WO2010003375A1 - 一种分布式电池管理系统中的监测装置及监测方法 - Google Patents

一种分布式电池管理系统中的监测装置及监测方法 Download PDF

Info

Publication number
WO2010003375A1
WO2010003375A1 PCT/CN2009/072683 CN2009072683W WO2010003375A1 WO 2010003375 A1 WO2010003375 A1 WO 2010003375A1 CN 2009072683 W CN2009072683 W CN 2009072683W WO 2010003375 A1 WO2010003375 A1 WO 2010003375A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
isolation
management system
battery management
voltage
Prior art date
Application number
PCT/CN2009/072683
Other languages
English (en)
French (fr)
Inventor
黎刚
Original Assignee
奇瑞汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 奇瑞汽车股份有限公司 filed Critical 奇瑞汽车股份有限公司
Publication of WO2010003375A1 publication Critical patent/WO2010003375A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the technical field of management of automobile batteries, and in particular to a monitoring device and a monitoring method in a distributed battery management system. Background technique
  • hybrid technology has gradually matured from development, and the monitoring and management of battery status in hybrid and electric vehicles is one of the keys to hybrid technology, how to quickly, accurately and reliably Measuring the battery's characteristic parameters, such as voltage and temperature, is a difficult point in hybrid technology.
  • the distributed battery management system is used in the management system of batteries in hybrid electric vehicles and electric vehicles because of its high reliability and good expandability.
  • the typical distributed battery management system the remote data acquisition unit in the figure, is the monitoring device in the distributed battery management system.
  • the monitoring methods in the distributed battery management system mainly include:
  • Method 1 Using an analog isolation device (linear optocoupler, analog isolated op amp) for measurement; in this method, the isolation voltage can be made higher, the linearity is good, but the cost is high, the optocoupler quiescent current is large, and the control is controlled.
  • the quiescent current causes the circuit to be complicated; the inconsistency of the optical coupling coefficient of the optocoupler device leads to its low absolute precision, and software is needed to correct almost every unit to achieve better accuracy. Therefore, the method is very cumbersome and unsuitable. Batch use;
  • Method 2 Use an op amp with a high common-mode voltage, such as INA117; In this method, the accuracy can be made higher, using a 0.1%-accuracy resistor can achieve better than 1% performance, but due to the need to use high voltage Power supply, resulting in low efficiency, high device cost, in many cases, requires high voltage to connect with low voltage or there is a direct electrical connection, because high voltage has a large leakage current to low voltage, has a certain Safety hazards, so the safety of the vehicle circuit is low, which limits the application of the method. Summary of the invention
  • the invention provides a monitoring device and a monitoring method in a distributed battery management system, in order to realize relatively easy power supply under high and low voltage power sources and achieve measurement of battery characteristic parameters with higher safety, reliability and accuracy. .
  • the present invention provides a new monitoring device in a distributed battery management system to make an input signal suitable
  • the communication circuit adopts the communication isolation chip of the transformer isolation technology to realize the connection of the high-voltage loop communication circuit and the low-voltage loop communication circuit; the high-voltage loop adopts the operation circuit of the differential input and the amplification processing structure, and the transmission and discharge route has a common mode rejection ratio Chip integration for voltage signal conversion and conditioning.
  • the present invention also proposes a method of battery monitoring using the above monitoring device.
  • a monitoring device in a distributed battery management system comprising: a loop structure and an isolation structure, the loop structure including a low voltage loop and a high voltage loop.
  • the high voltage circuit includes: a signal processing circuit, a power supply and a sampling circuit, and a communication circuit;
  • the signal processing circuit in the high voltage loop specifically includes: a transport and discharge circuit using a differential input and an amplification processing structure, and the operational amplifier circuit is monolithically integrated by a common mode rejection ratio;
  • the low voltage circuit includes: a signal processing and conversion circuit, a power supply and a main chip circuit, and a communication circuit; the isolation structure is an isolation circuit;
  • the isolation circuit comprises: a control isolation circuit, a power isolation circuit, and a communication isolation circuit;
  • the communication isolation circuit is specifically a communication isolation chip of a transformer isolation structure.
  • a monitoring method in a distributed battery management system includes the following steps:
  • the initial setting includes a step of inputting a voltage input to an input stage of the operational amplifier circuit for sampling;
  • the operational amplifier circuit adopts a structure of differential input and amplification processing, and is integrated by a single chip with a high common mode rejection ratio;
  • in the low voltage loop data processing comprising the step of setting a low voltage loop acquisition command, and transmitting the acquisition command to the high voltage loop through the isolated communication circuit;
  • the above isolated communication circuit is specifically a communication isolation chip of a transformer isolation structure.
  • the technical solution of the invention realizes high safety, reliability and accuracy in the measurement process of the characteristic parameters of the battery; and the whole measurement process has no special requirements on the power supply, and can be powered at a lower voltage.
  • luA static working current
  • FIG. 2 is a composition diagram of a monitoring device in a distributed battery management system according to Embodiment 1 of the present invention
  • FIG. 3 is an internal characteristic diagram of an isolation device in a monitoring device according to Embodiment 1 of the present invention
  • FIG. 4 is a circuit diagram of an AD628 in a monitoring apparatus according to Embodiment 1 of the present invention.
  • FIG. 5 is an internal structural characteristic diagram of a monolithic integrated operational amplifier in a monitoring apparatus according to Embodiment 1 of the present invention
  • FIG. 6 is a temperature conditioning circuit diagram of the monitoring apparatus provided in Embodiment 1 of the present invention
  • FIG. 7 is a circuit diagram of an AD conversion circuit in a monitoring apparatus according to Embodiment 1 of the present invention.
  • Embodiment 8 is a circuit for applying a communication isolation chip using a transformer isolation technology in a monitoring device according to Embodiment 1 of the present invention
  • FIG. 9 is a photoelectric isolation relay circuit in a monitoring device according to Embodiment 1 of the present invention.
  • FIG. 10 is a further photoelectric isolation relay circuit in the monitoring device provided by Embodiment 1 of the present invention
  • FIG. 11 is a flowchart of a monitoring method in the distributed battery management system according to Embodiment 2 of the present invention
  • FIG. 12 is a second embodiment of the present invention. A detailed flow chart of the monitoring method provided in the distributed battery management system. detailed description
  • FIG. 2 is a composition diagram of a monitoring device in a distributed battery management system according to the embodiment, which is composed of a low voltage structure, an isolation structure, and a high voltage structure.
  • the low voltage structure can be a low voltage circuit
  • the isolation structure can be an isolation circuit
  • the high voltage structure can be a high voltage circuit. They each consist of three parts:
  • the low-voltage circuit includes: a signal processing and conversion circuit, a power circuit and a main chip circuit, a communication circuit; a signal processing and conversion circuit, which functions to process a control signal from a whole vehicle, such as an ignition signal, etc., according to different application requirements.
  • the power circuit and the main chip circuit serve to supply power to the low voltage loop and realize the control logic and data processing of the monitoring module;
  • the communication circuit is used to communicate with the upper controller and the data acquisition part of the lower layer.
  • the control logic is implemented using a microprocessor (CPU), and the external power supply is externally integrated.
  • the vehicle's low-voltage battery (usually 12V battery) is provided; the power circuit functions to convert the battery voltage into the voltage used by the microprocessor (CPU), implemented by the LDO power chip, and the upper layer (ie, the battery management module in Figure 1) communication circuit Communication can be performed by means including CAN communication protocol, and the lower layer (with the AD chip of the high voltage loop) is implemented by SCI ⁇ SPI and I2C.
  • the isolation circuit comprises: a control isolation circuit, a power isolation circuit, and a communication isolation circuit;
  • the power isolation circuit functions to isolate the low voltage power supply to the high voltage power supply
  • Communication isolation circuit the function is to achieve high and low voltage communication circuit level isolation and ensure normal communication.
  • PhotoIsolation relay PhotoMos Relay
  • the isolation of the power supply can be isolated power supply, or can be directly isolated from high voltage power supply and low voltage control
  • the isolation chip such as the ADUM1401 chip, realizes the connection of the high-voltage loop communication circuit and the low-voltage loop communication circuit, as shown in FIG. 3 as its internal characteristic diagram.
  • the communication isolation chip as the isolation device has: 1) an isolation voltage of up to 1000V or more, 2
  • the isolation is realized by the transformer structure, the data can be transmitted in both directions (can be transmitted from the main loop to the isolation loop, or from the isolation loop back to the main loop), 3)
  • the high transmission rate is above 1000KHZ.
  • the high voltage circuit includes: a signal processing circuit, a power supply and sampling circuit, and a communication circuit;
  • a signal processing circuit that converts battery module signals, temperature sensors, and other signals of the battery pack into electrical signals that can be directly sampled
  • the power supply and sampling circuit is used to supply power for the operation of the high voltage system, and at the same time, sample the processed signal to convert the analog signal into a voltage signal;
  • the communication circuit functions to transmit the processed digital signal while receiving the control command of the low voltage loop.
  • the signal processing circuit uses a differential input and amplification processing structure of the op amp circuit, such as the use of AD628 chip, the op amp circuit through the common mode rejection ratio of monolithic integration
  • Figure 4 is the AD628 voltage conditioning circuit
  • Figure 5 The internal structure characteristic diagram of the monolithic integrated operational amplifier, because of the operational amplifier circuit, has: 1) a high common mode voltage suppression ratio voltage feedback type operational amplifier; 2) an operational amplifier consists of two stages of amplification; 3) the previous stage Forming a differential amplification structure, the positive input of the second stage has a pin connection, the negative side feedback amplification
  • Figure 6 is the temperature conditioning circuit
  • Figure 7 is the AD conversion and communication application circuit, in the high voltage circuit: AD628 op amp combined with the resistor Capacitor mode realizes voltage signal conversion and conditioning.
  • the pre-stage constitutes a differential amplification structure, and the latter stage is further amplified. It combines external precision resistors to achieve conversion accuracy better than 0.2%. And because of its very high resistance to common-mode voltage (up to 120V) makes it ideal for battery voltage data acquisition applications;
  • the NTC thermistor plus voltage divider circuit is used to realize the conversion of the temperature signal;
  • the high-voltage to low-voltage power conversion chip is used to realize the power supply of the high-voltage control loop;
  • the A/D converter (12-bit such as AD7888) with communication interface is used to realize the analog signal to The conversion of the digital signal and the transmission of the data.
  • Figure 9 and Figure 10 show the opto-isolated relay circuit
  • Figure 8 shows the block diagram of the communication isolation chip application circuit of Analog Devices, Inc. ICOUPLER technology. Since the high-voltage part of the power device is mainly an op amp, AD (selecting a low-power device), the power load is very small, and the current lost by the battery on the acquisition board during the operation of the battery pack is negligible.
  • AD selecting a low-power device
  • the battery module and the battery temperature sensor are connected to each other to supply the circuit, and the circuit can work normally.
  • the voltage processing circuit can output a high-precision, high-linearity voltage waveform for the AD converter; the temperature processing circuit A voltage signal representing the temperature value can be supplied to the AD converter; the microprocessor acquires data from the AD converter through the isolated communication circuit, processes it, and then sends it to the upper controller through the communication circuit.
  • the technical solution in this embodiment designs a new circuit structure to make the input signal properly processed; a monolithic integrated operational amplifier solution is designed to accurately and safely collect and convert the voltage signal;
  • the isolated communication circuit technology enables the data to be transmitted accurately, efficiently and reliably, so that the distributed battery monitoring device achieves low cost, few components, high reliability, and has no special requirements on the power supply, and can be powered in the vehicle battery. Working in a low range.
  • This embodiment provides a monitoring method in a distributed battery management system. As shown in FIG. 11, the method includes:
  • the operational amplifier circuit adopts a structure of differential input and amplification processing, and is integrated by a single chip with a high common mode rejection ratio;
  • FIG. 12 is a detailed step diagram of the method in the embodiment, and the method includes the following steps:
  • Step 201 At the beginning stage, preparing an ignition (trigger) signal;
  • Step 202 Determine whether the ignition signal is received, if the ignition signal arrives, go to step 203; if the ignition signal does not arrive, go to step 201;
  • Step 203 Perform initial setting
  • the low voltage loop of the collector board is supplied to make the power circuit of the high voltage loop start working;
  • the low voltage loop is powered on
  • Enable high voltage acquisition part of the circuit that is, enable high voltage to collect part of the circuit, so that the battery voltage can be input to the AD628 input stage for sampling;
  • Step 204 The low voltage loop sets an ad (digital/analog) acquisition command to send the command to the high voltage loop through the isolated communication circuit;
  • Niu Shaoteng 205 High-voltage loop data acquisition
  • Niu Shaoteng 206 The low voltage loop main controller reads the collected data
  • Niu Shaoteng 207 The low-voltage circuit processes and packs the collected data
  • Niu Shaoteng 208 sent to the upper controller
  • Niu Shaoteng 209 Judging the exit condition, that is, judging whether the transmitter is off, if the engine is off, go to the step
  • step 204 If the engine does not turn off, go to step 204.
  • the technical solution in the embodiment of the present invention designs a new system structure, so that the input signal is properly processed; a monolithic integrated operational amplifier solution is designed, so that the voltage signal is accurately and safely collected and converted;
  • the isolated communication circuit technology enables the data to be transmitted accurately, efficiently and reliably, so that the distributed battery monitoring device achieves low cost, few components, high reliability, and has no special requirements on the power supply, and can be powered in the vehicle battery. Working in a low range.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

一种分布式电池管理系统中的监测装置及监测方法 技术领域
本发明涉及汽车电池的管理技术领域, 特别涉及一种分布式电池管理系统中的监 测装置及监测方法。 背景技术
近年来, 随着汽车技术的进步, 混合动力技术由发展逐渐走向成熟, 而混合动力 汽车和电动汽车中的电池状态的监测和管理是混合动力技术的关键之一, 如何迅速、 准确、 可靠地测量电池的特征参数, 如电压、 温度, 是混合动力技术的难点。
由于分布式电池管理系统具有可靠性高、 扩展性好的优点, 被应用于混合动力汽 车和电动汽车中电池的管理系统中。 如图 1所示, 为典型分布式电池管理系统, 图中 的远程数据采集单元, 也即是分布式电池管理系统中的监测装置。
现有技术中, 分布式电池管理系统中的监测方法主要有:
方法 1:使用模拟隔离器件 (线性光耦、 模拟隔离运放) 进行测量; 在该方法中, 隔离电压可作得较高, 线性度好, 然而成本高, 光耦静态电流较大, 控制其静态电流 而导致电路复杂; 光耦器件的光传导系数的不一致性导致其绝对精度低, 需要使用软 件去对几乎每一个单元进行矫正来实现较好的精度, 因此, 该方法非常繁琐, 不适合 批量运用;
方法 2:使用高共模电压的运算放大器,如 INA117测量; 在该方法中, 精度可以作 得较高, 使用 0.1%精度的电阻可以达到优于 1 %的性能, 但由于需要使用高电压的电 源供电, 而导致效率不高, 器件成本较高, 在很多情况下, 要求高压地跟低压地连结 或存在直接电气上的联系, 因为高压地对低压地存在较大的漏电流, 具有一定的安全 隐患, 所以整车电路安全性较低, 限制了该方法的应用。 发明内容
为了实现在高低压电源下都能比较容易地供电, 实现较高安全性、 可靠性和准确 性的电池特征参数的测量, 本发明提供了一种分布式电池管理系统中的监测装置及监 测方法。
本发明提供了一种分布式电池管理系统中新的监测装置, 使输入信号得到适当处 理; 通讯电路采用变压器隔离技术的通讯隔离芯片实现高压回路通讯电路和低压回路 通讯电路连接; 高压回路采用差分输入和放大处理结构的运放电路, 该运放电路由共 模抑制比高的单片集成, 从而实现电压信号的转换和调理。
同时, 本发明也提出了一种利用上述监测装置进行电池监测的方法。
所述方案如下:
一种分布式电池管理系统中的监测装置, 包括: 回路结构和隔离结构, 该回路结 构包括低压回路和高压回路。
其中, 高压回路包括: 信号处理电路、 电源和采样电路、 通讯电路;
高压回路中的信号处理电路, 具体包括: 采用差分输入和放大处理结构的运放电 路, 该运放电路通过共模抑制比高的单片集成;
低压回路包括: 信号处理与转换电路、 电源和主芯片电路、 通讯电路; 隔离结构为隔离电路;
隔离电路包括: 控制隔离电路、 电源隔离电路、 通讯隔离电路;
通讯隔离电路具体为变压器隔离结构的通讯隔离芯片。
一种分布式电池管理系统中的监测方法, 包括以下步骤:
接收信号;
判断是否接收到信号;
进行初始化设置;
高压回路数据采集, 变压器式隔离回路传输, 低压回路数据处理;
判断是否满足退出条件。
其中, 初始化设置, 包括电压输入到运放电路的输入级进行采样的步骤; 该运放电路采用差分输入和放大处理的结构, 通过共模抑制比高的单片集成; 在低压回路数据处理中, 包括低压回路设置采集命令, 通过隔离通讯电路将该采 集命令发送到高压回路的步骤;
上述隔离通讯电路具体为变压器隔离结构的通讯隔离芯片。
通过本发明的技术方案, 实现了在电池特征参数的测量过程中, 具有较高的安全 性、 可靠性和准确性; 并且整个测量过程对供电电源没有特殊的要求, 可以在较低电 压供电的情况下工作; 高压回路不工作时, 拥有极低的静态工作电流 (典型值 luA),满 足混合动力、 燃料电池、 电动车电池数据监控需要。 附图说明
图 1是现有技术中分布式电池管理的系统图;
图 2是本发明实施例 1提供的分布式电池管理系统中的监测装置的组成图; 图 3是本发明实施例 1提供的监测装置中隔离器件的内部特征图;
图 4是本发明实施例 1提供的监测装置中的 AD628电路图;
图 5是本发明实施例 1提供的监测装置中单片集成运放的内部结构特征图; 图 6是本发明实施例 1提供的监测装置中的温度调理电路图;
图 7是本发明实施例 1提供的监测装置中的 AD转换电路图;
图 8是本发明实施例 1提供的监测装置中采用变压器隔离技术的通讯隔离芯片应 用电路;
图 9是本发明实施例 1提供的监测装置中的光电隔离继电器电路;
图 10本发明实施例 1提供的监测装置中的又一光电隔离继电器电路; 图 11是本发明实施例 2提供的分布式电池管理系统中监测方法的流程图; 图 12是本发明实施例 2提供的分布式电池管理系统中监测方法的详细流程图。 具体实施方式
为使本发明的目的、 技术方案和优点更加清楚, 下面将结合附图对本发明实施方 式作进一步地详细描述。
实施例 1
本实施例提供了一种分布式电池管理系统中的监测装置; 图 2为本实施例提供的 分布式电池管理系统中监测装置的组成图, 由低压结构、 隔离结构、 高压结构组成。 低压结构可以为低压回路, 隔离结构可以为隔离电路, 高压结构可以为高压回路。 它 们各自又由三部分组成:
101:低压回路包括: 信号处理与转换电路、 电源电路和主芯片电路、 通讯电路; 信号处理与转换电路, 作用是处理来自整车的控制信号, 典型如点火信号等, 可 以根据不同的应用要求设计;
电源电路和主芯片电路, 作用是给低压回路供电, 同时实现监测模块的控制逻辑 与数据处理;
通讯电路, 作用是与上层控制器以及下层的数据采集部分进行通讯。
在低压回路中: 使用一微处理器 (CPU) 实现控制逻辑, 外部电源供电由外部整 车低压蓄电池 (通常为 12V蓄电池)提供; 电源电路作用为将蓄电池电压转化为微处理 器 (CPU) 所使用的电压, 采用 LDO电源芯片实现, 与上层 (即图 1中电池管理模块) 通讯电路可以采用包括 CAN通讯协议在内的方式进行通讯, 下层 (与高压回路的 AD 芯片)采用 SCI\SPI,I2C实现。
102:隔离电路包括: 控制隔离电路、 电源隔离电路以及通讯隔离电路;
控制隔离电路, 作用是实现低压对高压控制电路的隔离;
电源隔离电路, 作用是实现低压电源到高压电源的隔离;
通讯隔离电路, 作用是实现高、 低压通讯电路电平的隔离并保证正常通讯。
在隔离电路中: 采用光电隔离继电器 (PhotoMos Relay) 实现控制信号的隔离; 电源的隔离可以采用隔离电源, 也可以采用直接从高压取电低压控制隔离的方式; 通 讯电路采用带变压器隔离技术的通讯隔离芯片, 如 ADUM1401芯片, 实现高压回路通 讯电路和低压回路通讯电路连接, 如图 3所示为其内部特征图, 此类通讯隔离芯片作 为隔离器件具有: 1 )高达 1000V以上的隔离电压, 2)隔离通过变压器式结构实现 , 数据可以双向传输 (可以从主回路传到隔离回路, 也可以从隔离回路传回到主回路), 3 ) 高传输速率 1000KHZ以上。
103:高压回路包括: 信号处理电路、 电源和采样电路、 通讯电路;
信号处理电路, 作用是将电池包的电池模块信号、 温度传感器以及其他信号转化 为可以直接采样的电信号;
电源和采样电路, 作用是为高压系统工作提供电源, 同时对处理后的信号进行采 样处理, 将模拟信号转化为电压信号;
通讯电路,作用为将处理好的数字信号发送出去, 同时接受低压回路的控制指令。 在高压回路中, 信号处理电路采用差分输入和放大处理结构的运放电路, 如使用 AD628芯片, 该运放电路通过共模抑制比高的单片集成, 图 4为 AD628 电压调理电 路, 图 5为单片集成运放的内部结构特征图, 由于采用的运放电路, 具有: 1 ) 高共 模电压抑制比电压反馈型运放; 2) 运放由两级放大组成; 3 ) 前一级构成差分放大结 构, 后一级正端输入有引脚接出, 负端反馈放大, 图 6为温度调理电路, 图 7为 AD 转换与通讯应用电路, 在高压回路中: 采用 AD628运放结合电阻电容的方式实现电压 信号的转换和调理, 由于其内部集成了 0.01%精密电阻, 前级组成差分放大结构, 后 一级进行进一步放大处理, 它结合外部精密电阻可实现优于 0.2%的转换精度, 并且由 于其非常高的抗共模电压的特性(高达 120V)使得其非常适合电池电压数据采集应用; 采用 NTC 热敏电阻加分压电路实现温度信号的转换; 采用高压到低压的电源转换芯 片实现高压控制回路的供电; 采用带通讯接口的 A/D转换器 (12位如 AD7888 ) 实现 模拟信号到数字信号的转换并将数据传送出去。
图 9和图 10为光电隔离继电器电路, 图 8为 ADI公司 ICOUPLER技术的通讯隔 离芯片应用电路框图。 由于高压部分用电器件主要为运放, AD (选择低功耗器件), 因此功率负荷非常小, 在电池包工作时电池在采集板上损失的电流可以忽略不计。
将电池模块, 电池温度传感器 (如 NTC型温度传感器)相连, 给电路供电后, 电路 即可正常工作, 电压处理电路可输出高精度, 高线性度的电压波形供 AD转换器使用; 温度处理电路可提供代表温度值的电压信号给 AD转换器; 微处理器通过隔离通讯电 路从 AD转换器获取数据, 进行处理后再通过通讯电路送到上层控制器。
本实施例中的技术方案通过设计了一种新的电路结构, 使输入信号得到适当处 理; 设计了单片集成的运放解决方案, 使电压信号得到准确、 安全采集和转化; 采用 了专用的隔离通讯电路技术, 使数据得到了准确有效可靠的传输, 从而使分布式电池 监测装置实现了低成本, 元件少, 可靠性高的特点, 并且对电源没有特殊要求, 可在 整车蓄电池供电较低的范围内正常工作。
实施例 2
本实施例提供了一种分布式电池管理系统中的监测方法, 如图 11 所示, 该方法 包括:
开始阶段, 接收信号;
判断是否接收到信号; 如果接收到信号, 则转下一步骤, 如果没有接收到触发信 号, 则转上一步骤, 继续准备接收信号;
然后, 进行初始化设置, 使电压输入到运放电路的输入级进行采样; 该运放电路 采用差分输入和放大处理的结构, 通过共模抑制比高的单片集成;
之后, 针对采样得到的数据, 执行高压回路数据采集, 变压器式隔离传输, 低压 回路数据处理, 再将经过上述处理后的信号, 发送到上层控制器; 在低压回路数据处 理中, 包括低压回路设置采集命令, 通过隔离通讯电路将该采集命令发送到高压回路; 最后, 判断是否满足退出条件, 如果满足退出条件, 则退出, 转到开始阶段, 如 果不满足退出条件。
图 12为本实施例中方法的详细步骤图, 该方法包括如下步骤:
步骤 201 : 开始阶段, 准备点火 (触发) 信号; 步骤 202: 判断是否接收到点火信号, 如果点火信号到, 转入步骤 203 ; 如果点 火信号没到, 转到步骤 201 ;
步骤 203 : 进行初始化设置,
包括: 采集板低压回路供电, 使高压回路的电源电路开始工作;
低压回路上电复位;
低压回路初始化;
低压回路上电保持;
使能高压采集部分电路 (即, 使高压能采集部分电路), 使电池电压可以输入到 AD628输入级进行采样;
步骤 204: 低压回路设置 ad (数 /模)采集命令, 通过隔离通讯电路将命令发送到高 压回路;
牛少藤 205: 高压回路数据采集;
牛少藤 206: 低压回路主控制器读取采集数据;
牛少藤 207: 低压回路将采集到的数据进行处理与打包;
牛少藤 208: 发送到上层控制器;
牛少藤 209: 判断退出条件, 即判断发送机是否熄火, 如果发动机熄火, 转至步骤
201, 如果发动机不熄火, 转至步骤 204。
本发明实施例中的技术方案设计了一种新的系统结构, 使输入信号得到适当处 理; 设计了单片集成的运放解决方案, 使电压信号得到准确、 安全采集和转化; 采用 了专用的隔离通讯电路技术, 使数据得到了准确有效可靠的传输, 从而使分布式电池 监测装置实现了低成本, 元件少, 可靠性高的特点, 并且对电源没有特殊要求, 可在 整车蓄电池供电较低的范围内正常工作。
最后所应说明的是: 以上实施例仅用以说明本发明而非限制, 尽管参照较佳实施 例对本发明进行了详细说明, 本领域的普通技术人员应当理解, 可以对本发明进行修 改或者等同替换, 而不脱离本发明的精神和范围, 其均应涵盖在本发明的权利要求范 围当中。

Claims

权利要求书
1、 一种分布式电池管理系统中的监测装置, 其特征在于, 包括: 回路结构和隔 离结构; 所述回路结构包括: 低压回路和高压回路。
2、 根据权利要求 1 所述的分布式电池管理系统中的监测装置, 其特征在于, 所 述高压回路包括: 信号处理电路、 电源和采样电路和通讯电路;
所述信号处理电路具体包括: 采用差分输入和放大处理结构的运放电路, 所述运 放电路通过共模抑制比高的单片集成。
3、 根据权利要求 1 所述的分布式电池管理系统中的监测装置, 其特征在于, 所 述低压回路包括: 信号处理与转换电路电源和主芯片电路和通讯电路。
4、 根据权利要求 1 所述的分布式电池管理系统中的监测装置, 其特征在于, 所 述隔离结构为隔离电路。
5、 根据权利要求 4 所述的分布式电池管理系统中的监测装置, 其特征在于, 所 述隔离电路包括: 控制隔离电路、 电源隔离电路和通讯隔离电路。
6、 根据权利要求 5 所述的分布式电池管理系统中的监测装置, 其特征在于, 所 述通讯隔离电路具体为变压器隔离结构的通讯隔离芯片。
7、 一种分布式电池管理系统中的监测方法, 其特征在于, 包括如下步骤: 接收信号;
判断是否接收到所述信号;
进行初始化设置;
高压回路数据采集, 变压器式隔离回路传输, 低压回路数据处理;
判断是否满足退出条件。
8、 根据权利要求 7 所述的分布式电池管理系统中的监测方法, 其特征在于, 所 述初始化设置, 包括电压输入到运放电路的输入级进行采样的步骤。
9、 根据权利要求 8 所述的分布式电池管理系统中的监测方法, 其特征在于, 所 述运放电路采用差分输入和放大处理的结构, 通过共模抑制比高的单片集成。
10、 根据权利要求 7所述的分布式电池管理系统中的监测方法, 其特征在于, 所 述低压回路数据处理, 包括低压回路设置采集命令, 通过隔离通讯电路将所述采集命 令发送到所述高压回路的步骤。
11、 根据权利要求 10 所述的分布式电池管理系统中的监测方法, 其特征在于, 所述隔离通讯电路具体为变压器隔离结构的通讯隔离芯片。
PCT/CN2009/072683 2008-07-08 2009-07-08 一种分布式电池管理系统中的监测装置及监测方法 WO2010003375A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810133065.8 2008-07-08
CN2008101330658A CN101442211B (zh) 2008-07-08 2008-07-08 一种分布式电池管理系统中的监测装置及监测方法

Publications (1)

Publication Number Publication Date
WO2010003375A1 true WO2010003375A1 (zh) 2010-01-14

Family

ID=40726515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/072683 WO2010003375A1 (zh) 2008-07-08 2009-07-08 一种分布式电池管理系统中的监测装置及监测方法

Country Status (2)

Country Link
CN (1) CN101442211B (zh)
WO (1) WO2010003375A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3432409A1 (en) * 2017-07-19 2019-01-23 Samsung SDI Co., Ltd. Cell supervision circuit carrier, battery system and electric vehicle
CN109632124A (zh) * 2019-02-13 2019-04-16 深圳市赛为智能股份有限公司 系留无人机机载监控系统及其监控方法
CN112711207A (zh) * 2020-12-21 2021-04-27 国网北京市电力公司 高压直流信号采集模块与电子装置
CN115001879A (zh) * 2022-05-27 2022-09-02 北京研运科技有限公司 一种基于iCoupler芯片隔离技术的MVB网卡

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101442211B (zh) * 2008-07-08 2012-08-22 奇瑞汽车股份有限公司 一种分布式电池管理系统中的监测装置及监测方法
US9013146B2 (en) 2009-06-29 2015-04-21 Nec Energy Devices, Ltd. Secondary battery pack
CN101764512B (zh) * 2010-01-29 2012-06-27 重庆长安汽车股份有限公司 一种中度混合动力汽车dc-dc电路控制方法
CN102200772B (zh) * 2011-04-18 2012-09-05 奇瑞汽车股份有限公司 一种分布式电池管理模组编号自动识别系统
JP5698615B2 (ja) * 2011-06-28 2015-04-08 矢崎総業株式会社 混成回路
CN102390331B (zh) * 2011-09-07 2013-09-11 重庆长安汽车股份有限公司 一种集成电池管理系统的纯电动汽车整车控制器
CN102680902B (zh) * 2012-05-11 2015-05-06 河南速达电动汽车科技有限公司 电动汽车用动力电池组一致性在线监测装置及方法
US10882403B2 (en) * 2013-08-31 2021-01-05 Ford Global Technologies, Llc Vehicle high/low voltage systems isolation testing
CN104007391A (zh) * 2014-04-29 2014-08-27 江苏华东锂电技术研究院有限公司 锂电池组温度与电压监测系统
CN105044612A (zh) * 2015-07-31 2015-11-11 苏州玄禾物联网科技有限公司 一种基于can总线的分布式电池监测系统
CN106627156A (zh) * 2016-11-06 2017-05-10 北京理工华创电动车技术有限公司 一种高压信息采集控制器
CN107797076A (zh) * 2017-12-12 2018-03-13 杭州电子科技大学 一种基于隔离耦合器件的汽车电池电流电压检测设备
KR102555499B1 (ko) 2018-01-22 2023-07-12 삼성에스디아이 주식회사 집적 회로 및 이를 포함하는 배터리 관리 시스템
CN109407012A (zh) * 2018-12-05 2019-03-01 上海翌芯电子科技有限公司 一种电池管理系统和电池管理方法
CN109888864B (zh) * 2019-02-25 2021-03-23 宁德时代新能源科技股份有限公司 电池管理系统
CN111856126A (zh) 2020-07-24 2020-10-30 一巨自动化装备(上海)有限公司 一种基于高压mcu的高低压信号采样及传输系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5808469A (en) * 1995-01-06 1998-09-15 Chrysler Corporation Battery monitor for electric vehicles
CN1564011A (zh) * 2004-03-17 2005-01-12 清华大学 一种车用燃料电池堆单片电压监测装置
CN2890947Y (zh) * 2006-04-30 2007-04-18 重庆长安汽车股份有限公司 一种混合动力汽车用动力电池组的管理系统
CN101442211A (zh) * 2008-07-08 2009-05-27 奇瑞汽车股份有限公司 一种分布式电池管理系统中的监测装置及监测方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100486032C (zh) * 2007-01-19 2009-05-06 华南理工大学 一种集散式动力电池组动态均衡管理系统
CN101073990B (zh) * 2007-06-22 2011-06-01 深圳先进技术研究院 一种具有安全保护装置的电动车供电系统及其控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5808469A (en) * 1995-01-06 1998-09-15 Chrysler Corporation Battery monitor for electric vehicles
CN1564011A (zh) * 2004-03-17 2005-01-12 清华大学 一种车用燃料电池堆单片电压监测装置
CN2890947Y (zh) * 2006-04-30 2007-04-18 重庆长安汽车股份有限公司 一种混合动力汽车用动力电池组的管理系统
CN101442211A (zh) * 2008-07-08 2009-05-27 奇瑞汽车股份有限公司 一种分布式电池管理系统中的监测装置及监测方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3432409A1 (en) * 2017-07-19 2019-01-23 Samsung SDI Co., Ltd. Cell supervision circuit carrier, battery system and electric vehicle
CN109632124A (zh) * 2019-02-13 2019-04-16 深圳市赛为智能股份有限公司 系留无人机机载监控系统及其监控方法
CN109632124B (zh) * 2019-02-13 2024-02-27 深圳市赛为智能股份有限公司 系留无人机机载监控系统及其监控方法
CN112711207A (zh) * 2020-12-21 2021-04-27 国网北京市电力公司 高压直流信号采集模块与电子装置
CN115001879A (zh) * 2022-05-27 2022-09-02 北京研运科技有限公司 一种基于iCoupler芯片隔离技术的MVB网卡

Also Published As

Publication number Publication date
CN101442211B (zh) 2012-08-22
CN101442211A (zh) 2009-05-27

Similar Documents

Publication Publication Date Title
WO2010003375A1 (zh) 一种分布式电池管理系统中的监测装置及监测方法
US10932304B2 (en) Tire pressure monitoring system (TPMS) module, system and method of acknowledging data transmissions for TPMS
JP2023001121A (ja) 電池監視システム
JP2010057348A (ja) バッテリー管理システム及びその駆動方法
CN102231549A (zh) 一种电池管理芯片
US11959948B2 (en) High voltage signal and low voltage signal sampling and transmission system based on high voltage MCU
CN102854393B (zh) 氮氧传感器加热检测电路及加热检测方法
US20220214388A1 (en) Insulation detection circuit for voltage balance
CN109246638B (zh) 基于WiFi无线与GPS授时的信号同步采集系统的数据采集方法
JP2008131670A (ja) 電池電圧監視装置
JP2016530627A (ja) 電気機械的アダプタ
CN109462845B (zh) 一种基于蓝牙通信的低功耗模块化数据采集系统
WO2024109537A1 (zh) 伺服系统检测仪器及伺服系统检测系统
WO2016015331A1 (zh) 用于车辆诊断/编程的接口集成电路以及车辆诊断仪
CN109067421A (zh) 带有wifi接口的振动传感器
CN201750415U (zh) 一种光收发模块的接收光功率监视电路
CN105738101A (zh) 轮式装载机传动轴扭矩载荷数据采集系统
CN202903887U (zh) 氮氧传感器加热检测电路
CN112440816A (zh) 电池管理系统及电动汽车
CN109102689A (zh) 带有wifi接口的压力传感器
CN212623694U (zh) 便携式多功能在线综合读数仪
CN202502157U (zh) 一种电阻式参数和设备电压测量装置
CN207459108U (zh) 电流校准装置
CN105955244B (zh) Can总线系统
CN110049142A (zh) 一种物联网智能终端及其供电控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09793850

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09793850

Country of ref document: EP

Kind code of ref document: A1