WO2010001582A1 - Mechanism for controlling pressure of compressed fluid, and spray device - Google Patents

Mechanism for controlling pressure of compressed fluid, and spray device Download PDF

Info

Publication number
WO2010001582A1
WO2010001582A1 PCT/JP2009/002998 JP2009002998W WO2010001582A1 WO 2010001582 A1 WO2010001582 A1 WO 2010001582A1 JP 2009002998 W JP2009002998 W JP 2009002998W WO 2010001582 A1 WO2010001582 A1 WO 2010001582A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressed fluid
piston
pressure control
storage container
pressure
Prior art date
Application number
PCT/JP2009/002998
Other languages
French (fr)
Japanese (ja)
Inventor
阿部亮平
Original Assignee
Abe Ryouhei
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abe Ryouhei filed Critical Abe Ryouhei
Priority to JP2010518912A priority Critical patent/JP5380445B2/en
Publication of WO2010001582A1 publication Critical patent/WO2010001582A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D83/00Containers or packages with special means for dispensing contents
    • B65D83/14Containers or packages with special means for dispensing contents for delivery of liquid or semi-liquid contents by internal gaseous pressure, i.e. aerosol containers comprising propellant for a product delivered by a propellant
    • B65D83/60Contents and propellant separated
    • B65D83/66Contents and propellant separated first separated, but finally mixed, e.g. in a dispensing head
    • B65D83/663Contents and propellant separated first separated, but finally mixed, e.g. in a dispensing head at least a portion of the propellant being separated from the product and incrementally released by means of a pressure regulator

Definitions

  • the present invention relates to a pressure control mechanism and a spraying device for a compressed fluid in which a compressed fluid such as liquefied carbon dioxide filled in a compressed fluid storage container is reduced to a certain pressure and injected.
  • This type of injection device is provided with a pressure control mechanism for controlling the injection pressure to a constant pressure in order to inject the contents enclosed in the container at a constant pressure.
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-114281
  • the ejected product and the compressed gas for injection are stored in separate containers, and the content takeout port is located at the position facing the compressed gas ejection hole of the injection control mechanism for controlling the compressed gas injection by reducing the pressure.
  • a spraying device that uses a suction action (Venturi effect) generated by a jet of compressed gas to suck up the sprayed material stored in a container, pulverize it into a mist, and spray it.
  • This type of spraying apparatus is also known which is provided with a gas pressure adjusting mechanism that adjusts the injection pressure of the compressed gas to be injected (Japanese Patent Laid-Open No. 2002-59044). JP 2002-114281 A JP 2002-59044 A
  • both the pressure control mechanism described in Patent Document 1 and the gas pressure adjusting mechanism described in Patent Document 2 are provided outside the container filled with compressed gas. It is difficult to further reduce the size of the entire apparatus for adjusting the gas pressure of the gas.
  • the present invention realizes further miniaturization of the control mechanism itself that controls the pressure reduction of the injection pressure of the compressed fluid such as liquefied carbon dioxide filled in the compressed fluid storage container, and further simplifies the mechanism. It is an object of the present invention to provide a pressure control mechanism and a spray device for a compressed fluid to be obtained.
  • the present invention provides a compressed fluid pressure control mechanism and a spray device capable of improving the hermeticity of a compressed fluid storage container filled with the compressed fluid and preventing leakage of the compressed fluid. Let it be a technical issue.
  • the present invention proposed to achieve the technical problem described above is a compressed fluid pressure control mechanism for controlling the pressure of a compressed fluid ejected from a compressed fluid storage container filled with the compressed fluid. Between a first position that is disposed in a compressed fluid storage container filled with fluid and closes a compressed fluid ejection hole provided in the compressed fluid storage container, and a second position that releases the ejection hole.
  • a first urging member that urges the valve body in the direction of a first position that closes the ejection hole, and a compressed fluid that is ejected from the ejection hole.
  • a cylinder part connected to the compressed fluid storage container; a piston that is movably disposed in the cylinder part and that moves the valve body in relation to a part of the valve body protruding from the ejection hole; One where the piston contacts the valve body A second urging member that urges the piston, and a pressure control chamber that is configured between the piston and the ejection hole and that is supplied with the compressed fluid ejected from the compressed fluid storage container.
  • the present invention includes an urging member displacing unit that variably controls the displacement amount of the second urging member to control the pressing urging force of the piston, and operates the urging member displacing unit to The pressure of the compressed fluid supplied to the pressure control unit is controlled by controlling the pressing biasing force of the piston.
  • valve body is provided with a further piston that is guided by a movement guide portion provided in the compressed fluid storage container and moves integrally with the valve body.
  • a communication portion is formed therebetween, and an air chamber into which the compressed fluid filled in the compressed fluid storage container flows is formed between the ejection hole closed by the valve body and the further piston.
  • the valve body constituting the present invention is a sharp body in which a sealing portion formed so as to reduce in diameter from the proximal end side toward the distal end side is formed on the distal end side, and sealing of the sharp body The ejection holes are closed by fitting the parts.
  • an urging force control mechanism for controlling the urging force of the second urging member is provided.
  • the second urging means is constituted by a compression coil spring, and the urging force control mechanism includes a spring compression operation member that controls the urging force of the compression coil spring by advancing and retracting the compression coil spring.
  • a lead-out hole for leading the compressed fluid supplied to the pressure control chamber to the outside is formed in the pressure control chamber.
  • the compressed fluid used in the present invention is preferably compressed liquefied carbon dioxide.
  • the present invention has a storage container that stores an injection material that is injected by the action of the pressure of the compressed fluid, and that includes an injection control mechanism that controls the injection of the injection material stored in the storage container.
  • a spray device in which a compressed fluid pressure control mechanism for controlling the pressure of a compressed fluid ejected from a compressed fluid storage container filled with a compressed fluid is disposed in the storage container, and is disposed in the storage container.
  • the pressure control mechanism is disposed in the compressed fluid storage container filled with the compressed fluid, and has a first position for closing the ejection hole of the compressed fluid provided in the compressed fluid storage container and a second position for releasing the ejection hole.
  • a valve body that moves between the first position, a first biasing member that biases the valve body in the direction of a first position that closes the ejection hole, and a compressed fluid that is ejected from the ejection hole.
  • Connected to the compressed fluid storage container to be supplied A cylinder portion, a piston that is movably disposed in the cylinder portion, and that moves the valve body in relation to a part of the valve body that protrudes from the ejection hole, and a piston that contacts the valve body.
  • a second urging member for urging in a contacting direction, a pressure control chamber configured between the piston and the ejection hole and supplied with a compressed fluid ejected from the compressed fluid storage container; and the pressure control.
  • the pressure of the compressed fluid supplied to the pressure control chamber and supplied to the storage container through the outlet hole is controlled to be reduced.
  • the storage container is formed of a synthetic resin molding.
  • the pressure control mechanism for controlling the pressure of the compressed fluid filled in the compressed fluid storage container controls the injection of the compressed fluid filled in the compressed fluid storage container filled with the compressed fluid. Since the valve body is provided, the device itself can be downsized.
  • the piston which moves this valve body linearly moves in the same direction in relation to the valve body which opens and closes the injection hole of the compressed fluid provided in the compressed fluid storage container, and the valve body.
  • the piston hole is opened and closed to supply the compressed fluid into the pressure control chamber, the force acting on the piston of the compressed fluid supplied to the pressure control chamber, and the piston that presses the valve body in the second position direction. Since the pressure control of the compressed fluid in the pressure control chamber is realized by the urging force acting on the pressure control device, the pressure control of the compressed fluid ejected from the compressed fluid storage container can be easily performed with a simpler mechanism.
  • valve body is provided with a further piston that moves integrally with the valve body, and an air chamber into which the compressed fluid flows is provided between the piston and the ejection hole closed by the valve body, thereby closing the ejection hole. Since the total pressure applied to the valve body can be reduced, the ejection hole can be easily opened and closed with a light force.
  • valve body is constituted by a sharp body and the ejection hole is closed only by the sharp body, the total pressure applied to the member closing the ejection hole can be further reduced, so that the ejection hole can be easily opened and closed with a light force. It is possible to control the pressure of the compressed fluid with high accuracy.
  • the compressed fluid pressure control mechanism includes an area of a surface on which a compressed fluid of a piston moving in the pressure control chamber acts and a biasing force of a biasing member that biases the piston. Since the pressure of the compressed fluid that is injected into the cylinder is controlled, the pressure control of the compressed fluid can be easily performed with high accuracy.
  • the second urging means for urging the piston is constituted by a compression coil spring, and a spring compression operation mechanism for controlling the urging force of the compression coil spring by controlling the urging force of the compression coil spring is provided. Since the force can be adjusted, the pressure of the compressed fluid ejected from the compressed fluid storage container can be freely changed.
  • the pressure control mechanism for a compressed fluid includes a compressed fluid storage container filled with a compressed fluid in a projectile storage container that stores a jetted product to be injected.
  • the device can be configured.
  • the present invention can supply the pressure-controlled compressed fluid to the storage container that stores the injected material to be directly injected, the injection device can be further miniaturized.
  • the storage container storing the ejected material is supplied with a compressed fluid controlled at a constant pressure, and the supply of the compressed fluid above a certain pressure is regulated, so that the inside of the storage container is overpressured. Can be prevented, and the safety of the storage container can be secured. Then, by forming the storage container with a synthetic resin molding, the appearance of the storage container can be freely selected, and mass production can be easily realized.
  • FIG. 1 is a cross-sectional view showing a spray apparatus using a pressure control mechanism according to the present invention.
  • FIG. 2 is an assembled perspective view showing main elements constituting the pressure control mechanism.
  • FIG. 3 is a cross-sectional view showing a valve body provided on the gas cartridge side.
  • FIG. 4 is a cross-sectional view of the spray device showing a state in which the carbon dioxide gas compressed from the gas cartridge is supplied to the pressure control chamber and the sprayed matter stored in the storage container can be injected.
  • FIG. 5 is a cross-sectional view of the pressure control mechanism showing a state in which the valve body is pressed by the first piston pressed by the urging force of the second coil spring to open the gas ejection hole.
  • FIG. 1 is a cross-sectional view showing a spray apparatus using a pressure control mechanism according to the present invention.
  • FIG. 2 is an assembled perspective view showing main elements constituting the pressure control mechanism.
  • FIG. 3 is a cross-sectional view showing a valve body provided on the
  • the pressure control mechanism of a compressed fluid to which the present invention is applied is used, for example, in a spray device that jets a spray such as a fragrance, a medicine, and an insecticide using the pressure of a compressed fluid, such as carbon dioxide. .
  • a spray device that jets a spray such as a fragrance, a medicine, and an insecticide using the pressure of a compressed fluid, such as carbon dioxide.
  • a spray device 1 using a pressure control mechanism of a compressed fluid to which the present invention is applied includes a storage container 3 that stores a jetted product 2 as shown in FIG.
  • the ejected matter 2 stored in the storage container 3 may be any one that can be injected using the pressure of compressed high-pressure carbon dioxide gas. , Insecticides, and powdery insecticides.
  • the storage container 3 is formed into a bottomed cylindrical shape using a metal material such as aluminum or a synthetic resin material.
  • a mechanism mounting portion 4 that protrudes in a cylindrical shape is integrally formed on the upper portion of the storage container 3, and the present invention, together with an injection control mechanism 5 that controls the injection of the ejected matter 2 through the mechanism mounting portion 4, provides the present invention.
  • the applied pressure control mechanism 6 is attached.
  • the pressure control mechanism 6 controls the compressed fluid stored in the compressed fluid storage container so as to be injected at a constant pressure.
  • a gas cartridge 8 is provided as a compressed fluid storage container filled with compressed carbon dioxide gas 7 compressed and liquefied as a compressed fluid.
  • the gas cartridge 8 is formed to have a strength sufficient to be filled with the carbon dioxide gas 7 compressed to a pressure of 70 to 80 kg / cm 2 . In this example, it is formed into a bottomed cylindrical shape using aluminum.
  • valve body case 10 On the opening 8a side of the gas cartridge 8, a valve body case 10 in which a valve body 9 for controlling the injection of the carbon dioxide gas 7 filled in the gas cartridge 8 is disposed is attached.
  • the valve body case 10 includes a case main body 11 formed in a cylindrical shape, and a sealing plate portion 12 provided so as to close the opening on the upper end side of the case main body 11.
  • the sealing plate portion 12 is provided with a gas ejection hole 13 for ejecting the compressed carbon dioxide gas 7 filled in the gas cartridge 8.
  • the gas ejection hole 13 is opened and closed by a valve body 9 that is movably disposed in the case body 11.
  • valve body case 10 is attached to the gas cartridge 8 by fitting the case body 11 so as to be inserted into the gas cartridge 8 from the opening 8a. At this time, the valve body case 10 is attached by positioning the attachment position with respect to the gas cartridge 8 by bringing the flange portion 14 protruding from the outer peripheral side of the sealing plate portion 12 into contact with the upper end surface of the gas cartridge 8. .
  • valve case 10 attached to the gas cartridge 8 is supported at the outer peripheral edge of the flange portion 14 by a support cap 15 screwed to the outer periphery on the upper end side of the gas cartridge 8.
  • the gas cartridge 8 is attached so as not to be detached.
  • the valve body 9 which opens and closes the gas ejection hole 13 is arrange
  • the valve body 9 is a pointed body in which a sealing portion 16 formed so as to reduce in diameter from the proximal end side toward the distal end side is formed on the distal end side. Is formed.
  • the sealing portion 16 formed in the valve body 9 is a portion that fits into the gas ejection hole 13 and seals the gas ejection hole 13, and is contracted from the shaft portion 9 a side on the proximal end side toward the distal end side. It is formed as a tapered portion so as to have a diameter.
  • the gas ejection hole 13 into which the sealing portion 16 is fitted is formed as a straight through hole as shown in FIG.
  • the gas ejection hole 13 By forming the gas ejection hole 13 as a straight through-hole, when the tapered sealing portion 16 is fitted into the gas ejection hole 13, the base side having a diameter larger than that of the distal end side is the gas ejection hole 13.
  • the gas ejection hole 13 can be reliably sealed by being in close contact with the periphery of the opening end on the insertion side.
  • the sealing portion 16 is formed with such a length that the tip portion can protrude from the gas ejection hole 13 by a predetermined amount when the gas ejection hole 13 is closed. That is, the sealing portion 16 is inserted into the gas ejection hole 13, and the middle portion of the inclined surface whose diameter gradually increases from the distal end side toward the proximal end side is fitted into the gas ejection hole 13 and locked. At this time, the front end of the sealing portion 16 is formed to have a length that protrudes from the gas ejection hole 13 by a predetermined amount.
  • the part which protruded from the gas ejection hole 13 of the sealing part 16 is used as the press operation part 27 operated by the 1st piston 17 which advances and retracts the valve body 9 with respect to the gas ejection hole 13 so that it may mention later.
  • valve body 9 formed as a sharp body is supported by a second piston 18 that is a further piston that moves in the case body 11 with the case body 11 as a movement guide portion, and the inside of the valve body case 10 is moved inside.
  • the valve body 9 is supported by the second piston 18 on the base end side, and moves in the direction indicated by the arrows Y 1 and Y 2 in FIG.
  • the valve body case 10 is movably disposed.
  • the valve body 9 is integrated with the second piston 18 to release the fitting of the sealing portion 16 from the first position where the sealing portion 16 is fitted and the gas ejection hole 13 is closed. It moves between the second positions where the ejection holes 13 are released.
  • the valve body 9 is moved and urged in the direction of the arrow Y 1 in FIG. 3 by a first coil spring 19 that is a first urging member disposed between the second piston 18 and the case body 11.
  • a first coil spring 19 that is a first urging member disposed between the second piston 18 and the case body 11.
  • the valve body 9 is fitted with the gas ejection hole 13 with the sealing portion 16 formed in a tapered shape while being biased by the first coil spring 19, and closes the gas ejection hole 13.
  • the first coil spring 19 is fitted to the locking step portion 18 a formed in the middle portion of the second piston 18 and the base end portion side of the case body 11. by being disposed in a compressed state between the spring support member 20, the sealing portion 16 biases fitted in FIG arrow Y 1 direction direction to seal the gas ejection holes 13 Yes.
  • the gas ejection hole 13 provided in the valve body case 10 is closed only by the tapered sealing portion 16 provided in the valve body 9 formed as a sharp body. That is, the movement of the valve body 9 is restricted in a state where the middle portion of the sealing portion 16 formed in a tapered shape is fitted in the gas ejection hole 13. Therefore, as shown in FIG. 1, the second piston 18 attached to the base end side of the valve body 9 is positioned in the middle of the case body 11 and is in a state of floating in the case body 11. ing.
  • the second piston 18 when the second piston 18 is in a state in which the tapered sealing portion 16 formed in the valve body 9 is fitted in the gas ejection hole 13 and the gas ejection hole 13 is closed, the second piston 18 In a state of being separated from each other, it is formed in such a size that a certain space is formed between the gas ejection holes 13.
  • a compressed fluid flow path is formed between the outer peripheral surface of the second piston 18 that slides in contact with the inner peripheral surface of the case main body 11 and the inner peripheral surface of the case main body 11 as shown in FIG.
  • a plurality of groove portions 21 are formed. These groove portions 21 are formed continuously from the proximal end portion side to the distal end portion side of the second piston 18.
  • the carbon dioxide gas 7 filled in the gas cartridge 8 is formed between the distal end surface of the second piston 18 and the gas ejection hole 13 through the groove portion 21 while being vaporized.
  • the space is filled. Therefore, the space formed between the second piston 18 and the gas ejection hole 13 is a gas filling chamber 22.
  • the compressed carbon dioxide gas 7 is also filled in the gas filling chamber 22, so that the pressure of the compressed carbon dioxide gas 7 is applied to the valve body 9 and the second piston 18 almost on the entire outer surface. It will work equally. Therefore, the valve body 9 and the second piston 18 can freely move in the valve body case 10.
  • the valve body 9, a state where the sealing portion 16 receives the 3 arrow Y 1 direction biasing force of the first coil spring 19 is fitted to the gas ejection holes 13, and closing the gas ejection holes 13 To maintain.
  • the gas ejection hole 13 is closed by moving and energizing the valve body 9 built in the gas filling portion filled with the compressed carbon dioxide gas 7 by using the energizing force of the first coil spring 19.
  • the urging force for urging the valve body 9 in the direction to close the gas ejection hole 13 is varied, and the gas ejection hole 13 is The urging force is varied to open.
  • the gas cartridge 8 including the valve body 9 that controls the ejection of the compressed carbon dioxide gas 7 as the compressed fluid filled in the gas cartridge 8 has the pressure of the carbon dioxide gas 7 ejected from the gas cartridge 8. It is connected to a piston housing 24 that constitutes a pressure control chamber 23 that controls the pressure by reducing the pressure.
  • the valve case 10 that is integrally attached to the gas cartridge 8 is provided with a connecting portion 26 for connecting to the piston housing 24.
  • the connecting portion 26 functions as a gas passage for supplying the carbon dioxide gas 7 injected from the ejection hole 13 to the piston housing 24 side, and is formed in a cylindrical shape protruding around the ejection hole 13. Yes.
  • the front end side of the valve element 9 protruding from the gas ejection hole 13 is exposed inside the connecting portion 26.
  • a portion protruding into the connecting portion 26 of the valve body 9 is a pressing operation portion 27 that is pressed by the first piston 17 disposed in the piston housing 24.
  • the piston housing 24 is formed as a cylindrical tube body, and a cylinder portion 28 in which the first piston 17 that opens and closes the valve body 9 is housed so as to be able to advance and retreat is provided in the lower portion. Further, in the housing main body 29 formed on the upper side of the piston housing 24, a second urging member that applies a urging force in a direction of pressing the valve body 9 against the first piston 17 is provided. A coil spring 30 and a spring pressure adjusting member 31 for adjusting the biasing force by compressing the second coil spring 30 are disposed. The spring pressure adjusting member 31 is supported by a holding cap 32 attached to the mechanism attaching portion 4 of the storage container 3, and is prevented from coming off from the housing body 29.
  • the holding cap 32 has a first screw portion 33 formed on the inner peripheral surface, and the first screw portion 33 is screwed onto and attached to a second screw portion 34 formed on the outer peripheral surface of the mechanism mounting portion 4. As a result, the mechanism mounting portion 4 is moved forward and backward by being rotated. The holding cap 32 is operated to advance and retract with respect to the mechanism mounting portion 4, thereby operating the spring pressure adjusting member 31 to adjust the compression rate of the second coil spring 30. Adjust the biasing force.
  • the spring pressure adjusting member 31 is formed in a cylindrical shape, and an injection control mechanism 5 that controls the injection of the injection 2 stored in the storage container 3 is disposed therein.
  • connection receiving portion 35 to which the gas cartridge 8 is connected is provided at the lower end portion of the piston housing 24.
  • the connection receiving portion 35 is formed in a cylindrical shape having a through hole communicating with the cylinder portion 28.
  • the gas cartridge 8 is coupled to the piston housing 24 by fitting the coupling portion 26 to the coupling receiving portion 35. In this way, by connecting the gas cartridge 8, the compressed carbon dioxide gas 7 filled in the gas cartridge 8 can be injected from the gas ejection hole 13 to the cylinder portion 28 of the piston housing 24 through the connecting portion 26. It becomes.
  • a first piston 17 that receives the pressure of the compressed carbon dioxide gas injected from the gas injection hole 13 is disposed so as to be able to advance and retract.
  • the first piston 17 can move in close contact with the inner peripheral surface of the cylinder part 28, as shown in FIG.
  • a rubber piston ring 36 is attached between the upper and lower flange portions 17a and 17b.
  • a shaft-shaped pressing operator 37 projects from the lower end side of the first piston 17. As shown in FIG. 1, when the first piston 17 is disposed in the cylinder portion 28, the pressing operator 37 enters the connection receiving portion 35 and is fitted into the connection receiving portion 35. The valve body 9 abuts against the pressing operation portion 27 of the valve body 9 protruding into the connecting portion 26, and the valve body 9 is moved and operated against the urging force of the first coil spring 19.
  • the space in which the carbon dioxide gas 7 is supplied in the cylinder portion 28 in which the first piston 17 that can be advanced and retracted by receiving the urging force of the second coil spring 30 is supplied from the gas cartridge 8. It functions as a pressure control chamber 23 that controls the pressure of the carbon dioxide gas 7 as the compressed fluid to be injected to a constant pressure.
  • the cylinder portion 28 is provided with a gas outlet hole 38 for leading out the carbon dioxide gas 7 supplied to the pressure control chamber 23 and controlled at a constant pressure.
  • the holding cap 32 in order to control the pressure of the compressed carbon dioxide gas 7 injected from the gas cartridge 8, the holding cap 32 is rotated in the direction of entering the mechanism mounting portion 4, and the spring pressure adjusting member 31. the movement in Figure 1 the arrow Y 3 direction.
  • the spring pressure adjusting member 31 moves in the direction of arrow Y 3 in FIG. 1, the second coil spring 30 is pressed in the same direction, and the first piston 17 is pressed via the second coil spring 30.
  • the pressing operator 37 is brought into contact with the pressing operation portion 27 of the valve body 9.
  • the valve body 9 receives the urging force of the first coil spring 19, because it is moved biased in the arrow Y 1 direction in FIG. 1, the pressing operation element 37 is pressed portion with a predetermined contact pressure 27 abuts.
  • Thrusting operators 37 moves contact with further rotating the holding cap 32 from the state the spring pressure adjusting member 31 in FIG. 1 arrow Y 3 direction the pressing operation unit 27, the second coil spring 30 in the same direction
  • the second coil spring 30 is compressed under a load that urges the pressing force and the valve body 9 by spring pressure adjusting member 31 in the direction for closing the Figure 1 arrow Y 1 direction of gas ejection holes 13
  • the urging force F 2 is accumulated.
  • the holding cap 32 is rotated to compress the second coil spring 30 as shown in FIG. 4, and the biasing force F 2 accumulated in the second coil spring 30 biases the valve body 9.
  • the first piston 17 presses the pressing operation portion 27 with the pressing operation element 37 and moves the valve body 9 in the direction of arrow Y 2 in FIG.
  • the valve body 9 includes the second piston 18 and is disposed in the gas cartridge 8 so that the pressure of the compressed carbon dioxide gas 7 is evenly received on almost the entire surface on the outer peripheral side.
  • the biasing force f 1 that biases the valve body 9 in the direction of closing the gas ejection hole 13 can be handled as the biasing force of the first coil spring 19 that biases the valve body 9.
  • the pressure of the carbon dioxide gas filled in the storage container 3 from the pressure control chamber 23 acts on the end surface 17 a of the first piston 17 that defines the pressure control chamber 23, and the first piston 17 is attached to the second coil spring 30.
  • a pressure is generated so as to move against the force F 2 in the direction of the arrow Y 4 in FIG.
  • the storage container 3 contains a gas cartridge 8 as a compressed fluid storage container filled with the compressed carbon dioxide gas 7 that is a high-pressure gas source.
  • the decompressed carbon dioxide gas is filled, and it is possible to prevent the supply of high-pressure carbon dioxide gas exceeding a certain pressure. Therefore, the storage container 3 can be pressurized to a pressure higher than the pressure controlled by the pressure control mechanism of the present invention. Therefore, the storage container 3 has sufficient strength to withstand the pressure of the compressed carbon dioxide supplied to the storage container 3. Any material may be used as long as it is formed, and it can be formed from a synthetic resin molding or the like. And the shape of the storage container 3 which comprises a spraying apparatus, and the range of selection of the material to be used can be expanded, and it can form with the material suitable for the content to store.
  • the pressure control mechanism 6 for controlling the pressure of the carbon dioxide gas injected from the gas cartridge 8 controls the pressure of the first piston 17 for pressing the valve body 9 supported by the first piston 17.
  • the size of the end face 17a to be received and the second coil spring 30 that presses and biases the first piston 17 are appropriately selected, and the second coil spring 30 is held by the holding cap 32 that controls the amount of compression of the second coil spring 30.
  • the pressure P 1 of the carbon dioxide gas filled in the control chamber 23 can be controlled to approximately 5 kg / cm 2 .
  • the biasing force F 2 of the first piston 17 that presses and biases the valve body 9 in the direction to open the gas ejection hole 13 is the first biasing the valve body 9 in the direction to close the gas ejection hole 13. It is set larger than the biasing force F 1 of the coil spring 19.
  • the operation of the pressure control mechanism 6 according to the present invention for controlling and injecting the pressure of the carbon dioxide gas filled in the gas cartridge 8 will be described.
  • the pressure control mechanism 6 when the holding cap 32 is rotated and the spring pressure adjusting member 31 is moved via the spring pressure adjusting member 31, the second coil spring 30 is compressed, and the second coil spring is compressed.
  • the valve body 9 moves in the direction of the arrow Y 2 in FIG. 1, and as shown in FIG. Is released.
  • the gas ejection hole 13 is opened, the liquefied carbon dioxide gas 7 filled in the gas cartridge 8 is injected into the pressure control chamber 23.
  • the liquefied carbon dioxide gas is vaporized to be injected into the pressure control chamber 23 as a gas.
  • the pressure control chamber 23 is filled with the carbon dioxide gas 7 and the pressure acting on the end surface 17 a of the first piston 17 becomes larger than the biasing force F 2 of the second coil spring 30 that biases the first piston 17.
  • the first piston 17 is pressed so as to compress the second coil spring 30.
  • the first piston 17 moves in the direction of the arrow Y 1 in FIG.
  • the first piston 17 moves in the direction of the arrow Y 1 in FIG.
  • valve body 9 receives the biasing force of the first coil spring 19 and closes the gas ejection hole 13.
  • 5 moves in the direction of the arrow Y 1 in FIG. 5 and fits into the gas ejection hole 13 to close the gas ejection hole 13 as shown in FIG. That is, as shown in FIG. 5, the sealing portion 16 formed in the tapered shape of the valve body 9 moves so as to fit into the gas ejection hole 13 and closes the gas ejection hole 13.
  • the supply of the carbon dioxide gas from the gas cartridge 8 stops by sealing the gas ejection hole 13.
  • the holding cap 32 is placed in a state where it is rotated to a lowered position that compresses the second coil spring 30 by a predetermined amount.
  • the pressure control mechanism 6 is filled in the gas cartridge 8. Control is performed to reduce the carbon dioxide gas to a constant pressure and inject it.
  • the pressure control chamber 23 is supplied with carbon dioxide gas whose pressure is controlled to be constant.
  • the spring load (Kgf) of the second coil spring 30 that biases the first piston 17 is appropriately selected, and the biasing force F 2 when the second coil spring 30 is compressed by a predetermined amount is obtained.
  • the pressure control chamber 23 is filled by appropriately selecting the area S 1 of the end surface 17a of the first piston 17 that defines the pressure control chamber 23 on condition that the biasing force F 1 of the first coil spring 19 becomes larger.
  • the pressure of the carbon dioxide gas 7 can be set as appropriate.
  • the biasing force F 2 of the second coil spring 30 can be varied by controlling the amount of movement of the spring pressure adjusting member 31 that compresses the second coil spring 30 and adjusting the amount of displacement of the second coil spring 30.
  • the pressure of the carbon dioxide gas 7 filled in the pressure control chamber 23 can be variably controlled.
  • the carbon dioxide gas 7 whose pressure is controlled by the pressure control mechanism 6 of the present embodiment is used as an injection gas for injecting the injection 2 stored in the storage container 3 of the spray device 1. Therefore, the carbon dioxide gas 7 that is filled in the pressure control chamber 23 and whose pressure is controlled is injected and filled into the storage container 3 through the gas outlet hole 38 provided in the pressure control chamber 23. Therefore, the storage container 3 is filled with the carbon dioxide gas 7 whose pressure is controlled in the pressure control chamber 23.
  • the pressure control mechanism 6 used as a device for supplying the carbon dioxide gas 7 for injecting the spray 2 stored in the storage container 3 of the spray device 1 includes the spray device 1. It arrange
  • the piston housing 24 to which the gas cartridge 8 is connected is stored in the storage container 3 together with the gas cartridge 8, and the flange portion 40 protruding from the peripheral edge on the upper end side of the piston housing 24 is provided in the storage container 3. It is abutted and positioned on the upper end surface of the mechanism mounting portion 4 provided in the mounting. At this time, the space between the piston housing 24 and the mechanism mounting portion 4 is hermetically sealed so as not to cause gas leakage, and the storage container 3 is sealed.
  • the injection 2 is injected by using the compressed and pressurized carbon dioxide gas 7 filled in the storage container 3.
  • An injection control mechanism 5 for controlling is provided.
  • the injection control mechanism 5 is arranged in a spring-shaped adjusting member 31 formed in a cylindrical shape so as to be fitted to the upper end side of the housing main body 29, and is integrated with the spring-pressure adjusting member 31.
  • a valve housing 41 that moves in the housing body 29, a stem 42 that moves in the valve housing 41, and a valve member 43 that is attached to the outer periphery of the stem 42 and is formed in a ring shape by an elastic body such as rubber.
  • a valve presser 44 that holds the valve member 43 between the valve housing 41, a coil spring 45 that biases the stem 42, a connecting pipe 46 that is connected to the stem 42, and an upper end portion of the connecting pipe 46.
  • an injection button 48 provided with an injection nozzle 47.
  • the valve housing 41 is formed in a bottomed cylindrical shape, and a fitting protrusion 49 is provided at the tip, and the fitting protrusion 49 is fitted into a through hole 50 formed in the bottom of the spring pressure adjusting member 31.
  • the spring pressure adjusting member 31 is attached.
  • a small diameter portion 41a and a large diameter portion 41b are formed in the valve housing 41.
  • a bulging portion 41 c is formed on the upper end side of the valve housing 41.
  • the communication pipe 51 is attached to the small diameter portion 41a of the valve housing 41 through the peripheral wall of the valve housing 41, the peripheral wall of the spring pressure adjusting member 31, and the housing body 29.
  • the communication pipe 51 is for communicating between the valve housing 41 and the storage container 3, and a suction tube 52 is connected to one end portion side that opens into the storage container 3.
  • the projectile 2 filled in the storage container 3 is sucked into the valve housing 41 through the suction tube 52 and the communication pipe 51 together with the carbon dioxide gas 7.
  • the large diameter portion 41b has a stepped portion 41d formed between the small diameter portion 41a and one end side locked to accommodate the coil spring 45.
  • the coil spring 45 is engaged with the other end side of the coil spring 45.
  • the stem 42 is disposed.
  • the stem 42 disposed in the valve housing 41 is formed with a conduction path 53 having one end opened.
  • a valve hole 54 that penetrates the conduction path 53 is formed in the peripheral wall of the stem 42.
  • a fitting groove 55 is formed on the outer periphery of the portion of the stem 42 where the valve hole 54 is formed, and the valve member 43 is attached so as to fit into the fitting groove 55. Further, a locking step 42 a is formed on the distal end side of the stem 42.
  • the stem 42 has a distal end inserted into the valve housing 41, the locking step 42a is inserted into and locked to the other end of the coil spring 45, and the outer peripheral side of the valve member 43 attached to the middle portion is bulged 41c. It arrange
  • a cylindrical valve retainer 44 is fitted in the spring pressure adjusting member 31 disposed so that the valve housing 41 is housed together with the stem 42.
  • the valve retainer 44 is fitted in the spring pressure adjusting member 31 so as to be fitted on the outer peripheral side of the stem 42, and the outer peripheral side of the valve member 43 placed in the recess 56 is moved by the spring pressure adjusting member 31. Hold it.
  • a ring-shaped protrusion 56a is formed in the concave portion 56, and the pressure-bonding force to the valve member 43 is concentrated so as to perform reliable clamping.
  • the stem 42 is attached to the valve housing 41 so that the stem 42 is prevented from coming off from the valve housing 41 by fixing the valve member 43 attached to the middle portion.
  • the stem 42 when being pressed in arrow in FIG. 4 Y 3 direction against the biasing force of the coil spring 45, to move the valve member 43 in the same direction while elastically deforming.
  • the valve member 43 opens and closes the valve hole 54 provided in the stem 42 by elastically deforming.
  • a connecting pipe 46 communicating with the conduction path 53 is attached to the other end side of the stem 42 attached to the valve housing 41 so as to be able to advance and retreat.
  • the connecting pipe 46 protrudes to the outside through a through hole 32b provided in the top plate portion 32a of the holding cap 32 attached to the mechanism attaching portion 4, and an injection button 48 provided with an injection nozzle 47 at the upper end thereof. Is attached.
  • the pressure control mechanism 6 applied to the spraying device 1 is placed at a position where the holding cap 32 is raised with respect to the mechanism mounting portion 4 as shown in FIG.
  • the upper end portion of the spring pressure adjusting member 31 is pressed by the top plate portion 32 a of the holding cap 32, and the spring pressure adjusting member 31. Is moved in the direction of arrow Y 3 in FIG. 1 so as to compress the second coil spring 30. At this time, the spring pressure adjusting member 31 within the injection control mechanism is configured to 5 are also moved in Figure 1 an arrow Y 3 direction integrally with the spring pressure adjusting member 31.
  • the spring pressure adjusting member 31 is moved in the direction of arrow Y 3 in FIG. 1, the second coil spring 30 is compressed, and the biasing force F 2 of the second coil spring 30 is biased by the biasing force F of the first coil spring 19. becomes greater than 1, the first piston 17 against the biasing force of the first coil spring 19 is moved in the arrow Y 3 direction in FIG. 1, the valve body by pressing the operating element 37 provided on the first piston 17 9 is moved in one of arrow Y 2 direction in the drawing against the urging force of the first coil spring 19, is fitted to the gas ejection holes 13 of the sealing portion 16 provided in the valve body 9 is released, FIG. 5 As shown in FIG. 3, the gas ejection hole 13 is opened.
  • the carbon dioxide gas 7 is ejected from the gas cartridge 8 into the pressure control chamber 23 formed in the cylinder portion 28.
  • the pressure acting on the end surface 17 a of the first piston 17 and the biasing force F 2 acting on the first piston 17 biased by the second coil spring 30 antagonize.
  • the carbon dioxide gas 7 is supplied from the gas cartridge 8 until the above.
  • carbon dioxide gas is supplied to the pressure control chamber 23 and the pressure in the pressure control chamber 23 becomes larger than the urging force F 2 acting on the first piston 17, the ejection hole 13 is blocked by the valve body 9 as described above. Then, the supply of carbon dioxide from the gas cartridge 8 is stopped.
  • the carbon dioxide gas 7 injected into the pressure control chamber 23 is supplied through the gas outlet hole 38 to the storage container 3 in which the injection product 2 is stored. At this time, the carbon dioxide gas 7 is supplied from the gas cartridge 8 until the storage container 3 is filled.
  • the storage container 3 is filled with the carbon dioxide gas 7 that is decompressed in the pressure control chamber 23 in which the first piston 17 biased by the second coil spring 30 is disposed and controlled to a constant pressure. In the state where the storage container 3 is filled with the carbon dioxide from the pressure control chamber 23, the gas ejection hole 13 is closed by the valve body 9, and the supply of the carbon dioxide from the gas cartridge 8 is stopped.
  • the holding cap 32 enters the position where it can enter the most with respect to the mechanism mounting portion 4 in which the top plate portion 32a is in contact with the flange portion 40 of the piston housing 24, as shown in FIG. Is done.
  • the second coil spring 30 is compressed most and the urging force F 2 becomes the largest and acts on the first piston 17, and the urging force F 2 of the second coil spring 30 acts on the first piston 17.
  • the pressure to move against the maximum is the highest, and the pressure of the carbon dioxide gas 7 that is pressure-reduced in the pressure control chamber 23 is the highest.
  • the biasing force F of the second coil spring 30 is adjusted by adjusting the advancement amount of the holding cap 32 relative to the mechanism mounting portion 4, controlling the spring pressure adjusting member 31, and adjusting the compression rate of the second coil spring 30.
  • adjusting 2 it is possible to adjust the pressure of the carbon dioxide gas 7 that is pressure-reduced in the pressure control chamber 23.
  • the stem 42 attaches the coil spring 45 while elastically displacing the valve member 43. move 4 arrow Y 3 direction against the force.
  • the valve hole 43 is released by the elastic displacement of the valve member 43, and the projectile 2 placed in a state of being pressurized by the carbon dioxide gas 7 filled in the storage container 3 together with the carbon dioxide gas 7 is sucked into the suction tube. 52 and the conduction path 53, and is supplied into the valve housing 41.
  • the injection 2 and the carbon dioxide gas 7 supplied to the valve housing 41 are supplied into the stem 42 through the valve hole 54, flow through the connecting pipe 46, and are injected from the injection nozzle 47 to the outside.
  • the pressure control chamber 23 is also decompressed and the gas ejection hole 13 is opened.
  • the carbon dioxide gas ejected from the gas cartridge 8 from the gas cartridge 8 through the pressure control chamber 23 into the storage container 3 is controlled to a constant pressure and supplied. Is in a state where injection is possible.
  • the storage container 3 in which the projectiles 2 are stored is supplied with carbon dioxide gas that has been depressurized to a certain pressure, and is not supplied with carbon dioxide gas that exceeds a certain pressure. The pressure can be prevented.
  • the pressure control mechanism 6 is used in the spray device 1 .
  • the pressure control mechanism 6 according to the present invention is applied to a device that uses a compressed fluid controlled to a constant pressure.
  • a gas lead-out pipe may be connected to the gas lead-out hole 38 provided in the pressure control chamber 23 to lead out to a device using a compressed fluid.
  • the holding cap 32 for moving the spring pressure adjusting member 31 is attached to the mechanism attaching portion 4 provided in the storage container 3, but the fixing member is fixed to the spring pressure adjusting member 31. You may make it attach to the piston housing 24 used.
  • the compressed fluid is not limited to carbon dioxide gas, and a compressed gas body such as nitrogen gas can be used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Containers And Packaging Bodies Having A Special Means To Remove Contents (AREA)
  • Nozzles (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

A mechanism for controlling the pressure of carbon dioxide gas (7) placed in a gas cartridge (8).  The mechanism comprises: the gas cartridge provided with a gas nozzle opening (13) for discharging the carbon dioxide gas; a valve element (9) for opening and closing the gas nozzle opening; a first coiled spring (19) for urging the valve element in a first direction; a first piston (17) movably mounted in a cylinder section (28) and moving the valve element; a second coiled spring (30) for urging the piston toward the valve element; and a pressure control chamber (23) formed between the first piston and the gas nozzle opening.  The pressure control chamber is filled with the carbon dioxide gas from the gas cartridge, and the pressure of the compressed carbon dioxide gas is controlled to a specific level.

Description

圧縮流体の圧力制御機構及び噴霧装置Pressure control mechanism and spray device for compressed fluid
 本発明は、圧縮流体収納容器に充填された液化炭酸ガス等の圧縮流体を一定の圧力に減圧して噴射するようにした圧縮流体の圧力制御機構及び噴霧装置に関する。
The present invention relates to a pressure control mechanism and a spraying device for a compressed fluid in which a compressed fluid such as liquefied carbon dioxide filled in a compressed fluid storage container is reduced to a certain pressure and injected.
 従来、容器に封入された香料、医薬品、殺虫剤等の噴出物を、圧縮ガスの圧力を利用して噴霧するようにした噴霧装置が広く用いられる。 Conventionally, a spraying apparatus that sprays ejected substances such as fragrances, pharmaceuticals, and insecticides enclosed in containers by using the pressure of compressed gas is widely used.
 この種の噴射装置には、容器に封入された内容物を一定圧力で噴射するようにするため、噴射圧力を一定圧に制御するための圧力制御機構が設けられている。 This type of injection device is provided with a pressure control mechanism for controlling the injection pressure to a constant pressure in order to inject the contents enclosed in the container at a constant pressure.
 この圧力制御機構を備えた噴霧装置として特開2002-114281号公報(特許文献1)に記載されたようなものがある。 There is a spray device provided with this pressure control mechanism as described in Japanese Patent Laid-Open No. 2002-114281 (Patent Document 1).
 また、噴射される噴出物と噴射用の圧縮ガスをそれぞれ独立の容器に収納し、圧縮ガスの噴射を減圧して制御する噴射制御機構の圧縮ガス噴出孔に臨ませた位置に内容物取り出し口を設け、圧縮ガスの噴流によって生ずる吸引作用(ベンチュリー効果)を利用にして、容器に収納された噴射物を吸い上げ、霧状に粉砕して噴霧するようにした噴霧装置も知られている。この種の噴霧装置においても、噴射する圧縮ガスの噴射圧力を調整するようにしたガス圧調整機構を設けたものが知られている(特開2002-59044号公報)。
特開2002-114281号公報 特開2002-59044号公報
In addition, the ejected product and the compressed gas for injection are stored in separate containers, and the content takeout port is located at the position facing the compressed gas ejection hole of the injection control mechanism for controlling the compressed gas injection by reducing the pressure. There is also known a spraying device that uses a suction action (Venturi effect) generated by a jet of compressed gas to suck up the sprayed material stored in a container, pulverize it into a mist, and spray it. This type of spraying apparatus is also known which is provided with a gas pressure adjusting mechanism that adjusts the injection pressure of the compressed gas to be injected (Japanese Patent Laid-Open No. 2002-59044).
JP 2002-114281 A JP 2002-59044 A
 ところで、特許文献1に記載された圧力制御機構及び特許文献2に記載されたガス圧調整機構のいずれにおいても、圧縮ガスが充填された容器の外部に設けられるものであるので、噴射される圧縮ガスのガス圧を調整する装置全体の一層の小型化を図ることが困難である。 Incidentally, both the pressure control mechanism described in Patent Document 1 and the gas pressure adjusting mechanism described in Patent Document 2 are provided outside the container filled with compressed gas. It is difficult to further reduce the size of the entire apparatus for adjusting the gas pressure of the gas.
 そこで、本発明は、圧縮流体収納容器に充填された液化炭酸ガス等の圧縮流体の噴射圧力を減圧制御する制御機構自体の一層の小型化を実現し、さらには、機構の簡素化を実現し得る圧縮流体の圧力制御機構及び噴霧装置を提供することを技術課題とする。 Therefore, the present invention realizes further miniaturization of the control mechanism itself that controls the pressure reduction of the injection pressure of the compressed fluid such as liquefied carbon dioxide filled in the compressed fluid storage container, and further simplifies the mechanism. It is an object of the present invention to provide a pressure control mechanism and a spray device for a compressed fluid to be obtained.
 また、本発明は、噴射される圧縮流体の圧力を高精度に制御することができる圧縮流体の圧力制御機構及び噴霧装置を提供することを技術課題とする。 Also, it is a technical object of the present invention to provide a pressure control mechanism and a spray device for a compressed fluid that can control the pressure of the injected compressed fluid with high accuracy.
 さらに、本発明は、圧縮流体が充填される圧縮流体収納容器の密閉性の向上を図り、圧縮流体の漏れを防止することを可能とした圧縮流体の圧力制御機構及び噴霧装置を提供することを技術課題とする。 Furthermore, the present invention provides a compressed fluid pressure control mechanism and a spray device capable of improving the hermeticity of a compressed fluid storage container filled with the compressed fluid and preventing leakage of the compressed fluid. Let it be a technical issue.
 上述したような技術課題を達成するために提案される本発明は、圧縮流体が充填された圧縮流体収納容器から噴射される圧縮流体の圧力を制御する圧縮流体の圧力制御機構であって、圧縮流体が充填された圧縮流体収納容器内に配設され、上記圧縮流体収納容器に設けられた圧縮流体の噴出孔を閉塞する第1の位置と上記噴出孔を解放する第2の位置との間を移動する弁体と、上記噴出孔を閉塞する第1の位置の方向に上記弁体を付勢する第1の付勢部材と、上記噴出孔から噴出される圧縮流体が供給されるように上記圧縮流体収納容器に接続されたシリンダー部と、上記シリンダー部内に移動可能に配設され、上記噴出孔から突出した上記弁体の一部に関連して上記弁体を移動操作するピストンと、上記ピストンを上記弁体と当接する方向に付勢する第2の付勢部材と、上記ピストンと上記噴出孔との間に構成され、上記圧縮流体収納容器から噴射される圧縮流体が供給される圧力制御室とを備え、上記ピストンを押圧付勢する第2の付勢部材の付勢力を制御することによって、上記噴出孔から上記圧力制御室に供給される圧縮流体の圧力を減圧制御するようにしたものである。 The present invention proposed to achieve the technical problem described above is a compressed fluid pressure control mechanism for controlling the pressure of a compressed fluid ejected from a compressed fluid storage container filled with the compressed fluid. Between a first position that is disposed in a compressed fluid storage container filled with fluid and closes a compressed fluid ejection hole provided in the compressed fluid storage container, and a second position that releases the ejection hole. A first urging member that urges the valve body in the direction of a first position that closes the ejection hole, and a compressed fluid that is ejected from the ejection hole. A cylinder part connected to the compressed fluid storage container; a piston that is movably disposed in the cylinder part and that moves the valve body in relation to a part of the valve body protruding from the ejection hole; One where the piston contacts the valve body A second urging member that urges the piston, and a pressure control chamber that is configured between the piston and the ejection hole and that is supplied with the compressed fluid ejected from the compressed fluid storage container. By controlling the urging force of the second urging member that presses and urges, the pressure of the compressed fluid supplied from the ejection hole to the pressure control chamber is controlled to be reduced.
 さらに、本発明は、第2の付勢部材の変位量を可変制御して、上記ピストンの押圧付勢力を制御する付勢部材変位手段とを備え、この付勢部材変位手段を操作して上記ピストンの押圧付勢力を制御することにより、上記圧力制御部に供給される圧縮流体の圧力を制御するようにしたものである。 Further, the present invention includes an urging member displacing unit that variably controls the displacement amount of the second urging member to control the pressing urging force of the piston, and operates the urging member displacing unit to The pressure of the compressed fluid supplied to the pressure control unit is controlled by controlling the pressing biasing force of the piston.
 さらに、本発明において、弁体には、圧縮流体収納容器内に設けられた移動ガイド部にガイドされ、この弁体と一体に移動するさらなるピストンが設けられるとともに、さらなるピストンと移動ガイド部との間に連通部が形成され、弁体によって閉塞される噴出孔とさらなるピストンとの間に、圧縮流体収納容器に充填された圧縮流体が流入する気室が構成されている。 Furthermore, in the present invention, the valve body is provided with a further piston that is guided by a movement guide portion provided in the compressed fluid storage container and moves integrally with the valve body. A communication portion is formed therebetween, and an air chamber into which the compressed fluid filled in the compressed fluid storage container flows is formed between the ejection hole closed by the valve body and the further piston.
 本発明を構成する弁体は、基端部側から先端部側に向かって縮径するように形成された封止部が先端部側に形成された先鋭体であり、この先鋭体の封止部が嵌合することによって噴出孔を閉塞する。 The valve body constituting the present invention is a sharp body in which a sealing portion formed so as to reduce in diameter from the proximal end side toward the distal end side is formed on the distal end side, and sealing of the sharp body The ejection holes are closed by fitting the parts.
 さらに、本発明においては、第2の付勢部材の付勢力を制御する付勢力制御機構を備える。 Furthermore, in the present invention, an urging force control mechanism for controlling the urging force of the second urging member is provided.
 そして、第2の付勢手段は、圧縮コイルバネにより構成され、付勢力制御機構は、圧縮コイルバネに対し進退操作されてこの圧縮コイルバネの付勢力を制御するバネ圧縮操作部材を備える。 The second urging means is constituted by a compression coil spring, and the urging force control mechanism includes a spring compression operation member that controls the urging force of the compression coil spring by advancing and retracting the compression coil spring.
 また、圧力制御室には、この圧力制御室に供給される圧縮流体を外部に導出するための導出孔が形成される。 Also, a lead-out hole for leading the compressed fluid supplied to the pressure control chamber to the outside is formed in the pressure control chamber.
 本発明において用いられる圧縮流体は、圧縮された液化炭酸ガスであることが望ましい。 The compressed fluid used in the present invention is preferably compressed liquefied carbon dioxide.
 さらに、本発明は、圧縮流体の圧力の作用により噴射される噴射物を収納するとともに、上記収納容器に収納された噴射物の噴射を制御する噴射制御機構を設けた収納容器を有し、この収納容器内に、圧縮流体が充填された圧縮流体収納容器から噴射される圧縮流体の圧力を制御する圧縮流体の圧力制御機構を配設した噴霧装置であって、収納容器内に配設される圧力制御機構は、圧縮流体が充填された圧縮流体収納容器内に配設され、圧縮流体収納容器に設けられた圧縮流体の噴出孔を閉塞する第1の位置と上記噴出孔を解放する第2の位置との間を移動する弁体と、上記噴出孔を閉塞する第1の位置の方向に上記弁体を付勢する第1の付勢部材と、上記噴出孔から噴射される圧縮流体が供給されるように上記圧縮流体収納容器に接続されたシリンダー部と、上記シリンダー部内に移動可能に配設され、上記噴出孔から突出した上記弁体の一部に関連して上記弁体を移動操作するピストンと、上記ピストンを上記弁体と当接する方向に付勢する第2の付勢部材と、上記ピストンと上記噴出孔との間に構成され、上記圧縮流体収納容器から噴射される圧縮流体が供給される圧力制御室と、上記圧力制御室に供給される圧縮流体を上記収納容器内に導出するための導出孔とを備え、上記ピストンを押圧付勢する第2の付勢部材の付勢力を制御することによって、上記噴出孔から上記圧力制御室に供給され、上記導出孔を介して上記収納容器に供給される圧縮流体の圧力を減圧制御するようにしたものである。 Furthermore, the present invention has a storage container that stores an injection material that is injected by the action of the pressure of the compressed fluid, and that includes an injection control mechanism that controls the injection of the injection material stored in the storage container. A spray device in which a compressed fluid pressure control mechanism for controlling the pressure of a compressed fluid ejected from a compressed fluid storage container filled with a compressed fluid is disposed in the storage container, and is disposed in the storage container. The pressure control mechanism is disposed in the compressed fluid storage container filled with the compressed fluid, and has a first position for closing the ejection hole of the compressed fluid provided in the compressed fluid storage container and a second position for releasing the ejection hole. A valve body that moves between the first position, a first biasing member that biases the valve body in the direction of a first position that closes the ejection hole, and a compressed fluid that is ejected from the ejection hole. Connected to the compressed fluid storage container to be supplied A cylinder portion, a piston that is movably disposed in the cylinder portion, and that moves the valve body in relation to a part of the valve body that protrudes from the ejection hole, and a piston that contacts the valve body. A second urging member for urging in a contacting direction, a pressure control chamber configured between the piston and the ejection hole and supplied with a compressed fluid ejected from the compressed fluid storage container; and the pressure control. A discharge hole for leading the compressed fluid supplied to the chamber into the storage container, and controlling the biasing force of a second biasing member that presses and biases the piston, thereby allowing the jet hole to The pressure of the compressed fluid supplied to the pressure control chamber and supplied to the storage container through the outlet hole is controlled to be reduced.
 また、上記収納容器は、合成樹脂の成型体によって形成されている。 Further, the storage container is formed of a synthetic resin molding.
 本発明に係る圧縮流体収納容器に充填された圧縮流体の圧力を制御する圧力制御機構は、圧縮流体が充填された圧縮流体収納容器内に、この容器に充填された圧縮流体の噴射を制御する弁体を設けているので、装置自体の小型化を実現できる。 The pressure control mechanism for controlling the pressure of the compressed fluid filled in the compressed fluid storage container according to the present invention controls the injection of the compressed fluid filled in the compressed fluid storage container filled with the compressed fluid. Since the valve body is provided, the device itself can be downsized.
 そして、本発明においては、圧縮流体収納容器内に設けられた圧縮流体の噴出孔を開閉する弁体及び弁体と関連してこの弁体を移動操作するピストンが同一方向に直線的に移動することにより、噴出孔の開閉を行って圧力制御室内に圧縮流体を供給し、この圧力制御室に供給された圧縮流体のピストンに作用する力と、弁体を第2の位置方向に押圧するピストンに作用する付勢力とにより圧力制御室内の圧縮流体の圧力制御が実現されるので、より簡素な機構で、且つ容易に圧縮流体収納容器から噴射される圧縮流体の圧力制御を行うことができる。 And in this invention, the piston which moves this valve body linearly moves in the same direction in relation to the valve body which opens and closes the injection hole of the compressed fluid provided in the compressed fluid storage container, and the valve body. Thus, the piston hole is opened and closed to supply the compressed fluid into the pressure control chamber, the force acting on the piston of the compressed fluid supplied to the pressure control chamber, and the piston that presses the valve body in the second position direction. Since the pressure control of the compressed fluid in the pressure control chamber is realized by the urging force acting on the pressure control device, the pressure control of the compressed fluid ejected from the compressed fluid storage container can be easily performed with a simpler mechanism.
 また、弁体にこの弁体と一体に移動するさらなるピストンを設け、このピストンと弁体によって閉塞される噴出孔との間に圧縮流体が流入する気室が設けられることにより、噴出孔を閉塞する弁体に加わる総圧力を小さくできるので、噴出孔の開閉を軽い力で容易に行うことができる。 Further, the valve body is provided with a further piston that moves integrally with the valve body, and an air chamber into which the compressed fluid flows is provided between the piston and the ejection hole closed by the valve body, thereby closing the ejection hole. Since the total pressure applied to the valve body can be reduced, the ejection hole can be easily opened and closed with a light force.
 特に、弁体を先鋭体により構成し、先鋭体のみによって噴出孔を閉塞することにより、この噴出孔を閉塞する部材に加わる総圧力を一層小さくできるので、噴出孔の開閉を軽い力で容易に行うことができ、高精度な圧縮流体の圧力制御を行うことができる。 In particular, since the valve body is constituted by a sharp body and the ejection hole is closed only by the sharp body, the total pressure applied to the member closing the ejection hole can be further reduced, so that the ejection hole can be easily opened and closed with a light force. It is possible to control the pressure of the compressed fluid with high accuracy.
 また、本発明に係る圧縮流体の圧力制御機構は、圧力制御室内を移動するピストンの圧縮流体が作用する面の面積と、このピストンを付勢する付勢部材の付勢力とにより、圧力制御室内に噴射される圧縮流体の圧力が制御されるので、圧縮流体の圧力制御を高精度に、しかも容易に行うことができる。 The compressed fluid pressure control mechanism according to the present invention includes an area of a surface on which a compressed fluid of a piston moving in the pressure control chamber acts and a biasing force of a biasing member that biases the piston. Since the pressure of the compressed fluid that is injected into the cylinder is controlled, the pressure control of the compressed fluid can be easily performed with high accuracy.
 さらに、ピストンを付勢する第2の付勢手段を圧縮コイルバネにより構成し、この圧縮コイルバネに対し進退操作されて圧縮コイルバネの付勢力を制御するバネ圧縮操作機構を設けることにより、ピストンに加わる付勢力を調整できるので、圧縮流体収納容器から噴射される圧縮流体の圧力を自在に変更することもできる。 Further, the second urging means for urging the piston is constituted by a compression coil spring, and a spring compression operation mechanism for controlling the urging force of the compression coil spring by controlling the urging force of the compression coil spring is provided. Since the force can be adjusted, the pressure of the compressed fluid ejected from the compressed fluid storage container can be freely changed.
 本発明に係る圧縮流体の圧力制御機構は、圧縮流体が充填された圧縮流体収納容器を、噴射される噴射物を収納した噴射物収納容器内に配することにより、圧力制御装置内蔵型の噴射装置を構成できる。 The pressure control mechanism for a compressed fluid according to the present invention includes a compressed fluid storage container filled with a compressed fluid in a projectile storage container that stores a jetted product to be injected. The device can be configured.
 さらに、本発明は、圧力制御された圧縮流体を直接噴射される噴射物を収納した収納容器に供給できるので、噴射装置の一層の小型化を実現できる。 Furthermore, since the present invention can supply the pressure-controlled compressed fluid to the storage container that stores the injected material to be directly injected, the injection device can be further miniaturized.
 さらにまた、噴射物を収納した収納容器には、一定の圧力に制御された圧縮流体が供給され、一定圧力以上の圧縮流体の供給が規制されるので、収納容器の内部が過剰圧力なることを防止でき、収納容器の安全性を確保できる。そして、収納容器を合成樹脂の成型体によって形成することにより、収納容器の外観を自在に選択でき、しかも、容易に大量生産を実現できる。
Furthermore, the storage container storing the ejected material is supplied with a compressed fluid controlled at a constant pressure, and the supply of the compressed fluid above a certain pressure is regulated, so that the inside of the storage container is overpressured. Can be prevented, and the safety of the storage container can be secured. Then, by forming the storage container with a synthetic resin molding, the appearance of the storage container can be freely selected, and mass production can be easily realized.
図1は、本発明に係る圧力制御機構を用いた噴霧装置を示す断面図である。FIG. 1 is a cross-sectional view showing a spray apparatus using a pressure control mechanism according to the present invention. 図2は、圧力制御機構を構成する主要素を示す組み立て斜視図である。FIG. 2 is an assembled perspective view showing main elements constituting the pressure control mechanism. 図3は、ガスカートリッジ側に設けられる弁体を示す断面図である。FIG. 3 is a cross-sectional view showing a valve body provided on the gas cartridge side. 図4は、ガスカートリッジから圧縮された炭酸ガスが圧力制御室に供給され、収納容器に収納された噴射物を噴射可能とした状態を示す噴霧装置の断面図である。FIG. 4 is a cross-sectional view of the spray device showing a state in which the carbon dioxide gas compressed from the gas cartridge is supplied to the pressure control chamber and the sprayed matter stored in the storage container can be injected. 図5は、第2のコイルバネの付勢力を受けて押圧される第1のピストンにより弁体が押圧されてガス噴出孔を開放した状態を示す圧力制御機構の断面図である。FIG. 5 is a cross-sectional view of the pressure control mechanism showing a state in which the valve body is pressed by the first piston pressed by the urging force of the second coil spring to open the gas ejection hole. 図6は、第1のピストンが圧力制御室に噴射された炭酸ガスの圧力を受けて弁体が離間する方向に移動し、弁体がガス噴出孔に嵌合して、ガス噴出孔を閉塞した状態を示す圧力制御機構の断面図である。FIG. 6 shows that the first piston receives the pressure of carbon dioxide injected into the pressure control chamber and moves in a direction in which the valve body separates, and the valve body is fitted into the gas ejection hole to close the gas ejection hole. It is sectional drawing of the pressure control mechanism which shows the state which carried out.
 1 噴霧装置、 3 収納容器、 5 噴射制御機構、 6 圧力制御機構、 7 炭酸ガス、 8 ガスカートリッジ、 9 弁体、 13 ガス噴出孔、 16 封止部、
 17 第1のピストン、 18 第2のピストン、 19 コイルバネ、 22 ガス充填室、 23 圧力制御室、 24 ピストンハウジング、 28 シリンダー部、 29 ハウジング本体、 30 コイルバネ、 31 バネ圧調整部材、 32 保持用キャップ、 38 ガス導出孔、 41 バルブハウジング、 42 ステム、 43 弁部材、 47 噴射ノズル、 54 弁孔
DESCRIPTION OF SYMBOLS 1 Spraying device, 3 Storage container, 5 Injection control mechanism, 6 Pressure control mechanism, 7 Carbon dioxide gas, 8 Gas cartridge, 9 Valve body, 13 Gas ejection hole, 16 Sealing part,
17 first piston, 18 second piston, 19 coil spring, 22 gas filling chamber, 23 pressure control chamber, 24 piston housing, 28 cylinder portion, 29 housing body, 30 coil spring, 31 spring pressure adjusting member, 32 holding cap 38 Gas outlet hole, 41 Valve housing, 42 Stem, 43 Valve member, 47 Injection nozzle, 54 Valve hole
 以下、本発明を適用した圧縮流体の圧力制御機構の実施の形態について図面を参照して説明する。 Hereinafter, an embodiment of a pressure control mechanism for a compressed fluid to which the present invention is applied will be described with reference to the drawings.
 本発明が適用された圧縮流体の圧力制御機構は、例えば、香料、医薬品、殺虫剤等の噴射物を、圧縮流体、例えば炭酸ガスの圧力を利用して噴射するようにした噴霧装置に用いられる。以下の実施の形態では、本発明を噴霧装置に適用した例を挙げて説明する。 The pressure control mechanism of a compressed fluid to which the present invention is applied is used, for example, in a spray device that jets a spray such as a fragrance, a medicine, and an insecticide using the pressure of a compressed fluid, such as carbon dioxide. . In the following embodiments, an example in which the present invention is applied to a spray device will be described.
 本発明が適用された圧縮流体の圧力制御機構が用いられる噴霧装置1は、図1に示すように、噴射される噴射物2を収納した収納容器3を備える。この収納容器3に収納される噴射物2としては、圧縮された高圧の炭酸ガスの圧力を利用して噴射可能なものであればいずれのものであってもよく、例えば、液状の香料、医薬品、殺虫剤、さらには粉状の殺虫剤等が挙げられる。また、収納容器3は、アルミニューム等の金属材料、若しくは合成樹脂材料を用いて有底の筒状に形成されている。この収納容器3の上部には、円筒状に突出した機構取付部4が一体に形成され、この機構取付部4を介して、噴射物2の噴射を制御する噴射制御機構5とともに、本発明が適用された圧力制御機構6が取り付けられる。 A spray device 1 using a pressure control mechanism of a compressed fluid to which the present invention is applied includes a storage container 3 that stores a jetted product 2 as shown in FIG. The ejected matter 2 stored in the storage container 3 may be any one that can be injected using the pressure of compressed high-pressure carbon dioxide gas. , Insecticides, and powdery insecticides. The storage container 3 is formed into a bottomed cylindrical shape using a metal material such as aluminum or a synthetic resin material. A mechanism mounting portion 4 that protrudes in a cylindrical shape is integrally formed on the upper portion of the storage container 3, and the present invention, together with an injection control mechanism 5 that controls the injection of the ejected matter 2 through the mechanism mounting portion 4, provides the present invention. The applied pressure control mechanism 6 is attached.
 ここで、本発明が適用された圧力制御機構6を説明すると、この圧力制御機構6は、圧縮流体収納容器に収納された圧縮流体を一定の圧力で噴射するように制御するものであって、圧縮流体として圧縮されて液化された圧縮炭酸ガス7が充填された圧縮流体収納容器としてのガスカートリッジ8を備える。このガスカートリッジ8は、70~80kg/cm2の圧力に圧縮された炭酸ガス7が充填されるに足る強度を有するものとして形成されている。本例においては、アルミニュームを用いて有底の円筒状に形成されている。 Here, the pressure control mechanism 6 to which the present invention is applied will be described. The pressure control mechanism 6 controls the compressed fluid stored in the compressed fluid storage container so as to be injected at a constant pressure. A gas cartridge 8 is provided as a compressed fluid storage container filled with compressed carbon dioxide gas 7 compressed and liquefied as a compressed fluid. The gas cartridge 8 is formed to have a strength sufficient to be filled with the carbon dioxide gas 7 compressed to a pressure of 70 to 80 kg / cm 2 . In this example, it is formed into a bottomed cylindrical shape using aluminum.
 ガスカートリッジ8の開口部8a側には、ガスカートリッジ8に充填された炭酸ガス7の噴射を制御する弁体9が配設される弁体ケース10が取り付けられている。弁体ケース10は、図3に示すように、筒状に形成されたケース本体11と、このケース本体11の上端側の開口部を閉塞するように設けられた封板部12とを有する。封板部12には、ガスカートリッジ8に充填された圧縮炭酸ガス7を噴出するためのガス噴出孔13が穿設されている。このガス噴出孔13は、後述するように、ケース本体11内に移動自在に配設される弁体9によって開閉される。 On the opening 8a side of the gas cartridge 8, a valve body case 10 in which a valve body 9 for controlling the injection of the carbon dioxide gas 7 filled in the gas cartridge 8 is disposed is attached. As shown in FIG. 3, the valve body case 10 includes a case main body 11 formed in a cylindrical shape, and a sealing plate portion 12 provided so as to close the opening on the upper end side of the case main body 11. The sealing plate portion 12 is provided with a gas ejection hole 13 for ejecting the compressed carbon dioxide gas 7 filled in the gas cartridge 8. As will be described later, the gas ejection hole 13 is opened and closed by a valve body 9 that is movably disposed in the case body 11.
 そして、弁体ケース10は、ケース本体11を開口部8aからガスカートリッジ8内に挿入するように嵌合することによって、このガスカートリッジ8に取り付けられる。このとき、弁体ケース10は、封板部12の外周側に突設されたフランジ部14をガスカートリッジ8の上端面に当接させることにより、ガスカートリッジ8に対する取付位置が位置決めされて取り付けられる。 The valve body case 10 is attached to the gas cartridge 8 by fitting the case body 11 so as to be inserted into the gas cartridge 8 from the opening 8a. At this time, the valve body case 10 is attached by positioning the attachment position with respect to the gas cartridge 8 by bringing the flange portion 14 protruding from the outer peripheral side of the sealing plate portion 12 into contact with the upper end surface of the gas cartridge 8. .
 ガスカートリッジ8に取り付けられた弁体ケース10は、図1に示すように、ガスカートリッジ8の上端側の外周囲にネジ止めされる支持用キャップ15によりフランジ部14の外周縁が支持されることにより、ガスカートリッジ8からの抜け止めが図られて取り付けられる。 As shown in FIG. 1, the valve case 10 attached to the gas cartridge 8 is supported at the outer peripheral edge of the flange portion 14 by a support cap 15 screwed to the outer periphery on the upper end side of the gas cartridge 8. Thus, the gas cartridge 8 is attached so as not to be detached.
 そして、ケース本体11内には、ガス噴出孔13を開閉する弁体9が移動可能に配設されている。この弁体9は、図2及び図3に示すように、基端部側から先端部側に向かって縮径するように形成された封止部16が先端部側に形成された先鋭体として形成されている。弁体9に形成した封止部16は、ガス噴出孔13に嵌合し、このガス噴出孔13を密閉する部分であって、基端部側の軸部9a側から先端側に向かって縮径するようにテーパ部として形成されている。 And in the case main body 11, the valve body 9 which opens and closes the gas ejection hole 13 is arrange | positioned so that a movement is possible. As shown in FIGS. 2 and 3, the valve body 9 is a pointed body in which a sealing portion 16 formed so as to reduce in diameter from the proximal end side toward the distal end side is formed on the distal end side. Is formed. The sealing portion 16 formed in the valve body 9 is a portion that fits into the gas ejection hole 13 and seals the gas ejection hole 13, and is contracted from the shaft portion 9 a side on the proximal end side toward the distal end side. It is formed as a tapered portion so as to have a diameter.
 この封止部16が嵌合するガス噴出孔13は、図3に示すように、ストレートの貫通孔として形成されている。ガス噴出孔13がストレートの貫通孔として形成されることにより、テーパ状の封止部16がガス噴出孔13に嵌合したとき、先端側に比し太径となる基部側がガス噴出孔13の挿入側の開口端周囲に密接し、このガス噴出孔13を確実に密閉することができる。 The gas ejection hole 13 into which the sealing portion 16 is fitted is formed as a straight through hole as shown in FIG. By forming the gas ejection hole 13 as a straight through-hole, when the tapered sealing portion 16 is fitted into the gas ejection hole 13, the base side having a diameter larger than that of the distal end side is the gas ejection hole 13. The gas ejection hole 13 can be reliably sealed by being in close contact with the periphery of the opening end on the insertion side.
 また、封止部16は、図2、図3に示すように、ガス噴出孔13を閉塞したとき、先端部がガス噴出孔13から所定量突出し得るような長さで形成されている。すなわち、封止部16は、ガス噴出孔13に挿入され、先端側から基端側に向かって徐々に径が太くなる傾斜面の中途部がガス噴出孔13に嵌合して係止されたとき、封止部16の先端部がガス噴出孔13から所定量突出するような長さに形成されている。 Further, as shown in FIGS. 2 and 3, the sealing portion 16 is formed with such a length that the tip portion can protrude from the gas ejection hole 13 by a predetermined amount when the gas ejection hole 13 is closed. That is, the sealing portion 16 is inserted into the gas ejection hole 13, and the middle portion of the inclined surface whose diameter gradually increases from the distal end side toward the proximal end side is fitted into the gas ejection hole 13 and locked. At this time, the front end of the sealing portion 16 is formed to have a length that protrudes from the gas ejection hole 13 by a predetermined amount.
 そして、封止部16のガス噴出孔13から突出した部分は、後述するように弁体9をガス噴出孔13に対し進退させる第1のピストン17によって操作される押圧操作部27として用いられる。 And the part which protruded from the gas ejection hole 13 of the sealing part 16 is used as the press operation part 27 operated by the 1st piston 17 which advances and retracts the valve body 9 with respect to the gas ejection hole 13 so that it may mention later.
 また、先鋭体として形成された弁体9は、ケース本体11を移動ガイド部として、このケース本体11内を移動するさらなるピストンである第2のピストン18に支持されて、弁体ケース10内を移動する。すなわち、弁体9は、基端部側を第2のピストン18に支持され、このピストン18と一体にガス噴出孔13に対し進退する方向の図1中矢印Y1方向及び矢印Y2方向に移動可能に弁体ケース10内に配設されている。そして、弁体9は、第2のピストン18と一体に、封止部16を嵌合させてガス噴出孔13を閉塞する第1の位置と、封止部16の嵌合を解除してガス噴出孔13を解放する第2の位置との間を移動する。 Further, the valve body 9 formed as a sharp body is supported by a second piston 18 that is a further piston that moves in the case body 11 with the case body 11 as a movement guide portion, and the inside of the valve body case 10 is moved inside. Moving. That is, the valve body 9 is supported by the second piston 18 on the base end side, and moves in the direction indicated by the arrows Y 1 and Y 2 in FIG. The valve body case 10 is movably disposed. The valve body 9 is integrated with the second piston 18 to release the fitting of the sealing portion 16 from the first position where the sealing portion 16 is fitted and the gas ejection hole 13 is closed. It moves between the second positions where the ejection holes 13 are released.
 そして、弁体9は、第2のピストン18とケース本体11との間に配設された第1の付勢部材である第1のコイルバネ19により、図3中矢印Y1方向に移動付勢されている。すなわち、弁体9は、第1のコイルバネ19により付勢された状態でテーパ状に形成された封止部16をガス噴出孔13に嵌合させ、このガス噴出孔13を閉塞している。 The valve body 9 is moved and urged in the direction of the arrow Y 1 in FIG. 3 by a first coil spring 19 that is a first urging member disposed between the second piston 18 and the case body 11. Has been. That is, the valve body 9 is fitted with the gas ejection hole 13 with the sealing portion 16 formed in a tapered shape while being biased by the first coil spring 19, and closes the gas ejection hole 13.
 なお、第1のコイルバネ19は、図2、図3に示すように、第2のピストン18の中途部に形成した係止段部18aと、ケース本体11の基端部側に嵌合されたバネ支持部材20との間に圧縮された状態で配設されることにより、封止部16がガス噴出孔13に嵌合して密閉する方向の図3中矢印Y1方向に付勢している。 As shown in FIGS. 2 and 3, the first coil spring 19 is fitted to the locking step portion 18 a formed in the middle portion of the second piston 18 and the base end portion side of the case body 11. by being disposed in a compressed state between the spring support member 20, the sealing portion 16 biases fitted in FIG arrow Y 1 direction direction to seal the gas ejection holes 13 Yes.
 ところで、弁体ケース10に設けられたガス噴出孔13は、先鋭体として形成された弁体9に設けたテーパ状の封止部16のみによって閉塞されている。すなわち、弁体9は、テーパ状に形成された封止部16の中途部がガス噴出孔13に嵌合した状態で移動が規制された状態となる。そのため、弁体9の基端部側に取り付けられた第2のピストン18は、図1に示すように、ケース本体11内の中途部に位置し、ケース本体11内で浮いた状態におかれている。すなわち、第2のピストン18は、弁体9に形成したテーパ状の封止部16がガス噴出孔13に嵌合し、このガス噴出孔13を閉塞した状態にあるとき、ガス噴出孔13から離間した状態にあって、ガス噴出孔13との間に一定の空間が生ずるような大きさに形成されている。 Incidentally, the gas ejection hole 13 provided in the valve body case 10 is closed only by the tapered sealing portion 16 provided in the valve body 9 formed as a sharp body. That is, the movement of the valve body 9 is restricted in a state where the middle portion of the sealing portion 16 formed in a tapered shape is fitted in the gas ejection hole 13. Therefore, as shown in FIG. 1, the second piston 18 attached to the base end side of the valve body 9 is positioned in the middle of the case body 11 and is in a state of floating in the case body 11. ing. That is, when the second piston 18 is in a state in which the tapered sealing portion 16 formed in the valve body 9 is fitted in the gas ejection hole 13 and the gas ejection hole 13 is closed, the second piston 18 In a state of being separated from each other, it is formed in such a size that a certain space is formed between the gas ejection holes 13.
 そして、ケース本体11の内周面に摺接して移動する第2のピストン18の外周面には、図2に示すように、ケース本体11の内周面との間に圧縮流体流通路を構成する複数の溝部21が形成されている。これら溝部21は、第2のピストン18の基端部側から先端部側に亘って連続して形成されている。このような溝部21が形成されることにより、ガスカートリッジ8に充填された炭酸ガス7は、気化されながら溝部21を通じて第2のピストン18の先端面とガス噴出孔13との間に構成された空間に充填される。したがって、第2のピストン18とガス噴出孔13との間に構成される空間は、ガス充填室22とされる。このように、ガス充填室22にも圧縮された炭酸ガス7が充填されることにより、弁体9及び第2のピストン18には、圧縮された炭酸ガス7の圧力が外周側のほぼ全面に均等に作用することになる。そのため、弁体9及び第2のピストン18は、弁体ケース10内を自由に移動可能とされる。ここで、弁体9は、第1のコイルバネ19により図3中矢印Y1方向の付勢力を受けて封止部16をガス噴出孔13に嵌合させ、このガス噴出孔13を閉塞した状態に維持している。 A compressed fluid flow path is formed between the outer peripheral surface of the second piston 18 that slides in contact with the inner peripheral surface of the case main body 11 and the inner peripheral surface of the case main body 11 as shown in FIG. A plurality of groove portions 21 are formed. These groove portions 21 are formed continuously from the proximal end portion side to the distal end portion side of the second piston 18. By forming such a groove portion 21, the carbon dioxide gas 7 filled in the gas cartridge 8 is formed between the distal end surface of the second piston 18 and the gas ejection hole 13 through the groove portion 21 while being vaporized. The space is filled. Therefore, the space formed between the second piston 18 and the gas ejection hole 13 is a gas filling chamber 22. As described above, the compressed carbon dioxide gas 7 is also filled in the gas filling chamber 22, so that the pressure of the compressed carbon dioxide gas 7 is applied to the valve body 9 and the second piston 18 almost on the entire outer surface. It will work equally. Therefore, the valve body 9 and the second piston 18 can freely move in the valve body case 10. Here, the valve body 9, a state where the sealing portion 16 receives the 3 arrow Y 1 direction biasing force of the first coil spring 19 is fitted to the gas ejection holes 13, and closing the gas ejection holes 13 To maintain.
 このように、圧縮された炭酸ガス7が充填されたガス充填部に内蔵した弁体9を、第1のコイルバネ19の付勢力を利用して移動付勢することによりガス噴出孔13を閉塞するようにしたガスカートリッジ8においては、第1のコイルバネ19のバネ圧を選択することにより、ガス噴出孔13を閉塞する方向に弁体9を付勢する付勢力が可変され、ガス噴出孔13を開放させるため付勢力が可変される。 Thus, the gas ejection hole 13 is closed by moving and energizing the valve body 9 built in the gas filling portion filled with the compressed carbon dioxide gas 7 by using the energizing force of the first coil spring 19. In the gas cartridge 8 configured as described above, by selecting the spring pressure of the first coil spring 19, the urging force for urging the valve body 9 in the direction to close the gas ejection hole 13 is varied, and the gas ejection hole 13 is The urging force is varied to open.
 上述したように、ガスカートリッジ8に充填された圧縮流体としての圧縮炭酸ガス7の噴出を制御する弁体9を内蔵したガスカートリッジ8は、このガスカートリッジ8から噴射される炭酸ガス7の圧力を減圧して一定の圧力に制御する圧力制御室23が構成されるピストンハウジング24に連結されている。 As described above, the gas cartridge 8 including the valve body 9 that controls the ejection of the compressed carbon dioxide gas 7 as the compressed fluid filled in the gas cartridge 8 has the pressure of the carbon dioxide gas 7 ejected from the gas cartridge 8. It is connected to a piston housing 24 that constitutes a pressure control chamber 23 that controls the pressure by reducing the pressure.
 そこで、ガスカートリッジ8に一体的に取り付けられる弁体ケース10には、ピストンハウジング24に連結するための連結部26が設けられている。この連結部26は、噴出孔13から噴射される炭酸ガス7をピストンハウジング24側に供給するためのガス通路として機能するものであって、噴出孔13を囲んで突出する筒状に形成されている。連結部26の内部には、ガス噴出孔13から突出した弁体9の先端側が臨まされている。そして、弁体9の連結部26内に突出した部分が、ピストンハウジング24内に配設される第1のピストン17によって押圧操作される押圧操作部27とされる。 Therefore, the valve case 10 that is integrally attached to the gas cartridge 8 is provided with a connecting portion 26 for connecting to the piston housing 24. The connecting portion 26 functions as a gas passage for supplying the carbon dioxide gas 7 injected from the ejection hole 13 to the piston housing 24 side, and is formed in a cylindrical shape protruding around the ejection hole 13. Yes. The front end side of the valve element 9 protruding from the gas ejection hole 13 is exposed inside the connecting portion 26. A portion protruding into the connecting portion 26 of the valve body 9 is a pressing operation portion 27 that is pressed by the first piston 17 disposed in the piston housing 24.
 一方、ピストンハウジング24は、円筒状の筒体として形成され、下方側部分には、弁体9の開閉を行う第1のピストン17が進退可能に収納されるシリンダー部28が設けられている。また、ピストンハウジング24の上方側に構成されたハウジング本体29内には、第1のピストン17に対し弁体9を押圧する方向の付勢力を付与する第2の付勢部材である第2のコイルバネ30と、この第2のコイルバネ30を圧縮して付勢力を調整するバネ圧調整部材31が配設されている。このバネ圧調整部材31は、収納容器3の機構取付部4に取り付けられた保持用キャップ32により支持され、ハウジング本体29からの抜け止めが図られている。保持用キャップ32は、内周面に第1のネジ部33が形成され、この第1のネジ部33を機構取付部4の外周面に形成した第2のネジ部34に螺合して取り付けられることにより、回転操作されることによって機構取付部4に対し進退される。この保持用キャップ32は、機構取付部4に対し進退操作されることにより、バネ圧調整部材31を進退操作して、第2のコイルバネ30の圧縮率を調整し、この第2のコイルバネ30の付勢力を調整する。 On the other hand, the piston housing 24 is formed as a cylindrical tube body, and a cylinder portion 28 in which the first piston 17 that opens and closes the valve body 9 is housed so as to be able to advance and retreat is provided in the lower portion. Further, in the housing main body 29 formed on the upper side of the piston housing 24, a second urging member that applies a urging force in a direction of pressing the valve body 9 against the first piston 17 is provided. A coil spring 30 and a spring pressure adjusting member 31 for adjusting the biasing force by compressing the second coil spring 30 are disposed. The spring pressure adjusting member 31 is supported by a holding cap 32 attached to the mechanism attaching portion 4 of the storage container 3, and is prevented from coming off from the housing body 29. The holding cap 32 has a first screw portion 33 formed on the inner peripheral surface, and the first screw portion 33 is screwed onto and attached to a second screw portion 34 formed on the outer peripheral surface of the mechanism mounting portion 4. As a result, the mechanism mounting portion 4 is moved forward and backward by being rotated. The holding cap 32 is operated to advance and retract with respect to the mechanism mounting portion 4, thereby operating the spring pressure adjusting member 31 to adjust the compression rate of the second coil spring 30. Adjust the biasing force.
 なお、バネ圧調整部材31は、図1に示すように、筒状に形成され、その内部には、収納容器3に収納された噴射物2の噴射を制御する噴射制御機構5が配設される。 As shown in FIG. 1, the spring pressure adjusting member 31 is formed in a cylindrical shape, and an injection control mechanism 5 that controls the injection of the injection 2 stored in the storage container 3 is disposed therein. The
 また、ピストンハウジング24の下端部には、ガスカートリッジ8が連結される連結受け部35が設けられている。この連結受け部35は、シリンダー部28に連通する貫通孔を有する筒状に形成されている。そして、ガスカートリッジ8は、連結部26を連結受け部35に嵌合することによってピストンハウジング24に連結される。このように、ガスカートリッジ8が連結されることにより、ガスカートリッジ8に充填された圧縮炭酸ガス7は、ガス噴出孔13から連結部26を介してピストンハウジング24のシリンダー部28に噴射可能な状態となる。 Further, a connection receiving portion 35 to which the gas cartridge 8 is connected is provided at the lower end portion of the piston housing 24. The connection receiving portion 35 is formed in a cylindrical shape having a through hole communicating with the cylinder portion 28. The gas cartridge 8 is coupled to the piston housing 24 by fitting the coupling portion 26 to the coupling receiving portion 35. In this way, by connecting the gas cartridge 8, the compressed carbon dioxide gas 7 filled in the gas cartridge 8 can be injected from the gas ejection hole 13 to the cylinder portion 28 of the piston housing 24 through the connecting portion 26. It becomes.
 シリンダー部28内には、ガス噴出孔13から噴射される圧縮炭酸ガス7の圧力を受ける第1のピストン17が進退可能に配設されている。第1のピストン17は、シリンダー部28に供給される炭酸ガス7が目的以外の外部に漏れることを防止するため、シリンダー部28の内周面に密接して移動し得るように、図1、図2に示すように、上下のフランジ部17a,17b間にゴム製のピストンリング36が取り付けられている。 In the cylinder portion 28, a first piston 17 that receives the pressure of the compressed carbon dioxide gas injected from the gas injection hole 13 is disposed so as to be able to advance and retract. In order to prevent the carbon dioxide gas 7 supplied to the cylinder part 28 from leaking outside the purpose, the first piston 17 can move in close contact with the inner peripheral surface of the cylinder part 28, as shown in FIG. As shown in FIG. 2, a rubber piston ring 36 is attached between the upper and lower flange portions 17a and 17b.
 また、第1のピストン17の下端部側には、図2に示すように、軸状の押圧操作子37が突設されている。この押圧操作子37は、図1に示すように、第1のピストン17がシリンダー部28内に配設されたとき、連結受け部35内に進入し、この連結受け部35に嵌合された連結部26内に突出した弁体9の押圧操作部27に当接し、弁体9を第1のコイルバネ19の付勢力に抗して移動操作する。 Further, as shown in FIG. 2, a shaft-shaped pressing operator 37 projects from the lower end side of the first piston 17. As shown in FIG. 1, when the first piston 17 is disposed in the cylinder portion 28, the pressing operator 37 enters the connection receiving portion 35 and is fitted into the connection receiving portion 35. The valve body 9 abuts against the pressing operation portion 27 of the valve body 9 protruding into the connecting portion 26, and the valve body 9 is moved and operated against the urging force of the first coil spring 19.
 上述したように、第2のコイルバネ30の付勢力を受けて進退可能とされた第1のピストン17が配設されたシリンダー部28内の炭酸ガス7が供給される空間は、ガスカートリッジ8から噴射される圧縮流体としての炭酸ガス7の圧力を一定の圧力に制御する圧力制御室23として機能する。 As described above, the space in which the carbon dioxide gas 7 is supplied in the cylinder portion 28 in which the first piston 17 that can be advanced and retracted by receiving the urging force of the second coil spring 30 is supplied from the gas cartridge 8. It functions as a pressure control chamber 23 that controls the pressure of the carbon dioxide gas 7 as the compressed fluid to be injected to a constant pressure.
 また、シリンダー部28には、圧力制御室23に供給されて圧力が一定に制御された炭酸ガス7を外部に導出するためのガス導出孔38が設けられている。 Further, the cylinder portion 28 is provided with a gas outlet hole 38 for leading out the carbon dioxide gas 7 supplied to the pressure control chamber 23 and controlled at a constant pressure.
 ここで、ガスカートリッジ8から噴射され、圧力制御室23に供給される圧縮された炭酸ガス7の圧力を減圧して一定圧力に制御する状態を説明する。 Here, a state in which the pressure of the compressed carbon dioxide gas 7 injected from the gas cartridge 8 and supplied to the pressure control chamber 23 is reduced and controlled to a constant pressure will be described.
 本実施の形態において、ガスカートリッジ8から噴射される圧縮された炭酸ガス7の圧力を制御するには、保持用キャップ32を機構取付部4に対し進入する方向に回転し、バネ圧調整部材31を図1中矢印Y3方向に移動する。バネ圧調整部材31が、図1中矢印Y3方向に移動すると、第2のコイルバネ30を同方向に押圧し、この第2のコイルバネ30を介して第1のピストン17を押圧する。第1のピストン17は、図1中矢印Y3方向に押圧されることにより、押圧操作子37を弁体9の押圧操作部27に当接させる。このとき、弁体9は、第1のコイルバネ19の付勢力を受けて、図1中矢印Y1方向に移動付勢されているので、押圧操作子37は、所定の接触圧をもって押圧操作部27に当接する。 In the present embodiment, in order to control the pressure of the compressed carbon dioxide gas 7 injected from the gas cartridge 8, the holding cap 32 is rotated in the direction of entering the mechanism mounting portion 4, and the spring pressure adjusting member 31. the movement in Figure 1 the arrow Y 3 direction. When the spring pressure adjusting member 31 moves in the direction of arrow Y 3 in FIG. 1, the second coil spring 30 is pressed in the same direction, and the first piston 17 is pressed via the second coil spring 30. When the first piston 17 is pressed in the direction of the arrow Y 3 in FIG. 1, the pressing operator 37 is brought into contact with the pressing operation portion 27 of the valve body 9. At this time, the valve body 9 receives the urging force of the first coil spring 19, because it is moved biased in the arrow Y 1 direction in FIG. 1, the pressing operation element 37 is pressed portion with a predetermined contact pressure 27 abuts.
 押圧操作子37が押圧操作部27に当接した状態からさらに保持用キャップ32を回転させてバネ圧調整部材31を図1中矢印Y3方向に移動し、第2のコイルバネ30を同方向に押圧すると、第2のコイルバネ30は、バネ圧調整部材31による押圧力と弁体9を図1中矢印Y1方向のガス噴出孔13を閉塞する方向に付勢する荷重を受けて圧縮されて付勢力F2が蓄積される。さらに、保持用キャップ32が回転され、図4に示すように、第2のコイルバネ30が圧縮され、この第2のコイルバネ30に蓄積された付勢力F2が、弁体9を付勢する付勢力F1より大きくなると、第1のピストン17は、押圧操作子37により押圧操作部27を押圧し、弁体9を図1中矢印Y2方向に移動する。 Thrusting operators 37 moves contact with further rotating the holding cap 32 from the state the spring pressure adjusting member 31 in FIG. 1 arrow Y 3 direction the pressing operation unit 27, the second coil spring 30 in the same direction When pressed, the second coil spring 30 is compressed under a load that urges the pressing force and the valve body 9 by spring pressure adjusting member 31 in the direction for closing the Figure 1 arrow Y 1 direction of gas ejection holes 13 The urging force F 2 is accumulated. Further, the holding cap 32 is rotated to compress the second coil spring 30 as shown in FIG. 4, and the biasing force F 2 accumulated in the second coil spring 30 biases the valve body 9. When it becomes larger than the force F 1 , the first piston 17 presses the pressing operation portion 27 with the pressing operation element 37 and moves the valve body 9 in the direction of arrow Y 2 in FIG.
 なお、弁体9は、上述したように、第2のピストン18を含み、圧縮された炭酸ガス7の圧力を外周側のほぼ全面に均等に受けてガスカートリッジ8内に配設されているので、ガス噴出孔13を閉塞する方向に弁体9を付勢する付勢力f1は、弁体9を付勢する第1のコイルバネ19の付勢力として取り扱うことができる。 As described above, the valve body 9 includes the second piston 18 and is disposed in the gas cartridge 8 so that the pressure of the compressed carbon dioxide gas 7 is evenly received on almost the entire surface on the outer peripheral side. The biasing force f 1 that biases the valve body 9 in the direction of closing the gas ejection hole 13 can be handled as the biasing force of the first coil spring 19 that biases the valve body 9.
 そして、圧縮された第2のコイルバネ30の付勢力F2が弁体9を付勢する第1のコイルバネ19の付勢力F1より大きくなると、弁体9は、第1のコイルバネ19の付勢力F1に抗して図1中矢印Y2方向に移動し、封止部16のガス噴出孔13への嵌合が解除され、このガス噴出孔13を開放する。ガス噴出孔13が開放されると、ガスカートリッジ8に液化されて充填された炭酸ガス7が気化されながらシリンダー部28内に構成された圧力制御室23に供給される。そして、圧力制御室23に供給される炭酸ガス7は、圧力制御室23からガス導出孔38を通り、噴射物2が収納された収納容器3内に充満する。圧力制御室23から収納容器3に充満された炭酸ガスの圧力は、圧力制御室23を区画する第1のピストン17の端面17aに作用し、第1のピストン17を第2のコイルバネ30の付勢力F2に抗して図1中矢印Y4方向に移動させるような圧力を発生させる。 When the urging force F 2 of the compressed second coil spring 30 becomes larger than the urging force F 1 of the first coil spring 19 that urges the valve body 9, the valve body 9 is urged by the first coil spring 19. 1 moves in the direction of the arrow Y 2 in FIG. 1 against F 1 , the fitting of the sealing portion 16 to the gas ejection hole 13 is released, and the gas ejection hole 13 is opened. When the gas ejection holes 13 are opened, the carbon dioxide gas 7 liquefied and filled in the gas cartridge 8 is supplied to the pressure control chamber 23 configured in the cylinder portion 28 while being vaporized. Then, the carbon dioxide gas 7 supplied to the pressure control chamber 23 passes through the gas outlet hole 38 from the pressure control chamber 23 and fills the storage container 3 in which the propellant 2 is stored. The pressure of the carbon dioxide gas filled in the storage container 3 from the pressure control chamber 23 acts on the end surface 17 a of the first piston 17 that defines the pressure control chamber 23, and the first piston 17 is attached to the second coil spring 30. A pressure is generated so as to move against the force F 2 in the direction of the arrow Y 4 in FIG.
 本実施の形態の噴霧装置おいて、収納容器3内に高圧のガス源である圧縮炭酸ガス7を充填した圧縮流体収納容器としてのガスカートリッジ8を収納しながら、収納容器3内には、一定の圧力に減圧された炭酸ガスが充満され、一定の圧力以上の高圧の炭酸ガスが供給されることが防止される。したがって、収納容器3は、本発明の圧力制御機構により減圧制御された圧力以上に加圧されることがにので、この収納容器3に供給される圧縮炭酸ガスの圧力に耐え得る強度を持って形成されたものであればよく、合成樹脂の成型体などにより作成することが可能となる。そして、噴霧装置を構成する収納容器3の形状や、用いる材料の選択の範囲を拡大することができ、収納する内容物に適合した材料により形成することができる。 In the spray device of the present embodiment, the storage container 3 contains a gas cartridge 8 as a compressed fluid storage container filled with the compressed carbon dioxide gas 7 that is a high-pressure gas source. The decompressed carbon dioxide gas is filled, and it is possible to prevent the supply of high-pressure carbon dioxide gas exceeding a certain pressure. Therefore, the storage container 3 can be pressurized to a pressure higher than the pressure controlled by the pressure control mechanism of the present invention. Therefore, the storage container 3 has sufficient strength to withstand the pressure of the compressed carbon dioxide supplied to the storage container 3. Any material may be used as long as it is formed, and it can be formed from a synthetic resin molding or the like. And the shape of the storage container 3 which comprises a spraying apparatus, and the range of selection of the material to be used can be expanded, and it can form with the material suitable for the content to store.
 ところで、ガスカートリッジ8から噴射される炭酸ガスの圧力を制御する本発明に係る圧力制御機構6は、第1のピストン17に支持された弁体9を押圧操作する第1のピストン17の圧力を受ける端面17aの大きさ、この第1のピストン17を押圧付勢する第2のコイルバネ30を適宜選択し、第2のコイルバネ30の圧縮量を制御する保持用キャップ32による第2のコイルバネ30の圧縮量の変化に応じた圧縮荷重を選択することにより、ガス噴出孔13を開放する方向に弁体9を押圧する付勢力を設定することができる。 By the way, the pressure control mechanism 6 according to the present invention for controlling the pressure of the carbon dioxide gas injected from the gas cartridge 8 controls the pressure of the first piston 17 for pressing the valve body 9 supported by the first piston 17. The size of the end face 17a to be received and the second coil spring 30 that presses and biases the first piston 17 are appropriately selected, and the second coil spring 30 is held by the holding cap 32 that controls the amount of compression of the second coil spring 30. By selecting a compression load corresponding to a change in the compression amount, it is possible to set an urging force that presses the valve body 9 in a direction in which the gas ejection hole 13 is opened.
 そして、第2のコイルバネ30を圧縮し第1のピストン17を弁体9から離間する図1中矢印Y1方向に移動する圧力は、第1のピストン17が進退する圧力制御室23内の圧力に相当するものであり、圧力制御室23に供給される炭酸ガス7の圧力P1に相当する。したがって、第1のピストン17を押圧付勢する付勢力を制御することにより、ガスカートリッジ8から圧力制御室23に供給される炭酸ガスの圧力を制御することができる。 The pressure moves in FIG arrow Y 1 direction away first piston 17 from the valve member 9 compresses the second coil spring 30, the pressure in the pressure control chamber 23 in which the first piston 17 moves forward and backward It corresponds to the pressure P 1 of the carbon dioxide gas 7 supplied to the pressure control chamber 23. Therefore, the pressure of the carbon dioxide gas supplied from the gas cartridge 8 to the pressure control chamber 23 can be controlled by controlling the biasing force that presses and biases the first piston 17.
 例えば、第1のピストン17を付勢する第2のコイルバネ30が所定量圧縮されたときの付勢力F2が5kgとされ、第1のピストン17の端面17aの面積を1cm2とすると、圧力制御室23に充満される炭酸ガスの圧力P1をほぼ5kg/cm2に制御することができる。 For example, if the biasing force F 2 when the second coil spring 30 that biases the first piston 17 is compressed by a predetermined amount is 5 kg, and the area of the end surface 17a of the first piston 17 is 1 cm 2 , the pressure The pressure P 1 of the carbon dioxide gas filled in the control chamber 23 can be controlled to approximately 5 kg / cm 2 .
 なお、ガス噴出孔13を開放する方向に弁体9を押圧付勢する第1のピストン17の付勢力F2は、ガス噴出孔13を閉塞する方向に弁体9を付勢する第1のコイルバネ19の付勢力F1より大きく設定される。 The biasing force F 2 of the first piston 17 that presses and biases the valve body 9 in the direction to open the gas ejection hole 13 is the first biasing the valve body 9 in the direction to close the gas ejection hole 13. It is set larger than the biasing force F 1 of the coil spring 19.
 ここで、ガスカートリッジ8に充填された炭酸ガスの圧力を制御して噴射する本発明に係る圧力制御機構6の動作を説明する。この圧力制御機構6は、保持用キャップ32が回動操作され、バネ圧調整部材31を介してバネ圧調整部材31が移動されると、第2のコイルバネ30が圧縮され、この第2のコイルバネ30に付与される付勢力F2が第1のコイルバネ19の付勢力F1より大きくなると、弁体9が図1中矢印Y2方向に移動し、図5に示すように、ガス噴出孔13を開放する。ガス噴出孔13が開放されると、ガスカートリッジ8に充填された液化炭酸ガス7が圧力制御室23内に噴射されていく。このとき、液化炭酸ガスは、気化され気体となって圧力制御室23に噴射される。そして、炭酸ガス7が圧力制御室23に充満され、第1のピストン17の端面17aに作用する圧力が、第1のピストン17を付勢する第2のコイルバネ30の付勢力F2より大きくなると、第2のコイルバネ30を圧縮するように第1のピストン17を押圧する。第1のピストン17が第1のコイルバネ30を圧縮するように押圧されると、第1のピストン17は、弁体9から離間する方向の図5中矢印Y1方向に移動する。第1のピストン17が図5中矢印Y1方向に移動し、弁体9の押圧を解除すると、弁体9は、第1のコイルバネ19の付勢力を受けてガス噴出孔13を閉塞する方向の図5中矢印Y1方向に移動してガス噴出孔13に嵌合し、図6に示すように、ガス噴出孔13を閉塞する。すなわち、弁体9のテーパ状に形成された封止部16が、図5に示すように、ガス噴出孔13に嵌合するように移動し、ガス噴出孔13を閉塞する。そして、ガス噴出孔13が密閉されることにより、ガスカートリッジ8からの炭酸ガスの供給が停止する。 Here, the operation of the pressure control mechanism 6 according to the present invention for controlling and injecting the pressure of the carbon dioxide gas filled in the gas cartridge 8 will be described. In the pressure control mechanism 6, when the holding cap 32 is rotated and the spring pressure adjusting member 31 is moved via the spring pressure adjusting member 31, the second coil spring 30 is compressed, and the second coil spring is compressed. When the urging force F 2 applied to 30 becomes larger than the urging force F 1 of the first coil spring 19, the valve body 9 moves in the direction of the arrow Y 2 in FIG. 1, and as shown in FIG. Is released. When the gas ejection hole 13 is opened, the liquefied carbon dioxide gas 7 filled in the gas cartridge 8 is injected into the pressure control chamber 23. At this time, the liquefied carbon dioxide gas is vaporized to be injected into the pressure control chamber 23 as a gas. When the pressure control chamber 23 is filled with the carbon dioxide gas 7 and the pressure acting on the end surface 17 a of the first piston 17 becomes larger than the biasing force F 2 of the second coil spring 30 that biases the first piston 17. The first piston 17 is pressed so as to compress the second coil spring 30. When the first piston 17 is pressed so as to compress the first coil spring 30, the first piston 17 moves in the direction of the arrow Y 1 in FIG. When the first piston 17 moves in the direction of the arrow Y 1 in FIG. 5 and the pressure of the valve body 9 is released, the valve body 9 receives the biasing force of the first coil spring 19 and closes the gas ejection hole 13. 5 moves in the direction of the arrow Y 1 in FIG. 5 and fits into the gas ejection hole 13 to close the gas ejection hole 13 as shown in FIG. That is, as shown in FIG. 5, the sealing portion 16 formed in the tapered shape of the valve body 9 moves so as to fit into the gas ejection hole 13 and closes the gas ejection hole 13. And the supply of the carbon dioxide gas from the gas cartridge 8 stops by sealing the gas ejection hole 13.
 このとき、保持用キャップ32は、第2のコイルバネ30を所定量圧縮する下降位置に回転された状態に置かれている。 At this time, the holding cap 32 is placed in a state where it is rotated to a lowered position that compresses the second coil spring 30 by a predetermined amount.
 このように、ガスカートリッジ8から炭酸ガスの供給が行われる圧力制御室23の圧力が、第1のピストン17を付勢する第2のコイルバネ30の付勢力F2より大きくなると、弁体9がガス噴出孔13を閉塞し、ガスカートリッジ8からの炭酸ガスの供給が停止される。したがって、圧力制御室23には、第1のピストン17を押圧付勢する付勢力F1を超える圧力の炭酸ガスの供給が停止され、第1のピストン17を押圧付勢する付勢力F1に相当する圧力の炭酸ガスが供給される。 Thus, when the pressure in the pressure control chamber 23 to which carbon dioxide gas is supplied from the gas cartridge 8 becomes greater than the biasing force F 2 of the second coil spring 30 that biases the first piston 17, the valve element 9 The gas ejection hole 13 is closed, and the supply of carbon dioxide from the gas cartridge 8 is stopped. Therefore, the pressure control chamber 23, the supply pressure of carbon dioxide greater than a biasing force F 1 which presses and biases the first piston 17 is stopped, the first piston 17 to the biasing force F 1 which presses and biases Carbon dioxide gas having a corresponding pressure is supplied.
 ところで、ガスカートリッジ8に充填されている炭酸ガスを圧縮して生成された液化炭酸ガスは、70気圧以上の圧力を有するので、本発明に係る圧力制御機構6は、ガスカートリッジ8に充填された炭酸ガスを一定圧力に減圧して噴射する制御を行う。 By the way, since the liquefied carbon dioxide gas generated by compressing the carbon dioxide gas filled in the gas cartridge 8 has a pressure of 70 atm or more, the pressure control mechanism 6 according to the present invention is filled in the gas cartridge 8. Control is performed to reduce the carbon dioxide gas to a constant pressure and inject it.
 そして、圧力制御室23に供給された炭酸ガス7が外部に放出されるなどし、圧力制御室23内の圧力が低下すると、弁体9が、第2のコイルバネ30により付勢された第1のピストン17が押圧力を受けて図5中矢印Y2方向に移動され、図5に示すようにガス噴出孔13を開放する。ガス噴出孔13が再び開放されることにより、ガスカートリッジ8から圧力制御室23内に炭酸ガスが噴射される。そして、ガスカートリッジ8から炭酸ガスが供給され圧力制御室23の圧力が第1のピストン17を押圧付勢する付勢力F1より大きくなると、再び弁体9がガス噴出孔13を閉塞し、ガスカートリッジ8からの炭酸ガスの供給が停止する。 Then, when the carbon dioxide gas 7 supplied to the pressure control chamber 23 is released to the outside and the pressure in the pressure control chamber 23 decreases, the valve body 9 is urged by the second coil spring 30. the piston 17 is moved in FIG. 5 in an arrow Y 2 direction by receiving the pressing force, to open the gas injection holes 13 as shown in FIG. By opening the gas ejection hole 13 again, carbon dioxide gas is ejected from the gas cartridge 8 into the pressure control chamber 23. When carbon dioxide gas is supplied from the gas cartridge 8 and the pressure in the pressure control chamber 23 becomes larger than the urging force F 1 that presses and urges the first piston 17, the valve element 9 again closes the gas ejection hole 13, The supply of carbon dioxide from the cartridge 8 is stopped.
 したがって、圧力制御室23には、一定の圧力に減圧制御された炭酸ガスの供給が行われる。 Therefore, the pressure control chamber 23 is supplied with carbon dioxide gas whose pressure is controlled to be constant.
 この圧力制御機構6において、第1のピストン17を付勢する第2のコイルバネ30のバネ荷重(Kgf)を適宜選択し、第2のコイルバネ30が所定量圧縮されたときの付勢力F2が第1のコイルバネ19の付勢力F1より大きくなることを条件として、圧力制御室23を区画する第1のピストン17の端面17aの面積S1を適宜選択することにより、圧力制御室23に充満される炭酸ガス7の圧力を適宜設定することができる。例えば、第2のコイルバネ30を圧縮するバネ圧調整部材31の移動量を制御し、第2のコイルバネ30の変位量を調整することにより、第2のコイルバネ30の付勢力F2を可変することにより、圧力制御室23に充満される炭酸ガス7の圧力を可変制御することが可能となる。 In this pressure control mechanism 6, the spring load (Kgf) of the second coil spring 30 that biases the first piston 17 is appropriately selected, and the biasing force F 2 when the second coil spring 30 is compressed by a predetermined amount is obtained. The pressure control chamber 23 is filled by appropriately selecting the area S 1 of the end surface 17a of the first piston 17 that defines the pressure control chamber 23 on condition that the biasing force F 1 of the first coil spring 19 becomes larger. The pressure of the carbon dioxide gas 7 can be set as appropriate. For example, the biasing force F 2 of the second coil spring 30 can be varied by controlling the amount of movement of the spring pressure adjusting member 31 that compresses the second coil spring 30 and adjusting the amount of displacement of the second coil spring 30. Thus, the pressure of the carbon dioxide gas 7 filled in the pressure control chamber 23 can be variably controlled.
 なお、本実施の形態の圧力制御機構6によって圧力が制御された炭酸ガス7は、噴霧装置1の収納容器3に収納された噴射物2を噴射するための噴射ガスとして用いられる。そこで、圧力制御室23に充満され、圧力が制御された炭酸ガス7は、圧力制御室23に設けたガス導出孔38を介して収納容器3内に噴射され充満される。したがって、収納容器3には、圧力制御室23において圧力制御された炭酸ガス7が充満されることになる。 In addition, the carbon dioxide gas 7 whose pressure is controlled by the pressure control mechanism 6 of the present embodiment is used as an injection gas for injecting the injection 2 stored in the storage container 3 of the spray device 1. Therefore, the carbon dioxide gas 7 that is filled in the pressure control chamber 23 and whose pressure is controlled is injected and filled into the storage container 3 through the gas outlet hole 38 provided in the pressure control chamber 23. Therefore, the storage container 3 is filled with the carbon dioxide gas 7 whose pressure is controlled in the pressure control chamber 23.
 このような噴霧装置1の収納容器3に収納された噴射物2を噴射する炭酸ガス7を供給する装置として用いられる圧力制御機構6は、図1及び図6に示すように、噴霧装置1の収納容器3内に収納するように配設される。本実施の形態においては、ガスカートリッジ8を連結したピストンハウジング24を、ガスカートリッジ8とともに収納容器3内に収納し、ピストンハウジング24の上端側の周縁に突設したフランジ部40を、収納容器3に設けた機構取付部4の上端面に突き当て位置決めされて取り付けている。このとき、ピストンハウジング24と機構取付部4との間は、ガス漏れが生じないように密閉され、収納容器3内を密閉した空間としている。 As shown in FIGS. 1 and 6, the pressure control mechanism 6 used as a device for supplying the carbon dioxide gas 7 for injecting the spray 2 stored in the storage container 3 of the spray device 1 includes the spray device 1. It arrange | positions so that it may accommodate in the storage container 3. FIG. In the present embodiment, the piston housing 24 to which the gas cartridge 8 is connected is stored in the storage container 3 together with the gas cartridge 8, and the flange portion 40 protruding from the peripheral edge on the upper end side of the piston housing 24 is provided in the storage container 3. It is abutted and positioned on the upper end surface of the mechanism mounting portion 4 provided in the mounting. At this time, the space between the piston housing 24 and the mechanism mounting portion 4 is hermetically sealed so as not to cause gas leakage, and the storage container 3 is sealed.
 ところで、本発明に係る圧力制御機構6が用いられる噴霧装置1には、収納容器3に充填された圧縮されて加圧状態にある炭酸ガス7を利用して噴射される噴射物2の噴射を制御する噴射制御機構5が設けられている。 By the way, in the spraying device 1 in which the pressure control mechanism 6 according to the present invention is used, the injection 2 is injected by using the compressed and pressurized carbon dioxide gas 7 filled in the storage container 3. An injection control mechanism 5 for controlling is provided.
 この噴射制御機構5は、ハウジング本体29の上端側に嵌合するように配設された筒状に形成されたバネ圧調整部材31内に配設されてなり、このバネ圧調整部材31と一体にハウジング本体29内を移動するバルブハウジング41と、このバルブハウジング41内を移動するステム42と、このステム42の外周囲に取り付けられ、ゴムなどの弾性体によりリング状に形成された弁部材43と、この弁部材43をバルブハウジング41とによって挟持する弁押さえ44と、ステム42を付勢するコイルバネ45と、ステム42に連結された連結管46と、連結管46の上端部に取り付けられた噴射ノズル47が設けられた噴射ボタン48とを備える。 The injection control mechanism 5 is arranged in a spring-shaped adjusting member 31 formed in a cylindrical shape so as to be fitted to the upper end side of the housing main body 29, and is integrated with the spring-pressure adjusting member 31. A valve housing 41 that moves in the housing body 29, a stem 42 that moves in the valve housing 41, and a valve member 43 that is attached to the outer periphery of the stem 42 and is formed in a ring shape by an elastic body such as rubber. And a valve presser 44 that holds the valve member 43 between the valve housing 41, a coil spring 45 that biases the stem 42, a connecting pipe 46 that is connected to the stem 42, and an upper end portion of the connecting pipe 46. And an injection button 48 provided with an injection nozzle 47.
 バルブハウジング41は、有底の筒状に形成され、先端部に嵌合突部49が設けられ、この嵌合突部49をバネ圧調整部材31の底部に形成した貫通孔50に嵌合させて、バネ圧調整部材31内に取り付けられている。このバルブハウジング41内には、小径部41aと大径部41bとが形成されている。また、バルブハウジング41の上端側には、膨出部41cが形成されている。 The valve housing 41 is formed in a bottomed cylindrical shape, and a fitting protrusion 49 is provided at the tip, and the fitting protrusion 49 is fitted into a through hole 50 formed in the bottom of the spring pressure adjusting member 31. The spring pressure adjusting member 31 is attached. In the valve housing 41, a small diameter portion 41a and a large diameter portion 41b are formed. A bulging portion 41 c is formed on the upper end side of the valve housing 41.
 そして、バルブハウジング41の小径部41aには、バルブハウジング41の周壁及びバネ圧調整部材31の周壁、さらにハウジング本体29を貫通して連通管51が取り付けられている。この連通管51は、バルブハウジング41と収納容器3との間を連通させるためのものであって、収納容器3内に開口する一端部側には、吸引チューブ52が連結されている。そして、収納容器3に充填された噴射物2は、炭酸ガス7とともに吸引チューブ52及び連通管51を介してバルブハウジング41内に吸引される。 The communication pipe 51 is attached to the small diameter portion 41a of the valve housing 41 through the peripheral wall of the valve housing 41, the peripheral wall of the spring pressure adjusting member 31, and the housing body 29. The communication pipe 51 is for communicating between the valve housing 41 and the storage container 3, and a suction tube 52 is connected to one end portion side that opens into the storage container 3. The projectile 2 filled in the storage container 3 is sucked into the valve housing 41 through the suction tube 52 and the communication pipe 51 together with the carbon dioxide gas 7.
 また、太径部41bには、小径部41aとの間に形成された段差部41dに一端側を係止させてコイルバネ45が収納され、このコイルバネ45の他端側に先端部を係合するようにしてステム42が配設されている。 The large diameter portion 41b has a stepped portion 41d formed between the small diameter portion 41a and one end side locked to accommodate the coil spring 45. The coil spring 45 is engaged with the other end side of the coil spring 45. Thus, the stem 42 is disposed.
 そして、バルブハウジング41内に配設されるステム42には、一端側を開放した導通路53が形成されている。このステム42の周壁には、導通路53に貫通する弁孔54が穿設されている。ステム42の弁孔54が形成された部分の外周囲には、嵌合溝55が形成され、この嵌合溝55に嵌合するようにして弁部材43が取り付けられている。また、ステム42の先端部側には、係止段部42aが形成されている。 The stem 42 disposed in the valve housing 41 is formed with a conduction path 53 having one end opened. A valve hole 54 that penetrates the conduction path 53 is formed in the peripheral wall of the stem 42. A fitting groove 55 is formed on the outer periphery of the portion of the stem 42 where the valve hole 54 is formed, and the valve member 43 is attached so as to fit into the fitting groove 55. Further, a locking step 42 a is formed on the distal end side of the stem 42.
 このステム42は、先端側をバルブハウジング41内に挿入し、係止段部42aをコイルバネ45の他端側に挿入係止させ、中途部に取り付けた弁部材43の外周側を膨出部41cの上面側に形成した凹部56内に載置するようにして配設される。ステム42とともにバルブハウジング41が収納するように配設されたバネ圧調整部材内31内には、筒状の弁押さえ44が嵌合される。弁押さえ44は、ステム42の外周側に嵌装するようにしてバネ圧調整部材31内に嵌合され、凹部56内に載置された弁部材43の外周側をバネ圧調整部材31とによって挟持する。なお、凹部56内には、リング状の突条部56aが形成され、弁部材43に対する圧着力を集中させ、確実な挟持を及び行うようにしている。 The stem 42 has a distal end inserted into the valve housing 41, the locking step 42a is inserted into and locked to the other end of the coil spring 45, and the outer peripheral side of the valve member 43 attached to the middle portion is bulged 41c. It arrange | positions so that it may mount in the recessed part 56 formed in the upper surface side. A cylindrical valve retainer 44 is fitted in the spring pressure adjusting member 31 disposed so that the valve housing 41 is housed together with the stem 42. The valve retainer 44 is fitted in the spring pressure adjusting member 31 so as to be fitted on the outer peripheral side of the stem 42, and the outer peripheral side of the valve member 43 placed in the recess 56 is moved by the spring pressure adjusting member 31. Hold it. In addition, a ring-shaped protrusion 56a is formed in the concave portion 56, and the pressure-bonding force to the valve member 43 is concentrated so as to perform reliable clamping.
 そして、ステム42は、中途部に取り付けた弁部材43が固定されることにより、バルブハウジング41からの抜け止めが図られて、このバルブハウジング41内に取り付けられる。このステム42は、コイルバネ45の付勢力に抗して図4中矢印Y3方向に押圧操作されるとき、弁部材43を弾性変形させながら同方向に移動する。そして、弁部材43は、弾性変形することによりステム42に設けた弁孔54を開閉する。 The stem 42 is attached to the valve housing 41 so that the stem 42 is prevented from coming off from the valve housing 41 by fixing the valve member 43 attached to the middle portion. The stem 42, when being pressed in arrow in FIG. 4 Y 3 direction against the biasing force of the coil spring 45, to move the valve member 43 in the same direction while elastically deforming. And the valve member 43 opens and closes the valve hole 54 provided in the stem 42 by elastically deforming.
 バルブハウジング41に対し進退可能に取り付けられたステム42の他端側には、導通路53に連通する連結管46が取り付けられている。連結管46は、機構取付部4に取り付けられた保持用キャップ32の天板部32aに設けた貫通孔32bを介して外部に突出され、その上端部に噴射ノズル47が設けられた噴射ボタン48が取り付けられている。 A connecting pipe 46 communicating with the conduction path 53 is attached to the other end side of the stem 42 attached to the valve housing 41 so as to be able to advance and retreat. The connecting pipe 46 protrudes to the outside through a through hole 32b provided in the top plate portion 32a of the holding cap 32 attached to the mechanism attaching portion 4, and an injection button 48 provided with an injection nozzle 47 at the upper end thereof. Is attached.
 次に、本発明に係る圧力制御機構6が適用された噴霧装置1により、収納容器3に収納された噴射物2を噴射する動作を説明する。 Next, the operation of injecting the spray 2 stored in the storage container 3 by the spray device 1 to which the pressure control mechanism 6 according to the present invention is applied will be described.
 噴霧装置1に適用された圧力制御機構6は、初期状態において、図1に示すように、保持用キャップ32が機構取付部4に対し上昇した位置に置かれている。 In the initial state, the pressure control mechanism 6 applied to the spraying device 1 is placed at a position where the holding cap 32 is raised with respect to the mechanism mounting portion 4 as shown in FIG.
 ここで、保持用キャップ32を回転し、機構取付部4に対し進入させていくと、保持用キャップ32の天板部32aによってバネ圧調整部材31の上端部が押圧され、バネ圧調整部材31は第2のコイルバネ30を圧縮するように図1中矢印Y3方向に移動される。このとき、バネ圧調整部材31内に構成された噴射制御機構5も、バネ圧調整部材31と一体に図1中矢印Y3方向に移動される。 Here, when the holding cap 32 is rotated and moved into the mechanism mounting portion 4, the upper end portion of the spring pressure adjusting member 31 is pressed by the top plate portion 32 a of the holding cap 32, and the spring pressure adjusting member 31. Is moved in the direction of arrow Y 3 in FIG. 1 so as to compress the second coil spring 30. At this time, the spring pressure adjusting member 31 within the injection control mechanism is configured to 5 are also moved in Figure 1 an arrow Y 3 direction integrally with the spring pressure adjusting member 31.
 そして、バネ圧調整部材31が図1中矢印Y3方向に移動され、第2のコイルバネ30の圧縮が行われ、第2のコイルバネ30の付勢力F2が第1のコイルバネ19の付勢力F1より大きくなると、第1のコイルバネ19の付勢力に抗して第1のピストン17が図1中矢印Y3方向に移動され、この第1のピストン17に設けた押圧操作子37により弁体9が第1のコイルバネ19の付勢力に抗して図1中矢印Y2方向に移動され、弁体9に設けた封止部16のガス噴出孔13への嵌合が解除され、図5に示すように、このガス噴出孔13が開放される。そして、ガス噴出孔13が開放されることにより、ガスカートリッジ8から炭酸ガス7がシリンダー部28内に構成された圧力制御室23に噴出される。そして、圧力制御室23には、第1のピストン17の端面17aに作用する圧力と、第2のコイルバネ30により付勢された第1のピストン17に作用する付勢力F2とが拮抗する状態までガスカートリッジ8から炭酸ガス7の供給が行われる。そして、圧力制御室23に炭酸ガスが供給され、圧力制御室23の圧力が第1のピストン17に作用する付勢力F2より大きくなると、上述したように、噴出孔13が弁体9により閉塞され、ガスカートリッジ8からの炭酸ガスの供給が停止される。 Then, the spring pressure adjusting member 31 is moved in the direction of arrow Y 3 in FIG. 1, the second coil spring 30 is compressed, and the biasing force F 2 of the second coil spring 30 is biased by the biasing force F of the first coil spring 19. becomes greater than 1, the first piston 17 against the biasing force of the first coil spring 19 is moved in the arrow Y 3 direction in FIG. 1, the valve body by pressing the operating element 37 provided on the first piston 17 9 is moved in one of arrow Y 2 direction in the drawing against the urging force of the first coil spring 19, is fitted to the gas ejection holes 13 of the sealing portion 16 provided in the valve body 9 is released, FIG. 5 As shown in FIG. 3, the gas ejection hole 13 is opened. When the gas ejection hole 13 is opened, the carbon dioxide gas 7 is ejected from the gas cartridge 8 into the pressure control chamber 23 formed in the cylinder portion 28. In the pressure control chamber 23, the pressure acting on the end surface 17 a of the first piston 17 and the biasing force F 2 acting on the first piston 17 biased by the second coil spring 30 antagonize. The carbon dioxide gas 7 is supplied from the gas cartridge 8 until the above. When carbon dioxide gas is supplied to the pressure control chamber 23 and the pressure in the pressure control chamber 23 becomes larger than the urging force F 2 acting on the first piston 17, the ejection hole 13 is blocked by the valve body 9 as described above. Then, the supply of carbon dioxide from the gas cartridge 8 is stopped.
 また、この噴霧装置1においては、圧力制御室23に噴射される炭酸ガス7は、ガス導出孔38を介して、噴射物2が収納された収納容器3に供給される。このとき、炭酸ガス7は、収納容器3に充満されるまでガスカートリッジ8から供給される。この収納容器3には、第2のコイルバネ30により付勢された第1のピストン17が配設された圧力制御室23において減圧され、一定の圧力に制御された炭酸ガス7が充満される。なお、圧力制御室23から収納容器3内に炭酸ガスが充満された状態では、ガス噴出孔13が弁体9により閉塞され、ガスカートリッジ8からの炭酸ガスの供給が停止される。 Further, in the spray device 1, the carbon dioxide gas 7 injected into the pressure control chamber 23 is supplied through the gas outlet hole 38 to the storage container 3 in which the injection product 2 is stored. At this time, the carbon dioxide gas 7 is supplied from the gas cartridge 8 until the storage container 3 is filled. The storage container 3 is filled with the carbon dioxide gas 7 that is decompressed in the pressure control chamber 23 in which the first piston 17 biased by the second coil spring 30 is disposed and controlled to a constant pressure. In the state where the storage container 3 is filled with the carbon dioxide from the pressure control chamber 23, the gas ejection hole 13 is closed by the valve body 9, and the supply of the carbon dioxide from the gas cartridge 8 is stopped.
 上述した噴霧装置1において、保持用キャップ32は、図4に示すように、天板部32aをピストンハウジング24のフランジ部40に当接させた機構取付部4に対し最も進入可能な位置まで進入される。この状態にあるとき、第2のコイルバネ30は最も圧縮されて付勢力F2が最も大きくなり、第1のピストン17に作用し、第1のピストン17を第2のコイルバネ30の付勢力F2に抗して移動させる圧力が最も大きくなり、圧力制御室23で減圧制御される炭酸ガス7の圧力が最も大きくなる。そこで、保持用キャップ32の機構取付部4に対する進出量を調整し、バネ圧調整部材31を制御し、第2のコイルバネ30の圧縮率を調整することにより、第2のコイルバネ30の付勢力F2を調整することにより、圧力制御室23で減圧制御される炭酸ガス7の圧力を調整することも可能となる。 In the spray device 1 described above, the holding cap 32 enters the position where it can enter the most with respect to the mechanism mounting portion 4 in which the top plate portion 32a is in contact with the flange portion 40 of the piston housing 24, as shown in FIG. Is done. In this state, the second coil spring 30 is compressed most and the urging force F 2 becomes the largest and acts on the first piston 17, and the urging force F 2 of the second coil spring 30 acts on the first piston 17. The pressure to move against the maximum is the highest, and the pressure of the carbon dioxide gas 7 that is pressure-reduced in the pressure control chamber 23 is the highest. Therefore, the biasing force F of the second coil spring 30 is adjusted by adjusting the advancement amount of the holding cap 32 relative to the mechanism mounting portion 4, controlling the spring pressure adjusting member 31, and adjusting the compression rate of the second coil spring 30. By adjusting 2 , it is possible to adjust the pressure of the carbon dioxide gas 7 that is pressure-reduced in the pressure control chamber 23.
 そして、圧力制御室23において圧力調整がされた炭酸ガス7が収納容器3に充満された状態で、噴射ボタン48を押圧すると、ステム42が、弁部材43を弾性変位させながら、コイルバネ45の付勢力に抗して図4中矢印Y3方向に移動する。このとき、弁部材43が弾性変位することにより弁孔54が解放され、収納容器3に充満された炭酸ガス7により加圧された状態に置かれた噴射物2が炭酸ガス7とともに、吸引チューブ52及び導通路53を介して吸引され、バルブハウジング41内に供給される。バルブハウジング41に供給された噴射物2及び炭酸ガス7は、弁孔54を介してステム42内に供給され、連結管46を流通し、噴射ノズル47から外部に噴射される。 Then, when the injection button 48 is pressed while the storage container 3 is filled with the carbon dioxide gas 7 whose pressure has been adjusted in the pressure control chamber 23, the stem 42 attaches the coil spring 45 while elastically displacing the valve member 43. move 4 arrow Y 3 direction against the force. At this time, the valve hole 43 is released by the elastic displacement of the valve member 43, and the projectile 2 placed in a state of being pressurized by the carbon dioxide gas 7 filled in the storage container 3 together with the carbon dioxide gas 7 is sucked into the suction tube. 52 and the conduction path 53, and is supplied into the valve housing 41. The injection 2 and the carbon dioxide gas 7 supplied to the valve housing 41 are supplied into the stem 42 through the valve hole 54, flow through the connecting pipe 46, and are injected from the injection nozzle 47 to the outside.
 噴射物2とともに収納容器3内に充満された炭酸ガスが噴射され、収納容器3内が減圧されると、圧力制御室23も減圧され、ガス噴出孔13を開放する。ガス噴出孔13が再び開放されることにより、ガスカートリッジ8から圧力制御室23内を経て収納容器3内にガスカートリッジ8から噴射された炭酸ガスが一定圧力に制御されて供給され、噴射物2を噴射可能な状態とする。 When the carbon dioxide gas filled in the storage container 3 is injected together with the spray 2 and the inside of the storage container 3 is decompressed, the pressure control chamber 23 is also decompressed and the gas ejection hole 13 is opened. When the gas ejection hole 13 is opened again, the carbon dioxide gas ejected from the gas cartridge 8 from the gas cartridge 8 through the pressure control chamber 23 into the storage container 3 is controlled to a constant pressure and supplied. Is in a state where injection is possible.
 本実施の形態の噴霧装置において、噴射物2が収納される収納容器3には、一定の圧力に減圧された炭酸ガスが供給され、一定圧力以上の炭酸ガスの供給が行われないので、過剰圧力なることを防止できる。 In the spray device of the present embodiment, the storage container 3 in which the projectiles 2 are stored is supplied with carbon dioxide gas that has been depressurized to a certain pressure, and is not supplied with carbon dioxide gas that exceeds a certain pressure. The pressure can be prevented.
 上述した実施の形態においては、圧力制御機構6を噴霧装置1に用いた例を挙げて説明したが、本発明に係る圧力制御機構6は、一定圧力に制御された圧縮流体を用いる装置に適用することができ、例えば、圧力制御室23に設けたガス導出孔38にガス導出管を連結し、圧縮流体を用いる機器に導出するようにしてもよい。 In the above-described embodiment, the example in which the pressure control mechanism 6 is used in the spray device 1 has been described. However, the pressure control mechanism 6 according to the present invention is applied to a device that uses a compressed fluid controlled to a constant pressure. For example, a gas lead-out pipe may be connected to the gas lead-out hole 38 provided in the pressure control chamber 23 to lead out to a device using a compressed fluid.
 また、上述した実施の形態では、バネ圧調整部材31を移動操作する保持用キャップ32を収納容器3に設けた機構取付部4に取り付けるようにしているが、バネ圧調整部材31に対し固定部材となるピストンハウジング24に取り付けるようにしてもよい。 Further, in the embodiment described above, the holding cap 32 for moving the spring pressure adjusting member 31 is attached to the mechanism attaching portion 4 provided in the storage container 3, but the fixing member is fixed to the spring pressure adjusting member 31. You may make it attach to the piston housing 24 used.
 さらに、圧縮流体は、炭酸ガスに限られるものではなく、窒素ガス等の圧縮されたガス体を用いることができる。 Furthermore, the compressed fluid is not limited to carbon dioxide gas, and a compressed gas body such as nitrogen gas can be used.

Claims (11)

  1.  1.圧縮流体が充填された圧縮流体収納容器から噴射される圧縮流体の圧力を制御する圧縮流体の圧力制御機構であって、
     上記圧縮流体が充填された圧縮流体収納容器内に配設され、上記圧縮流体収納容器に設けられた圧縮流体の噴出孔を閉塞する第1の位置と上記噴出孔を解放する第2の位置との間を移動する弁体と、
     上記噴出孔を閉塞する第1の位置の方向に上記弁体を付勢する第1の付勢部材と、
     上記噴出孔から噴出される圧縮流体が供給されるように上記圧縮流体収納容器に接続されたシリンダーと、
     上記シリンダー部内に移動可能に配設され、上記噴出孔から突出した上記弁体の一部に関連して上記弁体を移動操作するピストンと、
     上記ピストンを上記弁体と当接する方向に付勢する第2の付勢部材と、
     上記ピストンと上記噴出孔との間に構成され、上記圧縮流体収納容器から噴射される圧縮流体が供給される圧力制御室とを備え、
     上記ピストンを押圧付勢する第2の付勢部材の付勢力を制御することによって、上記噴出孔から上記圧力制御室に供給される圧縮流体の圧力を減圧制御することを特徴とする圧縮流体の圧力制御機構。
    1. A compressed fluid pressure control mechanism for controlling the pressure of a compressed fluid ejected from a compressed fluid storage container filled with the compressed fluid,
    A first position which is disposed in the compressed fluid storage container filled with the compressed fluid and which closes the compressed fluid ejection hole provided in the compressed fluid storage container; and a second position which releases the ejection hole. A valve body that moves between
    A first urging member that urges the valve body in a direction of a first position that closes the ejection hole;
    A cylinder connected to the compressed fluid storage container so as to be supplied with the compressed fluid ejected from the ejection hole;
    A piston that is movably disposed in the cylinder portion and moves the valve body in relation to a part of the valve body protruding from the ejection hole;
    A second urging member that urges the piston in a direction in contact with the valve body;
    A pressure control chamber configured between the piston and the ejection hole and supplied with a compressed fluid ejected from the compressed fluid storage container;
    By controlling the biasing force of the second biasing member that presses and biases the piston, the pressure of the compressed fluid supplied from the ejection hole to the pressure control chamber is controlled to be reduced. Pressure control mechanism.
  2.  2.上記第2の付勢部材の変位量を可変制御して、上記ピストンの押圧付勢力を制御する付勢部材変位手段とを備え、
     上記付勢部材変位手段を操作して上記ピストンの押圧付勢力を制御することにより、上記圧力制御部に供給される圧縮流体の圧力を制御することを特徴とする請求項1記載の圧縮流体の圧力制御機構。
    2. Urging member displacing means for variably controlling the displacement amount of the second urging member and controlling the pressing urging force of the piston;
    2. The compressed fluid according to claim 1, wherein the pressure of the compressed fluid supplied to the pressure control unit is controlled by operating the biasing member displacing means to control the pressing biasing force of the piston. Pressure control mechanism.
  3.  3.上記弁体には、上記圧縮流体収納容器内に設けられた移動ガイド部にガイドされ、上記弁体と一体に移動するさらなるピストンが設けられるとともに、上記さらなるピストンと上記移動ガイド部との間に連通部が形成され、上記弁体によって閉塞される噴出孔と上記さらなるピストンとの間に、上記圧縮流体収納容器に充填された圧縮流体が流入する気室が構成されていることを特徴とする請求項1記載の圧縮流体の圧力制御機構。 3. The valve body is provided with a further piston that is guided by a movement guide portion provided in the compressed fluid storage container and moves integrally with the valve body, and between the further piston and the movement guide portion. A communication chamber is formed, and an air chamber into which the compressed fluid filled in the compressed fluid storage container flows is formed between the ejection hole closed by the valve body and the further piston. The pressure control mechanism of the compressed fluid according to claim 1.
  4.  4.上記弁体は、基端部側から先端部側に向かって縮径するように形成された封止部が先端部側に形成された先鋭体であり、上記封止部が上記噴出孔に嵌合して上記噴出孔を閉塞することを特徴とする請求項1記載の圧縮流体の圧力制御機構。 4. The valve body is a sharp body in which a sealing portion formed so as to reduce in diameter from the proximal end side toward the distal end side is formed on the distal end side, and the sealing portion is fitted in the ejection hole. The compressed fluid pressure control mechanism according to claim 1, wherein the ejection holes are closed together.
  5.  5.上記第2の付勢手段は、圧縮コイルバネにより構成され、上記付勢力制御機構は、上記圧縮コイルバネに対し進退操作されて上記圧縮コイルバネの付勢力を制御するバネ圧縮操作部材を備えることを特徴とする請求項1記載の圧縮流体の圧力制御機構。 5. The second urging means includes a compression coil spring, and the urging force control mechanism includes a spring compression operation member that is operated to advance and retract with respect to the compression coil spring to control the urging force of the compression coil spring. The pressure control mechanism for compressed fluid according to claim 1.
  6.  6.上記圧力制御室には、この圧力制御室に供給される圧縮流体を外部に導出するための導出孔が形成されていることを特徴とする請求項1記載の圧縮流体の圧力制御機構。 6. 2. The pressure control mechanism for compressed fluid according to claim 1, wherein a lead-out hole for leading the compressed fluid supplied to the pressure control chamber to the outside is formed in the pressure control chamber.
  7.  7.上記圧縮流体は、圧縮された炭酸ガスであることを特徴とする請求項1記載の圧縮流体の圧力制御機構。 7. 2. The compressed fluid pressure control mechanism according to claim 1, wherein the compressed fluid is compressed carbon dioxide.
  8.  8.圧縮流体の圧力の作用により噴射される噴射物を収納するとともに、上記収納容器に収納された噴射物の噴射を制御する噴射制御機構を設けた収納容器を有し、
     上記収納容器内に、圧縮流体が充填された圧縮流体収納容器から噴射される圧縮流体の圧力を制御する圧縮流体の圧力制御機構を配設した噴霧装置であって、
     上記収納容器内に配設される上記圧力制御機構は、
     上記圧縮流体が充填された圧縮流体収納容器内に配設され、上記圧縮流体収納容器に設けられた圧縮流体の噴出孔を閉塞する第1の位置と上記噴出孔を解放する第2の位置との間を移動する弁体と、
     上記弁体を、上記噴出孔を閉塞する第1の位置の方向に付勢する第1の付勢部材と、
     上記噴出孔から噴出される圧縮流体が供給されるように上記圧縮流体収納容器に接続されたシリンダーと、
     上記シリンダー部内に移動可能に配設され、上記噴出孔から突出した上記弁体の一部に関連して上記弁体を移動操作するピストンと、
     上記ピストンを上記弁体と当接する方向に付勢する第2の付勢部材と、
     上記ピストンと上記噴出孔との間に構成され、上記圧縮流体収納容器から噴射される圧縮流体が供給される圧力制御室と、
     上記圧力制御室に供給される圧縮流体を上記収納容器内に導出するための導出孔とを備え、
     上記ピストンを押圧付勢する第2の付勢部材の付勢力を制御することによって、上記噴出孔から上記圧力制御室に供給され、上記導出孔を介して上記収納容器に供給される圧縮流体の圧力を減圧制御することを特徴とする噴霧装置。
    8). A storage container that stores an injection material that is injected by the action of pressure of the compressed fluid, and that includes an injection control mechanism that controls injection of the injection material stored in the storage container;
    A spray apparatus in which a compressed fluid pressure control mechanism for controlling the pressure of the compressed fluid ejected from the compressed fluid container filled with the compressed fluid is disposed in the storage container,
    The pressure control mechanism disposed in the storage container is:
    A first position which is disposed in the compressed fluid storage container filled with the compressed fluid and which closes the compressed fluid ejection hole provided in the compressed fluid storage container; and a second position which releases the ejection hole. A valve body that moves between
    A first urging member that urges the valve body in a direction of a first position that closes the ejection hole;
    A cylinder connected to the compressed fluid storage container so as to be supplied with the compressed fluid ejected from the ejection hole;
    A piston that is movably disposed in the cylinder portion and moves the valve body in relation to a part of the valve body protruding from the ejection hole;
    A second urging member that urges the piston in a direction in contact with the valve body;
    A pressure control chamber configured between the piston and the ejection hole and supplied with a compressed fluid ejected from the compressed fluid storage container;
    A lead-out hole for leading the compressed fluid supplied to the pressure control chamber into the storage container,
    By controlling the urging force of the second urging member that presses and urges the piston, the compressed fluid supplied from the ejection hole to the pressure control chamber and supplied to the storage container through the outlet hole is supplied. A spraying device characterized in that the pressure is reduced.
  9.  9.上記圧力制御機構は、上記第2の付勢部材の変位量を可変制御して、上記ピストンの押圧付勢力を制御する付勢部材変位手段とを備え、
     上記付勢部材変位手段を操作して上記ピストンの押圧付勢力を制御することにより、上記圧力制御部に供給される圧縮流体の圧力を制御することを特徴とする請求項8記載の噴霧装置。
    9. The pressure control mechanism includes an urging member displacing unit that variably controls a displacement amount of the second urging member to control a pressing urging force of the piston.
    9. The spraying device according to claim 8, wherein the pressure of the compressed fluid supplied to the pressure control unit is controlled by operating the biasing member displacing means to control the pressing biasing force of the piston.
  10.  10.上記収納容器は、合成樹脂の成型体であることを特徴とする請求項8記載の噴霧装置。 10. The spray device according to claim 8, wherein the storage container is a molded body of synthetic resin.
  11.  11.上記圧縮流体は、圧縮された液化炭酸ガスであることを特徴とする請求項8記載の噴霧装置。 11. The spray apparatus according to claim 8, wherein the compressed fluid is compressed liquefied carbon dioxide.
PCT/JP2009/002998 2008-07-02 2009-06-29 Mechanism for controlling pressure of compressed fluid, and spray device WO2010001582A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010518912A JP5380445B2 (en) 2008-07-02 2009-06-29 Pressure control mechanism and spray device for compressed fluid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008173878 2008-07-02
JP2008-173878 2008-07-02

Publications (1)

Publication Number Publication Date
WO2010001582A1 true WO2010001582A1 (en) 2010-01-07

Family

ID=41465690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/002998 WO2010001582A1 (en) 2008-07-02 2009-06-29 Mechanism for controlling pressure of compressed fluid, and spray device

Country Status (2)

Country Link
JP (1) JP5380445B2 (en)
WO (1) WO2010001582A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103693298A (en) * 2012-09-27 2014-04-02 北京红海科技开发有限公司 Container and method for taking out object contained in container
WO2014048341A1 (en) * 2012-09-27 2014-04-03 北京红海科技开发有限公司 Container, containing device and method for taking out contained product
CN105236025A (en) * 2015-06-10 2016-01-13 陈增新 Initial positioning device, container and method
WO2016197968A1 (en) * 2015-06-10 2016-12-15 北京红海科技开发有限公司 Initial positioning device, container and method
EP3360821A4 (en) * 2015-10-07 2019-06-19 Daizo Corporation Discharge container and method for recycling same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57183978A (en) * 1981-04-10 1982-11-12 Aerosol Service Ag Two-chamber type filling unit
JPS62271873A (en) * 1986-05-10 1987-11-26 三菱商事株式会社 Teeming device
JP2003292072A (en) * 2002-03-29 2003-10-15 Toyo Aerosol Ind Co Ltd Aerosol device for mixing a plurality of liquids
JP2006150170A (en) * 2004-11-25 2006-06-15 Major Tsushin:Kk Spraying device
JP2006207676A (en) * 2005-01-27 2006-08-10 Toyota Motor Corp High pressure fluid valve

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57183978A (en) * 1981-04-10 1982-11-12 Aerosol Service Ag Two-chamber type filling unit
JPS62271873A (en) * 1986-05-10 1987-11-26 三菱商事株式会社 Teeming device
JP2003292072A (en) * 2002-03-29 2003-10-15 Toyo Aerosol Ind Co Ltd Aerosol device for mixing a plurality of liquids
JP2006150170A (en) * 2004-11-25 2006-06-15 Major Tsushin:Kk Spraying device
JP2006207676A (en) * 2005-01-27 2006-08-10 Toyota Motor Corp High pressure fluid valve

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103693298A (en) * 2012-09-27 2014-04-02 北京红海科技开发有限公司 Container and method for taking out object contained in container
WO2014048341A1 (en) * 2012-09-27 2014-04-03 北京红海科技开发有限公司 Container, containing device and method for taking out contained product
US9746090B2 (en) 2012-09-27 2017-08-29 Beijing Red-Sea Tech Co., Ltd. Container, containing device and method for taking out contained product
CN105236025A (en) * 2015-06-10 2016-01-13 陈增新 Initial positioning device, container and method
WO2016197968A1 (en) * 2015-06-10 2016-12-15 北京红海科技开发有限公司 Initial positioning device, container and method
CN108137211A (en) * 2015-06-10 2018-06-08 北京红海科技开发有限公司 A kind of inceptive positioning device, container and method
US10260926B2 (en) 2015-06-10 2019-04-16 Beijing Red-Sea Tech Co., Ltd. Initial positioning device, container and method
CN105236025B (en) * 2015-06-10 2019-07-26 北京红海科技开发有限公司 A kind of inceptive positioning device, container and method
CN108137211B (en) * 2015-06-10 2019-10-11 北京红海科技开发有限公司 A kind of inceptive positioning device, container and method
EP3360821A4 (en) * 2015-10-07 2019-06-19 Daizo Corporation Discharge container and method for recycling same
US10384859B2 (en) * 2015-10-07 2019-08-20 Daizo Corporation Discharge container and method of reusing the same

Also Published As

Publication number Publication date
JPWO2010001582A1 (en) 2011-12-15
JP5380445B2 (en) 2014-01-08

Similar Documents

Publication Publication Date Title
JP5380445B2 (en) Pressure control mechanism and spray device for compressed fluid
JP5565891B2 (en) Discharge device for fluid substances
CN107073501B (en) Trigger type liquid sprayer
US9204994B2 (en) Discharge device
US20070191762A1 (en) Needleless injector and ampule system
CA2476076A1 (en) Injector with bypass channel
US20080017670A1 (en) Pump Dispenser
JPS63170569A (en) Non-throttling type pump assembly
EP3395713B1 (en) Trigger-type liquid sprayer
US6921004B1 (en) Manually actuated pump assembly
EP1305254B1 (en) Manually actuated pump assembly
JP2010269821A (en) Atomizing device having excessive-pressure releasing mechanism
JP4407268B2 (en) Button for intermittent injection
JP4612111B2 (en) Pressurized fluid control mechanism and pressurized fluid supply device
KR20100081776A (en) Jet type dispenser that using air pressure
KR101503405B1 (en) Spray apparatus of liquid substance
JP2002273279A (en) Pressure accumulation type liquid spray unit
KR102569209B1 (en) Spraying Capacity Controllable Mist Sprayer
JP2011208760A (en) High-pressure gas drive unit using high-pressure gas as driving source
JP2010269822A (en) Atomizing device
CN213396777U (en) Anti-riot tear-gas stick
JP2015052342A (en) Fluid jet device
JP2938757B2 (en) Liquid ejector
US20080245895A1 (en) Gas Ejection Device and Spraying Device
EP4052800A1 (en) Trigger-type liquid sprayer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09773160

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010518912

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09773160

Country of ref document: EP

Kind code of ref document: A1