WO2010004872A1 - Cold flow improver for biodiesel fuel - Google Patents

Cold flow improver for biodiesel fuel Download PDF

Info

Publication number
WO2010004872A1
WO2010004872A1 PCT/JP2009/061488 JP2009061488W WO2010004872A1 WO 2010004872 A1 WO2010004872 A1 WO 2010004872A1 JP 2009061488 W JP2009061488 W JP 2009061488W WO 2010004872 A1 WO2010004872 A1 WO 2010004872A1
Authority
WO
WIPO (PCT)
Prior art keywords
general formula
acid
carbon atoms
hydrocarbon group
biodiesel fuel
Prior art date
Application number
PCT/JP2009/061488
Other languages
French (fr)
Japanese (ja)
Inventor
由紀 杉浦
幸也 森泉
佳秀 齋尾
真史 飯野
Original Assignee
株式会社Adeka
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Adeka filed Critical 株式会社Adeka
Priority to CN2009801023489A priority Critical patent/CN101910379B/en
Priority to JP2010519723A priority patent/JP5450411B2/en
Publication of WO2010004872A1 publication Critical patent/WO2010004872A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/02Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
    • C10L1/026Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only for compression ignition
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/198Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds homo- or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon to carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid
    • C10L1/1983Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds homo- or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon to carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid polyesters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/14Use of additives to fuels or fires for particular purposes for improving low temperature properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Definitions

  • the present invention relates to a low-temperature fluidity improver for biodiesel fuel containing a fatty acid methyl ester.
  • Fossil fuels such as gasoline, light oil, and oil are mainly used as fuel oil, but when these fuels are consumed, carbon dioxide is released into the atmosphere, which is a major cause of environmental problems such as global warming. It is thought that. For these reasons, various methods have been considered to reduce the release of carbon dioxide into the environment.
  • One method has been proposed to use biofuel.
  • Biofuel is fuel oil obtained mainly from plants, and is used as fuel for automobiles or the like by mixing ethanol, methanol, fatty acid methyl ester, etc. with 100% or fossil fuel.
  • biofuel is made from plants that consume carbon dioxide in the atmosphere, even if biofuel is released into the atmosphere as carbon dioxide by combustion, new plants that are the source of biofuel consume that carbon dioxide , Carbon dioxide in the atmosphere does not increase (carbon dioxide circulation).
  • biofuels have been started in various forms as described above, but can be directly applied to existing engine systems and do not require engine improvements. The study of biodiesel fuel containing most biofuels is most advanced.
  • Patent Document 1 discloses a biodiesel fuel composition in which an antioxidant is added to biodiesel fuel, and the biodiesel fuel contains 1% or more of oleic acid methyl ester and / or linoleic acid methyl ester, As a main component, it comprises one or more fatty acid methyl esters having C4 to C25 carbon atoms, and the antioxidant comprises a natural component and / or a synthetic component, and is based on the total weight of the fatty acid methyl ester.
  • biodiesel fuel containing fatty acid methyl ester has a high pour point, and the fluidity of the fuel deteriorates when the fatty acid methyl ester is blended at a high concentration or when used in cold regions even at low concentrations.
  • Patent Document 2 discloses that compound A represented by the following general formula (A) and compound B represented by the following general formula (B) have a weight ratio (compound A) :( compound B) of 1:99.
  • n represents an integer of 2 or more, and X 1 to X 8 each independently represent hydrogen, a straight-chain hydrocarbon or a branched hydrocarbon group, or a cyclohydrocarbon group having 3 or more carbon atoms.
  • any one of X 9 and X 10 is a linear or branched hydrocarbon group having 8 to 24 carbon atoms, the other is hydrogen, and X 11 is NR 1 R 2 or NHR 3 , X 12 is H + , HN + HR 4 R 5 or HN + H 2 R 6 , and R 1 to R 6 each independently represents a hydrocarbon group having 8 to 24 carbon atoms) Is disclosed.
  • Patent Document 3 discloses (A) a fatty acid selected from linear saturated fatty acids having 8 to 28 carbon atoms and linear unsaturated fatty acids having 8 to 28 carbon atoms, and (B) a pour point depressant and Oil improver for low sulfur gas oil containing at least one modifier selected from low temperature fluidity improver and having a sulfur content of 0.05% by weight or less; pour point depressant is chlorinated paraffin and naphthalene
  • the oil improver for low sulfur gas oil which is at least one selected from condensate, condensate of chlorinated paraffin and phenol, polyalkyl methacrylate, polybutene, polyalkyl styrene, polyvinyl acetate and polyalkyl acrylate; low temperature fluidity Before the improver is at least one selected from ethylene-vinyl acetate copolymer, ethylene-alkyl acrylate and alkenyl succinic acid amide Low sulfur diesel fuel for the oiliness improver is disclosed.
  • JP 2007-016089 A Japanese Patent Laid-Open No. 2005-187581 Japanese Patent Laid-Open No. 10-110175
  • low-temperature fluidity improvers such as those described in Patent Documents 2 and 3 described above are not very effective for biodiesel fuel, and low-temperature fluidity improvers for biodiesel fuel are desired.
  • an object of the present invention is to provide a low temperature fluidity improver that can efficiently improve the low temperature fluidity of biodiesel fuel.
  • the present inventors have intensively studied, and found a low-temperature fluidity improver that can greatly improve the low-temperature fluidity of biodiesel fuel, resulting in the present invention. That is, the present invention relates to a compound (X) represented by the following general formula (1) and / or general formula (2): (In the formula, AH 2 represents a hydrocarbon group having 2 to 300 carbon atoms, g represents an average degree of polymerization, and represents a number of 1 to 1000.) (In the formula, AH 2 represents a hydrocarbon group having 2 to 300 carbon atoms, h represents an average degree of polymerization, and represents a number of 1 to 1000.) One or more polyhydric alcohols (Y) represented by the following general formula (3) R- (OH) n (3) (In the formula, R represents a hydrocarbon group having 2 to 500 carbon atoms which may contain an oxygen atom or a nitrogen atom, and n represents a number of 2 or more.) It is a low temperature fluidity improver for biodiese
  • the effect of the present invention is to provide a low-temperature fluidity improver that can efficiently improve the low-temperature fluidity of biodiesel fuel.
  • Compound (X) that can be used in the present invention can be represented by the following general formula (1) or (2): (In the formula, AH 2 represents a hydrocarbon group having 2 to 300 carbon atoms, g represents an average degree of polymerization, and represents a number of 1 to 1000.) (In the formula, AH 2 represents a hydrocarbon group having 2 to 300 carbon atoms, h represents an average degree of polymerization, and represents a number of 1 to 1000.)
  • Examples of the dicarboxylic acid represented by the general formula (1) include alkanedicarboxylic acids such as succinic acid, glutanic acid, adipic acid, pimelic acid, suberic acid, azelaic acid, and sebacic acid when the value of g is 1.
  • alkanedicarboxylic acids such as succinic acid, glutanic acid, adipic acid, pimelic acid, suberic acid, azelaic acid, and sebacic acid when the value of g is 1.
  • Benzene dicarboxylic acids such as phthalic acid, isophthalic acid and terephthalic acid
  • alkene dicarboxylic acids such as maleic acid
  • compounds obtained by hydrolysis after addition reaction of olefin or polyolefin with maleic anhydride such as succinic acid, glutanic acid, adipic acid, pimelic acid, suberic acid, azelaic acid, and sebacic acid when the value of g is
  • polyalkanedicarboxylic acid such as polysuccinic acid, polyglutanic acid, polyadipic acid, polypimelic acid, polysuberic acid, polyazelinic acid, polysebacic acid; polymerization reaction product of maleic anhydride and olefin or polyolefin And the like obtained by hydrolysis.
  • the acid anhydride represented by the general formula (2) for example, when the value of h is 1, succinic anhydride, glutaric anhydride, adipic anhydride, pimelic anhydride, suberic anhydride, azelaic anhydride , Sebacic anhydride, phthalic anhydride, maleic anhydride, olefins of maleic anhydride, polyolefin adducts, and the like.
  • polyalkanedicarboxylic acid such as polysuccinic anhydride, polyglutanic anhydride, polyadipic anhydride, polypimelic anhydride, polysuberic anhydride, polyazelaic anhydride, polysebacic anhydride, etc.
  • a polymerization reaction product of maleic anhydride and olefin or polyolefin is especially preferred.
  • Examples of the olefin to be reacted with an acid anhydride such as maleic anhydride include, for example, ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-octene, 1-decene, 1-decene, Dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicocene, cyclopentene, cyclohexene, cycloheptene, norbornene, 5-methyl-2-norbornene, tetracyclododecene, styrene, vinylcyclohexane, 1,3-butadiene, Examples include 1,4-pentadiene, 1,5-hexadiene, 1,4-hexadiene, 1,7-octadiene, cyclohexadiene, and the like.
  • Examples of the polyolefin
  • an olefin or polyolefin to an acid anhydride, for example, maleic acid
  • a known method may be used. For example, 1 mol of olefin or polyolefin is added at 180 to 350 ° C. with respect to 1 mol of maleic anhydride.
  • the alkenyl succinic anhydride [h value of the general formula (2) is 1] can be obtained by heating for 2 to 30 hours, and the obtained alkenyl succinic anhydride is hydrolyzed by a known method.
  • alkenyl succinic acid [the value of g in the general formula (1) is 1] which is a dicarboxylic acid can be obtained. Since the following polymerization reaction may proceed during the heating reaction, a polymerization inhibitor such as hydroquinone or a phenolic compound may be added.
  • a known method may be used as a method for polymerization reaction of olefin or polyolefin with acid anhydride, for example maleic acid.
  • a known method may be used.
  • 1 mol of olefin or polyolefin and a polymerization initiator are mixed with 1 mol of maleic anhydride.
  • the polyalkenyl succinic anhydride can be obtained by heating reaction at 180 to 350 ° C. for 2 to 30 hours, and the resulting polyalkenyl succinic anhydride is hydrolyzed by a known method to obtain a polycarboxylic acid.
  • a polyalkenyl succinic acid can be obtained.
  • the degree of polymerization of these polymers is represented by g or h in the general formulas (1) and (2), and the values of g and h are 2 to 1000, but show good performance as a low temperature fluidity improver. Therefore, the values of g and h are preferably 2 to 500, more preferably 2 to 300, and still more preferably 2 to 100.
  • the polymerization initiator include azobisisobutyronitrile and benzoyl peroxide.
  • AH 2 is a hydrocarbon group having 2 to 300 carbon atoms.
  • the performance as a low-temperature fluidity improver is good, 2 to 100 carbon atoms are present. 2-50 are more preferable, and 2-20 are still more preferable.
  • the carbon number of A is less than 2 or more than 300, sufficient performance as a low temperature fluidity improver cannot be obtained.
  • dicarboxylic acid is a compound obtained by subjecting maleic anhydride to addition reaction of olefin or polyolefin and then hydrolyzing, and maleic anhydride is polymerized with olefin or polyolefin.
  • the compound obtained by hydrolysis after the reaction is preferred, and the anhydride is preferably an olefin of maleic anhydride or an adduct of polyolefin and a polymer of maleic anhydride and olefin or polyolefin.
  • the polyhydric alcohol (Y) that can be used in the present invention can be represented by the following general formula (3): R- (OH) n (3) (In the formula, R represents a hydrocarbon group having 2 to 500 carbon atoms which may contain an oxygen atom or a nitrogen atom, and n represents a number of 2 or more.)
  • the compound of the general formula (3) may be any compound as long as it has a hydrocarbon group having 2 to 500 carbon atoms and n is 2 or more, that is, contains 2 or more hydroxyl groups, such as ethylene glycol. , Diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, polypropylene glycol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, dibutylene glycol, tri Butylene glycol, polybutylene glycol, 1,5-pentanediol, neopentyl glycol, isoprene glycol (3-methyl-1,3-butanediol), 1,2-hexanediol, 1,6-hexanediol, 3-methyl -1, -Pentanediol, 1,2-octanediol, octaned
  • a compound obtained by adding an alkylene oxide such as ethylene oxide, propylene oxide, or butylene oxide or a cyclic ether such as polytetrahydrofuran to the polyhydric alcohol can be used.
  • the polyhydric alcohol has 2 to 500 carbon atoms, preferably 2 to 100, more preferably 2 to 50, and further preferably 2 to 20. When the carbon number exceeds 1 or 500, sufficient performance as a low temperature fluidity improver cannot be obtained. When n is 1, that is, the monovalent alcohol does not become a polyester even when reacted with the compound (X), and the resulting compound does not have performance as a low-temperature fluidity improver.
  • the reaction ratio of compound (X) to polyhydric alcohol (Y) is not particularly limited, but the hydroxyl group of polyhydric alcohol (Y) is 0.1 to 1.5 with respect to 1 mol of acyl group of compound (X). It is preferable to mix and react so as to have a molar ratio, more preferable to mix and react so as to be 0.2 to 1.0 mol, It is more preferable to react. When the ratio of the hydroxyl group is too high or the ratio of the acyl group is too high, sufficient performance as a low temperature fluidity improver may not be obtained.
  • a polyester bonded by an ester bond is formed.
  • Any known method can be used to obtain this polyester.
  • a strong acid such as sulfuric acid or toluenesulfonic acid; titanium tetrachloride, hafnium chloride, zirconium chloride, aluminum chloride, gallium chloride, chloride
  • Metal halides such as indium, iron chloride, tin chloride and boron fluoride; hydroxides and alcoholates of alkali metals and alkaline earth metals such as sodium hydroxide, potassium hydroxide, sodium methylate and sodium carbonate, Carbonates; metal oxides such as aluminum oxide, calcium oxide, barium oxide, sodium oxide; organometallic compounds such as tetraisopropyl titanate, dibutyltin dichloride, dibutyltin oxide and the like, and 2-30 at a reaction temperature of 120-300 ° C. You can dehydrate for a long time,
  • the polyester obtained by the above reaction is a linear polyester if the polyhydric alcohol (Y) is divalent when the g value in the general formula (1) and the h value in the general formula (2) are 1. If the polyhydric alcohol (Y) is trivalent or more, a network-like polyester is mainly formed (both may produce a cyclic polyester).
  • the polyester when the divalent polyhydric alcohol (Y) is used preferably has a polyester unit represented by the following general formula (4):
  • A represents a hydrocarbon group having 2 to 300 carbon atoms
  • R ′ represents a hydrocarbon group having 2 to 500 carbon atoms which may contain an oxygen atom or a nitrogen atom.
  • the polyester when the divalent polyhydric alcohol (Y) is used preferably has a polyester unit represented by the following general formula (5):
  • A represents a hydrocarbon group having 2 to 300 carbon atoms
  • R ′ represents a hydrocarbon group having 2 to 500 carbon atoms which may contain an oxygen atom or a nitrogen atom.
  • the weight average molecular weight of the polyester varies depending on the amount and type of the catalyst, the reaction temperature, the reaction time, etc., but the value of g in the general formula (1) or the value of h in the general formula (2) is 1, and the polyhydric alcohol ( When Y) is divalent, it is generally 300 to 50,000, and when polyhydric alcohol (Y) is trivalent or more, it is generally 500 to 500,000.
  • the polyhydric alcohol (Y) is divalent
  • the polyhydric alcohol (Y ) is trivalent or more, it is generally 3000 to 1000000.
  • the molecular weight is not limited, but if the molecular weight is too small, the effect as a low-temperature fluidity improver will be low, and if the molecular weight is too high, handling may be difficult or it may not dissolve in biodiesel fuel.
  • the weight average molecular weight is preferably 300 to 100,000, more preferably 500 to 50,000, and still more preferably 1,000 to 30,000. What is necessary is just to superpose
  • the weight average molecular weight is preferably 500 to 500,000, more preferably 1000 to 300,000, still more preferably 3000. Polymerization may be performed so that the amount becomes ⁇ 100,000.
  • the preferable carbon number of R ' is the same as the preferable carbon number of said R.
  • the terminal of the polyester unit obtained by the reaction of the compound (X) having the g value of the general formula (1) and the h value of 1 of the general formula (2) with the polyhydric alcohol (Y) is a carboxyl group or a hydroxyl group
  • Y is represented by the following general formula (6):
  • R 1 represents a hydrocarbon group having 2 to 300 carbon atoms
  • R 2 represents a hydrocarbon group having 2 to 500 carbon atoms which may contain an oxygen atom or a nitrogen atom
  • m represents an average degree of polymerization
  • X represents a number of 1 or more, preferably 5 to 500
  • X represents either HO— or HO—R 2 —O—
  • Y represents either a hydrogen atom or —CO—R 1 —COOH.
  • the proportion of the polyester which is a reaction product obtained by the reaction between the compound (X) and the polyhydric alcohol (Y)
  • the proportion of the polyester is 50% by mass of the total molecular weight (weight average molecular weight). It should be above, preferably 70% by mass or more, more preferably 90% by mass or more, and most preferably not react with other compounds.
  • the ratio of polyester will be less than 50 mass%, the performance as a low-temperature fluidity improver cannot be exhibited.
  • the terminal of the polyester unit obtained by the reaction of the compound (X) having a g value of the general formula (1) or a h value of 2 to 1000 of the general formula (2) with the polyhydric alcohol (Y) is a carboxyl group And a hydroxyl group, represented by the following general formula (7):
  • R 1 represents a hydrocarbon group having 2 to 300 carbon atoms
  • R 2 represents a hydrocarbon group having 2 to 500 carbon atoms which may contain an oxygen atom or a nitrogen atom
  • m represents an average degree of polymerization
  • 1 represents a number of 1 or more, preferably 5 to 500
  • 1 represents an average degree of polymerization
  • X represents either HO— or HO—R 2 —O—.
  • Y represents a hydrogen atom or —CO—R 1 H 2 —COOH
  • the proportion of the polyester obtained by the reaction between the compound (X) and the polyhydric alcohol (Y) must be 50% by mass or more of the total molecular weight (weight average molecular weight). However, it is preferably 70% by mass or more, more preferably 90% by mass or more, and most preferably one that does not react with other compounds.
  • the ratio of polyester will be less than 50 mass%, the performance as a low-temperature fluidity improver cannot be exhibited.
  • the other compound that can be reacted may be any compound that reacts with a hydroxyl group or a carboxylic acid, but is preferably a compound that does not generate an ionic group after the reaction, for example, alcohol, fatty acid, amine Etc.
  • Examples of the alcohol include the polyhydric alcohols listed above, methanol, ethanol, propanol, isopropanol, butanol, isobutanol, secondary butanol, tertiary butanol, pentanol, isopentanol, secondary pentanol, neopentanol, Tertiary pentanol, hexanol, secondary hexanol, heptanol, secondary heptanol, octanol, 2-ethylhexanol, secondary octanol, nonanol, secondary nonanol, decanol, secondary decanol, undecanol, secondary undecanol, dodecanol, secondary Dodecanol, tridecanol, isotridecanol, secondary tridecanol, tetradecanol, secondary tetradecanol, hexadecanol, secondary he
  • fatty acids include acetic acid, propionic acid, butanoic acid (butyric acid), pentanoic acid (valeric acid), isopentanoic acid (isovaleric acid), hexanoic acid (caproic acid), heptanoic acid, isoheptanoic acid, octanoic acid (caprylic acid) ), 2-ethylhexanoic acid, isooctanoic acid, nonanoic acid (pelargonic acid), isononanoic acid, decanoic acid (capric acid), isodecanoic acid, undecanoic acid, isoundecanoic acid, dodecanoic acid (lauric acid), isododecanoic acid, tridecanoic acid , Isotridecanoic acid, tetradecanoic acid (myristic acid), hexadecanoic acid (palmitic acid), octadecanoic acid (stea
  • Examples of amines include primary amines and secondary amines.
  • Examples of primary amines include methylamine, ethylamine, propylamine, isopropylamine, butylamine, isobutylamine, pentylamine, isopentylamine, hexylamine, and isohexyl.
  • Secondary amines include, for example, dimethylamine, diethylamine, dipropylamine, diisopropylamine, dibutylamine, diisobutylamine, dipentylamine, diisopentylamine, dihexylamine, diisohexylamine, dioctylamine, di-2- Ethylhexylamine, dinonylamine, diisononylamine, didecylamine, diisodecylamine, diundecylamine, diisoundecylamine, didodecylamine, diisododecylamine, ditridecylamine, diisotridecylamine, ditetradecylamine, diisotetradecylamine , Dihexadecylamine, diisohexadecylamine, dioctadecylamine, diisooctadecylamine, dioleylamine and
  • the predicate “biodiesel fuel” described in the present specification is a fuel containing 100 mass% fatty acid methyl ester or light oil and fatty acid methyl ester, and the light oil is No. 1 light oil standardized in JIS K2204. Any general diesel oil that can be used in diesel engines such as No. 2, No. 2 diesel oil and No. 3 diesel oil can be used.
  • Fatty acid methyl esters include those made from natural fats and oils obtained from plants, those made from natural fats and oils obtained from animals such as pork fat and beef tallow, and those made from these waste cooking oils. Any can be used.
  • plant-based natural fats and oils include, for example, Jatropha oil, sand peach oil, flower bud oil, flaxseed oil, eno oil, oil deer oil, olive oil, cacao fat, kapok oil, white mustard oil, sesame oil, rice bran oil, safflower oil, Shea nut oil, cinnamon oil, soybean oil, tea seed oil, camellia oil, corn oil, rapeseed oil, palm oil, palm kernel oil, castor oil, sunflower oil, cottonseed oil, coconut oil, tree wax, peanut oil, and mixtures thereof Is mentioned.
  • the fatty acid methyl ester may be produced by any known method, for example, by heating the above natural oil and methanol under an alkali catalyst such as sodium hydroxide or potassium hydroxide. Examples include a method obtained by transesterification to remove glycerin that is produced as an impurity.
  • fatty acid methyl ester When blending light oil and fatty acid methyl ester, it is preferable to blend so that fatty acid methyl ester is 2% by mass or more based on the total amount of biodiesel fuel. If the fatty acid methyl ester is less than 2% by mass, it is insufficient to achieve the original purpose of biodiesel fuel, which is to reduce the amount of fossil fuel used and reduce carbon dioxide emissions. This is not preferable because the significance is lost.
  • the biodiesel fuel composition of the present invention comprises the above biodiesel fuel and the low temperature fluidity improver of the present invention.
  • the blending amount of the low temperature fluidity improver of the present invention with respect to the biodiesel fuel is not particularly limited, but it is preferably blended by 0.001 to 5% by mass with respect to the total amount of the biodiesel fuel, and 0.005 to 3 The mass% is more preferable. If the blending amount is less than 0.001% by mass, a sufficient effect may not be exhibited. If the blending amount exceeds 5% by mass, an effect corresponding to the blending amount may not be obtained, or an insoluble material may be generated depending on the type of fuel. It is not preferable because it may.
  • the biodiesel fuel composition of the present invention can be mixed with a cetane number improver as necessary.
  • a cetane number improver various compounds known as light oil cetane number improvers can be arbitrarily used. For example, 2-chloroethyl nitrate, 2-ethoxyethyl nitrate, isopropyl nitrate, butylnite.
  • Rate primary amyl nitrate, secondary amyl nitrate, isoamyl nitrate, primary hexyl nitrate, secondary hexyl nitrate, n-heptyl nitrate, n-octyl nitrate, 2-ethylhexyl nitrate, cyclohexyl night
  • Examples thereof include ethylene glycol dinitrate, and alkyl nitrates having 6 to 8 carbon atoms are particularly preferable.
  • the content of the cetane number improver is in the range of 500 to 1400 ppm by mass, preferably 600 to 1250 ppm by mass, more preferably 700 to 1100 ppm by mass with respect to the total amount of the biodiesel fuel composition.
  • the cetane number improver is blended, if the blending amount is less than 500 ppm by mass, a sufficient cetane number improving effect cannot be obtained, and particulate matter (PM), aldehydes in diesel engine exhaust gas, and further It is not preferable because NOx may not be sufficiently reduced.
  • the compounding quantity of a cetane number improver exceeds 1400 mass ppm, since the effect corresponding to it cannot be expected and it becomes economically disadvantageous, it is unpreferable.
  • a detergent can be blended in the biodiesel fuel composition of the present invention as necessary.
  • the detergent include imide compounds; alkenyl succinimides such as polybutenyl succinimides synthesized from polybutenyl succinic anhydrides and ethylene polyamines; polyhydric alcohols such as pentaerythritol and polybutyls.
  • Succinic acid esters such as polybutenyl succinic acid ester synthesized from tenyl succinic anhydride; copolymer polymers such as dialkylaminoethyl methacrylate, polyethylene glycol methacrylate, vinyl pyrrolidone and alkyl methacrylate copolymers, carboxylic acids and amines
  • Ashless detergents such as reaction products of alkenyl succinic acid imide and reaction products of carboxylic acid and amine are preferred. These detergents can be used alone or in combination of two or more.
  • the blending amount of the detergent is not particularly limited, but in order to bring out the effect of blending the detergent, specifically, the effect of suppressing clogging of the fuel injection nozzle, the blending amount of the detergent is the biodiesel fuel composition. It is within the range of 30 to 300 ppm by mass, preferably 60 to 200 ppm by mass relative to the total amount of the product. When the blending amount of the detergent is less than 30 ppm by mass, the above-mentioned effect may not appear, and even if it exceeds 300 ppm by mass, an effect commensurate with it cannot be expected. Conversely, NOx in diesel engine exhaust gas , PM, aldehydes and the like may be increased, which is not preferable.
  • additives can be added to the biodiesel fuel composition of the present invention alone or in combination of several kinds for the purpose of further enhancing the performance.
  • additives include solvents such as methanol, ethanol, propanol, butanol, hexane, toluene, dimethylbenzene, and trimethylbenzene; antioxidants such as phenols, amines, and vitamins; fatty acids, glycerin esters, and alkyls.
  • Lubricants such as amines and fatty acid amides; metal deactivators such as salicylidene derivatives; anti-icing agents such as polyglycol ethers; corrosion inhibitors such as aliphatic amines and alkenyl succinic acid esters; anionic and cationic Antistatic agents such as amphoteric surfactants; colorants such as azo dyes; and silicon-based antifoaming agents.
  • the blending amount of other additives can be arbitrarily determined, but the blending amount of each additive is 0.001 to 0.5% by mass, more preferably 0.001 based on the total amount of the biodiesel fuel composition. Within the range of 0.2 mass%.
  • (A-3) Polyester (weight average molecular weight 9800
  • the polyester (a-1) was synthesized by the following method.
  • a 1000 ml flask equipped with a nitrogen inlet tube, a reflux tube, a nitrogen blowing tube equipped with a stirrer and a thermometer and a condenser was charged with 1 mol (252 g) of octadecene and 1 mol (98 g) of maleic anhydride and heated to 210 ° C.
  • the reaction was carried out at a temperature for 20 hours to obtain 350 g of octadecylidene succinic anhydride.
  • the polyester (a-6) was synthesized by the following method.
  • a 10000 ml flask equipped with a nitrogen inlet tube, reflux tube, stirring device and thermometer and a condenser was charged with 1 mol (252 g) of octadecene and 1 mol (98 g) of maleic anhydride and heated to 210 ° C.
  • the reaction was carried out at temperature for 20 hours.
  • the mixture was cooled to 80 ° C., charged with 2 mol (36 g) of water, reacted at 100 ° C. for 3 hours for hydrolysis, and then dehydrated under reduced pressure to obtain 386 g of octadecylidene succinic acid.
  • 1 mol (62 g) of ethylene glycol was added, the pressure was reduced to 1.3 kPa, and the reaction was performed at 160 ° C. for 4 hours to obtain the polyester (a-6).
  • polyester was obtained in the same manner as above.
  • esterification reaction was performed in the same manner as the above esterification reaction.
  • the polyester (a-13) was synthesized by the following method.
  • a 1000 ml flask equipped with a nitrogen inlet tube, a reflux tube, a stirrer and a thermometer and a condenser was added to 1 mol (252 g) of octadecene and 1 mol (98 g) of maleic anhydride, and azobisisobutyronitrile 3 as a catalyst.
  • the biodiesel fuel composition using the low-temperature fluidity improver of the present invention has a lower pour point for both base oil 1 and base oil 2 and an improved low-temperature fluidity. .
  • the low temperature fluidity improver for biodiesel fuel of the present invention can be suitably used for improving the low temperature fluidity of a biodiesel fuel containing a fatty acid methyl ester.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Combustion & Propulsion (AREA)
  • Liquid Carbonaceous Fuels (AREA)

Abstract

Disclosed is a cold flow improver which can improve the low-temperature flow properties of a biodiesel fuel efficiently. The cold flow improver is characterized by comprising a polymer containing 50 mass% or more of a polyester in the molecule, wherein the polyester is a product of the reaction between a compound represented by general formula (1)[wherein AH2 represents a hydrocarbon group having 2 to 300 carbon atoms; and g represents an average polymerization degree and is a number of 1 to 1000] and/or general formula (2) [wherein AH2 represents a hydrocarbon group having 2 to 300 carbon atoms; and h represents an average polymerization degree and is a number of 1 to 1000] with at least one polyhydric alcohol (Y) represented by general formula (3) (Y) R-(OH) n (3) [wherein R represents an oxygen atom, or a hydrocarbon group having 2 to 500 carbon atoms which may contain a nitrogen atom; and n represents a number of 2 or greater].

Description

バイオディーゼル燃料用低温流動性向上剤Low temperature fluidity improver for biodiesel fuel
 本発明は、脂肪酸メチルエステルを含有するバイオディーゼル燃料用の低温流動性向上剤に関する。 The present invention relates to a low-temperature fluidity improver for biodiesel fuel containing a fatty acid methyl ester.
 燃料油には、ガソリンや軽油、石油等の化石燃料が主に使用されているが、これらの燃料を消費すると大気中に二酸化炭素が放出され、地球温暖化等の環境問題を引き起こす主な要因になっていると考えられている。こうしたことから、二酸化炭素の環境への放出を少なくするために様々な方法が考えられている。
 その一つの方法に、バイオ燃料を使用することが提案されている。バイオ燃料とは、主に植物から得られる燃料油のことであり、エタノールやメタノール、脂肪酸メチルエステル等を100%あるいは、化石燃料と混合して自動車等の燃料に使用するものである。バイオ燃料は大気中の二酸化炭素を消費する植物から作られるため、燃焼によってバイオ燃料が大気中に二酸化炭素として放出されても、バイオ燃料の元となる新たな植物がその二酸化炭素を消費するため、大気中の二酸化炭素は増加しない(二酸化炭素の循環)。こうしたバイオ燃料は、前記のように様々な形態で取り組みが始められているが、既存のエンジンシステムにそのまま対応でき、エンジンの改良等が必要ないため、現在では化石燃料の中に脂肪酸メチルエステル等のバイオ燃料を含有させたバイオディーゼル燃料の検討が最も進んでいる。
Fossil fuels such as gasoline, light oil, and oil are mainly used as fuel oil, but when these fuels are consumed, carbon dioxide is released into the atmosphere, which is a major cause of environmental problems such as global warming. It is thought that. For these reasons, various methods have been considered to reduce the release of carbon dioxide into the environment.
One method has been proposed to use biofuel. Biofuel is fuel oil obtained mainly from plants, and is used as fuel for automobiles or the like by mixing ethanol, methanol, fatty acid methyl ester, etc. with 100% or fossil fuel. Because biofuel is made from plants that consume carbon dioxide in the atmosphere, even if biofuel is released into the atmosphere as carbon dioxide by combustion, new plants that are the source of biofuel consume that carbon dioxide , Carbon dioxide in the atmosphere does not increase (carbon dioxide circulation). Such biofuels have been started in various forms as described above, but can be directly applied to existing engine systems and do not require engine improvements. The study of biodiesel fuel containing most biofuels is most advanced.
 例えば、特許文献1には、バイオディーゼル燃料に酸化防止剤を添加したバイオディーゼル燃料組成物であって、上記バイオディーゼル燃料は、オレイン酸メチルエステル及び/又はリノール酸メチルエステルを1%以上含み、主成分として、炭素数がC4~C25の脂肪酸メチルエステルを1種類又は2種類以上含んで成り、上記酸化防止剤は、天然成分及び/又は合成成分から成り、該脂肪酸メチルエステル合計重量に対して0.001%~5%の割合で添加されることを特徴とするバイオディーゼル燃料組成物;前記バイオディーゼル燃料組成物の使用方法であって、該バイオディーゼル燃料組成物を、軽油に対し0.1~100%の容量比で混合することを特徴とするバイオディーゼル燃料組成物の使用方法が開示されている。 For example, Patent Document 1 discloses a biodiesel fuel composition in which an antioxidant is added to biodiesel fuel, and the biodiesel fuel contains 1% or more of oleic acid methyl ester and / or linoleic acid methyl ester, As a main component, it comprises one or more fatty acid methyl esters having C4 to C25 carbon atoms, and the antioxidant comprises a natural component and / or a synthetic component, and is based on the total weight of the fatty acid methyl ester. A biodiesel fuel composition characterized in that it is added in a proportion of 0.001% to 5%; a method of using said biodiesel fuel composition, wherein A method of using a biodiesel fuel composition characterized by mixing at a volume ratio of 1 to 100% is disclosed.
 しかしながら、脂肪酸メチルエステルを含有するバイオディーゼル燃料は流動点が高く、脂肪酸メチルエステルを高濃度で配合した場合や、低濃度でも寒冷地で使用した場合には燃料の流動性が悪化するため、フィルターやポンプの目詰まりを引き起こす場合があり、バイオディーゼル燃料を普及させるためには、バイオディーゼル燃料の低温流動性を改良する必要があった。 However, biodiesel fuel containing fatty acid methyl ester has a high pour point, and the fluidity of the fuel deteriorates when the fatty acid methyl ester is blended at a high concentration or when used in cold regions even at low concentrations. In order to spread the biodiesel fuel, it was necessary to improve the low temperature fluidity of the biodiesel fuel.
 こうした中、既存のディーゼル燃料には様々な低温流動性向上剤が知られている。例えば、特許文献2には、下記一般式(A)で示される化合物Aと、下記一般式(B)で示される化合物Bを、その重量比(化合物A):(化合物B)が1:99乃至50:50となるように含有する燃料油用低温流動性向上剤:
Figure JPOXMLDOC01-appb-C000007
(式中、nは2以上の整数、X1~X8はそれぞれ独立して、水素、直鎖炭化水素又は分岐炭化水素基、もしくは炭素数3以上のシクロ炭化水素基を示す。)
Figure JPOXMLDOC01-appb-C000008
(式中、X9、X10のうちいずれか一方は炭素数8乃至24の直鎖又は分岐の炭化水素基で、もう一方は水素を示し、X11はNR12又はNHR3、X12はH+、HN+HR45又はHN+26である。また、R1~R6はそれぞれ独立して炭素数8乃至24の炭化水素基を示す)
が開示されている。
Under such circumstances, various low temperature fluidity improvers are known for existing diesel fuels. For example, Patent Document 2 discloses that compound A represented by the following general formula (A) and compound B represented by the following general formula (B) have a weight ratio (compound A) :( compound B) of 1:99. Or low-temperature fluidity improver for fuel oil to be contained so as to be 50:50:
Figure JPOXMLDOC01-appb-C000007
(In the formula, n represents an integer of 2 or more, and X 1 to X 8 each independently represent hydrogen, a straight-chain hydrocarbon or a branched hydrocarbon group, or a cyclohydrocarbon group having 3 or more carbon atoms.)
Figure JPOXMLDOC01-appb-C000008
(In the formula, any one of X 9 and X 10 is a linear or branched hydrocarbon group having 8 to 24 carbon atoms, the other is hydrogen, and X 11 is NR 1 R 2 or NHR 3 , X 12 is H + , HN + HR 4 R 5 or HN + H 2 R 6 , and R 1 to R 6 each independently represents a hydrocarbon group having 8 to 24 carbon atoms)
Is disclosed.
 また、特許文献3には、(A)炭素数8~28の直鎖状飽和脂肪酸及び炭素数8~28の直鎖状不飽和脂肪酸から選ばれた脂肪酸、並びに(B)流動点降下剤及び低温流動性向上剤から選ばれた少なくとも1種の改質剤を含有し、硫黄含量が0.05重量%以下の低硫黄軽油用油性向上剤;流動点降下剤が塩素化パラフィンとナフタリンとの縮合物、塩素化パラフィンとフェノールとの縮合物、ポリアルキルメタクリレート、ポリブデン、ポリアルキルスチレン、ポリビニルアセテート及びポリアルキルアクリレートから選ばれた少なくとも1種である前記低硫黄軽油用油性向上剤;低温流動性向上剤がエチレン-酢酸ビニル共重合体、エチレン-アルキルアクリレート及びアルケニルこはく酸アミドから選ばれた少なくとも1種である前記低硫黄軽油用油性向上剤が開示されている。 Patent Document 3 discloses (A) a fatty acid selected from linear saturated fatty acids having 8 to 28 carbon atoms and linear unsaturated fatty acids having 8 to 28 carbon atoms, and (B) a pour point depressant and Oil improver for low sulfur gas oil containing at least one modifier selected from low temperature fluidity improver and having a sulfur content of 0.05% by weight or less; pour point depressant is chlorinated paraffin and naphthalene The oil improver for low sulfur gas oil, which is at least one selected from condensate, condensate of chlorinated paraffin and phenol, polyalkyl methacrylate, polybutene, polyalkyl styrene, polyvinyl acetate and polyalkyl acrylate; low temperature fluidity Before the improver is at least one selected from ethylene-vinyl acetate copolymer, ethylene-alkyl acrylate and alkenyl succinic acid amide Low sulfur diesel fuel for the oiliness improver is disclosed.
特開2007-016089号公報JP 2007-016089 A 特開2005-187581号公報Japanese Patent Laid-Open No. 2005-187581 特開平10-110175号公報Japanese Patent Laid-Open No. 10-110175
 しかしながら、バイオディーゼル燃料に、上述の特許文献2及び3に記載されているような低温流動性向上剤は、あまり効果がなく、バイオディーゼル燃料用の低温流動性向上剤が望まれている。 However, low-temperature fluidity improvers such as those described in Patent Documents 2 and 3 described above are not very effective for biodiesel fuel, and low-temperature fluidity improvers for biodiesel fuel are desired.
 従って、本発明の目的は、バイオディーゼル燃料の低温流動性を効率よく改善することができる低温流動性向上剤を提供することにある。 Therefore, an object of the present invention is to provide a low temperature fluidity improver that can efficiently improve the low temperature fluidity of biodiesel fuel.
 そこで本発明者等は鋭意検討し、バイオディーゼル燃料の低温流動性を大幅に改良することができる低温流動性向上剤を見出し、本発明に至った。
 即ち、本発明は、下記の一般式(1)及び/又は一般式(2)で表される化合物(X)と、
Figure JPOXMLDOC01-appb-C000009
(式中、AH2は炭素数2~300の炭化水素基を表し、gは平均重合度であり、1~1000の数を表わす。)
Figure JPOXMLDOC01-appb-C000010
(式中、AH2は炭素数2~300の炭化水素基を表し、hは平均重合度であり、1~1000の数を表わす。)
下記の一般式(3)で表される1種又は2種以上の多価アルコール(Y)
R-(OH)n   (3)
(式中、Rは酸素原子、窒素原子を含有してもよい炭素数2~500の炭化水素基を表し、nは2以上の数を表す。)
との反応物であるポリエステルを分子内に50質量%以上含有する重合体であることを特徴とするバイオディーゼル燃料用低温流動性向上剤である。
Thus, the present inventors have intensively studied, and found a low-temperature fluidity improver that can greatly improve the low-temperature fluidity of biodiesel fuel, resulting in the present invention.
That is, the present invention relates to a compound (X) represented by the following general formula (1) and / or general formula (2):
Figure JPOXMLDOC01-appb-C000009
(In the formula, AH 2 represents a hydrocarbon group having 2 to 300 carbon atoms, g represents an average degree of polymerization, and represents a number of 1 to 1000.)
Figure JPOXMLDOC01-appb-C000010
(In the formula, AH 2 represents a hydrocarbon group having 2 to 300 carbon atoms, h represents an average degree of polymerization, and represents a number of 1 to 1000.)
One or more polyhydric alcohols (Y) represented by the following general formula (3)
R- (OH) n (3)
(In the formula, R represents a hydrocarbon group having 2 to 500 carbon atoms which may contain an oxygen atom or a nitrogen atom, and n represents a number of 2 or more.)
It is a low temperature fluidity improver for biodiesel fuel, which is a polymer containing 50% by mass or more of polyester, which is a reaction product thereof, in the molecule.
 本発明の効果は、バイオディーゼル燃料の低温流動性を効率よく改善させることのできる低温流動性向上剤を提供したことにある。 The effect of the present invention is to provide a low-temperature fluidity improver that can efficiently improve the low-temperature fluidity of biodiesel fuel.
 本発明に使用できる化合物(X)は、下記の一般式(1)又は(2)で表すことができる:
Figure JPOXMLDOC01-appb-C000011
(式中、AH2は炭素数2~300の炭化水素基を表し、gは平均重合度であり、1~1000の数を表わす。)
Figure JPOXMLDOC01-appb-C000012
(式中、AH2は炭素数2~300の炭化水素基を表し、hは平均重合度であり、1~1000の数を表わす。)
Compound (X) that can be used in the present invention can be represented by the following general formula (1) or (2):
Figure JPOXMLDOC01-appb-C000011
(In the formula, AH 2 represents a hydrocarbon group having 2 to 300 carbon atoms, g represents an average degree of polymerization, and represents a number of 1 to 1000.)
Figure JPOXMLDOC01-appb-C000012
(In the formula, AH 2 represents a hydrocarbon group having 2 to 300 carbon atoms, h represents an average degree of polymerization, and represents a number of 1 to 1000.)
 一般式(1)で表されるジカルボン酸としては、例えば、gの値が1のときは、コハク酸、グルタン酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸等のアルカンジカルボン酸;フタル酸、イソフタル酸、テレフタル酸等のベンゼンジカルボン酸;マレイン酸等のアルケンジカルボン酸;無水マレイン酸にオレフィンやポリオレフィンを付加反応した後に加水分解して得られる化合物等が挙げられる。
 gの値が2以上のときは、ポリコハク酸、ポリグルタン酸、ポリアジピン酸、ポリピメリン酸、ポリスベリン酸、ポリアゼライン酸、ポリセバシン酸等のポリアルカンジカルボン酸;無水マレイン酸とオレフィンやポリオレフィンとの重合反応物を加水分解して得られる化合物等が挙げられる。
Examples of the dicarboxylic acid represented by the general formula (1) include alkanedicarboxylic acids such as succinic acid, glutanic acid, adipic acid, pimelic acid, suberic acid, azelaic acid, and sebacic acid when the value of g is 1. Benzene dicarboxylic acids such as phthalic acid, isophthalic acid and terephthalic acid; alkene dicarboxylic acids such as maleic acid; and compounds obtained by hydrolysis after addition reaction of olefin or polyolefin with maleic anhydride.
When the value of g is 2 or more, polyalkanedicarboxylic acid such as polysuccinic acid, polyglutanic acid, polyadipic acid, polypimelic acid, polysuberic acid, polyazelinic acid, polysebacic acid; polymerization reaction product of maleic anhydride and olefin or polyolefin And the like obtained by hydrolysis.
 また、一般式(2)で表される無水酸としては、例えば、hの値が1のときは、無水コハク酸、無水グルタン酸、無水アジピン酸、無水ピメリン酸、無水スベリン酸、無水アゼライン酸、無水セバシン酸、無水フタル酸、無水マレイン酸、無水マレイン酸のオレフィンやポリオレフィンの付加物等が挙げられる。
 hの値が2以上のときは、ポリ無水コハク酸、ポリ無水グルタン酸、ポリ無水アジピン酸、ポリ無水ピメリン酸、ポリ無水スベリン酸、ポリ無水アゼライン酸、ポリ無水セバシン酸等のポリアルカンジカルボン酸、無水マレイン酸とオレフィンやポリオレフィンとの重合反応物が挙げられる。
In addition, as the acid anhydride represented by the general formula (2), for example, when the value of h is 1, succinic anhydride, glutaric anhydride, adipic anhydride, pimelic anhydride, suberic anhydride, azelaic anhydride , Sebacic anhydride, phthalic anhydride, maleic anhydride, olefins of maleic anhydride, polyolefin adducts, and the like.
When the value of h is 2 or more, polyalkanedicarboxylic acid such as polysuccinic anhydride, polyglutanic anhydride, polyadipic anhydride, polypimelic anhydride, polysuberic anhydride, polyazelaic anhydride, polysebacic anhydride, etc. And a polymerization reaction product of maleic anhydride and olefin or polyolefin.
 無水酸、例えば無水マレイン酸に反応させるオレフィンとしては、例えば、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセン、シクロペンテン、シクロヘキセン、シクロヘプテン、ノルボルネン、5-メチル-2-ノルボルネン、テトラシクロドデセン、スチレン、ビニルシクロヘキサン、1,3-ブタジエン、1,4-ペンタジエン、1,5-ヘキサジエン、1,4-ヘキサジエン、1,7-オクタジエン、シクロヘキサジエン等が挙げられ、ポリオレフィンとしては、例えば、上記のオレフィン、好ましくは炭素数2~16のオレフィンの1種または2種以上を公知の方法で反応すればよい。 Examples of the olefin to be reacted with an acid anhydride such as maleic anhydride include, for example, ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-octene, 1-decene, 1-decene, Dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicocene, cyclopentene, cyclohexene, cycloheptene, norbornene, 5-methyl-2-norbornene, tetracyclododecene, styrene, vinylcyclohexane, 1,3-butadiene, Examples include 1,4-pentadiene, 1,5-hexadiene, 1,4-hexadiene, 1,7-octadiene, cyclohexadiene, and the like. Examples of the polyolefin include the above-mentioned olefins, preferably olefins having 2 to 16 carbon atoms. One or more of It is sufficient to react in a way.
 無水酸、例えばマレイン酸にオレフィンやポリオレフィンを付加反応する方法としては、公知の方法を用いて反応すればよく、例えば、無水マレイン酸1モルに対してオレフィン又はポリオレフィン1モルを、180~350℃で2~30時間加熱反応することにより、アルケニル無水コハク酸[一般式(2)のhの値が1]を得ることができ、得られたアルケニル無水コハク酸を公知の方法で加水分解することにより、ジカルボン酸であるアルケニルコハク酸[一般式(1)のgの値が1]を得ることができる。なお、加熱反応時に下記の重合反応が進む場合もあることから、ヒドロキノンやフェノール系化合物等の重合禁止剤を添加してもよい。 As a method of adding an olefin or polyolefin to an acid anhydride, for example, maleic acid, a known method may be used. For example, 1 mol of olefin or polyolefin is added at 180 to 350 ° C. with respect to 1 mol of maleic anhydride. The alkenyl succinic anhydride [h value of the general formula (2) is 1] can be obtained by heating for 2 to 30 hours, and the obtained alkenyl succinic anhydride is hydrolyzed by a known method. Thus, alkenyl succinic acid [the value of g in the general formula (1) is 1] which is a dicarboxylic acid can be obtained. Since the following polymerization reaction may proceed during the heating reaction, a polymerization inhibitor such as hydroquinone or a phenolic compound may be added.
 無水酸、例えばマレイン酸にオレフィンやポリオレフィンを重合反応する方法としては、公知の方法を用いて反応すればよく、例えば、無水マレイン酸1モルに対してオレフィン又はポリオレフィン1モル及び重合開始剤を混合し、180~350℃で2~30時間加熱反応することにより、ポリアルケニル無水コハク酸を得ることができ、得られたポリアルケニル無水コハク酸を公知の方法で加水分解することにより、ポリカルボン酸であるポリアルケニルコハク酸を得ることができる。これらのポリマーの重合度は、一般式(1)及び(2)のgやhで表わされ、g及びhの値は2~1000となるが、低温流動性向上剤として良好な性能を示すことから、g及びhの値は2~500が好ましく、2~300がより好ましく、2~100が更に好ましい。なお、重合開始剤として、例えば、アゾビスイソブチロニトリルや過酸化ベンゾイル等が挙げられる。 As a method for polymerization reaction of olefin or polyolefin with acid anhydride, for example maleic acid, a known method may be used. For example, 1 mol of olefin or polyolefin and a polymerization initiator are mixed with 1 mol of maleic anhydride. The polyalkenyl succinic anhydride can be obtained by heating reaction at 180 to 350 ° C. for 2 to 30 hours, and the resulting polyalkenyl succinic anhydride is hydrolyzed by a known method to obtain a polycarboxylic acid. A polyalkenyl succinic acid can be obtained. The degree of polymerization of these polymers is represented by g or h in the general formulas (1) and (2), and the values of g and h are 2 to 1000, but show good performance as a low temperature fluidity improver. Therefore, the values of g and h are preferably 2 to 500, more preferably 2 to 300, and still more preferably 2 to 100. Examples of the polymerization initiator include azobisisobutyronitrile and benzoyl peroxide.
 また、g又はhの値が1の化合物(付加反応物)とg又はhの値が2以上の化合物(重合反応物)との低温流動性向上剤としての性能を比較すると、重合反応物の方が概ね性能は良好であるが、付加反応物と重合反応物が混合したものがより性能は良好となる。 In addition, when the performance as a low temperature fluidity improver of a compound having a g or h value of 1 (addition reaction product) and a compound having a g or h value of 2 or more (polymerization reaction product) is compared, The performance is generally better, but the mixture of the addition reaction product and the polymerization reaction product has better performance.
 一般式(1)及び一般式(2)において、AH2は、炭素数2~300の炭化水素基であるが、低温流動性向上剤としての性能が良好なことから、炭素数2~100が好ましく、2~50がより好ましく、2~20が更に好ましい。Aの炭素数が2未満あるいは300を超えると、低温流動性向上剤として十分な性能を得ることができない。また、Aを好ましい炭素数にすることが容易なことから、ジカルボン酸としては、無水マレイン酸にオレフィンやポリオレフィンを付加反応した後に加水分解して得られる化合物及び無水マレイン酸にオレフィンやポリオレフィンを重合反応した後に加水分解して得られる化合物が、また、無水酸としては、無水マレイン酸のオレフィンやポリオレフィンの付加物及び無水マレイン酸とオレフィンやポリオレフィンとの重合物が好ましい。 In the general formulas (1) and (2), AH 2 is a hydrocarbon group having 2 to 300 carbon atoms. However, since the performance as a low-temperature fluidity improver is good, 2 to 100 carbon atoms are present. 2-50 are more preferable, and 2-20 are still more preferable. When the carbon number of A is less than 2 or more than 300, sufficient performance as a low temperature fluidity improver cannot be obtained. In addition, since it is easy to set A to the preferred number of carbon atoms, dicarboxylic acid is a compound obtained by subjecting maleic anhydride to addition reaction of olefin or polyolefin and then hydrolyzing, and maleic anhydride is polymerized with olefin or polyolefin. The compound obtained by hydrolysis after the reaction is preferred, and the anhydride is preferably an olefin of maleic anhydride or an adduct of polyolefin and a polymer of maleic anhydride and olefin or polyolefin.
 本発明に使用できる多価アルコール(Y)は、下記の一般式(3)で表すことができる:
R-(OH)n   (3)
(式中、Rは酸素原子、窒素原子を含有してもよい炭素数2~500の炭化水素基を表し、nは2以上の数を表す。)
The polyhydric alcohol (Y) that can be used in the present invention can be represented by the following general formula (3):
R- (OH) n (3)
(In the formula, R represents a hydrocarbon group having 2 to 500 carbon atoms which may contain an oxygen atom or a nitrogen atom, and n represents a number of 2 or more.)
 一般式(3)の化合物は、炭素数2~500の炭化水素基を持ち、nが2以上、すなわち、水酸基を2つ以上含有する有機化合物であればいずれの化合物でもよく、例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、ポリプロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、ジブチレングリコール、トリブチレングリコール、ポリブチレングリコール、1,5-ペンタンジオール、ネオペンチルグリコール、イソプレングリコール(3-メチル-1,3-ブタンジオール)、1,2-ヘキサンジオール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、1,2-オクタンジオール、オクタンジオール(2-エチル-1,3-ヘキサンジオール)、2-ブチル-2-エチル-1,3-プロパンジオール、2,5-ジメチル-2,5-ヘキサンジオール、1,2-デカンジオール、1,2-ドデカンジオール、1,2-テトラデカンジオール、1,2-ヘキサデカンジオール、1,2-オクタデカンジオール、1,12-オクタデカンジオール、1,2-シクロヘキサンジオール、1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール、水素化ビスフェノールA、ソルバイド、2,5-ジメチル-3-ヘキシン-2,5-ジオール、3,6-ジメチル-4-オクチン-3,6-ジオール、2,4,7,9-テトラメチル-5-デシン-4,7-ジオール、ビス(ヒドロキシメチル)ベンゼン、N-メチルジエタノールアミン、N-エチルジエタノールアミン等の2価アルコール;グリセリン、1,2,3-ブタントリオール、1,2,4-ブタントリオール、2-メチル-1,2,3-プロパントリオール、1,2,3-ペンタントリオール、1,2,4-ペンタントリオール、1,3,5-ペンタントリオール、2,3,4-ペンタントリオール、2-メチル-2,3,4-ブタントリオール、トリメチロールエタン、2,3,4-ヘキサントリオール、2-エチル-1,2,3-ブタントリオール、トリメチロールプロパン、4-プロピル-3,4,5-ヘプタントリオール、ペンタメチルグリセリン(2,4-ジメチル-2,3,4-ペンタントリオール)、トリエタノールアミン、トリイソプロパノールアミン等の3価アルコール;エリスリトール、ペンタエリスリトール、1,2,3,4-ペンタンテトロール、2,3,4,5-ヘキサンテトロール、1,2,4,5-ペンタンテトロール、1,3,4,5-ヘキサンテトロール、ジグリセリン、ジトリメチロールプロパン、ソルビタン、N,N,N',N'-テトラキス(2-ヒドロキシプロピル)エチレンジアミン、N,N,N',N'-テトラキス(2-ヒドロキシエチル)エチレンジアミン等の4価アルコール;アドニトール、アラビトール、キシリトール、トリグレセリン等の5価アルコール;ジペンタエリスリトール、ソルビトール、マンニトール、イジトール、イノシトール、ダルシトール、タロース、アロース等の6価アルコール等が挙げられる。 The compound of the general formula (3) may be any compound as long as it has a hydrocarbon group having 2 to 500 carbon atoms and n is 2 or more, that is, contains 2 or more hydroxyl groups, such as ethylene glycol. , Diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, polypropylene glycol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, dibutylene glycol, tri Butylene glycol, polybutylene glycol, 1,5-pentanediol, neopentyl glycol, isoprene glycol (3-methyl-1,3-butanediol), 1,2-hexanediol, 1,6-hexanediol, 3-methyl -1, -Pentanediol, 1,2-octanediol, octanediol (2-ethyl-1,3-hexanediol), 2-butyl-2-ethyl-1,3-propanediol, 2,5-dimethyl-2,5 -Hexanediol, 1,2-decanediol, 1,2-dodecanediol, 1,2-tetradecanediol, 1,2-hexadecanediol, 1,2-octadecanediol, 1,12-octadecanediol, 1,2- Cyclohexanediol, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, hydrogenated bisphenol A, sorbide, 2,5-dimethyl-3-hexyne-2,5-diol, 3,6-dimethyl-4-octyne -3,6-diol, 2,4,7,9-tetramethyl-5-decyne-4,7-diol Dihydric alcohols such as bis (hydroxymethyl) benzene, N-methyldiethanolamine, N-ethyldiethanolamine; glycerin, 1,2,3-butanetriol, 1,2,4-butanetriol, 2-methyl-1,2, 3-propanetriol, 1,2,3-pentanetriol, 1,2,4-pentanetriol, 1,3,5-pentanetriol, 2,3,4-pentanetriol, 2-methyl-2,3,4 -Butanetriol, trimethylolethane, 2,3,4-hexanetriol, 2-ethyl-1,2,3-butanetriol, trimethylolpropane, 4-propyl-3,4,5-heptanetriol, pentamethylglycerin (2,4-dimethyl-2,3,4-pentanetriol), triethanolamine, tri Trihydric alcohols such as isopropanolamine; erythritol, pentaerythritol, 1,2,3,4-pentanetetrol, 2,3,4,5-hexanetetrol, 1,2,4,5-pentanetetrol, 1 , 3,4,5-hexanetetrol, diglycerin, ditrimethylolpropane, sorbitan, N, N, N ′, N′-tetrakis (2-hydroxypropyl) ethylenediamine, N, N, N ′, N′-tetrakis (2-hydroxyethyl) tetrahydric alcohols such as ethylenediamine; pentahydric alcohols such as adonitol, arabitol, xylitol, triglycerin; hexavalent alcohols such as dipentaerythritol, sorbitol, mannitol, inditol, inositol, dulcitol, talose, allose, etc. Can be mentioned.
 また、上記の多価アルコールに、エチレンオキシド、プロピレンオキシド、ブチレンオキシド等のアルキレンオキシドを付加した化合物やポリテトラヒドロフラン等の環状エーテルを付加した化合物も使用することができる。 Also, a compound obtained by adding an alkylene oxide such as ethylene oxide, propylene oxide, or butylene oxide or a cyclic ether such as polytetrahydrofuran to the polyhydric alcohol can be used.
 上記多価アルコールの炭素数は2~500であるが、2~100が好ましく、2~50がより好ましく、2~20が更に好ましい。炭素数が1又は500を超えると、低温流動性向上剤として十分な性能を得ることができない。なお、nが1の場合、すなわち、1価のアルコールは化合物(X)と反応させてもポリエステルにはならず、得られる化合物は低温流動性向上剤としての性能を有さない。 The polyhydric alcohol has 2 to 500 carbon atoms, preferably 2 to 100, more preferably 2 to 50, and further preferably 2 to 20. When the carbon number exceeds 1 or 500, sufficient performance as a low temperature fluidity improver cannot be obtained. When n is 1, that is, the monovalent alcohol does not become a polyester even when reacted with the compound (X), and the resulting compound does not have performance as a low-temperature fluidity improver.
 本発明において、化合物(X)と反応させる多価アルコール(Y)は2価以上のアルコールであるが、アルコールの価数が大きくなると得られるポリエステルの粘度が上がって取り扱いが困難になる場合や、バイオディーゼル燃料への溶解性が低下する場合があるため、2~4価のアルコール(n=2~4)が好ましく、2価(n=2)又は3価(n=3)のアルコールがより好ましく、2価のアルコールが最も好ましい。 In the present invention, the polyhydric alcohol (Y) to be reacted with the compound (X) is a dihydric or higher alcohol, and when the valence of the alcohol is increased, the viscosity of the resulting polyester is increased and handling becomes difficult. Since solubility in biodiesel fuel may decrease, divalent to tetravalent alcohols (n = 2 to 4) are preferable, and divalent (n = 2) or trivalent (n = 3) alcohols are more preferable. Divalent alcohols are preferred and most preferred.
 化合物(X)と多価アルコール(Y)との反応比は特に限定されないが、化合物(X)のアシル基1モルに対して、多価アルコール(Y)の水酸基が0.1~1.5モルになるように配合して反応するのが好ましく、0.2~1.0モルになるように配合して反応するのがより好ましく、0.3~0.8モルになるように配合して反応するのが更に好ましい。水酸基の割合が多すぎる場合や、アシル基の割合が多すぎる場合は、低温流動性向上剤として十分な性能を得ることができない場合がある。 The reaction ratio of compound (X) to polyhydric alcohol (Y) is not particularly limited, but the hydroxyl group of polyhydric alcohol (Y) is 0.1 to 1.5 with respect to 1 mol of acyl group of compound (X). It is preferable to mix and react so as to have a molar ratio, more preferable to mix and react so as to be 0.2 to 1.0 mol, It is more preferable to react. When the ratio of the hydroxyl group is too high or the ratio of the acyl group is too high, sufficient performance as a low temperature fluidity improver may not be obtained.
 化合物(X)と多価アルコール(Y)とを反応させると、エステル結合によって結合されたポリエステルが生成する。このポリエステルを得る方法としては公知の方法をいずれも使用することができ、例えば、触媒として、硫酸やトルエンスルフォン酸などの強酸;四塩化チタン、塩化ハフニウム、塩化ジルコニウム、塩化アルミニウム、塩化ガリウム、塩化インジウム、塩化鉄、塩化スズ、フッ化硼素等の金属ハロゲン化物;水酸化ナトリウム、水酸化カリウム、ソヂウムメチラート、炭酸ナトリウム等のアルカリ金属やアルカリ土類金属の水酸化物、アルコラート物、炭酸塩;酸化アルミニウム、酸化カルシウム、酸化バリウム、酸化ナトリウム等の金属酸化物;テトライソプロピルチタネート、ジブチル錫ジクロライド、ジブチル錫オキサイド等の有機金属化合物を使用し、反応温度120~300℃で2~30時間脱水反応すればよく、必要に応じて減圧脱水すればよい。 When the compound (X) and the polyhydric alcohol (Y) are reacted, a polyester bonded by an ester bond is formed. Any known method can be used to obtain this polyester. For example, a strong acid such as sulfuric acid or toluenesulfonic acid; titanium tetrachloride, hafnium chloride, zirconium chloride, aluminum chloride, gallium chloride, chloride Metal halides such as indium, iron chloride, tin chloride and boron fluoride; hydroxides and alcoholates of alkali metals and alkaline earth metals such as sodium hydroxide, potassium hydroxide, sodium methylate and sodium carbonate, Carbonates; metal oxides such as aluminum oxide, calcium oxide, barium oxide, sodium oxide; organometallic compounds such as tetraisopropyl titanate, dibutyltin dichloride, dibutyltin oxide and the like, and 2-30 at a reaction temperature of 120-300 ° C. You can dehydrate for a long time, if necessary It may be 圧脱 water.
 上記反応において、化合物(X)のアシル基と多価アルコール(Y)の水酸基のモル数が等しい場合、一般式(1)のジカルボン酸を用いると、ジカルボン酸1モルに対して水が2モル副生するが、一般式(2)の無水酸を用いると、無水酸1モルに対して水が1モル副生する。よって、脱水工程等の製造効率から、化合物(X)には無水酸を用いるのが好ましい。なお、触媒は使用してもしなくてもかまわないが、触媒除去の工程を省略できることから、触媒は使用しないことが好ましい。 In the above reaction, when the number of moles of the acyl group of the compound (X) and the hydroxyl group of the polyhydric alcohol (Y) is the same, when the dicarboxylic acid of the general formula (1) is used, 2 moles of water per mole of the dicarboxylic acid As a by-product, when the acid anhydride of the general formula (2) is used, 1 mol of water is by-produced with respect to 1 mol of the acid anhydride. Therefore, it is preferable to use an acid anhydride for the compound (X) from the viewpoint of production efficiency such as a dehydration step. The catalyst may or may not be used, but it is preferable not to use a catalyst because the step of removing the catalyst can be omitted.
 上記の反応により得られるポリエステルは、一般式(1)のgの値や一般式(2)のhの値が1の場合、多価アルコール(Y)が2価であれば線状のポリエステルを、多価アルコール(Y)が3価以上であれば網目状のポリエステルを主に形成する(いずれも環状ポリエステルを生成する場合もある)。なお、2価の多価アルコール(Y)を使用した場合のポリエステルは、下記の一般式(4)で表されるポリエステルユニットを持つことが好ましい: The polyester obtained by the above reaction is a linear polyester if the polyhydric alcohol (Y) is divalent when the g value in the general formula (1) and the h value in the general formula (2) are 1. If the polyhydric alcohol (Y) is trivalent or more, a network-like polyester is mainly formed (both may produce a cyclic polyester). The polyester when the divalent polyhydric alcohol (Y) is used preferably has a polyester unit represented by the following general formula (4):
Figure JPOXMLDOC01-appb-C000013
(式中、Aは炭素数2~300の炭化水素基を表し、R’は酸素原子、窒素原子を含有してもよい炭素数2~500の炭化水素基を表す。)
Figure JPOXMLDOC01-appb-C000013
(In the formula, A represents a hydrocarbon group having 2 to 300 carbon atoms, and R ′ represents a hydrocarbon group having 2 to 500 carbon atoms which may contain an oxygen atom or a nitrogen atom.)
 一方、gやhの値が2以上の場合は、多価アルコール(Y)がいずれの価数であっても網目状のポリエステルを形成するが、(Y)の価数が大きくなるほどポリエステルの形態は複雑となる。
 ポリエステルの形態が複雑になると、粘度が上がって取り扱いが困難になる場合や、バイオディーゼル燃料への溶解性が低下する場合があるため、多価アルコール(Y)は2価であることが好ましい。なお、2価の多価アルコール(Y)を使用した場合のポリエステルは、下記の一般式(5)で表されるポリエステルユニットを持つことが好ましい:
On the other hand, when the value of g or h is 2 or more, a reticulated polyester is formed regardless of the valence of the polyhydric alcohol (Y), but as the valence of (Y) increases, the polyester form Is complicated.
If the form of the polyester is complicated, the viscosity may increase and handling may be difficult, or the solubility in biodiesel fuel may decrease, so the polyhydric alcohol (Y) is preferably divalent. The polyester when the divalent polyhydric alcohol (Y) is used preferably has a polyester unit represented by the following general formula (5):
Figure JPOXMLDOC01-appb-C000014
(式中、Aは炭素数2~300の炭化水素基を表し、R'は酸素原子、窒素原子を含有してもよい炭素数2~500の炭化水素基を表す。)
Figure JPOXMLDOC01-appb-C000014
(In the formula, A represents a hydrocarbon group having 2 to 300 carbon atoms, and R ′ represents a hydrocarbon group having 2 to 500 carbon atoms which may contain an oxygen atom or a nitrogen atom.)
 ポリエステルの重量平均分子量は、触媒の量や種類、反応温度、反応時間等によって変わるが、一般式(1)のgの値や一般式(2)のhの値が1で、多価アルコール(Y)が2価の場合は概ね300~50000となり、多価アルコール(Y)が3価以上の場合は概ね500~500000となる。 The weight average molecular weight of the polyester varies depending on the amount and type of the catalyst, the reaction temperature, the reaction time, etc., but the value of g in the general formula (1) or the value of h in the general formula (2) is 1, and the polyhydric alcohol ( When Y) is divalent, it is generally 300 to 50,000, and when polyhydric alcohol (Y) is trivalent or more, it is generally 500 to 500,000.
 また、一般式(1)のgの値や一般式(2)のhの値が2~1000で、多価アルコール(Y)が2価の場合は概ね1000~500000となり、多価アルコール(Y)が3価以上の場合は概ね3000~1000000となる。 When the value of g in the general formula (1) or the value of h in the general formula (2) is 2 to 1000 and the polyhydric alcohol (Y) is divalent, the polyhydric alcohol (Y ) Is trivalent or more, it is generally 3000 to 1000000.
分子量に制限はないが、あまりに分子量が小さいと低温流動性向上剤としての効果が低くなり、分子量が高すぎると取り扱いが困難になる場合や、バイオディーゼル燃料に溶解しない場合が出るため、一般式(1)のgの値や一般式(2)のhの値が1の場合は、好ましくは重量平均分子量が300~100000、より好ましくは500~50000、更に好ましくは1000~30000になるように重合すればよい。 The molecular weight is not limited, but if the molecular weight is too small, the effect as a low-temperature fluidity improver will be low, and if the molecular weight is too high, handling may be difficult or it may not dissolve in biodiesel fuel. When the value of g in (1) or the value of h in general formula (2) is 1, the weight average molecular weight is preferably 300 to 100,000, more preferably 500 to 50,000, and still more preferably 1,000 to 30,000. What is necessary is just to superpose | polymerize.
 また、一般式(1)のgの値や一般式(2)のhの値が2~1000の場合は、好ましくは重量平均分子量が500~500000、より好ましくは1000~300000、更に好ましくは3000~100000になるように重合すればよい。なお、R'の好ましい炭素数は、上記Rの好ましい炭素数と同じである。 When the value of g in the general formula (1) or the value of h in the general formula (2) is 2 to 1000, the weight average molecular weight is preferably 500 to 500,000, more preferably 1000 to 300,000, still more preferably 3000. Polymerization may be performed so that the amount becomes ˜100,000. In addition, the preferable carbon number of R 'is the same as the preferable carbon number of said R.
 一般式(1)のgの値や一般式(2)のhの値が1の化合物(X)と多価アルコール(Y)との反応によって得られたポリエステルユニットの末端は、カルボキシル基や水酸基から構成されており、以下の一般式(6)で示される:
Figure JPOXMLDOC01-appb-C000015
(式中、R1は、炭素数2~300の炭化水素基を表し、R2は、酸素原子、窒素原子を含んでもよい炭素数2~500の炭化水素基を表し、mは平均重合度を表し、1以上、好ましくは5~500の数を表し、Xは、HO-又はHO-R2-O-のいずれかを表し、Yは、水素原子又は-CO-R1-COOHのいずれかを表す)
更に、一般式(6)で表される化合物に、他の化合物を反応させてもよい。但し、他の化合物を反応させる場合には、化合物(X)と多価アルコール(Y)との反応によって得られる反応物であるポリエステルの割合が、全体の分子量(重量平均分子量)の50質量%以上でなければならず、70質量%以上であることが好ましく、90質量%以上であることがより好ましく、他の化合物を反応させないものが最も好ましい。なお、ポリエステルの割合が50質量%未満になると、低温流動性向上剤としての性能を発揮することができない。
The terminal of the polyester unit obtained by the reaction of the compound (X) having the g value of the general formula (1) and the h value of 1 of the general formula (2) with the polyhydric alcohol (Y) is a carboxyl group or a hydroxyl group And is represented by the following general formula (6):
Figure JPOXMLDOC01-appb-C000015
(Wherein R 1 represents a hydrocarbon group having 2 to 300 carbon atoms, R 2 represents a hydrocarbon group having 2 to 500 carbon atoms which may contain an oxygen atom or a nitrogen atom, and m represents an average degree of polymerization) X represents a number of 1 or more, preferably 5 to 500, X represents either HO— or HO—R 2 —O—, and Y represents either a hydrogen atom or —CO—R 1 —COOH. Represents)
Furthermore, you may make another compound react with the compound represented by General formula (6). However, when other compounds are reacted, the proportion of the polyester, which is a reaction product obtained by the reaction between the compound (X) and the polyhydric alcohol (Y), is 50% by mass of the total molecular weight (weight average molecular weight). It should be above, preferably 70% by mass or more, more preferably 90% by mass or more, and most preferably not react with other compounds. In addition, when the ratio of polyester will be less than 50 mass%, the performance as a low-temperature fluidity improver cannot be exhibited.
 一般式(1)のgの値や一般式(2)のhの値が2~1000の化合物(X)と多価アルコール(Y)との反応によって得られたポリエステルユニットの末端は、カルボキシル基や水酸基から構成されており、以下の一般式(7)で示される:
Figure JPOXMLDOC01-appb-C000016
(式中、R1は、炭素数2~300の炭化水素基を表し、R2は、酸素原子、窒素原子を含んでもよい炭素数2~500の炭化水素基を表し、mは平均重合度を表し、1以上、好ましくは5~500の数を表し、lは平均重合度を表し、2~1000の数を表し、Xは、HO-又はHO-R2-O-のいずれかを表し、Yは、水素原子又は-CO-R12-COOHのいずれかを表す)
更に、一般式(7)で表される化合物に、他の化合物を反応させてもよい。但し、他の化合物を反応させる場合には、化合物(X)と多価アルコール(Y)との反応によって得られるポリエステルの割合が、全体の分子量(重量平均分子量)の50質量%以上でなければならず、70質量%以上であることが好ましく、90質量%以上であることがより好ましく、他の化合物を反応させないものが最も好ましい。なお、ポリエステルの割合が50質量%未満になると、低温流動性向上剤としての性能を発揮することができない。
The terminal of the polyester unit obtained by the reaction of the compound (X) having a g value of the general formula (1) or a h value of 2 to 1000 of the general formula (2) with the polyhydric alcohol (Y) is a carboxyl group And a hydroxyl group, represented by the following general formula (7):
Figure JPOXMLDOC01-appb-C000016
(Wherein R 1 represents a hydrocarbon group having 2 to 300 carbon atoms, R 2 represents a hydrocarbon group having 2 to 500 carbon atoms which may contain an oxygen atom or a nitrogen atom, and m represents an average degree of polymerization) 1 represents a number of 1 or more, preferably 5 to 500, 1 represents an average degree of polymerization, represents a number of 2 to 1000, and X represents either HO— or HO—R 2 —O—. Y represents a hydrogen atom or —CO—R 1 H 2 —COOH)
Furthermore, you may make another compound react with the compound represented by General formula (7). However, when other compounds are reacted, the proportion of the polyester obtained by the reaction between the compound (X) and the polyhydric alcohol (Y) must be 50% by mass or more of the total molecular weight (weight average molecular weight). However, it is preferably 70% by mass or more, more preferably 90% by mass or more, and most preferably one that does not react with other compounds. In addition, when the ratio of polyester will be less than 50 mass%, the performance as a low-temperature fluidity improver cannot be exhibited.
 反応させることができる他の化合物としては、水酸基やカルボン酸と反応するものであればいずれの化合物でもよいが、好ましくは反応後にイオン性基を生成しない化合物であり、例えば、アルコール、脂肪酸、アミン等が挙げられる。 The other compound that can be reacted may be any compound that reacts with a hydroxyl group or a carboxylic acid, but is preferably a compound that does not generate an ionic group after the reaction, for example, alcohol, fatty acid, amine Etc.
 アルコールとしては、上記に挙げた多価アルコールや、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、2級ブタノール、ターシャリブタノール、ペンタノール、イソペンタノール、2級ペンタノール、ネオペンタノール、ターシャリペンタノール、ヘキサノール、2級ヘキサノール、ヘプタノール、2級ヘプタノール、オクタノール、2-エチルヘキサノール、2級オクタノール、ノナノール、2級ノナノール、デカノール、2級デカノール、ウンデカノール、2級ウンデカノール、ドデカノール、2級ドデカノール、トリデカノール、イソトリデカノール、2級トリデカノール、テトラデカノール、2級テトラデカノール、ヘキサデカノール、2級ヘキサデカノール、ステアリルアルコール、イソステアリルアルコール、エイコサノール、ドコサノール、テトラコサノール、ヘキサコサノール、オクタコサノール、ミリシルアルコール、ラッセロール、テトラトリアコンタノール、2-ブチルオクタノール、2-ブチルデカノール、2-ヘキシルオクタノール、2-ヘキシルデカノール、2-オクチルデカノール、2-ヘキシルドデカノール、2-オクチルドデカノール、2-デシルテトラデカノール、2-ドデシルヘキサデカノール、2-ヘキサデシルオクタデカノール、2-テトラデシルオクタデカノール、シクロペンタノール、シクロヘキサノール、シクロヘプタノール、メチルシクロペンタノール、メチルシクロヘキサノール、メチルシクロヘプタノール、ベンジルアルコール等の1価アルコールが挙げられる。アルコールはポリエステル末端のカルボン酸と反応してエステル結合を生成する。 Examples of the alcohol include the polyhydric alcohols listed above, methanol, ethanol, propanol, isopropanol, butanol, isobutanol, secondary butanol, tertiary butanol, pentanol, isopentanol, secondary pentanol, neopentanol, Tertiary pentanol, hexanol, secondary hexanol, heptanol, secondary heptanol, octanol, 2-ethylhexanol, secondary octanol, nonanol, secondary nonanol, decanol, secondary decanol, undecanol, secondary undecanol, dodecanol, secondary Dodecanol, tridecanol, isotridecanol, secondary tridecanol, tetradecanol, secondary tetradecanol, hexadecanol, secondary hexadecanol, stearyl alcohol Isostearyl alcohol, eicosanol, docosanol, tetracosanol, hexacosanol, octacosanol, myricyl alcohol, lasserol, tetratriacontanol, 2-butyloctanol, 2-butyldecanol, 2-hexyloctanol, 2-hexyldecanol, 2-octyl decanol, 2-hexyl decanol, 2-octyl decanol, 2-decyl tetradecanol, 2-dodecyl hexadecanol, 2-hexadecyl octadecanol, 2-tetradecyl octadecanol, cyclopen Examples thereof include monohydric alcohols such as butanol, cyclohexanol, cycloheptanol, methylcyclopentanol, methylcyclohexanol, methylcycloheptanol, and benzyl alcohol. The alcohol reacts with the carboxylic acid at the end of the polyester to form an ester bond.
 脂肪酸としては、例えば、酢酸、プロピオン酸、ブタン酸(酪酸)、ペンタン酸(吉草酸)、イソペンタン酸(イソ吉草酸)、ヘキサン酸(カプロン酸)、ヘプタン酸、イソヘプタン酸、オクタン酸(カプリル酸)、2-エチルヘキサン酸、イソオクタン酸、ノナン酸(ペラルゴン酸)、イソノナン酸、デカン酸(カプリン酸)、イソデカン酸、ウンデカン酸、イソウンデカン酸、ドデカン酸(ラウリン酸)、イソドデカン酸、トリデカン酸、イソトリデカン酸、テトラデカン酸(ミリスチン酸)、ヘキサデカン酸(パルミチン酸)、オクタデカン酸(ステアリン酸)、イソステアリン酸、エイコサン酸(アラキン酸)、ドコサン酸(ベヘン酸)、テトラコサン酸(リグノセリン酸)、ヘキサコサン酸(セロチン酸)、オクタコサン酸(モンタン酸)、10-ウンデセン酸、ゾーマリン酸、オレイン酸、エライジン酸、リノール酸、リノレン酸、ガドレン酸、エルカ酸、セラコレイン酸、天然油脂から得られる混合脂肪酸等が挙げられる。脂肪酸はポリエステル末端の水酸基と反応してエステル結合を生成する。 Examples of fatty acids include acetic acid, propionic acid, butanoic acid (butyric acid), pentanoic acid (valeric acid), isopentanoic acid (isovaleric acid), hexanoic acid (caproic acid), heptanoic acid, isoheptanoic acid, octanoic acid (caprylic acid) ), 2-ethylhexanoic acid, isooctanoic acid, nonanoic acid (pelargonic acid), isononanoic acid, decanoic acid (capric acid), isodecanoic acid, undecanoic acid, isoundecanoic acid, dodecanoic acid (lauric acid), isododecanoic acid, tridecanoic acid , Isotridecanoic acid, tetradecanoic acid (myristic acid), hexadecanoic acid (palmitic acid), octadecanoic acid (stearic acid), isostearic acid, eicosanoic acid (arachinic acid), docosanoic acid (behenic acid), tetracosanoic acid (lignoceric acid), hexacosane Acid (serotic acid), octacosanoic acid (molybdate) Tan acid), 10-undecenoic acid, Zomarin acid, oleic acid, elaidic acid, linoleic acid, linolenic acid, gadoleic acid, erucic acid, selacholeic acid, mixed fatty acids obtained from natural oils and fats and the like. The fatty acid reacts with the hydroxyl group at the end of the polyester to form an ester bond.
 アミンとしては1級アミン又は2級アミンが挙げられ、1級アミンとしては、例えば、メチルアミン、エチルアミン、プロピルアミン、イソプロピルアミン、ブチルアミン、イソブチルアミン、ペンチルアミン、イソペンチルアミン、ヘキシルアミン、イソヘキシルアミン、オクチルアミン、2-エチルヘキシルアミン、ノニルアミン、イソノニルアミン、デシルアミン、イソデシルアミン、ウンデシルアミン、イソウンデシルアミン、ドデシルアミン、イソドデシルアミン、トリデシルアミン、イソトリデシルアミン、テトラデシルアミン、イソテトラデシルアミン、ヘキサデシルアミン、イソヘキサデシルアミン、オクタデシルアミン、イソオクタデシルアミン、オレイルアミン等が挙げられる。また、2級アミンとしては、例えば、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジイソプロピルアミン、ジブチルアミン、ジイソブチルアミン、ジペンチルアミン、ジイソペンチルアミン、ジヘキシルアミン、ジイソヘキシルアミン、ジオクチルアミン、ジ2-エチルヘキシルアミン、ジノニルアミン、ジイソノニルアミン、ジデシルアミン、ジイソデシルアミン、ジウンデシルアミン、ジイソウンデシルアミン、ジドデシルアミン、ジイソドデシルアミン、ジトリデシルアミン、ジイソトリデシルアミン、ジテトラデシルアミン、ジイソテトラデシルアミン、ジヘキサデシルアミン、ジイソヘキサデシルアミン、ジオクタデシルアミン、ジイソオクタデシルアミン、ジオレイルアミン等が挙げられる。アミンはポリエステル末端のカルボキシル基と反応してアミド結合を生成する。 Examples of amines include primary amines and secondary amines. Examples of primary amines include methylamine, ethylamine, propylamine, isopropylamine, butylamine, isobutylamine, pentylamine, isopentylamine, hexylamine, and isohexyl. Amine, octylamine, 2-ethylhexylamine, nonylamine, isononylamine, decylamine, isodecylamine, undecylamine, isoundecylamine, dodecylamine, isododecylamine, tridecylamine, isotridecylamine, tetradecylamine , Isotetradecylamine, hexadecylamine, isohexadecylamine, octadecylamine, isooctadecylamine, oleylamine and the like. Secondary amines include, for example, dimethylamine, diethylamine, dipropylamine, diisopropylamine, dibutylamine, diisobutylamine, dipentylamine, diisopentylamine, dihexylamine, diisohexylamine, dioctylamine, di-2- Ethylhexylamine, dinonylamine, diisononylamine, didecylamine, diisodecylamine, diundecylamine, diisoundecylamine, didodecylamine, diisododecylamine, ditridecylamine, diisotridecylamine, ditetradecylamine, diisotetradecylamine , Dihexadecylamine, diisohexadecylamine, dioctadecylamine, diisooctadecylamine, dioleylamine and the like. The amine reacts with the carboxyl group at the end of the polyester to form an amide bond.
 本明細書に記載する述語「バイオディーゼル燃料」とは、100質量%の脂肪酸メチルエステル又は軽油と脂肪酸メチルエステルを含有した燃料であり、軽油としては、JIS K2204で規格化されている1号軽油や2号軽油、3号軽油等のディーゼルエンジンに使用できる一般的な軽油であればいずれも使用することができる。 The predicate “biodiesel fuel” described in the present specification is a fuel containing 100 mass% fatty acid methyl ester or light oil and fatty acid methyl ester, and the light oil is No. 1 light oil standardized in JIS K2204. Any general diesel oil that can be used in diesel engines such as No. 2, No. 2 diesel oil and No. 3 diesel oil can be used.
 また、脂肪酸メチルエステルとしては、植物から得られる天然油脂を原料にしたもの、豚脂、牛脂等の動物から得られる天然油脂を原料にしたもの、及び、これらの廃食油を原料にしたものであればいずれも使用することができる。植物系の天然油脂としては、例えば、ヤトロファ油、砂桃油、花椒油、アマニ油、エノ油、オイチシカ油、オリーブ油、カカオ脂、カポック油、白カラシ油、ゴマ油、コメヌカ油、サフラワー油、シアナット油、シナキリ油、大豆油、茶実油、ツバキ油、コーン油、ナタネ油、パーム油、パーム核油、ひまし油、ひまわり油、綿実油、ヤシ油、木ロウ、落花生油、及びこれらの混合物等が挙げられる。脂肪酸メチルエステルの製造方法は公知の方法であればいずれの方法で製造してもよく、例えば、上記の天然油脂とメタノールとを、水酸化ナトリウムや水酸化カリウム等のアルカリ触媒下で加熱してエステル交換をし、不純物として出るグリセリンを除去して得る方法が挙げられる。 Fatty acid methyl esters include those made from natural fats and oils obtained from plants, those made from natural fats and oils obtained from animals such as pork fat and beef tallow, and those made from these waste cooking oils. Any can be used. Examples of plant-based natural fats and oils include, for example, Jatropha oil, sand peach oil, flower bud oil, flaxseed oil, eno oil, oil deer oil, olive oil, cacao fat, kapok oil, white mustard oil, sesame oil, rice bran oil, safflower oil, Shea nut oil, cinnamon oil, soybean oil, tea seed oil, camellia oil, corn oil, rapeseed oil, palm oil, palm kernel oil, castor oil, sunflower oil, cottonseed oil, coconut oil, tree wax, peanut oil, and mixtures thereof Is mentioned. The fatty acid methyl ester may be produced by any known method, for example, by heating the above natural oil and methanol under an alkali catalyst such as sodium hydroxide or potassium hydroxide. Examples include a method obtained by transesterification to remove glycerin that is produced as an impurity.
 軽油と脂肪酸メチルエステルとを配合する場合は、バイオディーゼル燃料全量に対して脂肪酸メチルエステルが2質量%以上になるように配合することが好ましい。脂肪酸メチルエステルが2質量%未満であると、化石燃料の使用量を削減して二酸化炭素排出量を低減するという、バイオディーゼル燃料本来の目的を達成させるには不十分であり、バイオディーゼル燃料の意義が薄れてしまうために好ましくない。 When blending light oil and fatty acid methyl ester, it is preferable to blend so that fatty acid methyl ester is 2% by mass or more based on the total amount of biodiesel fuel. If the fatty acid methyl ester is less than 2% by mass, it is insufficient to achieve the original purpose of biodiesel fuel, which is to reduce the amount of fossil fuel used and reduce carbon dioxide emissions. This is not preferable because the significance is lost.
 本発明のバイオディーゼル燃料組成物は、上記のバイオディーゼル燃料と、本発明の低温流動性向上剤とを含有してなるものである。バイオディーゼル燃料に対する本発明の低温流動性向上剤の配合量は特に限定されるものではないが、バイオディーゼル燃料全量に対して0.001~5質量%配合することが好ましく、0.005~3質量%がより好ましい。配合量が0.001質量%未満になると十分な効果が現れない場合があり、5質量%を超えると、配合量に見合った効果が得られない場合や、燃料に種類によっては不溶物が発生する場合があるために好ましくない。 The biodiesel fuel composition of the present invention comprises the above biodiesel fuel and the low temperature fluidity improver of the present invention. The blending amount of the low temperature fluidity improver of the present invention with respect to the biodiesel fuel is not particularly limited, but it is preferably blended by 0.001 to 5% by mass with respect to the total amount of the biodiesel fuel, and 0.005 to 3 The mass% is more preferable. If the blending amount is less than 0.001% by mass, a sufficient effect may not be exhibited. If the blending amount exceeds 5% by mass, an effect corresponding to the blending amount may not be obtained, or an insoluble material may be generated depending on the type of fuel. It is not preferable because it may.
 本発明のバイオディーゼル燃料組成物には、必要に応じてセタン価向上剤を配合することができる。セタン価向上剤としては、軽油のセタン価向上剤として知られる各種の化合物を任意に使用することができ、例えば、2-クロロエチルナイトレート、2-エトキシエチルナイトレート、イソプロピルナイトレート、ブチルナイトレート、第一アミルナイトレート、第二アミルナイトレート、イソアミルナイトレート、第一ヘキシルナイトレート、第二ヘキシルナイトレート、n-ヘプチルナイトレート、n-オクチルナイトレート、2-エチルヘキシルナイトレート、シクロヘキシルナイトレート、エチレングリコールジナイトレート等が挙げることができるが、特に、炭素数6~8のアルキルナイトレートが好ましい。セタン価向上剤の含有量は、バイオディーゼル燃料組成物全量に対して500~1400質量ppm、好ましくは600~1250質量ppm、更に好ましくは700~1100質量ppmの範囲内である。セタン価向上剤を配合する場合、その配合量が500質量ppm未満であると、十分なセタン価向上効果が得られず、ディーゼルエンジン排出ガス中の粒子状物質(PM)、アルデヒド類、さらにはNOxが十分に低減できないことかあるために好ましくない。また、セタン価向上剤の配合量が1400質量ppmを超えても、それに見合う効果が期待できず、経済的に不利になるために好ましくない。 The biodiesel fuel composition of the present invention can be mixed with a cetane number improver as necessary. As the cetane number improver, various compounds known as light oil cetane number improvers can be arbitrarily used. For example, 2-chloroethyl nitrate, 2-ethoxyethyl nitrate, isopropyl nitrate, butylnite. Rate, primary amyl nitrate, secondary amyl nitrate, isoamyl nitrate, primary hexyl nitrate, secondary hexyl nitrate, n-heptyl nitrate, n-octyl nitrate, 2-ethylhexyl nitrate, cyclohexyl night Examples thereof include ethylene glycol dinitrate, and alkyl nitrates having 6 to 8 carbon atoms are particularly preferable. The content of the cetane number improver is in the range of 500 to 1400 ppm by mass, preferably 600 to 1250 ppm by mass, more preferably 700 to 1100 ppm by mass with respect to the total amount of the biodiesel fuel composition. When the cetane number improver is blended, if the blending amount is less than 500 ppm by mass, a sufficient cetane number improving effect cannot be obtained, and particulate matter (PM), aldehydes in diesel engine exhaust gas, and further It is not preferable because NOx may not be sufficiently reduced. Moreover, even if the compounding quantity of a cetane number improver exceeds 1400 mass ppm, since the effect corresponding to it cannot be expected and it becomes economically disadvantageous, it is unpreferable.
 また、本発明のバイオディーゼル燃料組成物には、必要に応じて清浄剤を配合することができる。清浄剤としては、例えば、イミド系化合物;ポリブテニルコハク酸無水物とエチレンポリアミン類とから合成されるポリブテニルコハク酸イミドなどのアルケニルコハク酸イミド;ペンタエリスリトールなどの多価アルコールとポリブテニルコハク酸無水物から合成されるポリブテニルコハク酸エステルなどのコハク酸エステル;ジアルキルアミノエチルメタクリレート、ポリエチレングリコールメタクリレート、ビニルピロリドンなどとアルキルメタクリレートとのコポリマーなどの共重合系ポリマー、カルボン酸とアミンの反応生成物等の無灰清浄剤等が挙げられ、中でもアルケニルコハク酸イミド及びカルボン酸とアミンとの反応生成物が好ましい。これらの清浄剤は、1種を単独で又は2種以上を組み合わせて使用することができる。清浄剤の配合量は、特に限定されるものではないが、清浄剤を配合した効果、具体的には、燃料噴射ノズルの閉塞抑制効果を引き出すため、清浄剤の配合量は、バイオディーゼル燃料組成物全量に対して30~300質量ppm、好ましくは60~200質量ppmの範囲内である。清浄剤の配合量が30質量ppm未満の場合、上記の効果が現れない場合があり、また、300質量ppmを超えてもそれに見合う効果が期待できず、逆に、ディーゼルエンジン排出ガス中のNOx、PM、アルデヒド類等を増加させる場合があるために好ましくない。 Moreover, a detergent can be blended in the biodiesel fuel composition of the present invention as necessary. Examples of the detergent include imide compounds; alkenyl succinimides such as polybutenyl succinimides synthesized from polybutenyl succinic anhydrides and ethylene polyamines; polyhydric alcohols such as pentaerythritol and polybutyls. Succinic acid esters such as polybutenyl succinic acid ester synthesized from tenyl succinic anhydride; copolymer polymers such as dialkylaminoethyl methacrylate, polyethylene glycol methacrylate, vinyl pyrrolidone and alkyl methacrylate copolymers, carboxylic acids and amines Ashless detergents such as reaction products of alkenyl succinic acid imide and reaction products of carboxylic acid and amine are preferred. These detergents can be used alone or in combination of two or more. The blending amount of the detergent is not particularly limited, but in order to bring out the effect of blending the detergent, specifically, the effect of suppressing clogging of the fuel injection nozzle, the blending amount of the detergent is the biodiesel fuel composition. It is within the range of 30 to 300 ppm by mass, preferably 60 to 200 ppm by mass relative to the total amount of the product. When the blending amount of the detergent is less than 30 ppm by mass, the above-mentioned effect may not appear, and even if it exceeds 300 ppm by mass, an effect commensurate with it cannot be expected. Conversely, NOx in diesel engine exhaust gas , PM, aldehydes and the like may be increased, which is not preferable.
 更に、本発明のバイオディーゼル燃料組成物には、性能を更に高める目的で、その他の公知の燃料油添加剤を単独で、または数種類組み合わせて添加することもできる。その他の添加剤としては、例えば、メタノール、エタノール、プロパノール、ブタノール、ヘキサン、トルエン、ジメチルベンゼン、トリメチルベンゼン等の溶剤;フェノール系、アミン系、ビタミン系などの酸化防止剤;脂肪酸、グリセリンエステル、アルキルアミン、脂肪酸アミドなどの潤滑性向上剤;サリチリデン誘導体などの金属不活性化剤;ポリグリコールエーテルなどの氷結防止剤;脂肪族アミン、アルケニルコハク酸エステルなどの腐食防止剤;アニオン系、カチオン系、両性系界面活性剤などの帯電防止剤;アゾ染料などの着色剤;シリコン系などの消泡剤等が挙げられる。その他の添加剤の配合量は任意に決めることができるが、添加剤個々の配合量は、バイオディーゼル燃料組成物全量に対して、0.001~0.5質量%、より好ましくは0.001~0.2質量%の範囲内である。 Furthermore, other known fuel oil additives can be added to the biodiesel fuel composition of the present invention alone or in combination of several kinds for the purpose of further enhancing the performance. Examples of other additives include solvents such as methanol, ethanol, propanol, butanol, hexane, toluene, dimethylbenzene, and trimethylbenzene; antioxidants such as phenols, amines, and vitamins; fatty acids, glycerin esters, and alkyls. Lubricants such as amines and fatty acid amides; metal deactivators such as salicylidene derivatives; anti-icing agents such as polyglycol ethers; corrosion inhibitors such as aliphatic amines and alkenyl succinic acid esters; anionic and cationic Antistatic agents such as amphoteric surfactants; colorants such as azo dyes; and silicon-based antifoaming agents. The blending amount of other additives can be arbitrarily determined, but the blending amount of each additive is 0.001 to 0.5% by mass, more preferably 0.001 based on the total amount of the biodiesel fuel composition. Within the range of 0.2 mass%.
 以下、本発明を実施例により、具体的に説明する。尚、以下の実施例等において「%」及び「ppm」は、特に記載が無い限り質量基準である。 Hereinafter, the present invention will be specifically described by way of examples. In the following examples and the like, “%” and “ppm” are based on mass unless otherwise specified.
(a-1)無水オクタデシリデンコハク酸1molとエチレングリコール1molから得られるポリエステル(重量平均分子量=5000)[一般式(6)において、R1の炭素数=20、R2の炭素数=2、X=HO-及びHO-R2-O-、Y=水素原子及び-CO-R1-COOH、平均重合度m=12.2]
(a-2)無水オクタデシリデンコハク酸1molとジエチレングリコール1molから得られるポリエステル(重量平均分子量=5200)[一般式(6)において、R1の炭素数=20、R2の炭素数=4、X=HO-及びHO-R2-O-、Y=水素原子及び-CO-R1-COOH、平均重合度m=11.5]
(a-3)無水オクタデシリデンコハク酸1molとポリエチレングリコール1mol(重量平均分子量800、平均炭素数36)から得られるポリエステル(重量平均分子量=9800)[一般式(6)において、R1の炭素数=20、R2の炭素数=36、X=HO-及びHO-R2-O-、Y=水素原子及び-CO-R1-COOH、平均重合度m=8.5]
(a-4)無水ヘキサデシリデンコハク酸1molとグリセリン1molから得られるポリエステル(重量平均分子量=8000)
(a-5)無水オクタデシリデンコハク酸1molと1、6-ヘキサンジオール1molから得られるポリエステル(重量平均分子量=6000)[一般式(6)において、R1の炭素数=20、R2の炭素数=6、X=HO-及びHO-R2-O-、Y=水素原子及び-CO-R1-COOH、平均重合度m=12.9]
(a-6)オクタデシリデンコハク酸1molとエチレングリコール1molから得られるポリエステル(重量平均分子量=5000)[一般式(6)において、R1の炭素数=20、R2の炭素数=2、X=HO-及びHO-R2-O-、Y=水素原子及び-CO-R1-COOH、平均重合度m=12.2]
(a-7)アルケニルコハク酸1molとエチレングリコール1molから得られるポリエステル(アルケニル基は平均炭素数71のポリブテニル基)(重量平均分子量=10300)[一般式(6)において、R1の炭素数=73、R2の炭素数=2、X=HO-及びHO-R2-O-、Y=水素原子及び-CO-R1-COOH、平均重合度m=8.9]
(a-8)コハク酸1molとエチレングリコール1molから得られるポリエステル(重量平均分子量=4200)[一般式(6)において、R1の炭素数=2、R2の炭素数=2、X=HO-及びHO-R2-O-、Y=水素原子及び-CO-R1-COOH、平均重合度m=29.2]
(a-9)無水オクタデシリデンコハク酸1molとエチレングリコール0.7molから得られるポリエステル(重量平均分子量=4700)[一般式(6)において、R1の炭素数=20、R2の炭素数=2、X=HO-及びHO-R2-O-、Y=水素原子及び-CO-R1-COOH、平均重合度m=11.5]
(a-10)a-9で得られたポリエステルに、ラウリルアミン0.1molを反応させた重合物(重量平均分子量=4900;ポリエステルの割合=95質量%)
(a-11)無水オクタデシリデンコハク酸1molとエチレングリコール0.5molから得られるポリエステル(重量平均分子量=3000)[一般式(6)において、R1の炭素数=20、R2の炭素数=2、X=HO-及びHO-R2-O-、Y=水素原子及び-CO-R1-COOH、平均重合度m=7.3]
(a-12)無水オクタデシリデンコハク酸1molとジエチレングリコール0.5molから得られるポリエステル(重量平均分子量=3800)[一般式(6)において、R1の炭素数=20、R2の炭素数=4、X=HO-及びHO-R2-O-、Y=水素原子及び-CO-R1-COOH、平均重合度m=8.4]
(a-13)オクタデセン1molと無水マレイン酸1molとの重合物[一般式(2)において、平均重合度h=30、Aの炭素数=20]、エチレングリコール0.5molから得られるポリエステル(重量平均分子量=220600)[一般式(7)において、R1の炭素数=20、R2の炭素数=2、X=HO-及びHO-R2-O-、Y=水素原子及び-CO-R1-COOH、平均重合度l=30、平均重合度m=18.5]
(a-14)(a-1)の化合物を75質量%、(a-13)の化合物を25質量%の混合物。
(A-1) Polyester obtained from 1 mol of octadecylidene succinic anhydride and 1 mol of ethylene glycol (weight average molecular weight = 5000) [In the general formula (6), the carbon number of R 1 = 20, the carbon number of R 2 = 2 X = HO— and HO—R 2 —O—, Y = hydrogen atom and —CO—R 1 —COOH, average degree of polymerization m = 12.2]
(A-2) Polyester obtained from 1 mol of octadecylidene succinic anhydride and 1 mol of diethylene glycol (weight average molecular weight = 5200) [In the general formula (6), the carbon number of R 1 = 20, the carbon number of R 2 = 4, X = HO— and HO—R 2 —O—, Y = hydrogen atom and —CO—R 1 —COOH, average degree of polymerization m = 11.5]
(A-3) Polyester (weight average molecular weight = 9800) obtained from 1 mol of octadecylidene succinic anhydride and 1 mol of polyethylene glycol (weight average molecular weight 800, average carbon number 36) [in the general formula (6), carbon of R 1 Number = 20, R 2 carbon number = 36, X = HO— and HO—R 2 —O—, Y = hydrogen atom and —CO—R 1 —COOH, average degree of polymerization m = 8.5]
(A-4) Polyester obtained from 1 mol of hexadecylidene succinic anhydride and 1 mol of glycerin (weight average molecular weight = 8000)
(A-5) Polyester obtained from 1 mol of octadecylidene succinic anhydride and 1 mol of 1,6-hexanediol (weight average molecular weight = 6000) [in the general formula (6), the carbon number of R 1 = 20, R 2 Carbon number = 6, X = HO— and HO—R 2 —O—, Y = hydrogen atom and —CO—R 1 —COOH, average degree of polymerization m = 12.9]
(A-6) Polyester obtained from 1 mol of octadecylidene succinic acid and 1 mol of ethylene glycol (weight average molecular weight = 5000) [in the general formula (6), the carbon number of R 1 = 20, the carbon number of R 2 = 2, X = HO— and HO—R 2 —O—, Y = hydrogen atom and —CO—R 1 —COOH, average degree of polymerization m = 12.2]
(A-7) Polyester obtained from 1 mol of alkenyl succinic acid and 1 mol of ethylene glycol (alkenyl group is a polybutenyl group having an average carbon number of 71) (weight average molecular weight = 10300) [in the general formula (6), the carbon number of R 1 = 73, R 2 carbon number = 2, X = HO— and HO—R 2 —O—, Y = hydrogen atom and —CO—R 1 —COOH, average degree of polymerization m = 8.9]
(A-8) Polyester obtained from 1 mol of succinic acid and 1 mol of ethylene glycol (weight average molecular weight = 4200) [in the general formula (6), R 1 carbon number = 2, R 2 carbon number = 2, X = HO — And HO—R 2 —O—, Y = hydrogen atom and —CO—R 1 —COOH, average degree of polymerization m = 29.2]
(A-9) Polyester obtained from 1 mol of octadecylidene succinic anhydride and 0.7 mol of ethylene glycol (weight average molecular weight = 4700) [in general formula (6), carbon number of R 1 = 20, carbon number of R 2 = 2, X = HO— and HO—R 2 —O—, Y = hydrogen atom and —CO—R 1 —COOH, average degree of polymerization m = 11.5]
(A-10) Polymer obtained by reacting 0.1 mol of laurylamine with the polyester obtained in a-9 (weight average molecular weight = 4900; ratio of polyester = 95% by mass)
(A-11) Polyester obtained from 1 mol of octadecylidene succinic anhydride and 0.5 mol of ethylene glycol (weight average molecular weight = 3000) [in general formula (6), carbon number of R 1 = 20, carbon number of R 2 = 2, X = HO— and HO—R 2 —O—, Y = hydrogen atom and —CO—R 1 —COOH, average degree of polymerization m = 7.3]
(A-12) Polyester obtained from 1 mol of octadecylidene succinic anhydride and 0.5 mol of diethylene glycol (weight average molecular weight = 3800) [In the general formula (6), the carbon number of R 1 = 20, the carbon number of R 2 = 4, X = HO— and HO—R 2 —O—, Y = hydrogen atom and —CO—R 1 —COOH, average degree of polymerization m = 8.4]
(A-13) Polymer obtained from 1 mol of octadecene and 1 mol of maleic anhydride [in general formula (2), average polymerization degree h = 30, carbon number of A = 20], polyester obtained from 0.5 mol of ethylene glycol (weight) (Average molecular weight = 220600) [In the general formula (7), the carbon number of R 1 = 20, the carbon number of R 2 = 2, X = HO— and HO—R 2 —O—, Y = hydrogen atom and —CO— R 1 —COOH, average polymerization degree l = 30, average polymerization degree m = 18.5]
(A-14) A mixture of 75% by mass of the compound (a-1) and 25% by mass of the compound (a-13).
(b-1)ドデカン酸1molとポリエチレングリコール0.5molから得られるエステル化合物(ポリエチレングリコールはa-3で使用したものと同じ)(重量平均分子量=1000)
(b-2)マロン酸1molとエチレングリコール1molから得られるポリエステル(重量平均分子量=4900)[一般式(6)において、R1の炭素数=1、R2の炭素数=2、X=HO-及びHO-R2-O-、Y=水素原子及び-CO-R1-COOH、平均重合度m=37.7]
(b-3)オクタデカン酸1molとトリエチレングリコール1molから得られるエステル化合物(重量平均分子量=500)
(b-4)無水オクタデシリデンコハク酸1molとヘキサデカノール2molから得られるエステル化合物(重量平均分子量=500)
(b-5)アルケニルコハク酸1molとエチレングリコール1molから得られるポリエステル(アルケニル基は平均炭素数350のポリブテニル基)(重量平均分子量=28000)[一般式(6)において、R1の炭素数=352、R2の炭素数=2、X=HO-及びHO-R2-O-、Y=水素原子及び-CO-R1-COOH、平均重合度m=5.5]
(B-1) Ester compound obtained from 1 mol of dodecanoic acid and 0.5 mol of polyethylene glycol (polyethylene glycol is the same as that used in a-3) (weight average molecular weight = 1000)
(B-2) Polyester obtained from 1 mol of malonic acid and 1 mol of ethylene glycol (weight average molecular weight = 4900) [in the general formula (6), R 1 carbon number = 1, R 2 carbon number = 2, X = HO — And HO—R 2 —O—, Y = hydrogen atom and —CO—R 1 —COOH, average degree of polymerization m = 37.7]
(B-3) Ester compound obtained from 1 mol of octadecanoic acid and 1 mol of triethylene glycol (weight average molecular weight = 500)
(B-4) Ester compound obtained from 1 mol of octadecylidene succinic anhydride and 2 mol of hexadecanol (weight average molecular weight = 500)
(B-5) Polyester obtained from 1 mol of alkenyl succinic acid and 1 mol of ethylene glycol (alkenyl group is a polybutenyl group having an average carbon number of 350) (weight average molecular weight = 28000) [in the general formula (6), the carbon number of R 1 = 352, R 2 carbon number = 2, X = HO— and HO—R 2 —O—, Y = hydrogen atom and —CO—R 1 —COOH, average degree of polymerization m = 5.5]
 (a-1)のポリエステルは、下記の方法によって合成した。
 窒素導入管、還流管、攪拌装置及び温度計を備えた窒素吹き込み管及びコンデンサーを備えた1000mlフラスコに、オクタデセン1mol(252g)と無水マレイン酸1mol(98g)を仕込み、210℃まで加熱し、同温で20時間反応を行なって、無水オクタデシリデンコハク酸を350g得た。続いて、80℃まで冷却し、エチレングリコール1mol(62g)を加えた後、1.3kPaに減圧し、160℃に昇温して2時間反応を行なうことで(a-1)のポリエステルを得た。
The polyester (a-1) was synthesized by the following method.
A 1000 ml flask equipped with a nitrogen inlet tube, a reflux tube, a nitrogen blowing tube equipped with a stirrer and a thermometer and a condenser was charged with 1 mol (252 g) of octadecene and 1 mol (98 g) of maleic anhydride and heated to 210 ° C. The reaction was carried out at a temperature for 20 hours to obtain 350 g of octadecylidene succinic anhydride. Subsequently, after cooling to 80 ° C., 1 mol (62 g) of ethylene glycol was added, the pressure was reduced to 1.3 kPa, the temperature was raised to 160 ° C., and the reaction was carried out for 2 hours to obtain the polyester (a-1). It was.
 なお、(a-2)~(a-5)、(a-9)、(a-11)、(a-12)、(b-4)についても上記と同様の方法でエステル化反応を行い、(a-10)の重合物については、反応終了後の(a-9)にラウリルアミン0.1モル(18.5g)を加え、180℃で3時間アミド化反応を行うことにより、(a-9)のポリエステル末端にラウリルアミンを反応させた。 For (a-2) to (a-5), (a-9), (a-11), (a-12), and (b-4), an esterification reaction was performed in the same manner as described above. For the polymer of (a-10), 0.1 mol (18.5 g) of laurylamine was added to (a-9) after completion of the reaction, and an amidation reaction was carried out at 180 ° C. for 3 hours to obtain ( Laurylamine was reacted with the polyester terminal of a-9).
 (a-6)のポリエステルは、下記の方法によって合成した。
 窒素導入管、還流管、攪拌装置及び温度計を備えた窒素吹き込み管及びコンデンサーを備えた10000mlフラスコに、オクタデセン1mol(252g)と無水マレイン酸1mol(98g)を仕込み、210℃まで加熱し、同温で20時間、反応を行なった。続いて80℃まで冷却し、水2mol(36g)を仕込み、100℃で3時間反応を行なって加水分解した後に減圧により脱水し、オクタデシリデンコハク酸を386g得た。続いて、エチレングリコール1mol(62g)を加え、1.3kPaに減圧して160℃で4時間反応を行なうことで(a-6)のポリエステルを得た。
The polyester (a-6) was synthesized by the following method.
A 10000 ml flask equipped with a nitrogen inlet tube, reflux tube, stirring device and thermometer and a condenser was charged with 1 mol (252 g) of octadecene and 1 mol (98 g) of maleic anhydride and heated to 210 ° C. The reaction was carried out at temperature for 20 hours. Subsequently, the mixture was cooled to 80 ° C., charged with 2 mol (36 g) of water, reacted at 100 ° C. for 3 hours for hydrolysis, and then dehydrated under reduced pressure to obtain 386 g of octadecylidene succinic acid. Subsequently, 1 mol (62 g) of ethylene glycol was added, the pressure was reduced to 1.3 kPa, and the reaction was performed at 160 ° C. for 4 hours to obtain the polyester (a-6).
 なお、(a-7)、(a-8)についても上記と同様の方法でポリエステルを得た。また、(b-1)~(b-3)、(b-5)については、上記のエステル化反応と同様の方法でエステル化反応を行った。 For (a-7) and (a-8), polyester was obtained in the same manner as above. For (b-1) to (b-3) and (b-5), an esterification reaction was performed in the same manner as the above esterification reaction.
 (a-13)のポリエステルは、下記の方法によって合成した。
 窒素導入管、還流管、攪拌装置及び温度計を備えた窒素吹き込み管及びコンデンサーを備えた1000mlフラスコに、オクタデセン1mol(252g)と無水マレイン酸1mol(98g)、触媒としてアゾビスイソブチロニトリル3.5gを仕込み、220℃まで加熱し、同温度20時間反応を行って、オクタデセンと無水マレイン酸のポリマーを得た[一般式(2)においてAの炭素数=20、平均重合度h=30]。続いて、80℃まで冷却してエチレングリコール0.5mol(31g)を加えた後、1.3kPaに減圧し、160℃に昇温して2時間反応を行なうことで(a-13)のポリエステルを得た。
The polyester (a-13) was synthesized by the following method.
A 1000 ml flask equipped with a nitrogen inlet tube, a reflux tube, a stirrer and a thermometer and a condenser was added to 1 mol (252 g) of octadecene and 1 mol (98 g) of maleic anhydride, and azobisisobutyronitrile 3 as a catalyst. 0.5 g was charged, heated to 220 ° C., and reacted at the same temperature for 20 hours to obtain a polymer of octadecene and maleic anhydride [in the general formula (2), the number of carbons of A = 20, average polymerization degree h = 30 ]. Subsequently, after cooling to 80 ° C. and adding 0.5 mol (31 g) of ethylene glycol, the pressure was reduced to 1.3 kPa, the temperature was raised to 160 ° C., and the reaction was conducted for 2 hours to obtain the polyester of (a-13) Got.
<重量平均分子量の測定方法>
 重量平均分子量は、GPCにより算出した。測定に用いた機器及び測定条件は以下の通りである。
検出器:RI検出器 HLC-8120GPC[東ソー(株)]
カラム:TSKgel G4000Hxl、TSKgel G3000Hxl、TSKgel G2000Hxl[いずれも東ソー(株)]を直列に接続
展開溶媒:THF(テトラヒドロフラン)
展開溶媒流速:1ml/分
サンプル濃度:0.5質量%
測定温度:40℃
<Measurement method of weight average molecular weight>
The weight average molecular weight was calculated by GPC. The equipment and measurement conditions used for the measurement are as follows.
Detector: RI detector HLC-8120GPC [Tosoh Corporation]
Column: TSKgel G4000Hxl, TSKgel G3000Hxl, TSKgel G2000Hxl [both Tosoh Corp.] connected in series Developing solvent: THF (tetrahydrofuran)
Developing solvent flow rate: 1 ml / min Sample concentration: 0.5% by mass
Measurement temperature: 40 ° C
<流動点試験>
 上記低温流動性向上剤を表1に示した配合で、基油1(大豆油由来脂肪酸メチルエステル100%)または基油2(大豆油由来脂肪酸メチルエステルを30%含む軽油)を用いてバイオディーゼル燃料組成物を調整し、JIS K2269「原油及び石油製品の流動点並びに石油製品曇り点試験方法」に記載の方法で測定を行った。即ち、試験管に45mlの試料(バイオディーゼル燃料組成物)を入れて45℃に加温し、次いで、冷却浴を用い、試料を冷却する。試料の温度が2.5℃下がるごとに試験管を冷却浴から取り出して傾け、試料が5秒間、全く動かなくなった時の温度を読み取り、この値に2.5℃を加えた値を流動点とした。なお、実験に使用した軽油は、JIS K2204で規格化されている1号軽油に相当するものであった。
<Pour point test>
Biodiesel using the base oil 1 (100% soybean oil-derived fatty acid methyl ester) or base oil 2 (light oil containing 30% soybean oil-derived fatty acid methyl ester) with the low-temperature fluidity improver shown in Table 1 The fuel composition was prepared and measured by the method described in JIS K2269 “Pour point of crude oil and petroleum products and cloud point test method of petroleum products”. That is, a 45 ml sample (biodiesel fuel composition) is placed in a test tube and heated to 45 ° C., and then the sample is cooled using a cooling bath. Each time the temperature of the sample drops 2.5 ° C, the test tube is removed from the cooling bath and tilted. The temperature when the sample stops moving for 5 seconds is read, and the value obtained by adding 2.5 ° C to this value is the pour point. It was. The light oil used in the experiment was equivalent to No. 1 light oil standardized in JIS K2204.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 表1より、本発明品の低温流動性向上剤を使用したバイオディーゼル燃料組成物は、基油1、基油2共に流動点が低下しており、低温流動性が向上していることがわかる。 From Table 1, it can be seen that the biodiesel fuel composition using the low-temperature fluidity improver of the present invention has a lower pour point for both base oil 1 and base oil 2 and an improved low-temperature fluidity. .
 本発明のバイオディーゼル燃料用低温流動性向上剤は、脂肪酸メチルエステルを含むバイオディーゼル燃料の低温流動性を向上させるために好適に使用することができる。 The low temperature fluidity improver for biodiesel fuel of the present invention can be suitably used for improving the low temperature fluidity of a biodiesel fuel containing a fatty acid methyl ester.

Claims (8)

  1.  下記の一般式(1)及び/又は一般式(2)で表される化合物(X)と、
    Figure JPOXMLDOC01-appb-C000001
    (式中、AH2は炭素数2~300の炭化水素基を表し、gは平均重合度であり、1~1000の数を表わす。)
    Figure JPOXMLDOC01-appb-C000002
    (式中、AH2は炭素数2~300の炭化水素基を表し、hは平均重合度であり、1~1000の数を表わす。)
     下記の一般式(3)で表される1種又は2種以上の多価アルコール(Y)
    R-(OH)n   (3)
    (式中、Rは酸素原子、窒素原子を含有してもよい炭素数2~500の炭化水素基を表し、nは2以上の数を表す。)
    との反応物であるポリエステルを分子内に50質量%以上含有する重合体であることを特徴とするバイオディーゼル燃料用低温流動性向上剤。
    Compound (X) represented by the following general formula (1) and / or general formula (2),
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, AH 2 represents a hydrocarbon group having 2 to 300 carbon atoms, g represents an average degree of polymerization, and represents a number of 1 to 1000.)
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, AH 2 represents a hydrocarbon group having 2 to 300 carbon atoms, h represents an average degree of polymerization, and represents a number of 1 to 1000.)
    One or more polyhydric alcohols (Y) represented by the following general formula (3)
    R- (OH) n (3)
    (In the formula, R represents a hydrocarbon group having 2 to 500 carbon atoms which may contain an oxygen atom or a nitrogen atom, and n represents a number of 2 or more.)
    A low-temperature fluidity improver for biodiesel fuel, which is a polymer containing 50% by mass or more of polyester, which is a reaction product of
  2.  化合物(X)が、アルケニルコハク酸又はアルケニル無水コハク酸、若しくはポリマレイン酸誘導体である、請求項1記載のバイオディーゼル燃料用低温流動性向上剤。 The low-temperature fluidity improver for biodiesel fuel according to claim 1, wherein the compound (X) is alkenyl succinic acid, alkenyl succinic anhydride, or polymaleic acid derivative.
  3.  一般式(1)のgが1または一般式(2)のhが1である場合、ポリエステルが、下記の一般式(4)で表されるポリエステルユニットを持つ、請求項1または2記載のバイオディーゼル燃料用低温流動性向上剤:
    Figure JPOXMLDOC01-appb-C000003
    (式中、Aは炭素数2~300の炭化水素基を表し、R’は酸素原子、窒素原子を含有してもよい炭素数2~500の炭化水素基を表す。)
    The bio of claim 1 or 2, wherein when g of the general formula (1) is 1 or h of the general formula (2) is 1, the polyester has a polyester unit represented by the following general formula (4). Low temperature fluidity improver for diesel fuel:
    Figure JPOXMLDOC01-appb-C000003
    (In the formula, A represents a hydrocarbon group having 2 to 300 carbon atoms, and R ′ represents a hydrocarbon group having 2 to 500 carbon atoms which may contain an oxygen atom or a nitrogen atom.)
  4.  一般式(1)のgが2~1000または一般式(2)のhが2~1000である場合、ポリエステルが、下記の一般式(6)で表されるポリエステルユニットを持つ、請求項1または2記載のバイオディーゼル燃料用低温流動性向上剤:
    Figure JPOXMLDOC01-appb-C000004
    (式中、Aは炭素数2~300の炭化水素基を表し、R'は酸素原子、窒素原子を含有してもよい炭素数2~500の炭化水素基を表す。)
    When g in the general formula (1) is 2 to 1000 or h in the general formula (2) is 2 to 1000, the polyester has a polyester unit represented by the following general formula (6). 2. Low temperature fluidity improver for biodiesel fuel according to 2:
    Figure JPOXMLDOC01-appb-C000004
    (In the formula, A represents a hydrocarbon group having 2 to 300 carbon atoms, and R ′ represents a hydrocarbon group having 2 to 500 carbon atoms which may contain an oxygen atom or a nitrogen atom.)
  5.  下記の一般式(1)及び/又は一般式(2)で表される化合物(X)と、
    Figure JPOXMLDOC01-appb-C000005
    (式中、AH2は炭素数2~300の炭化水素基を表し、gは1~1000の数を表わす。)
    Figure JPOXMLDOC01-appb-C000006
    (式中、AH2は炭素数2~300の炭化水素基を表し、hは1~1000の数を表わす。)
    下記の一般式(3)で表される1種又は2種以上の多価アルコール(Y)
    R-(OH)n   (3)
    (式中、Rは酸素原子、窒素原子を含有してもよい炭素数2~500の炭化水素基を表し、nは2以上の数を表す。)
    との反応物であるポリエステルであることを特徴とするバイオディーゼル燃料用低温流動性向上剤。
    Compound (X) represented by the following general formula (1) and / or general formula (2),
    Figure JPOXMLDOC01-appb-C000005
    (In the formula, AH 2 represents a hydrocarbon group having 2 to 300 carbon atoms, and g represents a number of 1 to 1000.)
    Figure JPOXMLDOC01-appb-C000006
    (In the formula, AH 2 represents a hydrocarbon group having 2 to 300 carbon atoms, and h represents a number of 1 to 1000.)
    One or more polyhydric alcohols (Y) represented by the following general formula (3)
    R- (OH) n (3)
    (In the formula, R represents a hydrocarbon group having 2 to 500 carbon atoms which may contain an oxygen atom or a nitrogen atom, and n represents a number of 2 or more.)
    A low-temperature fluidity improver for biodiesel fuel, characterized in that the polyester is a reaction product of
  6.  請求項1ないし5のいずれか1項記載のバイオディーゼル燃料用低温流動性向上剤と、バイオディーゼル燃料とを含有することを特徴とするバイオディーゼル燃料組成物。 A biodiesel fuel composition comprising the biodiesel fuel low-temperature fluidity improver according to any one of claims 1 to 5 and biodiesel fuel.
  7.  更に、セタン価向上剤及び/または清浄剤を配合してなる、請求項6記載のバイオディーゼル燃料組成物。 The biodiesel fuel composition according to claim 6, further comprising a cetane number improver and / or a detergent.
  8.  更に、溶剤、酸化防止剤、潤滑性向上剤、金属不活性剤、氷結防止剤、腐食防止剤、帯電防止剤、着色剤及び消泡剤からなる群から選択される1種または2種以上のその他の添加剤を配合してなる、請求項6または7記載のバイオディーゼル燃料組成物。 Further, one or more selected from the group consisting of a solvent, an antioxidant, a lubricity improver, a metal deactivator, an anti-icing agent, a corrosion inhibitor, an antistatic agent, a colorant and an antifoaming agent. The biodiesel fuel composition according to claim 6 or 7, comprising other additives.
PCT/JP2009/061488 2008-07-10 2009-06-24 Cold flow improver for biodiesel fuel WO2010004872A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2009801023489A CN101910379B (en) 2008-07-10 2009-06-24 Cold flow improver for biodiesel fuel
JP2010519723A JP5450411B2 (en) 2008-07-10 2009-06-24 Low temperature fluidity improver for biodiesel fuel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008180007 2008-07-10
JP2008-180007 2008-07-10

Publications (1)

Publication Number Publication Date
WO2010004872A1 true WO2010004872A1 (en) 2010-01-14

Family

ID=41506991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/061488 WO2010004872A1 (en) 2008-07-10 2009-06-24 Cold flow improver for biodiesel fuel

Country Status (3)

Country Link
JP (1) JP5450411B2 (en)
CN (1) CN101910379B (en)
WO (1) WO2010004872A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011202164A (en) * 2010-03-04 2011-10-13 Adeka Corp Biodiesel fuel composition
JP2013515792A (en) * 2009-12-24 2013-05-09 クラリアント・ファイナンス・(ビーブイアイ)・リミテッド Low temperature additives for middle distillates with improved flowability
CN103820177A (en) * 2012-11-16 2014-05-28 季爱英 Compound diesel additive
CN103820176A (en) * 2012-11-16 2014-05-28 季爱英 Multi-functional diesel additive
US9840678B2 (en) 2013-12-26 2017-12-12 Exxonmobil Research And Engineering Company Methods of inhibiting precipitation of biodiesel fuel components
CN112877108A (en) * 2021-01-21 2021-06-01 上海应用技术大学 Biodiesel pour point depressant composition and preparation method and application thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102041176A (en) * 2011-01-14 2011-05-04 中国林业科学研究院林产化学工业研究所 Method for preparing low temperature epoxy fatty acid branched-chain alcohol ester improver for biodiesel and application thereof
CN106906014B (en) * 2017-03-31 2020-09-01 兰州燚能生物科技有限责任公司 Flash point improver for biological alcohol-based light fuel
CN117448068A (en) * 2023-10-30 2024-01-26 安徽天驰先锋油品制造有限公司 Brake fluid for severe cold areas and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008101163A (en) * 2006-10-20 2008-05-01 Nippon Shokubai Co Ltd Additive for biodiesel fuel

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1035437C (en) * 1993-12-21 1997-07-16 中国石油化工总公司石油化工科学研究院 Diesel-oil flow improving agent and its preparation method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008101163A (en) * 2006-10-20 2008-05-01 Nippon Shokubai Co Ltd Additive for biodiesel fuel

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013515792A (en) * 2009-12-24 2013-05-09 クラリアント・ファイナンス・(ビーブイアイ)・リミテッド Low temperature additives for middle distillates with improved flowability
JP2011202164A (en) * 2010-03-04 2011-10-13 Adeka Corp Biodiesel fuel composition
CN103820177A (en) * 2012-11-16 2014-05-28 季爱英 Compound diesel additive
CN103820176A (en) * 2012-11-16 2014-05-28 季爱英 Multi-functional diesel additive
US9840678B2 (en) 2013-12-26 2017-12-12 Exxonmobil Research And Engineering Company Methods of inhibiting precipitation of biodiesel fuel components
CN112877108A (en) * 2021-01-21 2021-06-01 上海应用技术大学 Biodiesel pour point depressant composition and preparation method and application thereof
CN112877108B (en) * 2021-01-21 2023-04-28 上海应用技术大学 Biodiesel pour point depressant composition and preparation method and application thereof

Also Published As

Publication number Publication date
CN101910379B (en) 2013-09-18
JPWO2010004872A1 (en) 2012-01-05
CN101910379A (en) 2010-12-08
JP5450411B2 (en) 2014-03-26

Similar Documents

Publication Publication Date Title
JP5450411B2 (en) Low temperature fluidity improver for biodiesel fuel
RU2713658C2 (en) Quaternary ammonium compounds and their use as additives to fuel or lubricants
US7959693B2 (en) Combustion catalyst carriers and methods of using the same
US8147568B2 (en) Stabilised diesel fuel additive compositions
JP5778029B2 (en) Composition and method for improving fuel economy of an internal combustion engine charged with hydrocarbon fuel
CN105765039B (en) Purposes of the complex ester in fuel
EP1570032B1 (en) Water blended fuel composition
JP2016525152A (en) Betaine compounds as fuel additives
KR20130117820A (en) Polyester quaternary ammonium salts
KR20060048697A (en) Fuel additives
JP2000192058A (en) Base oil for diesel engine fuel oil and fuel oil composition containing the base oil
WO2012030524A2 (en) Functionalized maleated fatty acids as non acidic fluid additives
CN1159823A (en) Oil additives, compositions and polymers for use therein
JP5731238B2 (en) Biodiesel fuel composition
JP2010121084A (en) Low temperature fluidity improver for biodiesel fuel
JP2000087052A (en) Low-temperature flowability improving agent for fuel oil and fuel oil composition
US20040237385A1 (en) Lubricity improver for diesel oil
EP0967263A1 (en) Diesel fuel oil composition
JP5634302B2 (en) Low temperature fluidity improver for fatty acid methyl esters
JP5271594B2 (en) Low temperature fluidity improver for biodiesel fuel
JPH1171586A (en) Fuel oil composition for diesel engine
US20110035994A1 (en) Low-Temperature Fluidity Improver for Biodiesel Fuel
JP5154209B2 (en) Stabilizer and biodiesel fuel composition for biodiesel fuel
JP2008063374A (en) Fuel oil additive composition and fuel oil composition containing the same
JP2007091982A (en) Fatty acid composition and fuel oil composition

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980102348.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09794318

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010519723

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09794318

Country of ref document: EP

Kind code of ref document: A1