WO2010003306A1 - 提升内燃机引擎燃烧效率的方法 - Google Patents

提升内燃机引擎燃烧效率的方法 Download PDF

Info

Publication number
WO2010003306A1
WO2010003306A1 PCT/CN2009/000651 CN2009000651W WO2010003306A1 WO 2010003306 A1 WO2010003306 A1 WO 2010003306A1 CN 2009000651 W CN2009000651 W CN 2009000651W WO 2010003306 A1 WO2010003306 A1 WO 2010003306A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecules
internal combustion
engine
combustion engine
diesel
Prior art date
Application number
PCT/CN2009/000651
Other languages
English (en)
French (fr)
Inventor
王伟华
Original Assignee
Wang Weihua
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wang Weihua filed Critical Wang Weihua
Publication of WO2010003306A1 publication Critical patent/WO2010003306A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M27/00Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like
    • F02M27/04Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like by electric means, ionisation, polarisation or magnetism
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B51/00Other methods of operating engines involving pretreating of, or adding substances to, combustion air, fuel, or fuel-air mixture of the engines
    • F02B51/04Other methods of operating engines involving pretreating of, or adding substances to, combustion air, fuel, or fuel-air mixture of the engines involving electricity or magnetism
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to a method for improving the combustion efficiency of an internal combustion engine, in particular to a method for improving the combustion efficiency of a vehicle engine by achieving complete combustion of the vehicle engine and achieving fuel economy and environmental protection.
  • the existing diesel and petrol vehicles are the largest source of mineralized petroleum energy. Therefore, the HC, CO, NOx and other exhaust gases emitted by vehicles due to incomplete combustion form the main cause of greenhouse warming, among them, vehicles.
  • the attenuation of fuel efficiency can vary depending on factors such as vehicle condition, road condition, incomplete combustion, aging of the machine and driving habits.
  • the general combustion efficiency attenuation range is about 8-48%, and the most common key factor is It is the phenomenon of engine carbon deposition caused by incomplete combustion (about 11-36%).
  • Such a long-term vicious circle consumes more and more energy, and more and more incomplete exhaust emissions are formed, resulting in environmental Serious pollution.
  • the general gasoline engine combustion principle is as shown in Fig. 1.
  • the oil and gas molecules 12 are atomized, and the atomized oil and gas molecules 12 are injected into the engine combustion chamber.
  • the spark of the spark plug ignites part of the atomized hydrocarbon cluster 12 and diffuses the other oil and gas clusters 12 in a chain reaction manner.
  • the spark sparks or the number of sparks per performance is reduced, it will not be enough to ignite the engine at the same time.
  • All the oil and gas molecules in the combustion chamber 12 so the engine combustion chamber has a temperature drop due to the inconsistency of the chain reaction, causing the temperature of part of the engine combustion chamber to be lower than 500 °C, resulting in the partial area.
  • the oil and gas molecular group 12 is not completely burned, resulting in carbon deposition.
  • the combustion principle of a typical diesel engine is as shown in Fig. 2.
  • the diesel fuel is released from the fuel supply end 21, the diesel molecules 22 are sheared into fine diesel molecules, so that the atomized diesel molecules 22 are sprayed.
  • the diesel molecules 22 are diffusion-conducted in a chain reaction manner, and the combustion is achieved one by one to the auto-ignition temperature.
  • the heat conduction of the engine combustion chamber chain reaction is incomplete, the engine combustion chamber The temperature gradient is formed. When the temperature in a part of the region is lower than 500 ° C, some diesel fuel molecules are incompletely burned to cause carbon deposition 23 .
  • a primary object of the present invention is to provide a method for improving the combustion efficiency of an internal combustion engine to enable complete combustion of the internal combustion engine to achieve fuel economy and environmental protection.
  • the technical solutions adopted by the present invention include:
  • a method for improving the combustion efficiency of an internal combustion engine characterized in that:
  • a large number of nanomolecules are attached to each hydrocarbon molecular group
  • the additive for mixing gasoline in an engine of an internal combustion engine is a hollow nanocarbon sphere.
  • the technical solution adopted by the present invention further includes:
  • a method for improving combustion efficiency of an internal combustion engine engine characterized by comprising:
  • a large number of nanomolecules are attached to each hydrocarbon molecular group
  • the diesel molecules are sprayed into the engine room with high-pressure and high-temperature hot air at a high pressure, so that each nanometer molecule with super-high thermal conductivity attached to the diesel molecules can synchronously and uniformly conduct heat energy, so that each diesel molecule attached can achieve spontaneous combustion. Temperature, to achieve complete combustion.
  • the additive for mixing diesel fuel for an engine of an internal combustion engine is a hollow nanocarbon sphere.
  • the present invention has the following beneficial effects:
  • Figure 1 is a schematic view showing the combustion of an existing gasoline in an internal combustion engine
  • FIG. 2 is a schematic view showing combustion of an existing diesel engine in an internal combustion engine
  • Figure 3 is a schematic view showing the combustion of the engine oil in the internal combustion engine of the present invention
  • Figure 4 is a schematic view showing the combustion of the diesel fuel of the present invention in an internal combustion engine.
  • the present invention mainly mixes an appropriate amount of an additive in an engine oil for an internal combustion engine, wherein the additive (such as a hollow nanocarbon ball) contains a plurality of nano molecules, and the additive is dissolved in an engine of an internal combustion engine.
  • the additive such as a hollow nanocarbon ball
  • the fuel oil in the combustion chamber of the engine can achieve complete combustion efficiency
  • the method for achieving complete combustion of the gasoline engine includes:
  • the nano-molecule 33 can quickly and directly sense the instantaneous high voltage released by the high-voltage coil (about 15000V) due to its excellent electric-sensing property, so that all the highly conductive nano-molecules 33 generate energy-level change release energy, and simultaneously The entire oil and gas molecular group 32 is burned, so that all the oil and gas molecules 32 can be uniformly burned while having no time difference of conduction and diffusion, thereby preventing incomplete carbon residue from burning.
  • the diesel molecule 42 is injected into the high temperature hot air (about 500-800 ° C) compressed by the engine room at a high pressure (about 20,000 PSI).
  • the high-sensitivity heat of the nano-molecule 43 has super thermal conductivity, which makes the heat rapid. Extending to all diesel molecules 42 so that they are synchronized quickly and uniformly to the auto-ignition temperature.
  • the present invention has at least the following advantages:
  • the present invention can effectively suppress the catastrophic phenomenon of global warming caused by the greenhouse effect, and is a practical method.

Description

提升内燃机 ^ ]擎燃烧效率的方法 技术领域
本发明涉及一种提升内燃机引擎燃烧效率的方法, 尤指一种可使车辆引擎 达到完全燃烧, 进而达成省油、 环保目的提升车辆引擎燃烧效率的方法。 背景技术
众所周知, 现有的柴、 汽油车辆是耗用矿化石油能源的最大来源, 因此, 车辆因燃烧不完全所排放的 HC、 CO、 NOx等废气, 形成温室效应全球暖化的 主因, 其中, 车辆燃油效率的衰减, 可依车况、 路况、 燃烧不完全、 机件老化 以及驾驶习惯等因素存在程度上的差异, 一般燃烧效能衰减的范围约为 8-48%, 而其中最普遍的关键因素, 是在于燃烧不完全所导致的引擎积碳现象 (约为 11-36%), 如此长期恶性循环, 所耗损的能源愈来愈多, 也形成愈多燃烧不完全 的废气排放量, 造成环境的严重污染。
一般的汽油引擎的燃烧原理, 是如图 1所示, 当汽油由燃料供应端 11释出 后, 其油气分子团 12即产生雾化, 已雾化的油气分子团 12喷射进入引擎燃烧 室后, 凭借火花塞的火花引燃部份雾化油气分子团 12, 并以连锁反应方式扩散 次第点燃其他油气分子团 12, 但是因火花塞每一次的放电火花数量或效能减低 时, 将不足以同时点燃引擎燃烧室的全部油气分子团 12, 故引擎燃烧室遂有因 连锁反应传导不及而产生温度梯降的现象,致引擎燃烧室部份区域温度低于 500 °C时, 导致所述的部分区域的油气分子团 12燃烧不完全, 而造成积碳 13。
而一般的柴油引擎的燃烧原理, 则如图 2所示, 当柴油由燃料供应端 21释 出后, 其柴油分子 22即受剪力成细小的柴油分子, 使已雾化的柴油分子 22喷 射进入引擎燃烧室, 在高压高热的热空气中, 使柴油分子 22以连锁反应方式次 第扩散传导热反应, 逐一达到自燃温度而燃烧, 然而, 引擎燃烧室连锁反应的 热传导不完全时, 引擎燃烧室形成温度梯降, 当部分区域温度低于 500°C时, 导 致部分柴油分子燃烧不完全而造成积碳 23。
有鉴于以上的缺失, 申请人乃秉持从事所述的项业务多年的经验, 经不断 研究、 实验, 遂萌生开发发明, 祈使车辆引學得以达到完全的燃烧。 发明内容 本发明的主要目的, 即在提供一种提升内燃机引擎燃烧效率的方法, 使内 燃机引擎得以达到完全燃烧, 进而达到省油以及环境保护的目的。
为实现上述目的, 本发明釆用的技术方案包括:
一种提升内燃机引孥燃烧效率的方法, 其特征是包括:
在内燃机引擎用汽油混合适量包含复数纳米分子的添加剂;
使每一油气分子团附着有大量的纳米分子;
当汽油由燃料供应端进入引擎燃烧室后, 使所有每一高导电性的纳米分子 直接受高压线圈感电, 产生能阶变化, 同时释放能量引燃所附着的每一油气分 子团, 达到所有油气分子团同时同步均匀的燃烧。
所述的混合在内燃机引擎用汽油的添加剂, 是中空纳米碳球。
为实现上述目的, 本发明采用的技术方案还包括:
一种提升内燃机引擎燃烧效率的方法, 其特征是包括:
在内燃机引擎用柴油中混合适量包含复数纳米分子的添加剂;
使每一油气分子团附着有大量的纳米分子;
当柴油由燃料供应端释出后, 使油料受剪力成为细小柴油分子;
使柴油分子以高压喷入具高压高温热空气的引擎室中, 使柴油分子所附着 的具超强导热性的每一纳米分子, 迅速均匀同步传导热能, 使所附着的每一柴 油分子达到自燃温度, 达到完全燃烧的效果。
所述的混合在内燃机引擎用柴油的添加剂, 是中空纳米碳球。
与现有技术相比较, 本发明具有的有益效果是:
( 1 ) 因完全燃烧反应完全, 可节省不完全燃烧的油耗 11-36%, 平均可达
25%。
( 2 )可提升引擎动力输出, 延长内燃机引擎机械寿命, 进而降低维修成本。
( 3 ) 由于完全燃烧反应完全, 故可大幅降低排放 HC、 CO、 NOx等各种温 室效应气体, 其降低排放废弃的效率可提升至 37-70%。
( 4 )可达到节省耗油以及延长矿化石油的使用年限争取替代能源的开发时 间等有形以及无形的经济效益。 附图说明
图 1是现有汽油在内燃机引擎燃烧示意图;
图 2是现有柴油在内燃机引擎燃烧示意图; 图 3是本发明汽在内燃机引擎油燃烧示意图;
图 4是本发明柴油在内燃机引擎燃烧示意图。
附图标记说明: 11-燃料供应端; 12-油气分子团; 13-积碳; 21-燃料供应端; 22-柴油分子; 23-积碳; 31-燃料供应端; 32-油气分子团; 33-纳米分子; 41-燃 料供应端; 42-柴油分子; 43-纳米分子。 具体实施方式
请参阅图 3所示, 本发明主要是在内燃机引擎用油中混合适量的添加剂, 其中, 所述的添加剂 (如中空纳米碳球)是包含复数纳米分子, 使添加剂溶解 在内燃机引擎用油后, 凭借纳米分子迅速均匀的传导电能或热能, 得以使引擎 燃烧室内的燃料油达成完全燃烧的效能, 其应用于汽油引擎达致完全燃烧方法 包含:
1、 当汽油由燃料供应端 31释出后, 其油气分子团 32即产生雾化;
2、 使前述的油气分子团 32附着大量的纳米分子 33;
3、 所述的纳米分子 33由于具有优异的感电性能, 能迅速直接感应高压线 圏(约 15000V)释放的瞬间高电压,导致所有高导电性的纳米分子 33产生能阶变 化释放能量, 同时引燃全部油气分子团 32燃烧, 使所有的油气分子团 32无传 导扩散的时差而能均匀的同时燃烧, 防止燃烧不完全的积碳残留。
请参阅图 4 , 其应用于柴油引擎达致完全燃烧方法包含:
1、 当柴油由燃料供应端 41释出后, 使油料受剪力成为细小柴油分子 42 , 并沾附大量的纳米分子 43
2、 使柴油分子 42以高压(约 20000PSI)喷入引擎室压缩的高温热空气 (约 500-800°C )中, 因高灵敏感热的纳米分子 43具有超强的导热性, 使热能迅速扩 至所有柴油分子 42, 使的迅速且均勾的同步达到自燃温度。
3、 具有使柴油内燃机引擎达到完全燃烧的效果, 且无任何积碳的残留。 综上所述, 本发明至少具备以下的优点:
( 1 ) 因完全燃烧反应完全, 可节省不完全燃烧的油耗 1 1-36%, 平均可达
25%
( 2 )可提升引擎动力输出, 延长内燃机引擎机械寿命, 进而降低维修成本。 ( 3 ) 由于完全燃烧反应完全, 故可大幅降低排放 HC、 CO、 NOx等各种温 室效应气体, 其降低排放废弃的效率可提升至 37-70%。 ; ( 4 )可达到节省耗油以及延长矿化石油的使用年限争取替代能源的开发时 间等有形以及无形的经济效益。
此外, 本发明可有效抑制温室效应导致全球暖化的灾难现象, 为一实用的 方法。
以上说明对本发明而言只是说明性的, 而非限制性的, 本领域普通技术人员 理解, 在不脱离权利要求所限定的精神和范围的情况下, 可作出许多修改、 变化 或等效, 但都将落入本发明的保护范围之内。 ―

Claims

权利要求
1、 一种提升内燃机引擎燃烧效率的方法, 其特征是包括:
在内燃机引擎用汽油混合适量包含复数纳米分子的添加剂;
使每一油气分子团附着有大量的纳米分子;
当汽油由燃料供应端进入引擎燃烧室后, 使所有每一高导电性的纳米分子 直接受高压线圈感电, 产生能阶变化, 同时释放能量引燃所附着的每一油气分 子团, 达到所有油气分子团同时同步均匀的燃烧。
2、 根据权利要求 1所述的提升内燃机引擎燃烧效率的方法, 其特征在于: 所述的混合在内燃机引擎用汽油的添加剂, 是中空纳米碳球。
3、 一种提升内燃机引擎燃烧效率的方法, 其特征是包括:
在内燃机引擎用柴油中混合适量包含复数纳米分子的添加剂; .
使每一油气分子团附着有大量的纳米分子;
当柴油由燃料供应端释出后, 使油料受剪力成为细小柴油分子;
使柴油分子以高压喷入具高压高温热空气的引擎室中, 使柴油分子所附着 的具超强导热性的每一纳米分子, 迅速均匀同步传导热能, 使所附着的每一柴 油分子达到自燃温度, 达到完全燃烧的效果。
4、 根据权利要求 3所述的提升内燃机引擎燃烧效率的方法, 其特征在于: 所述的混合在内燃机引擎用柴油的添加剂, 是中空纳米碳球。
PCT/CN2009/000651 2008-07-11 2009-06-12 提升内燃机引擎燃烧效率的方法 WO2010003306A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810132316.0 2008-07-11
CN200810132316A CN101624935A (zh) 2008-07-11 2008-07-11 提升内燃机引擎燃烧效率的方法

Publications (1)

Publication Number Publication Date
WO2010003306A1 true WO2010003306A1 (zh) 2010-01-14

Family

ID=41506662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/000651 WO2010003306A1 (zh) 2008-07-11 2009-06-12 提升内燃机引擎燃烧效率的方法

Country Status (2)

Country Link
CN (1) CN101624935A (zh)
WO (1) WO2010003306A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109424392B (zh) * 2017-08-31 2021-06-04 南京理工大学 基于纳米流体燃料的高效低污染燃烧系统
CN110094757B (zh) * 2019-04-25 2020-07-31 江苏大学 一种基于电控电磁铁和纳米燃油相结合的燃烧系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1472287A (zh) * 2002-08-04 2004-02-04 杰 程 纳米燃油添加剂
CN1556178A (zh) * 2004-01-06 2004-12-22 孙文郁 一种发动机混合油气燃烧助剂
US20070036912A1 (en) * 2005-08-10 2007-02-15 Mercuri Robert A Continuous process and apparatus for the production of engineered catalyst materials
CN101082005A (zh) * 2006-05-29 2007-12-05 张贵洲 纳米燃油添加剂

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1472287A (zh) * 2002-08-04 2004-02-04 杰 程 纳米燃油添加剂
CN1556178A (zh) * 2004-01-06 2004-12-22 孙文郁 一种发动机混合油气燃烧助剂
US20070036912A1 (en) * 2005-08-10 2007-02-15 Mercuri Robert A Continuous process and apparatus for the production of engineered catalyst materials
CN101082005A (zh) * 2006-05-29 2007-12-05 张贵洲 纳米燃油添加剂

Also Published As

Publication number Publication date
CN101624935A (zh) 2010-01-13

Similar Documents

Publication Publication Date Title
Bose et al. An experimental investigation on engine performance and emissions of a single cylinder diesel engine using hydrogen as inducted fuel and diesel as injected fuel with exhaust gas recirculation
Liu et al. Effects of diesel injection pressure on the performance and emissions of a HD common-rail diesel engine fueled with diesel/methanol dual fuel
Saravanan et al. An experimental investigation on DI diesel engine with hydrogen fuel
Kim et al. Evaluation of injection and ignition schemes for the ultra-lean combustion direct-injection LPG engine to control particulate emissions
Gatts et al. An experimental investigation of H2 emissions of a 2004 heavy-duty diesel engine supplemented with H2
Shah et al. Literature review and simulation of dual fuel diesel-CNG engines
Unni et al. Development of hydrogen fuelled transport engine and field tests on vehicles
KR102059848B1 (ko) 압축점화식 저옥탄가 가솔린엔진
CN101907025A (zh) 内燃机多燃料燃烧系统
US20120252130A1 (en) Particulate Matter Generator For Use With An Emissions Control Device Aging System
Guo et al. Combustion Analysis of Ammonia Fueled High Compression Ratio SI Engine with Glow Plug and Sub-Chamber-Effects of Ammonia Content under Condition of Co-combustion with Gasoline/Ammonia/Air
Sun et al. Particulate number and size distribution of dimethyl ether/gasoline combined injection spark ignition engines at medium engine speed and load
Aggarwal et al. Study of utilization of hydrogen as fuel in internal combustion engine
Yao et al. Experimental study on the effect of gaseous and particulate emission from an ethanol fumigated diesel engine
WO2010003306A1 (zh) 提升内燃机引擎燃烧效率的方法
CN102996223A (zh) 柴油机预混合燃烧系统
US20100139598A1 (en) Method of increasing the combustion efficiency of an internal combustion engine
CN113669183B (zh) 一种高效的低碳无碳灵活燃料燃烧系统
CN210068340U (zh) 船用甲醇/柴油双燃料发动机混合器
TWI359906B (zh)
CN112709633A (zh) 氢气与甲醇混合燃烧的动力系统及燃烧方法
CN204357588U (zh) 一种具有燃油气化装置的汽油内燃机
CN101240741A (zh) 缸内直喷天然气发动机稀薄分层燃烧室结构
CN1427142A (zh) 柴油机排气微粒过滤体燃气加热再生方法及所用设备
Chauhan et al. A Technical Review HCCI Combustion in Diesel Engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09793781

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09793781

Country of ref document: EP

Kind code of ref document: A1