 (en
Inventor
문형돈
배호기
김종복
Original Assignee
주식회사 동진쎄미켐
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020080065643A external-priority patent/KR20100005555A/en
Priority claimed from KR1020080065685A external-priority patent/KR20100005591A/en
Application filed by 주식회사 동진쎄미켐 filed Critical 주식회사 동진쎄미켐
Priority to CN2009801263054A priority Critical patent/CN102084496A/en
Publication of WO2010005212A2 publication Critical patent/WO2010005212A2/en
Publication of WO2010005212A3 publication Critical patent/WO2010005212A3/en
Publication of WO2010005212A9 publication Critical patent/WO2010005212A9/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2068Panels or arrays of photoelectrochemical cells, e.g. photovoltaic modules based on photoelectrochemical cells
    • H01G9/2077Sealing arrangements, e.g. to prevent the leakage of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Definitions

  • the present invention relates to a dye-sensitized solar cell or submodule, and more particularly, to improve the durability of the solar cell by increasing the sealing strength of the solar cell or submodule, to prevent leakage of electrolyte, and to bond between transparent substrates.
  • the present invention relates to a dye-sensitized solar cell or a dye-sensitized solar cell submodule that can be easily obtained to increase the yield of the encapsulation process and thereby reduce manufacturing costs.
  • the present invention relates to a method of encapsulating a dye-sensitized solar cell submodule, and more particularly, a difference in thermal expansion rate between the substrate and the encapsulant can be prevented from cracking the encapsulation part.
  • the present invention relates to a method of encapsulating a dye-sensitized solar cell submodule, which is excellent in fire resistance and chemical resistance, and can thereby stabilize durability and performance of a dye-sensitized solar cell.
  • Dye-sensitized solar cells have the potential to replace conventional amorphous silicon solar cells because their manufacturing cost is significantly lower than conventional silicon-based solar cells. Unlike silicon solar cells, dye-sensitized solar cells absorb visible light It is a photoelectrochemical solar cell mainly composed of a dye molecule capable of generating electron-hole pairs and a transition metal oxide that transfers generated electrons.
  • the unit cell structure of a general dye-sensitized solar cell is based on the upper and lower transparent substrates and the conductive transparent electrodes formed on the surfaces of the transparent substrates, respectively, and dyes are formed on the surface of the conductive transparent electrodes on one side corresponding to the first electrode.
  • the porous metal layer having the adsorbed adsorbent is formed, and a catalyst thin film electrode is formed on the other conductive transparent electrode corresponding to the second electrode, and is formed between the transition metal oxide, for example, TiO2, the porous electrode and the catalyst thin film electrode.
  • the dye-sensitized solar cell uses an electrolyte as a hole transport medium, and the electrolyte dependence of the dye-sensitized solar cell depends on the diffusion rate of the electrolyte, and the diffusion rate is a semi-solid or solid type in the liquid organic solvent or the ionic liquid electrolyte. Compared with the diffusion speed, the photoelectric conversion efficiency is excellent.
  • a liquid electrolyte is easy to evaporate according to the external temperature and environment, and since leakage occurs easily to deteriorate the performance of the dye-sensitized solar cell, leakage of such an electrolyte must be prevented. Occurs in the encapsulation or electrolyte inlet.
  • the conventional dye-sensitized solar cell sub-module encapsulation is mainly used to heat the resin or inorganic adhesive encapsulation method, but due to the large difference in coefficient of thermal expansion between the glass substrate and the encapsulant, it is difficult to ensure complete airtightness during encapsulation through heat treatment. It was difficult, in the case of the resin had a problem that the life is shortened due to low chemical resistance and durability.
  • the present invention increases the sealing strength of the solar cell or submodule to improve the durability of the solar cell, to prevent leakage of the electrolyte, and to facilitate the coupling between the transparent substrate It is an object of the present invention to provide a dye-sensitized solar cell or a dye-sensitized solar cell submodule that can increase the yield of the encapsulation process, thereby reducing the manufacturing cost.
  • the present invention has a small difference in thermal expansion rate between the substrate and the encapsulant to prevent cracking of the encapsulation portion, and has excellent airtightness and fire resistance compared to the conventional encapsulation method, thereby providing durability and performance of a dye-sensitized solar cell.
  • An object of the present invention is to provide a method for encapsulating a dye-sensitized solar cell submodule and a dye-sensitized solar cell submodule manufactured by the above method.
  • An edge surface of the upper and lower transparent substrates provides a dye-sensitized solar cell or submodule, which has recessed portions or convex portions projecting or entering toward the opposing transparent substrate.
  • the submodule refers to a cell and an integrated form of the cell, and includes not only a submodule that is actually used in the configuration of the solar cell, but also a module. If the cell and the cell are in contact with each other, the submodule may be included in any form. do.
  • the encapsulation provides a method for encapsulating a dye-sensitized solar cell submodule, wherein the encapsulation is performed by heat treating a metal organic brush.
  • the metal organic sol is Si-alkoxide, Si-acetate, Ti-alkoxide, or Ti-acetate.
  • the present invention also provides a dye-sensitized solar cell submodule encapsulated by the above method.
  • the contact area of the encapsulant increases as the convex / concave portion of the coupling portion through the encapsulant of the solar cell or submodule increases, the bonding strength of the encapsulant increases, thereby improving durability of the solar cell.
  • the method of encapsulating the dye-sensitized solar cell submodule of the present invention has a small difference in thermal expansion rate between the substrate and the encapsulant, thereby preventing cracks in the encapsulation portion, compared with the conventional encapsulation method. It is excellent in airtightness and fire-resistance chemical resistance, and can thereby stabilize durability and performance of dye-sensitized solar cells.
  • FIG. 1 is a cross-sectional view schematically showing a cross-sectional structure of the encapsulation structure of a conventional dye-sensitized solar cell (cell unit). (Conductive transparent electrode not shown)
  • FIG. 2 is a cross-sectional view schematically showing the cross-sectional structure of an embodiment of the encapsulation structure of the dye-sensitized solar cell (cell unit) of the present invention. (Conductive transparent electrode not shown)
  • FIG 3 is a cross-sectional view schematically showing the cross-sectional structure of another embodiment of the encapsulation structure of the dye-sensitized solar cell (cell unit) of the present invention. (Conductive transparent electrode not shown)
  • FIG. 4 is a cross-sectional view schematically showing a cross-sectional structure of an embodiment of the encapsulation structure of the dye-sensitized solar cell (submodule unit) of the present invention. (Conductive transparent electrode not shown)
  • FIG. 5 is a cross-sectional view schematically showing a cross-sectional structure of the encapsulation structure of a conventional dye-sensitized solar cell submodule. (Conductive transparent electrode not shown)
  • FIG. 6 is a cross-sectional view schematically showing a cross-sectional structure of an embodiment of the encapsulation structure of the dye-sensitized solar cell submodule of the present invention.
  • Dye-sensitized solar cell (cell) or sub-module of the present invention the upper, lower transparent substrate, the conductive transparent electrode formed on the inner surface of the substrate facing each other, the transition adsorbed dye formed on one side of the conductive transparent electrode
  • a dye-sensitized solar cell or submodule comprising a metal oxide porous layer and a catalyst thin film electrode formed on the other side of the conductive transparent electrode, wherein edges of the upper and lower transparent substrates are hermetically sealed by an encapsulant.
  • the edge surface of the lower transparent substrate has a concave or convex portion projecting or entering toward the opposing transparent substrate.
  • dye-sensitized solar cell of the present invention here, means a cell unit
  • a submodule the form in which the solar potential cells of the cell unit are integrated
  • the present invention is to solve this problem, in order to increase the area in which the encapsulant (adhesive agent) is in contact with the transparent substrate during application of the encapsulant is formed on the upper, lower transparent substrate, facing inner surface of the substrate, respectively A conductive transparent electrode, a transition metal oxide porous layer adsorbed with a dye formed on one side of the conductive transparent electrode, and a catalyst thin film electrode formed on the other side of the conductive transparent electrode, the upper and lower edges of the transparent substrate
  • edge surfaces of the upper and lower transparent substrates meaning portions in which the encapsulant is applied to maintain airtightness protrude toward the opposing transparent substrate. It is to have recessed or recessed parts.
  • the concave portion or convex portion may be provided irrespective of its shape or correspondence between the concave portion and the convex portion, and may be formed only on either the upper transparent substrate or the lower transparent substrate. However, in order to increase the effect, it is preferable to form recessed portions or convex portions on both sides.
  • FIG. 2 illustrates a dye-sensitized solar cell of a cell unit having a main portion and FIG. 3 a convex portion.
  • the conductive transparent electrode is not shown.
  • This encapsulation structure is not only applied to the airtight of the cell unit but also equally applicable to the airtightness of the submodule, a specific example thereof is shown in FIG. 4. In FIG. 4, only the airtight of the edge of the submodule is shown as such a configuration. However, the same configuration is also applied to the application of the insulating separator (which may be regarded as a kind of encapsulant) between the cells in the submodule and the combination thereof. Of course it can be applied.
  • the insulating separator which may be regarded as a kind of encapsulant
  • the recess or the convex portion is to increase the contact area, as described above, i) the upper part is a recess, the lower part is a recess, ii) the upper part is a convex part, the lower part is a convex part, iii) the upper part is a concave part, the lower part is a convex part, and iv
  • the upper part may have a convex part
  • the lower part may have a constitution of one of the forms, i) in FIG. 3, ii) in FIG. 2, and iii) in the right side of FIG. 4. As shown.
  • the recessed portion or the columnar shape in a continuous or discontinuous line shape parallel to the edge along the edge thereof, the recessed portion or the iron portion is perpendicular to the leakage direction of the electrolyte, so that the electrolyte leakage path It is desirable because the effect of increasing is maximized.
  • the recessed portions may be formed by engraving the transparent substrate in a predetermined shape or pattern (chemically or mechanically, or by using a mixed method thereof).
  • the iron portion may be formed by curing or drying by coating an organic material or inorganic material in a predetermined shape or pattern on the transparent substrate.
  • the inorganic material forming the iron part may use frit glass.
  • the convex portion or the concave portion has the convex portion protruding downward, as shown in the left side of FIG. 4, and the lower transparent substrate is alternately positioned with the convex portion of the upper transparent substrate. It can be configured in the form having a protruding portion to the upper portion. Through this, even when a defect occurs in the encapsulation material, the electrolyte leakage blocking effect of the electrolyte may be increased by the combination of the convex portions.
  • the present invention provides a dye-sensitized solar cell (cell unit) as described above, or a solar cell module in which the sub-modules in which these cells are integrated are integrated. This can be performed in the same manner as in the case of forming a sub-module integrated in a conventional solar cell module, so a detailed description thereof will be omitted.
  • the encapsulation is characterized in that the heat treatment of the metal organic brush.
  • FIG. 1 A specific example of the encapsulation method of the dye-sensitized solar cell submodule of the present invention is as shown in FIG.
  • the present invention is to solve this problem, it is possible to prevent the defect of the encapsulation by encapsulating the encapsulation using a substrate and a metal organic brush having a very small thermal expansion coefficient.
  • the dye-sensitized solar cell submodule encapsulation method of the present invention is as shown in FIG. That is, in the present invention, the dye-sensitized solar cell submodule encapsulation is made by heat treated metal organic brush.
  • the metal organic sol is preferably Si-alkoxide, Si-acetate, Ti-alkoxide, or Ti-acetate, and more preferably, Si-alkoxide or Si-acetate is used when the substrate is glass. It is good. In this case, the difference in the coefficient of thermal expansion between the glass substrate and the encapsulant is small, so that the reliability of the encapsulation can be further ensured.
  • the metal organic brush may be applied to any of the upper or lower plate to be encapsulated, and may be applied to both the upper and lower plates. It is preferable to apply
  • the coating is a well-known coating method can be applied, of course, screen printing is preferred.
  • the metal organic brush is applied to the substrate, and then the top and bottom plates are aligned, and the encapsulation is achieved by heat-treating the metal organic brush coated portion.
  • a known method may be applied.
  • the heat treatment method using a laser is good.
  • the present invention provides a dye-sensitized solar cell submodule encapsulated by the above method
  • the dye-sensitized solar cell submodule according to the present invention is a bag of the top plate and the bottom plate is encapsulated with a metal organic matter less difference between the substrate and the thermal expansion coefficient It is excellent in chemical resistance and durability, and the defect of the encapsulation part is prevented, and the life is long.
  • the contact area of the encapsulant increases as the convex / concave portion of the coupling portion through the encapsulant of the solar cell or submodule increases, the bonding strength of the encapsulant increases, thereby improving durability of the solar cell.
  • the method of encapsulating the dye-sensitized solar cell submodule of the present invention has a small difference in thermal expansion rate between the substrate and the encapsulant, thereby preventing cracks in the encapsulation portion, compared with the conventional encapsulation method. It is excellent in airtightness and fire-resistance chemical resistance, and can thereby stabilize durability and performance of dye-sensitized solar cells.

Abstract

The present invention relates to a dye sensitive solar battery or sub-module, and a sub-module sealing method. A dye sensitive solar battery includes an upper transparent substrate and a lower transparent substrate, a conductive transparent electrode formed on each of the opposed inner surfaces of the substrates, a transition metal oxide porous layer which is adsorbed with dyes and formed on one side of the conductive transparent electrode, and a catalyst thin film electrode formed on the other side of the conductive transparent electrode, wherein edges of the upper and lower transparent substrates are sealed by a sealing material, and surfaces of the edges of the upper and lower transparent substrates have convexes or concaves protruding or recessed toward or from the opposed transparent substrates. In a method for sealing a dye sensitive solar battery sub-module including an upper transparent substrate and a lower transparent substrate, a conductive transparent electrode formed on each of the opposed inner surfaces of the substrates, a transition metal oxide porous layer which is adsorbed with dyes and formed on one side of the conductive transparent electrode, and a catalyst thin film electrode formed on the other side of the conductive transparent electrode, edges of the upper and lower transparent substrates are sealed, and the sealing is performed by heat-treating a metal organic material sol.

Description

염료감응 태양전지 또는 서브모듈 및 서브모듈 봉지방법Dye-sensitized solar cell or sub module and sub module encapsulation method
본 발명은 염료감응 태양전지 또는 서브모듈에 관한 것으로, 더욱 상세하게는 태양전지 셀 또는 서브모듈의 봉지강도를 증가하여 태양전지의 내구성을 향상하고, 전해질의 누액을 방지하며, 투명기판 사이의 결합이 용이하도록 하여 봉지공정의 수율을 증대하여 제조단가를 절감하는 효과를 얻을 수 있는 염료감응 태양전지 또는 염료감응 태양전지 서브모듈에 관한 것이다.The present invention relates to a dye-sensitized solar cell or submodule, and more particularly, to improve the durability of the solar cell by increasing the sealing strength of the solar cell or submodule, to prevent leakage of electrolyte, and to bond between transparent substrates. The present invention relates to a dye-sensitized solar cell or a dye-sensitized solar cell submodule that can be easily obtained to increase the yield of the encapsulation process and thereby reduce manufacturing costs.
또한 본 발명은 염료감응 태양전지 서브모듈의 봉지방법에 관한 것으로, 더욱 상세하게는 기판과 봉지제 사이의 열팽창율의 차이가 적어 봉지부 균열을 방지할 수 있으며, 종래 봉지방법과 비교하여 기밀성, 내화화학성이 우수하며, 이를 통하여 염료감응 태양전지의 내구성 및 성능 안정화를 도모할 수 염료감응 태양전지 서브모듈의 봉지방법에 관한 것이다.In addition, the present invention relates to a method of encapsulating a dye-sensitized solar cell submodule, and more particularly, a difference in thermal expansion rate between the substrate and the encapsulant can be prevented from cracking the encapsulation part. The present invention relates to a method of encapsulating a dye-sensitized solar cell submodule, which is excellent in fire resistance and chemical resistance, and can thereby stabilize durability and performance of a dye-sensitized solar cell.
1991년도 스위스 국립 로잔 고등기술원(EPFL)의 마이클 그라첼(Michael Gratzel) 연구팀에 의해 염료감응 나노입자 산화티타늄 태양전지가 개발된 이후 이 분야에 관한 많은 연구가 진행되고 있다. 염료감응태양전지는 기존의 실리콘계 태양전지에 비해 제조단가가 현저기 낮기 때문에 기존의 비정질 실리콘 태양전지를 대체할 수 있는 가능성을 가지고 있으며, 실리콘 태양전지와 달리 염료감응태양전지는 가시광선을 흡수하여 전자-홀 쌍을 생성할 수 있는 염료분자와, 생성된 전자를 전달하는 전이금속 산화물을 주 구성 재료로 하는 광전기화학적 태양전지이다.Since the development of the dye-sensitized nanoparticle titanium oxide solar cell by the team of Michael Gratzel of the Swiss National Lausanne Institute of Advanced Technology (EPFL) in 1991, much work has been done in this area. Dye-sensitized solar cells have the potential to replace conventional amorphous silicon solar cells because their manufacturing cost is significantly lower than conventional silicon-based solar cells. Unlike silicon solar cells, dye-sensitized solar cells absorb visible light It is a photoelectrochemical solar cell mainly composed of a dye molecule capable of generating electron-hole pairs and a transition metal oxide that transfers generated electrons.
일반적인 염료감응 태양전지의 단위 셀 구조는 상, 하부 투명한 기판과 그 투명기판의 표면에 각각 형성되는 도전성 투명전극을 기본으로 하여, 제1전극에 해당하는 일 측의 도전성 투명전극위에는 그 표면에 염료가 흡착된 전이금속 산화물 다공질 층이 형성되어지고, 제2전극에 해당하는 타 측 도전성 투명전극 위에는 촉매박막전극이 형성되어지며, 상기 전이금속 산화물, 예를 들면 TiO2, 다공질 전극과 촉매박막전극 사이에는 전해질이 충진되어지는 구조를 가진다. 즉, 염료감응 태양전지는 정공전달 매개로서 전해질을 사용하며, 염료감응 태양전지의 전해질 의존성은 전해질의 확산속도에 의존하며, 확산속도는 액체상태의 유기용매나 이온액체전해질이 반고체형이나 고체형에 비교하여 확산속도가 크며 따라서 광전변환효율 성능이 우수하다. 그러나 이와 같은 액상전해질은 외부온도, 환경에 따라 증발하기 쉬우며, 누액이 발생하여 염료감응 태양전지의 성능을 저하시키기 쉬우므로, 이와 같은 전해액의 누액이 발생하는 것을 막아야 하는데, 이러한 누액은 주로 불완전한 봉지부나 전해질 주입구에서 발생한다.The unit cell structure of a general dye-sensitized solar cell is based on the upper and lower transparent substrates and the conductive transparent electrodes formed on the surfaces of the transparent substrates, respectively, and dyes are formed on the surface of the conductive transparent electrodes on one side corresponding to the first electrode. The porous metal layer having the adsorbed adsorbent is formed, and a catalyst thin film electrode is formed on the other conductive transparent electrode corresponding to the second electrode, and is formed between the transition metal oxide, for example, TiO2, the porous electrode and the catalyst thin film electrode. Has a structure in which an electrolyte is filled. That is, the dye-sensitized solar cell uses an electrolyte as a hole transport medium, and the electrolyte dependence of the dye-sensitized solar cell depends on the diffusion rate of the electrolyte, and the diffusion rate is a semi-solid or solid type in the liquid organic solvent or the ionic liquid electrolyte. Compared with the diffusion speed, the photoelectric conversion efficiency is excellent. However, such a liquid electrolyte is easy to evaporate according to the external temperature and environment, and since leakage occurs easily to deteriorate the performance of the dye-sensitized solar cell, leakage of such an electrolyte must be prevented. Occurs in the encapsulation or electrolyte inlet.
따라서 이와 같은 봉지부의 결합강도를 향상시키고, 봉지부의 결함을 방지하기 위하여 봉지부의 개선이 필요한 실정이다.Therefore, in order to improve the bonding strength of such an encapsulation part and to prevent defects of the encapsulation part, an improvement of the encapsulation part is necessary.
또한 종래 염료감응 태양전지 서브모듈의 봉지는 주로 레진 또는 무기접착제를 열처리하여 봉지하는 방법이 사용되었으나, 유리기판과 봉지제와의 열팽창계수의 차이가 커서 열처리를 통한 봉지시 완전한 기밀을 확보하기가 어려웠으며, 레진의 경우 내화학성 및 내구성이 떨어져 수명이 짧아지는 문제점이 있었다.In addition, the conventional dye-sensitized solar cell sub-module encapsulation is mainly used to heat the resin or inorganic adhesive encapsulation method, but due to the large difference in coefficient of thermal expansion between the glass substrate and the encapsulant, it is difficult to ensure complete airtightness during encapsulation through heat treatment. It was difficult, in the case of the resin had a problem that the life is shortened due to low chemical resistance and durability.
따라서 이와 같은 봉지부의 결합강도를 향상시키고, 내화학성 및 내구성을 향상시켜 봉지부의 결함을 방지하기 위하여 봉지부의 개선이 필요한 실정이다.Therefore, in order to improve the bonding strength of such an encapsulation part, and to improve chemical resistance and durability, an improvement of the encapsulation part is required.
상기와 같은 종래기술의 문제점을 해결하고자, 본 발명은 태양전지 셀 또는 서브모듈의 봉지강도를 증가하여 태양전지의 내구성을 향상하고, 전해질의 누액을 방지하며, 투명기판 사이의 결합이 용이하도록 하여 봉지공정의 수율을 증대하여 제조단가를 절감하는 효과를 얻을 수 있는 염료감응 태양전지 또는 염료감응 태양전지 서브모듈을 제공하는 것을 목적으로 한다.In order to solve the problems of the prior art as described above, the present invention increases the sealing strength of the solar cell or submodule to improve the durability of the solar cell, to prevent leakage of the electrolyte, and to facilitate the coupling between the transparent substrate It is an object of the present invention to provide a dye-sensitized solar cell or a dye-sensitized solar cell submodule that can increase the yield of the encapsulation process, thereby reducing the manufacturing cost.
또한, 본 발명은 기판과 봉지제 사이의 열팽창율의 차이가 적어 봉지부 균열을 방지할 수 있으며, 종래 봉지방법과 비교하여 기밀성, 내화화학성이 우수하며, 이를 통하여 염료감응 태양전지의 내구성 및 성능 안정화를 도모할 수 있는 염료감응 태양전지 서브모듈의 봉지방법 및 상기 방법에 의하여 제조된 염료감응 태양전지 서브모듈을 제공하는 것을 목적으로 한다.In addition, the present invention has a small difference in thermal expansion rate between the substrate and the encapsulant to prevent cracking of the encapsulation portion, and has excellent airtightness and fire resistance compared to the conventional encapsulation method, thereby providing durability and performance of a dye-sensitized solar cell. An object of the present invention is to provide a method for encapsulating a dye-sensitized solar cell submodule and a dye-sensitized solar cell submodule manufactured by the above method.
상기 목적을 달성하기 위하여, 본 발명은In order to achieve the above object, the present invention
상, 하부 투명 기판, 상기 기판의 마주보는 내측 표면에 각각 형성되는 도전성 투명전극, 상기 도전성 투명전극의 일 측에 형성되는 염료가 흡착된 전이금속 산화물 다공질 층 및, 상기 도전성 투명전극의 타 측에 형성되는 촉매박막전극을 포함하고, 상기 상, 하부 투명 기판의 가장자리가 봉지재에 의하여 기밀 되는 염료감응 태양전지 또는 서브모듈에 있어서,Upper and lower transparent substrates, conductive transparent electrodes formed on opposite inner surfaces of the substrate, a transition metal oxide porous layer adsorbed with a dye formed on one side of the conductive transparent electrode, and the other side of the conductive transparent electrode. In the dye-sensitized solar cell or submodule comprising a catalyst thin film electrode formed, the edges of the upper and lower transparent substrate is hermetically sealed by an encapsulant,
상기 상, 하부 투명 기판의 가장자리 표면은 마주보는 투명기판을 향하여 돌출하거나 들어간 요부 또는 철부를 가지는 것을 특징으로 하는 염료감응 태양전지 또는 서브모듈을 제공한다.An edge surface of the upper and lower transparent substrates provides a dye-sensitized solar cell or submodule, which has recessed portions or convex portions projecting or entering toward the opposing transparent substrate.
상기 서브모듈은 셀과 셀이 집적된 형태를 의미하는 것으로 태양전지의 구성에서 사용되는 실질적인 서브모듈뿐만 아니라 모듈도 모두 포함하는 의미로서, 셀과 셀이 서로 접하여 집적되면 어떤 형태이든 무관하게 이에 포함된다.The submodule refers to a cell and an integrated form of the cell, and includes not only a submodule that is actually used in the configuration of the solar cell, but also a module. If the cell and the cell are in contact with each other, the submodule may be included in any form. do.
또한 본 발명은 In addition, the present invention
상, 하부 투명 기판, 상기 기판의 마주보는 내측 표면에 각각 형성되는 도전성 투명전극, 상기 도전성 투명전극의 일 측에 형성되는 염료가 흡착된 전이금속 산화물 다공질 층 및, 상기 도전성 투명전극의 타 측에 형성되는 촉매박막전극을 포함하고, 상기 상, 하부 투명 기판의 가장자리를 봉지하여 기밀 되는 염료감응 태양전지 서브모듈의 봉지방법에 있어서, Upper and lower transparent substrates, conductive transparent electrodes formed on opposite inner surfaces of the substrate, a transition metal oxide porous layer adsorbed with a dye formed on one side of the conductive transparent electrode, and the other side of the conductive transparent electrode. In the method of encapsulating a dye-sensitized solar cell submodule comprising a catalyst thin film electrode to be formed, which is sealed by sealing the edges of the upper and lower transparent substrates,
상기 봉지가 금속 유기물 솔을 열처리하여 이루어지는 것을 특징으로 하는 염료감응 태양전지 서브모듈의 봉지방법을 제공한다.The encapsulation provides a method for encapsulating a dye-sensitized solar cell submodule, wherein the encapsulation is performed by heat treating a metal organic brush.
바람직하기로는 상기 금속 유기물 솔이 Si-알콕사이드, Si-아세테이트, Ti-알콕사이드, 또는 Ti-아세테이트인 것이 좋다.Preferably, the metal organic sol is Si-alkoxide, Si-acetate, Ti-alkoxide, or Ti-acetate.
또한 본 발명은 상기 방법에 의하여 봉지된 염료감응 태양전지 서브모듈을 제공한다.The present invention also provides a dye-sensitized solar cell submodule encapsulated by the above method.
본 발명의 염료감응 태양전지(셀) 또는 서브모듈에 따르면. 태양전지 셀 또는 서브모듈의 봉지재를 통한 결합부위에 요/철부를 가짐에 따라 봉지재의 접촉 면적이 증가하여 봉지재의 결합강도를 증대시키므로 이를 통하여 태양전지의 내구성을 향상할 수 있다.According to the dye-sensitized solar cell (cell) or submodule of the present invention. Since the contact area of the encapsulant increases as the convex / concave portion of the coupling portion through the encapsulant of the solar cell or submodule increases, the bonding strength of the encapsulant increases, thereby improving durability of the solar cell.
또한 이러한 봉재재의 결합강도 향상에 따라 전해질의 누액을 방지하며, 투명기판 사이의 결합이 신뢰성 있게 이루어질 수 있으므로 봉지공정의 수율을 증대하여 제조단가를 절감하는 효과를 얻을 수 있으며, 요철부위의 형성에 따라 전해질의 누액이 발생하는 경우, 다수의 요철부위 자체가 누액 경로를 증가시켜 기밀효과를 가짐에 따라 누액을 방지하는 효과를 가진다.In addition, as the bonding strength of the bar is improved, leakage of the electrolyte is prevented, and the bonding between the transparent substrates can be made reliably, thereby increasing the yield of the encapsulation process, thereby reducing the manufacturing cost, and forming the uneven portion. Accordingly, when leakage of the electrolyte occurs, a plurality of uneven parts themselves increase the leakage path and have an airtight effect, thereby preventing leakage.
본 발명의 염료감응 태양전지 서브모듈의 봉지방법은 염료감응 태양전지 서브모듈의 봉지방법은 기판과 봉지제 사이의 열팽창율의 차이가 적어 봉지부 균열을 방지할 수 있으며, 종래 봉지방법과 비교하여 기밀성, 내화화학성이 우수하며, 이를 통하여 염료감응 태양전지의 내구성 및 성능 안정화를 도모할 수 있다.In the method of encapsulating the dye-sensitized solar cell submodule of the present invention, the method of encapsulating the dye-sensitized solar cell submodule has a small difference in thermal expansion rate between the substrate and the encapsulant, thereby preventing cracks in the encapsulation portion, compared with the conventional encapsulation method. It is excellent in airtightness and fire-resistance chemical resistance, and can thereby stabilize durability and performance of dye-sensitized solar cells.
도 1은 종래의 염료감응 태양전지 (셀 단위)의 봉지구조에 대한 단면구조를 개략적으로 도시한 단면도이다. (도전성 투명전극 미도시)1 is a cross-sectional view schematically showing a cross-sectional structure of the encapsulation structure of a conventional dye-sensitized solar cell (cell unit). (Conductive transparent electrode not shown)
도 2는 본 발명의 염료감응 태양전지 (셀 단위)의 봉지구조에 대한 일 실시예의 단면구조를 개략적으로 도시한 단면도이다. (도전성 투명전극 미도시)2 is a cross-sectional view schematically showing the cross-sectional structure of an embodiment of the encapsulation structure of the dye-sensitized solar cell (cell unit) of the present invention. (Conductive transparent electrode not shown)
도 3은 본 발명의 염료감응 태양전지 (셀 단위)의 봉지구조에 대한 다른 실시예의 단면구조를 개략적으로 도시한 단면도이다. (도전성 투명전극 미도시)3 is a cross-sectional view schematically showing the cross-sectional structure of another embodiment of the encapsulation structure of the dye-sensitized solar cell (cell unit) of the present invention. (Conductive transparent electrode not shown)
도 4는 본 발명의 염료감응 태양전지 (서브모듈 단위)의 봉지구조에 대한 일 실시예의 단면구조를 개략적으로 도시한 단면도이다. (도전성 투명전극 미도시)4 is a cross-sectional view schematically showing a cross-sectional structure of an embodiment of the encapsulation structure of the dye-sensitized solar cell (submodule unit) of the present invention. (Conductive transparent electrode not shown)
도 5는 종래의 염료감응 태양전지 서브모듈의 봉지구조에 대한 단면구조를 개략적으로 도시한 단면도이다. (도전성 투명전극 미도시)5 is a cross-sectional view schematically showing a cross-sectional structure of the encapsulation structure of a conventional dye-sensitized solar cell submodule. (Conductive transparent electrode not shown)
도 6은 본 발명의 염료감응 태양전지 서브모듈의 봉지구조에 대한 일 실시예의 단면구조를 개략적으로 도시한 단면도이다.6 is a cross-sectional view schematically showing a cross-sectional structure of an embodiment of the encapsulation structure of the dye-sensitized solar cell submodule of the present invention.
이하 본 발명을 상세하게 설명한다. Hereinafter, the present invention will be described in detail.
본 발명의 염료감응 태양전지(셀) 또는 서브모듈은 상, 하부 투명 기판, 상기 기판의 마주보는 내측 표면에 각각 형성되는 도전성 투명전극, 상기 도전성 투명전극의 일 측에 형성되는 염료가 흡착된 전이금속 산화물 다공질 층 및, 상기 도전성 투명전극의 타 측에 형성되는 촉매박막전극을 포함하고, 상기 상, 하부 투명 기판의 가장자리가 봉지재에 의하여 기밀 되는 염료감응 태양전지 또는 서브모듈에 있어서, 상기 상, 하부 투명 기판의 가장자리 표면은 마주보는 투명기판을 향하여 돌출하거나 들어간 요부 또는 철부를 가지는 구성으로 이루어진다.Dye-sensitized solar cell (cell) or sub-module of the present invention, the upper, lower transparent substrate, the conductive transparent electrode formed on the inner surface of the substrate facing each other, the transition adsorbed dye formed on one side of the conductive transparent electrode A dye-sensitized solar cell or submodule comprising a metal oxide porous layer and a catalyst thin film electrode formed on the other side of the conductive transparent electrode, wherein edges of the upper and lower transparent substrates are hermetically sealed by an encapsulant. The edge surface of the lower transparent substrate has a concave or convex portion projecting or entering toward the opposing transparent substrate.
이에 대한 상세한 설명은 도면을 참고하여 설명한다. Detailed description thereof will be described with reference to the accompanying drawings.
본 발명의 염료감응 태양전지(여기서는 셀 단위를 의미함.) 또는 서브모듈(상기 셀 단위의 태양전위 셀이 집적된 형태)에 대한 구체적인 예는 도 2 내지 도 4에 도시한 바와 같다. Specific examples of the dye-sensitized solar cell of the present invention (here, means a cell unit) or a submodule (the form in which the solar potential cells of the cell unit are integrated) are as shown in FIGS. 2 to 4.
즉, 도 1에 종래의 예를 도시한 바와 같이, 종래의 염료감응 태양전지 단위 셀의 경우에는 투명 기판의 결합에 있어서, 단순히 봉지재 (통상의 다양한 유기 또는 무기 접착제)를 도포하여 이를 결합하는 방식을 적용하였으나, 이는 견고한 접착이 이루어지지 않아, 봉지 부분에서의 결함이 전해질 누액을 야기해 결함을 발생시키는 요인이 되어왔다.That is, as shown in the conventional example in Figure 1, in the case of a conventional dye-sensitized solar cell unit cell in the bonding of the transparent substrate, simply by applying an encapsulant (usually various organic or inorganic adhesives) to combine them Although the method is applied, this is not a firm adhesion, the defects in the encapsulation portion has been a factor that causes the electrolyte leakage occurs.
따라서 본 발명은 이러한 문제를 해결하기 위한 것으로, 봉지재의 도포 시에 봉지재(접착제)가 투명 기판에 접촉하는 면적을 증대시키기 위하여 상, 하부 투명 기판, 상기 기판의 마주보는 내측 표면에 각각 형성되는 도전성 투명전극, 상기 도전성 투명전극의 일 측에 형성되는 염료가 흡착된 전이금속 산화물 다공질 층 및, 상기 도전성 투명전극의 타 측에 형성되는 촉매박막전극을 포함하고, 상기 상, 하부 투명 기판의 가장자리가 봉지재에 의하여 기밀 되는 염료감응 태양전지 또는 서브모듈에 있어서, 상기 상, 하부 투명 기판의 가장자리 표면(실제로 봉지재가 도포되어 기밀이 유지되는 부분을 의미함.)은 마주보는 투명기판을 향하여 돌출하거나 들어간 요부(凹部)또는 철부(凸部)를 가지도록 하는 것이다.Accordingly, the present invention is to solve this problem, in order to increase the area in which the encapsulant (adhesive agent) is in contact with the transparent substrate during application of the encapsulant is formed on the upper, lower transparent substrate, facing inner surface of the substrate, respectively A conductive transparent electrode, a transition metal oxide porous layer adsorbed with a dye formed on one side of the conductive transparent electrode, and a catalyst thin film electrode formed on the other side of the conductive transparent electrode, the upper and lower edges of the transparent substrate In the dye-sensitized solar cell or submodule in which air is sealed by an encapsulation material, edge surfaces of the upper and lower transparent substrates (meaning portions in which the encapsulant is applied to maintain airtightness) protrude toward the opposing transparent substrate. It is to have recessed or recessed parts.
이는 봉지재의 접촉면적을 증대시키는 것을 목적으로 하므로, 그 형상이나, 요부와 철부의 대응관계에 무관하게 요부 또는 철부를 가지면 되는 것이고, 상부 투명기판 또는 하부 투명기판 중 어느 하나에만 이를 형성하여도 무관하나, 효과를 증대하기 위해서는 양쪽에 모두 요부 또는 철부를 형성하는 것이 바람직하다.This is for the purpose of increasing the contact area of the encapsulant, and therefore, the concave portion or convex portion may be provided irrespective of its shape or correspondence between the concave portion and the convex portion, and may be formed only on either the upper transparent substrate or the lower transparent substrate. However, in order to increase the effect, it is preferable to form recessed portions or convex portions on both sides.
이에 대한 구체적인 예로 도 2는 요부, 도 3은 철부를 가지는 셀 단위의 염료감응 태양전지를 도시하고 있다. 여기서 편의상 도전성 투명전극은 도시하지 않았다. 이러한 봉지구조는 셀 단위의 기밀에만 적용되는 것이 아니라 서브모듈의 기밀에도 동일하게 적용할 수 있으므로, 이에 대한 구체적인 예는 도 4에 도시한 바와 같다. 도 4의 경우에는 서브 모듈 가장자리의 기밀만을 이와 같은 구성으로 한 것을 도시하고 있으나, 서브모듈 내의 각 셀 사이의 절연 분리막(일종의 봉지재로 볼 수도 있음)의 도포 및 이를 통한 결합에 있어서도 이와 동일한 구성을 적용할 수 있음은 물론이다.2 illustrates a dye-sensitized solar cell of a cell unit having a main portion and FIG. 3 a convex portion. For convenience, the conductive transparent electrode is not shown. This encapsulation structure is not only applied to the airtight of the cell unit but also equally applicable to the airtightness of the submodule, a specific example thereof is shown in FIG. 4. In FIG. 4, only the airtight of the edge of the submodule is shown as such a configuration. However, the same configuration is also applied to the application of the insulating separator (which may be regarded as a kind of encapsulant) between the cells in the submodule and the combination thereof. Of course it can be applied.
또한 상기 요부 또는 철부는 상기 기술한 바와 같이, 접촉면적을 증대하는 것이므로 i) 상부는 요부, 하부는 요부, ii) 상부는 철부, 하부는 철부, iii) 상부는 요부, 하부는 철부, 및 iv) 상부는 철부, 하부는 요부의 형태 중 어느 하나로 이루어지는 구성을 가질 수 있으며, i)의 경우는 도 3에, ii)의 경우는 도 2에, iii)의 경우는 도 4의 우측에 그 예를 도시한 바와 같다.In addition, the recess or the convex portion is to increase the contact area, as described above, i) the upper part is a recess, the lower part is a recess, ii) the upper part is a convex part, the lower part is a convex part, iii) the upper part is a concave part, the lower part is a convex part, and iv The upper part may have a convex part, and the lower part may have a constitution of one of the forms, i) in FIG. 3, ii) in FIG. 2, and iii) in the right side of FIG. 4. As shown.
특히, 상기 요부 또는 철주의 형상을 도시한 바와 같이 가장자리를 따라 이에 평행한 연속 또는 불연속 라인 형상으로 형성하는 경우에는 전해액의 누액 방향에 대하여 상기 요부 또는 철부가 수직한 방향이 되므로 전해질의 누액 경로를 증대하는 효과가 극대화 되므로 바람직하다.Particularly, in the case of forming the recessed portion or the columnar shape in a continuous or discontinuous line shape parallel to the edge along the edge thereof, the recessed portion or the iron portion is perpendicular to the leakage direction of the electrolyte, so that the electrolyte leakage path It is desirable because the effect of increasing is maximized.
또한 상기 요부 또는 철부를 형성하는 방법으로, 상기 요부는 상기 투명 기판을 일정한 형상이나 패턴으로 음각(화학적 또는 기계적 또는 이를 혼용한 방법 등으로 이를 수행할 수 있다.)하여 이를 형성할 수 있고, 상기 철부는 투명기판 상에 유기물 또는 무기물을 일정한 형상이나 패턴으로 도포하여 큐어링하거나 건조하여 이를 형성할 수 있으며, 바람직하게는 상기 철부를 형성하는 무기물로는 프릿 글래스 (frit glass)를 사용할 수 있고, 이러한 프릿 글래스의 도포를 일정한 패턴으로 형성하기 위해서는 인쇄공정을 통하여 이를 수행하여 철부를 형성하는 것이 패턴의 균일성이나 공정의 편의성 측면에서 좋다.In addition, as a method of forming the recessed or convex portions, the recessed portions may be formed by engraving the transparent substrate in a predetermined shape or pattern (chemically or mechanically, or by using a mixed method thereof). The iron portion may be formed by curing or drying by coating an organic material or inorganic material in a predetermined shape or pattern on the transparent substrate. Preferably, the inorganic material forming the iron part may use frit glass. In order to form the coating of the frit glass in a predetermined pattern, it is preferable to form the convex portion by performing this through a printing process in terms of uniformity of the pattern or convenience of the process.
또한 더욱 바람직하게는 상기 철부 또는 요부는 도 4의 좌측에 그 예를 도시한 바와 같이 상기 상부 투명 기판은 하부로 돌출한 철부를 가지고, 상기 하부 투명 기판은 상기 상부 투명 기판의 철부와 서로 엇갈리게 위치하는 상부로 돌출한 철부를 가지는 형태로 이를 구성할 수 있다. 이를 통하여 봉지재의 결함발생 시에도 철부들의 조합에 의하여 전해질의 누액 차단 효과를 증대할 수 있다.More preferably, the convex portion or the concave portion has the convex portion protruding downward, as shown in the left side of FIG. 4, and the lower transparent substrate is alternately positioned with the convex portion of the upper transparent substrate. It can be configured in the form having a protruding portion to the upper portion. Through this, even when a defect occurs in the encapsulation material, the electrolyte leakage blocking effect of the electrolyte may be increased by the combination of the convex portions.
이외에도 본 발명은 상기 기술한 바와 같은 염료감응 태양전지(셀 단위) 또는 이러한 셀 들이 집적된 서브모듈이 집적되어 이루어진 태양전지 모듈을 제공한다. 이는 통상의 태양전지 모듈에서 서브모듈을 집적하여 이를 형성하는 경우와 동일한 방법으로 이를 수행할 수 있으므로 이에 대한 상세한 설명은 생략하도록 한다.In addition, the present invention provides a dye-sensitized solar cell (cell unit) as described above, or a solar cell module in which the sub-modules in which these cells are integrated are integrated. This can be performed in the same manner as in the case of forming a sub-module integrated in a conventional solar cell module, so a detailed description thereof will be omitted.
또한 본 발명의 염료감응 태양전지 서브모듈의 봉지방법은In addition, the encapsulation method of the dye-sensitized solar cell submodule of the present invention
상, 하부 투명 기판, 상기 기판의 마주보는 내측 표면에 각각 형성되는 도전성 투명전극, 상기 도전성 투명전극의 일 측에 형성되는 염료가 흡착된 전이금속 산화물 다공질 층 및, 상기 도전성 투명전극의 타 측에 형성되는 촉매박막전극을 포함하고, 상기 상, 하부 투명 기판의 가장자리를 봉지하여 기밀 되는 염료감응 태양전지 서브모듈의 봉지방법에 있어서, Upper and lower transparent substrates, conductive transparent electrodes formed on opposite inner surfaces of the substrate, a transition metal oxide porous layer adsorbed with a dye formed on one side of the conductive transparent electrode, and the other side of the conductive transparent electrode. In the method of encapsulating a dye-sensitized solar cell submodule comprising a catalyst thin film electrode to be formed, which is sealed by sealing the edges of the upper and lower transparent substrates,
상기 봉지가 금속 유기물 솔을 열처리하여 이루어지는 것을 특징으로 한다.The encapsulation is characterized in that the heat treatment of the metal organic brush.
이에 대한 상세한 설명은 도면을 참고하여 설명한다. Detailed description thereof will be described with reference to the accompanying drawings.
본 발명의 염료감응 태양전지 서브모듈의 봉지방법에 대한 구체적인 예는 도 6에 도시한 바와 같다.A specific example of the encapsulation method of the dye-sensitized solar cell submodule of the present invention is as shown in FIG.
즉, 도 5에 종래의 예를 도시한 바와 같이, 종래의 염료감응 태양전지 단위 셀의 경우에는 투명 기판의 결합에 있어서, 레진 또는 무기접착제를 도포하고 이를 열처리하여 결합하는 방식을 적용하였으나, 이는 레진 또는 무기 접착제와 기판(통상 유리)과 열팽창계수가 차이가 커서 열처리시 견고한 접착이 이루어지지 않아, 봉지 부분에서의 결함이 전해질 누액을 야기해 결함을 발생시키는 요인이 되어왔다.That is, as shown in the conventional example in FIG. 5, in the case of the conventional dye-sensitized solar cell unit cell, a method of applying a resin or an inorganic adhesive and applying heat treatment to the bonding of the transparent substrate is applied, Since the coefficient of thermal expansion differs from resin or inorganic adhesives and the substrate (usually glass), there is no strong adhesion during heat treatment, and defects in the encapsulation portion have caused electrolyte leakage and cause defects.
따라서 본 발명은 이러한 문제를 해결하기 위한 것으로, 상기 봉지를 기판과 열팽창계수가 극히 적은 금속유기물 솔을 이용하여 봉지함으로써 봉지부의 결함을 방지할 수 있다.Accordingly, the present invention is to solve this problem, it is possible to prevent the defect of the encapsulation by encapsulating the encapsulation using a substrate and a metal organic brush having a very small thermal expansion coefficient.
본 발명의 염료감응 태양전지 서브모듈 봉지방법에 대한 구체적인 예로는 도 6에 도시한 바와 같다. 즉 본 발명에서 염료감응 태양전지 서브모듈 봉지는 열처리된 금속유기물 솔에 의하여 이루어지는 것이다. Specific examples of the dye-sensitized solar cell submodule encapsulation method of the present invention are as shown in FIG. That is, in the present invention, the dye-sensitized solar cell submodule encapsulation is made by heat treated metal organic brush.
본 발명에서 상기 금속유기물 솔은 바람직하기로는 Si-알콕사이드, Si-아세테이트, Ti-알콕사이드, 또는 Ti-아세테이트인 것이 좋으며, 더욱 바람직하기로 기판이 유리인 경우 Si-알콕사이드 또는 Si-아세테이트를 사용하는 것이 좋다. 이 경우 유리기판과 봉지제 사이의 열팽창계수의 차이가 적어 더욱 봉지의 신뢰성을 확보할 수 있다.In the present invention, the metal organic sol is preferably Si-alkoxide, Si-acetate, Ti-alkoxide, or Ti-acetate, and more preferably, Si-alkoxide or Si-acetate is used when the substrate is glass. It is good. In this case, the difference in the coefficient of thermal expansion between the glass substrate and the encapsulant is small, so that the reliability of the encapsulation can be further ensured.
본 발명에서 상기 금속유기물 솔은 봉지하고자 하는 상판 또는 하판의 어느 것에나 도포할 수 있으며, 상판 및 하판 모두에 도포할 수도 있다. 바람직하기로는 하판에 도포하는 것이 바람직하다. 상기 도포는 공지의 도포방법이 적용될 수 있음은 물론이며, 바람직하기로는 스크린프린팅이 좋다.In the present invention, the metal organic brush may be applied to any of the upper or lower plate to be encapsulated, and may be applied to both the upper and lower plates. It is preferable to apply | coat to a lower board preferably. Of course, the coating is a well-known coating method can be applied, of course, screen printing is preferred.
본 발명에서는 상기 금속유기물 솔을 기판에 도포한 후 상판과 하판을 정열하고 금속유기물 솔이 도포된 부위를 열처리하여 봉지가 이루지는 바, 상기 열처리는 공지의 방법이 적용될 수 있음은 물론이며, 바람직하기로는 레이저를 이용한 열처리방법이 좋다.In the present invention, the metal organic brush is applied to the substrate, and then the top and bottom plates are aligned, and the encapsulation is achieved by heat-treating the metal organic brush coated portion. Of course, a known method may be applied. The heat treatment method using a laser is good.
또한 본 발명은 상기 방법에 의하여 봉지된 염료감응 태양전지 서브모듈을 제공하는 바, 본 발명에 따른 염료감응 태양전지 서브모듈은 상판과 하판의 봉지가 기판과 열팽창계수의 차이가 적은 금속유기물로 봉지되어 내화학성 및 내구성이 우수하며, 봉지부의 결함이 방지되어 수명이 길어지는 효과가 있다.In addition, the present invention provides a dye-sensitized solar cell submodule encapsulated by the above method, the dye-sensitized solar cell submodule according to the present invention is a bag of the top plate and the bottom plate is encapsulated with a metal organic matter less difference between the substrate and the thermal expansion coefficient It is excellent in chemical resistance and durability, and the defect of the encapsulation part is prevented, and the life is long.
이상에서 설명한 본 발명은 전술한 상세한 설명, 실시예에 의하여 한정되는 것은 아니고, 하기의 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 해당 기술분야의 당업자가 다양하게 수정 및 변경시킨 것 또한 본 발명의 범위 내에 포함됨은 물론이다.The present invention described above is not limited to the above detailed description and examples, and various modifications and changes of those skilled in the art are possible without departing from the spirit and scope of the present invention as set forth in the claims below. Of course it is also included within the scope of the present invention.
본 발명의 염료감응 태양전지(셀) 또는 서브모듈에 따르면. 태양전지 셀 또는 서브모듈의 봉지재를 통한 결합부위에 요/철부를 가짐에 따라 봉지재의 접촉 면적이 증가하여 봉지재의 결합강도를 증대시키므로 이를 통하여 태양전지의 내구성을 향상할 수 있다.According to the dye-sensitized solar cell (cell) or submodule of the present invention. Since the contact area of the encapsulant increases as the convex / concave portion of the coupling portion through the encapsulant of the solar cell or submodule increases, the bonding strength of the encapsulant increases, thereby improving durability of the solar cell.
또한 이러한 봉재재의 결합강도 향상에 따라 전해질의 누액을 방지하며, 투명기판 사이의 결합이 신뢰성 있게 이루어질 수 있으므로 봉지공정의 수율을 증대하여 제조단가를 절감하는 효과를 얻을 수 있으며, 요철부위의 형성에 따라 전해질의 누액이 발생하는 경우, 다수의 요철부위 자체가 누액 경로를 증가시켜 기밀효과를 가짐에 따라 누액을 방지하는 효과를 가진다.In addition, as the bonding strength of the bar is improved, leakage of the electrolyte is prevented, and the bonding between the transparent substrates can be made reliably, thereby increasing the yield of the encapsulation process, thereby reducing the manufacturing cost, and forming the uneven portion. Accordingly, when leakage of the electrolyte occurs, a plurality of uneven parts themselves increase the leakage path and have an airtight effect, thereby preventing leakage.
본 발명의 염료감응 태양전지 서브모듈의 봉지방법은 염료감응 태양전지 서브모듈의 봉지방법은 기판과 봉지제 사이의 열팽창율의 차이가 적어 봉지부 균열을 방지할 수 있으며, 종래 봉지방법과 비교하여 기밀성, 내화화학성이 우수하며, 이를 통하여 염료감응 태양전지의 내구성 및 성능 안정화를 도모할 수 있다.In the method of encapsulating the dye-sensitized solar cell submodule of the present invention, the method of encapsulating the dye-sensitized solar cell submodule has a small difference in thermal expansion rate between the substrate and the encapsulant, thereby preventing cracks in the encapsulation portion, compared with the conventional encapsulation method. It is excellent in airtightness and fire-resistance chemical resistance, and can thereby stabilize durability and performance of dye-sensitized solar cells.

Claims (14)

  1. 상, 하부 투명 기판, 상기 기판의 마주보는 내측 표면에 각각 형성되는 도전성 투명전극, 상기 도전성 투명전극의 일 측에 형성되는 염료가 흡착된 전이금속 산화물 다공질 층 및, 상기 도전성 투명전극의 타 측에 형성되는 촉매박막전극을 포함하고, 상기 상, 하부 투명 기판의 가장자리가 봉지재에 의하여 기밀 되는 염료감응 태양전지 또는 서브모듈에 있어서,Upper and lower transparent substrates, conductive transparent electrodes formed on opposite inner surfaces of the substrate, a transition metal oxide porous layer adsorbed with a dye formed on one side of the conductive transparent electrode, and the other side of the conductive transparent electrode. In the dye-sensitized solar cell or submodule comprising a catalyst thin film electrode formed, the edges of the upper and lower transparent substrate is hermetically sealed by an encapsulant,
    상기 상, 하부 투명 기판의 가장자리 표면은 마주보는 투명기판을 향하여 돌출하거나 들어간 요부 또는 철부를 가지는 것을 특징으로 하는 염료감응 태양전지 또는 서브모듈.Dye-sensitized solar cell or sub-module, characterized in that the edge surface of the upper, lower transparent substrate has a recessed portion or convex portion projecting or entering toward the opposing transparent substrate.
  2. 제1항에 있어서,The method of claim 1,
    상기 요부 또는 철부는 i) 상부는 요부, 하부는 요부, ii) 상부는 철부, 하부는 철부, iii) 상부는 요부, 하부는 철부, 및 iv) 상부는 철부, 하부는 요부의 형태 중 어느 하나로 이루어지는 것을 특징으로 하는 염료감응 태양전지 또는 서브모듈.The recessed part or convex part i) the upper part of the recess, the lower part of the recess, ii) the upper part of the convex part, the lower part of the convex part, iii) the upper part of the concave part, the lower part of the convex part, and iv) the upper part of the convex part, Dye-sensitized solar cell or submodule, characterized in that made.
  3. 제1항에 있어서,The method of claim 1,
    상기 요부 또는 철부는 가장자리를 따라 이에 평행한 연속 또는 불연속 라인 형상인 것을 특징으로 하는 염료감응 태양전지 또는 서브모듈.The recess or the convex portion is a dye-sensitized solar cell or sub-module, characterized in that the continuous or discontinuous line shape parallel to it along the edge.
  4. 제1항에 있어서,The method of claim 1,
    상기 요부는 상기 투명 기판을 음각하거나, 상기 철부는 투명기판 상에 유기물 또는 무기물을 도포하여 형성된 것을 특징으로 하는 염료감응 태양전지 또는 서브모듈.The main portion is engraved with the transparent substrate, or the iron portion is a dye-sensitized solar cell or sub-module, characterized in that formed by applying an organic or inorganic material on the transparent substrate.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 무기물은 프릿 글래스이고, 인쇄공정을 통하여 형성되는 것을 특징으로 하는 염료감응 태양전지 또는 서브모듈.The inorganic material is a frit glass, dye-sensitized solar cell or submodule, characterized in that formed through a printing process.
  6. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 요부 또는 철부는 상기 상부 투명 기판은 하부로 돌출한 철부를 가지고, 상기 하부 투명 기판은 상기 상부 투명 기판의 철부와 서로 엇갈리게 위치하는 상부로 돌출한 철부를 가지는 것을 특징으로 하는 염료감응 태양전지 또는 서브모듈.The recessed part or the convex part has a convex part protruding downward from the upper transparent substrate, and the lower transparent substrate has a convex part protruding upwardly located to be staggered with the convex part of the upper transparent substrate. Submodule.
  7. 제1항 내지 제6항 중 어느 한 항의 염료감응 태양전지 또는 서브모듈이 집적되어 형성되는 염료감응 태양전지 모듈.A dye-sensitized solar cell module formed by integrating the dye-sensitized solar cell or submodule of any one of claims 1 to 6.
  8. 상, 하부 투명 기판, 상기 기판의 마주보는 내측 표면에 각각 형성되는 도전성 투명전극, 상기 도전성 투명전극의 일 측에 형성되는 염료가 흡착된 전이금속 산화물 다공질 층 및, 상기 도전성 투명전극의 타 측에 형성되는 촉매박막전극을 포함하고, 상기 상, 하부 투명 기판의 가장자리를 봉지하여 기밀 되는 염료감응 태양전지 서브모듈의 봉지방법에 있어서, Upper and lower transparent substrates, conductive transparent electrodes formed on opposite inner surfaces of the substrate, a transition metal oxide porous layer adsorbed with a dye formed on one side of the conductive transparent electrode, and the other side of the conductive transparent electrode. In the method of encapsulating a dye-sensitized solar cell submodule comprising a catalyst thin film electrode to be formed, which is sealed by sealing the edges of the upper and lower transparent substrates,
    상기 봉지가 금속 유기물 솔을 열처리하여 이루어지는 것을 특징으로 하는 염료감응 태양전지 서브모듈의 봉지방법.The encapsulation method of a dye-sensitized solar cell submodule, wherein the encapsulation is performed by heat treating a metal organic brush.
  9. 제8항에 있어서,The method of claim 8,
    상기 금속 유기물 솔은 Si-알콕사이드, Si-아세테이트, Ti-알콕사이드, 또는 Ti-아세테이트인 것을 특징으로 하는 염료감응 태양전지 서브모듈의 봉지방법.The metal organic sol is Si-alkoxide, Si-acetate, Ti-alkoxide, or Ti-acetate encapsulation method of a dye-sensitized solar cell sub-module, characterized in that.
  10. 제8항에 있어서,The method of claim 8,
    상기 기판은 유리이고, 상기 금속 유기물 솔은 Si-알콕사이드, 또는 Si-아세테이트인 것을 특징으로 하는 특징으로 하는 염료감응 태양전지 서브모듈의 봉지방법.And the substrate is glass, and the metal organic sol is Si-alkoxide, or Si-acetate.
  11. 제8항에 있어서,The method of claim 8,
    상기 금속 유리물 솔을 상판 또는 하판에 도포 후 상판과 하판을 정열하고, 도포된 금속 유리물 솔 부분을 열처리하여 봉지가 이루어지는 것을 특징으로 하는 염료감응 태양전지 서브모듈의 봉지방법.The method of encapsulating the dye-sensitized solar cell submodule, wherein the metal glass brush is applied to the upper plate or the lower plate, the upper plate and the lower plate are aligned, and the sealing is performed by heat-treating the coated metal glass brush part.
  12. 제11항에 있어서,The method of claim 11,
    상기 금속 유기물 솔의 기판에의 도포는 스크린프린팅법에 의하여 이루어지는 것을 특징으로 하는 특징으로 하는 염료감응 태양전지 서브모듈의 봉지방법.The method of encapsulating the dye-sensitized solar cell submodule, characterized in that the coating of the metal organic brush on the substrate is performed by a screen printing method.
  13. 제11항에 있어서,The method of claim 11,
    상기 열처리는 레이저에 의하여 이루어지는 것을 특징으로 하는 특징으로 하는 염료감응 태양전지 서브모듈의 봉지방법.The heat treatment is a method of encapsulating a dye-sensitized solar cell submodule, characterized in that made by a laser.
  14. 제8항에 의하여 봉지된 염료감응 태양전지 서브모듈.The dye-sensitized solar cell submodule encapsulated according to claim 8.
PCT/KR2009/003663 2008-07-07 2009-07-06 Dye sensitive solar battery or sub-module, and sub-module sealing method WO2010005212A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009801263054A CN102084496A (en) 2008-07-07 2009-07-06 Dye-sensitized solar cell or submodule and submodule packaging method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020080065643A KR20100005555A (en) 2008-07-07 2008-07-07 Dye sensitized solar cell or sub-module
KR1020080065685A KR20100005591A (en) 2008-07-07 2008-07-07 A sealling for sub-moduledye of sensitized solar cell
KR10-2008-0065643 2008-07-07
KR10-2008-0065685 2008-07-07

Publications (3)

Publication Number Publication Date
WO2010005212A2 true WO2010005212A2 (en) 2010-01-14
WO2010005212A3 WO2010005212A3 (en) 2010-03-11
WO2010005212A9 WO2010005212A9 (en) 2010-04-22

Family

ID=41507563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/003663 WO2010005212A2 (en) 2008-07-07 2009-07-06 Dye sensitive solar battery or sub-module, and sub-module sealing method

Country Status (2)

Country Link
CN (1) CN102084496A (en)
WO (1) WO2010005212A2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103022189A (en) * 2011-09-23 2013-04-03 造能科技有限公司 Solar cell encapsulation structure
TWI476940B (en) * 2012-12-28 2015-03-11 Motech Ind Inc Solar cell and solar cell module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100567331B1 (en) * 2004-08-04 2006-04-04 한국전자통신연구원 Lego-type module of dye-sensitized solar cells
KR100728194B1 (en) * 2005-11-11 2007-06-13 삼성에스디아이 주식회사 Dye-sensitized solar cell and method for producing same
KR20080052082A (en) * 2006-12-07 2008-06-11 한국전자통신연구원 Dye-sensitized solar cells having electron recombination protection layer and method for manufacturing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100741903B1 (en) * 2000-10-23 2007-07-24 엘지.필립스 엘시디 주식회사 Liquid Crystal Display Panel of Liquid Crystal Dispensing type and method for manufacturing the same
JP2004362793A (en) * 2003-06-02 2004-12-24 Enplas Corp Dye-sensitized solar cell unit, substrate for dye-sensitized solar cell, and sealing structure of dye-sensitized solar cell unit
JP4647924B2 (en) * 2004-03-23 2011-03-09 タツタ電線株式会社 Shield film for printed wiring board and method for producing the same
KR100838073B1 (en) * 2005-12-30 2008-06-13 삼성에스디아이 주식회사 Organic light emitting device and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100567331B1 (en) * 2004-08-04 2006-04-04 한국전자통신연구원 Lego-type module of dye-sensitized solar cells
KR100728194B1 (en) * 2005-11-11 2007-06-13 삼성에스디아이 주식회사 Dye-sensitized solar cell and method for producing same
KR20080052082A (en) * 2006-12-07 2008-06-11 한국전자통신연구원 Dye-sensitized solar cells having electron recombination protection layer and method for manufacturing the same

Also Published As

Publication number Publication date
WO2010005212A3 (en) 2010-03-11
WO2010005212A9 (en) 2010-04-22
CN102084496A (en) 2011-06-01

Similar Documents

Publication Publication Date Title
AU2010276983B2 (en) Method for manufacturing dye-sensitized solar cell
US20100229941A1 (en) Electrode substrate for photoelectric conversion element
KR20080072425A (en) Dye-sensitized solar cell and method for preparing the same
CN101889366A (en) Functional device and manufacturing method therefor
WO2010005212A9 (en) Dye sensitive solar battery or sub-module, and sub-module sealing method
US10020120B2 (en) Electronic device and manufacturing method for same
WO2013019036A2 (en) Dye-sensitized solar cell module and method for manufacturing same
JP4759646B1 (en) Electronic device and manufacturing method thereof
JP2011222140A (en) Electronic device and manufacturing method thereof
KR20100005555A (en) Dye sensitized solar cell or sub-module
KR20100005591A (en) A sealling for sub-moduledye of sensitized solar cell
WO2010042170A2 (en) Interconnection of adjacent devices
KR101106431B1 (en) Dye-sensitized solar cell having grid protect layer
CN111864114A (en) Display screen packaging structure and packaging method
WO2013027820A1 (en) Electronic device
WO2012044005A2 (en) Unidirectional electrolyte injection hole structure and dye-sensitized solar cell module having same
WO2010013952A2 (en) Dye-sensitized solar cell or sub-module thereof
CN220044081U (en) Perovskite solar cell packaging structure
WO2012157842A1 (en) Dye-sensitized solar cell having improved efficiency by using back surface coloring, and window including having same
US20130340809A1 (en) Dye-sensitized photovoltaic device and fabrication method for the same
CN212485362U (en) Display screen packaging structure
WO2012057494A2 (en) Dye-sensitized solar cell including a highly efficient light-scattering layer
KR101255756B1 (en) Method for sealing injection hole of electrolyte for dye-sensitized solar cell using glass-frit and adhesive resin
WO2014163312A1 (en) Dye-sensitized solar cell and method for manufacturing same
CN116390511A (en) Perovskite solar cell packaging structure and packaging method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980126305.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09794618

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09794618

Country of ref document: EP

Kind code of ref document: A2