WO2010003285A1 - 利用潮汐涨、落潮的双向发电系统 - Google Patents

利用潮汐涨、落潮的双向发电系统 Download PDF

Info

Publication number
WO2010003285A1
WO2010003285A1 PCT/CN2008/071580 CN2008071580W WO2010003285A1 WO 2010003285 A1 WO2010003285 A1 WO 2010003285A1 CN 2008071580 W CN2008071580 W CN 2008071580W WO 2010003285 A1 WO2010003285 A1 WO 2010003285A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
rack
power generation
seawater
generation system
Prior art date
Application number
PCT/CN2008/071580
Other languages
English (en)
French (fr)
Inventor
余家红
Original Assignee
深圳市红门科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市红门科技股份有限公司 filed Critical 深圳市红门科技股份有限公司
Priority to PCT/CN2008/071580 priority Critical patent/WO2010003285A1/zh
Publication of WO2010003285A1 publication Critical patent/WO2010003285A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/26Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using tide energy
    • F03B13/262Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using tide energy using the relative movement between a tide-operated member and another member
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Definitions

  • the present invention relates to seawater power generation technology, and in particular to a resource-rich, low-cost, fuel-free system
  • Tidal energy is the main form of sea energy. Due to the tidal force, seawater does not break the tide and ebb. The tidal wave is transformed into kinetic energy by the kinetic energy, and the tidal wave is transformed from the potential energy into the kinetic energy. The kinetic energy and potential energy of the sea water in the movement are tidal energy.
  • Tidal energy has long been used as an important source of seawater power generation.
  • the traditional tidal power generation is to form a reservoir in the dam or tidal estuary of the estuary, and to set up a hydroelectric generating unit in or near the dam, using the tidal fluctuations and the rise and fall of the sea water level to make the sea water push the water through the turbine
  • the wheel generator sets generate electricity.
  • This traditional tidal power generation method is similar to the traditional hydroelectric power generation method that forms a water level drop by constructing a dam, which has obvious limitations. First, it is difficult to form a large-scale power generation capacity due to the condition that the dam is constructed by terrain and the like.
  • the hydro-generator unit is large in size and needs to be fixedly built in the dam or beside the dam, so it can only be built and used under certain circumstances.
  • the present invention aims to solve the above problems, and provides a seawater area having no tidal energy resources, which is applicable to any sea area having tidal energy resources, and can realize two-way power generation of high tide and low tide, and the power generation capacity can be arbitrarily formulated, and the power generation cost is low.
  • a fuel-free, non-polluting two-way power generation system that uses sea tides and tides.
  • the present invention provides a two-way power generation system utilizing sea tide tidal rise and low tide, which Includes:
  • a floating vessel placed on the surface of the sea that can move up and down with the seawater, ebb and flow, and can be filled or discharged;
  • the charging and discharging device is disposed on the container, and the container is movably mounted on the positioning device, and the container is lifted up by the high tide seawater in the state of high tide, and reaches the high tide point to inject the sea water. , and can be descended downward or delayed with the ebb tide seawater, and the vessel drives the power generating device to generate electricity in the two-way process of uplink and downlink.
  • the container is a hollow, closed box or platform type floating body with a water storage capacity of more than 1,000 tons.
  • At the edge of the container there are at least three positioning holes which are vertically connected and sealed to the container, and a set of side pulleys which are in rolling contact with the positioning device are arranged on both sides of each positioning hole at the top and bottom of the container. At least one outlet and water inlet are provided on the side of the container.
  • At least one charging and discharging device is provided at at least one outlet and water inlet on the container.
  • the charging and discharging device comprises a shutter and a first rack and pinion mechanism, wherein the shutter is movably placed on the inner side of the container outlet and the water inlet, and the upper end is extended from the top of the container; the first gear rack mechanism A rack is mounted on the inner side of the shutter, and a gear that meshes with the first rack is mounted on a gear shaft that is coupled to the side wall of the container, and the gear shaft is coupled to the motor.
  • the positioning device comprises at least three upright positioning posts spaced at the proximal edge of the container, the lower end of the positioning post is fixed to the sea bottom, the column is placed on the container, and the container can be moved up and down along the positioning column
  • the power generating device may be a single group or a plurality of groups, each group of power generating devices including a column, one or more second rack and pinion mechanisms, a first shifting mechanism and a first generator, wherein the column is placed in the container The lower end is fixed to the sea bottom; the second rack and pinion mechanism is respectively disposed on the top of the container and the column; the input end and the output end of the first shifting mechanism are respectively connected with the second rack and pinion mechanism and the first generator, The outputs of the multiple sets of power plants are connected in parallel to the same output cable.
  • each second rack and pinion mechanism includes a second rack and a first drive gear, wherein the second rack is axially Fixed on the outer side of the column, the first driving gear meshed with the second rack is mounted on the first gearbox, and the first gearbox is provided with a first shifting mechanism of multi-speed shifting, and the output end of the shifting mechanism is first Generator connection.
  • the power generating device may be a single group or a plurality of groups, and each group of power generating devices includes a driving arm, a driving arm rear bracket, a driving arm front bracket, a third rack and pinion mechanism, and a second shifting The mechanism and the second generator, wherein the lower end of the rear arm of the driving arm is fixed on the top of the container, and the upper end is rotatably connected with the end of the driving arm; the front arm of the driving arm is fixed on the beach or the shore away from the container; the end of the driving arm and the driving arm are The bracket is rotatably connected, and the front portion of the driving arm and the front bracket of the driving arm are rotatably connected; the third rack and pinion mechanism is respectively disposed on the driving arm and the second gearbox, and is in the second gearbox mounted on the top of the bracket
  • the two shifting mechanisms are connected, the output end of the shifting mechanism is connected to the second generator, and the output ends of the plurality of power generating devices are connected in parallel
  • each of the third rack and pinion mechanisms includes a third rack and a second drive gear, wherein the third rack is a curved rack that is disposed substantially perpendicular to the drive arm at a front end portion of the drive arm, and The second driving gear meshed with the third rack is mounted on the second gearbox, and the second gearbox is provided with a second shifting mechanism of multi-speed shifting, and the output end of the shifting mechanism is connected to the second generator.
  • An electromagnetic clutch is connected to the power generating device, and the electromagnetic clutch is mounted on the main shaft of the first generator or the second generator.
  • the contribution of the present invention is that it solves the problem of how to more efficiently and more fully utilize tidal energy resources to generate electricity.
  • the power generating device of the present invention is not limited by the seaside terrain, and does not need to construct a water blocking dam and a reservoir, and can be installed in any sea area with tidal energy resources, so that the global tidal resources can be fully utilized and the coal for power generation can be saved a lot. And other limited resources.
  • the invention makes clever use of the kinetic energy and potential energy of the sea tide and the tide tidal, and realizes the two-way power generation of high tide and low tide.
  • the power generation capacity can be arbitrarily formulated, and power generation can be performed by a plurality of generator sets, thereby greatly improving power generation efficiency. Since tidal energy is a natural resource, the device of the present invention has low power generation cost, no fuel consumption, no pollution, and its large-scale application will effectively alleviate the situation of electric energy.
  • FIG. 1 is a schematic structural view of Embodiment 1 of the present invention in an ebb tide state, wherein FIG. 1A is an overall knot of an ebb tide Schematic diagram, Figure IB is a schematic diagram of the overall structure of the ebb tide in place, Figure 1C is a partial enlarged view of the charging and discharging device, Figure 1D is a partially enlarged schematic view of the power generating device, and Figure 1E is a top view of Figure 1A.
  • FIG. 2 is a schematic structural view of Embodiment 1 of the present invention in a high tide state, wherein FIG. 2A is a schematic view of the overall structure of the high tide, FIG. 2B is a schematic diagram of the overall structure of the high tide in-position water injection state, and FIG. 2C is a high tide in-position water filling completion. Schematic diagram of the overall structure of the state, Figure 2D is a schematic diagram of the overall structure of the end of the high tide and the beginning of the low tide.
  • FIG. 3 is a schematic structural view of Embodiment 2 of the present invention in an ebb tide state, wherein FIG. 3A is a schematic view of the overall structure of the ebb tide, FIG. 3B is a schematic view of the overall structure of the high tide, and FIG. 3C is a schematic diagram of the overall structure of the water inflow state.
  • Figure 3D is a top view of Figure 3A.
  • Figure 4 is a schematic view showing the structure of the electromagnetic clutch of the present invention, wherein Figure 4A is a schematic diagram of the braking state of the electromagnetic clutch, and Figure 4B is a schematic view showing the non-braking state of the electromagnetic clutch.
  • the two-way power generation system utilizing tidal rise and low tide of the present invention includes a container 10, a charging and discharging device 20, a positioning device 30, and a power generating device 40.
  • the container 10 is an inner hollow closed container welded by a stainless steel plate. It is a type of tank that floats on the sea surface and can move up and down with seawater rising and ebb tide.
  • the floating body can also be a larger platform floating body for multi-unit combined power generation.
  • the container 10 is formed by sealingly connecting the top plate 11, the bottom plate 12 and the side plate 13 to form a container having a rectangular or elliptical longitudinal section.
  • the shape of the periphery of the container may be circular, rectangular or other shapes, and should not It is limited, and the size of the container can be arbitrarily expanded according to the power generation capacity.
  • the container 10 is a container having a rectangular parallelepiped shape as a whole (see FIG. 1A, FIG. IE), and one of the four corners of the container 10 is provided for positioning.
  • the positioning hole 14 for the device 30 is vertically and horizontally penetrated.
  • the positioning hole may be circular or square, and is formed by vertically disposing the container in a container and welding the fixed stainless steel tube to the container 10.
  • a set of side pulleys 15 are disposed on each of the positioning holes 14 at the top and bottom of the container 10, and each set of side pulleys includes four pulleys 151 symmetrically disposed, and the side pulleys are in rolling contact with the positioning device 30, so that the container 10 does not The positioning device is stuck to each other due to the swing.
  • two outlet and water inlets 131 are provided on the side of the container 10. The water inlet and the water inlet are opened in the middle and lower portions of the side plate 13 of the container 10. Or formed by a gap.
  • a charging and discharging device 20 is disposed at each of the two outlets and water inlets 131 of the container 10.
  • the charging and discharging device 20 includes a shutter 21, a first rack and pinion mechanism 22, and a motor.
  • the shutter 21 is a plate-shaped body having a width larger than the outlet, the water inlet 131, and a height higher than the height of the container side plate 13, and is movably placed inside the container outlet and the water inlet 131, and the contact portion with the container 10 is inlaid.
  • the first rack and pinion mechanism 22 is constituted by a first rack 221 and a gear 222 which is fixed in the vertical direction to the inner upper portion of the shutter 21 in the vertical direction.
  • a gear 222 that meshes with the first rack is mounted on a gear shaft 223 that is placed on the side wall of the container 10, and the gear shaft is coupled to the motor 23 that can be reversed.
  • the starter motor 23 drives the gear 222 to rotate, the gear 222 pushes the first rack 221 upward, opens the water inlet 131, and drains the water.
  • the motor reverses.
  • the water inlet 131 is closed; when the container 10 is operated to the high point of the high tide, the seawater is injected into the container 10 through the water inlet and outlet 131, so that the container 10 is powered down by gravity.
  • the container 10 is movably mounted on the positioning device 30, and the positioning device is a plurality of positioning posts.
  • the cross-sectional shape of the positioning post is the shape of the positioning hole 14 on the container 10.
  • the diameter or maximum peripheral dimension of the locating post is slightly smaller than the diameter or perimeter dimension of the locating aperture 14 in the container 10 such that the container 10 can slide up and down over the locating post.
  • the positioning means includes at least three upright positioning posts 30 which are placed in the positioning holes 14 which are equally spaced in the circumferential direction of the container 10. As shown in FIG.
  • a positioning post 30 is disposed in each of the positioning holes 14 near the four corners of the container 10.
  • the lower end of the positioning post is fixed to the sea bottom, and the column is worn.
  • the positioning hole 14 in the container 10 is passed through, and the container 10 can be moved up and down along the positioning post.
  • a power generating device 40 is disposed on the container 10, and the power generating device is a mechanical speed increasing power generating device that drives the generator set to generate electricity by tidal fluctuations, which may be a single group. Or multiple groups.
  • each group of power generating devices includes a column 41, two second rack and pinion mechanisms 4, a first shifting mechanism 43 and a first generator 44, as seen in FIGS. 1D and 1E, the column 41 is a cylindrical body having a circular or square cross section, which is placed in the column hole 16 in the middle of the container 10, and its lower end is fixed to the sea floor.
  • the column hole structure is the same as the positioning hole 14, and the diameter or peripheral dimension of the column 41 is larger than the diameter of the column hole 16 Or the peripheral dimensions allow the container 10 to move up and down along the uprights 41.
  • Each of the second rack and pinion mechanisms includes a second rack 421 and a first driving gear 422 that is engaged therewith.
  • the two second racks 421 in this embodiment are axially symmetrically fixed to the outside of the column 41, two The first driving gears 422 are respectively mounted on the two first gearboxes 423.
  • the gear shafts of the first driving gears 422 are mounted in the casing, and a part of the gear teeth of the driving gears protrudes out of the first gearbox 423.
  • Each of the first gearboxes is provided with a multi-step shifting first shifting mechanism 43.
  • the first shifting mechanism is a multi-stage gear shifting mechanism, and the number of shifting stages and parameters can be designed according to the generating capacity, or the applicable conventional routine is selected. Gear shifting mechanism.
  • the outputs of the two first shifting mechanisms are coupled to two first generators 44, respectively. It is obvious that the outside of the second rack and pinion mechanism 42, the first shifting mechanism 43, and the first generator 44 may be provided with a sealed casing (not shown) to prevent seawater from entering.
  • Three sets of independently generated power generating devices 40 are shown in FIG. 1E, but are merely illustrative and not limited thereto.
  • a plurality of sets of power generating devices 40 can be disposed thereon, the output ends of the plurality of sets of power generating devices are connected in parallel to the same output cable 430, and the cable 430 is connected to the coast. Power distribution room 46.
  • FIG. 1 and FIG. 2 respectively show the working state of the bidirectional power generation system of the present invention in the state of seawater rising and low tide.
  • the tide vessel ⁇ the container 10 is lifted upward by the high tide seawater in the empty state, and the first driving gear 422 fixed to the top of the container and the fixed on the column 41 during the rising of the container 10
  • the second racks 42 1 are engaged with each other and run upward in synchronization with the container 10.
  • the first driving gear is driven to rotate by the fixed second rack 421, and thus the first shifting mechanism 43 capable of multi-step shifting speeds up step by step, when the speed increases to the last level of the squat
  • the speed required for power generation is reached, and the first generator 44 is started to generate power, and the current generated by the first generator 44 is sent to the power distribution room 46 via the cable 430.
  • the system of the present invention can generate electricity in two ways, one of which is to cause the vessel 10 to fall down in synchronization with the ebb tide seawater to generate electricity, and the other is to cause the vessel 10 to lag behind when it is filled with seawater, relying on itself Gravity falls to generate electricity.
  • the second mode is shown in FIG. 2D.
  • the electromagnetic clutch 50 shown in FIG. 1D and FIG. 4 can cause the container 10 to stay at a high point of the high tide, and then generate electricity by its own gravity drop. It is possible to control the speed at which the container 10 falls and the amount of power generated.
  • the power generation process of the ebb tide is as described above.
  • the electromagnetic clutch 50 is configured as shown in FIG. 4, and the electromagnetic clutch is mounted on the main shafts 441 and 411 of the first generator 44 or the second generator 410, and the structure thereof is as shown in FIG. 4A and FIG. 4B.
  • the electromagnetic clutch includes a solenoid coil 51 and a clutch disc 52. As shown in Fig. 4B, when the solenoid 51 is de-energized, the clutch disc 52 is separated therefrom, and the first generator 44 or the second generator 410 can operate normally.
  • the power generating device can also be realized by another scheme.
  • the power generating devices 40 may be a single group or a plurality of groups, and FIG. 3D shows two sets of power generating devices.
  • each group of power generating devices includes a driving arm 45, a driving arm rear bracket 46, a driving arm front bracket 47, a third rack and pinion mechanism 48, a second shifting mechanism 49, and a second generator 410.
  • the driving arm rear bracket 46 is a straight rod or a triangular bracket.
  • the rear bracket 46 is a triangular bracket, the lower end of which is fixed to the top of the container 10, and the upper end thereof is fixed with a crossbar 461 rotatably connected with the driving arm 45. .
  • the driving arm front bracket 47 is a load-bearing supporting body fixed to a beach or a bank away from the container 10.
  • the front bracket may be a steel bracket or a cement-made bracket, and a transverse shaft hole is provided at an upper end thereof.
  • the driving arm 45 is disposed in a lateral direction, and a distal end of the driving arm is provided with a strip-shaped sliding hole 451 for adjusting the mounting position.
  • a position of the driving arm corresponding to the driving arm front bracket 47 is provided with a horizontal shaft hole.
  • the crossbar 461 of the upper end of the drive arm rear bracket is movably inserted into the strip-shaped slide hole 451 of the drive arm 45 to form a rotatable connection, so that the drive arm 45 can be rotated about the crossbar 461.
  • the front portion of the drive arm is rotatably mounted on a fixed shaft 452 fixed in a transverse shaft hole on the front bracket 47 of the drive arm to form a rotatably coupled connection with the front bracket 47 of the drive arm.
  • the third rack and pinion mechanism 48 includes a a three-rack 481 and a second driving gear 482, the third rack 481 is a curved rack, which is disposed substantially perpendicular to the driving arm 45 at the front end of the driving arm, and can be integrally formed with the driving arm for The second driving gear 482 is driven to rotate.
  • the second driving gear 482 meshing with the third rack is mounted on the second gearbox 491, the axle of the second driving gear is mounted in the second gearbox 491, and the partial gear teeth of the second driving gear are extended to the second gear Outside the gearbox.
  • the second gearbox is provided with a multi-speed shifting second shifting mechanism 49, which is a multi-stage gear shifting mechanism, the output of which is connected to the second generator 410.
  • the second gearbox 491 is disposed on the top of the bracket 420 opposite to the third rack 481 of the drive arm, and the bracket 420 is fixed to the outside of the third rack 481.
  • the outputs of the plurality of sets of power generating devices 40 are connected in parallel to the same output cable 430. Cable 430 is then connected to power distribution room 46.
  • 3A and 3B show the working state of the power generating device 40 according to Embodiment 2 in a state of rising and falling tides of seawater.
  • the container 10 when the container 10 is operated to a high point of the high tide, the container 10 can be filled with seawater through the charging and discharging device 20, and power can be generated by causing the container 10 to fall down with the ebb tide seawater, or to be charged.
  • the container 10 into the seawater lags down and generates electricity by falling by its own gravity. The process is the same as in the first embodiment.

Abstract

一种利用潮汐涨、落潮的双向发电系统,它包括一个置于海面上可随海水涨、退潮上下移动,并可充入或放出海水的浮动式容器(10);对所述容器(10)充、放海水的充、放水装置(20);对所述容器(10)进行定位和引导其上下移动的定位装置(30);及与所述容器(10)相连的发电装置(40)。充、放水装置(20)设于容器(10)上,容器(10)则活动地装设于所述定位装置(30)上,容器(10)在涨潮时在排空状态下由涨潮海水托浮上行,到达涨潮高点时注入海水,并可与落潮海水同步下行或滞后下行,容器(10)在上行和下行的双向过程中带动发电装置(40)发电。

Description

说明书 利用潮汐涨、 落潮的双向发电系统
[1] 【技术领域】
[2] 本发明涉及海水发电技术, 特别是涉及一种资源丰富, 成本低廉, 无燃料消耗
, 无污染的利用海水潮汐涨、 落潮的双向发电系统。
[3] 【背景技术】
[4] 海洋是地球的重要组成部分, 占地球表面的 3/4, 其蕴藏着丰富的资源和巨大 的能量, 潮汐能即为海水能量的主要表现形式。 海水由于引潮力的作用, 而不 断地涨潮、 落潮。 涨潮吋由动能转化为势能, 落潮吋则由势能转化为动能, 海 水的这种在运动吋所具有的动能和势能即为潮汐能。
[5] 潮汐能早已为人们利用作为重要的海水发电资源。 传统的潮汐发电是在海湾或 有潮汐的河口建筑拦水堤坝而形成水库, 并在坝中或坝旁设置水轮发电机组, 利用潮汐涨落吋海水水位的升降, 使海水通过水轮机吋推动水轮发电机组发电 。 这种传统的潮汐能发电方式类似于传统的通过构筑水坝形成水位落差的水力 发电方式, 其具有明显的局限性, 一是由于构筑水坝受地形等条件所限难以形 成大规模的发电容量。 其次, 如要实现涨潮、 落潮吋的双向发电, 需构筑两个 水库, 这同样受限于水坝受地形等条件。 此外, 传统的潮汐能发电方式中, 其 水轮发电机组体积较大, 且需固定建造于坝中或坝旁, 因此只能在特定的环境 下才能建造和使用。
[6] 我国及全球范围的潮汐能资源十分丰富, 如何摆脱地形等环境因素的束缚, 而 能够灵活地在所有具备潮汐能资源的海域实现潮汐能发电, 就成为摆在我们面 前的急需解决的重要课题。
[7] 【发明内容】
[8] 本发明旨在解决上述问题, 而提供一种不受海边地形限制, 适用于任何具有潮 汐能资源的海域, 可实现涨潮、 落潮的双向发电, 发电容量可任意配制, 发电 成本低廉, 无燃料消耗, 无污染的利用海水潮汐涨、 落潮的双向发电系统。
[9] 为实现上述目的, 本发明提供一种利用海水潮汐涨、 落潮的双向发电系统, 它 包括:
[10] 一个置于海面上可随海水涨、 退潮上下移动, 并可充入或放出海水的浮动式容 器;
[11] 对所述容器充、 放海水的充、 放水装置;
[12] 对所述容器进行定位和引导其上下移动的定位装置; 及
[13] 与所述容器相连的发电装置, 其中,
[14] 所述充、 放水装置设于容器上, 容器则活动地装设于所述定位装置上, 容器在 涨潮吋在排空状态下由涨潮海水托浮上行, 到达涨潮高点吋注入海水, 并可与 落潮海水同步下行或滞后下行, 容器在上行和下行的双向过程中带动发电装置 发电。
[15] 容器为内部中空的密闭的箱式或平台式浮体, 其贮水吋重量为千吨级以上。
[16] 在容器靠近边缘处设有至少三个上下贯通, 且与容器密封连接的定位孔, 在容 器顶部和底部位于每个定位孔两侧各设有一组与定位装置滚动接触的侧滑轮, 在容器的侧面设有至少一个出、 入水口。
[17] 在容器上的至少一个出、 入水口处设有至少一个充、 放水装置。
[18] 充、 放水装置包括闸板及第一齿轮齿条机构, 其中, 闸板活动地置于容器出、 入水口的内侧, 其上端由容器顶部伸出; 第一齿轮齿条机构的第一齿条装在闸 板的内侧, 与第一齿条啮合的齿轮装在与容器侧壁连接的齿轮轴上, 齿轮轴则 与电机连接。
[19] 定位装置包括至少三根直立的定位柱, 它们间隔设置于容器的近边缘处, 该定 位柱的下端固定于海底, 其柱体穿置于容器上, 并使容器可沿定位柱上下移动
[20] 发电装置可以是单组或多组, 每组发电装置包括一根立柱, 一个或一个以上第 二齿轮齿条机构、 第一变速机构及第一发电机, 其中, 立柱穿置于容器的中部 , 其下端固定于海底; 第二齿轮齿条机构分别设置在容器顶部及立柱上; 第一 变速机构的输入端和输出端分别与第二齿轮齿条机构及第一发电机相连接, 多 组发电装置的输出端并联至同一输出电缆。
[21] 每个第二齿轮齿条机构包括第二齿条及第一主动齿轮, 其中, 第二齿条沿轴向 固定在立柱的外侧, 与第二齿条啮合的第一主动齿轮装在第一变速箱上, 第一 变速箱内设有多级变速的第一变速机构, 该变速机构的输出端与第一发电机连 接。
[22] 在本发明的另一方案中, 发电装置可以是单组或多组, 每组发电装置包括驱动 臂、 驱动臂后支架、 驱动臂前支架、 第三齿轮齿条机构、 第二变速机构及第二 发电机, 其中, 驱动臂后支架下端固定于容器顶部, 上端与驱动臂末端可转动 连接; 驱动臂前支架固定于远离容器的海滩或岸边; 驱动臂的末端与驱动臂后 支架可转动连接, 驱动臂前部与驱动臂前支架可转动连接; 第三齿轮齿条机构 分别置于驱动臂及第二变速箱上, 并与装在支架顶部的第二变速箱内的第二变 速机构连接, 该变速机构的输出端与第二发电机连接, 多组发电装置的输出端 并联至同一输出电缆。
[23] 每个第三齿轮齿条机构包括第三齿条及第二主动齿轮, 其中, 第三齿条为弧形 齿条, 它与驱动臂基本垂直地设置在驱动臂的前端部, 与第三齿条相啮合的第 二主动齿轮装在第二变速箱上, 第二变速箱内设有多级变速的第二变速机构, 该变速机构的输出端与第二发电机连接。
[24] 在发电装置上连接有电磁离合器, 该电磁离合器装在第一发电机或第二发电机 的主轴上。
[25] 本发明的贡献在于, 它解决了如何更有效地, 更充分地利用潮汐能资源发电的 问题。 本发明的发电装置不受海边地形限制, 无须构筑拦水堤坝和水库, 可设 置在任何具有潮汐能资源的海域, 因而可充分利用全球范围内的海洋潮汐资源 , 并可大量节约发电用的煤炭等有限的资源。 本发明巧妙利用了海水涨潮和退 潮吋的动能和势能, 实现了涨潮、 落潮的双向发电。 由于本发明的浮动式容器 的大小和容积可无限扩展, 使得发电容量可任意配制, 可由多个发电机组同吋 发电, 因而可大大提高发电效率。 由于潮汐能是一种天然资源, 因此本发明的 装置发电成本低廉, 无燃料消耗, 无污染, 其大规模应用将有效缓解电力能源 的状况。
[26] 【附图说明】
[27] 图 1是在退潮状态下本发明的实施例 1结构示意图, 其中, 图 1A为退潮吋整体结 构示意图, 图 IB为退潮到位吋整体结构示意图, 图 1C为充、 放水装置局部放大 示意图, 图 1D为发电装置局部放大示意图, 图 1E为图 1A的俯视图。
[28] 图 2是在涨潮状态下本发明的实施例 1结构示意图, 其中, 图 2A为涨潮吋整体结 构示意图, 图 2B为涨潮到位吋注水状态整体结构示意图, 图 2C为涨潮到位吋注 水完成状态整体结构示意图, 图 2D为涨潮结束、 退潮开始吋整体结构示意图。
[29] 图 3是在退潮状态下本发明的实施例 2结构示意图, 其中, 图 3A为退潮吋整体结 构示意图, 图 3B为涨潮吋整体结构示意图, 图 3C为涨潮到位吋注水状态整体结 构示意图, 图 3D为图 3A的俯视图。
[30] 图 4是本发明的电磁离合器结构示意图, 其中图 4A为电磁离合器制动状态示意 图, 图 4B为电磁离合器非制动状态示意图。
[31] 【具体实施方式】
[32] 下列实施例是对本发明的进一步解释和说明, 对本发明不构成任何限制。
[33] 实施例 1
[34] 参阅图 1、 图 2, 图 ΙΑ 图 1E, 图 2A〜图 2D中的 C为海水, D为海底。
本发明的利用潮汐涨、 落潮的双向发电系统包括容器 10、 充、 放水装置 20、 定 位装置 30及发电装置 40。 所述容器 10是由不锈钢板焊接而成的内部中空的密闭 容器, 它是一种浮于海面上, 可随海水涨、 退潮上下移动的千吨级以上, 最好 为万吨级的箱式浮体, 也可以是一种更大型的供多机组联合发电的平台式浮体 。 该容器 10由顶板 11、 底板 12及侧板 13密封连接而成, 形成纵截面为矩形或椭 圆形的容器, 很显然, 该容器的周边形状可以是圆形、 矩形或其它形状, 而不 应受到限制, 且容器的大小可根据发电容量而任意扩展。 在图 1A〜图 1E所示的实 施例中, 该容器 10是整体呈长方体形的容器 (见图 1A、 图 IE) , 在容器 10的靠 近四个角处各设有一个用于穿置定位装置 30用的上下贯通的定位孔 14, 该定位 孔可以是圆形或方形, 它由竖向设置于容器中, 并与容器 10焊接固定的不锈钢 管而形成。 在容器 10顶部和底部位于每个定位孔 14两侧各设有一组侧滑轮 15, 每组侧滑轮包括对称设置的四个滑轮 151, 该侧滑轮与定位装置 30滚动接触, 使 得容器 10不会因摇摆而与定位装置相互卡死。 如图 1A、 图 1E, 在容器 10的侧面 设有两个出、 入水口 131, 该出、 入水口是在容器 10的侧板 13的中下部开设窗口 或缺口而形成。
[35] 图 1C中, 在容器 10上的两个出、 入水口 131处各设有一个充、 放水装置 20, 该 充、 放水装置 20包括闸板 21、 第一齿轮齿条机构 22及电机 23, 所述闸板 21是宽 度大于出、 入水口 131, 高度大于容器侧板 13高度的板状体, 它活动地置于容器 出、 入水口 131的内侧, 其与容器 10的接触部位镶嵌有密封条, 闸板 21上端由容 器 10顶部伸出。 如图 ID, 所述第一齿轮齿条机构 22由第一齿条 221和齿轮 222构 成, 该第一齿条 221沿竖直方向固定在闸板 21的内侧靠中上部。 与第一齿条啮合 的齿轮 222装在穿置于容器 10侧壁上的齿轮轴 223上, 齿轮轴则与可正反转的电 机 23连接。 当容器 10到达退潮吋的低点吋, 可启动电机 23带动齿轮 222转动, 齿 轮 222则推动第一齿条 221向上移动, 打开出、 入水口 131将水排空, 水排空则电 机反转将出、 入水口 131关闭; 当容器 10运行到涨潮吋的高点吋, 则通过充、 放 水装置 20打开出、 入水口 131将海水注入容器 10, 以使容器 10在重力作用下下行 发电。
[36] 再如图 1C所示, 所述容器 10活动地装设于述定位装置 30上, 该定位装置为多根 定位柱, 定位柱的横截面形状是与容器 10上的定位孔 14形状相对应的圆形或方 形, 最好为方形, 定位柱的直径或最大外围尺寸略小于容器 10上的定位孔 14的 直径或周边尺寸, 使得容器 10可在定位柱上上下滑动。 在容器 10的周边形状 ( 即横截面形状) 为圆形的情况下, 该定位装置包括至少三个直立的定位柱 30, 它们穿置在沿容器 10的圆周方向等间距设置的定位孔 14中; 如图 IE, 在容器为 长方体形的情况下, 则在容器 10靠近四个角处的定位孔 14中各穿置一个定位柱 3 0, 该定位柱的下端固定于海底, 其柱体穿过容器 10上的定位孔 14, 并使容器 10 可沿定位柱上下移动。
如图 1A〜图 1E所示, 在容器 10上设有发电装置 40, 该发电装置是通过潮汐的涨 落使容器 10上下运动带动发电机组发电的机械增速式发电装置, 它可以是单组 或多组。 本实施例中, 每组发电装置包括一根立柱 41, 两个第二齿轮齿条机构 4 2、 第一变速机构 43及第一发电机 44, 在图 1D及图 1E中可见, 所述立柱 41是横截 面为圆形或方形的柱状体, 它穿置于容器 10中部的立柱孔 16中, 其下端固定于 海底。 立柱孔结构同定位孔 14, 立柱 41的直径或外围尺寸大于立柱孔 16的直径 或周边尺寸, 使得容器 10可沿立柱 41上下移动。 每个第二齿轮齿条机构包括一 个第二齿条 421及与之啮合的第一主动齿轮 422, 本实施例中的两个第二齿条 421 沿轴向对称固定在立柱 41的外侧, 两个第一主动齿轮 422分别装在两个第一变速 箱 423上, 第一主动齿轮 422的齿轮轴装在箱体内, 该主动齿轮的部分轮齿伸出 于第一变速箱 423之外。 每个第一变速箱内设有一个可多级变速的第一变速机构 43, 该第一变速机构为多级齿轮变速机构, 其变速级数及参数可根据发电容量 设计, 或选用适用的常规齿轮变速机构。 两个第一变速机构的输出端分别与两 个第一发电机 44连接。 很显然, 所述第二齿轮齿条机构 42、 第一变速机构 43及 第一发电机 44的外部可设置一密封壳 (图中未示出) , 以防海水进入。 图 1E中 示出了三组独立发电的发电装置 40, 但其仅为示意而并不局限于此。 实际上, 由于本发明中, 容器 10的大小不受限制, 因此其上可设置多组发电装置 40, 多 组发电装置的输出端并联至同一输出电缆 430, 电缆 430则连接至位于海岸上的 配电房 46。
[38] 图 1、 图 2分别示出了本发明的双向发电系统在海水涨、 退潮状态下的工作状态
[39] 首先参阅图 IB , 当海水退潮到低点吋, 可启动充、 放水装置 20的电机 23, 由其 带动齿轮 222转动, 齿轮 222则推动第一齿条 221向上移动, 打开容器 10的出、 入 水口 131将水排空, 水排空后电机反转将出、 入水口 131关闭, 水排空后的状态 如图 1A所示。
[40] 如图 2A所示, 涨潮吋, 容器 10在排空状态下由涨潮海水托浮上行, 在容器 10上 升过程中, 固定在容器顶部的第一主动齿轮 422与固定在立柱 41上的第二齿条 42 1相互啮合, 并与容器 10同步向上运行。 第一主动齿轮在向上移动的同吋被固定 不动的第二齿条 421推动而转动, 因此带动能够多级变速的第一变速机构 43逐级 增速, 当增速到最后一级吋便达到发电所需的转速, 并带动第一发电机 44开始 发电, 第一发电机 44所产生的电流经电缆 430输送到配电房 46。
[41] 如图 2B所示, 当容器 10运行到涨潮吋的高点吋, 可启动充、 放水装置 20的电机
23, 由其带动齿轮 222转动, 齿轮 222则推动第一齿条 221向上移动, 打开容器 10 的出、 入水口 131将海水注入容器 10, 当容器 10内充入约 80%容积的海水吋, 可 控制电机 23反转将出、 入水口 131关闭, 出、 入水口关闭后状态如图 2C所示。 容 器 10在注水后重量大幅增加, 为其进行重力发电提供了条件。
[42] 在退潮过程中, 本发明的系统可以两种方式发电, 其一是使容器 10与退潮海水 同步落下而发电, 其二是在容器 10中充入海水后使其滞后下行, 靠自身重力下 落而发电, 第二种方式如图 2D所示, 通过图 1D及图 4所示的电磁离合器 50可使容 器 10停留在涨潮吋的高点, 然后再通过其自身重力下落而发电, 此种方式可控 制容器 10下落的速度和发电量。 退潮吋的发电过程如上所述。
[43] 所述电磁离合器 50结构如图 4所示, 该电磁离合器装在第一发电机 44或第二发 电机 410的主轴 441、 411上, 其结构如图 4A、 图 4B所示, 该电磁离合器包括电磁 线圏 51、 离合盘 52。 如图 4B , 当电磁线圏 51断电吋, 离合盘 52与之相分离, 第 一发电机 44或第二发电机 410可正常运转。 如图 4A, 当电磁线圏 51通电吋, 离合 盘 52与之相吸合, 第一发电机 44或第二发电机 410的主轴停止转动, 并使得发电 装置 40停止运行, 因而使容器 10可停留在涨潮吋的高点而滞后下行。
[44] 实施例 2
[45] 本发明的利用潮汐涨、 落潮的双向发电系统中, 发电装置也可通过另一方案来 实现。
[46] 同实施例 1, 发电装置 40可以是单组, 也可以是多组, 图 3D示出了两组发电装 置。 如图 3A〜图 3C所示, 每组发电装置包括驱动臂 45、 驱动臂后支架 46、 驱动臂 前支架 47、 第三齿轮齿条机构 48、 第二变速机构 49及第二发电机 410, 所述驱动 臂后支架 46为直杆式或三角支架, 本例中, 后支架 46为三角支架, 其下端固定 于容器 10顶部, 其上端固接有与驱动臂 45可转动连接的横杆 461。 驱动臂前支架 47是起承重作用的支撑体, 它固定于远离容器 10的海滩或岸边, 该前支架可以 是钢支架或水泥筑成的支架, 在其上端设有横向轴孔。 所述驱动臂 45呈横向设 置, 其末端沿长度方向设有用于调整安装位置的条状滑孔 451, 驱动臂上与所述 驱动臂前支架 47对应的位置设有横向轴孔。 驱动臂后支架上端的横杆 461活动地 穿置于驱动臂 45的条状滑孔 451内, 形成可转动连接, 使驱动臂 45可绕横杆 461 转动。 驱动臂前部可转动地装在固定于驱动臂前支架 47上的横向轴孔内的固定 轴 452上, 与驱动臂前支架 47形成可转动连接。 所述第三齿轮齿条机构 48包括第 三齿条 481及第二主动齿轮 482, 所述第三齿条 481为弧形齿条, 它与驱动臂 45基 本垂直地设置在驱动臂的前端部, 它可与驱动臂一体形成, 用于驱动第二主动 齿轮 482转动。 与第三齿条相啮合的第二主动齿轮 482装在第二变速箱 491上, 第 二主动齿轮的轮轴装在第二变速箱 491内, 第二主动齿轮的部分轮齿伸出于第二 变速箱外。 第二变速箱内设有多级变速的第二变速机构 49, 该第二变速机构为 多级齿轮变速机构, 其输出端与第二发电机 410连接。 所述第二变速箱 491与驱 动臂的第三齿条 481相对地设置在支架 420顶部, 支架 420则固定在第三齿条 481 的外侧。 多组发电装置 40的输出端并联至同一输出电缆 430。 电缆 430则连接至 配电房 46。
[47] 图 3A、 图 3B示出了实施例 2所述发电装置 40在海水涨、 退潮状态下的工作状态
[48] 首先如图 3A所示, 涨潮吋, 容器 10在排空状态下由涨潮海水托浮上行, 在容器 10上升过程中通过驱动臂后支架 46对驱动臂 45末端产生向上的推力, 驱动臂 45 末端受力后逐渐向上抬起, 其前端则以前支架 47上的固定轴 452为支点向下转动 , 驱动臂转动吋由其前端的第三齿条 481推动第二主动齿轮 482转动, 并通过第 二变速机构 49带动第二发电机 410发电。 图 3B示出了容器 10上升至涨潮高点吋的 状态。
[49] 如图 3C, 当容器 10运行到涨潮吋的高点吋, 可通过充、 放水装置 20向容器 10内 充入海水, 并通过使容器 10与退潮海水同步落下而发电, 或使充入海水的容器 1 0滞后下行, 靠自身重力下落而发电。 其过程同实施例 1。

Claims

权利要求书
[1] 1、 一种利用潮汐涨、 落潮的双向发电系统, 其特征在于, 它包括:
一个置于海面上可随海水涨、 退潮上下移动, 并可充入或放出海水的浮动 式容器 (10) ;
对所述容器 (10) 充、 放海水的充、 放水装置 (20) ;
对所述容器 (10) 进行定位和引导其上下移动的定位装置 (30) ; 及 与所述容器 (10) 相连的发电装置 (40) , 其中,
所述充、 放水装置 (20) 设于容器 (10) 上, 容器 (10) 则活动地装设于 所述定位装置 (30)
上, 容器 (10) 在涨潮吋在排空状态下由涨潮海水托浮上行, 到达涨潮高 点吋注入海水, 并可与落潮海水同步下行或滞后下行, 容器 (10) 在上行 和下行的双向过程中带动发电装置 (40) 发电。
2、 如权利要求 1所述的利用潮汐涨、 落潮的双向发电系统, 其特征在于, 所述容器 (10) 为内部中空的密闭的箱式或平台式浮体, 其贮水吋重量为 千吨级以上。
3、 如权利要求 2所述的利用潮汐涨、 落潮的双向发电系统, 其特征在于, 在容器 (10) 靠近边缘处设有至少三个上下贯通, 且与容器 (10) 密封连 接的定位孔 (14) ' 在容器 (10) 顶部和底部位于每个定位孔 (14) 两侧 各设有一组与定位装置 (30) 滚动接触的侧滑轮 (15) , 在容器 (10) 的 侧面设有至少一个出、 入水口 (131) 。
4、 如权利要求 3所述的利用潮汐涨、 落潮的双向发电系统, 其特征在于, 在容器 (10) 上的至少一个出、 入水口 (131) 处设有至少一个充、 放水装 置 (20) 。
5、 如权利要求 4所述的利用潮汐涨、 落潮的双向发电系统, 其特征在于, 所述充、 放水装置 (20) 包括闸板 (21) 及第一齿轮齿条机构 (22) , 其 中, 闸板 (21) 活动地置于容器出、 入水口 (131) 的内侧, 其上端由容器
(10) 顶部伸出; 第一齿轮齿条机构 (22) 的第一齿条 (221) 装在闸板 ( 21) 的内侧, 与第一齿条啮合的齿轮 (222) 装在与容器 (10) 侧壁连接的 齿轮轴上, 齿轮轴则与电机 (23) 连接。
6、 如权利要求 1所述的利用潮汐涨、 落潮的双向发电系统, 其特征在于, 所述定位装置 (30) 包括至少三根直立的定位柱 (31) , 它们间隔设置于 容器 (10) 的近边缘处, 该定位柱的下端固定于海底, 其柱体穿置于容器 (10) 上, 并使容器 (10) 可沿定位柱上下移动。
7、 如权利要求 1所述的利用潮汐涨、 落潮的双向发电系统, 其特征在于, 所述发电装置 (40) 可以是单组或多组, 每组发电装置包括一根立柱 (41
) , 一个或一个以上第二齿轮齿条机构 (42) 、 第一变速机构 (43) 及第 一发电机 (44) , 其中, 立柱 (41) 穿置于容器 (10) 的中部, 其下端固 定于海底; 第二齿轮齿条机构 (42) 分别设置在容器 (10) 顶部及立柱 (4 1) 上; 第一变速机构 (43) 的输入端和输出端分别与第二齿轮齿条机构 ( 42) 及第一发电机 (44) 相连接, 多组发电装置 (40) 的输出端并联至同 一输出电缆。
8、 如权利要求 7所述的利用潮汐涨、 落潮的双向发电系统, 其特征在于, 每个第二齿轮齿条机构包括第二齿条 (421) 及第一主动齿轮 (422) , 其 中, 第二齿条 (421) 沿轴向固定在立柱 (41) 的外侧, 与第二齿条 (421 ) 啮合的第一主动齿轮 (422) 装在第一变速箱 (423) 上, 第一变速箱内 设有多级变速的第一变速机构 (43) , 该变速机构的输出端与第一发电机 (44) 连接。
9、 如权利要求 1所述的利用潮汐涨、 落潮的双向发电系统, 其特征在于, 所述发电装置 (40) 可以是单组或多组, 每组发电装置包括驱动臂 (45) 、 驱动臂后支架 (46) 、 驱动臂前支架 (47) 、 第三齿轮齿条机构 (48) 、 第二变速机构 (49) 及第二发电机 (410) , 其中, 驱动臂后支架 (46) 下端固定于容器 (10) 顶部, 上端与驱动臂 (45) 末端可转动连接; 驱动 臂前支架 (47) 固定于远离容器 (10) 的海滩或岸边; 驱动臂 (45) 的末 端与驱动臂后支架 (46) 可转动连接, 驱动臂前部与驱动臂前支架 (47) 可转动连接; 第三齿轮齿条机构 (48) 分别置于驱动臂 (45) 及第二变速 箱 (491) 上, 并与装在支架 (420) 顶部的第二变速箱内的第二变速机构 (49) 连接, 该变速机构的输出端与第二发电机 (410) 连接, 多组发电装 置 (40) 的输出端并联至同一输出电缆。
10、 如权利要求 9所述的利用潮汐涨、 落潮的双向发电系统, 其特征在于, 每个第三齿轮齿条机构 (48) 包括第三齿条 (481) 及第二主动齿轮 (482 ;) , 其中, 第三齿条 (481) 为弧形齿条, 它与驱动臂 (45) 基本垂直地设 置在驱动臂的前端部, 与第三齿条相啮合的第二主动齿轮 (482) 装在第二 变速箱 (491) 上, 第二变速箱内设有多级变速的第二变速机构 (49) , 该 变速机构的输出端与第二发电机 (410) 连接。
11、 如权利要求 7或 9所述的利用潮汐涨、 落潮的双向发电系统, 其特征在 于, 在发电装置 (40) 上连接有电磁离合器 (50) , 该电磁离合器装在第 一发电机 (44) 或第二发电机 (410) 的主轴上。
PCT/CN2008/071580 2008-07-08 2008-07-08 利用潮汐涨、落潮的双向发电系统 WO2010003285A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2008/071580 WO2010003285A1 (zh) 2008-07-08 2008-07-08 利用潮汐涨、落潮的双向发电系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2008/071580 WO2010003285A1 (zh) 2008-07-08 2008-07-08 利用潮汐涨、落潮的双向发电系统

Publications (1)

Publication Number Publication Date
WO2010003285A1 true WO2010003285A1 (zh) 2010-01-14

Family

ID=41506653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/071580 WO2010003285A1 (zh) 2008-07-08 2008-07-08 利用潮汐涨、落潮的双向发电系统

Country Status (1)

Country Link
WO (1) WO2010003285A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113958443A (zh) * 2021-10-20 2022-01-21 刘启栋 一种长时间浮于水表面的潮汐能发电装置
EP4239182A1 (en) * 2022-03-04 2023-09-06 Musbah Ali Lahib Hybrid power generation system using tidal energy

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4185464A (en) * 1978-03-20 1980-01-29 Rainey Don E Ocean tide energy converter having improved efficiency
US5435134A (en) * 1990-10-03 1995-07-25 Danish Wave Power Aps Wave activated power generation system
US5551237A (en) * 1994-04-04 1996-09-03 Johnson; Arthur F. Methods for producing hydroelectric power
CN1701176A (zh) * 2004-01-16 2005-11-23 株式会社竹内制作所 利用河水水流或海水水流的发电装置
CN101302989A (zh) * 2008-06-30 2008-11-12 深圳市红门科技股份有限公司 利用潮汐涨、落潮的双向发电系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4185464A (en) * 1978-03-20 1980-01-29 Rainey Don E Ocean tide energy converter having improved efficiency
US5435134A (en) * 1990-10-03 1995-07-25 Danish Wave Power Aps Wave activated power generation system
US5551237A (en) * 1994-04-04 1996-09-03 Johnson; Arthur F. Methods for producing hydroelectric power
CN1701176A (zh) * 2004-01-16 2005-11-23 株式会社竹内制作所 利用河水水流或海水水流的发电装置
CN101302989A (zh) * 2008-06-30 2008-11-12 深圳市红门科技股份有限公司 利用潮汐涨、落潮的双向发电系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113958443A (zh) * 2021-10-20 2022-01-21 刘启栋 一种长时间浮于水表面的潮汐能发电装置
CN113958443B (zh) * 2021-10-20 2023-12-12 国网浙江省电力有限公司文成县供电公司 一种长时间浮于水表面的潮汐能发电装置
EP4239182A1 (en) * 2022-03-04 2023-09-06 Musbah Ali Lahib Hybrid power generation system using tidal energy

Similar Documents

Publication Publication Date Title
JP5456938B2 (ja) 潮汐エネルギー蓄積、発電方法及びシステム
US7644805B2 (en) Power generation system
KR20210031001A (ko) 중력 전기 발전소 기술
CN102020329A (zh) 潮汐能海水淡化处理、发电系统及能源综合利用系统
TW201305432A (zh) 多動力波浪發電系統
US7932619B2 (en) Free renewable energy designs
WO2011099669A1 (ko) 파력 발전장치
CN101302989A (zh) 利用潮汐涨、落潮的双向发电系统
CN102192077B (zh) 波浪与潮汐能储能系统、方法和发电方法、系统
CN201943877U (zh) 波浪与潮汐能储能系统和发电系统
CN103644070A (zh) 潮汐能平台浮子发电机
RU2221933C2 (ru) Способ использования энергии морских волн и устройство для его осуществления
CN202001178U (zh) 潮汐能发电系统、储存系统及其倍率提升系统
CN101892940B (zh) 一种利用潮汐能的双向发电装置
CN203214231U (zh) 一种浮体发电装置
WO2010003285A1 (zh) 利用潮汐涨、落潮的双向发电系统
CA2532217C (en) Power generation system
CN202300812U (zh) 潮流势能发电装置
CN200999690Y (zh) 轮索式海浪能量转换装置
CN100430595C (zh) 轮索式海浪能量转换装置
EP2894328A1 (en) Rigid body dynamics-based hydropower technology
CN201704095U (zh) 潮汐能海水淡化处理、发电系统及能源综合利用系统
CN202756169U (zh) 双向泵潮汐势能发电装置
CN112539132A (zh) 一种适应型可发电防洪堤
CN203756430U (zh) 一种能自行移位的潮流能发电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08773134

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08773134

Country of ref document: EP

Kind code of ref document: A1