WO2010000897A1 - Method for the seismic isolation of a supported object - Google Patents

Method for the seismic isolation of a supported object Download PDF

Info

Publication number
WO2010000897A1
WO2010000897A1 PCT/ES2009/000351 ES2009000351W WO2010000897A1 WO 2010000897 A1 WO2010000897 A1 WO 2010000897A1 ES 2009000351 W ES2009000351 W ES 2009000351W WO 2010000897 A1 WO2010000897 A1 WO 2010000897A1
Authority
WO
WIPO (PCT)
Prior art keywords
plates
seismic isolation
rolling
isolation system
rolling body
Prior art date
Application number
PCT/ES2009/000351
Other languages
Spanish (es)
French (fr)
Inventor
José RODELLAR BENEDE
Mohammed Ismail
Fayçal IKHOUANE
Original Assignee
Universitat Politécnica de Catalunya
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universitat Politécnica de Catalunya filed Critical Universitat Politécnica de Catalunya
Publication of WO2010000897A1 publication Critical patent/WO2010000897A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/021Bearing, supporting or connecting constructions specially adapted for such buildings
    • E04H9/023Bearing, supporting or connecting constructions specially adapted for such buildings and comprising rolling elements, e.g. balls, pins

Definitions

  • the present invention concerns a seismic isolation system intended to mitigate or reduce the potential damage of structural or non-structural systems due to dynamic impacts, especially seismic impacts.
  • the structural systems to which this invention is applicable will cover buildings, bridges, water tanks, etc.
  • the non-structural systems can be any equipment and / or antiques (objects or monuments) susceptible of being damaged in their integrity or that they are sensitive to movement.
  • the "supported object” referred to in this invention encompasses both structural and non-structural systems.
  • the first applications for bridges added energy dissipation to the flexibility already existing in the superstructure.
  • the rubber support with lead or LRB lead rubber bearing
  • LRB lead rubber bearing
  • the first insulation applications were constructed using rubber supports.
  • these systems had the disadvantage of poor inherent damping and of not being rigid enough to withstand service loads such as wind.
  • HDR high damping rubber
  • supports were obtained with high stiffness against reduced shear strain stresses, but low stiffness against higher deformation levels. On discharge, these supports formed a hysteresis cycle with a significant amount of damping.
  • the patent application US-20060174555-A1 is known which describes a sliding pendular seismic isolation system with a support configuration formed by multiple sliding plates along different concave or concave cylindrical spherical surfaces, each of said plates constituting an independent sliding pendulum mechanism, with a predetermined oscillation and friction length.
  • the insulation system is arranged to achieve an increase in effective friction by increasing the amplitudes of lateral displacements by using different cooperating configurations and proposing to combine one or more of said configurations.
  • the aforementioned patent application shows in its figures that the proposed insulation system comprises in its upper and lower plates configurations capable of interfering as a stop with some of the sliding plates in their lateral displacement. Most insulation systems work best with heavy masses.
  • An effective isolation achieves a long response period, which is proportional to the square root of the mass, and inversely proportional to the square root of the stiffness. Therefore, to achieve a given period of isolation, low masses must be associated with low stiffness.
  • the assemblies that are used for seismic isolation do not have an infinite range of stiffness. For example, elastomeric supports need to have a minimum diameter to ensure their stability under seismic displacements. This minimum size establishes a minimum stiffness.
  • Sliding systems do not have this limitation and, therefore, may be appropriate for low weight buildings. However, even these systems tend not to be profitable for light buildings for different reasons. Despite the weight of the building, the displacement is the same for a given effective period and, therefore, the size of the plates, which are the most expensive part of the sliding support system, is the same for light or heavy structures. This means that, in proportion, the cost of sliding systems for light buildings is higher.
  • the insulation system must meet the following conditions: vertical stiffness, horizontal flexibility, wind resistance and include the following mechanisms: re-centering mechanisms, damping mechanisms and maximum displacement limiters.
  • the insulation systems market is currently distributed mainly between variations of LRB, HDR, flat sliding supports and FPS, the proposed systems still do not meet some conditions to ensure an ideal insulation.
  • elastomeric supports cannot provide a range of horizontal flexibility suitable for light mass structures.
  • FPS systems cannot provide greater horizontal flexibility with lower cost, so they are not economically suitable for light structures.
  • Patent application WO-A2-2005031088 concerns a seismic isolation system comprising a cylinder arranged in rolling contact between a upper plate and a lower plate.
  • the upper plate is fixed to a superstructure while the lower plate is fixed to a base.
  • One or both support surfaces are inclined to form a central depression in which the cylinder resides under a normal weight of the superstructure, and towards which the cylinder tends to position itself when a relative displacement occurs between the upper and lower plates, providing a constant restorative force.
  • This configuration therefore constitutes a re-centering mechanism of the insulation system.
  • the cylinder comprises grooves adapted to fit in the upper and lower plates after a lateral displacement, preventing displacement in a direction along the longitudinal axis of the cylinder, but allowing it to roll freely between the two support plates.
  • the present invention proposes a practical, economical and efficient seismic isolation system that overcomes many of the drawbacks of the aforementioned insulation systems, while maintaining its main advantages.
  • the aforementioned insulation system is designed primarily to safeguard a variety of structural and non-structural systems from seismic threat.
  • the present invention concerns a seismic isolation system to protect a supported object from dynamic excitations.
  • the aforementioned system includes:
  • a rolling or insulating body disposed between the two plates, supporting said object, the rolling body being in rolling contact with internal faces of both plates opposite each other, or of laminar elements that cover at least part thereof. , and defining a housing between both plates, which allows roll to the rolling body when there is a relative lateral displacement between both plates.
  • At least one of the two aforementioned plates comprises, on its inner face, a domed portion with a curvature determined according to the curvature of the face of the rolling body, with which it establishes contact for each of the possible positions to be adopted when rolling , so that the distance between the two plates is substantially equal during the entire rolling path between them of said rolling body.
  • each of the plates comprises on its internal face, in a substantially central area thereof, a respective bulged portion.
  • the rolling body comprises peripheral retention configurations adapted to engage and / or fit into respective limit stop configurations defined at edges of the internal faces of the plates, upon reaching said rolling body, a predetermined maximum lateral displacement. This avoids the lifting of the supported object, said edges defining the limits of the plates for said rolling path of the rolling body.
  • the rolling body is circular and said bulging or bulging are revolution bulges.
  • said rolling body is an elliptical solid, while for another embodiment it is a cylinder.
  • the system object of the present invention further comprises ipos mechanical damping or dissipating elements that connect said upper and lower plates by their internal faces in an area close to their peripheral edges.
  • Said damping elements for an exemplary embodiment, have a triple curvature configuration, the central curve being arranged towards the outside of the system.
  • said damping elements comprise a hollow cylinder of an elastomeric material, said cylinder having a determined thickness depending on the weight of the object to be supported.
  • the hollow cylinder comprises in its interior a lead bar of a length substantially similar to that of the hollow cylinder, extending in a direction parallel to the longitudinal axis thereof. This lead bar confers greater resistance to the system, as well as greater flexibility by deforming plastically to shear stresses.
  • the rolling body is in rolling contact with the inner face of both plates or of laminar elements, which are of a more flexible material than those of said plates, thus causing a damping effect.
  • laminar cover elements extends over most of the internal face of a respective plate, covering at least the aforementioned limit stop configurations.
  • the system further comprises rigid elements attached to said upper face of said upper plate and / or said lower face of said lower plate, at least above and / or below, respectively, of said end areas of the edges of the inner faces of said plates to improve the dynamic performance of the damping elements.
  • Figure 1 is an elevation view of a first implementation of the system of this invention showing a multidirectional seismic isolation support, with a rolling or insulating body formed by a solid of revolution suitable for light to moderate masses.
  • Figure 2 shows the exemplary embodiment of the previous Figure, exploded.
  • Figures 3a and 3b illustrate the behavior of the system illustrated in Figure
  • Figure 3a corresponds to a multidirectional seismic isolation support for heavy mass systems while Figure 3b corresponds to a solution for light to moderate mass systems, differentiated by the damping systems used in each case.
  • Figures 4a-4c schematically illustrate (insulator or rolling body and forces applied to the left and inter-plate insulator to the right) the behavior of the proposed insulation system that involves an inherent re-centering given the contact between the rolling body and the bulging configurations of the internal faces of the support plates.
  • Figures 5a-5b and 6a-6b show details related to the dampers and the union thereof to the upper and lower plates of the set for seismic isolation.
  • Figures 7a, 7b and 7c show different configurations of the solid of revolution as well as the location of the laminar coating in a less rigid material between the inner faces of the plate and the rolling body.
  • Figure 8 shows an exemplary embodiment similar to that of Figure 1 with an insulator formed by a solid of revolution and damping and reinforcement systems suitable for heavy mass systems.
  • Figure 10 shows an exemplary embodiment of a unidirectional seismic isolation support for light to moderate mass systems, where the rolling or insulating body has been produced by extrusion.
  • Figures 11 a, 11 b and 11c show various possible shapes for the cylindrical rolling body of the example of Fig. 10.
  • FIGs 1 and 2 show a concrete embodiment of the proposed insulation system. It is composed of a rolling or insulating body consisting of a solid of revolution (1) located between the two upper (2) and lower (3) plates. The contact between the plates (2, 3) and the solid (1) is made by means of laminar elements (4, 5) of a less rigid material perfectly attached (eg by gluing) to the plates (2, 3) in Your inner faces. Looking at Figure 2, the bulges of the upper (2) and lower (3) plates and how they fit with the convex curvature of the revolution solid (1) are appreciated.
  • the upper plate it can be seen how it has a triple curvature (2-4) (central bulging and slightly concave valleys on the sides) that matches the rolling surfaces (1-2) and (1, 3) of The upper part of the solid of revolution (1) during its rolling.
  • the parts (1-2) are flat and the part (1-3) is spherical. With this, it is possible to maintain a horizontal line that the solid (1) never exceeds in its rolling between the positions of maximum horizontal displacements to the left and right, as illustrated in Figure 3. This manages to avoid elevations of the structure supported by the insulation system Figures 1 and 2 also show how the stops materialize to limit maximum displacements.
  • the quasi-elliptical shape of the solid of revolution (1) guarantees an efficient re-centering mechanism, as illustrated in Figure 4, through the restorative moment M of the pair of vertical gravitational forces generated by rolling the solid (1) of the system of isolation. In other words, gravity recovers the initial position of the system in the absence of external excitations.
  • This restorative mechanism prevents structural torsion and eliminates the effect P ⁇ ⁇ _
  • the dampers (6) considered in this example are also appreciated.
  • These are steel elements coupled to the plates (2) and (3) through the joints (9) along the perimeter. The number and section of these dampers are designed based on the resistance required for minor earthquakes and the desired level of damping.
  • the curvature, arranged outwards, is chosen to ensure that the dampers can extend sufficiently within the maximum displacements expected for the supported structure, as illustrated in Figure 3, in which the dampers are appreciated in their maximum extent coinciding with the maximum displacements of the structure.
  • This can be achieved by providing the dampers with an external triple curvature indicated by (6-1) in Figure 2, or a similar shape.
  • the dampers (6) are rigidly coupled to the plates (2) and (3) by the joints (9) as detailed in Figures 5 and 6. During the installation of the insulation system, this coupling is realizes that, initially, the solid of revolution (1) slightly touches the less rigid covers of the less rigid upper (4) and lower (5) parts.
  • the supported structure is gradually loaded onto the insulators so that the dampers (6) all acquire the same prestress below the creep limit.
  • the remaining deformation until reaching said limit is sufficient to resist minor vibrations. Consequently, the dissipation of energy in the dampers (6) takes place by effect of the hysteresis in said dampers (6) quickly when a significant excitation occurs above the creep limit.
  • the parts (2-1) and (3-1) are fixed to the upper plate (2) and the lower plate (3) respectively by means of vertical reinforcements (7) and (8) that can be seen in Figure 6 , in the plan view of one of the plates (2) of the system.
  • Figures 7a-7c present some variants in relation to the isolation system for illustrative but not limiting purposes.
  • Figure 7a shows that the less rigid material of the laminar elements (4, 5) that cover the internal faces of the plates (2, 3) can have a flat surface, instead of a curve as in the case of Figures 1- 6.
  • Figure 7a also illustrates that the upper and lower surfaces of the rolling body must not necessarily be smooth, and may have a regular roughness.
  • Figure 7b illustrates that the laminar element (4, 5) of a less rigid material can alternatively cover the external surface of the rolling body (4,5) or possibly be on the inner faces of the plates (2, 3) and on that external surface of the rolling body.
  • Figure 7b also shows that the upper and lower plates (2,3) can include the reinforcements (7,8) forming a single body.
  • Figure 7c shows a rolling body (1) of reduced height, with a configuration of the maximum displacement limit stops easier than in the case of Figures 1-6. In this case, a single stop (1-1) is provided that fits on the surfaces (2-2) and (5-2).
  • the present invention can be specifically adapted to support large mass systems.
  • the main support system of Figure 1 which is constituted by the contact between the rolling or insulating body (1) and the upper and lower plates (2,3), is modified in the manner shown in Figure 8
  • a hollow cylinder made of reinforced elastomer (11) is used as the main support.
  • the contact between the insulator and the plates serves as a secondary support element.
  • the hollow cylinder, which surrounds the rolling body (1), has a variable thickness to provide sufficient support area based on the weight of the supported structure.
  • the reinforcements (7) and (8) as well as the support plates (2) and (3) are modified to a certain extent, as illustrated in Figure 8, to correctly fix the upper and lower surfaces of the hollow cylinder (11 ) to the plates (2) and (3) and then be correctly fixed to the structure and base respectively.
  • the energy dissipation is achieved by inserting lead rods (6), as seen in Figure 8, axially within the hollow cylinder, thus forming a main support surrounding the insulator ( 1), leaving the contact between the insulator and the plates (2,3,4,5) as a secondary support system.
  • the number of lead bars and their diameter are properly chosen to achieve maximum dynamic performance of the isolated system.
  • the present invention is then superior to elastomeric supports and
  • the proposed insulator or rolling body (1) does not cause any structural elevation, as illustrated in Figure 3, when lateral movements occur. This provides a superior advantage over the FPS systems cited.
  • FPS cannot provide low cost supports for light mass systems, while the present invention can provide a wide range of horizontal flexibility values with much lower cost.
  • Figure 9 is an exemplary embodiment where it is illustrated that the hollow cylinder (with or without lead rods) can be combined with a series of metal dampers (6) such as those considered in Example 1.
  • the rolling body (1) is designed in the form of a cylinder obtained by extrusion of a section along a perpendicular axis.
  • Figure 10 shows an insulation system where the rolling body is a cylinder whose section has the same shape as the three-dimensional body considered in Example 1. The rest of the system elements are analogous to the case of Example 1 with the logical adaptations to Ia different geometry
  • Figure 11 shows some possibilities for illustrative but not limiting purposes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Environmental & Geological Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Vibration Prevention Devices (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

The invention comprises: an upper plate (2), one face of which is secured to the object to be isolated; a lower plate (3) one face of which is secured to a base; and a rolling body (1) disposed between the two plates (2, 3) so as to support the object, said rolling body (1) being in rolling contact with the opposing inner faces of the two plates (2, 3) and capable of rolling upon the occurrence of a relative lateral movement between the plates in response to dynamic excitation. The inner face of the aforementioned plates (2, 3) includes at least one convex domed portion (2-4) that is in contact with a convex surface (1-3) of the rolling body (1) for every possible position thereof during rolling, such that the distance between the two plates (2, 3) is substantially equal over the entire rolling trajectory of the rolling body (1) therebetween.

Description

SISTEMA DE AISLAMIENTO SÍSMICO DE UN OBJETO SOPORTADO SEISMIC ISOLATION SYSTEM OF A SUPPORTED OBJECT
Sector de Ia técnicaTechnical sector
La presente invención concierne a un sistema de aislamiento sísmico destinado a mitigar o reducir el daño potencial de sistemas estructurales o no estructurales debido a impactos dinámicos, especialmente Impactos sísmicos.The present invention concerns a seismic isolation system intended to mitigate or reduce the potential damage of structural or non-structural systems due to dynamic impacts, especially seismic impacts.
De acuerdo con Ia terminología de esta invención los sistemas estructurales a los que es aplicable esta invención abarcarán edificios, puentes, depósitos de agua, etc., mientras que los sistemas no estructurales pueden ser cualquier equipamiento y/o antigüedades (objetos o monumentos) susceptibles de ser dañados en su integridad o que son sensibles al movimiento. El "objeto soportado" al que hace referencia esta invención engloba ambos sistemas estructurales y no estructurales.According to the terminology of this invention the structural systems to which this invention is applicable will cover buildings, bridges, water tanks, etc., while the non-structural systems can be any equipment and / or antiques (objects or monuments) susceptible of being damaged in their integrity or that they are sensitive to movement. The "supported object" referred to in this invention encompasses both structural and non-structural systems.
Estado de Ia técnica anterior Aunque las primeras patentes relativas a aislamiento sísmico datan del sigloState of the prior art Although the first patents related to seismic isolation date from the century
XIX y se conocen algunos prototipos de principios del siglo XX, fue a partir de los años 70 cuando los sistemas de aislamiento sísmico se pusieron en auge dentro de Ia ingeniería estructural. Dado que los puentes son un candidato más natural para el aislamiento que los edificios, al estar construidos normalmente con soportes que separan Ia superestructura de Ia subestructura, el aislamiento sísmico fue utilizado en puentes desde principios de los años 70, mientras que en los edificios se utilizó únicamente a finales de los años 70.XIX and some prototypes of the early twentieth century are known, it was from the 70s when seismic isolation systems were booming within structural engineering. Since bridges are a more natural candidate for insulation than buildings, being normally constructed with supports that separate the superstructure from the substructure, seismic insulation was used in bridges since the early 1970s, while in buildings used only in the late 70s.
Las primeras aplicaciones para puentes añadían disipación de energía a Ia flexibilidad ya existente en Ia superestructura. El soporte de caucho con plomo o LRB (lead rubber bearing), fue inventado en los años 70 y permitió incluir en una sola unidad flexibilidad y amortiguamiento. Durante esas mismas fechas, fueron construidas las primeras aplicaciones de aislamiento utilizando soportes de caucho. Sin embargo, estos sistemas tenían el inconveniente de un escaso amortiguamiento inherente y de no ser suficientemente rígidos para resistir cargas de servicios como el viento. A principios de los años 80, el desarrollo en Ia tecnología del caucho hizo posible Ia obtención de nuevos compuestos de caucho llamados caucho de alto amortiguamiento o HDR (high damping rubber). Con estos compuestos se obtuvieron soportes con una alta rigidez frente a esfuerzos de deformación por cizalladura reducidos, pero una baja rigidez frente a niveles de deformación más elevados. En descarga, estos soportes formaban un ciclo de histéresis con una cantidad de amortiguamiento significativa. Aunque las primeras aplicaciones en puentes y edificios en EE.UU. a principios de los 80 usaban soportes de LRB o HDR, estos dos sistemas de aislamiento carecían todavía de limitadores de desplazamiento máximo, de mecanismos efectivos de recentrado (retorno del soporte a Ia posición inicial tras el impacto dinámico), así como de aptitudes para estructuras de baja masa. Además, se producía una reducción del área de soporte cuando se movían lateralmente, Io que imponía restricciones a los ratios o proporciones de altura/anchura y deformación/altura.The first applications for bridges added energy dissipation to the flexibility already existing in the superstructure. The rubber support with lead or LRB (lead rubber bearing), was invented in the 70s and allowed to include in a single unit flexibility and damping. During those same dates, the first insulation applications were constructed using rubber supports. However, these systems had the disadvantage of poor inherent damping and of not being rigid enough to withstand service loads such as wind. At the beginning of the 80s, the development in rubber technology made it possible to obtain new rubber compounds called high damping rubber or HDR (high damping rubber). With these compounds, supports were obtained with high stiffness against reduced shear strain stresses, but low stiffness against higher deformation levels. On discharge, these supports formed a hysteresis cycle with a significant amount of damping. Although the first applications in bridges and buildings In U.S.A. at the beginning of the 80s they used LRB or HDR supports, these two isolation systems still lacked maximum displacement limiters, effective re-centering mechanisms (return of the support to the initial position after the dynamic impact), as well as aptitudes for structures Low mass In addition, there was a reduction in the support area when they moved laterally, which imposed restrictions on the ratios or proportions of height / width and deformation / height.
En algunos proyectos se usaron soportes deslizantes en paralelo con LRB yIn some projects sliding supports were used in parallel with LRB and
HDR para soportar componentes ligeros como escaleras. Los soportes deslizantes no se utilizaron solos como sistemas de aislamiento porque, aunque ofrecían altos niveles de amortiguamiento, no incluían ni mecanismos de recentrado, ni medios de limitación de desplazamiento máximo. Debido a esto, una estructura sustentada con este tipo de soportes deslizantes probablemente terminaría en una posición diferente después de un seísmo y continuaría desplazándose en caso de réplicas.HDR to support light components such as stairs. The sliding supports were not used alone as insulation systems because, although they offered high levels of damping, they did not include either re-centering mechanisms, or maximum displacement limitation means. Because of this, a structure supported by this type of sliding support would probably end up in a different position after an earthquake and continue to move in case of aftershocks.
El desarrollo de los sistemas pendulares por fricción o FPS (friction pendulum system), conformaron los soportes deslizantes mediante una superficie esférica, superando el mayor Inconveniente de los soportes deslizantes anteriores. El movimiento lateral del sistema FPS produce un levantamiento vertical de los soportes que proporciona una fuerza de recuperación gravitacional pero, desafortunadamente, en detrimento del levantamiento estructural. Además, el elevado coste de los deslizamientos articulados (en FPS) dificulta su uso en edificios ligeros al no resultar rentables. Otro inconveniente de este sistema es el incremento del coeficiente de fricción de deslizamiento al aumentar Ia velocidad de deslizamiento.The development of the pendular systems by friction or FPS (friction pendulum system), formed the sliding supports by means of a spherical surface, overcoming the greater Disadvantage of the previous sliding supports. The lateral movement of the FPS system produces a vertical lifting of the supports that provides a gravitational recovery force but, unfortunately, to the detriment of the structural lifting. In addition, the high cost of articulated landslides (in SPF) makes it difficult to use in light buildings because they are not profitable. Another drawback of this system is the increase in the coefficient of sliding friction by increasing the sliding speed.
Se conoce Ia solicitud de patente US-20060174555-A1 que describe un sistema de aislamiento sísmico pendular deslizante con una configuración de soporte formada por múltiples placas deslizantes a Io largo de diferentes superficies esféricas cóncavas o cilindricas cóncavas o convexas, constituyendo cada una de dichas placas un mecanismo de péndulo deslizante Independiente, con una longitud de oscilación y fricción predeterminadas. En esta solicitud de patente, el sistema de aislamiento se dispone para conseguir un incremento de Ia fricción efectiva al incrementar las amplitudes de los desplazamientos laterales mediante el empleo de diferentes configuraciones cooperantes y proponiendo combinar una o más de dichas configuraciones. La citada solicitud de patente muestra en sus figuras que el sistema de aislamiento propuesto comprende en sus placas superior e inferior unas configuraciones capaces de llegar a interferir a modo de tope con algunas de las placas deslizantes en su desplazamiento lateral. La mayoría de los sistemas de aislamiento trabajan mejor con masas pesadas. Un aislamiento efectivo consigue un largo periodo de respuesta, que es proporcional a Ia raíz cuadrada de Ia masa, e inversamente proporcional a Ia raíz cuadrada de Ia rigidez. Por ello, para conseguir un periodo de aislamiento dado, masas bajas deben estar asociadas a baja rigidez. Los conjuntos que son usados para aislamiento sísmico no tienen un rango infinito de rigidez. Por ejemplo, soportes elastómeros necesitan tener un diámetro mínimo para asegurar su estabilidad bajo desplazamientos sísmicos. Este tamaño mínimo establece una rigidez mínima.The patent application US-20060174555-A1 is known which describes a sliding pendular seismic isolation system with a support configuration formed by multiple sliding plates along different concave or concave cylindrical spherical surfaces, each of said plates constituting an independent sliding pendulum mechanism, with a predetermined oscillation and friction length. In this patent application, the insulation system is arranged to achieve an increase in effective friction by increasing the amplitudes of lateral displacements by using different cooperating configurations and proposing to combine one or more of said configurations. The aforementioned patent application shows in its figures that the proposed insulation system comprises in its upper and lower plates configurations capable of interfering as a stop with some of the sliding plates in their lateral displacement. Most insulation systems work best with heavy masses. An effective isolation achieves a long response period, which is proportional to the square root of the mass, and inversely proportional to the square root of the stiffness. Therefore, to achieve a given period of isolation, low masses must be associated with low stiffness. The assemblies that are used for seismic isolation do not have an infinite range of stiffness. For example, elastomeric supports need to have a minimum diameter to ensure their stability under seismic displacements. This minimum size establishes a minimum stiffness.
Los sistemas deslizantes no tienen esta limitación y, por tanto, pueden ser apropiados para edificios de bajo peso. Sin embargo, incluso estos sistemas tienden a no ser rentables para edificios ligeros por diferentes razones. A pesar del peso del edificio, el desplazamiento es el mismo para un período efectivo dado y, por tanto, el tamaño de las placas, que son Ia parte más cara del sistema de soporte deslizante, es el mismo para estructuras ligeras o pesadas. Esto hace que, en proporción, el coste de los sistemas deslizantes para edificios ligeros sea mayor.Sliding systems do not have this limitation and, therefore, may be appropriate for low weight buildings. However, even these systems tend not to be profitable for light buildings for different reasons. Despite the weight of the building, the displacement is the same for a given effective period and, therefore, the size of the plates, which are the most expensive part of the sliding support system, is the same for light or heavy structures. This means that, in proportion, the cost of sliding systems for light buildings is higher.
A pesar de que se han propuesto varios sistemas para aislar edificios ligeros, hay pocos casos en los que se hayan mostrado realmente eficaces.Although several systems have been proposed to insulate light buildings, there are few cases in which they have been shown to be really effective.
En resumen, para conseguir un aislamiento eficaz, el sistema de aislamiento debe cumplir las siguientes condiciones: rigidez vertical, flexibilidad horizontal, resistencia al viento e incluir los siguientes mecanismos: mecanismos de recentrado, mecanismos de amortiguamiento y limitadores de desplazamiento máximo. A pesar de que el mercado de sistemas de aislamientos actualmente está distribuido principalmente entre variaciones de soportes de LRB, HDR, soportes deslizantes planos y FPS, los sistemas propuestos todavía no cumplen algunas condiciones para garantizar un aislamiento ideal. Por ejemplo, los soportes elastómeros no pueden proporcionar un rango de flexibilidad horizontal adecuado para las estructuras de masa ligera. Además, se deforman lateralmente sufriendo una reducción del área de soporte, carecen de limitadores de desplazamiento máximo incorporados y necesitan mecanismos de recentrado eficientes para prevenir Ia torsión estructural. Por otra parte, los sistemas FPS no pueden proporcionar mayor flexibilidad horizontal con menor coste, por Io que no son económicamente adecuados para estructuras ligeras. Además, causan levantamiento de las estructuras, Io que no es recomendado. Asimismo, hay una necesidad de superar el incremento en resistencia al movimiento con el incremento de Ia velocidad de fricción. La solicitud de patente WO-A2-2005031088 concierne a un sistema de aislamiento sísmico que comprende un cilindro dispuesto en contacto rodante entre una placa superior y una placa inferior. La placa superior se fija a una superestructura mientras que Ia placa inferior se fija a una base. Una o las dos superficies de soporte están inclinadas para formar una depresión central en Ia cual el cilindro reside bajo un peso normal de Ia superestructura, y hacia Ia cual el cilindro tiende a posicionarse al producirse un desplazamiento relativo entre las placas superior e inferior, proporcionando una fuerza restauradora constante. Esta configuración constituye, por tanto, un mecanismo de recentrado del sistema de aislamiento. En el sistema de aislamiento sísmico descrito en Ia citada solicitud de patente, el cilindro comprende unas ranuras adaptadas para encajar en las placas superior e inferior tras un desplazamiento lateral, evitando el desplazamiento en una dirección según el eje longitudinal del cilindro, pero dejándolo rodar libremente entre las dos placas de soporte.In summary, to achieve effective insulation, the insulation system must meet the following conditions: vertical stiffness, horizontal flexibility, wind resistance and include the following mechanisms: re-centering mechanisms, damping mechanisms and maximum displacement limiters. Although the insulation systems market is currently distributed mainly between variations of LRB, HDR, flat sliding supports and FPS, the proposed systems still do not meet some conditions to ensure an ideal insulation. For example, elastomeric supports cannot provide a range of horizontal flexibility suitable for light mass structures. In addition, they deform laterally undergoing a reduction in the support area, lack of built-in maximum displacement limiters and need efficient re-centering mechanisms to prevent structural torsion. On the other hand, FPS systems cannot provide greater horizontal flexibility with lower cost, so they are not economically suitable for light structures. In addition, they cause lifting of the structures, which is not recommended. Likewise, there is a need to overcome the increase in resistance to movement with the increase in friction speed. Patent application WO-A2-2005031088 concerns a seismic isolation system comprising a cylinder arranged in rolling contact between a upper plate and a lower plate. The upper plate is fixed to a superstructure while the lower plate is fixed to a base. One or both support surfaces are inclined to form a central depression in which the cylinder resides under a normal weight of the superstructure, and towards which the cylinder tends to position itself when a relative displacement occurs between the upper and lower plates, providing a constant restorative force. This configuration therefore constitutes a re-centering mechanism of the insulation system. In the seismic isolation system described in said patent application, the cylinder comprises grooves adapted to fit in the upper and lower plates after a lateral displacement, preventing displacement in a direction along the longitudinal axis of the cylinder, but allowing it to roll freely between the two support plates.
Se conoce también Ia patente US-A-5862638 que describe un sistema de aislamiento sísmico formado por un soporte central que absorbe las fuerzas causadas por el movimiento deslizante horizontal, situado entre una placa superior y una placa inferior. Este sistema comprende unos amortiguadores conectados entre Ia placa superior e inferior con suficiente extensión para permitir el desplazamiento lateral del soporte central entre ambas placas.It is also known the patent US-A-5862638 which describes a seismic isolation system formed by a central support that absorbs the forces caused by the horizontal sliding movement, located between an upper plate and a lower plate. This system comprises dampers connected between the upper and lower plate with sufficient extension to allow lateral displacement of the central support between both plates.
La presente invención propone un sistema de aislamiento sísmico práctico, económico y eficiente que supera muchos de los inconvenientes de los sistemas de aislamiento anteriormente referidos, manteniendo sus principales ventajas. El citado sistema de aislamiento está diseñado principalmente para salvaguardar una variedad de sistemas estructurales y no estructurales de Ia amenaza sísmica.The present invention proposes a practical, economical and efficient seismic isolation system that overcomes many of the drawbacks of the aforementioned insulation systems, while maintaining its main advantages. The aforementioned insulation system is designed primarily to safeguard a variety of structural and non-structural systems from seismic threat.
Explicación de Ia invenciónExplanation of the invention
La presente invención concierne a un sistema de aislamiento sísmico para proteger de excitaciones dinámicas a un objeto soportado. El citado sistema comprende:The present invention concerns a seismic isolation system to protect a supported object from dynamic excitations. The aforementioned system includes:
- una placa superior de material rígido, adaptada para fijarse por una cara orientada hacia arriba al citado objeto con el fin de proporcionar un plano de apoyo;- an upper plate of rigid material, adapted to be fixed by a face facing upwards to said object in order to provide a support plane;
- una placa inferior de material rígido, adaptada para fijarse por una cara orientada hacia abajo a una base; y- a bottom plate of rigid material, adapted to be fixed by a face facing down to a base; Y
- un cuerpo rodante o aislador, dispuesto entre las dos placas, soportando al citado objeto, estando el cuerpo rodante en contacto de rodadura con unas caras internas de ambas placas opuestas entre sí, o de unos elementos laminares que recubren al menos parte de las mismas, y definiendo un alojamiento entre ambas placas, que permite rodar al cuerpo rodante al producirse un desplazamiento lateral relativo entre ambas placas.- a rolling or insulating body, disposed between the two plates, supporting said object, the rolling body being in rolling contact with internal faces of both plates opposite each other, or of laminar elements that cover at least part thereof. , and defining a housing between both plates, which allows roll to the rolling body when there is a relative lateral displacement between both plates.
Al menos una de las dos citadas placas comprende, en su cara interna, una porción abombada con una curvatura determinada en función de Ia curvatura de Ia cara del cuerpo rodante, con Ia cual establece contacto para cada una de las posibles posiciones a adoptar al rodar, para que Ia distancia entre las dos placas sea sustancialmente igual durante toda Ia trayectoria de rodadura entre ellas de dicho cuerpo rodante. En una realización preferida de Ia presente invención, cada una de las placas comprende en su cara interna, en una zona sustancialmente central de Ia misma, una respectiva porción abombada.At least one of the two aforementioned plates comprises, on its inner face, a domed portion with a curvature determined according to the curvature of the face of the rolling body, with which it establishes contact for each of the possible positions to be adopted when rolling , so that the distance between the two plates is substantially equal during the entire rolling path between them of said rolling body. In a preferred embodiment of the present invention, each of the plates comprises on its internal face, in a substantially central area thereof, a respective bulged portion.
Asimismo, el cuerpo rodante comprende unas configuraciones de retención periféricas adaptadas para acoplar y/o encajar en unas respectivas configuraciones de tope limitador definidas en unos bordes de las caras internas de las placas, al alcanzar, dicho cuerpo rodante, un desplazamiento lateral máximo predeterminado. De este modo se evita el levantamiento del objeto soportado, definiendo dichos bordes los límites de las placas para dicha trayectoria de rodadura del cuerpo rodante.Likewise, the rolling body comprises peripheral retention configurations adapted to engage and / or fit into respective limit stop configurations defined at edges of the internal faces of the plates, upon reaching said rolling body, a predetermined maximum lateral displacement. This avoids the lifting of the supported object, said edges defining the limits of the plates for said rolling path of the rolling body.
Para una realización preferida de Ia presente invención el cuerpo rodante es circular y dicho abombamiento o abombamientos son abombamientos de revolución. Para otra realización de Ia presente invención el citado cuerpo rodante es un sólido elíptico, mientras que para otra realización es un cilindro.For a preferred embodiment of the present invention the rolling body is circular and said bulging or bulging are revolution bulges. For another embodiment of the present invention said rolling body is an elliptical solid, while for another embodiment it is a cylinder.
El sistema objeto de Ia presente invención comprende además ipos elementos amortiguadores o disipadores de energía mecánica que conectan a dichas placas superior e inferior por sus caras internas en una zona próxima a sus bordes periféricos. Los citados elementos amortiguadores, para un ejemplo de realización, tienen una configuración de triple curvatura, estando Ia curva central dispuesta hacia Ia parte exterior del sistema. En otra realización de Ia presente invención, los citados elementos amortiguadores comprenden un cilindro hueco de un material elastómero, teniendo dicho cilindro un grosor determinado en función del peso del objeto a soportar. Para obtener una mejor eficiencia amortiguadora, el cilindro hueco comprende en su interior una barra de plomo de una longitud sustancialmente similar a Ia del cilindro hueco, extendiéndose en una dirección paralela al eje longitudinal del mismo. Esta barra de plomo Ie confiere mayor resistencia al sistema, así como mayor flexibilidad al deformarse plásticamente ante esfuerzos de cizalladura.The system object of the present invention further comprises ipos mechanical damping or dissipating elements that connect said upper and lower plates by their internal faces in an area close to their peripheral edges. Said damping elements, for an exemplary embodiment, have a triple curvature configuration, the central curve being arranged towards the outside of the system. In another embodiment of the present invention, said damping elements comprise a hollow cylinder of an elastomeric material, said cylinder having a determined thickness depending on the weight of the object to be supported. To obtain a better damping efficiency, the hollow cylinder comprises in its interior a lead bar of a length substantially similar to that of the hollow cylinder, extending in a direction parallel to the longitudinal axis thereof. This lead bar confers greater resistance to the system, as well as greater flexibility by deforming plastically to shear stresses.
Por otra parte y según Io mencionado anteriormente, el cuerpo rodante se encuentra en contacto de rodadura con Ia cara interna de ambas placas o bien de unos elementos laminares, que son de un material más flexible que el de dichas placas, provocando de este modo un efecto amortiguador. Cada uno de estos elementos laminares de recubrimiento se extiende por Ia mayor parte de Ia cara interna de una respectiva placa, abarcando al menos las citadas configuraciones de tope limitador.On the other hand and according to the aforementioned, the rolling body is in rolling contact with the inner face of both plates or of laminar elements, which are of a more flexible material than those of said plates, thus causing a damping effect. Each of these laminar cover elements extends over most of the internal face of a respective plate, covering at least the aforementioned limit stop configurations.
El sistema comprende además unos elementos rígidos adosados a dicha cara superior de dicha placa superior y/o a dicha cara inferior de dicha placa inferior, al menos por encima y/o debajo, respectivamente, de dichas zonas extremas de los bordes de las caras internas de dichas placas para mejorar el rendimiento dinámico de los elementos amortiguadores.The system further comprises rigid elements attached to said upper face of said upper plate and / or said lower face of said lower plate, at least above and / or below, respectively, of said end areas of the edges of the inner faces of said plates to improve the dynamic performance of the damping elements.
Breve descripción de los dibujosBrief description of the drawings
Las anteriores y otras ventajas y características se comprenderán más plenamente a partir de Ia siguiente descripción detallada de unos ejemplos de realización con referencia a los dibujos adjuntos, que deben tomarse a título ilustrativo y no limitativo. La Figura 1 es una vista en alzado de una primera implementación del sistema de esta invención que muestra un soporte de aislamiento sísmico multidireccional, con un cuerpo rodante o aislador formado por un sólido de revolución apto para masas ligeras a moderadas.The foregoing and other advantages and features will be more fully understood from the following detailed description of some embodiments with reference to the attached drawings, which should be taken by way of illustration and not limitation. Figure 1 is an elevation view of a first implementation of the system of this invention showing a multidirectional seismic isolation support, with a rolling or insulating body formed by a solid of revolution suitable for light to moderate masses.
La Figura 2 muestra el ejemplo de realización de Ia Figura anterior, en despiece. Las Figuras 3a y 3b ilustran el comportamiento del sistema ilustrado en Ia FiguraFigure 2 shows the exemplary embodiment of the previous Figure, exploded. Figures 3a and 3b illustrate the behavior of the system illustrated in Figure
1 , frente a excitaciones dinámicas, mostrando una posición neutra central y unas posiciones de máximo desplazamiento horizontal a izquierda y derecha. La Figura 3a corresponde a un soporte de aislamiento sísmico multidireccional para sistemas de masas pesadas mientras que Ia Figura 3b corresponde a una solución para sistemas de masas ligeras a moderadas, diferenciándose por los sistemas amortiguadores empleados en cada caso.1, in front of dynamic excitations, showing a central neutral position and positions of maximum horizontal displacement to the left and right. Figure 3a corresponds to a multidirectional seismic isolation support for heavy mass systems while Figure 3b corresponds to a solution for light to moderate mass systems, differentiated by the damping systems used in each case.
Las Figuras 4a-4c ilustran esquemáticamente (aislador o cuerpo rodante y fuerzas aplicadas a Ia izquierda y aislador inter-placas a Ia derecha) el comportamiento del sistema de aislamiento propuesto que supone un recentrado inherente dado el contacto entre el cuerpo rodante y las configuraciones abombadas de las caras internas de las placas de soporte.Figures 4a-4c schematically illustrate (insulator or rolling body and forces applied to the left and inter-plate insulator to the right) the behavior of the proposed insulation system that involves an inherent re-centering given the contact between the rolling body and the bulging configurations of the internal faces of the support plates.
Las Figuras 5a-5b y 6a-6b muestran detalles relativos a los amortiguadores y a Ia unión de los mismos a las placas superior e inferior del conjunto para aislamiento sísmico. Las Figuras 7a, 7b y 7c muestran diferentes configuraciones del sólido de revolución así como de Ia ubicación del recubrimiento laminar en un material menos rígido entre las caras interiores de Ia placa y el cuerpo rodante.Figures 5a-5b and 6a-6b show details related to the dampers and the union thereof to the upper and lower plates of the set for seismic isolation. Figures 7a, 7b and 7c show different configurations of the solid of revolution as well as the location of the laminar coating in a less rigid material between the inner faces of the plate and the rolling body.
La Figura 8 muestra un ejemplo de realización similar al de Ia Figura 1 con un aislador formado por un sólido de revolución y unos sistemas de amortiguamiento y refuerzos aptos para sistemas de masas pesadas.Figure 8 shows an exemplary embodiment similar to that of Figure 1 with an insulator formed by a solid of revolution and damping and reinforcement systems suitable for heavy mass systems.
La Figura 9 es equivalente a Ia anterior mostrando únicamente un mecanismo de amortiguamiento alternativo.Figure 9 is equivalent to the previous one showing only an alternative damping mechanism.
La Figura 10 muestra un ejemplo de realización de un soporte de aislamiento sísmico unidireccional para sistemas de masas ligeras a moderadas, en donde el cuerpo rodante o aislador ha sido producido por extrusión.Figure 10 shows an exemplary embodiment of a unidirectional seismic isolation support for light to moderate mass systems, where the rolling or insulating body has been produced by extrusion.
Las Figuras 11 a, 11 b y 11c muestran diversas formas posibles para el cuerpo rodante cilindrico del ejemplo de Ia Fig. 10.Figures 11 a, 11 b and 11c show various possible shapes for the cylindrical rolling body of the example of Fig. 10.
Se han utilizado las mismas referencias numéricas para aquellos elementos con idéntica funcionalidad que aparecen en los diversos ejemplos de realización ilustrados.The same numerical references have been used for those elements with identical functionality that appear in the various illustrated embodiments.
Descripción detallada de unos ejemplos de realizaciónDetailed description of some embodiments
Ejemplo 1 (sistemas de masas ligeras a moderadas) Las Figuras 1 y 2 muestran un ejemplo concreto de realización del sistema de aislamiento propuesto. Está compuesto por un cuerpo rodante o aislador constituido por un sólido de revolución (1) situado entre las dos placas superior (2) e inferior (3). El contacto entre las placas (2, 3) y el sólido (1) se hace mediante unos elementos laminares (4, 5) de un material menos rígido perfectamente adosados (por Ej. por pegado) a las placas (2, 3) en sus caras internas. Observando Ia Figura 2, se aprecian los abombamientos de las placas superior (2) e inferior (3) y cómo acoplan con Ia curvatura convexa del sólido de revolución (1). Haciendo referencia a Ia placa superior, se aprecia cómo ésta tiene una triple curvatura (2-4) (abombamiento central y valles ligeramente cóncavos en los lados) que acopla con las superficies de rodadura (1-2) y (1 ,3) de Ia parte superior del sólido de revolución (1) durante su rodadura. En este ejemplo de realización, Ia partes (1-2) son planas y Ia parte (1-3) es esférica. Con ello se consigue mantener una línea horizontal que el sólido (1) nunca supera en su rodadura entre las posiciones de máximos desplazamientos horizontales a izquierda y a derecha, como se .ilustra en Ia Figura 3. Esto consigue evitar elevaciones de Ia estructura soportada por el sistema de aislamiento. Las Figuras 1 y 2 muestran también cómo se materializan los topes para limitar los desplazamientos máximos. En este caso, se consigue con las superficies (2-1) y (2- 2) para Ia placa superior (2) y (3-1) y (3-2) para Ia placa inferior (3), que en forma de escalón acoplan con las ranuras o acanaladuras (1-1) del sólido de revolución. La parte plana (1-2) del sólido (1) sirve para mantener una mayor superficie de contacto entre el sólido o aislador (1) y Ia estructura soportada en las posiciones de desplazamientos extremos (ver Figura 3) y para reducir Ia velocidad del sólido rodante (1) antes de ser frenado por las citadas configuraciones de tope (2-1), (2-2), (3-1 y (3-2).Example 1 (light to moderate mass systems) Figures 1 and 2 show a concrete embodiment of the proposed insulation system. It is composed of a rolling or insulating body consisting of a solid of revolution (1) located between the two upper (2) and lower (3) plates. The contact between the plates (2, 3) and the solid (1) is made by means of laminar elements (4, 5) of a less rigid material perfectly attached (eg by gluing) to the plates (2, 3) in Your inner faces. Looking at Figure 2, the bulges of the upper (2) and lower (3) plates and how they fit with the convex curvature of the revolution solid (1) are appreciated. Referring to the upper plate, it can be seen how it has a triple curvature (2-4) (central bulging and slightly concave valleys on the sides) that matches the rolling surfaces (1-2) and (1, 3) of The upper part of the solid of revolution (1) during its rolling. In this embodiment, the parts (1-2) are flat and the part (1-3) is spherical. With this, it is possible to maintain a horizontal line that the solid (1) never exceeds in its rolling between the positions of maximum horizontal displacements to the left and right, as illustrated in Figure 3. This manages to avoid elevations of the structure supported by the insulation system Figures 1 and 2 also show how the stops materialize to limit maximum displacements. In this case, it is achieved with the surfaces (2-1) and (2- 2) for the upper plate (2) and (3-1) and (3-2) for the lower plate (3), which in shape of step connect with the grooves or grooves (1-1) of the solid of revolution. The flat part (1-2) of the solid (1) serves to maintain a greater contact surface between the solid or insulator (1) and the structure supported in the extreme displacement positions (see Figure 3) and to reduce the speed of the rolling solid (1) before being braked by the aforementioned stop configurations (2-1), (2-2), (3-1 and (3-2).
La forma cuasi elíptica del sólido de revolución (1) garantiza un mecanismo de re-centrado eficiente, como se ilustra en Ia Figura 4, a través del momento restaurador M del par de fuerzas gravitacionales verticales generado al rodar el sólido (1) del sistema de aislamiento. En otras palabras, Ia gravedad recupera Ia posición inicial del sistema en ausencia de excitaciones externas. Este mecanismo restaurador previene Ia torsión estructural y elimina el efecto P~Δ_ En las Figuras 1 , 2, 5a-5b y 6a-6b se aprecian asimismo los amortiguadores (6) considerados en este ejemplo. Se trata de unos elementos de acero acoplados a las placas (2) y (3) mediante las uniones (9) a Io largo del perímetro. El número y Ia sección de estos amortiguadores se diseñan en función de Ia resistencia que se requiere para sismos menores y el nivel deseado de amortiguamiento. La curvatura, dispuesta hacia el exterior, se elige para asegurar que los amortiguadores pueden extenderse Io suficiente dentro de los desplazamientos máximos esperados para Ia estructura soportada, como se ilustra en Ia Figura 3, en Ia que se aprecian los amortiguadores en su máxima extensión coincidiendo con los desplazamientos máximos de Ia estructura. Esto puede lograrse dotando a los amortiguadores de una curvatura triple exterior indicada por (6-1) en Ia Figura 2, o una forma similar. Pgra mejorar su eficiencia, los amortiguadores (6) se acoplan rígidamente a las placas (2) y (3) por las uniones (9) como se detalla en las Figuras 5 y 6. Durante Ia instalación del sistema de aislamiento, este acoplamiento se realiza de forma que, inicialmente, el sólido de revolución (1) toca ligeramente las coberturas menos rígidas de las partes menos rígidas superior (4) e inferior (5). A partir de esta unión, Ia estructura soportada se carga gradualmente sobre los aisladores de forma que los amortiguadores (6) adquieren todos un mismo pretensado por debajo del límite de fluencia. La deformación restante hasta alcanzar dicho límite es suficiente para resistir vibraciones menores. En consecuencia, Ia disipación de energía en los amortiguadores (6) tiene lugar por efecto de Ia histéresis en dichos amortiguadores (6) de forma rápida cuando se produce una excitación significativa por encima del límite de fluencia. Para conseguir un mayor rendimiento dinámico, las partes (2-1) y (3-1) son fijadas a Ia placa superior (2) y a Ia placa inferior (3) respectivamente mediante unos refuerzos verticales (7) y (8) que se aprecian en Ia Figura 6, en Ia vista en planta de una de las placas (2) del sistema.The quasi-elliptical shape of the solid of revolution (1) guarantees an efficient re-centering mechanism, as illustrated in Figure 4, through the restorative moment M of the pair of vertical gravitational forces generated by rolling the solid (1) of the system of isolation. In other words, gravity recovers the initial position of the system in the absence of external excitations. This restorative mechanism prevents structural torsion and eliminates the effect P ~ Δ_ In Figures 1, 2, 5a-5b and 6a-6b, the dampers (6) considered in this example are also appreciated. These are steel elements coupled to the plates (2) and (3) through the joints (9) along the perimeter. The number and section of these dampers are designed based on the resistance required for minor earthquakes and the desired level of damping. The curvature, arranged outwards, is chosen to ensure that the dampers can extend sufficiently within the maximum displacements expected for the supported structure, as illustrated in Figure 3, in which the dampers are appreciated in their maximum extent coinciding with the maximum displacements of the structure. This can be achieved by providing the dampers with an external triple curvature indicated by (6-1) in Figure 2, or a similar shape. In order to improve its efficiency, the dampers (6) are rigidly coupled to the plates (2) and (3) by the joints (9) as detailed in Figures 5 and 6. During the installation of the insulation system, this coupling is realizes that, initially, the solid of revolution (1) slightly touches the less rigid covers of the less rigid upper (4) and lower (5) parts. From this connection, the supported structure is gradually loaded onto the insulators so that the dampers (6) all acquire the same prestress below the creep limit. The remaining deformation until reaching said limit is sufficient to resist minor vibrations. Consequently, the dissipation of energy in the dampers (6) takes place by effect of the hysteresis in said dampers (6) quickly when a significant excitation occurs above the creep limit. To achieve better performance dynamic, the parts (2-1) and (3-1) are fixed to the upper plate (2) and the lower plate (3) respectively by means of vertical reinforcements (7) and (8) that can be seen in Figure 6 , in the plan view of one of the plates (2) of the system.
Las Figuras 7a-7c presentan algunas variantes en relación con el sistema de aislamiento con fines ilustrativos pero no limitativos. La Figura 7a muestra que el material menos rígido de los elementos laminares (4, 5) que recubren las caras internas de las placas (2, 3) puede presentar una superficie plana, en lugar de curva como en el caso de las Figuras 1-6. La Figura 7a ilustra también que las superficies superior e inferior del cuerpo rodante no han de ser lisas necesariamente, pudiendo tener una rugosidad regular. La Figura 7b ilustra que el elemento laminar (4, 5) de un material menos rígido puede cubrir alternativamente Ia superficie externa del cuerpo rodante (4,5) o eventualmente estar en las caras internas de las placas (2, 3) y sobre aquella superficie externa del cuerpo rodante.Figures 7a-7c present some variants in relation to the isolation system for illustrative but not limiting purposes. Figure 7a shows that the less rigid material of the laminar elements (4, 5) that cover the internal faces of the plates (2, 3) can have a flat surface, instead of a curve as in the case of Figures 1- 6. Figure 7a also illustrates that the upper and lower surfaces of the rolling body must not necessarily be smooth, and may have a regular roughness. Figure 7b illustrates that the laminar element (4, 5) of a less rigid material can alternatively cover the external surface of the rolling body (4,5) or possibly be on the inner faces of the plates (2, 3) and on that external surface of the rolling body.
La Figura 7b muestra también que las placas superior e inferior (2,3) pueden incluir los refuerzos (7,8) formando un único cuerpo. La Figura 7c muestra un cuerpo rodante (1) de altura reducida, con una configuración de los topes limitadores de desplazamiento máximo más sencilla que en el caso de las Figuras 1-6. En este caso, se ha previsto un único tope (1-1) que encaja en las superficies (2-2) y (5-2).Figure 7b also shows that the upper and lower plates (2,3) can include the reinforcements (7,8) forming a single body. Figure 7c shows a rolling body (1) of reduced height, with a configuration of the maximum displacement limit stops easier than in the case of Figures 1-6. In this case, a single stop (1-1) is provided that fits on the surfaces (2-2) and (5-2).
Ejemplo 2 (sistemas de gran masa)Example 2 (large mass systems)
La presente invención puede ser adaptada de forma específica para soportar sistemas de gran masa. Para ello, el sistema de soporte principal de Ia Figura 1 , que está constituido por el contacto entre el cuerpo rodante o aislador (1) y las placas superior e inferior (2,3), se modifica en Ja forma mostrada en Ia Figura 8. En este caso, como soporte principal se utiliza un cilindro hueco hecho de elastómero reforzado (11). En este esquema, el contacto entre el aislador y las placas sirve de elemento secundario de soporte. El cilindro hueco, que rodea el cuerpo rodante (1), tiene un grosor variable para proporcionar suficiente área de soporte basada en el peso de Ia estructura soportada. Los refuerzos (7) y (8) así como las placas de apoyo (2) y (3) se modifican en una cierta medida, como se ilustra en Ia Figura 8, para fijar correctamente las superficies superior e inferior del cilindro hueco (11) a las placas (2) y (3) y luego ser correctamente fijado a Ia estructura y a Ia base respectivamente.The present invention can be specifically adapted to support large mass systems. For this, the main support system of Figure 1, which is constituted by the contact between the rolling or insulating body (1) and the upper and lower plates (2,3), is modified in the manner shown in Figure 8 In this case, a hollow cylinder made of reinforced elastomer (11) is used as the main support. In this scheme, the contact between the insulator and the plates serves as a secondary support element. The hollow cylinder, which surrounds the rolling body (1), has a variable thickness to provide sufficient support area based on the weight of the supported structure. The reinforcements (7) and (8) as well as the support plates (2) and (3) are modified to a certain extent, as illustrated in Figure 8, to correctly fix the upper and lower surfaces of the hollow cylinder (11 ) to the plates (2) and (3) and then be correctly fixed to the structure and base respectively.
En este ejemplo de aplicación, Ia disipación de energía se consigue a base de insertar unas barras de plomo (6), como se ve en Ia Figura 8, axialmente en el seno del cilindro hueco, formando así un soporte principal que rodea el aislador (1), quedando el contacto entre el aislador y las placas (2,3,4,5) como un sistema de apoyo secundario. El número de barras de plomo y su diámetro se eligen adecuadamente para conseguir el máximo rendimiento dinámico del sistema aislado.In this example of application, the energy dissipation is achieved by inserting lead rods (6), as seen in Figure 8, axially within the hollow cylinder, thus forming a main support surrounding the insulator ( 1), leaving the contact between the insulator and the plates (2,3,4,5) as a secondary support system. The number of lead bars and their diameter are properly chosen to achieve maximum dynamic performance of the isolated system.
La presente invención es superior entonces a los soportes de elastómeros yThe present invention is then superior to elastomeric supports and
LRBs conocidos ya que el área del soporte elastomérico hueco puede ser reducida sin restricciones para proporcionar una mayor flexibilidad horizontal en el valor necesario sin el miedo al probable fallo por pandeo, que no es el caso en los soportes de elastómeros normales.Known LRBs since the hollow elastomeric support area can be reduced without restrictions to provide greater horizontal flexibility in the necessary value without fear of probable buckling failure, which is not the case in normal elastomeric supports.
Además, el aislador o cuerpo rodante (1) propuesto no causa ninguna elevación estructural, como se ilustra en Ia Figura 3, cuando se producen movimientos laterales. Esto proporciona una ventaja superior con respecto a los sistemas FPS citados. Además, ¡os FPS no pueden proporcionar soportes de bajo coste para sistemas de masas ligeras, mientras que Ia invención presente puede proporcionar un amplio rango de valores de flexibilidad horizontal con mucho más bajo coste.In addition, the proposed insulator or rolling body (1) does not cause any structural elevation, as illustrated in Figure 3, when lateral movements occur. This provides a superior advantage over the FPS systems cited. In addition, FPS cannot provide low cost supports for light mass systems, while the present invention can provide a wide range of horizontal flexibility values with much lower cost.
La Figura 9 es un Ejemplo de realización donde se ilustra que puede combinarse el cilindro hueco (con o sin barras de plomo) con una serie de amortiguadores metálicos (6) como los considerados en el Ejemplo 1.Figure 9 is an exemplary embodiment where it is illustrated that the hollow cylinder (with or without lead rods) can be combined with a series of metal dampers (6) such as those considered in Example 1.
Ejemplo 3 (realización unidireccional)Example 3 (unidirectional embodiment)
Los principios de Ia presente invención pueden adaptarse para aislamiento de vibraciones en una única dirección. En tal caso, el cuerpo rodante (1) está diseñado en forma de cilindro obtenido por extrusión de una sección a Io largo de un eje perpendicular. La Figura 10 muestra un sistema de aislamiento donde el cuerpo rodante es un cilindro cuya sección tiene Ia misma forma que el cuerpo tridimensional considerado en el Ejemplo 1. El resto de elementos del sistema es análogo al caso del Ejemplo 1 con las adaptaciones lógicas a Ia diferente geometría.The principles of the present invention can be adapted for vibration isolation in a single direction. In such a case, the rolling body (1) is designed in the form of a cylinder obtained by extrusion of a section along a perpendicular axis. Figure 10 shows an insulation system where the rolling body is a cylinder whose section has the same shape as the three-dimensional body considered in Example 1. The rest of the system elements are analogous to the case of Example 1 with the logical adaptations to Ia different geometry
Pueden considerarse diferentes secciones para generar el cilindro por extrusión. La Figura 11 muestra algunas posibilidades con fines ilustrativos pero no limitativos. Different sections can be considered to generate the cylinder by extrusion. Figure 11 shows some possibilities for illustrative but not limiting purposes.

Claims

REIVINDICACIONES
1.- Sistema de aislamiento sísmico de un objeto soportado para proteger de excitaciones dinámicas a dicho objeto, el sistema comprendiendo: - una placa superior adaptada para fijarse por una cara orientada hacia arriba a dicho objeto con el fin de proporcionar un plano de apoyo;1.- Seismic isolation system of a supported object to protect said object from dynamic excitations, the system comprising: - an upper plate adapted to be fixed by a face facing upwards to said object in order to provide a support plane;
- una placa inferior adaptada para fijarse por una cara orientada hacia abajo a una base; y- a lower plate adapted to be fixed by a face facing downwards to a base; Y
- un cuerpo rodante dispuesto entre dichas dos placas, soportando a dicho objeto, estando dicho cuerpo rodante en contacto de rodadura con unas caras internas, enfrentadas, de ambas placas que definen un alojamiento para dicho cuerpo rodante con posibilidad de rodar al producirse un desplazamiento lateral relativo entre dichas placas; caracterizado porque al menos una de dichas dos placas comprende, en su cara interna, al menos una porción convexa, abombada, con una curvatura determinada en función de Ia curvatura asimismo convexa, abombada, de Ia cara de dicho cuerpo rodante, con Ia cual contacta para cada una de las posibles posiciones del mismo al rodar, para que Ia distancia entre las dos placas sea sustancialmente igual durante toda Ia trayectoria de rodadura del cuerpo rodante entre ellas. - a rolling body disposed between said two plates, supporting said object, said rolling body being in rolling contact with internal faces, facing each other, of both plates defining a housing for said rolling body with the possibility of rolling when a lateral displacement occurs relative between said plates; characterized in that at least one of said two plates comprises, on its inner face, at least one convex, bulged portion, with a curvature determined in function of the also convex, bulging curvature of the face of said rolling body, with which it contacts for each of the possible positions thereof when rolling, so that the distance between the two plates is substantially equal during the entire rolling path of the rolling body between them.
2 - Sistema de aislamiento sísmico según Ia reivindicación 1 , caracterizado porque dicha placa superior y dicha placa inferior comprenden, en sus respectivas caras internas, al menos dicha porción abombada.2 - Seismic isolation system according to claim 1, characterized in that said upper plate and said lower plate comprise, on their respective internal faces, at least said bulged portion.
3.- Sistema de aislamiento sísmico según Ia reivindicación 2, caracterizado porque dicho cuerpo rodante es de configuración cuasi-elíptica de manera que su contacto de rodadura con dichas caras internas convexas, abombadas, Ie proporciona un mecanismo de recentrado inherente.3. Seismic isolation system according to claim 2, characterized in that said rolling body is of a quasi-elliptical configuration so that its rolling contact with said convex, domed internal faces, provides an inherent re-centering mechanism.
4.- Sistema de aislamiento sísmico según una cualquiera de las reivindicaciones anteriores caracterizado porque dicho cuerpo rodante comprende unas configuraciones de retención adaptadas para acoplar en unas respectivas configuraciones de tope limitador definidas en unos bordes de dichas caras internas de dichas placas, al alcanzar, dicho cuerpo rodante, un desplazamiento lateral máximo predeterminado, evitando así el levantamiento de dicho objeto, definiendo dichos bordes los límites de las placas para dicha trayectoria de rodadura del cuerpo rodante.4. Seismic isolation system according to any one of the preceding claims characterized in that said rolling body comprises retention configurations adapted to engage in respective limit stop configurations defined at edges of said internal faces of said plates, upon reaching said rolling body, a predetermined maximum lateral displacement, thus avoiding the lifting of said object, said edges defining the limits of the plates for said rolling path of the rolling body.
5 - Sistema de aislamiento sísmico según Ia reivindicación 4, caracterizado porque dichas configuraciones de retención comprenden al menos una ranura o acanaladura que rodea a dicho cuerpo rodante y dichas configuraciones de tope limitador comprenden unas aletas perpendiculares que se extienden desde dichos bordes hacia el interior de dicho alojamiento.5 - Seismic isolation system according to claim 4, characterized in that said retention configurations comprise at least one groove or groove surrounding said rolling body and said stop configurations Limiters comprise perpendicular fins extending from said edges into said housing.
6.- Sistema de aislamiento sísmico según Ia reivindicación 4, caracterizado porque se han previsto unos elementos laminares que recubren al menos parte de las citadas caras internas, enfrentadas, de las citadas placa superior y placa inferior extendiéndose cada uno de dichos elementos laminares por Ia mayor parte de Ia cara interna de una respectiva placa, abarcando al menos dichas configuraciones de tope limitador.6. Seismic isolation system according to claim 4, characterized in that some laminar elements are provided that cover at least part of said internal faces, facing each other, of said upper plate and lower plate, each of said laminar elements extending along the Ia most of the internal face of a respective plate, comprising at least said limit stop configurations.
7.- Sistema de aislamiento sísmico según una cualquiera de las reivindicaciones 1 a 5, caracterizado porque se han previsto unos elementos laminares que recubren al menos parte de Ia superficie externa de dicho o cuerpo rodante.7. Seismic isolation system according to any one of claims 1 to 5, characterized in that there are provided laminar elements that cover at least part of the external surface of said rolling body or body.
8.- Sistema de aislamiento sísmico según una cualquiera de las reivindicaciones 1 a 5, caracterizado porque se han previsto unos elementos laminares que cubren al menos parte de las caras internas de las placas y/o de Ia superficie externa de dicho cuerpo rodante.8. Seismic isolation system according to any one of claims 1 to 5, characterized in that there are provided laminar elements that cover at least part of the internal faces of the plates and / or of the external surface of said rolling body.
9.- Sistema, según una cualquiera de las reivindicaciones 6-8, caracterizado porque dichas placas superior e inferior son unas placas de material rígido y porque dichos elementos laminares son de un material más flexible que el propio de las citadas placa superior e inferior, provocando un efecto amortiguador. 9. System, according to any one of claims 6-8, characterized in that said upper and lower plates are rigid material plates and because said laminar elements are of a more flexible material than the one of said upper and lower plate, causing a damping effect.
10.- Sistema de aislamiento sísmico según una cualquiera de las reivindicaciones 1 a 5, caracterizado porque dicho cuerpo rodante es un sólido de revolución proporcionando un aislamiento multidireccional.10. Seismic isolation system according to any one of claims 1 to 5, characterized in that said rolling body is a solid of revolution providing multidirectional insulation.
11 - Sistema de aislamiento sísmico según una cualquiera de las reivindicaciones 1 a 5, caracterizado porque dicho cuerpo rodante es un cuerpo obtenido por extrusión.11 - Seismic isolation system according to any one of claims 1 to 5, characterized in that said rolling body is a body obtained by extrusion.
12.- Sistema de aislamiento sísmico según Ia reivindicación 11 , caracterizado porque dicho cuerpo rodante es un cilindro proporcionando un aislamiento unidireccional.12. Seismic isolation system according to claim 11, characterized in that said rolling body is a cylinder providing unidirectional insulation.
13,- Sistema de aislamiento sísmico, según una cualquiera de las reivindicaciones 1 a 5, caracterizado porque dicho cuerpo rodante es un cuerpo que presenta una rugosidad superficial regular en al menos Ia superficie de contacto con dicha porción convexa, abombada, que es al menos una de las placas superior e inferior.13, - Seismic isolation system, according to any one of claims 1 to 5, characterized in that said rolling body is a body that has a regular surface roughness on at least the contact surface with said convex, bulged portion, which is at least one of the upper and lower plates.
14 - Sistema de aislamiento sísmico según Ia reivindicación 4, caracterizado porque comprende al menos un elemento amortiguador o disipador de energía mecánica que conecta a dichas placas superior e inferior por sus caras internas en una zona próxima a dichos bordes.14 - Seismic isolation system according to claim 4, characterized in that it comprises at least one damping element or energy dissipator mechanical that connects said upper and lower plates by their internal faces in an area close to said edges.
15.- Sistema de aislamiento sísmico según Ia reivindicación 14, caracterizado porque dicho elemento amortiguador, que es al menos uno, tiene una configuración curvada dispuesta hacia Ia parte exterior de dicho sistema.15. Seismic isolation system according to claim 14, characterized in that said damping element, which is at least one, has a curved configuration arranged towards the outside of said system.
16.- Sistema de aislamiento sísmico según Ia reivindicación 14, caracterizado porque dicho elemento amortiguador, que es al menos uno, comprende un cilindro hueco de un material elastómero, teniendo dicho cilindro un grosor determinado en función del peso del objeto a soportar. 16. Seismic isolation system according to claim 14, characterized in that said damping element, which is at least one, comprises a hollow cylinder of an elastomeric material, said cylinder having a determined thickness depending on the weight of the object to be supported.
17.- Sistema de aislamiento sísmico según Ia reivindicación 16, caracterizado porque dicho cilindro hueco comprende al menos una barra de plomo insertada en su interior, siendo dicha barra de plomo de altura sustancialmente similar a Ia del cilindro hueco y extendiéndose en una dirección paralela al eje longitudinal de dicho cilindro hueco. 17. Seismic isolation system according to claim 16, characterized in that said hollow cylinder comprises at least one lead rod inserted inside, said lead rod having a height substantially similar to that of the hollow cylinder and extending in a direction parallel to the longitudinal axis of said hollow cylinder.
18.- Sistema de aislamiento sísmico según Ia reivindicación 9, caracterizado porque comprende al menos un elemento rígido adosado a dicha cara superior de dicha placa superior y/o a dicha cara inferior de dicha placa inferior, al menos por encima y/o< debajo, respectivamente, de dichas zonas extremas de los bordes de las caras internas de dichas placas para mejorar el rendimiento dinámico de dichos elementos amortiguadores.18. Seismic isolation system according to claim 9, characterized in that it comprises at least one rigid element attached to said upper face of said upper plate and / or said lower face of said lower plate, at least above and / or <below, respectively, of said end zones of the edges of the inner faces of said plates to improve the dynamic performance of said damping elements.
19.- Sistema de aislamiento símico según las reivindicaciones 1 o 2, caracterizado porque dicho abombamiento o abombamientos se encuentran en una 'zona sustancialmente central de dichas placas. 19. Symmetric isolation system according to claims 1 or 2, characterized in that said bulging or bulging are in a substantially central area of said plates.
PCT/ES2009/000351 2008-07-03 2009-07-01 Method for the seismic isolation of a supported object WO2010000897A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200802043 2008-07-03
ESP200802043 2008-07-03

Publications (1)

Publication Number Publication Date
WO2010000897A1 true WO2010000897A1 (en) 2010-01-07

Family

ID=41465520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2009/000351 WO2010000897A1 (en) 2008-07-03 2009-07-01 Method for the seismic isolation of a supported object

Country Status (1)

Country Link
WO (1) WO2010000897A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2551182A1 (en) * 2014-05-13 2015-11-16 Universitat Politècnica De Catalunya Seismic isolation device with multiple cores and gears (Machine-translation by Google Translate, not legally binding)
WO2017082839A1 (en) * 2015-11-13 2017-05-18 Ugur Gunduz Earthquake isolator and production method of such an isolator
ES2727505A1 (en) * 2018-04-16 2019-10-16 Moustafa Mohammed Ismail Abdelkareem MULTIPLE VIBRATION DAMPING DEVICE (Machine-translation by Google Translate, not legally binding)
US10688278B2 (en) 2009-11-30 2020-06-23 Biosense Webster (Israel), Ltd. Catheter with pressure measuring tip
US11421435B2 (en) * 2018-12-12 2022-08-23 Universidad Catolica De La Santisima Concepcion Kinematic seismic isolation device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5081806A (en) * 1989-07-25 1992-01-21 Pommelet Yves M Building structure foundation system
JPH0941712A (en) * 1995-07-28 1997-02-10 Kanazawa Seisakusho:Kk Response control device
JP2001108015A (en) * 1999-10-04 2001-04-20 Kanazawa Seisakusho:Kk Base isolation device
JP2002061704A (en) * 2000-08-17 2002-02-28 Daiwa House Ind Co Ltd Gravity restorable base isolation structure
JP2005207056A (en) * 2004-01-21 2005-08-04 Keizaburo Koizumi Base isolating apparatus
JP2006084014A (en) * 2004-09-14 2006-03-30 Kanazawa Seisakusho:Kk Base isolation device
US20060174555A1 (en) * 2006-05-12 2006-08-10 Earthquake Protection Systems, Inc. Sliding Pendulum Seismic Isolation System
JP2006283958A (en) * 2005-04-01 2006-10-19 Kanazawa Seisakusho:Kk Isolation system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5081806A (en) * 1989-07-25 1992-01-21 Pommelet Yves M Building structure foundation system
JPH0941712A (en) * 1995-07-28 1997-02-10 Kanazawa Seisakusho:Kk Response control device
JP2001108015A (en) * 1999-10-04 2001-04-20 Kanazawa Seisakusho:Kk Base isolation device
JP2002061704A (en) * 2000-08-17 2002-02-28 Daiwa House Ind Co Ltd Gravity restorable base isolation structure
JP2005207056A (en) * 2004-01-21 2005-08-04 Keizaburo Koizumi Base isolating apparatus
JP2006084014A (en) * 2004-09-14 2006-03-30 Kanazawa Seisakusho:Kk Base isolation device
JP2006283958A (en) * 2005-04-01 2006-10-19 Kanazawa Seisakusho:Kk Isolation system
US20060174555A1 (en) * 2006-05-12 2006-08-10 Earthquake Protection Systems, Inc. Sliding Pendulum Seismic Isolation System

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10688278B2 (en) 2009-11-30 2020-06-23 Biosense Webster (Israel), Ltd. Catheter with pressure measuring tip
US11383063B2 (en) 2009-11-30 2022-07-12 Biosense Webster (Israel) Ltd. Catheter with pressure measuring tip
ES2551182A1 (en) * 2014-05-13 2015-11-16 Universitat Politècnica De Catalunya Seismic isolation device with multiple cores and gears (Machine-translation by Google Translate, not legally binding)
WO2015173456A1 (en) * 2014-05-13 2015-11-19 Universitat Politècnica De Catalunya Seismic isolation device with multiple cores and gears
WO2017082839A1 (en) * 2015-11-13 2017-05-18 Ugur Gunduz Earthquake isolator and production method of such an isolator
ES2727505A1 (en) * 2018-04-16 2019-10-16 Moustafa Mohammed Ismail Abdelkareem MULTIPLE VIBRATION DAMPING DEVICE (Machine-translation by Google Translate, not legally binding)
US11421435B2 (en) * 2018-12-12 2022-08-23 Universidad Catolica De La Santisima Concepcion Kinematic seismic isolation device

Similar Documents

Publication Publication Date Title
ES2587713T3 (en) Power dissipation device
US6631593B2 (en) Directional sliding pendulum seismic isolation systems and articulated sliding assemblies therefor
US5177915A (en) Elasto-plastic damper
ES2216310T3 (en) ANTISISMIC PROTECTION THROUGH DISAPPOINTED SUPPORTS OF VIBRATIONS FOR BUILDINGS AND OBJECTS ON VIRTUAL PENDULES WITH LONG PERIOD.
ES2367531T3 (en) SEISMIC INSULATOR OF SLIDING PENDULUM.
WO2010000897A1 (en) Method for the seismic isolation of a supported object
JP4735585B2 (en) Concrete rod-shaped damper structure
CN108867349B (en) Friction pendulum type seismic mitigation and isolation support with multiple layers of shear pins
CN108999455B (en) Easy-reset high-energy-consumption buckling restrained brace
KR100944363B1 (en) Iron frame brace having bucking protection part
KR20060084173A (en) Earthquake isolation bearing for bridges using shape memory alloy
ES2350217B2 (en) SYSTEM TO DISSIP SISMIC ENERGY IN CONSTRUCTIONS.
CN213061660U (en) Seismic isolation and reduction system and bridge
JP6918060B2 (en) Damage control type displacement suppression device
JP2010173860A (en) Device for horizontally supporting mast of tower crane
KR20090033671A (en) Bridge for absorbing vibration
CN111218999A (en) Metal and spring rubber composite damper
JP2005187185A (en) Device for horizontally supporting mast of tower crane
JP5214371B2 (en) Structure
CN110541351B (en) Anti-seismic device and bridge
JP2010189997A (en) Base-isolated structure and building having the same
CN110145042B (en) Energy consumption device and self-resetting node
CN111851270A (en) Vertical cambered surface metal damper
JP2007085068A (en) Aseismic device
KR102583113B1 (en) Panel Assembly Comprising 3D Earthquake-proof Construction With Improved Seismic Resistance And Load Carrying Capacity

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09772586

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09772586

Country of ref document: EP

Kind code of ref document: A1