WO2010002500A3 - Nitrogen liquefier retrofit for an air separation plant - Google Patents

Nitrogen liquefier retrofit for an air separation plant Download PDF

Info

Publication number
WO2010002500A3
WO2010002500A3 PCT/US2009/043558 US2009043558W WO2010002500A3 WO 2010002500 A3 WO2010002500 A3 WO 2010002500A3 US 2009043558 W US2009043558 W US 2009043558W WO 2010002500 A3 WO2010002500 A3 WO 2010002500A3
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
nitrogen
pressure column
production
higher pressure
Prior art date
Application number
PCT/US2009/043558
Other languages
French (fr)
Other versions
WO2010002500A2 (en
Inventor
David Ross Parsnick
Todd Alan Skare
Original Assignee
Praxair Technology, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=41445836&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2010002500(A3) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Praxair Technology, Inc. filed Critical Praxair Technology, Inc.
Priority to BRPI0914327A priority Critical patent/BRPI0914327A2/en
Priority to EP09773952A priority patent/EP2307835B1/en
Priority to AT09773952T priority patent/ATE548620T1/en
Priority to ES09773952T priority patent/ES2383781T3/en
Priority to MX2010013697A priority patent/MX2010013697A/en
Publication of WO2010002500A2 publication Critical patent/WO2010002500A2/en
Publication of WO2010002500A3 publication Critical patent/WO2010002500A3/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/0489Modularity and arrangement of parts of the air fractionation unit, in particular of the cold box, e.g. pre-fabrication, assembling and erection, dimensions, horizontal layout "plot"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04218Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
    • F25J3/04224Cores associated with a liquefaction or refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04339Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of air
    • F25J3/04345Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of air and comprising a gas work expansion loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04351Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04351Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • F25J3/04357Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen and comprising a gas work expansion loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04393Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04678Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser cooled by oxygen enriched liquid from high pressure column bottoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04703Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser being arranged in more than one vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04709Producing crude argon in a crude argon column as an auxiliary column system in at least a dual pressure main column system
    • F25J3/04715The auxiliary column system simultaneously produces oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04872Vertical layout of cold equipments within in the cold box, e.g. columns, heat exchangers etc.
    • F25J3/04878Side by side arrangement of multiple vessels in a main column system, wherein the vessels are normally mounted one upon the other or forming different sections of the same column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04969Retrofitting or revamping of an existing air fractionation unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/04Processes or apparatus using separation by rectification in a dual pressure main column system
    • F25J2200/06Processes or apparatus using separation by rectification in a dual pressure main column system in a classical double column flow-sheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/34Processes or apparatus using separation by rectification using a side column fed by a stream from the low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/50Oxygen or special cases, e.g. isotope-mixtures or low purity O2
    • F25J2215/56Ultra high purity oxygen, i.e. generally more than 99,9% O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/58Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being argon or crude argon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/10Mathematical formulae, modeling, plot or curves; Design methods

Abstract

A method is disclosed for increasing liquid production involving retrofitting an existing air separation plant with a nitrogen liquefier. The nitrogen liquefier liquefies a nitrogen-rich vapor stream (130) withdrawn from the higher pressure column (44) to return a nitrogen-rich liquid stream (132) to the higher pressure column. This increases liquid nitrogen reflux to the higher pressure column to in turn increase the production of liquid oxygen containing column bottoms of the higher pressure column and therefore, the production of oxygen-rich liquid (96) in the lower pressure column (46). The increased production of the oxygen-rich liquid allows a liquid oxygen product to be taken at an increased rate or for the liquid oxygen product to be taken in the first instance, if the plant is not designed to produce such a product. Also liquid nitrogen and argon products can be produced at an increased rate as a result of the retrofit.
PCT/US2009/043558 2008-06-30 2009-05-12 Nitrogen liquefier retrofit for an air separation plant WO2010002500A2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
BRPI0914327A BRPI0914327A2 (en) 2008-06-30 2009-05-12 method for retrofitting an existing air separation installation
EP09773952A EP2307835B1 (en) 2008-06-30 2009-05-12 Nitrogen liquefier retrofit for an air separation plant
AT09773952T ATE548620T1 (en) 2008-06-30 2009-05-12 NITROGEN CONDENSER RETROFIT FOR AN AIR SEPARATION SYSTEM
ES09773952T ES2383781T3 (en) 2008-06-30 2009-05-12 Reconditioning of nitrogen blender for an air separation plant
MX2010013697A MX2010013697A (en) 2008-06-30 2009-05-12 Nitrogen liquefier retrofit for an air separation plant.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/164,269 2008-06-30
US12/164,269 US20090320520A1 (en) 2008-06-30 2008-06-30 Nitrogen liquefier retrofit for an air separation plant

Publications (2)

Publication Number Publication Date
WO2010002500A2 WO2010002500A2 (en) 2010-01-07
WO2010002500A3 true WO2010002500A3 (en) 2010-09-30

Family

ID=41445836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2009/043558 WO2010002500A2 (en) 2008-06-30 2009-05-12 Nitrogen liquefier retrofit for an air separation plant

Country Status (9)

Country Link
US (1) US20090320520A1 (en)
EP (1) EP2307835B1 (en)
KR (1) KR20110026435A (en)
CN (1) CN101619917A (en)
AT (1) ATE548620T1 (en)
BR (1) BRPI0914327A2 (en)
ES (1) ES2383781T3 (en)
MX (1) MX2010013697A (en)
WO (1) WO2010002500A2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010056560A1 (en) * 2010-08-13 2012-02-16 Linde Aktiengesellschaft Method for recovering compressed oxygen and compressed nitrogen by low temperature degradation of air in e.g. classical lime dual column system, for nitrogen-oxygen separation, involves driving circuit compressor by external energy
CN102620520B (en) * 2012-04-09 2014-09-17 开封黄河空分集团有限公司 Process for preparing pressure oxygen and pressure nitrogen as well as by-product liquid argon through air separation
DE102012008416A1 (en) * 2012-04-27 2013-10-31 Linde Aktiengesellschaft Casing module for air separation plant
EP2980514A1 (en) * 2014-07-31 2016-02-03 Linde Aktiengesellschaft Method for the low-temperature decomposition of air and air separation plant
US10314249B2 (en) * 2014-12-10 2019-06-11 The Boeing Company Systems and methods of inducing rainfall
AU2018269511A1 (en) 2017-05-16 2019-11-28 Terrence J. Ebert Apparatus and process for liquefying gases
JP7355978B2 (en) * 2019-04-08 2023-10-04 レール・リキード-ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Cryogenic air separation equipment
CN112781321B (en) * 2020-12-31 2022-07-12 乔治洛德方法研究和开发液化空气有限公司 Air separation device with nitrogen liquefier and method
WO2023083488A1 (en) * 2021-11-10 2023-05-19 Linde Gmbh Method and arrangement for producing an argon product and an oxygen product, and method for retrofitting one or more air fractionation plants
US11959701B2 (en) * 2022-07-28 2024-04-16 Praxair Technology, Inc. Air separation unit and method for production of high purity nitrogen product using a distillation column system with an intermediate pressure kettle column

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5345773A (en) * 1992-01-14 1994-09-13 Teisan Kabushiki Kaisha Method and apparatus for the production of ultra-high purity nitrogen
EP1873469A2 (en) * 2006-06-30 2008-01-02 Air Products and Chemicals, Inc. System to increase capacity of LNG-based liquefier in air separation process
WO2010030427A2 (en) * 2008-09-10 2010-03-18 Praxair Technology, Inc. Air separation refrigeration supply method

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4433990A (en) * 1981-12-08 1984-02-28 Union Carbide Corporation Process to recover argon from oxygen-only air separation plant
JPS62194176A (en) * 1986-02-19 1987-08-26 株式会社日立製作所 Method of supplying nitrogen liquefier with nitrogen gas
US4778497A (en) * 1987-06-02 1988-10-18 Union Carbide Corporation Process to produce liquid cryogen
DE3738559A1 (en) * 1987-11-13 1989-05-24 Linde Ag METHOD FOR AIR DISASSEMBLY BY DEEP TEMPERATURE RECTIFICATION
US4894076A (en) * 1989-01-17 1990-01-16 Air Products And Chemicals, Inc. Recycle liquefier process
JP2582438B2 (en) * 1989-06-27 1997-02-19 株式会社神戸製鋼所 Air separation equipment
US5231835A (en) * 1992-06-05 1993-08-03 Praxair Technology, Inc. Liquefier process
DE19526785C1 (en) * 1995-07-21 1997-02-20 Linde Ag Method and device for the variable production of a gaseous printed product
US5611218A (en) * 1995-12-18 1997-03-18 The Boc Group, Inc. Nitrogen generation method and apparatus
US5582033A (en) * 1996-03-21 1996-12-10 Praxair Technology, Inc. Cryogenic rectification system for producing nitrogen having a low argon content
US5730003A (en) * 1997-03-26 1998-03-24 Praxair Technology, Inc. Cryogenic hybrid system for producing high purity argon
US5802873A (en) * 1997-05-08 1998-09-08 Praxair Technology, Inc. Cryogenic rectification system with dual feed air turboexpansion
GB9711258D0 (en) * 1997-05-30 1997-07-30 Boc Group Plc Air separation
US5799505A (en) * 1997-07-28 1998-09-01 Praxair Technology, Inc. System for producing cryogenic liquefied industrial gas
US6543253B1 (en) * 2002-05-24 2003-04-08 Praxair Technology, Inc. Method for providing refrigeration to a cryogenic rectification plant
US7090816B2 (en) * 2003-07-17 2006-08-15 Kellogg Brown & Root Llc Low-delta P purifier for nitrogen, methane, and argon removal from syngas
US6779361B1 (en) * 2003-09-25 2004-08-24 Praxair Technology, Inc. Cryogenic air separation system with enhanced liquid capacity

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5345773A (en) * 1992-01-14 1994-09-13 Teisan Kabushiki Kaisha Method and apparatus for the production of ultra-high purity nitrogen
EP1873469A2 (en) * 2006-06-30 2008-01-02 Air Products and Chemicals, Inc. System to increase capacity of LNG-based liquefier in air separation process
WO2010030427A2 (en) * 2008-09-10 2010-03-18 Praxair Technology, Inc. Air separation refrigeration supply method

Also Published As

Publication number Publication date
EP2307835A2 (en) 2011-04-13
KR20110026435A (en) 2011-03-15
MX2010013697A (en) 2010-12-21
CN101619917A (en) 2010-01-06
US20090320520A1 (en) 2009-12-31
EP2307835B1 (en) 2012-03-07
WO2010002500A2 (en) 2010-01-07
ES2383781T3 (en) 2012-06-26
BRPI0914327A2 (en) 2015-10-13
ATE548620T1 (en) 2012-03-15

Similar Documents

Publication Publication Date Title
WO2010002500A3 (en) Nitrogen liquefier retrofit for an air separation plant
WO2007145915A8 (en) Air separation method
WO2014135271A3 (en) Air separation plant, method for obtaining a product containing argon, and method for creating an air separation plant
WO2007068858A3 (en) Process for separating air by cryogenic distillation
CA2645047A1 (en) Cryognic air separation system
WO2009137213A3 (en) Method and apparatus for separating air
EP1134526A3 (en) Process for the production of oxygen and nitrogen
MXPA02001996A (en) Three-column system for the low-temperature fractionation of air.
TW200739015A (en) Air separation process utilizing refrigeration extracted from LNG for production of liquid oxygen
WO2015167699A3 (en) System and method for production of argon by cryogenic rectification of air
WO2019209672A3 (en) System and method for enhanced recovery of argon and oxygen from a nitrogen producing cryogenic air separation unit
WO2008155653A3 (en) Nitrogen rejection column reboiler configuration
WO2012136939A3 (en) Method and device for separating air by cryogenic distillation
WO2013052288A3 (en) Air separation method and apparatus
WO2006091363A3 (en) Cryogenic rectification system for neon production
WO2010139905A3 (en) Process and plant for recovering argon in a separation unit for a purge gas used in the synthesis of ammonia
WO2010021784A3 (en) Method and apparatus for separating air
WO2011084286A3 (en) Process and apparatus for the separation of air by cryogenic distillation
CN101857201A (en) Device for producing high-purity oxygen and krypton-xenon concentrate and using method thereof
WO2012107688A3 (en) Process and device for the cryogenic separation of a methane-rich stream
GB0422635D0 (en) Process for the cryogenic distillation of air
WO2013012540A3 (en) Air separation method and apparatus
JP2017536523A (en) Method and apparatus for variably obtaining argon by cryogenic separation
WO2012004241A3 (en) Apparatus and process for the separation of air by cryogenic distillation
WO2011084285A3 (en) Process and apparatus for the separation of air by cryogenic distillation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09773952

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 8075/DELNP/2010

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: MX/A/2010/013697

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 20107029373

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009773952

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0914327

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20101222