WO2010004771A1 - 無線通信装置 - Google Patents

無線通信装置 Download PDF

Info

Publication number
WO2010004771A1
WO2010004771A1 PCT/JP2009/003261 JP2009003261W WO2010004771A1 WO 2010004771 A1 WO2010004771 A1 WO 2010004771A1 JP 2009003261 W JP2009003261 W JP 2009003261W WO 2010004771 A1 WO2010004771 A1 WO 2010004771A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
base station
repeater
wireless communication
unit
Prior art date
Application number
PCT/JP2009/003261
Other languages
English (en)
French (fr)
Inventor
斉藤佳子
堀内綾子
中尾正悟
平松勝彦
小早川雄一
松元淳志
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US13/003,618 priority Critical patent/US8570932B2/en
Priority to JP2010519660A priority patent/JP5294425B2/ja
Publication of WO2010004771A1 publication Critical patent/WO2010004771A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0071Use of interleaving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15592Adapting at the relay station communication parameters for supporting cooperative relaying, i.e. transmission of the same data via direct - and relayed path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link
    • H04L2001/0097Relays

Definitions

  • the present invention relates to a wireless communication apparatus that relays data to a base station in cooperation with other wireless communication apparatuses.
  • a base station the coverage area of the radio communication base station apparatus (hereinafter referred to as a base station) becomes small, and thus more base stations can be used. It will need to be installed. Since installation of a base station requires a considerable cost, there is a strong demand for a technology for realizing a communication service using a high frequency radio band while suppressing an increase in the number of base stations.
  • a radio communication relay station apparatus hereinafter referred to as a repeater and a radio communication relay station apparatus (hereinafter referred to as a repeater)
  • a relay transmission technology is being studied in which communication between the base station and the mobile station is performed via a repeater.
  • relay transmission technology terminals that can not directly communicate with the base station can also communicate via the repeater. It is also possible to give the mobile station the function of the repeater.
  • FIG. 23 is a schematic diagram of a cooperative relay system cooperatively relaying between the repeaters 1001 and 1002 and the base station 1003.
  • FIG. 24 is an operation example of the cooperative relay system of FIG. Here, focusing on the operation of the repeater 1001 in FIG. 24, an operation example of cooperative relaying realized by the cooperative relay system in FIG. 23 will be described.
  • Procedure 1-1 The repeater 1001 divides the transmission data to be transmitted to the base station (eNB) into first transmission data S1 including systematic bits and parity data P1.
  • Step 1-2 The repeater 1001 transmits the first transmission data S1 to the repeater 1002 and receives the first transmission data S2 from the repeater 1002. (Refer to FIG.
  • Step 1-3 The repeater 1001 generates parity data P2 from the received initial transmission data S2.
  • Procedure 1-4 Thereafter, the repeater 1001 transmits the first transmission data S1 of its own station to the base station (eNB) 1003 (see FIG. 23 (b)), and then, generates the parity data P2 generated as a base station (eNB) It transmits to 1003 (FIG.23 (c)).
  • Procedure 2-1 The repeater 1002 divides the transmission data to be transmitted by the base station (eNB) into the initial transmission data S2 including systematic bits and the parity data P2.
  • Step 2-2 The repeater 1002 transmits the first transmission data S2 to the repeater 1001 and receives the first transmission data S1 from the repeater 1001 (see FIG. 23A).
  • Step 2-3 The repeater 1002 generates parity data P1 from the received initial transmission data S1.
  • the timing of transmission of the first data in each repeater is called first-frame, and the timing of transmission of parity data of the opposite station is called second-frame.
  • the base station (eNB) 1003 receives (i.e., cooperatively relays) the data divided by two of each of the repeaters 1001 and 1002 through different paths, so that a path diversity effect can be obtained. .
  • FIG. 25 is a schematic diagram of a cooperative relay system in the case where there is a difference in propagation environment (channel quality) between the base station (eNB) 2003 and each of the repeaters 2001 and 2002.
  • FIG. 26 is an operation example of the cooperative relay system of FIG. In the cooperative relay system of FIG. 25, it is assumed that the propagation environment (channel quality) between the base station (eNB) 2003 and the repeater 2 is poor.
  • the repeater 2001 divides the transmission data to be transmitted to the base station (eNB) into first transmission data S1 including systematic bits and parity data P1.
  • Step 1-2 The repeater 2001 transmits the first transmission data S1 to the repeater 2002, and receives the first transmission data S2 from the repeater 2002.
  • Step 1-3 The repeater 2001 generates parity data P2 from the received initial transmission data S2.
  • Procedure 1-4 Thereafter, the repeater 2001 transmits the first transmission data S1 of its own station to the base station (eNB) 2003 (see FIG. 25 (b)), and then, generates the generated parity data P2 as a base station (eNB) It transmits to 2003 (FIG.25 (c)).
  • Procedure 2-1 The repeater 2002 divides the transmission data to be transmitted by the base station (eNB) 2003 into the initial transmission data S2 including systematic bits and the parity data P2.
  • Procedure 2-2 The repeater 2002 transmits the first transmission data S2 to the repeater 2001, and receives the first transmission data S1 from the repeater 2001 (see FIG. 23A).
  • Step 2-3 The repeater 2002 generates parity data P1 from the received initial transmission data S1.
  • Procedure 2-4 The repeater 2002 transmits the first transmission data S2 of its own station to the base station (eNB) 2003. However, since the propagation environment (channel quality) between the base station (eNB) 2003 and the repeater 2002 is bad, the reception quality at the base station (eNB) 2003 for the first transmission data S2 is degraded, and in the worst case, it can not be received. (Refer FIG. 25 (b)). Similarly, the repeater 2002 transmits the generated parity data P1 to the base station (eNB).
  • the object of the present invention is to exchange data between each wireless communication apparatus performing cooperative relaying and to share the initial data transmission process from each wireless communication apparatus performing cooperative relaying to the base station (eNB) from the wireless communication apparatus to the base station It is an object of the present invention to provide a wireless communication apparatus capable of improving the decoding performance of data to be transmitted thereto.
  • a wireless communication apparatus for relaying data in cooperation with another wireless communication apparatus to a base station relays data in cooperation with another wireless communication apparatus for the base station.
  • a storage unit configured to hold first data transmitted from the own device;
  • a receiver configured to receive at least a portion of the second data transmitted by another wireless communication device;
  • a relay data processing unit that supplements data of at least a part of the first data and the second data to cooperatively relay according to a channel quality difference between the base station and each wireless communication apparatus;
  • a transmitter configured to transmit the data after the processing in step (1) to the base station.
  • the base station can decode the data transmitted from the wireless communication device while exchanging data between the wireless communication devices and sharing the transmission of the initial transmission data to the base station. It can be improved.
  • a wireless communication apparatus for relaying data in cooperation with another wireless communication apparatus to a base station comprises: a storage unit for holding first data to be transmitted from the own apparatus; A receiving unit for receiving at least a portion of the second data transmitted by the wireless communication device; and for at least a portion of the first data and the second data according to a channel quality difference between the base station and each wireless communication device And an interleaving unit that performs interleaving, and a transmission unit that transmits the data after the interleaving to the base station.
  • the base station can decode the data transmitted from the wireless communication device while exchanging data between the wireless communication devices and sharing the transmission of the initial transmission data to the base station. It can be improved.
  • each of the first data and the second data is composed of initial transmission data including systematic bits and parity data including parity bits
  • the wireless communication apparatus further includes a base station and an own apparatus.
  • a determination unit that determines whether or not the channel quality difference between the base station and each wireless communication device is equal to or greater than a predetermined value, based on the channel quality between them and the channel quality between the base station and other wireless communication devices;
  • a data generation unit that generates the parity data from the data, wherein the determination unit determines that the channel quality difference between the base station and each wireless communication apparatus is equal to or greater than a predetermined value.
  • the data is randomized, so that the base station (eNB) performs wireless communication Since the data transmitted from the device can be received without bias, the reception quality at the base station (eNB) is improved.
  • a wireless communication apparatus for relaying data in cooperation with another wireless communication apparatus to a base station is transmitted from the apparatus itself and performs first first transmission including systematic bits.
  • a storage unit configured to hold first data including data and first parity data including parity bits; and a receiver configured to receive second initial transmission data transmitted from another wireless communication apparatus and including systematic bits Whether the channel quality difference between the base station and each wireless communication device is a predetermined value or more is determined from the channel quality between the base station and the own device and the channel quality between the base station and other wireless communication devices.
  • transmission from the first initial transmission data of the first data and another wireless communication device was done Note that parity data of first data reflecting the channel quality difference between the base station and each wireless communication apparatus from the second initial transmission data, and second reflecting the channel quality difference between the base station and each wireless communication apparatus
  • a data generation unit that generates parity data of the data
  • an interleave unit that interleaves parity data of the first data generated by the data generation unit and parity data of the second data generated by the data generation unit
  • a transmitter configured to transmit the data interleaved by the interleaver to a base station.
  • the amount of parity data of the first data generated by the data generation unit and the amount of parity data of the second data generated by the data generation unit may be between the base station and each wireless communication apparatus. Reflect the line quality difference of
  • the amount of the first transmission data of the first data when transmitting the first transmission data of the first data to the base station reflects the channel quality difference between the base station and each wireless communication apparatus. Do.
  • the above wireless communication device it is possible to share data from the wireless communication devices performing cooperative relaying and initial data transmission processing from the wireless communication devices performing cooperative relaying to the base station (eNB) Decoding performance of data transmitted to the base station can be improved. Also, even if one of the base station (eNB) and each of the wireless communication devices is in a poor propagation environment (channel quality), the data is randomized, whereby repeater data in the base station (eNB) is evenly distributed. The reception quality at the station (eNB) is improved.
  • a wireless communication apparatus that relays data to another base station in cooperation with another wireless communication apparatus stores the first data transmitted from the own apparatus.
  • the first determination unit that determines whether or not the channel quality difference between the two or more is a certain value or more, or which of the channel quality between the base station and its own apparatus and the channel quality between the base station and other wireless communication apparatuses is better
  • First parity data is generated from the first data based on the determination results of the second determination unit that determines the second determination unit and the first determination unit and the second determination unit, and the first determination unit and the second determination unit
  • Second parity data is generated from the second data based on the determination result of A data generation unit, a first interleaving unit that interleaves the first data and the second data, the first parity data generated by the data generation unit, and
  • the above wireless communication device it is possible to share data from the wireless communication devices performing cooperative relaying and initial data transmission processing from the wireless communication devices performing cooperative relaying to the base station (eNB) Decoding performance of data transmitted to the base station can be improved. Also, even if one of the base station (eNB) and each of the wireless communication devices is in a poor propagation environment (channel quality), the data is randomized, whereby repeater data in the base station (eNB) is evenly distributed. The reception quality at the station (eNB) is improved.
  • Data exchange processing between wireless communication devices performing cooperative relaying and sharing of initial data transmission processing from each wireless communication device performing cooperative relaying to the base station (eNB) while data transmitted from the wireless communication device to the base station Decoding performance can be improved.
  • FIG. 5A shows an internal structure of a receive data memory
  • FIG. 5B shows an internal structure of a transmit data memory in the first embodiment.
  • Functional block diagram of base station 300 in the first embodiment A diagram showing an internal memory structure of a base station 300 in the first embodiment Sequence diagram of cooperative relaying in the second embodiment Processing flow of cooperative relay in the second embodiment In the second embodiment, a sequence diagram of cooperative relaying when controlling the generation amount of parity data
  • FIG. 5A shows an internal structure of a receive data memory
  • FIG. 5B shows an internal structure of a transmit data memory in the first embodiment.
  • Functional block diagram of base station 300 in the first embodiment A diagram showing an internal memory structure of a base station 300 in the first embodiment Sequence diagram of cooperative relaying in the second embodiment Processing flow of cooperative relay in the second embodiment
  • a sequence diagram of cooperative relaying when controlling the generation amount of parity data In FIG.
  • FIG. 10 a sequence diagram of cooperative relaying when controlling the transmission amount of first transmission data
  • FIG. 13 (a) is a figure which shows the internal structure of a reception data memory
  • FIG.13 (b) is an internal structure of a transmission data memory.
  • Figure showing Functional block diagram of base station 600 in the second embodiment A diagram showing an internal structure of a buffer of base station 600 in the second embodiment
  • Sequence diagram of cooperative relay in the third embodiment Process flow of cooperative relay in the third embodiment
  • FIG. 20 shows an internal structure of each memory of the repeater 700 in the third embodiment
  • FIG. 20 shows an internal structure of each memory of the repeater 700 in the third embodiment
  • FIG. 20 (a) shows an internal structure of a reception data memory
  • FIG. 20 (b) shows an internal structure of a transmission data memory.
  • Figure Functional block diagram of base station 900 according to the third embodiment The figure which shows the internal structure of the reception buffer 903 of base station 900 in 3rd Embodiment.
  • a wireless communication apparatus having a repeater function that is, a wireless communication apparatus capable of transmitting data to a base station in cooperation with another wireless communication apparatus is simply referred to as a "repeater”.
  • each repeater is to transmit data to be transmitted to the base station into first transmission data (hereinafter referred to as Sx) including systematic bits and transmission data (hereinafter referred to as Px) including parity bits.
  • Sx first transmission data
  • Px transmission data
  • the first transmission data S1 and S2 of each other are exchanged to generate parity data P2 and P1 of the opposite station, respectively.
  • one repeater wants to transmit data to its own base station and the other repeater wants to transmit data to the base station. It performs relay data processing to compensate at least a part of data.
  • each repeater 100, 200 interleaves all data of initial transmission data (S1 and S2) and parity data (P1 and P2) of the own station and the opposite station. Further, all interleaved data are divided into four equal parts (D1, D2, D3, D4). Each of the repeaters 100 and 200 transmits two different ones of the four equal parts to the base station (eNB) in the first-frame and the second-frame, respectively.
  • the transmission data is randomized, so that the base station (eNB) receives from the repeater There is no bias in the received data, and the reception quality at the base station (eNB) is improved.
  • FIG. 1 is a schematic diagram of a cooperative relay (Coded Cooperation) system according to the first embodiment.
  • the first transmission data S1 and S2 are cooperatively relayed from each of the repeaters 100 and 200 to the base station (eNB) 300.
  • the propagation environment (channel quality) between the base station (eNB) 300 and the repeater 200 is assumed to be poor, but the present invention is not limited to this case.
  • the propagation environment (channel quality) between the base station (eNB) 300 and the repeater 200 is assumed to be poor, but the present invention is not limited to this case.
  • FIG. 2 is a sequence diagram of the cooperative relay of FIG. 1
  • FIG. 3 is a processing flow diagram of the cooperative relay of FIG.
  • Procedure 1 The base station (eNB) 300 performs resource allocation / propagation environment (channel quality) notification to each of the repeaters 100 and 200 performing cooperative relay.
  • control information including resource allocation, propagation environment (line quality) notification, etc. is included in grant information, and can be shared among repeaters 100 and 200 performing cooperative relay.
  • Procedure 2 Each of the repeaters 100 and 200 divides the data of its own station, which it wants to cooperatively relay, into two. In the first embodiment, a case will be described in which the data of the own station which is desired to cooperatively relay is divided into two, first transmission data Sx including systematic bits and transmission data Px including parity bits (x is a repeater number). Correspondence).
  • Step 3 The repeaters 100 and 200 exchange the first transmission data S1 and S2 with each other to generate parity data P2 and P1, respectively.
  • Step 4 Each of the repeaters 100 and 200 interleaves all data of the initial transmission data S1 and S2 and the parity data P1 and P2 into four equal parts (D1, D2, D3 and D4).
  • Step 5 Each repeater transmits two different ones of the four equal parts in the first-frame and the second-frame.
  • the repeater 100 transmits D1 to the base station 300 in the first-frame (see FIG. 1 (b)) among the data D1, D2, D3, D4 divided into four equal parts, while the repeater 200 bases D2 Transmit to station 300.
  • the second-frame FIG. 1C
  • the repeater 100 transmits the data D3 to the base station 300
  • the repeater 200 transmits the data D4 to the base station 300.
  • NACK from the base station (eNB) is made soft NACK when the channel quality is a certain value or more.
  • the line quality information may be put there.
  • the first transmission data is not limited to systematic bits, and may be self-decodable data.
  • a resource allocation / propagation environment is notified from the base station (eNB) to each of the repeaters 100 and 200 performing cooperative relaying (step S101).
  • each of the repeaters 100 and 200 divides the data S1 and S2 of its own station to be cooperatively relayed into two (step S102).
  • the repeater 100 transmits the first transmission data S1 of its own station to the repeater 200, while the repeater 200 transmits the first transmission data S2 of its own station to the repeater 100 (step S103).
  • each of the repeaters 100 and 200 transmits an ACK / NAKC signal indicating whether the first transmission data of the opposite station has been received by the own station to the opposite station (step S104).
  • step S105 the repeater 200 generates parity data P1 from the received S1 (step S106), and the own station data S2, All data obtained by combining P2 and partner station data S1 and P1 are interleaved (step S107).
  • the repeater 200 divides the interleaved data into four parts of D1, D2, D3, and D4, and transmits D1 in the first frame and D3 in the second frame (step S108).
  • repeater 100 generates parity data P2 from received initial transmission data S2 (step S109), and interleaves all data including local station data S1 and P1 and remote station data S2 and P2 (step S110). ).
  • the repeater 100 divides the interleaved data into four parts of D1, D2, D3, and D4, transmits D2 in the first frame, and transmits D4 in the second frame (step S111).
  • repeater 200 If the difference in propagation environment (channel quality) between each repeater and the base station does not exceed a certain value, repeater 200 generates parity data P1 from received S1 and transmits the generated parity data P1. (Steps S112 and S114). On the other hand, the repeater 100 generates parity data P2 from the received S2 and transmits the generated parity data P2 (steps S113 and S115). Then, transmission data generated by each repeater is transmitted to the base station (eNB) and decoded (step S116).
  • eNB base station
  • FIG. 4 is a functional block diagram of the repeater 100 in the first embodiment.
  • the repeater 100 includes a reception RF unit 101, an A / D conversion unit 102, buffers 103 and 114, a demodulation unit 104, a channel decoding unit 105, a reception data memory 106, a channel quality difference determination unit 107, an ACK / NAKC signal generation unit, and a channel.
  • FIG. 5 is a diagram showing the internal structure of the memory of repeater 100
  • FIG. 5 (a) is a diagram showing the internal structure of receive data memory
  • FIG. 5 (b) is a diagram showing the internal structure of transmit data memory
  • the reception RF unit 101 transmits “channel quality information for the base station (eNB) 300 to the repeater 100 and channel quality information for the base station (eNB) 300 to the repeater 200” to the base station (eNB) 300.
  • Receive from The signal received from the base station (eNB) 300 is downconverted to the baseband by the reception RF unit 101 and input to the A / D conversion unit 102.
  • the signal input to the A / D conversion unit 102 is converted to a digital signal and stored in the buffer 103.
  • the demodulation unit 104 demodulates the signal including each channel quality information, performs channel decoding processing by the channel decoding 105, and holds the received data in the received data memory 106.
  • the repeater 100 divides its own station transmission data into first transmission data S1 including systematic bits and parity transmission data P1 including parity bits, and holds the transmission data in the transmission data memory 113, respectively. Then, after repeater 100 reads first transmission data S1 from transmission data memory 113 and stores it in buffer 114, D / A conversion is performed by D / A conversion unit 115, and RF signal is transmitted by RF transmission unit 116. Up-converts and transmits from the transmitting antenna to the base station (eNB) 300.
  • eNB base station
  • the repeater 100 receives the first transmission data S2 from the repeater 200 at the reception RF unit 101.
  • the received initial transmission data S 2 is down converted to the baseband by the reception RF unit 101 and input to the A / D conversion unit 102.
  • the signal input to the A / D conversion unit 102 is converted to a digital signal and stored in the buffer 103.
  • the signal of the initial transmission data S2 is held in the reception data memory 106 after demodulation by the demodulation unit 104 and channel decoding processing by the channel decoding unit 105.
  • ACK / NACK signal generation unit 108 generates ACK / NACK signal of repeater 100 according to the channel decoding result (CRC etc.) of first transmission data S2 of repeater 200. If the reception is successful, an ACK signal is generated, and if the reception fails, a NACK signal is generated.
  • the channel encode processing in the channel encoding unit 109 and the modulation processing in the modulation unit are performed on the ACK signal or NACK signal of the repeater 100 generated by the ACK / NACK signal generation unit 108, and held in the transmission data memory 113.
  • the ACK / NACK signal of the repeater 100 is read from the transmission data memory 113 and stored in the buffer 114, then A / D converted by the D / A conversion unit 115, and the RF signal is increased by the transmission RF unit 116. Convert and transmit from the transmit antenna.
  • the reception RF unit 101 receives an ACK / NACK signal from the repeater 200.
  • the received ACK / NACK signal is downconverted to the baseband by the reception RF unit 101, and the signal is input to the A / D conversion unit.
  • the signal input to the A / D converter is converted to a digital signal and stored in the buffer 103.
  • the ACK / NACK signal from repeater 200 is demodulated and channel-decoded, and held in received data memory 106.
  • the channel quality information of the base station (eNB) -repeater 100 and the channel quality information of the base station (eNB) -repeater 200 stored in the received data memory 106 are read out, and the channel quality difference determination unit 107 Station (eNB)-Calculate the channel quality difference between each repeater, and determine whether or not it is a certain fixed value or more.
  • the switches 110A and 110B between the channel encoding unit 109 and the modulation unit 112 are used. Control to the interleaving section 111 side.
  • the switch 110A between the channel encoding unit 109 and the modulation unit 112 In 110 B, data is switched so as to pass through the interleaving unit 111. Further, the calculated channel quality difference information is also output to channel encoding section 109.
  • the decode data of the initial transmission data S2 held in the reception data memory 106 is read.
  • the channel quality difference calculated by the channel quality difference determination unit 107 is a certain value or more
  • the channel encoding unit 109 the decode data of the first transmission data S2 to the encode data of the first transmission data S2 and the first transmission The parity data P2 of the data S2 is generated. Further, the encoded data of the initial transmission data S1 and the parity data P1 held in the transmission data memory 113 are read.
  • the interleaving unit 111 interleaves the data S1, P1, S2, and P2 based on channel quality difference information, and divides the data into four (D1, D2, D3, and D4). After modulating each data (D1, D2, D3, D4) by modulation section 112, data D2 for first frame transmission and data D4 for second frame are transmitted to transmission data memory 113 as transmission data after interleaving. Hold.
  • the repeater 100 reads the first frame transmission data D2 from the transmission data memory 113, stores it in the buffer 114, D / A converts it in the D / A converter 115, and the RF band in the transmission RF unit 116. Up-convert to the signal of and transmit from the transmit antenna.
  • second frame transmission data D4 is read out from the transmission data memory 113 and stored in the buffer 114.
  • D / A conversion is performed by the D / A conversion unit 115, and the RF signal is upconverted by the transmission RF unit. , Transmit from the transmit antenna.
  • switch 110A between channel encoding section 109 and modulation section 112 is a path where data does not pass through interleaving section 111. Switch to pass through. Then, the channel encoding unit 109 and the modulation unit 112 generate the parity bit P2 from the S2 decoded data, and the generated parity bit P2 is held in the transmission data memory 113.
  • the repeater 100 reads out the transmission data S1 from the transmission data memory 113, stores the transmission data S1 in the buffer 114, D / A converts it in the D / A converter 115, upconverts the signal in the RF band in the transmission RF unit 116, Transmit from the transmit antenna.
  • D / A conversion is performed by D / A conversion section 115, and the signal of RF band is raised by transmission RF section 116. Convert and transmit from the transmit antenna.
  • the interleaving pattern may be scrambled such that parity data of repeaters estimated to have poor reception quality of initial transmission data can be transmitted a lot on links with good propagation environment (channel quality), or each parity data May be scrambled equally.
  • FIG. 6 is a functional block diagram of base station 300.
  • the base station 300 includes a reception RF unit 301, an A / D conversion unit 302, buffers 303 and 311, a demodulation unit 304, switches 305A and 305B, a deinterleave unit 306, a channel quality difference determination unit 307, A channel decoding unit 309, a modulation unit 310, a transmission buffer 311, a D / A conversion unit 312, and a transmission RF unit 313 are provided.
  • FIG. 7 is a diagram showing an internal structure of a memory of base station 300. Referring to FIG.
  • the base station 300 estimates uplink quality of each of the repeaters 100 and 200 performing cooperative relaying, and notifies each of the channel quality estimation results to the repeaters 100 and 200 performing cooperative relaying along with resource allocation.
  • Control information including resource allocation / propagation environment (channel quality) notification and the like can be shared between the repeaters 100 and 200 performing cooperative relay.
  • the base station 300 receives the interleaved transmission data D1 and D2 transmitted from the repeaters 100 and 200 in the first frame by the reception RF unit 301, respectively. Then, the signals of the transmission data D 1 and D 2 after interleaving are down converted to the baseband by the reception RF unit 301, and the signals are input to the A / D conversion unit 302.
  • the interleaved transmission data D1 and D2 input to the A / D converter 302 are stored in the reception buffer 303 as digital signals.
  • transmission data D2 after interleaving is stored in "resource received data # 1 (D2) storage memory for repeater 100" of reception buffer 303, and transmission data D1 after interleaving is for "repeater 200". It is stored in the resource received data # 1 (D1) storage memory.
  • the base station 300 receives the interleaved transmission data D3 and D4 transmitted from each of the repeaters 100 and 200 in the second frame by the reception RF unit 301, respectively.
  • the interleaved transmission data D 3 and D 4 received by the reception RF unit 301 are down converted to the baseband by the reception RF unit 301, and a signal is input to the A / D conversion unit 302.
  • the interleaved transmission data D 3 and D 4 input to the A / D converter 302 are stored as digital signals in the reception buffer 303. As shown in FIG.
  • transmit data D 4 after interleaving is stored in “resource received data # 2 (D 4) storage memory for repeater 100” of receive buffer 303, and transmit data D 3 after interleaving is stored in receive buffer 303. It is stored in “resource received data # 2 (D3) storage memory for repeater 200”.
  • transmission data D1 after demodulation processing is performed.
  • D2, D3 and D4 are put together and deinterleaved by the deinterleave unit 306 to obtain initial transmission data S1 and S2 and parity data P1 and P2 of the repeaters 100 and 200, respectively.
  • data S1 and P1 for repeater 100 and data S2 and P2 for repeater 200 are channel-decoded in channel decoding unit 308 to obtain desired data.
  • the channel quality difference between each of the repeaters 100 and 200 and the base station (eNB) is less than a certain value, after the transmission data D1, D2, D3 and D4 are demodulated, data S1 and P1 for the repeater 100 are obtained.
  • the data S2 and P2 for the repeater 2 are channel decoded by the channel decoding unit 309 to obtain desired data.
  • the base station eNB (eNB) is attempted while sharing “data exchange between the repeaters 100 and 200” and “transmission of initial transmission data to the base station (eNB)”. Can improve the decoding performance of repeater data.
  • the data is randomized, so that the repeater in the base station (eNB)
  • the reception quality at the base station (eNB) is improved without uneven data.
  • NACK from the base station (eNB) is made soft NACK when the channel quality is a certain value or more.
  • the line quality information may be put there.
  • the first transmission data is not limited to systematic bits, and may be self-decodable data.
  • the data is randomized by interleaving the data
  • any other means may be used as long as the data can be randomized.
  • interleaving may be used on the time axis
  • hopping may be used on the frequency axis
  • scrambling may be used.
  • the first transmission data is cooperatively relayed from each of the repeaters 400 and 500 to the base station (eNB) 600 as in the first embodiment.
  • the propagation environment (channel quality) between the base station (eNB) 600 and the repeater 500 is assumed to be bad, but the present invention is not limited to this case.
  • FIG. 8 is a sequence diagram of the second embodiment
  • FIG. 9 is a process flow diagram of the second embodiment.
  • Procedure 1 The base station (eNB) 600 performs resource allocation / propagation environment (line quality) notification to each of the repeaters 400 and 500 performing cooperative relay. This control information can be shared between the repeaters 400 and 500 performing cooperative relay.
  • Procedure 2 Each of the repeaters 400 and 500 divides its own data that it wants to cooperatively relay into two.
  • the first transmission data including systematic bits in the data of the local station to be cooperatively relayed is represented as Sx, and the transmission data Px including parity bits. Notation (x corresponds to a repeater number).
  • Step 3 The repeater 400 transmits the first transmission data S1 of the own station to the repeater 500, and the repeater 500 receives the first transmission data S1 of the opposite station.
  • Step 4 The base station (eNB) 600 also receives the initial transmission data S1 transmitted to the repeater 500.
  • Step 5 On the other hand, the repeater 500 transmits the first transmission data S2 of its own station to the repeater 400, and the repeater 400 receives the first transmission data S2 of the opposite station.
  • Step 6 The base station (eNB) 600 also receives the initial transmission data S2 transmitted to the repeater 400.
  • Step 7 The repeater 500 transmits an ACK signal to the repeater 400.
  • Step 8 The repeater 400 transmits an ACK signal to the repeater 500.
  • Step 9 when the difference in propagation environment (line quality) between the base station (eNB) and each repeater is equal to or more than a certain value, the repeater 500 is obtained in step 1 from the first transmission data S1 of the received opposite station. Parity data P1-1, P1-2,... Reflecting the propagation environment (channel quality) of each repeater 400, 500 is generated. For example, it is possible to generate parity data by reflecting the propagation environment (channel quality) of each repeater based on criteria such as the amount and type of data. Further, repeater 500 generates parity data P2-1, P2-2,... Similarly reflecting the propagation environment (channel quality) from first transmission data S2 of the own station. Step 10: The repeater 500 interleaves the generated all parity data P1-1, P1-2,..., P2-1, P2-2,. , P2 'is generated.
  • Step 11 The repeater 400 generates parity data P2-1, P2-2,... That reflects the propagation environment (channel quality) of each repeater obtained in Step 1 from the first transmission data S2 of the other station received. For example, it is possible to generate parity data by reflecting the propagation environment (channel quality) of each repeater based on criteria such as the amount and type of data. Similarly, the repeater 400 generates parity data P1-1, P1-2,... Similarly reflecting the propagation environment (channel quality) from the initial transmission data S1 of the own station.
  • Step 12 The repeater 400 interleaves the generated all parity data P1-1, P1-2,..., P2-1, P2-2,. Generate P2 '.
  • Step 13 The repeater 500 transmits the generated P1 ′ to the base station (eNB) 600.
  • Procedure 14 The repeater 400 transmits the generated P2 ′ to the base station (eNB) 600.
  • Procedure 15 The base station (eNB) 600 decodes received data.
  • the interleaving pattern may be scrambled such that parity data of repeaters estimated to have poor reception quality of initial transmission data can be transmitted in large numbers on links with good propagation environment (channel quality), or each parity The data may be scrambled evenly.
  • Step # 9 In Step 9, if the difference in propagation environment (channel quality) between the base station (eNB) 600 and each of the repeaters 400 and 500 is less than a certain value, the repeater 500 receives the first transmission data of the received opposite station. Parity data P1 is generated from S1. Step # 10: The repeater 400 generates parity data P2 from the received first transmission data S2 of the opposite station. Procedure # 11: The repeater 500 transmits the generated P1 to the base station (eNB) 600. Procedure # 12: The repeater 400 transmits the generated P2 to the base station (eNB) 600. Procedure # 13: The base station (eNB) 600 decodes received data.
  • the process of cooperative relaying of each of the repeaters 400 and 500 and the base station (eNB) 600 in the second embodiment will be described.
  • the initial transmission data including systematic bits is represented as Sx
  • the transmission data Px including parity bits is represented (x corresponds to the repeater number).
  • a resource allocation / propagation environment (channel quality) is notified from the base station (eNB) 600 to each of the repeaters 400 and 500 performing cooperative relaying (step S201).
  • control information including resource allocation / propagation environment (channel quality) notification and the like can be shared among the repeaters 400 and 500 performing cooperative relay.
  • each of the repeaters 400 and 500 divides the data S1 and S2 of its own station to be cooperatively relayed into two (step S202).
  • repeater 400 transmits first transmission data S1 of its own station to repeater 200, while repeater 500 transmits first transmission data S2 of its own station to repeater 100.
  • the base station (eNB) 600 receives the first transmission data S1 and S2 of its own station from each of the repeaters 100 and 200 (step S203).
  • each of the repeaters 400 and 500 transmits an ACK / NAKC signal indicating whether the first transmission data of the opposite station has been received by the own station to the opposite station (step S204).
  • step S205 based on the channel quality information between the repeaters 400 and 500 and the base station 600, it is determined whether or not there is a certain difference in propagation environment (channel quality) between each repeater and the base station.
  • the repeater 500 when the difference in propagation environment (channel quality) between each repeater and the base station is above a certain value, one of the relay stations is performed to cooperatively relay according to the channel quality difference between the base station and each wireless communication apparatus.
  • the repeater performs relay data processing to supplement data of at least a portion of data that the repeater wants to transmit to its own base station and data that the other repeater wants to transmit to the base station.
  • the repeater 500 generates parity data P1-1, P1-2,... Reflecting the propagation environment (channel quality) difference from the first transmission data S1 of the received opposite station (step S206), similarly From the initial transmission data S2 of the own station, parity data P2-1, P2-2,... Reflecting the propagation environment (channel quality) difference is generated (step S207). Then, repeater 500 interleaves all parity data P1-1, P1-2,..., P2-1, P2-2,. And (step 208).
  • repeater 400 generates parity data P2-1, P2-2... Reflecting the propagation environment (channel quality) difference from the initial transmission data S2 of the other station received (step 209), and the first time of its own station From the transmission data S1, parity data P1-1, P1-2,... Reflecting the propagation environment (channel quality) difference are generated (step 210). Then, repeater 400 interleaves all parity data P1-1, P1-2,..., P2-1, P2-2,. And (step 211).
  • repeater 500 transmits the parity data P1 'of the generated post-interleaved parity data P1' and P2 'to the base station 600.
  • repeater 400 transmits, to base station 600, parity data P2 'among the generated post-interleaved parity data P1' and P2 '.
  • repeater 500 If the difference in propagation environment (channel quality) between each repeater and the base station does not exceed a certain value, repeater 500 generates parity data P1 from received first-time transmission data S1 of the opposite station, and generates parity data The base station 600 transmits P1 (steps S214 and S216). On the other hand, the repeater 400 generates parity data P2 from the received first transmission data S2 of the other station, and transmits the generated parity data P2 to the base station 600 (steps S215 and S217).
  • the transmission data generated by each of the repeaters 400 and 500 is transmitted to the base station (eNB) 600 and decoded (step S218).
  • the decoding performance of repeater data is improved while sharing the processing of “data exchange between repeaters” and “first time data transmission to base station (eNB)”. It can be improved.
  • the data is randomized by interleaving the data, but any other means may be used as long as the data can be randomized.
  • interleaving may be used on the time axis
  • hopping may be used on the frequency axis
  • scrambling may be used.
  • each repeater may control and transmit the amount of parity data to be generated according to the propagation environment (line quality) notified from the base station (eNB) 600.
  • FIG. 10 is a sequence diagram when the amount of parity data generated by the repeater is controlled according to the propagation environment (line quality). As shown in FIG. 10, when the amount of data that can be transmitted by the repeaters 400 and 500 is 200 bits, the repeater 400 generates a P1-1 with a parity data amount of 50 bits, and the repeater 500 generates a parity data amount of 150 bits with P2-1 (parity Data amount 50 bits), P2-2 (parity data amount 50 bits), P2-3 (parity data amount 50 bits) are generated.
  • the propagation environment notified from the base station (eNB) 600 ((6)
  • the amount of parity data is 50 bits for P1 ′ and 150 bits for P2 ′.
  • the parity data P2 ' (the amount of parity data 150 bits) is transmitted from the repeater 400 to the base station (eNB) 600
  • the parity data P1' (the amount of parity data 50 bits) is transmitted from the repeater 500.
  • each of the repeaters 400 and 500 controls the amount of first transmission data to be exchanged and performs transmission according to the propagation environment (line quality) notified from the base station (eNB) 600. You may.
  • the data amount of the first transmission data S1 of the repeater 400 transmitted from the repeater 400 to the base station is 150 bits
  • the first transmission data amount S2 of the repeater 500 is 50 bits.
  • FIG. 12 is a functional block diagram of repeater 100 in the first embodiment.
  • the repeater 400 includes a reception RF unit 401, an A / D conversion unit 402, buffers 403 and 414, a demodulation unit 404, a channel decoding unit 405, a reception data memory 406, a channel quality difference determination unit 407, an ACK / NAKC signal generation unit 408, A channel encoding unit 409, switches 410A and 410B, an interleaving unit 411, a modulation unit 412, a transmission data memory 413, a D / A conversion unit 415, and a transmission RF unit 416 are provided.
  • FIG. 13 shows the internal structure of each memory of repeater 400
  • FIG. 13 (a) shows the internal structure of reception data memory 406
  • FIG. 13 (b) shows transmission data memory 413. It is a figure which shows the internal structure of.
  • the reception RF unit 401 in the reception RF unit 401, "channel quality information for the repeater 400 from the base station (eNB) 600" and “channel quality information for the repeater 500 from the base station (eNB) 600” ) Received from 600).
  • the signal of channel quality information received from the base station (eNB) 600 is down converted to the baseband by the reception RF unit 401, and the signal is input to the A / D conversion unit 402.
  • the channel quality information signal input to the A / D converter 402 is converted to a digital signal and stored in the buffer 403. Then, after a signal including each channel quality information is demodulated by the demodulation unit 404 and subjected to channel decoding processing by the channel decoding unit 405, it is held in the received data memory 406 as shown in FIG. 13 (a).
  • the repeater 400 divides its own data that it wants to cooperatively relay into the first transmission data S1 including systematic bits and the parity transmission data P1 including parity bits, and as shown in FIG. Hold. Then, the repeater 400 reads the first transmission data S1 of its own station from the transmission data memory 413, stores it in the buffer 414, D / A converts it in the D / A converter, and the RF band signal in the transmission RF unit. Up-converts up to and transmits from the transmitting antenna to the base station (eNB) 600.
  • eNB base station
  • the repeater 400 causes the reception RF unit 401 to receive the initial transmission data S2 of the opposite station.
  • the received first transmission data S 2 signal of the opposite station is down converted to the baseband by the reception RF unit 401, and the signal is input to the A / D conversion unit 402.
  • the signal input to the A / D conversion unit 402 is converted to a digital signal and stored in the buffer 403.
  • the signal of the initial transmission data S2 of the opposite station is held in the reception data memory 406 as shown in FIG. 13 (a).
  • the repeater 400 generates an ACK / NACK signal in the ACK / NACK signal generation unit 408 according to the channel decoding result (CRC etc.) of the first transmission data S2 of the opposite station.
  • An ACK signal is generated if reception is successful, and a NACK signal is generated if reception is unsuccessful.
  • the channel encoding unit 409 performs channel encoding processing and the modulation unit 412 performs modulation processing on the ACK signal or NACK signal of the repeater 400 generated by the ACK / NACK signal generation unit 408, and thereafter, as shown in FIG.
  • the ACK signal or NACK signal is held in the transmission data memory 413.
  • the ACK / NACK signal of the repeater 400 is read from the transmission data memory 413 and stored in the buffer 414, then A / D converted by the D / A converter 415, and the RF signal is increased by the transmission RF unit 416. Convert and transmit from the transmit antenna.
  • the repeater 400 receives an ACK / NACK signal from the repeater 500 in the reception RF unit 401.
  • the received ACK / NACK signal is downconverted to the baseband by the reception RF unit 401 and input to the A / D conversion unit 402.
  • the signal input to the A / D converter is converted to a digital signal and stored in the buffer 403.
  • the ACK / NACK signal from the repeater 500 is held in the received data memory 406 as shown in FIG.
  • D / A conversion is performed by D / A conversion unit 415, and transmission RF unit 416 upconverts to a signal in the RF band. , Transmit from the transmit antenna.
  • the channel quality information of the base station (eNB) 600 -repeater 400 and the channel quality information of the base station (eNB) 600-repeater 500 stored in the received data memory 406 are read out, and the channel quality difference determination unit 407 Base station (eNB) 600-Calculate the channel quality difference between each repeater, and determine whether or not it is a certain fixed value or more.
  • switches 410A and 410B between the channel encoding unit 409 and the modulation unit 412 are switched to the interleaving unit 411 side.
  • the switches 410A and 410B between the channel encoding unit 409 and the modulation unit 412 are paths where data does not pass through the interleaving unit 411. Switch to pass through.
  • the calculated channel quality difference information is also output to channel encoding section 109.
  • the decoded data of the initial transmission data S2 of the destination station held in the received data memory 406 is read, and if the channel quality difference is a certain value or more, the channel encoding unit 409 responds to the channel quality difference.
  • Parity data P2-1, P2-2... are generated from the decoded data of the initial transmission data S2 of the opposite station.
  • the decoded data of the first transmission data S1 of the own station held in the transmission data memory 413 is read out, and the channel encoding unit 409 compares the decoded data of the first transmission data S1 of the own station according to the channel quality difference information.
  • Data P1-1, P1-2... Are generated.
  • all generated parity data P1-1, P1-2,..., P2-1, P2-2,... are interleaved based on channel quality difference information to generate parity data P1 after being divided into two and interleaved. 'P2'.
  • the modulated parity data P 1 ′ and P 2 ′ after interleaving are modulated by the modulator 412, and are then stored in the transmission data memory 413.
  • repeater 400 reads out interleaved parity data P 1 ′ from transmission data memory 413, stores it in buffer 414, and then transmits it to D / A converter 415. D / A conversion is performed, the transmission RF unit 416 up-converts to an RF band signal, and transmission is performed from the transmission antenna.
  • the channel encoding unit 409 and the modulation unit 412 generate the parity bit P2 from the decoded data of the first transmission data S2 of the opposite station, and transmit it to the transmission data memory 413.
  • Repeater 400 reads out first transmission data P2 of the other station from transmission data memory 413, stores it in buffer 414, D / A converts it in D / A converter 415, and transmits RF band signal in transmission RF unit 416. Up-convert and transmit from the transmit antenna.
  • the interleaving pattern may be scrambled such that parity data of repeaters estimated to have poor reception quality of initial transmission data can be transmitted a lot on links with good propagation environment (channel quality), or each parity data May be scrambled equally.
  • FIG. 1 is a functional block diagram of a base station 600.
  • the base station 600 includes a reception RF unit 601, an A / D conversion unit 602, a reception buffer 603, a transmission buffer 611, a demodulation unit 604, switches 605A and 605B, a deinterleave unit 606, and channel quality difference determination.
  • a section 607, a channel decoding section 608, a transmission RF section 609, a D / A conversion section 610, a transmission buffer 611, and a modulation section 612 are provided.
  • FIG. 15 is a diagram showing an internal structure of a buffer of base station 600. Referring to FIG.
  • channel quality estimation section 607 estimates uplink quality of each of repeaters 400 and 500 performing cooperative relay, and each channel quality estimation result is subjected to resource allocation together with each repeater 400 and 500.
  • the base station 600 receives the first transmission data S1 and S2 at the time of data exchange implemented between the repeaters 400 and 500 performing cooperative relaying, at the reception RF unit 601, respectively.
  • the received signal is downconverted to the baseband by the reception RF unit 601, and the signal is input to the A / D conversion unit 602.
  • the signals of the initial transmission data S1 and S2 input to the A / D conversion unit 602 become digital signals, and are stored in the reception buffer 603 as shown in FIG.
  • the base station 600 receives the transmission data (P1 and P2 or P1 'and P2') transmitted from each of the repeaters 400 and 500 performing cooperative relaying in the reception RF unit 601.
  • the received data (P 1 and P 2 or P 1 ′ and P 2 ′) is down converted to the baseband by the reception RF unit 601, and a signal is input to the A / D conversion unit 602.
  • the signal input to the A / D conversion unit 602 becomes a digital signal and is held in the reception buffer 603 as shown in FIG.
  • the desired amount of data data received divided into two times from the resource for repeater 400 and data divided into two times from the resource for repeater 500
  • S1, P1 , S2 and P2 respectively.
  • deinterleave section 606 is performed on P1 and P2 after demodulation of reception data S1, P1, S2 and P2. De-interleaving is performed to obtain parity data P1-1, P1-2,..., P2-1, P2-2,. Then, first transmission data S1 and parity data P1-1, P1-2,... For repeater 400 and first transmission data S2 and parity data P2-1, P2-2,.
  • a channel 608 performs channel decoding to obtain desired data.
  • first transmission data S1 and parity data P1 for repeater 400 after demodulation of reception data S1, P1, S2 and P2.
  • the first transmission data S2 and parity data P2 for the repeater 500 are channel-decoded in the channel decoding unit 608 to obtain desired data.
  • the base station (eNB) 600 improves the repeater data decoding performance while sharing “data exchange between repeaters” and “first time data transmission to the base station (eNB) 600”. It can be done.
  • the data is randomized, so that the repeater in the base station (eNB) The reception quality at the base station (eNB) is improved without uneven data.
  • NACK from the base station (eNB) is made soft NACK when the channel quality is a certain value or more.
  • the line quality information may be put there.
  • the first transmission data is not limited to systematic bits, and may be self-decodable data.
  • the first transmission data is cooperatively relayed from each of the repeaters 700 and 800 to the base station (eNB) 900 as in the first embodiment.
  • FIG. 15 is a sequence diagram of the third embodiment
  • FIGS. 16 and 17 are process flow diagrams of the third embodiment.
  • each repeater and a base station (eNB) at the time of cooperative relay in the third embodiment will be described with reference to FIG.
  • the propagation environment (channel quality) between the base station (eNB) 900 and the repeater 800 is the base station (eNB) 900.
  • the repeater environment (line quality) is not better.
  • the propagation environment (channel quality) between the base station (eNB) and each repeater may be different.
  • Procedure 1 The base station (eNB) 900 performs resource allocation / propagation environment (channel quality) notification to each of the repeaters 700 and 800 performing cooperative relay. This control information can be shared among the repeaters performing cooperative relaying.
  • Step 2 Since the repeater 700 has a worse propagation environment (channel quality) of the opposite station (repeater 800) than its own station, it determines that the order of data exchange is earlier from the opposite station, and further, The data amount, modulation scheme, interleaving pattern, etc. are determined from the propagation environment (line quality) difference of the repeater 800).
  • Step 3 Since the repeater 800 has a better propagation environment (channel quality) of the opposite station (repeater 700) than the own station, it is judged that the order of data exchange is earlier from the own station, and further, the own station and opposite station (The data amount, modulation scheme, interleaving pattern, etc. are determined from the propagation environment (line quality) difference of the repeater 700).
  • Step 4 Each of the repeaters 700 and 800 divides the data of its own station to be cooperatively relayed, which reflects the determined data amount, modulation scheme, etc., into two (step ST302).
  • initial transmission data including systematic bits is represented as Sx
  • transmission data Px including parity bits is described (x corresponds to a repeater number).
  • x corresponds to a repeater number.
  • the repeater 800 transmits the first transmission data S2 of its own station to the repeater 700, and the repeater 700 receives the first transmission data S2 of the opposite station (the repeater 800).
  • the base station (eNB) 900 also receives the initial transmission data S2 transmitted to the repeater 700.
  • Step 7 The repeater 700 combines the received first transmission data S2 of the opposite station (repeater 700) and the first transmission data S1 of the own station, and transmits interleaved data S1 + S2 to the repeater 800, and the repeater 800 Receives the first transmission data S1 + S2 after interleaving.
  • Step 8 The base station (eNB) 900 also receives the first transmission data S1 + S2 after interleaving transmitted to the repeater 800.
  • Step 9 The repeater 800 transmits an ACK signal to the repeater 700.
  • Step 10 The repeater 700 transmits an ACK signal to the repeater 800.
  • Step 11 Here, if there is a difference in propagation environment (channel quality) between each repeater and the base station over a certain value, cooperative relaying is performed according to the channel quality difference between the base station and each wireless communication apparatus. Then, one repeater performs relay data processing to supplement data of at least a portion of data that the repeater wants to transmit to its own base station and data that the other repeater wants to transmit to the base station. Specifically, when the difference in propagation environment (channel quality) between the base station (eNB) 900 and each of the repeaters 700 and 800 is a certain value or more, the repeater 800 deinterleaves the received first transmission data S1 + S2 after interleaving.
  • channel quality channel quality
  • Parity data P1-1 reflecting the propagation environment (channel quality) of each repeater obtained in step 1 from the initial transmission data S1 of the opposite station (repeater 700).
  • P1-2 Parity data
  • parity data P2-1, P2-2,... (Quantity, type, etc.) similarly reflecting the propagation environment (channel quality) are generated from the initial transmission data S2 of the own station.
  • Step 12 The repeater 800 interleaves all the generated parity data P1-1, P1-2,..., P2-1, P2-2,. , P2 'to generate.
  • Step 13 The repeater 700 uses parity data P2- (such as amount and type) that reflects the propagation environment (channel quality) of each repeater obtained in Step 1 from the first transmission data S2 of the received counterpart station (repeater 800). Generate 1, P2-2,. Furthermore, parity data P1-1, P1-2,... (Quantity, type, etc.) similarly reflecting the propagation environment (channel quality) are generated from the initial transmission data S1 of the own station.
  • Step 14 Repeater 1 interleaves all the generated parity data P1-1, P1-2,..., P2-1, P2-2,. ', Generate P2'.
  • Procedure 15 The repeater 800 transmits the generated P1 ′ to the base station (eNB) 900.
  • Step 16 The repeater 700 transmits the generated P2 ′ to the base station (eNB) 900.
  • Procedure 17 The base station (eNB) 900 decodes received data.
  • Procedure # 9 Base station (eNB)-When the propagation environment (line quality) difference between repeaters is less than a certain level, the repeater 800 generates parity data P1 from the received S1.
  • Step # 10 The repeater 700 generates parity data P2 from the received S2.
  • Procedure # 11 The repeater 800 transmits the generated P1 to the base station (eNB) 900.
  • Procedure # 12 The repeater 700 transmits the generated P2 to the base station (eNB) 900.
  • Procedure # 13 The base station (eNB) 900 decodes received data.
  • the base station (eNB) 900 performs resource allocation and propagation environment (line quality) notification with each repeater to each of the repeaters 700 and 800 to jointly relay (step ST301).
  • Repeater 700 divides data to be cooperatively relayed into first transmission data S1 and parity data P1 of its own station
  • repeater 800 divides data to be cooperatively relayed into first transmission data S2 and parity data P2 of its own station. To do (step ST302).
  • Repeater 700 transmits first transmission data S1 of its own station to repeater 800, while repeater 800 transmits first transmission data S2 of its own station to repeater 700 (step ST303). While repeater 800 transmits ACK to repeater 700, repeater 700 transmits ACK to repeater 800 (step ST304).
  • step ST 305 it is judged whether the propagation environment (line quality) difference between the base station (eNB) 900-each repeater 700, 800 is more than a certain level (step ST 305), and the propagation environment between the base station (eNB) 900-each repeater (Circuit quality) If the difference is greater than or equal to a certain value, the process proceeds to step ST306, where it is determined whether the channel quality of repeater 700 is better (step ST306).
  • the propagation environment (line quality) difference between the base station (eNB) 900-each repeater 700, 800 is a resource allocation / propagation environment (line quality) notification from the base station to each repeater 700, 800 performing cooperative relay in advance. It is done.
  • the repeater 800 transmits the first transmission data S2 of its own station to the repeater 700, and at the same time, the base station (eNB) 900 receives the first transmission data S2 of the repeater 800 ( Step ST307).
  • repeater 700 combines first transmission data S1 of the own station and first transmission data S2 of the opposite station (repeater 800) received, and interleaves to generate first transmission data S1 + S2 again. Then, it retransmits the first transmission data S1 + S2 after interleaving to the repeater 800, and simultaneously transmits the first transmission data S1 + S2 after interleaving to the base station (eNB) 900 (step ST308).
  • Repeater 800 transmits ACK to repeater 700, and repeater 700 transmits ACK to repeater 800 (step ST309).
  • repeater 800 generates parity data P1-1 and P2-2 reflecting the propagation environment difference from the initial transmission data S1 of the received counterpart station (repeater 700) (step ST310). Further, the repeater 800 generates parity data P2-1, P2-2,... In which the propagation environment difference is reflected from the initial transmission data S2 of the own station (step ST311).
  • Repeater 700 generates parity data P2-1, P2-2,... In which the propagation environment difference is reflected from first transmission data S2 of the received counterpart station (repeater 800) (step ST312). Further, repeater 700 generates parity data P1-1, P1-2,... Reflecting the propagation environment difference from first transmission data S1 of the own station (step ST313).
  • the repeater 800 interleaves all the parity data P1-1, P1-2,... P2-1, P2-2,... And divides it into two to generate post-interleaved parity data P1 ′, P2 ′ (step ST314).
  • the repeater 800 transmits the generated parity data P1 'to the base station (eNB) 900 (step ST315), and the repeater 700 transmits the generated parity data P2' to the base station (eNB) 900 (step ST316).
  • repeater 700 transmits first transmission data S1 of its own station to repeater 800, and base station (eNB) 900 simultaneously , And receive the first transmission data S1 of the repeater 700 (step ST317).
  • repeater 800 combines first transmission data S2 of the own station and first transmission data S1 of the opposite station (repeater 700) received, performs interleaving, generates first transmission data S1 + S2 again, and transmits it to repeater 700, At the same time, the base station (eNB) 900 transmits first transmission data S1 + S2 (step ST318). Thereafter, the process transitions to step ST309, and the same processing as in the case where the channel quality of the repeater 700 is good is performed.
  • step ST305 when the difference in propagation environment (channel quality) between the base station (eNB) 900 and each repeater is less than a certain level, the process does not transit from step ST305 to step ST306, but transits to step ST319 (see FIG. 17). Then, the repeater 700 transmits S1 to the repeater 800, and the repeater 800 transmits S2 to the repeater 700. At the same time, the base station (eNB) 900 receives S1 and S2 (step ST319).
  • repeater 800 transmits ACK to repeater 700, and repeater 700 transmits ACK to repeater 800 (step ST320).
  • repeater 800 generates parity data P1 from received S1 (step ST321), and repeater 700 generates parity data P2 from received S2 (step ST322).
  • repeater 800 transmits the generated parity data P1 to base station (eNB) 900 (step ST323), and repeater 700 transmits the generated parity data P2 to base station (eNB) 900 (step ST). ST 324).
  • the base station (eNB) 900 decodes received data. (Step ST325).
  • the initial transmission data S1 and S2 of both repeaters are sent in a path with a good propagation environment (channel quality), systematics that are important bits in the base station (eNB) 900
  • the reception performance of the initial transmission data including the bits S1 and S2 can be improved.
  • FIG. 18 is a functional block diagram of the repeater 700 in the third embodiment.
  • the repeater 700 includes a reception RF unit 701, an A / D converter 702, buffers 703 and 716, a demodulator 704, a deinterleave unit 706, switches 705A and 705B, a channel decoder 707, and a received data memory.
  • 708, ACK / NAKC signal generation unit 709, channel quality difference determination unit 710, channel encode unit 711, switches 712A and 712B, interleaving unit 713, modulation unit 714, transmission data memory 715, D / A conversion unit 717, transmission RF unit 718 is provided.
  • 20 shows the internal structure of the memory of repeater 700
  • FIG. 20 (a) shows the internal structure of receive data memory 708, and
  • FIG. 20 (b) shows the internal structure of transmit data memory 715.
  • FIG. 20 shows the internal structure of receive data memory 708, and FIG. 20 (b) shows the internal structure of transmit data memory 715.
  • the repeater 700 receives “the channel quality information for the repeater 700 and the channel quality information for the repeater 800 from the base station (eNB)” in the reception RF unit 701.
  • the received signal is downconverted to the baseband by the reception RF unit 701, and the signal is input to the A / D conversion unit 702.
  • the signal input to the A / D converter 702 becomes a digital signal and is stored in the buffer 703.
  • the signal including the channel quality information is subjected to demodulation in the demodulation unit 704 and channel decoding processing in the channel decoding unit 707, and is then held in the received data memory 708.
  • repeater 700 divides its own transmission data to be relayed to the base station into first transmission data S1 including systematic bits and parity transmission data P1 including parity bits, and transmits data for each transmission data memory 715. Hold on.
  • the channel quality information of the base station (eNB) 900-repeater 700 and the channel quality information of the base station (eNB) 900-repeater 800 stored in the received data memory 708 are read out, and It is determined whether the channel quality difference between the base station (eNB) and each repeater is a certain value or more, and the channel quality difference determination unit 710 determines the channel quality of the base station (eNB) 900-repeater 700 and It is determined which channel quality of the channel quality of the base station (eNB) 900 -repeater 800 is good.
  • the line quality difference between the base station (eNB) calculated by the line quality difference determination unit 710 and each repeater is a certain value or more, and the line quality of the base station (eNB) 900-repeater 700 is better.
  • the repeater 700 switches and controls the switches 705A and 705B before and after the deinterleaver 706 so that the reception signal does not pass through the deinterleaver 706, while the repeater 700 passes the interleaving unit 713.
  • the switches 712A and 712B before and after the interleaving unit 713 are switched and controlled (see FIG. 19).
  • the reception RF unit 701 receives the first transmission data S2 of the opposite station from the repeater 800 before the repeater 700 transmits the first transmission data S1 of the own station to the repeater 800.
  • the reception RF unit 701 downconverts the received first transmission data S2 of the opposite station to the baseband.
  • the initial transmission data S2 of the opposite station is input to the A / D converter 702.
  • the initial transmission data S2 of the opposite station input to the A / D conversion unit 702 is converted to a digital signal and stored in the reception buffer 703.
  • the initial transmission data S2 of the opposite station is not passed through the deinterleave unit 706, but is directly input to the channel decoding unit 707 and subjected to channel decoding processing. Thereafter, initial transmission data S2 of the opposite station is held in the reception data memory 708.
  • the ACK / NACK signal generation unit 709 generates an ACK / NACK signal according to the result (CRC etc.) of the channel decoding process of the first transmission data S2 of the opposite station.
  • An ACK signal is generated if reception of the initial transmission data S2 of the opposite station is successful, and a NACK signal is generated if reception fails.
  • the generated ACK / NACK signal of the repeater 700 is modulated by the modulation unit 714 after channel encoding processing by the channel encoding unit 711 and held in the transmission data memory 715.
  • channel encode processing is performed by channel encode section 711 by combining initial transmission data S2 of the opposite station held in reception data memory 708 and initial transmission data S1 of the own station read from transmission data memory 715,
  • the interleaving unit 713 performs interleaving
  • the modulation unit 714 performs modulation processing.
  • the first transmission data S1 + S2 after interleaving after each processing is stored in the transmission data memory 715.
  • the first transmission data S1 + S2 data is read again, stored in the transmission buffer 716, D / A converted by the D / A converter 717, upconverted to a signal in the RF band by the transmission RF unit 718, and transmission antenna Send from
  • repeater 700 reads the decoded data of the first transmission data S2 of the opposite station held in received data memory 708, and the line between the base station (eNB) calculated by line quality difference determination section 710 and each repeater If the quality difference is greater than or equal to a certain value, the channel encoding unit 711 determines parity data of the opposite station from decoded data of the first transmission data S2 of the opposite station according to the channel quality difference between the base station (eNB) and each repeater. Generate P2-1, P2-2,. Further, channel encode section 711 is based on the decoded data of first transmission data S1 of its own station read from transmission data memory 715, according to the channel quality difference information between the base station (eNB) and each repeater, parity data of its own station. Generate P1-1, P1-2.
  • the repeater 700 transmits a line between the base station (eNB) and each repeater to the parity data P1-1, P1-2,..., P2-1, P2-2,. Based on the quality difference, interleaving is performed by interleaving section 713 for division into two parts, and post-interleaved parity data P1 ′ and P2 ′ are generated.
  • each of the generated post-interleaved parity data P1'P2 ' is modulated by the modulation unit 714, and is then held in the transmission data memory 715.
  • repeater 700 reads out parity transmission data P1 ′ after interleaving from transmission data memory 715, stores it in buffer 716, D / A converts it in D / A conversion section 717, and RF band in transmission RF section 718. , And transmit parity transmission data P1 'after interleaving from the transmitting antenna to the base station.
  • the channel quality difference between the base station (eNB) and each repeater calculated by the channel quality difference determination unit 710 is a certain value or more, and the channel quality of the base station (eNB) 900-repeater 800 is better.
  • repeater 700 switches and controls switches 705A and 705B before and after deinterleaver 706 so that the received signal passes through deinterleaver 706, while interleaving unit 713 such that the received signal passes through interleaving unit 713.
  • Switches 712A and 712B located before and after the switching control.
  • the repeater 700 transmits the first transmission data S1 of its own station to the repeater 800 before the repeater 800 transmits the first transmission data S2 of its own station to the repeater 700.
  • the repeater 700 reads the first transmission data S1 of the own station from the transmission data memory 715, and performs channel encoding processing of the first transmission data S1 of the own station read by the channel encoding unit 711.
  • the modulation unit 714 performs modulation processing
  • the D / A conversion unit 717 performs D / A conversion
  • the transmission RF unit 718 up-converts to a signal of the RF band, and transmits from the transmission antenna Send.
  • the reception RF unit 701 receives the initial transmission data S2 of the opposite station.
  • the received first transmission data S 2 is downconverted to the baseband by the reception RF unit 701 and input to the A / D conversion unit 702.
  • the initial transmission data S2 of the opposite station input to the A / D conversion unit 702 is converted to a digital signal and stored in the reception buffer 703.
  • the first transmission data S2 of the opposite station is stored in the received data memory 708 after being subjected to demodulation processing in the demodulation unit 704, deinterleaving processing in the deinterleaving unit 706, and channel decoding processing in the channel decoding unit 707. Be done.
  • the ACK / NACK signal generation unit 709 generates an ACK / NACK signal according to the result (CRC or the like) of the channel decoding process of the initial transmission data S2 of the opposite station.
  • An ACK signal is generated if reception of the initial transmission data S2 of the opposite station is successful, and a NACK signal is generated if reception fails.
  • the generated ACK / NACK signal of the repeater 700 is modulated by the modulation unit 714 after channel encoding processing by the channel encoding unit 711 and held in the transmission data memory 715.
  • channel encode processing is performed by channel encode section 711 by combining initial transmission data S2 of the opposite station held in reception data memory 708 and initial transmission data S1 of the own station read from transmission data memory 715,
  • the interleaving unit 713 performs interleaving
  • the modulation unit 714 performs modulation processing.
  • the first transmission data S1 + S2 after interleaving after each processing is stored in the transmission data memory 715.
  • the first transmission data S1 + S2 data is read again, stored in the transmission buffer 716, D / A converted by the D / A converter 717, upconverted to a signal in the RF band by the transmission RF unit 718, and transmission antenna Send from
  • repeater 700 reads the decoded data of the first transmission data S2 of the opposite station held in received data memory 708, and the line between the base station (eNB) calculated by line quality difference determination section 710 and each repeater If the quality difference is greater than or equal to a certain value, the channel encoding unit 711 determines parity data of the opposite station from decoded data of the first transmission data S2 of the opposite station according to the channel quality difference between the base station (eNB) and each repeater. Generate P2-1, P2-2,. Further, channel encode section 711 is based on the decoded data of first transmission data S1 of its own station read from transmission data memory 715, according to the channel quality difference information between the base station (eNB) and each repeater, parity data of its own station. Generate P1-1, P1-2.
  • the repeater 700 transmits a line between the base station (eNB) and each repeater to the parity data P1-1, P1-2,..., P2-1, P2-2,. Based on the quality difference, interleaving is performed by interleaving section 713 for division into two parts, and post-interleaved parity data P1 ′ and P2 ′ are generated.
  • each of the generated post-interleaved parity data P1'P2 ' is modulated by the modulation unit 714, and is then held in the transmission data memory 715.
  • repeater 700 reads out parity transmission data P1 ′ after interleaving from transmission data memory 715, stores it in buffer 716, D / A converts it in D / A conversion section 717, and RF band in transmission RF section 718. Up-convert to the signal of and transmit from the transmit antenna.
  • repeater 700 prevents the received signal from passing through deinterleave section 706,
  • the switches 705A and 705B before and after the deinterleaving unit 706 are controlled to switch, and similarly, the switches 712A and 712B before and after the interleaving unit 713 are controlled to switch so that the received signal does not pass through the interleaving unit 713.
  • the repeater 700 reads the first transmission data S1 of its own station from the transmission data memory 715, and the channel encoding unit 711 performs channel encoding processing and modulation by the modulation unit 714 on the first transmission data S1 of its own station read. Apply processing Then, after accumulating first transmission data S1 of the local station in transmission buffer 716, repeater 700 performs D / A conversion in D / A conversion section 717, and up-converts to a signal of RF band in transmission RF section 718, Transmit from the transmit antenna.
  • the reception RF unit 701 receives the initial transmission data S2 of the opposite station.
  • the received first transmission data S 2 of the opposite station is down converted to the baseband by the reception RF unit 701 and input to the A / D conversion unit 702.
  • the initial transmission data S2 of the opposite station input to the A / D conversion unit 702 is converted to a digital signal and stored in the reception buffer 703.
  • the first transmission data S2 of the opposite station is subjected to channel decoding processing in the channel decoding unit 707 without passing through the deinterleave unit 706, and thereafter held in the reception data memory 708. .
  • the ACK / NACK signal generation unit 709 generates an ACK / NACK signal according to the result (CRC or the like) of the channel decoding process of the initial transmission data S2 of the opposite station.
  • An ACK signal is generated if reception of the initial transmission data S2 of the opposite station is successful, and a NACK signal is generated if reception fails.
  • the generated ACK / NACK signal of the repeater 700 is modulated by the modulation unit 714 after channel encoding processing by the channel encoding unit 711 and held in the transmission data memory 715.
  • the reception RF unit 701 receives the ACK / NACK signal of the repeater 800.
  • the received ACK / NACK signal of repeater 800 is downconverted to the baseband by reception RF section 701 and input to A / D conversion section 702.
  • the ACK / NACK signal input to the A / D conversion unit becomes a digital signal and is accumulated in the buffer 703.
  • the ACK / NACK signal of the repeater 800 is demodulated and channel-decoded and held in the received data memory 708.
  • the ACK / NACK signal of the repeater 700 is read from the transmission data memory 715, and the read ACK / NACK signal of the repeater 700 is stored in the buffer 716, and then D / A converted by the D / A converter 717, The transmission RF unit 718 up-converts to a signal in the RF band and transmits from the transmission antenna.
  • the repeater 700 generates the parity bit P 2 by the channel encoder 711 and the modulator 714 from the initial transmission data S 2 of the opposite station held in the reception data memory 708, and holds the parity bit P 2 in the transmission data memory 715.
  • the repeater 700 reads the parity transmission data P2 of the opposite station from the transmission data memory 715, and after reading out, stores the parity transmission data P2 of the opposite station in the buffer 716, and then D / A converter 717 / A conversion, up-convert to a signal in the RF band in the transmission RF unit, and transmit from the transmission antenna.
  • FIG. 21 is a functional block diagram of a base station 900 in the third embodiment.
  • the base station 900 includes a reception RF unit 901, an A / D conversion unit 902, a reception buffer 903, a transmission buffer 911, a demodulation unit 904, switches 905A and 905B, a deinterleave unit 906, a channel quality difference determination unit 907, and a channel decoding unit 908.
  • the modulation unit 909, the transmission buffer 910, the D / A conversion unit 911, the transmission RF unit 912, and the channel decoding unit 913 are provided.
  • FIG. 22 is a diagram showing an internal structure of the reception buffer 903 of the base station 900. As shown in FIG.
  • the base station 900 estimates uplink quality of each of the repeaters 700 and 800 performing cooperative relaying, and each repeater performs cooperative relaying of each channel quality estimation result in the channel quality estimation unit 907 together with resource allocation. Notify 700, 800.
  • the base station (eNB) 900 receives the first transmission data S1 and S2 at the time of data exchange implemented between the repeaters performing cooperative relaying by the reception RF unit 901, respectively.
  • the received signal is downconverted to the baseband by the reception RF unit 901, and the signal is input to the A / D conversion unit 902.
  • the signal input to the A / D conversion unit 902 becomes a digital signal, and as shown in FIG. 20B, the repeater in the “resource received data # 1 (S1) storage memory for repeater 700” of the reception buffer 903.
  • First transmission data S1 of 700 is stored in "resource received data # 1 (S2) storage memory for repeater 800" and the first transmission data S2 of repeater 800 is stored.
  • the base station (eNB) 900 receives parity data (P1 and P2 or P1 'and P2') transmitted from each repeater performing cooperative relaying in the reception RF unit 901.
  • the received signal is downconverted to the baseband by the reception RF unit 901, and the signal is input to the A / D conversion unit 902.
  • the signal input to the A / D conversion unit 902 becomes a digital signal, and is stored in the reception buffer 903 as the resource reception data P1 for the repeater 700 and the resource reception data P2 for the repeater 800 as shown in FIG. Be done.
  • the desired amount of data data received divided into two from the resource for the repeater 700 and data divided into two received from the resource for the repeater 800
  • S 1, P 1 , S2 and P2 respectively.
  • the first transmission data S1 and S2 and the parity data P1 and P2 received from each repeater are demodulated,
  • the first transmission data S1 is deinterleaved by the deinterleave unit 906 and separated into original first transmission data S1 and S2.
  • the parity data P1 and P2 are collectively deinterleaved by the deinterleave unit to obtain parity data P1-1, P1-2,..., P2-1, P2-2,.
  • early summer transmission data S2 and parity data P2-1, P2-2 is decoded by the decoding unit 909 to obtain desired data.
  • the repeater 800 demodulates the initial transmission data S1 and S2 and the parity data P1 and P2 received from each repeater.
  • the first transmission data S2 is deinterleaved by the deinterleaving section and separated into the original first transmission data S1 and S2.
  • the parity data P1 and P2 are collectively deinterleaved by the deinterleave unit to obtain parity data P1-1, P1-2,..., P2-1, P2-2,.
  • the channel decoder 908 performs channel decoding to obtain desired data.
  • first transmission data S1 and parity data P1 for repeater 700, and repeater 800 after demodulation of signals S1, P1, S2 and P2 received from each repeater.
  • the first transmission data S2 and the parity data P2 are channel-decoded by the channel decoding unit 908 to obtain desired data.
  • the first transmission data of both repeaters 700 and 800 are sent in a path with a good propagation environment (channel quality), in the base station (eNB) 900, the first time including systematic bits that are important bits.
  • the transmission data reception performance can be improved.
  • the data is randomized by interleaving the data, but any other means may be used as long as the data can be randomized.
  • interleaving may be used on the time axis
  • hopping may be used on the frequency axis
  • scrambling may be used.
  • the repeater in each of the above embodiments may be expressed as a relay station, a repeater, a simple base station, or a cluster head.
  • Each function block employed in the description of each of the aforementioned embodiments may typically be implemented as an LSI constituted by an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include some or all. Although an LSI is used here, it may be called an IC, a system LSI, a super LSI, or an ultra LSI depending on the degree of integration.
  • the method of circuit integration is not limited to LSI's, and implementation using dedicated circuitry or general purpose processors is also possible.
  • a programmable field programmable gate array FPGA
  • a reconfigurable processor may be used which can reconfigure connection and setting of circuit cells in the LSI.
  • Antenna port refers to a logical antenna composed of one or more physical antennas. That is, the antenna port does not necessarily refer to one physical antenna, but may refer to an array antenna or the like configured of a plurality of antennas. For example, in LTE, it is not defined how many physical antennas an antenna port is configured, but is defined as the minimum unit in which a base station can transmit different Reference signals. Also, the antenna port may be defined as the minimum unit by which the weighting of the precoding vector is multiplied.
  • a wireless communication apparatus can improve data decoding performance in a base station while sharing data between repeaters and processing of initial data transmission to a base station (eNB), and can improve wireless communication apparatus It is useful as etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

 リピータ間のデータ交換と基地局(eNB)への初回データ送信の処理の共有を図りつつ、基地局でのデータ復号性能を向上させることができるリピータを提供する。基地局300に対して他のリピータ200と協調してデータを中継するリピータ100は、自装置の第1データを保持する記憶部113と、他のリピータ200の第2データの少なくとも一部分を受信する受信部101と、前記基地局300と各リピータ間の回線品質差に応じて、第1データ及び前記第2データの少なくとも一部分に対してインタリーブをかけて、インタリーブ後のデータを分割するインタリーブ部111と、前記分割されたデータを基地局へ送信する送信部116とを有する。

Description

無線通信装置
 本発明は、基地局に対して他の無線通信装置と協調してデータを中継する無線通信装置に関する。
 近年、セルラ移動体通信システムにおいては、情報のマルチメディア化に伴い、音声データのみならず、静止画像データ、動画像データ等の大容量データを伝送することが一般化しつつある。大容量データの伝送を実現するために、高周波の無線帯域を利用して高伝送レートを実現する技術に関して盛んに検討がなされている。
 しかし、高周波の無線帯域を利用した場合、近距離では高伝送レートを期待できる一方、遠距離になるにしたがい伝送距離による減衰が大きくなる。よって、高周波の無線帯域を利用した移動体通信システムを実際に運用する場合は、無線通信基地局装置(以下基地局と省略する)のカバーエリアが小さくなり、このため、より多くの基地局を設置する必要が生じる。基地局の設置には相応のコストがかかるため、基地局数の増加を抑制しつつ、高周波の無線帯域を利用した通信サービスを実現するための技術が強く求められている。
 上述のような要求に対し、各基地局のカバーエリアを拡大させるために基地局と無線通信移動局装置(以下、移動局と省略する)との間に無線通信中継局装置(以下、リピータと省略する)を設置し、基地局と移動局との間の通信を、リピータを介して行う中継送信技術が検討されている。中継送信技術を用いると、基地局と直接通信できない端末も、リピータを介して通信することができる。なお、リピータの機能を移動局に持たせることも可能である。
 従来、基地局(eNB)における受信ダイバーシチ効果を得るために、リピータ機能を有する複数の端末(以下、”リピータ”と記載)による協調中継(Coded Cooperation)が提案されている。なお協調中継は、協力中継、協同中継と称されることもある。
 図23は、リピータ1001、1002と基地局1003との間で協調中継する協調中継システムの模式図である。また、図24は、図23の協調中継システムの動作例である。
 ここで、図24のリピータ1001の動作に着目し、図23の協調中継システムで実現される協調中継の動作例を説明する。
手順1-1:リピータ1001は、基地局(eNB)へ送信する送信データをシステマティックビットを含む初回送信データS1とパリティデータP1とに2分割する。
手順1-2:リピータ1001は、初回送信データS1をリピータ1002に送信、初回送信データS2をリピータ1002から受信する。(図23(a)参照)
手順1-3:リピータ1001は、受信した初回送信データS2からパリティデータP2を生成する。
手順1-4:その後、リピータ1001は自局の初回送信データS1を基地局(eNB)1003へ送信し(図23(b)参照)、続いて、生成したパリティデータP2を基地局(eNB)1003へ送信する(図23(c))。
 同様に、図24のリピータ1002の動作を説明する。
手順2-1:リピータ1002は、基地局(eNB)送信する送信データをシステマティックビットを含む初回送信データS2とパリティデータP2に2分割する。
手順2-2:リピータ1002は、初回送信データS2をリピータ1001に送信、初回送信データS1をリピータ1001から受信する(図23(a)参照)。
手順2-3:リピータ1002は、受信した初回送信データS1からパリティデータP1を生成する。
 手順2-4:リピータ1002は自局の初回送信データS2を基地局(eNB)1003へ送信し(図23(b)参照)、続いて、生成したパリティデータP1を基地局(eNB)1003へ送信する(図23(c))。
 なお、各リピータでの初回データの送信のタイミングをfirst-frame、相手局のパリティデータの送信のタイミングをsecond-frameと呼ぶ。
 このようにすることで、基地局(eNB)1003において各リピータ1001、1002の2分割されたデータが異なるパスを通って受信(すなわち、協調中継)されるので、パスダイバーシチ効果を得ることができる。
 上述のように、基地局(eNB)で受信する際の受信品質に大きな差が生じない場合には、協調中継が成功し、パスダイバーシチ効果を得ることができる。
 しかしながら、基地局(eNB)1003-リピータ1001及び基地局(eNB)1003-リピータ1002間では伝搬環境(回線品質)に大きな差がある場合がある。その場合、基地局(eNB)1003における各リピータの受信データに大きな受信品質差が生じてしまい、結果、パスダイバーシチ効果が得られない場合があった。
 図25は、基地局(eNB)2003と各リピータ2001、2002間の伝搬環境(回線品質)に差がある場合の協調中継システムの模式図である。また、図26は、図25の協調中継システムの動作例である。
 なお、図25の協調中継システムでは、基地局(eNB)2003とリピータ2間の伝搬環境(回線品質)が悪いとする。
 ここで、図25のリピータ2001の動作に着目し、図26の協調中継システムで実現される協調中継の動作例を説明する。
 手順1-1:リピータ2001は、基地局(eNB)へ送信する送信データをシステマティックビットを含む初回送信データS1とパリティデータP1とに2分割する。
 手順1-2:リピータ2001は、初回送信データS1をリピータ2002に送信、初回送信データS2をリピータ2002から受信する。(図25(a)参照)
 手順1-3:リピータ2001は、受信した初回送信データS2からパリティデータP2を生成する。
 手順1-4:その後、リピータ2001は自局の初回送信データS1を基地局(eNB)2003へ送信し(図25(b)参照)、続いて、生成したパリティデータP2を基地局(eNB)2003へ送信する(図25(c))。
 同様に、図25のリピータ2002の動作を説明する。
手順2-1:リピータ2002は、基地局(eNB)2003送信する送信データをシステマティックビットを含む初回送信データS2とパリティデータP2に2分割する。
 手順2-2:リピータ2002は、初回送信データS2をリピータ2001に送信、初回送信データS1をリピータ2001から受信する(図23(a)参照)。
 手順2-3:リピータ2002は、受信した初回送信データS1からパリティデータP1を生成する。
 手順2-4:リピータ2002は自局の初回送信データS2を基地局(eNB)2003へ送信する。しかしながら、基地局(eNB)2003とリピータ2002間の伝搬環境(回線品質)が悪いため、初回送信データS2に対する基地局(eNB)2003での受信品質が低下し、最悪の場合には受信できなくなる(図25(b)参照)。同様に、リピータ2002は、生成したパリティデータP1を基地局(eNB)へ送信する。しかしながら、基地局(eNB)2003とリピータ2002間の伝搬環境(回線品質)が悪いため、パリティデータP1に対する基地局(eNB)2003での受信品質が低下し、最悪の場合受信できなくなる(図25(c))。
 上述のように、基地局(eNB)2003-リピータ2001及び基地局(eNB)2003-リピータ2002間では伝搬環境(回線品質)に大きな差がある場合、基地局(eNB)における各リピータの受信データに大きな受信品質差が生じてしまい、結果、パスダイバーシチ効果が得られないという課題があった。
米国公開特許公報 2003/0148732 A1
 本発明の目的は、協調中継する各無線通信装置間のデータ交換処理及び協調中継する各無線通信装置から基地局(eNB)への初回データ送信処理の共有を図りつつ、無線通信装置から基地局へ送信されるデータの復号性能を向上させることができる無線通信装置を提供することである。
 本発明の第1の観点に係る、基地局に対して他の無線通信装置と協調してデータを中継する無線通信装置は、基地局に対して他の無線通信装置と協調してデータを中継する無線通信装置であって、自装置から送信する第1データを保持する記憶部と、
 他の無線通信装置が送信する第2データの少なくとも一部分を受信する受信部と、
 前記基地局と各無線通信装置間の回線品質差に応じて、協調中継するために、前記第1データ及び前記第2データの少なくとも一部分のデータを補う中継データ処理部と、前記中継データ処理部での処理後のデータを基地局へ送信する送信部と、を有する。
 上記無線通信装置によれば、無線通信装置間のデータ交換と基地局への初回送信データの送信の共有を図りつつ、基地局(eNB)において、無線通信装置から送信されたデータの復号性能を向上させることができる。
 本発明の第2の観点に係る、基地局に対して他の無線通信装置と協調してデータを中継する無線通信装置は、自装置から送信する第1データを保持する記憶部と、他の無線通信装置が送信する第2データの少なくとも一部分を受信する受信部と、前記基地局と各無線通信装置間の回線品質差に応じて、前記第1データ及び前記第2データの少なくとも一部分に対して、インタリーブをかけるインタリーブ部と、前記インタリーブ後のデータを基地局へ送信する送信部と、を有する。
 上記無線通信装置によれば、無線通信装置間のデータ交換と基地局への初回送信データの送信の共有を図りつつ、基地局(eNB)において、無線通信装置から送信されたデータの復号性能を向上させることができる。
 上記無線通信装置において、前記第1データ及び前記2データのそれぞれは、システマティックビットを含む初回送信データとパリティビットを含むパリティデータとから構成され、上記無線通信装置は、さらに、基地局と自装置間の回線品質及び基地局と他の無線通信装置間の回線品質から、前記基地局と各無線通信装置間の回線品質差が一定値以上であるか否か判定する判定部と、前記初回送信データから前記パリティデータを生成するデータ生成部と、を有し、前記判定部が基地局と各無線通信装置間の回線品質差が一定値以上あると判定する場合、前記インタリーブ部は、前記第1データの初回送信データ、前記第1データのパリティデータ、前記受信部で受信した前記第2データの初回送信データ及び前記データ生成部で生成された前記第2データのパリティデータに対して、インタリーブをかけ、前記送信部は、前記インタリーブ後のデータを基地局へ送信する。
 上記無線通信装置によれば、基地局(eNB)-無線通信装置間の一方の伝搬環境(回線品質)が悪い場合でも、データがランダマイズされていることで、基地局(eNB)は、無線通信装置から送信されたデータを偏りなく受信できるので、基地局(eNB)での受信品質が向上する。
 また、本発明の第3の観点に係る、基地局に対して他の無線通信装置と協調してデータを中継する無線通信装置は、自装置から送信され、かつシステマティックビットを含む第1初回送信データとパリティビットを含む第1パリティデータとから構成される第1データを保持する記憶部と、他の無線通信装置から送信され、かつシステマティックビットを含む第2初回送信データを受信する受信部と、基地局と自装置間の回線品質及び基地局と他の無線通信装置間の回線品質から、前記前記基地局と各無線通信装置間の回線品質差が一定値以上であるか、否か判定する判定部と、前記判定部が、前記基地局と各無線通信装置間の回線品質差が一定値以上と判定した場合、前記第1データの第1初回送信データ及び他の無線通信装置から送信された前記第第2初回送信データから、前記基地局と各無線通信装置間の回線品質差を反映した第1データのパリティデータ及び前記基地局と各無線通信装置間の回線品質差を反映した第2データのパリティデータを生成するデータ生成部と、前記データ生成部で生成した前記第1データのパリティデータ及び前記データ生成部で生成した前記第2データのパリティデータに対して、インタリーブをかけるインタリーブ部と、前記インタリーブ部でインタリーブされたデータを基地局へ送信する送信部と、を有する無線通信装置。
 また、上記無線通信装置では、前記データ生成部が生成する前記第1データのパリティデータ及び前記データ生成部が生成する前記第2データのパリティデータの量は、前記基地局と各無線通信装置間の回線品質差を反映する。
 上記無線通信装置では、基地局へ前記第1データの初回送信データを送信する際の、前記第1データの初回送信データの量は、前記基地局と各無線通信装置間の回線品質差を反映する。
 上記無線通信装置によれば、協調中継する各無線通信装置間のデータ交換処理及び協調中継する各無線通信装置から基地局(eNB)への初回データ送信処理の共有を図りつつ、無線通信装置から基地局へ送信されるデータの復号性能を向上させることができる。また、基地局(eNB)及び各無線通信装置間のうち、一方の伝搬環境(回線品質)が悪い場合でも、データがランダマイズされていることで、基地局(eNB)におけるリピータデータが偏りなく基地局(eNB)での受信品質が向上する。
 また、本発明の第4の観点に係る、基地局に対して他の無線通信装置と協調してデータを中継する無線通信装置は、自装置から送信する第1データを保持する記憶部と、他の無線通信装置から送信される第2データを受信する受信部と、基地局と自装置間の回線品質及び基地局と他の無線通信装置間の回線品質から、基地局と各無線通信装置間の回線品質差がある一定値以上であるか否かを判定する第1判定部と、基地局と自装置間の回線品質及び基地局と他の無線通信装置間の回線品質のどちらが良好かを判定する第2判定部と、前記第1判定部及び前記第2判定部の判定結果に基づき、前記第1データから第1パリティデータを生成し、前記第1判定部及び前記第2判定部の判定結果に基づき、前記第2データから第2パリティデータをそれぞれ生成するデータ生成部と、前記第1データ及び前記第2データを、インタリーブする第1インタリーブ部と、前記データ生成部で生成された前記第1パリティデータ及び前記データ生成部で生成された前記第2パリティデータを、前記基地局と各無線通信装置間の回線品質差情報に応じて、インタリーブする第2インタリーブ部と、前記インタリーブ後の前記第1データ及び前記インタリーブ後の前記第2データ、並びに、前記インタリーブ後の前記第1パリティデータ及び前記インタリーブ後の前記第1パリティデータの少なくとも一部を基地局へ送信する送信部と、を有する。
 上記無線通信装置によれば、協調中継する各無線通信装置間のデータ交換処理及び協調中継する各無線通信装置から基地局(eNB)への初回データ送信処理の共有を図りつつ、無線通信装置から基地局へ送信されるデータの復号性能を向上させることができる。また、基地局(eNB)及び各無線通信装置間のうち、一方の伝搬環境(回線品質)が悪い場合でも、データがランダマイズされていることで、基地局(eNB)におけるリピータデータが偏りなく基地局(eNB)での受信品質が向上する。
 協調中継する各無線通信装置間のデータ交換処理及び協調中継する各無線通信装置から基地局(eNB)への初回データ送信処理の共有を図りつつ、無線通信装置から基地局へ送信されるデータの復号性能を向上させることができる。
第1の実施の形態における、協調中継システムの模式図 図1の協調中継におけるシーケンス図 図1の協調中継の処理フロー図 第1の実施の形態におけるリピータ100の機能ブロック図 第1の実施の形態におけるリピータ100のメモリ内部構造を示し、図5(a)は受信データメモリの内部構造を示す図であり、図5(b)は、送信データメモリの内部構造を示す図 第1の実施の形態における基地局300の機能ブロック図 第1の実施の形態における基地局300のメモリ内部構造を示す図 第2の実施の形態における、協調中継のシーケンス図 第2の実施の形態における、協調中継の処理フロー図 第2の実施の形態において、パリティデータの生成量を制御する場合の協調中継のシーケンス図 図10において、初回送信データの送信量を制御する場合の協調中継のシーケンス図 第2の実施の形態におけるリピータ400の機能ブロック図 第2の実施の形態におけるリピータ400の各メモリの内部構造を示し、図13(a)は、受信データメモリの内部構造を示す図であり、図13(b)は、送信データメモリの内部構造を示す図 第2の実施の形態における、基地局600の機能ブロック図 第2の実施の形態における、基地局600のバッファの内部構造を示す図 第3の実施の形態における協調中継のシーケンス図 第3の実施の形態における協調中継の処理フロー図 第3の実施の形態における協調中継の処理フロー図 第3の実施の形態におけるリピータ700の機能ブロック図 第3の実施の形態におけるリピータ700の各メモリの内部構造を示し、図20(a)は受信データメモリの内部構造を示す図であり、図20(b)は送信データメモリの内部構造を示す図 第3の実施の形態の置ける基地局900の機能ブロック図 第3の実施の形態における基地局900の受信バッファ903の内部構造を示す図 リピータ1001、1002と基地局1003との間で協調中継する協調中継システムの模式図 図23の協調中継システムの動作例 基地局(eNB)2003と各リピータ2001、2002間の伝搬環境(回線品質)に差がある場合の協調中継システムの模式図 図25の協調中継システムの動作例
 以下、本発明の実施の形態について、図面を参照して説明する。
 なお、本発明の実施の形態において、リピータ機能を有する無線通信装置、すなわち、他の無線通信装置と協調してデータを基地局へ送信することができる無線通信装置を、単に“リピータ”と記載する。
 (第1の実施の形態)
 第1の実施の形態では、各リピータが、基地局へ送信したいデータを、システマティックビットを含む初回送信データ(以下、Sxと表記)とパリティビットを含む送信データ(以下、Pxと表記)とに分割した後、互いの初回送信データS1、S2を交換し、相手局のパリティデータP2、P1をそれぞれ生成する。そして、前記基地局と各無線通信装置間の回線品質差に応じて、協調中継するために、一方のリピータが、自身の基地局へ送信したいデータ及び他方のリピータが基地局へ送信したいデータの少なくとも一部分のデータを補う中継データ処理を行う。具体的には、基地局(eNB)から予め通知されるリソース割り当て・伝搬環境(回線品質)通知等を含む制御情報に基づき、各リピータと基地局間の伝搬環境(回線品質)の差がある一定上あると判定された場合、各リピータ100、200は、自局及び相手局の初回送信データ(S1及びS2)とパリティデータ(P1及びP2)の全てのデータをインタリーブする。さらに、インタリーブした全データを4等分(D1、D2、D3、D4)する。各リピータ100、200は、4等分したうちの、異なる2つをfirst-frame及びsecond-frameで各々、基地局(eNB)へ送信する。
 上述のような協調中継により、基地局(eNB)-各リピータ間の一方の伝搬環境(回線品質)が悪い場合でも、送信データがランダマイズされていることで、基地局(eNB)でリピータから受信したデータに偏りがなくなり、基地局(eNB)での受信品質が向上する。
 図1は、第1の実施の形態における、協調中継(Coded Cooperation)システムの模式図である。第1の実施の形態では、図1に示すように、各リピータ100、200から基地局(eNB)300へ初回送信データS1、S2を協調中継する。なお、図1の協調中継システムでは、基地局(eNB)300とリピータ200間の伝搬環境(回線品質)が悪いとするが、この場合に限らず、第1の実施の形態では、基地局(eNB)と各リピータ間伝搬環境(回線品質)に差があればよい。図2は、図1の協調中継におけるシーケンス図であり、図3は、図1の協調中継の処理フロー図である。
 図2を参照し、第1の実施の形態の動作例を説明する。
 手順1:基地局(eNB)300は、協調中継を行う各リピータ100、200に対しリソース割り当て・伝搬環境(回線品質)通知を行う。なお、第1の実施の形態では、リソース割り当て・伝搬環境(回線品質)通知等を含む制御情報は、grant情報に含まれており、また、協調中継を行う各リピータ100、200間で共有可能とする。
手順2:各リピータ100、200は、協調中継したい自局のデータをそれぞれ2分割する。なお、第1の実施の形態では、協調中継したい自局のデータを、システマティックビットを含む初回送信データSxとパリティビットを含む送信データPxとに2分割した場合を説明する(xはリピータ番号に対応)。
手順3:各リピータ100、200は、互いの初回送信データS1、S2を交換し、パリティデータP2、P1をそれぞれ生成する。
手順4:各リピータ100、200は、初回送信データS1、S2とパリティデータP1、P2の全データをインタリーブ・4等分(D1、D2、D3、D4)する。
手順5:各リピータは、4等分したうちの、異なる2つをfirst-frame及びsecond-frameで各々送信する。
 ここで、4等分したデータD1、D2、D3、D4のうち、first-frame(図1(b)参照)で、リピータ100はD1を基地局300へ送信する一方、リピータ200はD2を基地局300へ送信する。続いて、second-frame(図1(c))において、リピータ100はデータD3を基地局300へ送信する一方、リピータ200はデータD4を基地局300へ送信する。
 上述のような動作で、基地局(eNB)-リピータ間の一方の伝搬環境(回線品質)が悪い場合でも、データがランダマイズされていることで、基地局(eNB)におけるリピータデータが偏りなく基地局(eNB)での受信品質が向上する。
 なお、回線品質の判断を含む制御情報を基地局(eNB)からのgrant情報に含める以外に、回線品質がある一定値以上である場合に、基地局(eNB)からのNACKをソフトNACKにして、そこに回線品質情報を載せてもよい。また、初回送信データもシステマティックビットに限らず、自己復調(self-decodable)なデータであれば良い。
 次に図3を参照し、第1の実施の形態における、各リピータ100、200及び基地局(eNB)の協調中継の処理を説明する。
 まず、基地局(eNB)から、協調中継を行う各リピータ100、200に対しリソース割り当て・伝搬環境(回線品質)通知を行う(ステップS101)。次に、各リピータ100、200は、協調中継したい自局のデータS1、S2をそれぞれ2分割する(ステップS102)。
 そして、リピータ100は、自局の初回送信データS1をリピータ200へ送信する一方、リピータ200は自局の初回送信データS2をリピータ100へ送信する(ステップS103)。次に、各リピータ100、200は、自局で相手局の初回送信データを受信したか否かを示すACK/NAKCシグナルを相手局に対して、送信する(ステップS104)。
 そして、リピータ100と基地局300間の回線品質情報及びリピータ200と基地局300間の回線品質情報から、各リピータ100、200と基地局間の伝搬環境(回線品質)の差がある一定上あるいか否かを判定する(ステップS105)。ここで、各リピータと基地局間の伝搬環境(回線品質)の差がある一定値以上ある場合、リピータ200は、受信したS1からパリティデータP1を生成し(ステップS106)、自局データS2、P2及び相手局データS1,P1を合わせた全データに対してインタリーブをかける(ステップS107)。そして、リピータ200は、インタリーブ後のデータをD1、D2、D3、D4の4分割にし、first frameでD1を、second frameでD3を送信する(ステップS108)。一方、リピータ100は、受信した初回送信データS2からパリティデータP2を生成し(ステップS109)、自局データS1、P1及び相手局データS2,P2を合わせた全データに対しインタリーブをかける(ステップS110)。そして、リピータ100は、インタリーブ後のデータをD1、D2、D3、D4の4分割し、first frameでD2を、second frameでD4を送信する(ステップS111)。
 なお、各リピータと基地局間の伝搬環境(回線品質)の差がある一定値以上ない場合には、リピータ200は、受信したS1からパリティデータP1を生成し、生成したパリティデータP1を送信する(ステップS112、S114)。一方、リピータ100は、受信したS2からパリティデータP2を生成し、生成したパリティデータP2を送信する(ステップS113、S115)。そして、各リピータで生成された送信データは、基地局(eNB)へ送信され複号される(ステップS116)。
 次に、リピータ100の動作について説明する。
 図4は、第1の実施の形態におけるリピータ100の機能ブロック図である。リピータ100は、受信RF部101、A/D変換部102、バッファ103、114、復調部104、チャネルデコード部105、受信データメモリ106、回線品質差判定部107、ACK/NAKCシグナル生成部、チャネルエンコード部109、スイッチ110A、110B、インタリーブ部111、変調部112、送信データメモリ113、D/A変換部115、送信RF部116を備える。
 ここで、図2~5を参照し、リピータ100が、1ブロックのデータを協調中継にて送信完了するまでの動作を説明する。 図5は、リピータ100のメモリの内部構造を示す図であり、図5(a)は受信データメモリの内部構造を示す図であり、図5(b)は、送信データメモリの内部構造を示す図である。
 まず、リピータ100は、受信RF部101で、「基地局(eNB)300からリピータ100向けの回線品質情報および基地局(eNB)300からリピータ200向けの回線品質情報」を基地局(eNB)300から受信する。
 基地局(eNB)300から受信した信号は、受信RF部101でベースバンド帯域までダウンコンバートされ、A/D変換部102に入力される。A/D変換部102に入力された信号はデジタル信号となって、バッファ103に蓄積される。そして、各回線品質情報を含む信号を、復調部104で復調、チャネルデコード105でチャネルデコード処理し、受信データメモリ106に保持する。
 リピータ100は、自局送信データを、システマティックビットを含む初回送信データS1とパリティビットを含むパリティ送信データP1とに分割し、送信データメモリ113にそれぞれ保持する。そして、リピータ100は、初回送信データS1を送信データメモリ113から読みだし、バッファ114に蓄積した後、D/A変換部115にてD/A変換し、送信RF部116でRF帯域の信号までアップコンバートし、送信アンテナから基地局(eNB)300へ送信する。
 続いて、リピータ100は、受信RF部101で、リピータ200からの初回送信データS2を受信する。受信した初回送信データS2は、受信RF部101でベースバンド帯域までダウンコンバートされて、A/D変換部102に入力される。A/D変換部102に入力された信号はデジタル信号となって、バッファ103に蓄積される。そして、初回送信データS2の信号は、復調部104での復調及びチャネルデコード部105でのチャネルデコード処理の後、受信データメモリ106に保持する。
 さらに、リピータ200の初回送信データS2のチャネルデコード結果(CRC等)に応じて、ACK/NACKシグナル生成部108で、リピータ100のACK/NACKシグナルを生成する。受信が成功した場合には、ACKシグナルを、受信が失敗した場合にはNACKシグナルを生成する。ACK/NACKシグナル生成部108で生成したリピータ100のACKシグナル又はNACKシグナルに対してチャネルエンコード部109でのチャネルエンコード処理及び変調部での変調処理を行い、送信データメモリ113に保持する。そして、リピータ100のACK/NACKシグナルを送信データメモリ113から読みだし、バッファ114に蓄積した後、D/A変換部115にてA/D変換し、送信RF部116でRF帯域の信号までアップコンバートし、送信アンテナから送信する。
 続いて、受信RF部101でリピータ200からのACK/NACKシグナルを受信する。受信したACK/NACK信号は、受信RF部101でベースバンド帯域までダウンコンバートされて、A/D変換部に信号が入力される。A/D変換部に入力された信号はデジタル信号となって、バッファ103に蓄積される。そして、リピータ200からのACK/NACK信号は、復調及びチャネルデコード処理され、受信データメモリ106に保持される。
 続いて、受信データメモリ106に保持されている基地局(eNB)-リピータ100の回線品質情報および基地局(eNB)-リピータ200の回線品質情報を読み出し、回線品質差判定部107にて、基地局(eNB)-各リピータ間の回線品質差を算出し、ある一定値以上か否かを判定する。
 回線品質差判定部107にて算出した基地局(eNB)-各リピータ間の回線品質差がある一定値以上である場合には、チャネルエンコード部109と変調部112間にあるスイッチ110A、110Bをインタリーブ部111側に制御する。
 一方、回線品質差判定部107にて算出した基地局(eNB)-各リピータ間の回線品質差がある一定値未満である場合には、チャネルエンコード部109と変調部112間にあるスイッチ110A、110Bは、データがインタリーブ部111を経由しない経路を通るように切り替わる。さらに、算出した回線品質差情報をチャネルエンコード部109にも出力する。
 続いて、受信データメモリ106に保持されている、初回送信データS2のデコードデータを読み出す。ここで、回線品質差判定部107で算出された回線品質差がある一定値以上である場合、チャネルエンコード部109において、初回送信データS2のデコードデータから初回送信データS2のエンコードデータと、初回送信データS2のパリティデータP2とを生成する。また、送信データメモリ113に保持してある初回送信データS1のエンコードデータとパリティデータP1とを読み出す。
 これらのデータS1、P1、S2、P2に対し、インタリーブ部111において、回線品質差情報に基づいたインタリーブをかけて、4分割(D1、D2、D3、D4)する。各データ(D1、D2、D3、D4)を変調部112にて変調をかけた後、送信データメモリ113に、インタリーブ後の送信データとしてfirst frame送信用のデータD2とsecond frame用のデータD4を保持する。
 次に、リピータ100は、送信データメモリ113からfirst frame送信用のデータD2を読み出し、バッファ114に蓄積した後、D/A変換部115にてD/A変換し、送信RF部116でRF帯域の信号までアップコンバートし、送信アンテナから送信する。続いて、送信データメモリ113からsecond frame送信用データD4を読み出し、バッファ114に蓄積した後、D/A変換部115にてD/A変換し、送信RF部でRF帯域の信号までアップコンバートし、送信アンテナから送信する。
 なお、回線品質差判定部107で算出された回線品質差がある一定値未満である場合には、チャネルエンコード部109と変調部112間にあるスイッチ110Aは、データがインタリーブ部111を経由しない経路を通るように切り替わる。そして、チャネルエンコード部109及び変調部112は、S2デコードデータからパリティビットP2を生成し、生成されたパリティビットP2は送信データメモリ113に保持される。
 リピータ100は、送信データメモリ113から送信データS1を読み出し、バッファ114に蓄積した後、D/A変換部115にてD/A変換し、送信RF部116でRF帯域の信号までアップコンバートし、送信アンテナから送信する。同様に、リピータ100は、送信データメモリ113から送信データP2を読み出し、バッファ114に蓄積した後、D/A変換部115にてD/A変換し、送信RF部116でRF帯域の信号までアップコンバートし、送信アンテナから送信する。
 なお、インタリーブパターンは、初回送信データの受信品質が悪いと推定されるリピータのパリティデータが、伝搬環境(回線品質)の良いリンクで多く送信できるようなスクランブリングにしてもよいし、各パリティデータが均等にスクランブルされるようにしてもよい。
 次に基地局300の動作について説明する。
 図6は、基地局300の機能ブロック図である。図6に示すように、基地局300は、受信RF部301、A/D変換部302、バッファ303、311、復調部304、スイッチ305A、305B、デインタリーブ部306、回線品質差判定部307、チャネルデコード部309、変調部310、送信バッファ311、D/A変換部312、送信RF部313を備える。また、図7は、基地局300のメモリの内部構造を示す図である。
 次に、図2、3、6、7を参照し、基地局300について、1ブロックのデータを協調中継にて受信完了するまでの動作を詳しく説明する。
 基地局300は、協調中継を行う各リピータ100、200の上り回線品質推定を行い、各々の回線品質推定結果を、リソース割り当てと共に、協調中継を行う各リピータ100、200に通知する。リソース割り当て・伝搬環境(回線品質)通知等を含む制御情報は、協調中継を行う各リピータ100、200間で共有可能とする。
 続いて、基地局300はfirst frameにおいて各リピータ100、200から送信されるインタリーブ後の送信データD1、D2を、各々、受信RF部301で受信する。そして、インタリーブ後の送信データD1、D2の信号は、受信RF部301でベースバンド帯域までダウンコンバートされて、A/D変換部302に信号が入力される。
 A/D変換部302に入力されたインタリーブ後の送信データD1、D2は、デジタル信号となって受信バッファ303に保存される。図7に示すように、インタリーブ後の送信データD2は、受信バッファ303の“リピータ100用リソース受信データ#1(D2)格納メモリ”に格納され、インタリーブ後の送信データD1は、“リピータ200用リソース受信データ#1(D1)格納メモリ”に格納される。
 続いて、基地局300はsecond frameにおいて、各リピータ100、200から送信されるインタリーブ後の送信データD3、D4を、各々、受信RF部301で受信する。受信RF部301で受信したインタリーブ後の送信データD3、D4は受信RF部301でベースバンド帯域までダウンコンバートされて、A/D変換部302に信号が入力される。A/D変換部302に入力されたインタリーブ後の送信データD3、D4は、デジタル信号となって受信バッファ303に保存される。図7に示すように、インタリーブ後の送信データD4は、受信バッファ303の“リピータ100用リソース受信データ#2(D4)格納メモリ”に格納され、インタリーブ後の送信データD3は、受信バッファ303の“リピータ200用リソース受信データ#2(D3)格納メモリ”に格納される。
 そして、すべての受信バッファの格納メモリにインタリーブ後の送信データD1、D2、D3、D4が蓄積されると、各インタリーブ後の送信データD1、D2、D3、D4に対し、復調処理が施される。
 次に、回線品質判定部307での判定結果に基づき、各リピータ100、200と基地局(eNB)300間の回線品質差がある一定値以上である場合には、復調処理後の送信データD1,D2,D3,D4をまとめて、デインタリーブ部306にてデインタリーブし、各リピータ100、200の初回送信データS1、S2及びパリティデータP1、P2を得る。続いて、リピータ100用のデータS1、P1及びリピータ200用のデータS2、P2が、各々、チャネルデコード部308にてチャネルデコードされ、所望のデータを得る。
 なお、各リピータ100、200と基地局(eNB)間の回線品質差がある一定値未満である場合には、送信データD1,D2,D3,D4の復調後、リピータ100用のデータS1、P1及びリピータ2用のデータS2、P2が、各々、チャネルデコード部309にてチャネルデコードされ、所望のデータを得る。
 上述のように、第1の実施の形態によれば、『リピータ100、200間のデータ交換』と『基地局(eNB)への初回送信データの送信』の共有を図りつつ、基地局(eNB)において、リピータデータの復号性能を向上させることができる。
 また、第1の実施の形態によれば、基地局(eNB)-リピータ間の一方の伝搬環境(回線品質)が悪い場合でも、データがランダマイズされていることで、基地局(eNB)におけるリピータデータが偏りなく基地局(eNB)での受信品質が向上する。
 なお、回線品質の判断を含む制御情報を基地局(eNB)からのgrant情報に含める以外に、回線品質がある一定値以上である場合に、基地局(eNB)からのNACKをソフトNACKにして、そこに回線品質情報を載せてもよい。また、初回送信データもシステマティックビットに限らず、自己復調(self-decodable)なデータであれば良い。
 なお、第1の実施の形態では、データをインタリーブすることで、データをランダム化しているが、それ以外の手段でもデータをランダム化できればどのような手段でもよい。例えば、時間軸に対してインタリーブを用いたり、周波数軸に対してホッピングを用いたり、或いはスクランブリングを用いることが可能である。
(第2の実施形態)
 第2の実施の形態は、第1の実施の形態同様、各リピータ400、500から基地局(eNB)600へ初回送信データを協調中継する。なお、第2の実施の形態の協調中継システムでは、基地局(eNB)600とリピータ500間の伝搬環境(回線品質)が悪いとするが、この場合に限らず、第1の実施の形態と同様、第2の実施の形態では基地局(eNB)と各リピータ間伝搬環境(回線品質)に差があればよい。図8は、第2の実施の形態におけるシーケンス図、図9は第2の実施の形態における処理フロー図である。
 図8を参照し、第2の実施の形態における協調中継の動作例を説明する。
 手順1:基地局(eNB)600は、協調中継を行う各リピータ400、500に対しリソース割り当て・伝搬環境(回線品質)通知を行う。この制御情報は、協調中継を行う各リピータ400、500間で共有可能とする。
 手順2:各リピータ400、500は、協調中継したい自局のデータを2分割する。ここで、第2の実施の形態では、第1の実施の形態と同様、協調中継したい自局のデータのうち、システマティックビットを含む初回送信データをSxと表記し、パリティビットを含む送信データPxと表記する(xはリピータ番号に対応)。
 手順3:リピータ400は、自局の初回送信データS1をリピータ500へ送信し、リピータ500は、相手局の初回送信データS1を受信する。
 手順4:基地局(eNB)600も、リピータ500へ送信された初回送信データS1を受信する。
 手順5:一方、リピータ500は、自局の初回送信データS2をリピータ400へ送信し、リピータ400は、相手局の初回送信データS2を受信する。
 手順6:基地局(eNB)600も、リピータ400へ送信された初回送信データS2を受信する。
 手順7:リピータ500は、リピータ400へACKシグナルを送信する。
 手順8:リピータ400は、リピータ500へACKシグナルを送信する。
 手順9:ここで、基地局(eNB)-各リピータ間の伝搬環境(回線品質)差がある一定値以上の場合、リピータ500は、受信した相手局の初回送信データS1から、手順1で得た各リピータ400、500の伝搬環境(回線品質)を反映したパリティデータP1-1、P1-2、…を生成する。例えば、データの量・種類等の基準により、各リピータの伝搬環境(回線品質)を反映して、パリティデータを生成することが可能である。さらに、リピータ500は、自局の初回送信データS2から同様に伝搬環境(回線品質)を反映したパリティデータP2-1、P2-2、…を生成する。
 手順10:リピータ500は、生成した全パリティデータP1-1、P1-2、…、P2-1、P2-2、…に対して、インタリーブをかけて2分割し、インタリーブ後のパリティデータP1’、P2’を生成する。
 手順11:リピータ400は、受信した相手局の初回送信データS2から、手順1で得た各リピータの伝搬環境(回線品質)を反映したパリティデータP2-1、P2-2、…を生成する。例えば、データの量・種類等の基準により、各リピータの伝搬環境(回線品質)を反映しパリティデータを生成することが可能である。同様に、リピータ400は、自局の初回送信データS1から、同様に伝搬環境(回線品質)を反映したパリティデータP1-1、P1-2、…を生成する。
 手順12:リピータ400は、生成した全パリティデータP1-1、P1-2、…、P2-1、P2-2、…に対して、インタリーブをかけ2分割し、インタリーブ後のパリティデータP1’、P2’を生成する。
 手順13:リピータ500は生成したP1’を基地局(eNB)600へ送信する。
 手順14:リピータ400は生成したP2’を基地局(eNB)600へ送信する。
 手順15:基地局(eNB)600は受信データを復号する。
 ここで、インタリーブパターンは、初回送信データの受信品質が悪いと推定されるリピータのパリティデータが、伝搬環境(回線品質)の良いリンクで多く送信できるようなスクランブリングにしても良いし、各パリティデータが均等にスクランブルされるようにしても良い。
 ここで、基地局(eNB)600-各リピータ400、500間の伝搬環境(回線品質)差がある一定値未満の場合について説明する。
 手順#9:手順9において、基地局(eNB)600-各リピータ400、500間の伝搬環境(回線品質)差がある一定未満の場合には、リピータ500は、受信した相手局の初回送信データS1から、パリティデータP1を生成する。
 手順#10:リピータ400は、受信した相手局の初回送信データS2から、パリティデータP2を生成する。
 手順#11:リピータ500は、生成したP1を基地局(eNB)600へ送信する。
 手順#12:リピータ400は、生成したP2を基地局(eNB)600へ送信する。
 手順#13:基地局(eNB)600は、受信データを復号する。
 次に、図9を参照し、第2の実施の形態における、各リピータ400、500及び基地局(eNB)600の協調中継の処理を説明する。なお、図8と同様、協調中継したい自局のデータのうち、システマティックビットを含む初回送信データをSxと表記し、パリティビットを含む送信データPxと表記する(xはリピータ番号に対応)。
 まず、基地局(eNB)600から、協調中継を行う各リピータ400、500に対しリソース割り当て・伝搬環境(回線品質)通知を行う(ステップS201)。ここで、リソース割り当て・伝搬環境(回線品質)通知等を含む制御情報は、協調中継を行う各リピータ400、500間で共有可能とする。
 次に、各リピータ400、500は、協調中継したい自局のデータS1、S2をそれぞれ2分割する(ステップS202)。
 次に、リピータ400は、自局の初回送信データS1をリピータ200へ送信する一方、リピータ500は自局の初回送信データS2をリピータ100へ送信する。同時に、基地局(eNB)600は、各リピータ100、200から、各自局の初回送信データS1、S2を受信する(ステップS203)。次に、各リピータ400、500は、自局で相手局の初回送信データを受信したか否かを示すACK/NAKCシグナルを相手局に対して、送信する(ステップS204)。
 そして、リピータ400、500と基地局600間の回線品質情報から、各リピータと基地局間の伝搬環境(回線品質)の差がある一定上あるいか否かを判定する(ステップS205)。
 ここで、各リピータと基地局間の伝搬環境(回線品質)の差がある一定値上ある場合、前記基地局と各無線通信装置間の回線品質差に応じて、協調中継するために、一方のリピータが、自身の基地局へ送信したいデータ及び他方のリピータが基地局へ送信したいデータの少なくとも一部分のデータを補う中継データ処理を行う。具体的には、リピータ500は、受信した相手局の初回送信データS1から伝搬環境(回線品質)差を反映したパリティデータP1-1、P1-2、…を生成し(ステップS206)、同様に、自局の初回送信データS2から伝搬環境(回線品質)差を反映したパリティデータP2-1、P2-2、…を生成する(ステップS207)。そして、リピータ500は、全パリティデータP1-1、P1-2、・・・、P2-1、P2-2、・・・をインタリーブし、2分割し、インタリーブ後のパリティデータP1’、P2’とする(ステップ208)。
 一方、リピータ400は、受信した相手局の初回送信データS2から伝搬環境(回線品質)差を反映したパリティデータP2-1、P2-2...を生成し(ステップ209)、自局の初回送信データS1から、伝搬環境(回線品質)差を反映したパリティデータP1-1、P1-2、...を生成する(ステップ210)。
 そして、リピータ400は、全パリティデータP1-1、P1-2、・・・、P2-1、P2-2、・・・をインタリーブし、2分割し、インタリーブ後のパリティデータP1’、P2’とする(ステップ211)。
 次に、リピータ500は、生成したインタリーブ後のパリティデータP1’、P2’のうち、パリティデータP1’を基地局600へ送信する。一方、リピータ400は、生成したインタリーブ後のパリティデータP1’、P2’のうち、パリティデータP2’を基地局600へ送信する。
なお、各リピータと基地局間の伝搬環境(回線品質)の差がある一定値以上ない場合、リピータ500は、受信した相手局の初回送信データS1からパリティデータP1を生成し、生成したパリティデータP1を基地局600送信する(ステップS214、S216)。一方、リピータ400は、受信した相手局の初回送信データS2からパリティデータP2を生成し、生成したパリティデータP2を基地局600送信する(ステップS215、S217)。
 そして、各リピータ400、500で生成された送信データは、基地局(eNB)600へ送信され複号される(ステップS218)。
 上述のように、第2の実施の形態によれば、『各リピータ間のデータ交換』と『基地局(eNB)への初回データ送信』の処理の共有を図りつつ、リピータデータの復号性能を向上させることができる。
 なお、第2の実施の形態では、データをインタリーブすることで、データをランダム化しているが、それ以外の手段でもデータをランダム化できればどのような手段でもよい。例えば、時間軸に対してインタリーブを用いたり、周波数軸に対してホッピングを用いたり、或いはスクランブリングを用いることが可能である。
 なお、第2の実施の形態では、基地局(eNB)600から通知される伝搬環境(回線品質)に応じて、各リピータは生成するパリティデータ量を制御して、送信してもよい。図10は、伝搬環境(回線品質)に応じて、リピータが生成するパリティデータ量を制御した場合のシーケンス図である。図10に示すように、リピータ400、500で送信可能なデータ量が200bitの場合、リピータ400でパリティデータ量50bitのP1-1を生成し、リピータ500でパリティデータ量150bitのP2-1(パリティデータ量50bit)、P2-2(パリティデータ量50bit)、P2-3(パリティデータ量50bit)を生成する。そして、各リピータで全パリティデータP1、P2-1、P2-2、P2-3をインタリーブして2分割P1’、P2’とする際に、基地局(eNB)600から通知される伝搬環境(回線品質)に応じてパリティデータ量をP1’を50bit、P2’を150bitとする。そして、次に、リピータ400からパリティデータP2’(パリティデータ量150bit)を基地局(eNB)600へ送信し、リピータ500からパリティデータP1’(パリティデータ量50bit)を送信する。
 また、図10に示す送信方法において、さらに基地局(eNB)600から通知される伝搬環境(回線品質)に応じて、各リピータ400、500はデータ交換を行う初回送信データ量を制御し、送信しても良い。例えば、図11に示すように、リピータ400から基地局へ送信するリピータ400の初回送信データS1のデータ量は150bitとし、リピータ500の初回送信データ量S2を50bitとする。
 また、第2の実施の形態では、『リピータ間のデータ交換』と『基地局(eNB)600への初回データ送信』の処理の共有のない場合である第1の実施の形態との組み合わせることも可能である。
 次に、リピータ400の動作について説明する。
 図12は、第1の実施の形態におけるリピータ100の機能ブロック図である。
 リピータ400は、受信RF部401、A/D変換部402、バッファ403、414、復調部404、チャネルデコード部405、受信データメモリ406、回線品質差判定部407、ACK/NAKCシグナル生成部408、チャネルエンコード部409、スイッチ410A、410B、インタリーブ部411、変調部412、送信データメモリ413、D/A変換部415、送信RF部416を備える。
 ここで、図8、9、12、13を参照し、リピータ400について、1ブロックのデータを協調中継にて送信完了するまでの動作を詳しく説明する。なお、図13は、リピータ400の各メモリの内部構造を示しており、図13(a)は、受信データメモリ406の内部構造を示す図であり、図13(b)は、送信データメモリ413の内部構造を示す図である。
 リピータ400は、受信RF部401で、「基地局(eNB)600からのリピータ400向けの回線品質情報」および「基地局(eNB)600からのリピータ500向けの回線品質情報」を基地局(eNB)600から受信する。
 基地局(eNB)600から受信した回線品質情報の信号は、受信RF部401でベースバンド帯域までダウンコンバートされて、A/D変換部402に信号が入力される。
 A/D変換部402に入力された回線品質情報の信号はデジタル信号となって、バッファ403に蓄積される。そして、各回線品質情報を含む信号を、復調部404で復調、チャネルデコード部405でチャネルデコード処理した後、図13(a)に示すように受信データメモリ406に保持する。
 リピータ400は、協調中継したい自局のデータを、システマティックビットを含む初回送信データS1とパリティビットを含むパリティ送信データP1に分けて、図13(b)に示すように、送信データメモリ413にそれぞれ保持する。
 そして、リピータ400は、自局の初回送信データS1を送信データメモリ413から読みだし、バッファ414に蓄積した後、D/A変換部にてD/A変換し、送信RF部でRF帯域の信号までアップコンバートし、送信アンテナから基地局(eNB)600へ送信する。
 続いて、リピータ400は、受信RF部401で、相手局の初回送信データS2を受信する。受信した相手局の初回送信データS2の信号は、受信RF部401でベースバンド帯域までダウンコンバートされて、A/D変換部402に信号が入力される。A/D変換部402に入力された信号はデジタル信号となって、バッファ403に蓄積される。そして、相手局の初回送信データS2の信号は、復調部404での復調及びチャネルデコード部405でのチャネルデコード処理の後、図13(a)に示すように、受信データメモリ406に保持する。
 さらに、リピータ400は、相手局の初回送信データS2のチャネルデコード結果(CRC等)に応じて、ACK/NACKシグナル生成部408で、ACK/NACKシグナルを生成する。受信が成功ならばACKシグナルを、受信失敗ならNACKシグナルを生成する。ACK/NACKシグナル生成部408で生成したリピータ400のACKシグナルまたはNACKシグナルに対して、チャネルエンコード部409でのチャネルエンコード処理及び変調部412での変調処理を行い、その後、図13(b)に示すように、ACKシグナルまたはNACKシグナルを送信データメモリ413に保持する。そして、リピータ400のACK/NACKシグナルを送信データメモリ413から読みだし、バッファ414に蓄積した後、D/A変換部415にてA/D変換し、送信RF部416でRF帯域の信号までアップコンバートし、送信アンテナから送信する。
 続いて、リピータ400は、受信RF部401でリピータ500からのACK/NACKシグナルを受信する。受信したACK/NACKシグナルは、受信RF部401でベースバンド帯域までダウンコンバートされて、A/D変換部402に入力される。A/D変換部に入力された信号はデジタル信号となって、バッファ403に蓄積される。そして、リピータ500からのACK/NACKシグナルは、復調部404での復調及びチャネルデコード部405でのチャネルデコード処理の後、図13(a)に示すように、受信データメモリ406に保持する。
 リピータ400のACK/NACKシグナルを送信データメモリ413から読みだし、バッファ414に蓄積した後、D/A変換部415にてD/A変換し、送信RF部416でRF帯域の信号までアップコンバートし、送信アンテナから送信する。
 続いて、受信データメモリ406に保持されている基地局(eNB)600-リピータ400の回線品質情報および基地局(eNB)600-リピータ500の回線品質情報を読み出し、回線品質差判定部407で、基地局(eNB)600-各リピータ間の回線品質差を算出、ある一定値以上か否かを判定する。
 基地局(eNB)600-各リピータ間の回線品質差がある一定値以上の場合、チャネルエンコード部409と変調部412間にあるスイッチ410A、410Bをインタリーブ部411側に切換え制御する。一方、基地局(eNB)600-各リピータ間の回線品質差がある一定値未満の場合、チャネルエンコード部409と変調部412間にあるスイッチ410A、410Bは、データがインタリーブ部411を経由しない経路を通るように切り替わる。さらに、算出した回線品質差情報をチャネルエンコード部109にも出力する。
 続いて、受信データメモリ406の保持されている相手局の初回送信データS2のデコードデータを読み出し、回線品質差がある一定値以上であるの場合、チャネルエンコード部409において、回線品質差に応じて、相手局の初回送信データS2のデコードデータからパリティデータP2-1,P2-2…を生成する。
 また、送信データメモリ413に保持してある自局の初回送信データS1のデコードデータを読み出し、チャネルエンコード部409において、回線品質差情報に応じて、自局の初回送信データS1のデコードデータからパリティデータP1-1,P1-2…を生成する。
 さらに、生成した全パリティデータP1-1、P1-2、…、P2-1、P2-2、…に対し、回線品質差情報に基づいたインタリーブをかけて、2分割、インタリーブ後のパリティデータP1’、P2’をする。そして、インタリーブ後の各パリティデータP1’、P2’を変調部412にて変調をかけた後、送信データメモリ413に保持する。ここで、回線品質差がある一定値以上である場合には、リピータ400は、送信データメモリ413からインタリーブ後のパリティデータP1’を読み出し、バッファ414に蓄積した後、D/A変換部415にてD/A変換し、送信RF部416でRF帯域の信号までアップコンバートし、送信アンテナから送信する。
 一方、回線品質差がある一定値未満である場合には、チャネルエンコード部409及び変調部412にて、相手局の初回送信データS2のデコードデータからパリティビットP2を生成し、送信データメモリ413に保持する。リピータ400は、送信データメモリ413から相手局の初回送信データP2を読み出し、バッファ414に蓄積した後、D/A変換部415にてD/A変換し、送信RF部416でRF帯域の信号までアップコンバートし、送信アンテナから送信する。
 なお、インタリーブパターンは、初回送信データの受信品質が悪いと推定されるリピータのパリティデータが、伝搬環境(回線品質)の良いリンクで多く送信できるようなスクランブリングにしても良いし、各パリティデータが均等にスクランブルされるようにしても良い。
 次に、基地局600の動作について説明する。
 図1は、基地局600の機能ブロック図である。図14に示すように、基地局600は、受信RF部601、A/D変換部602、受信バッファ603、送信バッファ611、復調部604、スイッチ605A、605B、デインタリーブ部606、回線品質差判定部607、チャネルデコード部608、送信RF部609、D/A変換部610、送信バッファ611、変調部612、を備える。また、図15は、基地局600のバッファの内部構造を示す図である。
 基地局600について、1ブロックのデータを協調中継にて受信完了するまでの動作を詳しく説明する。
 基地局600は、回線品質推定部607で、協調中継を行う各リピータ400、500の上り回線品質推定を行い、各々の回線品質推定結果を、リソース割り当てと共に、協調中継を行う各リピータ400、500に通知する。
 続いて、基地局600は協調中継を行うリピータ400、500間で実施されるデータ交換時の初回送信データS1、S2を、各々受信RF部601で受信する。受信した信号は受信RF部601でベースバンド帯域までダウンコンバートされて、A/D変換部602に信号が入力される。A/D変換部602に入力された初回送信データS1、S2の信号は、デジタル信号となって、図15に示すように、それぞれ受信バッファ603に保持される。
 さらに、基地局600は協調中継を行う各リピータ400、500から送信される送信データ(P1及びP2、もしくはP1’及びP2’)を受信RF部601で受信する。受信したデータ(P1及びP2、もしくはP1’及びP2’)は受信RF部601でベースバンド帯域までダウンコンバートされて、A/D変換部602に信号が入力される。A/D変換部602に入力された信号は、デジタル信号となって、図15に示すように、受信バッファ603に保持される。受信バッファ603に所望のデータ量(リピータ400用のリソースからの2回に分けて受信したデータ及びリピータ500用のリソースからの2回に分けて受信したデータ)が蓄積されると、S1、P1、S2、P2を、各々復調する。
 ここで、回線品質推定部607での推定結果に基づき、回線品質差がある一定値以上の場合、受信データS1、P1、S2、P2の復調後、P1およびP2に対して、デインタリーブ部606にてデインタリーブをかけて、パリティデータP1-1,P1-2,…,P2-1,P2-2,…を得る。続いて、リピータ400用の初回送信データS1とパリティデータP1-1,P1-2,…及びリピータ500用の初回送信データS2とパリティデータP2-1,P2-2,…が、各々、チャネルデコード部608でチャネルデコード処理され、所望のデータを得る。
 一方、回線品質推定部607での推定結果に基づき、回線品質差がある一定値未満の場合、受信データS1、P1、S2、P2の復調後、リピータ400用の初回送信データS1とパリティデータP1及びリピータ500用の初回送信データS2とパリティデータP2が、各々、チャネルデコード部608にてチャネルデコード処理され、所望のデータを得る。
 第2の実施の形態では、『リピータ間のデータ交換』と『基地局(eNB)600への初回データ送信』の共有を図りつつ、基地局(eNB)600において、リピータデータの復号性能を向上させることができる。
 また、第2の実施の形態によれば、基地局(eNB)-リピータ間の一方の伝搬環境(回線品質)が悪い場合でも、データがランダマイズされていることで、基地局(eNB)におけるリピータデータが偏りなく基地局(eNB)での受信品質が向上する。
 なお、回線品質の判断を含む制御情報を基地局(eNB)からのgrant情報に含める以外に、回線品質がある一定値以上である場合に、基地局(eNB)からのNACKをソフトNACKにして、そこに回線品質情報を載せてもよい。また、初回送信データもシステマティックビットに限らず、自己復調(self-decodable)なデータであれば良い。
(第3の実施の形態)
 第3の実施の形態は、第1の実施の形態同様、各リピータ700、800から基地局(eNB)900へ初回送信データを協調中継する。図15は、第3の実施の形態におけるシーケンス図であり、図16、17は第3の実施の形態における処理フロー図である。
 図15を参照し、第3の実施の形態における協調中継時の、各リピータと基地局(eNB)の動作例を説明する。なお、図15では、協調中継時の各リピータと基地局(eNB)の動作例を示すため、基地局(eNB)900とリピータ800間の伝搬環境(回線品質)が、基地局(eNB)900とリピータ700間の伝搬環境(回線品質)よりもよくない場合を示している。しかしながら、第3の実施の形態では、第1及び第2の実施の形態と同様、基地局(eNB)と各リピータ間伝搬環境(回線品質)に差があればよい。
 手順1:基地局(eNB)900は、協調中継を行う各リピータ700、800に対しリソース割り当て・伝搬環境(回線品質)通知を行う。この制御情報は、協調中継を行う各リピータ間で共有可能とする。
 手順2:リピータ700は、自局よりも相手局(リピータ800)の伝搬環境(回線品質)が悪いので、データ交換をする順番は相手局から先と判断し、さらに、自局と相手局(リピータ800)の伝搬環境(回線品質)差からデータ量、変調方式、インタリーブパターン等を決定する。
 手順3:リピータ800は、自局よりも相手局(リピータ700)の伝搬環境(回線品質)が良いので、データ交換をする順番は自局から先と判断し、さらに、自局と相手局(リピータ700)の伝搬環境(回線品質)差からデータ量、変調方式、インタリーブパターン等を決定する。
 手順4:各リピータ700、800は決定したデータ量、変調方式等を反映した、協調中継したい自局のデータを2分割する(ステップST302)。なお、第3の実施の形態では、システマティックビットを含む初回送信データをSxと表記し、パリティビットを含む送信データPxと表記する(xはリピータ番号に対応)。協調中継したいデータを2分割した場合した場合について説明する。
 手順5:リピータ800は、自局の初回送信データS2をリピータ700へ送信し、リピータ700は、相手局(リピータ800)の初回送信データS2を受信する。
手順6:基地局(eNB)900も、リピータ700へ送信された初回送信データS2を受信する。
 手順7:リピータ700は、受信した相手局(リピータ700)の初回送信データS2と、自局の初回送信データS1を合わせて、インタリーブをかけたデータS1+S2をリピータ800へ送信し、リピータ800はインタリーブ後の初回送信データS1+S2を受信する。
 手順8:基地局(eNB)900も、リピータ800へ送信されたインタリーブ後の初回送信データS1+S2を受信する。
 手順9:リピータ800は、リピータ700へACKシグナルを送信する。
 手順10:リピータ700は、リピータ800へACKシグナルを送信する。
 手順11:ここで、各リピータと基地局間の伝搬環境(回線品質)の差がある一定値上ある場合、前記基地局と各無線通信装置間の回線品質差に応じて、協調中継するために、一方のリピータが、自身の基地局へ送信したいデータ及び他方のリピータが基地局へ送信したいデータの少なくとも一部分のデータを補う中継データ処理を行う。
具体的には、基地局(eNB)900-各リピータ700、800間の伝搬環境(回線品質)差がある一定以上の場合、リピータ800は、受信したインタリーブ後の初回送信データS1+S2にデインタリーブをかけて相手局(リピータ700)の初回送信データS1を抜き出し、相手局(リピータ700)の初回送信データS1から手順1で得た各リピータの伝搬環境(回線品質)を反映したパリティデータP1-1、P1-2、…を生成する。例えば、データの量・種類等の基準により、各リピータの伝搬環境(回線品質)を反映して、パリティデータを生成することが可能である。さらに、自局の初回送信データS2から、同様に伝搬環境(回線品質)を反映した(量・種類等の)パリティデータP2-1,P2-2,…を生成する。
 手順12:リピータ800は生成した全パリティデータP1-1、P1-2、…、P2-1、P2-2、…に対して、インタリーブをかけ、2分割し、インタリーブ後のパリティデータをP1’、P2’生成する。
手順13:リピータ700は、受信した相手局(リピータ800)の初回送信データS2から、手順1で得た各リピータの伝搬環境(回線品質)を反映した(量・種類等の)パリティデータP2-1,P2-2,…を生成する。さらに、自局の初回送信データS1から、同様に伝搬環境(回線品質)を反映した(量・種類等の)パリティデータP1-1,P1-2,…を生成する。
 手順14:リピータ1は、生成した全パリティデータP1-1、P1-2、…、P2-1、P2-2、…に対して、インタリーブをかけ、2分割し、インタリーブ後のパリティデータをP1’、P2’生成する。
手順15:リピータ800は生成したP1’を基地局(eNB)900へ送信する。
手順16:リピータ700は生成したP2’を基地局(eNB)900へ送信する。
手順17:基地局(eNB)900は受信データを復号する。
手順#9:基地局(eNB)-各リピータ間の伝搬環境(回線品質)差がある一定未満の場合、リピータ800は、受信したS1から、パリティデータP1を生成する。
手順#10:リピータ700は、受信したS2から、パリティデータP2を生成する。
手順#11:リピータ800は生成したP1を基地局(eNB)900へ送信する。
手順#12:リピータ700は生成したP2を基地局(eNB)900へ送信する。
手順#13:基地局(eNB)900は受信データを復号する。
 次に図16、17を参照し、第3の実施の形態における、各リピータ700、800及び基地局(eNB)900の協調中継の処理を説明する。
 基地局(eNB)900は共同中継する各リピータ700、800にリソース割り当て・各リピータとの伝搬環境(回線品質)通知を行う(ステップST301)。リピータ700は、協調中継したいデータを自局の初回送信データS1とパリティデータP1に2分割し、同様に、リピータ800も協調中継したいデータを自局の初回送信データS2とパリティデータP2に2分割する(ステップST302)。
 リピータ700は、自局の初回送信データS1をリピータ800へ送信する一方、リピータ800は、自局の初回送信データS2をリピータ700へ送信する(ステップST303)。リピータ800は、リピータ700へACK送信する一方、リピータ700はリピータ800へACK送信する(ステップST304)。
 次に、基地局(eNB)900-各リピータ700、800間の伝搬環境(回線品質)差がある一定以上かを判断し(ステップST305)、基地局(eNB)900-各リピータ間の伝搬環境(回線品質)差がある一定以上である場合、ステップST306へ遷移し、リピータ700の回線品質の方がよいかを判断する(ステップST306)。なお、基地局(eNB)900-各リピータ700、800間の伝搬環境(回線品質)差は、基地局から予め協調中継を行う各リピータ700、800に対しリソース割り当て・伝搬環境(回線品質)通知されている。
 そして、リピータ700の回線品質の方がよい場合、リピータ800は、自局の初回送信データS2をリピータ700へ送信し、同時に基地局(eNB)900はリピータ800の初回送信データS2を受信する(ステップST307)。
 一方、リピータ700は自局の初回送信データS1と受信した相手局(リピータ800)の初回送信データS2を合わせ、インタリーブをかけて初回送信データS1+S2を生成しなおす。そして、生成しなおしたインタリーブ後の初回送信データS1+S2をリピータ800へ送信し、同時に基地局(eNB)900へもインタリーブ後の初回送信データS1+S2を送信する(ステップST308)。リピータ800はリピータ700へACK送信し、リピータ700はリピータ800へACK送信(ステップST309)。
 次に、リピータ800は受信した相手局(リピータ700)の初回送信データS1から伝搬環境差を反映したパリティデータP1-1,P2-2,を生成する(ステップST310)。さらに、リピータ800は、自局の初回送信データS2から伝搬環境差を反映したパリティデータP2-1、P2-2、...を生成する(ステップST311)。
 リピータ700は、受信した相手局(リピータ800)の初回送信デーS2から伝搬環境差を反映したパリティデータP2-1,P2-2,...を生成する(ステップST312)。さらに、リピータ700は、自局の初回送信データS1から伝搬環境差を反映したパリティデータP1-1、P1-2,...を生成する(ステップST313)。
 リピータ800は全パリティデータP1-1、P1-2、..P2-1、P2-2、...をインタリーブ、2分割しインタリーブ後のパリティデータP1'、P2'とする(ステップST314)。
 リピータ800は、生成したパリティデータP1'を基地局(eNB)900へ送信し(ステップST315)、リピータ700は、生成したパリティデータP2'を基地局(eNB)900へ送信する(ステップST316)。
 なお、リピータ700の回線品質の方がよくない場合、ステップST306からステップST307へ遷移せず、リピータ700は、自局の初回送信データS1をリピータ800へ送信し、同時に基地局(eNB)900は、リピータ700の初回送信データS1を受信(ステップST317)。
 一方、リピータ800は自局の初回送信データS2と受信した相手局(リピータ700)の初回送信データS1を合わせ、インタリーブをかけて初回送信データS1+S2を生成しなおし、リピータ700へ送信し、同時に基地局(eNB)900は初回送信データS1+S2を送信(ステップST318)。その後、ステップST309へ遷移し、リピータ700の回線品質がよい場合と同様の処理が実行される。
 ステップST305において、基地局(eNB)900-各リピータ間の伝搬環境(回線品質)差がある一定未満の場合、ステップST305からステップST306に遷移せず、ステップST319へ遷移する(図17参照)。そして、リピータ700はS1をリピータ800へ送信し、リピータ800はS2をリピータ700へ送信する。同時に基地局(eNB)900はS1,S2を受信する(ステップST319)。
 一方、リピータ800はリピータ700へACK送信し、リピータ700はリピータ800へACK送信する(ステップST320)。
 次に、リピータ800は、受信したS1からパリティデータP1を生成し(ステップST321)、リピータ700は、受信したS2からパリティデータP2を生成する(ステップST322)。
 そして、次に、リピータ800は、生成したパリティデータP1を基地局(eNB)900へ送信し(ステップST323)、リピータ700は、生成したパリティデータP2を基地局(eNB)900へ送信する(ステップST324)。
 最後に、基地局(eNB)900は受信データを複号する。(ステップST325)。
 上述のように、第3の実施の形態では、両リピータの初回送信データS1、S2が伝搬環境(回線品質)の良いパスで送られるので、基地局(eNB)900において、重要ビットであるシステマティックビットS1、S2を含む初回送信データの受信性能の向上が図れる。
 次に、リピータ700の動作について説明する。
 図18は、第3の実施の形態におけるリピータ700の機能ブロック図である。
 図18に示すように、リピータ700は、受信RF部701、A/D変換部702、バッファ703、716、復調部704、デインタリーブ部706、スイッチ705A、705B、チャネルデコード部707、受信データメモリ708、ACK/NAKCシグナル生成部709、回線品質差判定部710、チャネルエンコード部711、スイッチ712A、712B、インタリーブ部713、変調部714、送信データメモリ715、D/A変換部717、送信RF部718を備える。図20は、リピータ700のメモリの内部構造を示し、図20(a)は、受信データメモリ708の内部構造を示す図であり、図20(b)は、送信データメモリ715の内部構造を示す図である。
 ここで、リピータ700について、1ブロックのデータを協調中継にて送信完了するまでの動作を説明する。
 リピータ700は、受信RF部701で、「基地局(eNB)からのリピータ700向けの回線品質情報およびリピータ800向けの回線品質情報」を受信する。受信した信号は受信RF部701でベースバンド帯域までダウンコンバートされて、A/D変換部702に信号が入力される。A/D変換部702に入力された信号はデジタル信号となって、バッファ703に蓄積される。そして、回線品質情報を含む信号は、復調部704での復調及びチャネルデコード部707でのチャネルデコード処理された後、受信データメモリ708に保持される。
 リピータ700は、図19に示すように、基地局へ中継したい自局送信データを、システマティックビットを含む初回送信データS1と、パリティビットを含むパリティ送信データP1とに分けて、それぞれ送信データメモリ715に保持する。
 続いて、受信データメモリ708に保持されている“基地局(eNB)900-リピータ700の回線品質情報および基地局(eNB)900-リピータ800の回線品質情報を読み出し、回線品質差判定部710にて、基地局(eNB)と各リピータ間の回線品質差がある一定値以上か否か判定する。さらに、回線品質差判定部710にて、基地局(eNB)900-リピータ700の回線品質と基地局(eNB)900-リピータ800の回線品質のいずれの回線品質が良いかを判断する。
 ここで、回線品質差判定部710で算出された基地局(eNB)と各リピータ間の回線品質差がある一定値以上であり、基地局(eNB)900-リピータ700の回線品質の方が良好な場合、リピータ700は、受信信号がデインタリーブ部706を通らないように、デインタリーブ部706の前後にあるスイッチ705A、705Bを切り替え制御する一方、リピータ700は、受信信号がインタリーブ部713を通るように、インタリーブ部713の前後にあるスイッチ712A、712Bを切り替え制御する(図19参照)。
 そして、受信RF部701は、リピータ700が自局の初回送信データS1をリピータ800へ送信するよりも先に、リピータ800から相手局の初回送信データS2を受信する。受信RF部701は、受信した相手局の初回送信データS2を、ベースバンド帯域までダウンコンバートする。
 次に、相手局の初回送信データS2は、A/D変換部702に入力される。A/D変換部702に入力された相手局の初回送信データS2はデジタル信号となって、受信バッファ703に蓄積される。そして、相手局の初回送信データS2は、復調部704での復調処理の後、デインタリーブ部706を通らず、直接チャネルデコード部707へ入力されてチャネルデコード処理される。その後、相手局の初回送信データS2は、受信データメモリ708に保持される。
 なお、相手局の初回送信データS2のチャネルデコード処理の結果(CRC等)に応じて、ACK/NACKシグナル生成部709は、ACK/NACKシグナルを生成する。相手局の初回送信データS2の受信に成功したならばACKシグナルを、受信に失敗ならNACKシグナルを生成する。そして、生成されたリピータ700のACK/NACKシグナルは、チャネルエンコード部711でのチャネルエンコード処理の後、変調部714にて変調処理され、送信データメモリ715に保持される。
 そして、次に、受信データメモリ708に保持されている相手局の初回送信データS2と送信データメモリ715から読み出した自局の初回送信データS1とを合わせて、チャネルエンコード部711でチャネルエンコード処理、インタリーブ部713でインタリーブをかけ、そして変調部714で変調処理を施す。そして、各処理を施した、インタリーブ後の初回送信データS1+S2を送信データメモリ715に保持する。その後、初回送信データS1+S2データを、再度読み出し、送信バッファ716に蓄積、D/A変換部717にてD/A変換し、送信RF部718でRF帯域の信号までアップコンバートし、送信アンテナから送信する。
 次に、リピータ700は、受信データメモリ708に保持されている相手局の初回送信データS2のデコードデータを読み出し、回線品質差判定部710で算出された基地局(eNB)と各リピータ間の回線品質差がある一定値以上である場合、チャネルエンコード部711は、基地局(eNB)と各リピータ間の回線品質差に応じて、相手局の初回送信データS2のデコードデータから相手局のパリティデータP2-1、P2-2、…を生成する。さらに、チャネルエンコード部711は、送信データメモリ715から読み出した自局の初回送信データS1のデコードデータから、基地局(eNB)と各リピータ間の回線品質差情報に応じて、自局のパリティデータP1-1,P1-2…を生成する。
 次に、リピータ700は、チャネルエンコード部711で生成したパリティデータP1-1、P1-2、…、P2-1、P2-2、…に対して、基地局(eNB)と各リピータ間の回線品質差に基づいて、インタリーブ部713でインタリーブをかけて2分割し、インタリーブ後のパリティデータP1’、P2’を生成する。
 次に、生成したインタリーブ後のパリティデータP1’P2’の各々を変調部714にて変調をかけた後、送信データメモリ715に保持する。
 そして、リピータ700は、送信データメモリ715からインタリーブ後のパリティ送信データP1’を読み出し、バッファ716に蓄積した後、D/A変換部717にてD/A変換し、送信RF部718でRF帯域の信号までアップコンバートし、送信アンテナから基地局へインタリーブ後のパリティ送信データP1’を送信する。
 また、回線品質差判定部710で算出された基地局(eNB)と各リピータ間の回線品質差がある一定値以上であり、基地局(eNB)900-リピータ800の回線品質の方が良好な場合、リピータ700は、受信信号がデインタリーブ部706を通るように、デインタリーブ部706の前後にあるスイッチ705A、705Bを切替え制御する一方、受信信号がインタリーブ部713を通るように、インタリーブ部713の前後にあるスイッチ712A、712Bを切替え制御する。
 リピータ700は、リピータ800が自局の初回送信データS2をリピータ700に送信するよりも先に、自局の初回送信データS1をリピータ800に送信する。リピータ700は、送信データメモリ715から自局の初回送信データS1を読み出し、チャネルエンコード部711で読み出した自局の初回送信データS1をチャネルエンコード処理する。その後、変調部714で変調処理を施し、送信バッファ716に蓄積した後、D/A変換部717にてD/A変換し、送信RF部718でRF帯域の信号までアップコンバートし、送信アンテナから送信する。
 続いて、受信RF部701で相手局の初回送信データS2を受信する。
 受信した初回送信データS2は、受信RF部701でベースバンド帯域までダウンコンバートされて、A/D変換部702に入力される。A/D変換部702に入力された相手局の初回送信データS2はデジタル信号となって、受信バッファ703に蓄積される。そして、相手局の初回送信データS2は、復調部704での復調処理及びデインタリーブ部706でのデインタリーブ処理、チャネルデコード部707でのチャネルデコード処理が施された後、受信データメモリ708に保持される。
 なお、相手局の初回送信データS2のチャネルデコード処理の結果(CRC等)に応じて、ACK/NACKシグナル生成部709は、ACK/NACKシグナルを生成する。相手局の初回送信データS2の受信に成功したならばACKシグナルを、受信に失敗ならNACKシグナルを生成する。そして、生成されたリピータ700のACK/NACKシグナルは、チャネルエンコード部711でのチャネルエンコード処理の後、変調部714で変調処理され、送信データメモリ715に保持される。
 そして、次に、受信データメモリ708に保持されている相手局の初回送信データS2と送信データメモリ715から読み出した自局の初回送信データS1とを合わせて、チャネルエンコード部711でチャネルエンコード処理、インタリーブ部713でインタリーブをかけ、そして変調部714で変調処理を施す。そして、各処理を施した、インタリーブ後の初回送信データS1+S2を送信データメモリ715に保持する。その後、初回送信データS1+S2データを、再度読み出し、送信バッファ716に蓄積、D/A変換部717にてD/A変換し、送信RF部718でRF帯域の信号までアップコンバートし、送信アンテナから送信する。
 次に、リピータ700は、受信データメモリ708に保持されている相手局の初回送信データS2のデコードデータを読み出し、回線品質差判定部710で算出された基地局(eNB)と各リピータ間の回線品質差がある一定値以上である場合、チャネルエンコード部711は、基地局(eNB)と各リピータ間の回線品質差に応じて、相手局の初回送信データS2のデコードデータから相手局のパリティデータP2-1、P2-2、…を生成する。さらに、チャネルエンコード部711は、送信データメモリ715から読み出した自局の初回送信データS1のデコードデータから、基地局(eNB)と各リピータ間の回線品質差情報に応じて、自局のパリティデータP1-1,P1-2…を生成する。
 次に、リピータ700は、チャネルエンコード部711で生成したパリティデータP1-1、P1-2、…、P2-1、P2-2、…に対して、基地局(eNB)と各リピータ間の回線品質差に基づいて、インタリーブ部713でインタリーブをかけて2分割し、インタリーブ後のパリティデータP1’、P2’を生成する。
 次に、生成したインタリーブ後のパリティデータP1’P2’の各々を変調部714にて変調をかけた後、送信データメモリ715に保持する。
 そして、リピータ700は、送信データメモリ715からインタリーブ後のパリティ送信データP1’を読み出し、バッファ716に蓄積した後、D/A変換部717にてD/A変換し、送信RF部718でRF帯域の信号までアップコンバートし、送信アンテナから送信する。
<回線品質差がある一定値未満の場合>
 一方、回線品質差判定部710で算出された基地局(eNB)と各リピータ間の回線品質差がある一定値未満の場合、リピータ700は、受信信号がデインタリーブ部706を通らないように、デインタリーブ部706の前後にあるスイッチ705A、705Bを切替え制御し、同様に、受信信号がインタリーブ部713を通らないように、インタリーブ部713の前後にあるスッチ712A、712Bを切替え制御する。
 次に、リピータ700は、自局の初回送信データS1を送信データメモリ715から読みだし、読み出した自局の初回送信データS1に対して、チャネルエンコード部711でチャネルエンコード処理及び変調部714で変調処理を施す。そして、リピータ700は、自局の初回送信データS1を送信バッファ716に蓄積した後、D/A変換部717にてD/A変換し、送信RF部718でRF帯域の信号までアップコンバートし、送信アンテナから送信する。
 続いて、受信RF部701で、相手局の初回送信データS2を受信する。受信した相手局の初回送信データS2は、受信RF部701でベースバンド帯域までダウンコンバートされて、A/D変換部702に入力される。A/D変換部702に入力された相手局の初回送信データS2はデジタル信号となって、受信バッファ703に蓄積される。そして、相手局の初回送信データS2は、復調部704での復調処理の後、デインタリーブ部706を経由しないで、チャネルデコード部707でチャネルデコード処理され、その後、受信データメモリ708に保持される。
 なお、相手局の初回送信データS2のチャネルデコード処理の結果(CRC等)に応じて、ACK/NACKシグナル生成部709は、ACK/NACKシグナルを生成する。相手局の初回送信データS2の受信に成功したならばACKシグナルを、受信に失敗ならNACKシグナルを生成する。そして、生成されたリピータ700のACK/NACKシグナルは、チャネルエンコード部711でのチャネルエンコード処理の後、変調部714で変調処理され、送信データメモリ715に保持される。
 次に、受信RF部701でリピータ800のACK/NACKシグナルを受信する。受信したリピータ800のACK/NACKシグナルは、受信RF部701でベースバンド帯域までダウンコンバートされて、A/D変換部702に入力される。A/D変換部に入力されたACK/NACKシグナルはデジタル信号となって、バッファ703に蓄積される。そして、リピータ800のACK/NACKシグナルは、復調及びチャネルデコード処理され、受信データメモリ708に保持される。
 続いて、送信データメモリ715からリピータ700のACK/NACKシグナルを読みだし、読み出したリピータ700のACK/NACKシグナルをバッファ716に蓄積した後、D/A変換部717にてD/A変換し、送信RF部718でRF帯域の信号までアップコンバートし、送信アンテナから送信する。 
 そして、リピータ700は、受信データメモリ708に保持されている相手局の初回送信データS2から、チャネルエンコード部711及び変調部714でパリティビットP2を生成し、送信データメモリ715に保持する。
 そして、次に、リピータ700は、送信データメモリ715から相手局のパリティ送信データP2を読み出し、読み出したら相手局のパリティ送信データP2をバッファ716に蓄積した後、D/A変換部717にてD/A変換し、送信RF部でRF帯域の信号までアップコンバートし、送信アンテナから送信する。
 次に、基地局900の動作について説明する。
 図21は、第3の実施の形態のおける基地局900の機能ブロック図である。基地局900は、受信RF部901、A/D変換部902、受信バッファ903、送信バッファ911、復調部904、スイッチ905A、905B、デインタリーブ部906、回線品質差判定部907、チャネルデコード部908、変調部909、送信バッファ910、D/A変換部911、送信RF部912、チャネルデコード部913を備える。また、図22は、基地局900の受信バッファ903の内部構造を示す図である。
 図21を参照し、1ブロックのデータを協調中継にて受信完了するまでの基地局の動作を詳しく説明する。基地局900(eNB)は、協調中継を行う各リピータ700、800の上り回線品質推定を行い、回線品質推定部907での各々の回線品質推定結果を、リソース割り当てと共に、協調中継を行う各リピータ700、800に通知する。
 続いて、基地局(eNB)900は協調中継を行うリピータ間で実施されるデータ交換時の初回送信データS1、S2を、各々受信RF部901で受信する。受信した信号は受信RF部901でベースバンド帯域までダウンコンバートされて、A/D変換部902に信号が入力される。A/D変換部902に入力された信号は、デジタル信号となって、図20(b)に示すように、受信バッファ903の“リピータ700用リソース受信データ♯1(S1)格納メモリ”にリピータ700の初回送信データS1が、“リピータ800用リソース受信データ♯1(S2)格納メモリ”にリピータ800の初回送信データS2が、それぞれ保持される。
 さらに、基地局(eNB)900は協調中継を行う各リピータから送信されるパリティデータ(P1及びP2もしくはP1’及びP2’)を受信RF部901で受信する。受信した信号は受信RF部901でベースバンド帯域までダウンコンバートされて、A/D変換部902に信号が入力される。A/D変換部902に入力された信号は、デジタル信号となって、図20(b)に示すように、受信バッファ903にリピータ700用リソース受信データP1とリピータ800用リソース受信データP2として保持される。受信バッファ903に所望のデータ量(リピータ700用のリソースからの2回に分けて受信したデータ及びリピータ800用のリソースからの2回に分けて受信したデータ)が蓄積されると、S1、P1、S2、P2を、各々復調する。
 ここで、回線品質差がある一定値以上で、リピータ700の回線品質の方が良好である場合、各リピータから受信した初回送信データS1、S2とパリティデータP1、P2を復調後、リピータ700の初回送信データS1に関してはデインタリーブ部906にてデインタリーブがかけられ、本来の初回送信データS1とS2に分離される。また、パリティデータP1およびP2に関しては、まとめてデインタリーブ部にてデインタリーブがかけられ、パリティデータP1-1、P1-2、…、P2-1、P2-2、…を得る。続いて、リピータ700用の初回送信データS1とパリティデータP1-1、P1-2、…、並びにリピータ800用の初夏送信データS2とパリティデータP2-1、P2-2、…が、各々、チャネルデコード部909にてチャネルデコードされ、所望のデータを得る。
 一方、回線品質差がある一定値以上で、リピータ800の回線品質の方が良好である場合には、各リピータから受信した初回送信データS1、S2とパリティデータP1、P2を復調後、リピータ800の初回送信データS2に関しては、デインタリーブ部にてデインタリーブがかけられ、本来の初回送信データS1とS2に分離される。また、パリティデータP1およびP2に関しては、まとめてデインタリーブ部にてデインタリーブがかけられ、パリティデータP1-1、P1-2、…、P2-1、P2-2、…を得る。続いて、リピータ700用の初回送信データデータS1及びパリティデータP1-1、P1-2、…、並びにリピータ800用の初回送信データS2及びパリティデータP2-1、P2-2、…が、各々、チャネルデコード部908にてチャネルデコードされ、所望のデータを得る。
 なお、回線品質差がある一定値未満である場合には、各リピータから受信した信号S1、P1、S2、P2を復調後、リピータ700用の初回送信データS1及びパリティデータP1、並びにリピータ800用の初回送信データS2とパリティデータP2が、各々、チャネルデコード部908にてチャネルデコードされ、所望のデータを得る。
 第3の実施の形態では、両リピータ700、800の初回送信データが、伝搬環境(回線品質)の良いパスで送られるので、基地局(eNB)900において、重要ビットであるシステマティックビットを含む初回送信データの受信性能の向上が図れる。
 なお、第3の実施の形態では、データをインタリーブすることで、データをランダム化しているが、それ以外の手段でもデータをランダム化できればどのような手段でもよい。例えば、時間軸に対してインタリーブを用いたり、周波数軸に対してホッピングを用いたり、或いはスクランブリングを用いることが可能である。
 上記各実施の形態におけるリピータは、リレイステーション、リピータ、簡易基地局、クラスタヘッド、と表現されることもある。
 また、上記各実施の形態の説明に用いた各機能ブロックは、典型的には集積回路であるLSIとして実現される。これらは個別に1チップ化されてもよいし、一部または全てを含むように1チップ化されてもよい。ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。
 また、集積回路化の手法はLSIに限るものではなく、専用回路または汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサーを利用してもよい。
 さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適応等が可能性としてありえる。
 なお,上記実施の形態ではアンテナとして説明したが,アンテナポートでも同様に適用できる。アンテナポート(antenna port)とは、1本または複数の物理アンテナから構成される、論理的なアンテナを指す。すなわち、アンテナポートは必ずしも1本の物理アンテナを指すとは限らず、複数のアンテナから構成されるアレイアンテナ等を指すことがある。例えばLTEにおいては、アンテナポートが何本の物理アンテナから構成されるかは規定されず、基地局が異なるReference signalを送信できる最小単位として規定されている。また、アンテナポートはPrecoding vectorの重み付けを乗算する最小単位として規定されることもある。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2008年7月11日出願の日本特許出願(特願2008-181906)、に基づくものであり、その内容はここに参照として取り込まれる。
 本発明に係る無線通信装置は、リピータ間のデータ交換と基地局(eNB)への初回データ送信の処理の共有を図りつつ、基地局でのデータ復号性能を向上させることができ、無線通信装置等として有用である。
100、200、400、500、700、800        リピータ
1001、1002、2001、2002           リピータ
300、600、900、1003、2003          基地局(eNB)
101、301、401、601、701、901         受信RF部
102、302、402、602、702、902         A/D変換部
103、114、303、311、403、414、703、716    バッファ
104、304、404、604、704、904         復調部
105、309、405、608、707、908、913      チャネルデコード部
106、406、708                受信データメモリ
107、307、407、607、710、907        回線品質差判定部
108、408、709                ACK/NAKCシグナル生成部
109、409、711                チャネルエンコード部
110A、110B、305A、305B、410A、410B、605A  スイッチ
605B、705A、705B、712A、712B、905A、905B  スイッチ
111、411、713                インタリーブ部
112、310、412、612、714、909        変調部
113、413、715                送信データメモリ
115、312、415、610、717、911、       D/A変換部
116、313、416、609、718、912、       送信RF部
306、606、706、906             デインタリーブ部
311、611、910                 送信バッファ
603、903                    受信バッファ

Claims (7)

  1.  基地局に対して他の無線通信装置と協調してデータを中継する無線通信装置であって、
     自装置から送信する第1データを保持する記憶部と、
     他の無線通信装置が送信する第2データの少なくとも一部分を受信する受信部と、
     前記基地局と各無線通信装置間の回線品質差に応じて、協調中継するために、前記第1データ及び前記第2データの少なくとも一部分のデータを補う中継データ処理部と、
     前記中継データ処理部での処理後のデータを基地局へ送信する送信部と、を有する無線通信装置。
  2.  請求項1記載の無線通信装置であって、
     前記中継データ処理部は、前記基地局と各無線通信装置間の回線品質差に応じて、前記第1データ及び前記第2データの少なくとも一部分に対して、インタリーブをかける無線通信装置。
  3.  請求項2記載の無線通信装置であって、
     前記第1データ及び前記第2データのそれぞれは、システマティックビットを含む初回送信データとパリティビットを含むパリティデータとから構成され、
     前記無線通信装置は、さらに、
     基地局と自装置間の回線品質及び基地局と他の無線通信装置間の回線品質から、前記基地局と各無線通信装置間の回線品質差が一定値以上であるか否か判定する判定部と、前記初回送信データから前記パリティデータを生成するデータ生成部と、を有し
     前記判定部が基地局と各無線通信装置間の回線品質差が一定値以上あると判定する場合、前記インタリーブ部は、前記第1データの初回送信データ、前記第1データのパリティデータ、前記受信部で受信した前記第2データの初回送信データ及び前記データ生成部で生成された前記第2データのパリティデータに対して、インタリーブをかけ、前記送信部は、前記インタリーブ後のデータを基地局へ送信する無線通信装置。
  4.  基地局に対して他の無線通信装置と協調してデータを中継する無線通信装置であって、
     自装置から送信され、かつシステマティックビットを含む第1初回送信データとパリティビットを含む第1パリティデータとから構成される第1データを保持する記憶部と、
     他の無線通信装置から送信され、かつシステマティックビットを含む第2初回送信データを受信する受信部と、
     基地局と自装置間の回線品質及び基地局と他の無線通信装置間の回線品質から、前記前記基地局と各無線通信装置間の回線品質差が一定値以上であるか、否か判定する判定部と、
     前記判定部が、前記基地局と各無線通信装置間の回線品質差が一定値以上と判定した場合、
     前記第1データの第1初回送信データ及び他の無線通信装置から送信された前記第第2初回送信データから、前記基地局と各無線通信装置間の回線品質差を反映した第1データのパリティデータ及び前記基地局と各無線通信装置間の回線品質差を反映した第2データのパリティデータを生成するデータ生成部と
     前記データ生成部で生成した前記第1データのパリティデータ及び前記データ生成部で生成した前記第2データのパリティデータに対して、インタリーブをかけるインタリーブ部と、
     前記インタリーブ部でインタリーブされたデータを基地局へ送信する送信部と、を有する無線通信装置。
  5.  請求項4に記載の無線通信装置であって、
     前記データ生成部が生成する前記第1データのパリティデータ及び前記データ生成部が生成する前記第2データのパリティデータの量は、前記基地局と各無線通信装置間の回線品質差を反映する無線通信装置。
  6.  請求項5に記載の無線通信装置であって、
     基地局へ前記第1データの第1初回送信データを送信する際の、前記第1データの第1初回送信データの量は、前記基地局と各無線通信装置間の回線品質差を反映する無線通信装置。
  7.  基地局に対して他の無線通信装置と協調してデータを中継する無線通信装置であって、
     自装置から送信する第1データを保持する記憶部と
     他の無線通信装置から送信される第2データを受信する受信部と、
     基地局と自装置間の回線品質及び基地局と他の無線通信装置間の回線品質から、基地局と各無線通信装置間の回線品質差がある一定値以上であるか否かを判定する第1判定部と、
     基地局と自装置間の回線品質及び基地局と他の無線通信装置間の回線品質のどちらが良好かを判定する第2判定部と、
     前記第1判定部及び前記第2判定部の判定結果に基づき、前記第1データから第1パリティデータを生成し、前記第1判定部及び前記第2判定部の判定結果に基づき、前記第2データから第2パリティデータをそれぞれ生成するデータ生成部と、
     前記第1データ及び前記第2データを、インタリーブする第1インタリーブ部と、
     前記データ生成部で生成された前記第1パリティデータ及び前記データ生成部で生成された前記第2パリティデータを、前記基地局と各無線通信装置間の回線品質差情報に応じて、インタリーブする第2インタリーブ部と、
     前記インタリーブ後の前記第1データ及び前記インタリーブ後の前記第2データ、並びに、前記インタリーブ後の前記第1パリティデータ及び前記インタリーブ後の前記第2パリティデータの少なくとも一部を基地局へ送信する送信部と、を有する無線通信装置。
PCT/JP2009/003261 2008-07-11 2009-07-10 無線通信装置 WO2010004771A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/003,618 US8570932B2 (en) 2008-07-11 2009-07-10 Wireless communication apparatus
JP2010519660A JP5294425B2 (ja) 2008-07-11 2009-07-10 無線通信装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-181906 2008-07-11
JP2008181906 2008-07-11

Publications (1)

Publication Number Publication Date
WO2010004771A1 true WO2010004771A1 (ja) 2010-01-14

Family

ID=41506895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/003261 WO2010004771A1 (ja) 2008-07-11 2009-07-10 無線通信装置

Country Status (3)

Country Link
US (1) US8570932B2 (ja)
JP (1) JP5294425B2 (ja)
WO (1) WO2010004771A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9530442B1 (en) * 2015-09-23 2016-12-27 Western Digital Technologies, Inc. Enhanced low overhead data protection in data storage drives

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030148732A1 (en) * 2002-02-07 2003-08-07 The University Of Texas System Board Of Regents System and method for cooperation diversity through coding

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7039418B2 (en) * 2000-11-16 2006-05-02 Qualcomm Incorporated Position determination in a wireless communication system with detection and compensation for repeaters
EP1639844B1 (en) * 2003-06-23 2015-10-21 Spreadtrum Communications Inc. Time interleaved multiple standard single radio system apparatus and method
US8018893B2 (en) * 2003-09-03 2011-09-13 Motorola Mobility, Inc. Method and apparatus for relay facilitated communications
DE602005026482D1 (de) * 2004-06-14 2011-04-07 Broadcom Corp Kompensation und Messung der Differentiellen Verzögerung in gebundenen Systemen
GB0519946D0 (en) * 2005-09-30 2005-11-09 Cambridge Silicon Radio Ltd Communication in dual protocol environments

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030148732A1 (en) * 2002-02-07 2003-08-07 The University Of Texas System Board Of Regents System and method for cooperation diversity through coding

Also Published As

Publication number Publication date
JP5294425B2 (ja) 2013-09-18
US20110103297A1 (en) 2011-05-05
JPWO2010004771A1 (ja) 2011-12-22
US8570932B2 (en) 2013-10-29

Similar Documents

Publication Publication Date Title
EP2266238B9 (en) Soft buffer memory configuration in a communication system
US9077424B2 (en) Method and apparatus for use in cooperative relays using incremental redundancy and distributed spatial multiplexing
US6862272B2 (en) System and method for synchronizing data transmission from multiple wireless base transceiver stations to a subscriber unit
US8837274B2 (en) Methods and apparatus for multi-dimensional data permutation in wireless networks
KR101208196B1 (ko) Mmr 확장된 802.16e 시스템을 위한 중앙집중식 스케줄러 중계국
KR101478375B1 (ko) Harq를 구현한 시스템에서 계층으로의 코드워드 매핑
US7623589B2 (en) Cooperative multiple-access using user-clustering and space-time-frequency coding techniques for higher reliability reception
WO2010039013A2 (en) Symbol-level random network coded cooperation with hierarchical modulation in relay communication
KR20070063917A (ko) 다중홉 릴레이 방식의 셀룰러 네트워크에서 자동 반복요청을 수행하기 위한 장치 및 방법
JP2005501470A (ja) 物理層自動リピート要求(arq)
JPH08321785A (ja) 送信機,受信機,送信方法,受信方法及び伝送方法
US8526454B2 (en) Apparatus and method for bit remapping in a relay enhanced communication system
US20020101934A1 (en) Turbo encoder with transmitter diversity
JP2007519322A (ja) マルチ入力マルチ出力ワイヤレス通信の方法、装置およびシステム
KR101013652B1 (ko) 무선 통신 시스템의 데이터 송신 방법
US20110170425A1 (en) Radio communication device and radio communication system
WO2011121936A1 (ja) 無線通信装置及び無線通信方法
JP2004007028A (ja) 送信装置及び送信方法
WO2010004771A1 (ja) 無線通信装置
KR100792962B1 (ko) 에이티엠 에러 제어장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09794218

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13003618

Country of ref document: US

Ref document number: 2010519660

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09794218

Country of ref document: EP

Kind code of ref document: A1