WO2009157485A1 - Hybrid working machine - Google Patents

Hybrid working machine Download PDF

Info

Publication number
WO2009157485A1
WO2009157485A1 PCT/JP2009/061527 JP2009061527W WO2009157485A1 WO 2009157485 A1 WO2009157485 A1 WO 2009157485A1 JP 2009061527 W JP2009061527 W JP 2009061527W WO 2009157485 A1 WO2009157485 A1 WO 2009157485A1
Authority
WO
WIPO (PCT)
Prior art keywords
bus
battery
buck
work machine
turning
Prior art date
Application number
PCT/JP2009/061527
Other languages
French (fr)
Japanese (ja)
Inventor
英明 神林
博三 庄野
Original Assignee
住友重機械工業株式会社
住友建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社, 住友建機株式会社 filed Critical 住友重機械工業株式会社
Publication of WO2009157485A1 publication Critical patent/WO2009157485A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/12Parallel operation of dc generators with converters, e.g. with mercury-arc rectifier

Definitions

  • the present invention relates to a hybrid work machine in which a DC bus is provided in a power storage unit for supplying power.
  • the hybrid power shovel includes a hydraulic pump for hydraulically driving work elements such as a boom, an arm, and a bucket.
  • a motor generator is connected to the engine for driving the hydraulic pump via a speed increaser, and the motor generator assists the driving of the engine and charges the battery with electric power obtained by power generation.
  • an electric motor is provided as a power source of the turning mechanism for turning the upper turning body, and the generated electric power is generated by performing a power running operation (acceleration) and a regenerative operation (deceleration) with the electric motor when the turning mechanism is driven.
  • a power running operation acceleration
  • a regenerative operation deceleration
  • the rated output differs because the required driving force differs between the electric motor for assisting the engine and the electric motor for turning driving. Since an electric motor for assisting an engine performs an electric driving (assist) operation or a power generation operation at a substantially constant rotational speed, fluctuations in the output of the electric motor are relatively small. On the other hand, the electric motor for turning driving repeatedly performs acceleration (power running operation) and deceleration (regenerative operation) with the rotation of the upper turning body. Further, since the lever operation amount of the driver is changed depending on the work content, the rotation speed of the electric motor for turning driving is also changed accordingly.
  • an object of the present invention is to provide a hybrid work machine that suppresses variations in load controllability and damage to a load driver due to overcurrent by stabilizing the DC bus voltage value.
  • a plurality of inverters for driving a plurality of electric work elements, a capacitor that transfers power to and from the plurality of inverters, and a DC connected to the plurality of inverters And a buck-boost converter disposed between the DC bus and the battery, wherein the plurality of inverters include a first inverter and a second inverter, and the DC bus includes the A first DC bus to which the first inverter is connected; and a second DC bus to which the second inverter is connected.
  • the step-up / down converter includes: the first DC bus and the capacitor; A hybrid work machine is provided that is disposed between the two.
  • an internal combustion engine for driving a hydraulic pump that generates a hydraulic pressure required for driving a hydraulically driven working element, and performs an electric (assist) operation and a power generation operation.
  • a motor generator, an electric drive unit for driving an electric drive working element, and electric power to be supplied to the motor generator or the electric drive unit are accumulated, and is generated by the motor generator or the electric drive unit.
  • a capacitor for charging the electric power, and one side is connected to the motor generator via the first DC bus, and the other side is connected to the capacitor to boost or step down the voltage value of the first DC bus.
  • a first step-up / step-down converter, and one side connected to the electric drive unit via a second DC bus and the other side connected to the capacitor to boost or step down the voltage value of the second DC bus 2 buck-boost converter Hybrid operating machine is provided, characterized in that it comprises a.
  • each electric motor can be efficiently driven while suppressing damage or breakage of the electric drive device.
  • FIG. 1 is a side view showing a hybrid work machine according to a first embodiment. It is a block diagram showing the structure of the hybrid type working machine by 1st Embodiment. It is a figure which shows roughly the circuit structure of the buck-boost converter used for the hybrid type working machine by 1st Embodiment. It is a control block diagram which shows the circuit structure of the drive control part of the buck-boost converter used for the hybrid type work machine of 1st Embodiment.
  • FIG. 7 is a control block diagram of a circuit configuration of a drive control unit of a buck-boost converter used in a hybrid work machine according to a modification of the first embodiment.
  • FIG. 1 is a side view of a hybrid work machine according to a first embodiment of the present invention.
  • An upper swing body 3 is mounted on the lower traveling body 1 of the hybrid work machine via a swing mechanism 2.
  • the upper swing body 3 is equipped with a cabin 10 and a power source.
  • FIG. 2 is a block diagram illustrating the configuration of the hybrid work machine according to the first embodiment.
  • the mechanical power system is indicated by a double line
  • the high-pressure hydraulic line is indicated by a solid line
  • the pilot line is indicated by a broken line
  • the electric drive / control system is indicated by a one-dot chain line.
  • the engine 11 as a mechanical drive unit and the motor generator 12 as an assist drive unit are both connected to an input shaft of a speed reducer 13 as a booster.
  • a main pump 14 and a pilot pump 15 are connected to the output shaft of the speed reducer 13.
  • a control valve 17 is connected to the main pump 14 via a high pressure hydraulic line 16.
  • the control valve 17 is a control device that controls the hydraulic system in the hybrid work machine according to the first embodiment. Connected to the control valve 17 are hydraulic motors 1A (for right) and 1B (for left), a boom cylinder 7, an arm cylinder 8, and a bucket cylinder 9 for the lower traveling body 1 via a high-pressure hydraulic line.
  • the motor generator 12 is connected to a battery 19 as a battery via an inverter 18A and a step-up / down converter 100.
  • the inverter 18A and the step-up / down converter 100 are connected by a DC bus 110.
  • the lifting magnet 6 is connected to the DC bus 110 via an inverter 18B.
  • the lifting magnet 6 includes an electromagnet that generates a magnetic force for magnetically attracting a metal object, and power is supplied from the DC bus 110 via the inverter 18B.
  • a turning electric motor 21 is connected to the DC bus 110 via an inverter 20.
  • the turning electric motor 21 is a power source of the turning mechanism 2 and performs drive control for rotating the upper turning body 3 in the right direction or the left direction.
  • the DC bus 110 is arranged to transfer power between the battery 19, the lifting magnet 6, the motor generator 12, and the turning electric motor 21.
  • the DC bus 110 is provided with a DC bus voltage detection unit 111 for detecting a voltage value of the DC bus 110 (hereinafter referred to as a DC bus voltage value in the first embodiment).
  • the detected DC bus voltage value is input to the controller 30.
  • the battery 19 is provided with a battery voltage detector 112 for detecting a battery voltage value and a battery current detector 113 for detecting a battery current value.
  • the battery voltage value and battery current value detected by these are input to the controller 30.
  • a resolver 22, a mechanical brake 23, and a turning speed reducer 24 are connected to the rotating shaft 21A of the turning electric motor 21.
  • An operation device 26 is connected to the pilot pump 15 via a pilot line 25.
  • the control device 17 and a pressure sensor 29 as a lever operation detection unit are connected to the operation device 26 via hydraulic lines 27 and 28, respectively.
  • a controller 30 Connected to the pressure sensor 29 is a controller 30 that performs drive control of the electrical system of the construction machine of the first embodiment.
  • the above-described hybrid work machine is a hybrid work machine that uses the engine 11, the motor generator 12, and the turning electric motor 21 as power sources. These power sources are mounted on the upper swing body 3 shown in FIG. Hereinafter, each part will be described.
  • the engine 11 is an internal combustion engine composed of, for example, a diesel engine, and its output shaft is connected to one input shaft of the speed reducer 13. The engine 11 is always operated during operation of the hybrid work machine.
  • the motor generator 12 is an electric motor capable of both electric (assist) operation and power generation operation.
  • a motor generator that is AC driven by an inverter 18 ⁇ / b> A is used as the motor generator 12.
  • the motor generator 12 can be constituted by, for example, an IPM (Interior / Permanent / Magnet) motor in which a magnet is embedded in a rotor.
  • the rotating shaft of the motor generator 12 is connected to the other input shaft of the speed reducer 13.
  • Reduction gear 13 has two input shafts and one output shaft.
  • a drive shaft of the engine 11 and a drive shaft of the motor generator 12 are connected to each of the two input shafts.
  • a drive shaft of the main pump 14 is connected to the output shaft.
  • the motor generator 12 performs an electric driving (assist) operation, and the driving force of the motor generator 12 is transmitted to the main pump 14 via the output shaft of the speed reducer 13. Thereby, driving of the engine 11 is assisted.
  • the load of the engine 11 is small, the driving force of the engine 11 is transmitted to the motor generator 12 through the speed reducer 13, so that the motor generator 12 generates power by the power generation operation. Switching between the electric operation and the power generation operation of the motor generator 12 is performed by the controller 30 according to the load of the engine 11 and the like.
  • the main pump 14 is a pump that generates hydraulic pressure to be supplied to the control valve 17. This hydraulic pressure is supplied to drive each of the hydraulic motors 1 ⁇ / b> A and 1 ⁇ / b> B, the boom cylinder 7, the arm cylinder 8, and the bucket cylinder 9 via the control valve 17.
  • the pilot pump 15 is a pump that generates a pilot pressure necessary for the hydraulic operation system. The configuration of this hydraulic operation system will be described later.
  • the control valve 17 inputs the hydraulic pressure supplied to each of the hydraulic motors 1A, 1B, the boom cylinder 7, the arm cylinder 8 and the bucket cylinder 9 for the lower traveling body 1 connected via a high-pressure hydraulic line. It is a hydraulic control device which controls these hydraulically by controlling according to the above.
  • the inverter 18A is provided between the motor generator 12 and the buck-boost converter 100 as described above, and controls the operation of the motor generator 12 based on a command from the controller 30.
  • the inverter 18A controls the power running of the motor generator 12
  • the necessary power is supplied from the battery 19 and the step-up / down converter 100 to the motor generator 12 via the DC bus 110.
  • the battery 19 is charged with the electric power generated by the motor generator 12 via the DC bus 110 and the step-up / down converter 100.
  • the inverter 18B is provided between the lifting magnet 6 and the buck-boost converter 100, and supplies the requested power to the lifting magnet 6 from the DC bus 110 when the electromagnet is turned on based on a command from the controller 30. To do. Further, when the electromagnet is turned off, the regenerated electric power is supplied to the DC bus 100.
  • the battery 19 is connected to the inverter 18A, the inverter 18B, and the inverter 20 through the buck-boost converter 100. Thereby, the battery 19 excites (turns on) the lifting magnet 6 when at least one of the electric (assist) operation of the motor generator 12 and the power running operation of the turning electric motor 21 is performed. ) Supply the necessary power.
  • the battery 19 generates regenerative power when at least one of the generator operation of the motor generator 12 and the regenerative operation of the turning motor 21 is performed, or when the lifting magnet 6 is demagnetized (turned off). During the operation, the electric power generated by the power generation operation or the regenerative operation is stored as electric energy.
  • the motor generator 12 Since the motor generator 12, the lifting magnet 6, and the turning motor 21 are connected to the DC bus 110 via the inverters 18A, 18B, and 20, the electric power generated by the motor generator 12 is received. In some cases, the lifting magnet 6 or the turning electric motor 21 may be directly supplied. Further, the electric power regenerated by the lifting magnet 6 may be supplied to the motor generator 12 or the turning electric motor 21. Further, the electric power regenerated by the turning electric motor 21 may be supplied to the motor generator 12 or the lifting magnet 6.
  • the charge / discharge control of the battery 19 includes the charge state of the battery 19, the operation state of the motor generator 12 (electric (assist) operation or power generation operation), the drive state of the lifting magnet 6, and the operation state of the turning motor 21 (power running operation or This is performed by the step-up / down converter 100 based on the regenerative operation.
  • Switching control between the step-up / step-down operation of the step-up / step-down converter 100 is performed by controlling the DC bus voltage value detected by the DC bus voltage detection unit 111, the battery voltage value detected by the battery voltage detection unit 112, and the battery current detection unit 113. Is performed by the controller 30 based on the battery current value detected by.
  • the inverter 20 is provided between the turning electric motor 21 and the step-up / down converter 100 as described above, and performs operation control on the turning electric motor 21 based on a command from the controller 30. Thereby, when the inverter is operating and controlling the power running of the turning electric motor 21, necessary electric power is supplied from the battery 19 to the turning electric motor 21 through the step-up / down converter 100. Further, when the turning electric motor 21 is performing a regenerative operation, the battery 19 is charged with the electric power generated by the turning electric motor 21 via the step-up / down converter 100.
  • the buck-boost converter 100 is connected to the motor generator 12, the lifting magnet 6, and the turning motor 21 via the DC bus 110 on one side, and connected to the battery 19 on the other side, so that the DC bus voltage value is constant. Control is performed to switch between step-up and step-down so as to be within the range.
  • the motor generator 12, the lifting magnet 6, and the turning motor 21 are supplied with power via the DC bus 110, and the power supply to the DC bus 110 can be generated from any of them. .
  • the step-up / step-down converter 100 switches between the step-up operation and the step-down operation so that the DC bus voltage value falls within a certain range in accordance with the operating state of the motor generator 12, the lifting magnet 6, and the turning electric motor 21. Take control.
  • the DC bus 110 is disposed between the three inverters 18A, 18B, and 20 and the step-up / down converter, and power is transferred between the battery 19, the motor generator 12, the lifting magnet 6, and the turning motor 21. Give and receive.
  • the DC bus voltage detection unit 111 is a voltage detection unit for detecting a DC bus voltage value.
  • the detected DC bus voltage value is input to the controller 30, and is used for switching control between the step-up operation and the step-down operation for keeping the DC bus voltage value within a certain range.
  • the battery voltage detection unit 112 is a voltage detection unit for detecting the voltage value of the battery 19, and is used for detecting the state of charge of the battery.
  • the detected battery voltage value is input to the controller 30 and used for switching control between the step-up / step-down operation of the step-up / step-down converter 100.
  • the battery current detection unit 113 is a current detection unit for detecting the current value of the battery 19. As the battery current value, a current flowing from the battery 19 to the step-up / down converter 100 is detected as a positive value. The detected battery current value is input to the controller 30 and used for improving the responsiveness of the step-up / step-down control of the step-up / step-down converter 100.
  • the turning electric motor 21 is an electric motor capable of both a power running operation and a regenerative operation, and is provided to drive the turning mechanism 2 of the upper turning body 3.
  • the rotational force of the rotational driving force of the turning electric motor 21 is amplified by the speed reducer 24, and the upper turning body 3 is subjected to acceleration / deceleration control to perform rotational motion. Further, due to the inertial rotation of the upper swing body 3, the number of rotations is increased by the speed reducer 24 and transmitted to the turning electric motor 21, and regenerative power can be generated.
  • a motor that is AC driven by the inverter 20 using a PWM (Pulse Width Modulation) control signal is used as the turning electric motor 21.
  • the turning electric motor 21 can be constituted by, for example, a magnet-embedded IPM motor. Thereby, since a larger induced electromotive force can be generated, the electric power generated by the turning electric motor 21 at the time of regeneration can be increased.
  • the resolver 22 is a sensor that detects the rotational position and the rotational angle of the rotating shaft 21A of the turning electric motor 21, and is mechanically connected to the turning electric motor 21 to rotate the rotating shaft 21A before the turning electric motor 21 rotates. By detecting the difference between the position and the rotation position after the left rotation or the right rotation, the rotation angle and the rotation direction of the rotation shaft 21A are detected. By detecting the rotation angle of the rotation shaft 21A of the turning electric motor 21, the rotation angle and the rotation direction of the turning mechanism 2 are derived. Moreover, although the resolver 22 is attached in the example shown in FIG. 2, you may use the inverter control system which does not have a rotation sensor of an electric motor.
  • the mechanical brake 23 is a braking device that generates a mechanical braking force, and mechanically stops the rotating shaft 21A of the turning electric motor 21. This mechanical brake 23 is switched between braking and release by an electromagnetic switch. This switching is performed by the controller 30.
  • the turning speed reducer 24 is a speed reducer that mechanically transmits to the turning mechanism 2 by reducing the rotational speed of the rotating shaft 21A of the turning electric motor 21.
  • the rotational force of the turning electric motor 21 can be increased and transmitted to the turning body as a larger rotational force.
  • the number of rotations generated in the revolving structure can be increased, and more rotational motion can be generated in the turning electric motor 21.
  • the turning mechanism 2 can turn in a state where the mechanical brake 23 of the turning electric motor 21 is released, whereby the upper turning body 3 is turned leftward or rightward.
  • the operating device 26 is an operating device for operating the turning electric motor 21, the lower traveling body 1, the boom 4, the arm 5, and the lifting magnet 6, and is operated by a driver of the hybrid work machine.
  • the operating device 26 converts the hydraulic pressure (primary hydraulic pressure) supplied through the pilot line 25 into a hydraulic pressure (secondary hydraulic pressure) corresponding to the operation amount of the driver and outputs the converted hydraulic pressure.
  • the secondary hydraulic pressure output from the operating device 26 is supplied to the control valve 17 through the hydraulic line 27 and detected by the pressure sensor 29.
  • the control valve 17 is driven through the hydraulic line 27, thereby controlling the hydraulic pressure in the hydraulic motors 1 ⁇ / b> A and 1 ⁇ / b> B, the boom cylinder 7, the arm cylinder 8, and the bucket cylinder 9.
  • the lower traveling body 1, the boom 4, the arm 5, and the lifting magnet 6 are driven.
  • the hydraulic line 27 supplies hydraulic pressures necessary for driving the hydraulic motors 1A and 1B, the boom cylinder 7, the arm cylinder 8 and the bucket cylinder 9 to the control valve.
  • the pressure sensor 29 as the turning operation detecting unit detects the operation amount as a change in the hydraulic pressure in the hydraulic line 28.
  • the pressure sensor 29 outputs an electrical signal indicating the hydraulic pressure in the hydraulic line 28.
  • This electric signal is input to the controller 30 and used for driving control of the turning electric motor 21.
  • a pressure sensor is used as the lever operation detection unit.
  • a sensor that reads an operation amount for turning the turning mechanism 2 input to the operating device 26 as it is may be used as it is.
  • the controller 30 is a control device that performs drive control of the hybrid work machine according to the present embodiment.
  • the controller 30 includes a turning drive control unit 40 and a drive control unit 50, and is configured by an arithmetic processing unit including a CPU (Central Processing Unit) and an internal memory.
  • the controller 30 functions as a control device when the CPU executes a drive control program stored in the internal memory.
  • the turning drive control unit 40 converts a signal representing an operation amount for turning the turning mechanism 2 among the signals input from the pressure sensor 29 into a speed command, and performs drive control of the turning electric motor 21.
  • the drive control unit 50 controls the operation of the motor generator 12 (switching between electric (assist) operation or power generation operation), drive control of the lifting magnet 6 (switching between excitation (on) and demagnetization (off)), and step-up / down pressure It is a control device for performing charge / discharge control of the battery 19 by controlling the drive of the converter 100.
  • the drive control unit 50 includes a state of charge of the battery 19, an operation state of the motor generator 12 (electric (assist) operation or power generation operation), a drive state of the lifting magnet 6 (excitation (on) and demagnetization (off)), and turning Based on the operation state (powering operation or regenerative operation) of the motor 21, the switching operation between the step-up / step-down converter 100 and the step-down operation is performed, whereby the charge / discharge control of the battery 19 is performed.
  • an operation state of the motor generator 12 electric (assist) operation or power generation operation
  • a drive state of the lifting magnet 6 excitation (on) and demagnetization (off)
  • turning Based on the operation state (powering operation or regenerative operation) of the motor 21, the switching operation between the step-up / step-down converter 100 and the step-down operation is performed, whereby the charge / discharge control of the battery 19 is performed.
  • Switching control between the step-up / step-down operation of the buck-boost converter 100 is performed by the DC bus voltage value detected by the DC bus voltage detection unit 111, the battery voltage value detected by the battery voltage detection unit 112, and the battery current detection unit 113. This is performed based on the detected battery current value.
  • FIG. 3 is a diagram schematically showing a circuit configuration of a step-up / down converter used in the hybrid work machine of the present embodiment.
  • the buck-boost converter 100 includes a reactor 101, a boosting IGBT (Insulated Gate Bipolar Transistor) 102A, a step-down IGBT 102B, a power connection terminal 103 for connecting the battery 19, an output terminal 104 for connecting a load 106, and a pair A smoothing capacitor 105 inserted in parallel with the output terminal 104.
  • the output terminal 104 of the buck-boost converter 100 and the load 106 are connected by a DC bus 110.
  • the battery 19 corresponds to the battery 19 in FIG.
  • the load 106 corresponds to the motor generator 12, the lifting magnet 6, and the turning electric motor 21 in FIG. 2.
  • the inverters 18A, 18B, and 20 are omitted for simplification of the drawing.
  • the drive control unit 50 that PWM-drives the step-up IGBT 102A and the step-down IGBT 102B is omitted.
  • Reactor 101 has one end connected to an intermediate point between boosting IGBT 102A and step-down IGBT 102B, and the other end connected to power supply connection terminal 103, so that induced electromotive force generated when ON / OFF of boosting IGBT 102A is generated. It is provided for supplying to the DC bus 110.
  • the step-up IGBT 102A and the step-down IGBT 102B are semiconductor elements that are composed of bipolar transistors in which MOSFETs (Metal Oxide Semiconductors Field Effect Transistors) are incorporated in the gate portion and can perform high-power high-speed switching.
  • MOSFETs Metal Oxide Semiconductors Field Effect Transistors
  • the step-up IGBT 102A and the step-down IGBT 102B are driven by applying a PWM voltage to a gate terminal from a drive control device for a step-up / down converter described later.
  • Diodes 102a and 102b which are rectifier elements, are connected in parallel to the step-up IGBT 102A and the step-down IGBT 102B.
  • the battery 19 may be a chargeable / dischargeable battery so that power can be exchanged with the DC bus 110 via the buck-boost converter 100.
  • 3 shows the battery 19 as a capacitor, the capacitor 19 may be replaced with a capacitor, a chargeable / dischargeable secondary battery, or another form of power source capable of power transfer. Good.
  • the power connection terminal 103 and the output terminal 104 may be terminals that can be connected to the battery 19 and the load 106.
  • a battery voltage detection unit 112 that detects a battery voltage is connected between the pair of power connection terminals 103.
  • a DC bus voltage detector 111 that detects a DC bus voltage is connected between the pair of output terminals 104.
  • the battery voltage detection unit 112 detects the voltage value (vbat_det) of the battery 19, and the DC bus voltage detection unit 111 detects the voltage of the DC bus 110 (hereinafter, DC bus voltage: vdc_det).
  • the load 106 connected to the output terminal 104 is an electric load that can be driven by electric power supply and can generate electric power by regeneration.
  • the load 106 includes an IPM (InteriorInPermanent Magnetic) motor in which a magnet is embedded in a rotor or a lifting magnet. be able to.
  • IPM InteriorInPermanent Magnetic
  • FIG. 3 shows a load 106 for direct current drive, an electric load driven by alternating current through an inverter may be used.
  • the smoothing capacitor 105 is an electric storage element that is inserted between the positive terminal and the negative terminal of the output terminal 104 and can smooth the DC bus voltage.
  • the battery current detection unit 113 may be any detection means capable of detecting the value of the current flowing through the battery 19 and includes a current detection resistor.
  • the reactor current detection unit 108 detects a current value (ibat_det) flowing through the battery 19.
  • the drive control unit 100 that PWM-drives the step-up IGBT 102A and the step-down IGBT 102B is omitted, but the drive control unit 50 can be realized by either an electronic circuit or an arithmetic processing unit.
  • the output torque of the turning electric motor 21 is proportional to the square of the voltage value supplied to the turning electric motor 21. For this reason, if the voltage value supplied to the electric motor 21 for rotation falls, output torque will fall significantly. For this reason, a large amount of current is required to output a torque based on a command from the operating device 26.
  • the battery 130 cannot generate a current exceeding the rated current value due to heat generation. The output is insufficient and the work is interrupted.
  • FIG. 4 is a diagram showing the circuit configuration of the drive control unit 50 of the buck-boost converter 100 used in the hybrid work machine of the present embodiment in a control block.
  • the drive control unit 50 of the step-up / down converter 100 includes a voltage control unit 51 and a step-up / down switching unit 52.
  • the voltage control unit 51 drives the step-up IGBT 102A and the step-down IGBT 102B by performing PI (Proportional Integral) control based on the difference between the target voltage value Vout_ref and the DC bus voltage value Vout output from the output terminal 104.
  • PI Proportional Integral
  • the switching duty for driving the step-up IGBT 102A and the switching duty for driving the step-down IGBT 102B are distinguished from each other by using different signs. For this reason, the switching duty described above is given a positive sign for driving the step-up IGBT 102A and given a negative sign for driving the step-down IGBT 102B.
  • Vout_I is a voltage integral value calculated by the voltage control unit 51
  • Vout_P is a voltage proportional value calculated by the voltage control unit 51
  • the duty_ref is a switching duty calculated by the voltage control unit 51 and is transmitted to the step-up / step-down switching unit 52 as a driving duty duty_ref.
  • the drive duty duty_ref is given a positive sign for the drive duty for boost drive and a negative sign for the drive duty for step-up / step-down drive.
  • the step-up / step-down switching unit 52 determines the power module driven by the driving duty duty_ref as either the boosting PM 53 or the step-down PM 54 based on the sign of the driving duty duty_ref.
  • the boosting PM 53 is a power module incorporating the above-described boosting IGBT 102A, a driving circuit for driving the boosting IGBT 102A, and a self-protection function.
  • the step-down PM 54 is a power module that incorporates the step-down IGBT 102B described above, a drive circuit for driving the step-down IGBT 102B, and a self-protection function.
  • the battery current value Ibat output from the power connection terminal 103 is a current flowing through the reactor.
  • the DC bus voltage value is kept constant between the DC bus 110 and the battery 19 connected to the plurality of inverters (18A, 18B, and 20). Since the step-up / step-down converter 100 is controlled in this manner, the DC bus voltage value is kept substantially constant according to various drive states of the motor generator 12, the lifting magnet 6, and the turning motor 21. Is done.
  • FIG. 5 is a diagram illustrating a circuit configuration of the drive control unit 50 of the buck-boost converter 100 used in the hybrid work machine according to the modification of the first embodiment in a control block.
  • the drive control unit 50 of the buck-boost converter 100 according to the first embodiment includes a current control unit 55 and a control switching unit 56 in addition to the voltage control unit 51 and the buck-boost switching unit 52.
  • the switching duty duty_v calculated by the voltage control unit 51 is set as the first switching duty duty_v.
  • the current control unit 55 performs PI control based on the difference between the current threshold value Ibat_ref and the battery current value Ibat output from the power supply connection terminal 103, thereby driving and controlling the step-up IGBT 102A and the step-down IGBT 102B. 2 Calculate the switching duty duty_i.
  • each of the first switching duty and the second switching duty is given a positive sign for driving the step-up IGBT 102A and given a negative sign for driving the step-down IGBT 102B.
  • the control switching unit 56 selectively switches either the voltage control unit 51 or the current control unit 55 so that the load of the reactor 101 or the load 106 (output terminal 104) is equal to or lower than a predetermined load. Specifically, when the drive control by the voltage control unit 51 is being performed, if the absolute value of the current flowing through the reactor 101 becomes larger than the current threshold, the drive control is switched to the current control unit 55. Further, when the drive control by the current control unit 55 is performed, if the terminal voltage value of the output terminal 104 becomes higher than the target voltage value, the drive control is switched to the voltage control unit 51.
  • Such switching between voltage control and current control is performed depending on whether the control switching unit 56 is connected to plus (+) (voltage control) or connected to minus ( ⁇ ) (current control).
  • Vout_I is a voltage integral value calculated by the voltage control unit 51
  • duty_i is a second switching duty calculated by the current control unit 55
  • Vout_P is a voltage proportional value calculated by the voltage control unit 51
  • Ibat_I is a current integrated value calculated by the current control unit 55
  • duty_v is a first switching duty calculated by the voltage control unit 51
  • Ibat_P is a current proportional value calculated by the current control unit 55.
  • the control switching unit 56 uses one of the first switching duty obtained from the voltage control unit 51 and the second switching duty obtained from the current control unit 55 to drive the boosting PM 53 and the step-down PM 54. Select as duty_ref.
  • the selection is switched to drive control by the current control unit 55 (that is, the second switching duty), and the DC bus voltage value Vout returns to the output target voltage value Vout_ref. This is performed by returning to the drive control unit by the voltage control unit 51 (that is, the first switching duty).
  • the selected drive duty duty_ref is transmitted to the step-up / step-down switching unit 52. Since this driving duty duty_ref is either the first switching duty or the second switching duty, a positive sign is attached to the driving duty for boost driving, and the driving duty for step-up / down driving. Is assigned a negative sign.
  • the step-up / step-down switching unit 52 determines, based on the sign of the driving duty duty_ref transmitted from the control switching unit 56, the power module driven by this driving duty duty_ref as either the step-up PM53 or the step-down PM54.
  • the battery current value Ibat output from the power connection terminal 103 is a current flowing through the reactor.
  • FIG. 6A and 6B are diagrams showing a current limiting method in the present embodiment.
  • FIG. 6A is a characteristic diagram showing the relationship between the allowable battery current value Ibat_lim, the battery current value Ibat, and the current value (DC bus current value) Idc flowing through the DC bus 110.
  • FIG. 6B is a characteristic diagram showing the DC bus current value Idc and the current value flowing through each of the inverters 18A, 18B, and 20.
  • the DC bus current value Idc shown in FIG. 6A is the sum of the currents flowing through the inverters 18A, 18B, and 20 shown in FIG. That is, as shown in FIG. 6B, the DC bus current value Idc is the sum of the current value I1 flowing through the inverter 18A, the current value I2 flowing through the inverter 18B, and the current value I3 flowing through the inverter 20.
  • the following formula (1) is established.
  • Idc I1 + I2 + I3 (1)
  • current limitation may be performed so that the battery current value Ibat is equal to or less than the battery current allowable value Ibat_lim.
  • Such current control can be realized, for example, by setting the current threshold value Ibat_ref to Ibat_lim.
  • Ibat_lim a region exceeding the battery current allowable value Ibat_lim shown in FIG. 6A is excluded from the operation region of the battery current value Ibat.
  • the battery current value Ibat can be expressed by the following equation (2).
  • Ibat 1 / ⁇ ⁇ (vdc_det / vbat_det) ⁇ Idc (2)
  • the battery current allowable value Ibat_lim may be set to a rated current value, for example.
  • the current loss in the buck-boost converter 100 is represented by the product of the battery current value Ibat and the internal resistance of the buck-boost converter 100. According to the present embodiment, since the battery current value Ibat is relatively small by limiting the battery current value Ibat to be equal to or less than the battery current allowable value Ibat_lim, current loss in the buck-boost converter 100 can be reduced. it can.
  • the output of the load 106 is proportional to the supplied voltage and proportional to the current value.
  • the output target voltage value Vout_ref of the DC bus voltage value is set relatively high, even if the battery current value Ibat is limited to the allowable battery current value Ibat_lim, the current loss in the buck-boost converter 100 is reduced. Meanwhile, the output of the load 106 can be increased efficiently.
  • the motor generator 12, the lifting magnet 6, and the turning electric motor 21 are connected to the DC bus 110 via the inverters 18A, 18B, and 20, the working elements are the specifications of the hybrid work machine. It may be changed accordingly.
  • the inverter 18B and the lifting magnet 6 are not included in a hybrid work machine including a bucket instead of the lifting magnet 6.
  • this generator may be connected to the DC bus 110 via an inverter.
  • the voltage fluctuation of the DC bus can be suppressed.
  • the second embodiment described below the DC bus is preferably divided. That is, the second embodiment is a further development of the first embodiment described above.
  • FIG. 7 is a block diagram showing the configuration of the hybrid work machine according to the second embodiment.
  • the mechanical power system is indicated by a double line
  • the high-pressure hydraulic line is indicated by a solid line
  • the pilot line is indicated by a broken line
  • the electric drive / control system is indicated by a solid line.
  • the hybrid work machine according to the second embodiment is different from the hybrid work machine according to the first embodiment in that the DC bus is divided into two (110A and 110B). Accordingly, the connection of the motor generator 12, the lifting magnet 6, and the turning electric motor 21 is also different from that of the first embodiment. Furthermore, the point provided with the generator 200 connected to the boom axis
  • Other configurations are the same as those of the hybrid work machine according to the first embodiment, and the same components are denoted by the same reference numerals and the description thereof is omitted.
  • the motor generator 12, the lifting magnet 6, and the generator 200 are connected to the DC bus 110A via inverters 18A, 18B, and 18C.
  • a turning motor generator 21 is connected to the DC bus 110 ⁇ / b> B via an inverter 20.
  • the generator 200 is connected to the boom shaft of the boom 4 shown in FIG. 1 and is a generator for boom regeneration that generates power when the boom 4 is hydraulically driven by the boom cylinder 7.
  • the generated electric power is supplied as regenerative energy to the DC bus 110A via the inverter 18C.
  • the motor generator 12, the lifting magnet 6, the generator 200, and the turning motor 21 are connected to separate DC buses 110A and 110B. Further, a step-up / down converter 100 is connected between the DC bus 110 ⁇ / b> A and the battery 19.
  • the motor generator 12, the lifting magnet 6, and the generator 200 exchange power with the step-up / down converter 100 via the DC bus 110A, and the turning motor 21 communicates with the DC bus 110B. Send and receive power at.
  • the electric power supply system of the motor generator 12 and the turning electric motor 21 is divided so that the supply voltages of the motor generator 12, the lifting magnet 6, and the generator 200 are constant, and each drive unit is This is for controlling with high accuracy.
  • the DC bus 110A is provided with a DC bus voltage detector 111 for detecting a voltage value of the DC bus (hereinafter referred to as a DC bus voltage value in the second embodiment).
  • the detected DC bus voltage value is input to the controller 30.
  • a battery voltage detector 112 for detecting a battery voltage value is connected between the terminals of the battery 19 on which the buck-boost converter 100 is connected, and between the battery 19 and the buck-boost converter 100, A battery current detector 113 for detecting a battery current value flowing through the battery 19 via the step-up / down converter 100 is provided. The battery voltage value and converter current value detected by these are input to the controller 30.
  • the DC bus voltage detection unit 111 is a voltage detection unit for detecting the voltage value of the DC bus 110A.
  • the detected DC bus voltage value is input to the controller 30, and is used for switching control between the step-up operation and the step-down operation for keeping the DC bus voltage value within a certain range.
  • the battery voltage detection unit 112 is a voltage detection unit for detecting the voltage value of the battery 19, and is used for detecting the state of charge of the battery.
  • the detected battery voltage value is input to the controller 30 and used for switching control between the step-up / step-down operation of the step-up / step-down converter 100.
  • the battery current detection unit 113 is a current detection unit for detecting a current value supplied to the battery 19 through the buck-boost converter 100. As the battery current value, a current flowing from the battery 19 to the step-up / down converter 100 is detected as a positive value. The detected battery current value is input to the controller 30 and used for improving the responsiveness of the step-up / step-down control of the step-up / step-down converter 100.
  • the hybrid work machine according to the present embodiment is a hybrid work machine that uses the engine 11, the motor generator 12, the lifting magnet 6, the generator 200, and the turning electric motor 21 as power sources. These power sources are mounted on the upper swing body 3 shown in FIG. Hereinafter, the configuration of each part different from the first embodiment will be described.
  • the inverter 18A is provided between the motor generator 12 and the buck-boost converter 100, and controls the operation of the motor generator 12 based on a command from the controller 30.
  • the inverter 18A controls the electric (assist) operation of the motor generator 12
  • the necessary power is supplied from the battery 19 and the step-up / down converter 100 to the motor generator 12 via the DC bus 110A.
  • the motor generator 12 is controlling the power generation operation, the electric power generated by the motor generator 12 is supplied to the DC bus 110 ⁇ / b> A and the step-up / down converter 100.
  • the inverter 18 ⁇ / b> C is provided between the generator 200 and the buck-boost converter 100 and performs drive control of the generator 200. Specifically, when the generator 200 performs a regenerative operation by raising or lowering the boom 4, the electric power generated by the generator 200 is supplied to the DC bus 110 ⁇ / b> A and the step-up / down converter 100.
  • the battery 19 is connected to the inverters 18A, 18B, and 18C via the buck-boost converter 100 on one end side (left side in the figure) and connected to the inverter 20 on the other end side (right side in the figure). Therefore, the battery 19 supplies necessary electric power when the motor generator 12 is electrically operated (assist), the lifting magnet 6 is excited, or the turning motor 21 is powered. In addition, when the motor generator 12 performs the power generation operation, the lifting magnet 6 demagnetization, the generator 200 regenerative operation, or the revolving motor 21 regenerative operation, the regenerative power is stored as electric energy.
  • the motor generator 12 Since the motor generator 12, the lifting magnet 6, and the generator 200 are connected to the DC bus 110A via inverters 18A, 18B, and 18C, the electric power generated by the motor generator 12 is lifted.
  • the magnet 6 may be supplied directly. Further, the electric power regenerated by the generator 200 may be supplied to the motor generator 12 or the lifting magnet 6.
  • the charge / discharge control of the battery 19 is based on the charge state of the battery 19, the operation state of the motor generator 12 (electric (assist) operation or power generation operation), the driving state of the lifting magnet 6, and the power generation state of the generator 200. This is done by the buck-boost converter 100. Switching control between the step-up / step-down operation of the step-up / step-down converter 100 is performed by controlling the DC bus voltage value detected by the DC bus voltage detection unit 111, the battery voltage value detected by the battery voltage detection unit 112, and the battery current detection unit 113. Is performed by the controller 30 based on the battery current value detected by.
  • the voltage value of the DC bus 110B is equal to the charging voltage value of the battery 19, and the step-up / step-down control of the step-up / down converter 100 is performed. Is performed regardless of the operating state (powering operation or regenerative operation) of the electric motor 21 for turning.
  • the inverter 20 is directly provided between the turning electric motor 21 and the battery 19, and performs operation control on the turning electric motor 21 based on a command from the controller 30.
  • the inverter controls the power running operation of the turning electric motor 21, necessary electric power is supplied from the battery 19 to the turning electric motor 21. Further, when the regenerative operation of the turning electric motor 21 is controlled, the electric power generated by the turning electric motor 21 is supplied to the DC bus 110B.
  • the buck-boost converter 100 is connected to the motor generator 12, the lifting magnet 6, and the generator 200 via the DC bus 110 ⁇ / b> A and inverters 18 ⁇ / b> A to 18 ⁇ / b> C on one side, and connected to the battery 19 on the other side.
  • the step-up operation or the step-down operation is switched according to the operation state (drive state) of the machine 12 and the lifting magnet 6 and the power generation state of the generator 200.
  • the step-up / down converter 100 is configured so that the voltage value of the DC bus 110 ⁇ / b> A falls within a certain range in accordance with the operation state (drive state) of the motor generator 12 and the lifting magnet 6 and the power generation state of the generator 200. Switches between step-up and step-down operation.
  • an inverter is connected to the DC bus to which a plurality of drive units are connected. Accordingly, as described with reference to FIG. 6, the load demand in each drive unit is high, and the output of the battery is limited with respect to the current flowing through the inverters 18A, 18B, and 20 so that it is excessive. It is possible to prevent charging / discharging of the battery and to prevent abnormal heat generation. Thereby, the lifetime of a battery can be extended.
  • the DC bus is divided into two, and the buck-boost converter 100 is connected to only one DC bus 110A. Since the DC bus is divided into two parts, the power handled by the DC bus is smaller than when all the electrical loads are connected to one DC bus, so that the capacity of the buck-boost converter can be reduced. .
  • the step-up / down converter 100 is connected to one DC bus 110A, and the DC bus voltage value is held substantially constant using the voltage value (battery voltage value) and current value (battery current value) of the battery 19.
  • the voltage value of the DC bus 110B to which the step-up / step-down converter is not connected is compared with the case where the step-up / step-down converter is not connected to the DC bus 110A (that is, the step-up / step-down converter is not connected to either of the two DC buses 110A and 110B). Stable in each stage.
  • the voltage value of the DC bus 110A is held substantially constant in this way, not only the motor generator 12, the lifting magnet 6, and the generator 200 connected to the DC bus 110A, but also a step-up / down converter is provided. Variations in controllability of the turning electric motor 21 connected to the DC bus 110B that is not disposed, damage to the inverter due to overcurrent, and the like can be suppressed, and damage to the battery 19 can be suppressed. .
  • the step-up / step-down converter 100 is provided between the DC bus 110 ⁇ / b> A to which the lifting magnet 6 is connected and the battery 19.
  • the lifting magnet 6 adsorbs a heavy metal article or the like by an electromagnetic attraction force for carrying work. Therefore, the lifting magnet 6 is connected to the DC bus 110A to which the buck-boost converter 100 is connected, thereby providing a stable electromagnetic attraction force. Since it can be generated, controllability variation can be suppressed and reliability can be improved.
  • the motor generator 12, the lifting magnet 6, and the generator 200 are connected to the DC bus 110A via the inverters 18A, 18B, and 18C, and the turning electric motor is connected to the DC bus 110B via the inverter 20. 21 is connected, but the work element may be changed according to the specifications of the hybrid work machine.
  • the inverter 18B and the lifting magnet 6 are not included in a hybrid work machine having a bucket instead of the lifting magnet 6.
  • the generator may be connected to the DC bus 110A via an inverter.
  • step-up / step-down switching control of the step-up / down converter 100 may be performed together with the current control, as in the modification of the first embodiment (FIGS. 5 and 6A, 6B).
  • FIG. 8 is a block diagram showing the configuration of the hybrid work machine according to the third embodiment.
  • the mechanical power system is indicated by a double line
  • the high-pressure hydraulic line is indicated by a solid line
  • the pilot line is indicated by a broken line
  • the electric drive / control system is indicated by a solid line.
  • the hybrid work machine of the third embodiment is the same as the hybrid work machine of the second embodiment in that the DC bus is divided into two (110A and 110B), but the lifting magnet 6,
  • the connection between the generator 200 and the buck-boost converter 100 is different from that of the second embodiment. Accordingly, the connection of the DC bus voltage detection unit 111, the battery voltage detection unit 112, and the battery current detection unit 113 is different from that of the second embodiment. Since other configurations are the same as those of the first embodiment and the hybrid work machine of 2, the same components are denoted by the same reference numerals, and description thereof is omitted.
  • the motor generator 12 is connected to the DC bus 110A via an inverter 18A. Further, the turning motor generator 21, the generator 200, and the lifting magnet 6 are connected to the DC bus 110B through inverters 20A, 20B, and 20C.
  • the motor generator 12, the turning electric motor 21, the generator 200, and the lifting magnet 6 are connected to separate DC buses 110A and 110B, and
  • the buck-boost converter 100 is connected between the DC bus 110B and the battery 19.
  • the motor generator 12 exchanges power with the step-up / down converter 100 via the DC bus 110A, and the turning motor 21, the generator 200, and the lifting magnet 6 pass through the DC bus 110B. Power is exchanged with the buck-boost converter 100B.
  • the power supply system of the motor generator 12 and the turning motor 21 is divided into the rated voltage values and ratings of the motor generator 12, the turning motor 21, the generator 200, and the lifting magnet 6. This is because the current values are greatly different, so that separate power supply is possible.
  • the DC bus 110B is provided with a DC bus voltage detection unit 111 for detecting a voltage value of the DC bus (hereinafter referred to as a DC bus voltage value in the third embodiment).
  • the detected DC bus voltage value is input to the controller 30.
  • a battery voltage detector 112 for detecting a battery voltage value is connected between the terminals of the battery 19 on which the step-up / step-down converter 100 is connected, and between the battery 19 and the step-up / down converter 100. Is provided with a battery current detector 113 for detecting a battery current value flowing through the battery 19 via the step-up / step-down converter 100. The battery voltage value and converter current value detected by these are input to the controller 30.
  • the DC bus voltage detection unit 111 is a voltage detection unit for detecting the voltage value of the DC bus 110B.
  • the detected DC bus voltage value is input to the controller 30, and is used for switching control between the step-up operation and the step-down operation for keeping the DC bus voltage value within a certain range.
  • the battery voltage detection unit 112 is a voltage detection unit for detecting the voltage value of the battery 19, and is used for detecting the state of charge of the battery.
  • the detected battery voltage value is input to the controller 30 and used for switching control between the step-up / step-down operation of the step-up / step-down converter 100.
  • the battery current detection unit 113 is a current detection unit for detecting a current value supplied to the battery 19 through the buck-boost converter 100. As the battery current value, a current flowing from the battery 19 to the step-up / down converter 100 is detected as a positive value. The detected battery current value is input to the controller 30 and used for switching control between the step-up / step-down operation of the step-up / down converter 100.
  • the hybrid work machine according to the present embodiment is a hybrid building work machine that uses the engine 11, the motor generator 12, the lifting magnet 6, the generator 200, and the turning electric motor 21 as power sources. These power sources are mounted on the upper swing body 3 shown in FIG. Hereinafter, the configuration of each part different from the first embodiment will be described.
  • the inverter 18A is provided between the motor generator 12 and the DC bus 110A, and controls the operation of the motor generator 12 based on a command from the controller 30. Thereby, when the inverter 18A controls the electric (assist) operation of the motor generator 12, necessary electric power is supplied from the battery 19 to the motor generator 12 via the DC bus 110A. Further, when controlling the power generation operation of the motor generator 12, the power generated by the motor generator 12 is supplied to the DC bus 110A.
  • the battery 19 is connected to the inverter 18A on one end side (left side in the figure) and connected to the inverters 20A, 20B, and 20C via the buck-boost converter 100 on the other end side (right side in the figure). Therefore, the battery 19 supplies necessary electric power when the motor generator 12 is electrically operated (assist), the lifting magnet 6 is excited, or the turning motor 21 is powered. In addition, when the motor generator 12 performs the power generation operation, the lifting magnet 6 demagnetization, the generator 200 regenerative operation, or the revolving motor 21 regenerative operation, the regenerative power is stored as electric energy.
  • the lifting magnet 6 and the generator 200 are connected to the DC bus 110B via inverters 20A, 20B and 20C, the electric power generated by the turning electric motor 21 is lifted. There are cases where the magnet 6 is directly supplied, electric power regenerated by the lifting magnet 6 is supplied to the turning electric motor 21, and electric power regenerated by the generator 200 is further supplied by the electric motor 21 for turning. In some cases, the lifting magnet 6 may be supplied.
  • the charge / discharge control of the battery 19 is based on the charge state of the battery 19, the operation state (powering operation or regenerative operation) of the turning electric motor 21, the driving state of the lifting magnet 6, and the power generation state of the generator 200.
  • Switching control between the step-up / step-down operation of the step-up / step-down converter 100 is performed by controlling the DC bus voltage value detected by the DC bus voltage detection unit 111, the battery voltage value detected by the battery voltage detection unit 112, and the battery current detection unit 113. Is performed by the controller 30 based on the converter current value detected by.
  • the voltage value of the DC bus 110A is equal to the charge voltage value of the battery 19, and the step-up / step-down control of the step-up / down converter 100 is performed. Is performed regardless of the operation state of the motor generator 12 (electric operation or power generation operation).
  • the inverter 20A is provided between the turning electric motor 21 and the DC bus 110B, and performs operation control on the turning electric motor 21 based on a command from the controller 30.
  • the inverter controls the power running operation of the turning electric motor 21, the necessary electric power is supplied from the battery 19 to the turning electric motor 21 via the DC bus 110 ⁇ / b> B. Further, when controlling the regenerative operation of the turning electric motor 21, the electric power generated by the turning electric motor 21 is supplied to the DC bus 110 ⁇ / b> B and the step-up / down converter 100.
  • the inverter 20B is provided between the lifting magnet 6 and the DC bus 110B.
  • the electromagnet When the electromagnet is turned on based on a command from the controller 30, the required power is supplied to the lifting magnet 6 from the DC bus 110B. .
  • the electromagnet When the electromagnet is turned off, the regenerated electric power is supplied to the DC bus 110B and the step-up / down converter 100.
  • the inverter 20C is provided between the generator 200 and the DC bus 110B and performs drive control of the generator 200. Specifically, when the generator 200 performs a regenerative operation by raising or lowering the boom 4, the electric power generated by the generator 200 is supplied to the DC bus 110 ⁇ / b> B and the step-up / down converter 100.
  • the buck-boost converter 100 has one side connected to the turning electric motor 21, the lifting magnet 6, and the generator 200 via the DC bus 110B and the inverters 20A to 20C, and the other side connected to the battery 19 for turning.
  • the step-up operation or the step-down operation is switched according to the operation state (drive state) of the electric motor 21 and the lifting magnet 6 and the power generation state of the generator 200.
  • the turning electric motor 21 When the turning electric motor 21 performs a power running operation, it is necessary to supply electric power to the turning electric motor 21 via the inverter 20A, so the DC bus voltage value is increased. Also, when driving the lifting magnet 6, it is necessary to supply electric power to the lifting magnet 6 via the inverter 20 ⁇ / b> B, so that the DC bus voltage value is increased according to the rotational speed of the motor generator 12.
  • the turning electric motor 21 performs the regenerative operation, it is necessary to charge the battery 19 with the generated electric power via the inverter 20A, so the DC bus voltage value is lowered. Even when the lifting magnet 6 is demagnetized and regenerative power is obtained, it is necessary to charge the battery 19 via the inverter 20B, so the DC bus voltage value is lowered. Furthermore, even when power generation is performed by the power generator 200, the battery 19 needs to be charged with the generated power via the inverter 20C, so the DC bus voltage value is reduced.
  • the buck-boost converter 100 is configured so that the voltage value of the DC bus 110B falls within a certain range according to the operating state (driving state) of the turning electric motor 21 and the lifting magnet 6 and the power generation state of the generator 200. Switches between step-up and step-down operation.
  • an inverter is connected to the DC bus to which a plurality of drive units are connected. Accordingly, as described with reference to FIG. 6, the load requirement in each drive unit is high, and the output of the battery is limited with respect to the current that is supplied to the inverters 18A, 18B, 20. Charging / discharging can be prevented and abnormal heat generation can be prevented. Thereby, the lifetime of a battery can be extended.
  • the hybrid work machine when the DC bus is divided into two, all electric loads are connected to one DC bus as in the first embodiment. Since the electric power handled by the DC bus becomes smaller than that, the capacity of the buck-boost converter can be reduced.
  • the step-up / down converter 100 is connected to one DC bus 110B, and the DC bus voltage value is held substantially constant using the voltage value (battery voltage value) and current value (battery current value) of the battery 19.
  • the voltage value of the DC bus 110A to which the step-up / step-down converter is not connected is compared with the case where the step-up / step-down converter is not connected to the DC bus 110B (that is, the step-up / step-down converter is not connected to either of the two DC buses 110A and 110B). Stable in each stage.
  • the DC bus 110A not provided with the step-up / down converter is connected to the motor generator 12 having a relatively small voltage fluctuation via the inverter 18A, and to the DC bus 110A to which the turning motor generator 21 having a large voltage fluctuation is connected.
  • the voltage value of the bus 110B is held substantially constant by the step-up / down converter 100, so that not only the turning electric motor 21, the lifting magnet 6 and the generator 200 connected to the DC bus 110B but also the step-up / down converter is arranged. Variations in controllability of the motor generator 12 connected to the DC bus 110A that is not provided, damage to the inverter due to overcurrent, and the like can be suppressed, and damage to the battery 19 can be suppressed.
  • control part of the drive control apparatus of the buck-boost converter used for the hybrid type work machine of this embodiment can be realized by either an electronic circuit or an arithmetic processing unit.
  • the motor generator 12 is connected to the DC bus 110A via the inverter 18A, and the turning electric motor 21, the lifting magnet 6, and the power generator are connected to the DC bus 110B via the inverters 20A, 20B, and 20C.
  • the work elements may be changed according to the specifications of the hybrid work machine.
  • the inverter 20B and the lifting magnet 6 are not included in a hybrid work machine having a bucket instead of the lifting magnet 6.
  • the generator may be connected to the DC bus 110B via an inverter.
  • step-up / step-down switching control of the step-up / down converter 100 may be performed together with the current control, similarly to the modification of the first embodiment (FIGS. 5 and 6).
  • control method is not limited to the PI control method, and hysteresis control, robust control, adaptive control, proportional control, integral control, gain scheduling control, Alternatively, sliding mode control may be used.
  • FIG. 9 is a block diagram showing a configuration of a hybrid work machine according to the fourth embodiment of the present invention. 9, parts that are the same as the parts shown in FIG. 7 are given the same reference numerals, and descriptions thereof will be omitted as appropriate.
  • the mechanical power system is indicated by a double line
  • the high-pressure hydraulic line is indicated by a solid line
  • the pilot line is indicated by a broken line
  • the electric drive / control system is indicated by a solid line.
  • the motor generator 12 and the lifting magnet 6 for assisting the engine 11, the electric motor 21 for turning, and the generator 30 for boom regeneration are separate DC buses 110A. 110B, and separate DC-boost converters 100A and 100B are connected between the DC buses 110A and 110B and the battery 19.
  • the motor generator 12 and the lifting magnet 6 exchange power with the step-up / down converter 100A via the DC bus 110A, and the turning motor 21 and the generator 30 move up and down via the DC bus 110B. Power is exchanged with pressure converter 100B.
  • the power supply system of the motor generator 12 and the turning motor 21 is divided because the rated voltage value and the rated current value of the motor generator 12 and the turning motor 21 are greatly different, and thus the different power supply systems. This is to enable supply.
  • the rated voltage of the motor generator 12 is 360 (V)
  • the rated voltage of the turning motor 21 is 300 to 400 (V). Therefore, the capacities of the buck-boost converter 100B and the DC bus 110B are set to capacities that can withstand higher voltages and larger currents than the buck-boost converter 100A and the DC bus 110A.
  • DC bus voltage detectors 111A and 111B for detecting the voltage values of the respective DC buses are arranged on the DC buses 110A and 110B, respectively.
  • the detected DC bus voltage value is input to the controller 120.
  • Battery voltage detectors 112A and 112B for detecting a battery voltage value are connected to the battery 19, and a converter current flowing in the buck-boost converters 100A and 100B is interposed between the battery 19 and the buck-boost converters 100A and 100B.
  • Battery current detectors 113A and 113B for detecting values are provided. The battery voltage value and converter current value detected by these are input to the controller 120. The battery current value is given as the sum of the converter current values detected by battery current detectors 113A and 113B.
  • the DC bus voltage detection unit 111A is a voltage detection unit for detecting the voltage value of the DC bus 110A.
  • the detected DC bus voltage value is input to the controller 120, and is used for switching control between the step-up operation and the step-down operation for keeping the DC bus voltage value within a certain range.
  • the DC bus voltage detection unit 111B is a voltage detection unit for detecting the voltage value of the DC bus 110B.
  • the detected DC bus voltage value is input to the controller 120, and is used for switching control between the step-up operation and the step-down operation for keeping the DC bus voltage value within a certain range.
  • Battery voltage detectors 112A and 112B are voltage detectors for detecting the voltage value of the battery 19, and are used for detecting the state of charge of the battery. The detected battery voltage value is input to the controller 120 and used for switching control between the step-up / step-down operation of the step-up / step-down converters 100A and 100B.
  • the battery current detection unit 113A is a current detection unit for detecting the converter current value of the step-up / down converter 100A.
  • the converter current value is detected as a positive value of the current flowing from the battery 19 to the buck-boost converter 100A.
  • the detected converter current value is input to the controller 120 and used for switching control between the step-up / step-down converter 100A and the step-up / step-down operation.
  • Battery current detector 113B is a current detector for detecting the converter current value of buck-boost converter 100B.
  • the converter current value is detected as a positive value of the current flowing from the battery 19 to the buck-boost converter 100B.
  • a resolver 22, a mechanical brake 23, and a turning speed reducer 24 are connected to the rotating shaft 21A of the turning electric motor 21.
  • An operation device 26 is connected to the pilot pump 15 through a pilot line 25.
  • the control device 17 and a pressure sensor 29 as a lever operation detection unit are connected to the operation device 26 via hydraulic lines 27 and 28, respectively.
  • the pressure sensor 29 is connected to a controller 120 that performs drive control of the electric system of the hybrid work machine according to the present embodiment.
  • the hybrid work machine according to the present embodiment is a hybrid work machine that uses the engine 11, the motor generator 12, and the turning electric motor 21 as power sources. These power sources are mounted on the upper swing body 3. Hereinafter, each part in an electric power supply system is demonstrated.
  • the inverter 18A is provided between the motor generator 12 and the buck-boost converter 100A as described above, and controls the operation of the motor generator 12 based on a command from the controller 120.
  • the inverter 18A controls the electric (assist) operation of the motor generator 12
  • the necessary power is supplied from the battery 19 and the step-up / down converter 100A to the motor generator 12 via the DC bus 110A.
  • the electric power generated by the motor generator 12 is supplied to the DC bus 110A and the step-up / down converter 100A.
  • the inverter 18B is provided between the lifting magnet 6 and the buck-boost converter 100A, and supplies the requested power to the lifting magnet 6 from the DC bus 110A when the electromagnet is turned on based on a command from the controller 120. To do. When the electromagnet is turned off, the regenerated electric power is supplied to the DC bus 100A.
  • the battery 19 is connected to the inverters 18A and 18B via the buck-boost converter 100A, and is connected to the inverters 20A and 20B via the buck-boost converter 100B. For this reason, the battery 19 is operated when at least one of the electric (assist) operation of the motor generator 12 and the power running operation of the turning electric motor 21 is performed, or when the lifting magnet 6 is driven. Supply the necessary power. Further, when the motor generator 12 is performing a power generation operation, when regenerative power is generated when the lifting magnet 6 is turned off, when the turning motor 21 is performing a regenerative operation, or When 30 is performing the power generation operation, it is a power source for accumulating regenerative power generated by the power generation operation or the regenerative operation as electric energy.
  • the charge / discharge control of the battery 19 includes the charge state of the battery 19, the operation state of the motor generator 12 (electric (assist) operation or power generation operation), the power generation state of the generator 30, the drive state of the lifting magnet 6, and This is performed by the step-up / down converters 100A and 100B based on the operation state (powering operation or regenerative operation) of the electric motor 21.
  • the switching control between the step-up / step-down converters 100A and 100B is performed by a DC bus voltage value detected by the DC bus voltage detection units 111A and 111B, a battery voltage value detected by the battery voltage detection units 112A and 112B, And the controller 120 based on the converter current value detected by the battery current detectors 113A and 113B.
  • the inverter 20A is provided between the turning electric motor 21 and the step-up / down converter 100B as described above, and performs operation control on the turning electric motor 21 based on a command from the controller 120. Thereby, when the inverter is controlling the power running operation of the turning electric motor 21, necessary electric power is supplied from the battery 19 to the turning electric motor 21 via the step-up / down converter 100 ⁇ / b> B. Further, when the regenerative operation of the turning electric motor 21 is controlled, the electric power generated by the turning electric motor 21 is supplied to the DC bus 110B.
  • the inverter 20B is provided between the generator 30 and the buck-boost converter 100A, and performs drive control of the generator 30. Since the turning electric motor 21 is connected to the DC bus 110B via the inverter 20A, the electric power generated by the generator 30 may be directly supplied to the turning electric motor 21 in some cases.
  • the buck-boost converter 100A has one side connected to the motor generator 12 and the lifting magnet 6 via the DC bus 110A and inverters 18A and 18B, and the other side connected to the battery 19, and the motor generator 12 and the lifting magnet.
  • the step-up operation or the step-down operation is switched according to the operation state (drive state) 6.
  • the step-up / step-down converter 100A performs a step-up operation or a step-down operation so that the voltage value of the DC bus 110A falls within a certain range according to the operation state (drive state) of the motor generator 12 and the lifting magnet 6. Switch.
  • the generator 30 when the generator 30 generates power, the generated power needs to be charged to the battery 19 via the inverter 20B, so the DC bus voltage value is reduced.
  • the motor generator 12 is also rotated at a constant rotational speed, whereby the voltage value of the inverter 18A is controlled to be constant. Therefore, the motor generator 12 and the inverter 18A are connected to the DC bus 110A with little voltage fluctuation.
  • the inverter 18B that controls the lifting magnet 6 is also connected to the DC bus 110A.
  • the step-up / down converter 100A is configured so that the voltage value detected by the DC bus voltage detection unit 111A in the DC bus 110A is constant. The voltage values of the voltage detector 111A and the battery voltage detectors 112A and 112B are compared, and the power supply to the battery 19 is controlled.
  • the rotation speed of the turning electric motor 21 is larger than that of the motor generator 12 because it changes based on the lever operation amount of the operator corresponding to the work content.
  • the voltage value of the DC bus 110 ⁇ / b> B to be supplied to the turning electric motor 21 varies greatly according to the rotation speed of the turning electric motor 21. Therefore, when the turning electric motor 21 is connected to the DC bus 110A controlled to a constant voltage value, when the rotation speed of the turning electric motor 21 is high, the voltage value of the DC bus 110A is not sufficiently high. It becomes impossible to perform the turning operation. Moreover, if high voltage regenerative power is supplied from the swing motor 21 to the DC bus 110A, the inverter 18A is damaged.
  • the DC bus 110B and the buck-boost converter 100B are provided separately from the DC bus 110A and the buck-boost converter 100A that control the voltage value to be constant, so that each electric motor can be driven efficiently.
  • the buck-boost converter 100B has one side connected to the turning electric motor 21 via the DC bus 110B and the other side connected to the battery 19.
  • the step-up / step-down converter 100 ⁇ / b> B switches the step-up operation or the step-down operation so that the voltage value of the DC bus 110 ⁇ / b> B corresponds to the turning speed detected by the resolver 22 connected to the turning electric motor 21.
  • the step-up / down converter 100B sets the voltage value of the DC bus 110B to a value higher than the voltage value of the DC bus 110A. This is due to the difference in usage of the motor generator 12 and the turning electric motor 21.
  • the step-up / step-down converter 100B variably controls the voltage value of the DC bus 110B because the rotational speed of the turning motor 21 is considerably larger than that of the motor generator 12 during driving. This is because the voltage value of the DC bus 110B greatly fluctuates when performing regenerative operation. Note that switching of the step-up / step-down operation is performed by the controller 120.
  • the step-up / step-down converter 100B has a voltage between the DC bus voltage detection unit 111B and the battery voltage detection unit 112B so that the voltage detection value of the DC bus voltage detection unit 111B becomes a voltage value corresponding to the rotation speed at a high speed. The values are compared, and the power supply to the battery 19 is controlled.
  • the step-up / down converter 100B is configured so that the voltage detection value of the DC bus voltage detection unit 111B becomes a voltage value corresponding to the low-speed rotation speed.
  • the power supply to the battery 19 is controlled.
  • the voltage value of the DC bus 110B changes based on the turning speed detected by the resolver 22, but the voltage value of the DC bus 110B is changed based on the speed command value corresponding to the lever operation amount of the driver. It may be changed.
  • bypass circuit is connected in parallel to the buck-boost converter 100B.
  • This bypass circuit is a circuit for short-circuiting between the DC bus 110B and the battery 19 when the buck-boost converter 100B is abnormal, and details thereof will be described later with reference to FIG.
  • the DC bus voltage detection unit 111A and the DC bus voltage detection unit 111B are voltage detection units for detecting the voltage values of the DC bus 110A and the DC bus 110B.
  • 112B is a voltage detection unit for detecting the voltage value of the battery 19, and the battery current detection unit 113A and the battery current detection unit 113B detect the converter current values of the step-up / down converter 100A and the step-up / down converter 100B. It is a current detection unit.
  • the converter current value is detected as a positive value of the current flowing from the battery 19 to the buck-boost converters 100A and 100B.
  • FIG. 10 is a circuit diagram schematically showing the circuit configuration of the buck-boost converter used in the hybrid work machine of the present embodiment. Since the configuration of the step-up / step-down converters 100A and 100B is the same, the description will focus on the step-up / step-down converter 100A.
  • the step-up / down converter 100A includes a reactor 101, a boosting IGBT (Insulated Gate Bipolar Transistor) 102A, a step-down IGBT 102B, a power connection terminal 103A for connecting the battery 19, an output terminal 104A for connecting a load, and a pair of A smoothing capacitor 105 inserted in parallel with the output terminal 104A is provided.
  • the output terminal 104A of the buck-boost converter 100A and the load are connected by a DC bus 110A.
  • the loads connected to the DC bus 110A are the motor generator 12, the generator 30, and the lifting magnet 6 connected in parallel to each other.
  • the inverters 18A to 18B are omitted for simplification of the drawing. Further, the drive control unit 120A that PWM-drives the step-up IGBT 102A and the step-down IGBT 102B is omitted.
  • the buck-boost converter 100A has a self-diagnosis function, and this self-diagnosis function is realized by the battery current detection unit 113A of the buck-boost converter 100A monitoring the current value.
  • This self-diagnosis function may be realized by the step-up / down converter 100A monitoring the detection value of the battery current detection unit 113A.
  • Reactor 101 has one end connected to an intermediate point between boosting IGBT 102A and step-down IGBT 102B, and the other end connected to power supply connection terminal 103A.
  • the induced electromotive force generated when boosting IGBT 102A is turned on / off is generated. It is provided to supply to the DC bus 110A.
  • the step-up IGBT 102A and the step-down IGBT 102B are semiconductor elements that are composed of bipolar transistors in which MOSFETs (Metal Oxide Semiconductors Field Effect Transistors) are incorporated in the gate portion and can perform high-power high-speed switching.
  • MOSFETs Metal Oxide Semiconductors Field Effect Transistors
  • the step-up IGBT 102A and the step-down IGBT 102B are driven by applying a PWM voltage from the drive control unit 120A to the gate terminal.
  • Diodes 102a and 102b, which are rectifier elements, are connected in parallel to the step-up IGBT 102A and the step-down IGBT 102B.
  • the battery 19 may be a chargeable / dischargeable battery so that power can be exchanged with the DC bus 110A via the buck-boost converter 100A.
  • 3 shows the battery 19 as a capacitor, the capacitor 19 may be replaced with a capacitor, a chargeable / dischargeable secondary battery, or another form of power source capable of power transfer. Good.
  • the power connection terminal 103A may be a terminal to which the battery 19 can be connected.
  • the output terminal 104A may be any terminal to which the DC bus 110A can be connected.
  • the battery 19 is connected to battery voltage detectors 112A and 112B that detect the battery voltage.
  • a DC bus voltage detection unit 111A that detects a DC bus voltage is connected to the DC bus 110A.
  • the battery voltage detectors 112A and 112B detect the voltage value of the battery 19, and the DC bus voltage detector 111A detects the voltage value of the DC bus 110A.
  • the smoothing capacitor 105 may be any storage element that is inserted between the positive terminal and the negative terminal of the output terminal 104A and can smooth the DC bus voltage of the DC bus 110A.
  • the battery current detection unit 113A may be any detection means capable of detecting the converter current value of the buck-boost converter 100A, and includes a current detection resistor.
  • the step-up / down converter 100B includes a reactor 101, a step-up IGBT (Insulated Gate Bipolar Transistor) 102A, a step-down IGBT 102B, a power connection terminal 103B for connecting the battery 19, an output terminal 104B for connecting a load, and a pair of A smoothing capacitor 105 inserted in parallel with the output terminal 104B is provided.
  • the output terminal 104B of the buck-boost converter 100B and the load are connected by a DC bus 110B.
  • the load connected to the DC bus 110 ⁇ / b> B is the turning electric motor 21.
  • the inverter 20A (see FIG. 9) is omitted for simplification of the drawing.
  • the buck-boost converter 100B has a self-diagnosis function, and this self-diagnosis function is realized by the battery current detector 113B of the buck-boost converter 100B monitoring the current value.
  • This self-diagnosis function may be realized by monitoring the detection value of the battery current detection unit 113B by the buck-boost converter 100B.
  • Reactor 101 has one end connected to an intermediate point between boosting IGBT 102A and step-down IGBT 102B, and the other end connected to power supply connection terminal 103B. Reactor 101 generates induced electromotive force generated when ON / OFF of boosting IGBT 102A is generated. It is provided to supply to the DC bus 110B.
  • the configuration of the step-up IGBT 102A and the step-down IGBT 102B is the same as that of the step-up / down converter 100A.
  • the battery 19 exchanges power with the DC bus 110B via the step-up / down converter 100B.
  • the power connection terminal 103B may be any terminal to which the battery 19 can be connected.
  • the output terminal 104B may be a terminal to which the DC bus 110B can be connected.
  • a DC bus voltage detection unit 111B that detects a DC bus voltage is connected to the DC bus 110B.
  • the DC bus voltage detection unit 111B detects the voltage value of the DC bus 110B.
  • the smoothing capacitor 105 may be any storage element that is inserted between the positive terminal and the negative terminal of the output terminal 104B and can smooth the DC bus voltage of the DC bus 110B.
  • the battery current detection unit 113B may be any detection means capable of detecting the converter current value of the buck-boost converter 100B, and includes a resistor for current detection.
  • bypass circuit 130 is connected in parallel to the buck-boost converter 100B.
  • the bypass circuit 130 is a circuit for short-circuiting the DC bus 110B and the battery 19 when the buck-boost converter 100B is abnormal, and includes relays 130A and 130B that are controlled to open and close by the drive control unit 120A. The opening / closing control of the bypass circuit 130 will be described later.
  • step-up / down converter 100A when boosting the DC bus 110A, a PWM voltage is applied to the gate terminal of the boosting IGBT 102A, and the boosting IGBT 102A is connected via the diode 102b connected in parallel to the step-down IGBT 102B.
  • the induced electromotive force generated in the reactor 101 when the power is turned on / off is supplied to the DC bus 110A.
  • the DC bus 110A is boosted.
  • the relationship between the step-up / down converter 100B and the DC bus 110B are the relationship between the step-up / down converter 100B and the DC bus 110B.
  • FIG. 11 is a flowchart showing a processing procedure of drive control of the bypass circuit 130 performed by the step-up / down converter 100A of the hybrid work machine of this embodiment. This process is executed by the control unit of the buck-boost converter 100A.
  • the step-up / down converter 100A determines whether or not an abnormal signal is received from the step-up / down converter 100B (step S1). This process is repeatedly executed until an abnormal signal is received from the step-down converter 100B that performs abnormality determination using the self-diagnosis function.
  • step-up / down converter 100A When receiving the abnormal signal, the step-up / down converter 100A closes the relays 130A and 130B to turn on the bypass circuit 130 (step S2). Thereby, the buck-boost converter 100B is bypassed, and the DC bus 110B is directly connected to the battery 19.
  • the buck-boost converter 100A sets the current limit value of the buck-boost converter 100A to the current limit value of the buck-boost converter 100B, and boosts the voltage to control the DC bus voltage values of both the DC buses 110A and 110B to be constant. Alternatively, a step-down operation is performed. Thereby, even if abnormality occurs in the buck-boost converter 100B and it cannot be used temporarily, the voltage of the battery 19 can be made constant by the system (inverter 18A or the like) on the DC bus 110A side. Thus, the DC bus 110B can maintain a voltage equivalent to the battery voltage, and can control the inverter 20A to drive the turning electric motor 21 until a predetermined operation is completed.
  • the buck-boost converter 100B determines abnormality.
  • an abnormality signal may be reported to the drive control unit 120A that is the host control unit, and the drive control unit 120A may perform drive control of the bypass circuit 130.
  • the motor generator 12 and the lifting magnet 6 for assisting the engine 11, the electric motor 21 for turning and the boom regenerator for driving the turning mechanism 2 are used. Since the generator 30 is connected to separate DC buses 110A and 110B, electric power is supplied to the motor generator 12, the lifting magnet 6 and the turning motor 21 via separate DC buses 110A and 100B. Is done.
  • the voltage value of the DC bus 110B can be set higher than the voltage value of the DC bus 110A in accordance with the difference in the rated output of the motor generator 12 with the rated output and the motor 21 for turning. It is possible to provide a hybrid work machine using a step-up / step-down converter that can efficiently drive each electric motor while suppressing damage or breakage.
  • the DC bus and the step-up / down converter are divided into a plurality of parts, even if one of the step-up / step-down converters is damaged, all the work can be continued for a predetermined time with the other converter without immediately being out of control. .
  • the lifting magnet 6 and the turning electric motor 21 are connected by the common DC bus 110B, even if the buck-boost converter 100B is damaged, the current supply to the lifting magnet 6 can be continued immediately.
  • the hybrid work machine to which the present invention is applied may be a hybrid construction machine.
  • the hybrid work machine to which the present invention is applied may be a work machine of a form other than a construction machine, and may be, for example, a hybrid transporting and handling machine (crane or forklift).
  • the engine 11 and the motor generator 12 shown in FIG. 2 are used as the crane engine and the assist motor generator, and the turning electric motor 21 shown in FIG. 2 is used to raise or lower parts, cargo, etc. in the crane handling operation.
  • the power source for raising or lowering parts, cargo, etc. performs the power running operation (during winding) and regenerative operation (during withdrawal) accompanying the winding or drawing of the wire. It can be implemented in the same way as a machine.
  • the engine 11 and motor generator 12 shown in FIG. 2 are used as a forklift engine and an assist motor generator, and the turning electric motor 21 shown in FIG. Alternatively, it may be used as a power source for lowering.
  • the power source for raising or lowering the fork performs a power running operation (at the time of winding) and a regenerative operation (at the time of pulling out) in accordance with the up and down movement, so that it can be implemented in the same manner as the above-described hybrid type work machine. it can.
  • the present invention is applicable to a hybrid work machine having a power storage unit for supplying power.

Abstract

A hybrid working machine comprises a plurality of inverters for driving a plurality of electric work elements, an energy storage device for transferring power to from the plurality of inverters, a DC bus connected with the plurality of inverters, and a step-up/down converter arranged between the DC bus and the energy storage device.  The plurality of inverters include a first inverter and a second inverter.  The DC bus includes a first DC bus to which the first inverter is connected, and a second DC bus to which the second inverter is connected.  The step-up/down converter is arranged between the first DC bus and the energy storage device.

Description

ハイブリッド型作業機械Hybrid work machine
 本発明は、電力供給用の蓄電部にDCバスが設けられたハイブリッド型作業機械に関する。 The present invention relates to a hybrid work machine in which a DC bus is provided in a power storage unit for supplying power.
 従来、駆動機構の一部を電動化したハイブリッド型作業機械が提案されている。このようなハイブリッド型作業機械の一例としてのハイブリッド型パワーショベルがある。ハイブリッド型パワーショベルは、ブーム、アーム、及びバケット等の作業要素を油圧駆動するための油圧ポンプを備えている。この油圧ポンプを駆動するためのエンジンに増速機を介して電動発電機が接続され、電動発電機でエンジンの駆動をアシストするとともに、発電によって得る電力をバッテリに充電する。 Conventionally, a hybrid work machine in which a part of the drive mechanism is motorized has been proposed. There is a hybrid excavator as an example of such a hybrid work machine. The hybrid power shovel includes a hydraulic pump for hydraulically driving work elements such as a boom, an arm, and a bucket. A motor generator is connected to the engine for driving the hydraulic pump via a speed increaser, and the motor generator assists the driving of the engine and charges the battery with electric power obtained by power generation.
 上部旋回体を旋回させるための旋回機構の動力源として油圧モータに加えて電動機を備え、旋回機構の加速時に電動機で油圧モータの駆動をアシストし、旋回機構の減速時に電動機で回生運転を行い、発電された電力をバッテリに充電する油圧ショベルが提案されている(例えば、特許文献1参照。)。 In addition to the hydraulic motor as a power source of the turning mechanism for turning the upper turning body, it is equipped with an electric motor, assists the drive of the hydraulic motor with the electric motor when the turning mechanism is accelerated, performs regenerative operation with the electric motor when the turning mechanism decelerates, A hydraulic excavator that charges a battery with generated electric power has been proposed (see, for example, Patent Document 1).
 また、上部旋回体を旋回させるための旋回機構の動力源としても電動機を備え、旋回機構の駆動時に電動機で力行運転(加速時)と回生運転(減速時)を行うことにより、発電された電力をバッテリに充電するショベルが提案されている(例えば、特許文献2参照。)。 Also, an electric motor is provided as a power source of the turning mechanism for turning the upper turning body, and the generated electric power is generated by performing a power running operation (acceleration) and a regenerative operation (deceleration) with the electric motor when the turning mechanism is driven. Has been proposed (see, for example, Patent Document 2).
特開平10-103112号公報JP-A-10-103112 特開2005-299102号公報JP 2005-299102 A
 ハイブリッド型作業機械では、電動発電機等の電気負荷による電力消費と回生電力の生成が繰り返し行われるため、電気負荷とバッテリの間のDCバスの電圧値は大きく変動する。DCバスの電圧値が変動すると、負荷の制御性のばらつきや、過電流による負荷のドライバの損傷等をもたらす恐れがある。 In hybrid type work machines, power consumption due to an electric load such as a motor generator and generation of regenerative power are repeatedly performed, so that the voltage value of the DC bus between the electric load and the battery varies greatly. When the voltage value of the DC bus fluctuates, there is a risk of causing variations in load controllability, damage to the driver of the load due to overcurrent, and the like.
 また、ハイブリッド型作業機械では、エンジンをアシストするための電動機と旋回駆動用の電動機とでは必要な駆動力が異なることから定格出力が異なる。エンジンをアシストするための電動機は、略一定の回転数で電動(アシスト)運転又は発電運転を行うため、電動機の出力の変動は比較的小さい。一方、旋回駆動用の電動機は、上部旋回体の回転に伴って加速(力行運転)と減速(回生運転)を繰り返し行う。また、作業内容によって運転者のレバー操作量が変更されるので、それによって旋回駆動用の電動機の回転数も変化する。このため、供給電圧を旋回駆動用の電動機の回転数に応じて変化させると、一定の電圧範囲しか使用しない電動発電機のインバータ(制御器)に対して大きな電圧負荷となり、損傷や破損が生じる恐れがある。一方、一定の回転数でしか回転しない電動発電機に電圧値を合わせると、旋回駆動用の電動機の出力が不足してしまう。 Also, in the hybrid type work machine, the rated output differs because the required driving force differs between the electric motor for assisting the engine and the electric motor for turning driving. Since an electric motor for assisting an engine performs an electric driving (assist) operation or a power generation operation at a substantially constant rotational speed, fluctuations in the output of the electric motor are relatively small. On the other hand, the electric motor for turning driving repeatedly performs acceleration (power running operation) and deceleration (regenerative operation) with the rotation of the upper turning body. Further, since the lever operation amount of the driver is changed depending on the work content, the rotation speed of the electric motor for turning driving is also changed accordingly. For this reason, if the supply voltage is changed according to the rotational speed of the electric motor for turning driving, a large voltage load is applied to the inverter (controller) of the motor generator that uses only a certain voltage range, resulting in damage or breakage. There is a fear. On the other hand, when the voltage value is adjusted to a motor generator that rotates only at a constant rotational speed, the output of the electric motor for turning drive becomes insufficient.
 そこで、本発明は、DCバス電圧値の安定化を図ることにより、負荷の制御性のばらつきや、過電流による負荷のドライバの損傷等の抑制を図ったハイブリッド型作業機械を提供することを目的とする。 SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a hybrid work machine that suppresses variations in load controllability and damage to a load driver due to overcurrent by stabilizing the DC bus voltage value. And
 また、本発明は、電動駆動用の機器の損傷又は破損を抑制しつつ、各電動機を効率的に駆動することのできる昇降圧コンバータを用いたハイブリッド型作業機械を提供することを目的とする。 It is another object of the present invention to provide a hybrid work machine using a step-up / down converter that can efficiently drive each electric motor while suppressing damage or breakage of the electric drive device.
 本発明の一実施態様によれば、複数の電動作業要素を駆動するための複数のインバータと、該複数のインバータとの間で電力の授受を行う蓄電器と、該複数のインバータに接続されるDCバスと、該DCバスと該蓄電器との間に配設された昇降圧コンバータとを有し、該複数のインバータは、第1のインバータと第2のインバータとを含み、該DCバスは、該第1のインバータが接続される第1のDCバスと、該第2のインバータが接続される第2のDCバスとを含み、該昇降圧コンバータは、該第1のDCバスと該蓄電器との間に配設されることを特徴とするハイブリッド型作業機械が提供される。 According to one embodiment of the present invention, a plurality of inverters for driving a plurality of electric work elements, a capacitor that transfers power to and from the plurality of inverters, and a DC connected to the plurality of inverters And a buck-boost converter disposed between the DC bus and the battery, wherein the plurality of inverters include a first inverter and a second inverter, and the DC bus includes the A first DC bus to which the first inverter is connected; and a second DC bus to which the second inverter is connected. The step-up / down converter includes: the first DC bus and the capacitor; A hybrid work machine is provided that is disposed between the two.
 本発明の他の実施態様によれば、油圧駆動作業要素の駆動に必要な油圧を発生する油圧ポンプを駆動するための内燃機関に機械的に接続され、電動(アシスト)運転及び発電運転を行う電動発電機と、電動駆動作業要素の駆動を行う電動駆動部と、該電動発電機又は該電動駆動部に供給するための電力を蓄積するとともに、該電動発電機又は該電動駆動部によって発電された電力を充電する蓄電器と、一側が第1のDCバスを介して該電動発電機に接続されるとともに、他側が該蓄電器に接続され、該第1のDCバスの電圧値を昇圧又は降圧する第1昇降圧コンバータと、一側が第2のDCバスを介して該電動駆動部に接続されるとともに、他側が該蓄電器に接続され、該第2のDCバスの電圧値を昇圧又は降圧する第2昇降圧コンバータとを有することを特徴とするハイブリッド型作業機械が提供される。 According to another embodiment of the present invention, it is mechanically connected to an internal combustion engine for driving a hydraulic pump that generates a hydraulic pressure required for driving a hydraulically driven working element, and performs an electric (assist) operation and a power generation operation. A motor generator, an electric drive unit for driving an electric drive working element, and electric power to be supplied to the motor generator or the electric drive unit are accumulated, and is generated by the motor generator or the electric drive unit. A capacitor for charging the electric power, and one side is connected to the motor generator via the first DC bus, and the other side is connected to the capacitor to boost or step down the voltage value of the first DC bus. A first step-up / step-down converter, and one side connected to the electric drive unit via a second DC bus and the other side connected to the capacitor to boost or step down the voltage value of the second DC bus 2 buck-boost converter Hybrid operating machine is provided, characterized in that it comprises a.
 本発明によれば、DCバス電圧値の安定化を図ることにより、負荷の制御性のばらつきや、過電流による負荷のドライバの損傷等の抑制を図ることができる。また、電動駆動用の機器の損傷又は破損を抑制しつつ、各電動機を効率的に駆動することができる。 According to the present invention, by stabilizing the DC bus voltage value, it is possible to suppress variations in load controllability, damage to the driver of the load due to overcurrent, and the like. In addition, each electric motor can be efficiently driven while suppressing damage or breakage of the electric drive device.
第1の実施形態によるハイブリッド型作業機械を示す側面図である。1 is a side view showing a hybrid work machine according to a first embodiment. 第1の実施形態によるハイブリッド型作業機械の構成を表すブロック図である。It is a block diagram showing the structure of the hybrid type working machine by 1st Embodiment. 第1の実施形態によるハイブリッド型作業機械に用いる昇降圧コンバータの回路構成を概略的に示す図である。It is a figure which shows roughly the circuit structure of the buck-boost converter used for the hybrid type working machine by 1st Embodiment. 第1の実施形態のハイブリッド型作業機械に用いる昇降圧コンバータの駆動制御部の回路構成を示す制御ブロック図である。It is a control block diagram which shows the circuit structure of the drive control part of the buck-boost converter used for the hybrid type work machine of 1st Embodiment. 実施の形態1の変形例によるハイブリッド型作業機械に用いる昇降圧コンバータの駆動制御部の回路構成の制御ブロック図である。FIG. 7 is a control block diagram of a circuit configuration of a drive control unit of a buck-boost converter used in a hybrid work machine according to a modification of the first embodiment. 第1の実施形態によるハイブリッド型作業機械における電流制限方法を示す図であり、バッテリ電流許容値、バッテリ電流値、及びDCバスに通流する電流値(DCバス電流値)の関係を示す特性図である。It is a figure which shows the current limiting method in the hybrid type work machine by 1st Embodiment, and is a characteristic view which shows the relationship between a battery current allowable value, a battery current value, and a current value (DC bus current value) flowing through the DC bus It is. 第1の実施形態のハイブリッド型作業機械における電流制限方法を示す図であり、DCバス電流値とインバータ及びの各々に通流する電流値とを示す特性図である。It is a figure which shows the electric current limiting method in the hybrid type work machine of 1st Embodiment, and is a characteristic figure which shows the DC bus electric current value and the electric current value which each flows into an inverter. 第2の実施形態によるハイブリッド型作業機械の構成を表すブロック図である。It is a block diagram showing the structure of the hybrid type working machine by 2nd Embodiment. 第3の実施形態によるハイブリッド型作業機械の構成を表すブロック図である。It is a block diagram showing the structure of the hybrid type working machine by 3rd Embodiment. 第4の実施形態によるハイブリッド型作業機械の構成を表すブロック図である。It is a block diagram showing the structure of the hybrid type working machine by 4th Embodiment. 第4の実施形態によるハイブリッド型作業機械に用いる昇降圧コンバータの回路構成を概略的に示す図である。It is a figure which shows roughly the circuit structure of the buck-boost converter used for the hybrid type working machine by 4th Embodiment. 第4の実施形態のハイブリッド型作業機械の昇降圧コンバータによって行われるバイパス回路の駆動制御の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of the drive control of the bypass circuit performed by the buck-boost converter of the hybrid type work machine of 4th Embodiment.
 以下、本発明をハイブリッド型作業機械に適用した実施形態について説明する。 Hereinafter, embodiments in which the present invention is applied to a hybrid work machine will be described.
 (第1の実施形態)
 図1は、本発明の第1の実施形態によるハイブリッド型作業機械の側面図である。ハイブリッド型作業機械の下部走行体1には、旋回機構2を介して上部旋回体3が搭載されている。上部旋回体3には、ブーム4、アーム5、及びリフティングマグネット6と、これらを油圧駆動するためのブームシリンダ7、アームシリンダ8、及びバケットシリンダ9に加えて、キャビン10及び動力源が搭載される。
(First embodiment)
FIG. 1 is a side view of a hybrid work machine according to a first embodiment of the present invention. An upper swing body 3 is mounted on the lower traveling body 1 of the hybrid work machine via a swing mechanism 2. In addition to the boom 4, the arm 5, and the lifting magnet 6, and the boom cylinder 7, arm cylinder 8, and bucket cylinder 9 for hydraulically driving them, the upper swing body 3 is equipped with a cabin 10 and a power source. The
 「全体構成」
 図2は、第1の実施形態のハイブリッド型作業機械の構成を表すブロック図である。図2において、機械的動力系を二重線、高圧油圧ラインを実線、パイロットラインを破線、電気駆動・制御系を一点鎖線でそれぞれ示す。
"overall structure"
FIG. 2 is a block diagram illustrating the configuration of the hybrid work machine according to the first embodiment. In FIG. 2, the mechanical power system is indicated by a double line, the high-pressure hydraulic line is indicated by a solid line, the pilot line is indicated by a broken line, and the electric drive / control system is indicated by a one-dot chain line.
 機械式駆動部としてのエンジン11と、アシスト駆動部としての電動発電機12は、ともに増力機としての減速機13の入力軸に接続されている。また、この減速機13の出力軸には、メインポンプ14及びパイロットポンプ15が接続されている。メインポンプ14には、高圧油圧ライン16を介してコントロールバルブ17が接続されている。 The engine 11 as a mechanical drive unit and the motor generator 12 as an assist drive unit are both connected to an input shaft of a speed reducer 13 as a booster. A main pump 14 and a pilot pump 15 are connected to the output shaft of the speed reducer 13. A control valve 17 is connected to the main pump 14 via a high pressure hydraulic line 16.
 コントロールバルブ17は、第1の実施形態によるハイブリッド型作業機械における油圧系の制御を行う制御装置である。コントロールバルブ17には、下部走行体1用の油圧モータ1A(右用)及び1B(左用)、ブームシリンダ7、アームシリンダ8、及びバケットシリンダ9が高圧油圧ラインを介して接続される。 The control valve 17 is a control device that controls the hydraulic system in the hybrid work machine according to the first embodiment. Connected to the control valve 17 are hydraulic motors 1A (for right) and 1B (for left), a boom cylinder 7, an arm cylinder 8, and a bucket cylinder 9 for the lower traveling body 1 via a high-pressure hydraulic line.
 電動発電機12には、インバータ18A及び昇降圧コンバータ100を介して蓄電器としてのバッテリ19が接続される。インバータ18Aと昇降圧コンバータ100との間は、DCバス110によって接続されている。DCバス110には、インバータ18Bを介してリフティングマグネット6が接続されている。リフティングマグネット6は、金属物を磁気的に吸着させるための磁力を発生する電磁石を含んでおり、インバータ18Bを介してDCバス110から電力が供給される。 The motor generator 12 is connected to a battery 19 as a battery via an inverter 18A and a step-up / down converter 100. The inverter 18A and the step-up / down converter 100 are connected by a DC bus 110. The lifting magnet 6 is connected to the DC bus 110 via an inverter 18B. The lifting magnet 6 includes an electromagnet that generates a magnetic force for magnetically attracting a metal object, and power is supplied from the DC bus 110 via the inverter 18B.
 また、DCバス110には、インバータ20を介して旋回用電動機21が接続されている。旋回用電動機21は、旋回機構2の動力源であり、上部旋回体3を右方向又は左方向に回転させるための駆動制御が行われる。DCバス110は、バッテリ19、リフティングマグネット6、電動発電機12、及び旋回用電動機21の間で電力の授受を行うために配設されている。 Further, a turning electric motor 21 is connected to the DC bus 110 via an inverter 20. The turning electric motor 21 is a power source of the turning mechanism 2 and performs drive control for rotating the upper turning body 3 in the right direction or the left direction. The DC bus 110 is arranged to transfer power between the battery 19, the lifting magnet 6, the motor generator 12, and the turning electric motor 21.
 DCバス110には、DCバス110の電圧値(以下、第1の実施形態においてDCバス電圧値と称す)を検出するためのDCバス電圧検出部111が配設されている。検出されたDCバス電圧値は、コントローラ30に入力される。 The DC bus 110 is provided with a DC bus voltage detection unit 111 for detecting a voltage value of the DC bus 110 (hereinafter referred to as a DC bus voltage value in the first embodiment). The detected DC bus voltage value is input to the controller 30.
 バッテリ19には、バッテリ電圧値を検出するためのバッテリ電圧検出部112と、バッテリ電流値を検出するためのバッテリ電流検出部113が配設されている。これらによって検出されるバッテリ電圧値とバッテリ電流値は、コントローラ30に入力される。 The battery 19 is provided with a battery voltage detector 112 for detecting a battery voltage value and a battery current detector 113 for detecting a battery current value. The battery voltage value and battery current value detected by these are input to the controller 30.
 旋回用電動機21の回転軸21Aには、レゾルバ22、メカニカルブレーキ23、及び旋回減速機24が接続される。パイロットポンプ15には、パイロットライン25を介して操作装置26が接続される。 A resolver 22, a mechanical brake 23, and a turning speed reducer 24 are connected to the rotating shaft 21A of the turning electric motor 21. An operation device 26 is connected to the pilot pump 15 via a pilot line 25.
 操作装置26には、油圧ライン27及び28を介して、コントロールバルブ17及びレバー操作検出部としての圧力センサ29がそれぞれ接続される。圧力センサ29には、実施の形態1の建設機械の電気系の駆動制御を行うコントローラ30が接続されている。 The control device 17 and a pressure sensor 29 as a lever operation detection unit are connected to the operation device 26 via hydraulic lines 27 and 28, respectively. Connected to the pressure sensor 29 is a controller 30 that performs drive control of the electrical system of the construction machine of the first embodiment.
 上述のハイブリッド型作業機械は、エンジン11、電動発電機12、及び旋回用電動機21を動力源とするハイブリッド型作業機械である。これらの動力源は、図1に示す上部旋回体3に搭載される。以下、各部について説明する。 The above-described hybrid work machine is a hybrid work machine that uses the engine 11, the motor generator 12, and the turning electric motor 21 as power sources. These power sources are mounted on the upper swing body 3 shown in FIG. Hereinafter, each part will be described.
 「各部の構成」
 エンジン11は、例えば、ディーゼルエンジンで構成される内燃機関であり、その出力軸は減速機13の一方の入力軸に接続される。このエンジン11は、ハイブリッド型作業機械の運転中は常時運転される。
"Configuration of each part"
The engine 11 is an internal combustion engine composed of, for example, a diesel engine, and its output shaft is connected to one input shaft of the speed reducer 13. The engine 11 is always operated during operation of the hybrid work machine.
 電動発電機12は、電動(アシスト)運転及び発電運転の双方が可能な電動機である。本実施形態では、電動発電機12として、インバータ18Aによって交流駆動される電動発電機が用いられる。電動発電機12は、例えば、磁石がロータ内部に埋め込まれたIPM(Interior Permanent Magnet)モータで構成することができる。電動発電機12の回転軸は減速機13の他方の入力軸に接続される。 The motor generator 12 is an electric motor capable of both electric (assist) operation and power generation operation. In the present embodiment, a motor generator that is AC driven by an inverter 18 </ b> A is used as the motor generator 12. The motor generator 12 can be constituted by, for example, an IPM (Interior / Permanent / Magnet) motor in which a magnet is embedded in a rotor. The rotating shaft of the motor generator 12 is connected to the other input shaft of the speed reducer 13.
 減速機13は、2つの入力軸と1つの出力軸を有する。2つの入力軸の各々には、エンジン11の駆動軸と電動発電機12の駆動軸が接続される。出力軸にはメインポンプ14の駆動軸が接続される。エンジン11の負荷が大きい場合には、電動発電機12が電動(アシスト)運転を行い、電動発電機12の駆動力が減速機13の出力軸を経てメインポンプ14に伝達される。これによりエンジン11の駆動がアシストされる。一方、エンジン11の負荷が小さい場合は、エンジン11の駆動力が減速機13を経て電動発電機12に伝達されることにより、電動発電機12が発電運転による発電を行う。電動発電機12の電動運転と発電運転の切り替えは、コントローラ30により、エンジン11の負荷等に応じて行われる。 Reduction gear 13 has two input shafts and one output shaft. A drive shaft of the engine 11 and a drive shaft of the motor generator 12 are connected to each of the two input shafts. A drive shaft of the main pump 14 is connected to the output shaft. When the load on the engine 11 is large, the motor generator 12 performs an electric driving (assist) operation, and the driving force of the motor generator 12 is transmitted to the main pump 14 via the output shaft of the speed reducer 13. Thereby, driving of the engine 11 is assisted. On the other hand, when the load of the engine 11 is small, the driving force of the engine 11 is transmitted to the motor generator 12 through the speed reducer 13, so that the motor generator 12 generates power by the power generation operation. Switching between the electric operation and the power generation operation of the motor generator 12 is performed by the controller 30 according to the load of the engine 11 and the like.
 メインポンプ14は、コントロールバルブ17に供給するための油圧を発生するポンプである。この油圧は、コントロールバルブ17を介して油圧モータ1A、1B、ブームシリンダ7、アームシリンダ8、及びバケットシリンダ9の各々を駆動するために供給される。パイロットポンプ15は、油圧操作系に必要なパイロット圧を発生するポンプである。この油圧操作系の構成については後述する。 The main pump 14 is a pump that generates hydraulic pressure to be supplied to the control valve 17. This hydraulic pressure is supplied to drive each of the hydraulic motors 1 </ b> A and 1 </ b> B, the boom cylinder 7, the arm cylinder 8, and the bucket cylinder 9 via the control valve 17. The pilot pump 15 is a pump that generates a pilot pressure necessary for the hydraulic operation system. The configuration of this hydraulic operation system will be described later.
 コントロールバルブ17は、高圧油圧ラインを介して接続される下部走行体1用の油圧モータ1A、1B、ブームシリンダ7、アームシリンダ8、及びバケットシリンダ9の各々に供給する油圧を運転者の操作入力に応じて制御することにより、これらを油圧駆動制御する油圧制御装置である。 The control valve 17 inputs the hydraulic pressure supplied to each of the hydraulic motors 1A, 1B, the boom cylinder 7, the arm cylinder 8 and the bucket cylinder 9 for the lower traveling body 1 connected via a high-pressure hydraulic line. It is a hydraulic control device which controls these hydraulically by controlling according to the above.
 インバータ18Aは、上述の如く電動発電機12と昇降圧コンバータ100との間に設けられ、コントローラ30からの指令に基づき、電動発電機12の運転制御を行う。これにより、インバータ18Aが電動発電機12の力行を運転制御している際には、必要な電力をバッテリ19と昇降圧コンバータ100からDCバス110を介して電動発電機12に供給する。また、電動発電機12の回生を運転制御している際には、電動発電機12により発電された電力をDCバス110及び昇降圧コンバータ100を介してバッテリ19に充電する。 The inverter 18A is provided between the motor generator 12 and the buck-boost converter 100 as described above, and controls the operation of the motor generator 12 based on a command from the controller 30. Thus, when the inverter 18A controls the power running of the motor generator 12, the necessary power is supplied from the battery 19 and the step-up / down converter 100 to the motor generator 12 via the DC bus 110. Further, when the regeneration control of the motor generator 12 is being controlled, the battery 19 is charged with the electric power generated by the motor generator 12 via the DC bus 110 and the step-up / down converter 100.
 インバータ18Bは、リフティングマグネット6と昇降圧コンバータ100との間に設けられ、コントローラ30からの指令に基づき、電磁石をオンにする際には、リフティングマグネット6へ要求された電力をDCバス110より供給する。また、電磁石をオフにする場合には、回生された電力をDCバス100に供給する。 The inverter 18B is provided between the lifting magnet 6 and the buck-boost converter 100, and supplies the requested power to the lifting magnet 6 from the DC bus 110 when the electromagnet is turned on based on a command from the controller 30. To do. Further, when the electromagnet is turned off, the regenerated electric power is supplied to the DC bus 100.
 バッテリ19は、昇降圧コンバータ100を介してインバータ18A、インバータ18B、及びインバータ20に接続されている。これにより、バッテリ19は、電動発電機12の電動(アシスト)運転と旋回用電動機21の力行運転との少なくともどちらか一方が行われている際、又は、リフティングマグネット6を励磁する(オンにする)際には、必要な電力を供給する。バッテリ19は、電動発電機12の発電運転と旋回用電動機21の回生運転の少なくともどちらか一方が行われている際、または、リフティングマグネット6を消磁する(オフにする)ときに回生電力が発生している際には、発電運転又は回生運転によって発生した電力を電気エネルギとして蓄積する。 The battery 19 is connected to the inverter 18A, the inverter 18B, and the inverter 20 through the buck-boost converter 100. Thereby, the battery 19 excites (turns on) the lifting magnet 6 when at least one of the electric (assist) operation of the motor generator 12 and the power running operation of the turning electric motor 21 is performed. ) Supply the necessary power. The battery 19 generates regenerative power when at least one of the generator operation of the motor generator 12 and the regenerative operation of the turning motor 21 is performed, or when the lifting magnet 6 is demagnetized (turned off). During the operation, the electric power generated by the power generation operation or the regenerative operation is stored as electric energy.
 なお、DCバス110には、インバータ18A、18B、及び20を介して、電動発電機12、リフティングマグネット6、及び旋回用電動機21が接続されているため、電動発電機12で発電された電力がリフティングマグネット6又は旋回用電動機21に直接的に供給される場合がある。また、リフティングマグネット6で回生された電力が電動発電機12又は旋回用電動機21に供給される場合もある。さらに、旋回用電動機21で回生された電力が電動発電機12又はリフティングマグネット6に供給される場合もある。 Since the motor generator 12, the lifting magnet 6, and the turning motor 21 are connected to the DC bus 110 via the inverters 18A, 18B, and 20, the electric power generated by the motor generator 12 is received. In some cases, the lifting magnet 6 or the turning electric motor 21 may be directly supplied. Further, the electric power regenerated by the lifting magnet 6 may be supplied to the motor generator 12 or the turning electric motor 21. Further, the electric power regenerated by the turning electric motor 21 may be supplied to the motor generator 12 or the lifting magnet 6.
 バッテリ19の充放電制御は、バッテリ19の充電状態、電動発電機12の運転状態(電動(アシスト)運転又は発電運転)、リフティングマグネット6の駆動状態、旋回用電動機21の運転状態(力行運転又は回生運転)に基づき、昇降圧コンバータ100によって行われる。この昇降圧コンバータ100の昇圧動作と降圧動作の切替制御は、DCバス電圧検出部111によって検出されるDCバス電圧値、バッテリ電圧検出部112によって検出されるバッテリ電圧値、及びバッテリ電流検出部113によって検出されるバッテリ電流値に基づき、コントローラ30によって行われる。 The charge / discharge control of the battery 19 includes the charge state of the battery 19, the operation state of the motor generator 12 (electric (assist) operation or power generation operation), the drive state of the lifting magnet 6, and the operation state of the turning motor 21 (power running operation or This is performed by the step-up / down converter 100 based on the regenerative operation. Switching control between the step-up / step-down operation of the step-up / step-down converter 100 is performed by controlling the DC bus voltage value detected by the DC bus voltage detection unit 111, the battery voltage value detected by the battery voltage detection unit 112, and the battery current detection unit 113. Is performed by the controller 30 based on the battery current value detected by.
 インバータ20は、上述の如く旋回用電動機21と昇降圧コンバータ100との間に設けられ、コントローラ30からの指令に基づき、旋回用電動機21に対して運転制御を行う。これにより、インバータが旋回用電動機21の力行を運転制御している際には、必要な電力をバッテリ19から昇降圧コンバータ100を介して旋回用電動機21に供給する。また、旋回用電動機21が回生運転をしている際には、旋回用電動機21により発電された電力を昇降圧コンバータ100を介してバッテリ19へ充電する。 The inverter 20 is provided between the turning electric motor 21 and the step-up / down converter 100 as described above, and performs operation control on the turning electric motor 21 based on a command from the controller 30. Thereby, when the inverter is operating and controlling the power running of the turning electric motor 21, necessary electric power is supplied from the battery 19 to the turning electric motor 21 through the step-up / down converter 100. Further, when the turning electric motor 21 is performing a regenerative operation, the battery 19 is charged with the electric power generated by the turning electric motor 21 via the step-up / down converter 100.
 昇降圧コンバータ100は、一側がDCバス110を介して電動発電機12、リフティングマグネット6、及び旋回用電動機21に接続されるとともに、他側がバッテリ19に接続されており、DCバス電圧値が一定の範囲内に収まるように昇圧又は降圧を切り替える制御を行う。 The buck-boost converter 100 is connected to the motor generator 12, the lifting magnet 6, and the turning motor 21 via the DC bus 110 on one side, and connected to the battery 19 on the other side, so that the DC bus voltage value is constant. Control is performed to switch between step-up and step-down so as to be within the range.
 電動発電機12が電動(アシスト)運転を行う場合には、インバータ18Aを介して電動発電機12に電力を供給する必要があるため、DCバス電圧値を昇圧する必要がある。一方、電動発電機12が発電運転を行う場合には、発電された電力をインバータ18Aを介してバッテリ19に充電する必要があるため、DCバス電圧値を降圧する必要がある。 When the motor generator 12 performs an electric (assist) operation, it is necessary to supply electric power to the motor generator 12 via the inverter 18A, and thus it is necessary to boost the DC bus voltage value. On the other hand, when the motor generator 12 performs a power generation operation, it is necessary to charge the generated power to the battery 19 via the inverter 18A, and thus it is necessary to step down the DC bus voltage value.
 これは、リフティングマグネット6の励磁(オン)と消磁(オフ)、及び旋回用電動機21の力行運転と回生運転においても同様である。電動発電機12はエンジン11の負荷状態に応じて運転状態が切り替えられ、リフティングマグネット6は作業状態において駆動状態(励磁と消磁)が切り替えられ、さらに、旋回用電動機21は上部旋回体3の旋回動作に応じて運転状態が切り替えられる。 This also applies to the excitation (on) and demagnetization (off) of the lifting magnet 6 and the power running operation and regenerative operation of the turning electric motor 21. The operation state of the motor generator 12 is switched according to the load state of the engine 11, the driving state (excitation and demagnetization) of the lifting magnet 6 is switched in the working state, and the turning motor 21 is turned by the upper turning body 3. The operating state is switched according to the operation.
 このため、電動発電機12、リフティングマグネット6、及び旋回用電動機21には、いずれかにDCバス110を介して電力供給が行われ、いずれかからDCバス110に電力供給を行う状況が生じうる。このため、昇降圧コンバータ100は、電動発電機12、リフティングマグネット6、及び旋回用電動機21の運転状態に応じて、DCバス電圧値を一定の範囲内に収まるように昇圧動作と降圧動作を切り替える制御を行う。 For this reason, the motor generator 12, the lifting magnet 6, and the turning motor 21 are supplied with power via the DC bus 110, and the power supply to the DC bus 110 can be generated from any of them. . For this reason, the step-up / step-down converter 100 switches between the step-up operation and the step-down operation so that the DC bus voltage value falls within a certain range in accordance with the operating state of the motor generator 12, the lifting magnet 6, and the turning electric motor 21. Take control.
 DCバス110は、3つのインバータ18A、18B、及び20と昇降圧コンバータとの間に配設されており、バッテリ19、電動発電機12、リフティングマグネット6、及び旋回用電動機21の間で電力の授受を行う。 The DC bus 110 is disposed between the three inverters 18A, 18B, and 20 and the step-up / down converter, and power is transferred between the battery 19, the motor generator 12, the lifting magnet 6, and the turning motor 21. Give and receive.
 DCバス電圧検出部111は、DCバス電圧値を検出するための電圧検出部である。検出されるDCバス電圧値はコントローラ30に入力され、このDCバス電圧値を一定の範囲内に収めるための昇圧動作と降圧動作の切替制御を行うために用いられる。 The DC bus voltage detection unit 111 is a voltage detection unit for detecting a DC bus voltage value. The detected DC bus voltage value is input to the controller 30, and is used for switching control between the step-up operation and the step-down operation for keeping the DC bus voltage value within a certain range.
 バッテリ電圧検出部112は、バッテリ19の電圧値を検出するための電圧検出部であり、バッテリの充電状態を検出するために用いられる。検出されるバッテリ電圧値は、コントローラ30に入力され、昇降圧コンバータ100の昇圧動作と降圧動作の切替制御を行うために用いられる。 The battery voltage detection unit 112 is a voltage detection unit for detecting the voltage value of the battery 19, and is used for detecting the state of charge of the battery. The detected battery voltage value is input to the controller 30 and used for switching control between the step-up / step-down operation of the step-up / step-down converter 100.
 バッテリ電流検出部113は、バッテリ19の電流値を検出するための電流検出部である。バッテリ電流値は、バッテリ19から昇降圧コンバータ100に流れる電流を正の値として検出される。検出されるバッテリ電流値は、コントローラ30に入力され、昇降圧コンバータ100の昇降圧制御の応答性の向上のために用いられる。 The battery current detection unit 113 is a current detection unit for detecting the current value of the battery 19. As the battery current value, a current flowing from the battery 19 to the step-up / down converter 100 is detected as a positive value. The detected battery current value is input to the controller 30 and used for improving the responsiveness of the step-up / step-down control of the step-up / step-down converter 100.
 旋回用電動機21は、力行運転及び回生運転の双方が可能な電動機であり、上部旋回体3の旋回機構2を駆動するために設けられている。力行運転の際には、旋回用電動機21の回転駆動力の回転力が減速機24にて増幅され、上部旋回体3が加減速制御され回転運動を行う。また、上部旋回体3の慣性回転により、減速機24にて回転数が増加されて旋回用電動機21に伝達され、回生電力を発生させることができる。本実施形態では、旋回用電動機21として、PWM(Pulse Width Modulation)制御信号によりインバータ20によって交流駆動される電動機が用いられる。旋回用電動機21は、例えば、磁石埋込型のIPMモータで構成することができる。これにより、より大きな誘導起電力を発生させることができるので、回生時に旋回用電動機21にて発電される電力を増大させることができる。 The turning electric motor 21 is an electric motor capable of both a power running operation and a regenerative operation, and is provided to drive the turning mechanism 2 of the upper turning body 3. During the power running operation, the rotational force of the rotational driving force of the turning electric motor 21 is amplified by the speed reducer 24, and the upper turning body 3 is subjected to acceleration / deceleration control to perform rotational motion. Further, due to the inertial rotation of the upper swing body 3, the number of rotations is increased by the speed reducer 24 and transmitted to the turning electric motor 21, and regenerative power can be generated. In the present embodiment, a motor that is AC driven by the inverter 20 using a PWM (Pulse Width Modulation) control signal is used as the turning electric motor 21. The turning electric motor 21 can be constituted by, for example, a magnet-embedded IPM motor. Thereby, since a larger induced electromotive force can be generated, the electric power generated by the turning electric motor 21 at the time of regeneration can be increased.
 レゾルバ22は、旋回用電動機21の回転軸21Aの回転位置及び回転角度を検出するセンサであり、旋回用電動機21と機械的に連結することで旋回用電動機21の回転前の回転軸21Aの回転位置と、左回転又は右回転した後の回転位置との差を検出することにより、回転軸21Aの回転角度及び回転方向を検出する。旋回用電動機21の回転軸21Aの回転角度を検出することにより、旋回機構2の回転角度及び回転方向が導出される。また、図2に示す例ではレゾルバ22が取り付けられているが、電動機の回転センサを有しないインバータ制御方式を用いてもよい。 The resolver 22 is a sensor that detects the rotational position and the rotational angle of the rotating shaft 21A of the turning electric motor 21, and is mechanically connected to the turning electric motor 21 to rotate the rotating shaft 21A before the turning electric motor 21 rotates. By detecting the difference between the position and the rotation position after the left rotation or the right rotation, the rotation angle and the rotation direction of the rotation shaft 21A are detected. By detecting the rotation angle of the rotation shaft 21A of the turning electric motor 21, the rotation angle and the rotation direction of the turning mechanism 2 are derived. Moreover, although the resolver 22 is attached in the example shown in FIG. 2, you may use the inverter control system which does not have a rotation sensor of an electric motor.
 メカニカルブレーキ23は、機械的な制動力を発生させる制動装置であり、旋回用電動機21の回転軸21Aを機械的に停止させる。このメカニカルブレーキ23は、電磁式スイッチにより制動/解除が切り替えられる。この切り替えは、コントローラ30によって行われる。 The mechanical brake 23 is a braking device that generates a mechanical braking force, and mechanically stops the rotating shaft 21A of the turning electric motor 21. This mechanical brake 23 is switched between braking and release by an electromagnetic switch. This switching is performed by the controller 30.
 旋回減速機24は、旋回用電動機21の回転軸21Aの回転速度を減速して旋回機構2に機械的に伝達する減速機である。これにより、力行運転の際には、旋回用電動機21の回転力を増力させ、より大きな回転力として旋回体へ伝達することができる。これとは逆に、回生運転の際には、旋回体で発生した回転数を増加させ、より多くの回転動作を旋回用電動機21に発生させることができる。旋回機構2は、旋回用電動機21のメカニカルブレーキ23が解除された状態で旋回可能となり、これにより、上部旋回体3が左方向又は右方向に旋回される。 The turning speed reducer 24 is a speed reducer that mechanically transmits to the turning mechanism 2 by reducing the rotational speed of the rotating shaft 21A of the turning electric motor 21. Thereby, in the power running operation, the rotational force of the turning electric motor 21 can be increased and transmitted to the turning body as a larger rotational force. On the contrary, during the regenerative operation, the number of rotations generated in the revolving structure can be increased, and more rotational motion can be generated in the turning electric motor 21. The turning mechanism 2 can turn in a state where the mechanical brake 23 of the turning electric motor 21 is released, whereby the upper turning body 3 is turned leftward or rightward.
 操作装置26は、旋回用電動機21、下部走行体1、ブーム4、アーム5、及びリフティングマグネット6を操作するための操作装置であり、ハイブリッド型作業機械の運転者によって操作される。操作装置26は、パイロットライン25を通じて供給される油圧(1次側の油圧)を運転者の操作量に応じた油圧(2次側の油圧)に変換して出力する。操作装置26から出力される2次側の油圧は、油圧ライン27を通じてコントロールバルブ17に供給されるとともに、圧力センサ29によって検出される。 The operating device 26 is an operating device for operating the turning electric motor 21, the lower traveling body 1, the boom 4, the arm 5, and the lifting magnet 6, and is operated by a driver of the hybrid work machine. The operating device 26 converts the hydraulic pressure (primary hydraulic pressure) supplied through the pilot line 25 into a hydraulic pressure (secondary hydraulic pressure) corresponding to the operation amount of the driver and outputs the converted hydraulic pressure. The secondary hydraulic pressure output from the operating device 26 is supplied to the control valve 17 through the hydraulic line 27 and detected by the pressure sensor 29.
 操作装置26が操作されると、油圧ライン27を通じてコントロールバルブ17が駆動され、これにより、油圧モータ1A、1B、ブームシリンダ7、アームシリンダ8、及びバケットシリンダ9内の油圧が制御されることによって、下部走行体1、ブーム4、アーム5、及びリフティングマグネット6が駆動される。 When the operation device 26 is operated, the control valve 17 is driven through the hydraulic line 27, thereby controlling the hydraulic pressure in the hydraulic motors 1 </ b> A and 1 </ b> B, the boom cylinder 7, the arm cylinder 8, and the bucket cylinder 9. The lower traveling body 1, the boom 4, the arm 5, and the lifting magnet 6 are driven.
 なお、油圧ライン27は、油圧モータ1A及び1B、ブームシリンダ7、アームシリンダ8、及びバケットシリンダ9の駆動に必要な油圧をコントロールバルブに供給する。 The hydraulic line 27 supplies hydraulic pressures necessary for driving the hydraulic motors 1A and 1B, the boom cylinder 7, the arm cylinder 8 and the bucket cylinder 9 to the control valve.
 旋回用操作検出部としての圧力センサ29は、操作装置26に対して旋回機構2を旋回させるための操作が入力されると、この操作量を油圧ライン28内の油圧の変化として検出する。圧力センサ29は、油圧ライン28内の油圧を表す電気信号を出力する。これにより、操作装置26に入力される旋回機構2を旋回させるための操作量を的確に把握することができる。この電気信号は、コントローラ30に入力され、旋回用電動機21の駆動制御に用いられる。また、本実施形態ではレバー操作検出部として圧力センサを用いるが、操作装置26に入力される旋回機構2を旋回させるための操作量をそのまま電気信号で読み取るセンサを用いてもよい。 When the operation for turning the turning mechanism 2 is input to the operating device 26, the pressure sensor 29 as the turning operation detecting unit detects the operation amount as a change in the hydraulic pressure in the hydraulic line 28. The pressure sensor 29 outputs an electrical signal indicating the hydraulic pressure in the hydraulic line 28. Thereby, the operation amount for turning the turning mechanism 2 input to the operating device 26 can be accurately grasped. This electric signal is input to the controller 30 and used for driving control of the turning electric motor 21. In this embodiment, a pressure sensor is used as the lever operation detection unit. However, a sensor that reads an operation amount for turning the turning mechanism 2 input to the operating device 26 as it is may be used as it is.
 「コントローラ30」
 コントローラ30は、本実施形態によるハイブリッド型作業機械の駆動制御を行う制御装置である。コントローラ30は、旋回駆動制御部40、及び駆動制御部50を含み、CPU(Central Processing Unit)及び内部メモリを含む演算処理装置で構成される。CPUが内部メモリに格納される駆動制御用のプログラムを実行することによりコントローラ30は制御装置として機能する。
"Controller 30"
The controller 30 is a control device that performs drive control of the hybrid work machine according to the present embodiment. The controller 30 includes a turning drive control unit 40 and a drive control unit 50, and is configured by an arithmetic processing unit including a CPU (Central Processing Unit) and an internal memory. The controller 30 functions as a control device when the CPU executes a drive control program stored in the internal memory.
 旋回駆動制御部40は、圧力センサ29から入力される信号のうち、旋回機構2を旋回させるための操作量を表す信号を速度指令に変換し、旋回用電動機21の駆動制御を行う。 The turning drive control unit 40 converts a signal representing an operation amount for turning the turning mechanism 2 among the signals input from the pressure sensor 29 into a speed command, and performs drive control of the turning electric motor 21.
 駆動制御部50は、電動発電機12の運転制御(電動(アシスト)運転又は発電運転の切り替え)、リフティングマグネット6の駆動制御(励磁(オン)と消磁(オフ)の切り替え)、及び、昇降圧コンバータ100を駆動制御することによるバッテリ19の充放電制御を行うための制御装置である。駆動制御部50は、バッテリ19の充電状態、電動発電機12の運転状態(電動(アシスト)運転又は発電運転)、リフティングマグネット6の駆動状態(励磁(オン)と消磁(オフ))、及び旋回用電動機21の運転状態(力行運転又は回生運転)に基づいて、昇降圧コンバータ100の昇圧動作と降圧動作の切替制御を行い、これによりバッテリ19の充放電制御を行う。 The drive control unit 50 controls the operation of the motor generator 12 (switching between electric (assist) operation or power generation operation), drive control of the lifting magnet 6 (switching between excitation (on) and demagnetization (off)), and step-up / down pressure It is a control device for performing charge / discharge control of the battery 19 by controlling the drive of the converter 100. The drive control unit 50 includes a state of charge of the battery 19, an operation state of the motor generator 12 (electric (assist) operation or power generation operation), a drive state of the lifting magnet 6 (excitation (on) and demagnetization (off)), and turning Based on the operation state (powering operation or regenerative operation) of the motor 21, the switching operation between the step-up / step-down converter 100 and the step-down operation is performed, whereby the charge / discharge control of the battery 19 is performed.
 昇降圧コンバータ100の昇圧動作と降圧動作の切替制御は、DCバス電圧検出部111によって検出されるDCバス電圧値、バッテリ電圧検出部112によって検出されるバッテリ電圧値、及びバッテリ電流検出部113によって検出されるバッテリ電流値に基づいて行われる。 Switching control between the step-up / step-down operation of the buck-boost converter 100 is performed by the DC bus voltage value detected by the DC bus voltage detection unit 111, the battery voltage value detected by the battery voltage detection unit 112, and the battery current detection unit 113. This is performed based on the detected battery current value.
 図3は、本実施形態のハイブリッド型作業機械に用いられる昇降圧コンバータの回路構成を概略的に示す図である。昇降圧コンバータ100は、リアクトル101、昇圧用IGBT(Insulated Gate Bipolar Transistor)102A、降圧用IGBT102B、バッテリ19を接続するための電源接続端子103、負荷106を接続するための出力端子104、及び、一対の出力端子104に並列に挿入される平滑用のコンデンサ105を備える。昇降圧コンバータ100の出力端子104と負荷106との間は、DCバス110によって接続される。なお、バッテリ19は、図2におけるバッテリ19に相当し、負荷106は、図2における電動発電機12、リフティングマグネット6、及び旋回用電動機21に相当する。図3では、図の簡略化のためにインバータ18A、18B、及び20(図2参照)を省略する。また、昇圧用IGBT102A及び降圧用IGBT102BをPWM駆動する駆動制御部50を省略する。 FIG. 3 is a diagram schematically showing a circuit configuration of a step-up / down converter used in the hybrid work machine of the present embodiment. The buck-boost converter 100 includes a reactor 101, a boosting IGBT (Insulated Gate Bipolar Transistor) 102A, a step-down IGBT 102B, a power connection terminal 103 for connecting the battery 19, an output terminal 104 for connecting a load 106, and a pair A smoothing capacitor 105 inserted in parallel with the output terminal 104. The output terminal 104 of the buck-boost converter 100 and the load 106 are connected by a DC bus 110. The battery 19 corresponds to the battery 19 in FIG. 2, and the load 106 corresponds to the motor generator 12, the lifting magnet 6, and the turning electric motor 21 in FIG. 2. In FIG. 3, the inverters 18A, 18B, and 20 (see FIG. 2) are omitted for simplification of the drawing. Further, the drive control unit 50 that PWM-drives the step-up IGBT 102A and the step-down IGBT 102B is omitted.
 リアクトル101は、一端が昇圧用IGBT102A及び降圧用IGBT102Bの中間点に接続されるとともに、他端が電源接続端子103に接続されており、昇圧用IGBT102Aのオン/オフに伴って生じる誘導起電力をDCバス110に供給するために設けられている。 Reactor 101 has one end connected to an intermediate point between boosting IGBT 102A and step-down IGBT 102B, and the other end connected to power supply connection terminal 103, so that induced electromotive force generated when ON / OFF of boosting IGBT 102A is generated. It is provided for supplying to the DC bus 110.
 昇圧用IGBT102A及び降圧用IGBT102Bは、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)をゲート部に組み込んだバイポーラトランジスタで構成され、大電力の高速スイッチングが可能な半導体素子である。昇圧用IGBT102A及び降圧用IGBT102Bは、後述する昇降圧コンバータの駆動制御装置からゲート端子にPWM電圧が印加されることによって駆動される。昇圧用IGBT102A及び降圧用IGBT102Bには、整流素子であるダイオード102a及び102bが並列接続される。 The step-up IGBT 102A and the step-down IGBT 102B are semiconductor elements that are composed of bipolar transistors in which MOSFETs (Metal Oxide Semiconductors Field Effect Transistors) are incorporated in the gate portion and can perform high-power high-speed switching. The step-up IGBT 102A and the step-down IGBT 102B are driven by applying a PWM voltage to a gate terminal from a drive control device for a step-up / down converter described later. Diodes 102a and 102b, which are rectifier elements, are connected in parallel to the step-up IGBT 102A and the step-down IGBT 102B.
 バッテリ19は、昇降圧コンバータ100を介してDCバス110との間で電力の授受が行えるように、充放電可能な蓄電器であればよい。なお、図3には、蓄電器としてバッテリ19を示すが、バッテリ19の代わりに、コンデンサ、充放電可能な二次電池、又は、電力の授受が可能なその他の形態の電源を蓄電器として用いてもよい。 The battery 19 may be a chargeable / dischargeable battery so that power can be exchanged with the DC bus 110 via the buck-boost converter 100. 3 shows the battery 19 as a capacitor, the capacitor 19 may be replaced with a capacitor, a chargeable / dischargeable secondary battery, or another form of power source capable of power transfer. Good.
 電源接続端子103及び出力端子104は、バッテリ19及び負荷106が接続可能な端子であればよい。一対の電源接続端子103の間には、バッテリ電圧を検出するバッテリ電圧検出部112が接続される。一対の出力端子104の間には、DCバス電圧を検出するDCバス電圧検出部111が接続される。 The power connection terminal 103 and the output terminal 104 may be terminals that can be connected to the battery 19 and the load 106. A battery voltage detection unit 112 that detects a battery voltage is connected between the pair of power connection terminals 103. A DC bus voltage detector 111 that detects a DC bus voltage is connected between the pair of output terminals 104.
 バッテリ電圧検出部112は、バッテリ19の電圧値(vbat_det)を検出し、DCバス電圧検出部111は、DCバス110の電圧(以下、DCバス電圧:vdc_det)を検出する。 The battery voltage detection unit 112 detects the voltage value (vbat_det) of the battery 19, and the DC bus voltage detection unit 111 detects the voltage of the DC bus 110 (hereinafter, DC bus voltage: vdc_det).
 出力端子104に接続される負荷106は、電力供給による駆動と回生による発電が可能な電気負荷であり、例えば、磁石がロータ内部に埋め込まれたIPM(Interior Permanent Magnetic)モータやリフティングマグネットで構成することができる。図3には、直流駆動用の負荷106を示すが、インバータを介して交流駆動される電気負荷であってもよい。 The load 106 connected to the output terminal 104 is an electric load that can be driven by electric power supply and can generate electric power by regeneration. For example, the load 106 includes an IPM (InteriorInPermanent Magnetic) motor in which a magnet is embedded in a rotor or a lifting magnet. be able to. Although FIG. 3 shows a load 106 for direct current drive, an electric load driven by alternating current through an inverter may be used.
 平滑用のコンデンサ105は、出力端子104の正極端子と負極端子との間に挿入され、DCバス電圧を平滑化できる蓄電素子である。 The smoothing capacitor 105 is an electric storage element that is inserted between the positive terminal and the negative terminal of the output terminal 104 and can smooth the DC bus voltage.
 バッテリ電流検出部113は、バッテリ19に通流する電流の値を検出可能な検出手段であればよく、電流検出用の抵抗器を含む。このリアクトル電流検出部108は、バッテリ19に通流する電流値(ibat_det)を検出する。 The battery current detection unit 113 may be any detection means capable of detecting the value of the current flowing through the battery 19 and includes a current detection resistor. The reactor current detection unit 108 detects a current value (ibat_det) flowing through the battery 19.
 「昇降圧動作」
 上述の構成の昇降圧コンバータ100において、DCバス110を昇圧する際には、昇圧用IGBT102Aのゲート端子にPWM電圧を印加し、降圧用IGBT102Bに並列に接続されたダイオード102bを介して、昇圧用IGBT102Aのオン/オフに伴ってリアクトル101に発生する誘導起電力をDCバス110に供給する。これにより、DCバス110が昇圧される。
"Buck-boost operation"
In the buck-boost converter 100 having the above-described configuration, when boosting the DC bus 110, a PWM voltage is applied to the gate terminal of the boosting IGBT 102A, and the boosting voltage is increased via the diode 102b connected in parallel to the step-down IGBT 102B. The induced electromotive force generated in the reactor 101 when the IGBT 102A is turned on / off is supplied to the DC bus 110. Thereby, the DC bus 110 is boosted.
 また、DCバス110を降圧する際には、降圧用IGBT102Bのゲート端子にPWM電圧を印加し、降圧用IGBT102Bを介して、負荷106によって発生される回生電力をDCバス110からバッテリ19に供給する。これにより、DCバス110に蓄積された電力がバッテリ19に充電され、DCバス110が降圧される。 When the DC bus 110 is stepped down, a PWM voltage is applied to the gate terminal of the step-down IGBT 102B, and regenerative power generated by the load 106 is supplied from the DC bus 110 to the battery 19 via the step-down IGBT 102B. . As a result, the power stored in the DC bus 110 is charged in the battery 19 and the DC bus 110 is stepped down.
 なお、図3では昇圧用IGBT102A及び降圧用IGBT102BをPWM駆動する駆動制御部100を省略したが、駆動制御部50は、電子回路又は演算処理装置のいずれでも実現することができる。 In FIG. 3, the drive control unit 100 that PWM-drives the step-up IGBT 102A and the step-down IGBT 102B is omitted, but the drive control unit 50 can be realized by either an electronic circuit or an arithmetic processing unit.
 ここで、旋回用電動機21の出力トルクは旋回用電動機21へ供給される電圧値の二乗に比例する。このため、旋回用電動機21へ供給される電圧値が低下すると、出力トルクが大幅に低下してしまう。このため、操作装置26からの指令に基づくトルクを出力するため多くの電流が必要となるが、連続稼働を行うハイブリッド型作業機械では、バッテリ130の発熱のため、定格電流値以上は流せないので出力不足となり、作業の中断を生じてしまう。 Here, the output torque of the turning electric motor 21 is proportional to the square of the voltage value supplied to the turning electric motor 21. For this reason, if the voltage value supplied to the electric motor 21 for rotation falls, output torque will fall significantly. For this reason, a large amount of current is required to output a torque based on a command from the operating device 26. However, in a hybrid work machine that continuously operates, the battery 130 cannot generate a current exceeding the rated current value due to heat generation. The output is insufficient and the work is interrupted.
 このため、旋回用電動機21への供給電圧は一定にするため、DCバス電圧値を電圧制御により一定に維持することが望ましい。リフティングマグネット6へ供給される場合も同様である。このため、図4を用いて、DCバス110の電圧を維持するため、コンバータ100における電圧制御方法を説明する。 Therefore, in order to keep the supply voltage to the turning electric motor 21 constant, it is desirable to keep the DC bus voltage value constant by voltage control. The same applies to the case of being supplied to the lifting magnet 6. Therefore, a voltage control method in converter 100 will be described with reference to FIG. 4 in order to maintain the voltage of DC bus 110.
 図4は、本実施形態のハイブリッド型作業機械に用いる昇降圧コンバータ100の駆動制御部50の回路構成を制御ブロックで示す図である。図4に示すように、昇降圧コンバータ100の駆動制御部50は、電圧制御部51及び昇降圧切替部52を備える。 FIG. 4 is a diagram showing the circuit configuration of the drive control unit 50 of the buck-boost converter 100 used in the hybrid work machine of the present embodiment in a control block. As shown in FIG. 4, the drive control unit 50 of the step-up / down converter 100 includes a voltage control unit 51 and a step-up / down switching unit 52.
 駆動制御部50には、電源接続端子103、出力端子104、昇圧用PM(Power Module)53、及び降圧用PM54が接続される。これらは、図3に示すハードウェア構成を実現可能とするように接続される。すなわち、駆動制御部50によって昇圧用PM53及び降圧用PM54に含まれる昇圧用IGBT102A及び降圧用IGBT102BがPWM駆動され、その結果、電源接続端子103からバッテリ電圧値Vbat(=vbat_det)及びバッテリ電流値Ibat(=ibat_det)が出力され、出力端子104からDCバス電圧値Vout(=vdc_det)が出力される。 The drive control unit 50 is connected to a power connection terminal 103, an output terminal 104, a step-up PM (Power module) 53, and a step-down PM 54. These are connected so that the hardware configuration shown in FIG. 3 can be realized. That is, the boost control IGBT 53A and the step-down IGBT 102B included in the step-up PM 53 and the step-down PM 54 are PWM-driven by the drive control unit 50. As a result, the battery voltage value Vbat (= vbat_det) and the battery current value Ibat (= Ibat_det) is output, and the DC bus voltage value Vout (= vdc_det) is output from the output terminal 104.
 電圧制御部51は、目標電圧値Vout_refと、出力端子104から出力されるDCバス電圧値Voutとの差に基づいてPI(Proportional Integral)制御を行うことにより、昇圧用IBGT102A及び降圧用IGBT102Bを駆動制御するためのスイッチングデューティduty_refを演算する。 The voltage control unit 51 drives the step-up IGBT 102A and the step-down IGBT 102B by performing PI (Proportional Integral) control based on the difference between the target voltage value Vout_ref and the DC bus voltage value Vout output from the output terminal 104. The switching duty duty_ref for control is calculated.
 ここで、本実施形態の昇降圧コンバータ100では、昇圧用IGBT102Aを駆動するためのスイッチングデューティと、降圧用IGBT102Bを駆動するためのスイッチングデューティとに互いに異なる符号を用いて区別している。このため、上述したスイッチングデューティには、昇圧用IGBT102Aの駆動用に正の符号を付し、降圧用IGBT102Bの駆動用に負の符号を付す。 Here, in the step-up / down converter 100 of the present embodiment, the switching duty for driving the step-up IGBT 102A and the switching duty for driving the step-down IGBT 102B are distinguished from each other by using different signs. For this reason, the switching duty described above is given a positive sign for driving the step-up IGBT 102A and given a negative sign for driving the step-down IGBT 102B.
 ここで、Vout_Iは電圧制御部51で演算される電圧積分値、Vout_Pは電圧制御部51で演算される電圧比例値である。また、duty_refは電圧制御部51で演算されるスイッチングデューティであり、駆動用デューティduty_refとして昇降圧切替部52に伝送される。なお、駆動用デューティduty_refは、昇圧駆動用の駆動用デューティには正の符号が付され、昇降圧駆動用の駆動用デューティには負の符号が付される。 Here, Vout_I is a voltage integral value calculated by the voltage control unit 51, and Vout_P is a voltage proportional value calculated by the voltage control unit 51. The duty_ref is a switching duty calculated by the voltage control unit 51 and is transmitted to the step-up / step-down switching unit 52 as a driving duty duty_ref. The drive duty duty_ref is given a positive sign for the drive duty for boost drive and a negative sign for the drive duty for step-up / step-down drive.
 昇降圧切替部52は、駆動用デューティduty_refの符号に基づき、この駆動用デューティduty_refによって駆動されるパワーモジュールを昇圧用PM53又は降圧用PM54のいずれかに決定する。 The step-up / step-down switching unit 52 determines the power module driven by the driving duty duty_ref as either the boosting PM 53 or the step-down PM 54 based on the sign of the driving duty duty_ref.
 昇圧用PM53は、上述の昇圧用IGBT102Aと、この昇圧用IGBT102Aを駆動するための駆動回路及び自己保護機能とを組み込んだパワーモジュールである。 The boosting PM 53 is a power module incorporating the above-described boosting IGBT 102A, a driving circuit for driving the boosting IGBT 102A, and a self-protection function.
 同様に、降圧用PM54は、上述の降圧用IGBT102Bと、この降圧用IGBT102Bを駆動するための駆動回路及び自己保護機能とを組み込んだパワーモジュールである。 Similarly, the step-down PM 54 is a power module that incorporates the step-down IGBT 102B described above, a drive circuit for driving the step-down IGBT 102B, and a self-protection function.
 なお、図4にはリアクトルを図示しないが、電源接続端子103から出力されるバッテリ電流値Ibatは、リアクトルを通流する電流である。 Although the reactor is not shown in FIG. 4, the battery current value Ibat output from the power connection terminal 103 is a current flowing through the reactor.
 また、上述のように、降圧用PM54に含まれる降圧用IGBT102Bには、昇降圧切替部52から負の駆動用デューティduty_refが伝送されるため、符号を反転(-1倍)するように構成されている。 Further, as described above, since the negative drive duty duty_ref is transmitted from the step-up / down switching unit 52 to the step-down IGBT 102B included in the step-down PM 54, the sign is reversed (−1 times). ing.
 このように、本実施形態によるハイブリッド型作業機械によれば、複数のインバータ(18A、18B、及び20)に接続されるDCバス110とバッテリ19との間にDCバス電圧値を一定に保持するように駆動制御が行われる昇降圧コンバータ100を配設しているので、電動発電機12、リフティングマグネット6、及び旋回用電動機21の様々な駆動状態に応じてDCバス電圧値は略一定に保持される。 Thus, according to the hybrid work machine according to the present embodiment, the DC bus voltage value is kept constant between the DC bus 110 and the battery 19 connected to the plurality of inverters (18A, 18B, and 20). Since the step-up / step-down converter 100 is controlled in this manner, the DC bus voltage value is kept substantially constant according to various drive states of the motor generator 12, the lifting magnet 6, and the turning motor 21. Is done.
 そして、このようにDCバス電圧値が略一定に保持されることにより、電気負荷の制御性のばらつきや、過電圧によるインバータの損傷等を抑制することができ、さらに、過電圧(過充電)によるバッテリ19の損傷を抑制することができる。 In addition, by maintaining the DC bus voltage value substantially constant in this manner, it is possible to suppress variations in controllability of the electric load, damage to the inverter due to overvoltage, and the like, as well as a battery due to overvoltage (overcharge). 19 damage can be suppressed.
 ところで、図4に示すように、DCバス110の目標電圧値(Vout_ref)、DCバス電圧値Vout(=vdc_det)、及びバッテリ電圧値Vbat(=vbat_det)に基づく電圧制御では、ハイブリッド型作業機械の仕様や負荷106の駆動状態によっては、負荷106の駆動に多大な電力が必要となり、バッテリ19に通流する電流値の監視を行った方がよい場合もある。 By the way, as shown in FIG. 4, in the voltage control based on the target voltage value (Vout_ref), the DC bus voltage value Vout (= vdc_det), and the battery voltage value Vbat (= vbat_det) of the DC bus 110, the hybrid work machine Depending on the specifications and the driving state of the load 106, a large amount of electric power is required for driving the load 106, and it may be better to monitor the current value flowing through the battery 19.
 そこで、本実施形態において、上述した電圧制御に加えて、さらに次に説明するような電流制御を行うことにより、バッテリ19の保護の強化を図ってもよい。 Therefore, in the present embodiment, in addition to the voltage control described above, current control as described below may be further performed to enhance protection of the battery 19.
 図5は、第1の実施形態の変形例によるハイブリッド型作業機械に用いる昇降圧コンバータ100の駆動制御部50の回路構成を制御ブロックで示す図である。この図に示すように、実施の形態1の昇降圧コンバータ100の駆動制御部50は、電圧制御部51、及び昇降圧切替部52に加えて、電流制御部55及び制御切替部56を備える。 FIG. 5 is a diagram illustrating a circuit configuration of the drive control unit 50 of the buck-boost converter 100 used in the hybrid work machine according to the modification of the first embodiment in a control block. As shown in this figure, the drive control unit 50 of the buck-boost converter 100 according to the first embodiment includes a current control unit 55 and a control switching unit 56 in addition to the voltage control unit 51 and the buck-boost switching unit 52.
 なお、図5に示す制御ブロックでは、電圧制御部51が演算するスイッチングデューティduty_vを第1スイッチングデューティduty_vとする。 In the control block shown in FIG. 5, the switching duty duty_v calculated by the voltage control unit 51 is set as the first switching duty duty_v.
 電流制御部55は、電流閾値Ibat_refと、電源接続端子103から出力されるバッテリ電流値Ibatとの差に基づいてPI制御を行うことにより、昇圧用IBGT102A及び降圧用IGBT102Bを駆動制御するための第2スイッチングデューティduty_iを演算する。 The current control unit 55 performs PI control based on the difference between the current threshold value Ibat_ref and the battery current value Ibat output from the power supply connection terminal 103, thereby driving and controlling the step-up IGBT 102A and the step-down IGBT 102B. 2 Calculate the switching duty duty_i.
 図5に示す制御ブロックでは、第1スイッチングデューティ及び第2スイッチングデューティの各々には、昇圧用IGBT102Aの駆動用に正の符号を付し、降圧用IGBT102Bの駆動用に負の符号を付す。 In the control block shown in FIG. 5, each of the first switching duty and the second switching duty is given a positive sign for driving the step-up IGBT 102A and given a negative sign for driving the step-down IGBT 102B.
 制御切替部56は、リアクトル101又は負荷106(出力端子104)の負荷が所定負荷以下になるように、電圧制御部51又は電流制御部55のいずれかを選択的に切り替える。具体的には、電圧制御部51による駆動制御が行われているときに、リアクトル101を通流する電流の絶対値が電流閾値よりも大きくなると、電流制御部55による駆動制御に切り替える。また、電流制御部55による駆動制御が行われているときに、出力端子104の端子電圧値が目標電圧値よりも高くなると、電圧制御部51による駆動制御に切り替える。 The control switching unit 56 selectively switches either the voltage control unit 51 or the current control unit 55 so that the load of the reactor 101 or the load 106 (output terminal 104) is equal to or lower than a predetermined load. Specifically, when the drive control by the voltage control unit 51 is being performed, if the absolute value of the current flowing through the reactor 101 becomes larger than the current threshold, the drive control is switched to the current control unit 55. Further, when the drive control by the current control unit 55 is performed, if the terminal voltage value of the output terminal 104 becomes higher than the target voltage value, the drive control is switched to the voltage control unit 51.
 このような電圧制御と電流制御との切り替えは、制御切替部56がプラス(+)に接続されるか(電圧制御)、マイナス(-)に接続されるか(電流制御)によって行われる。 Such switching between voltage control and current control is performed depending on whether the control switching unit 56 is connected to plus (+) (voltage control) or connected to minus (−) (current control).
 なお、Vout_Iは電圧制御部51で演算される電圧積分値、duty_iは電流制御部55で演算される第2スイッチングデューティ、Vout_Pは電圧制御部51で演算される電圧比例値である。また、Ibat_Iは電流制御部55で演算される電流積分値、duty_vは電圧制御部51で演算される第1スイッチングデューティ、Ibat_Pは電流制御部55で演算される電流比例値である。 Note that Vout_I is a voltage integral value calculated by the voltage control unit 51, duty_i is a second switching duty calculated by the current control unit 55, and Vout_P is a voltage proportional value calculated by the voltage control unit 51. Ibat_I is a current integrated value calculated by the current control unit 55, duty_v is a first switching duty calculated by the voltage control unit 51, and Ibat_P is a current proportional value calculated by the current control unit 55.
 制御切替部56は、電圧制御部51から得られる第1スイッチングデューティと、電流制御部55から得られる第2スイッチングデューティとのいずれかを昇圧用PM53及び降圧用PM54を駆動するための駆動用デューティduty_refとして選択する。 The control switching unit 56 uses one of the first switching duty obtained from the voltage control unit 51 and the second switching duty obtained from the current control unit 55 to drive the boosting PM 53 and the step-down PM 54. Select as duty_ref.
 この選択は、バッテリ電流値Ibatが電源供給電流閾値Ibat_refを超えると、電流制御部55(すなわち、第2スイッチングデューティ)による駆動制御に切り替え、DCバス電圧値Voutが出力目標電圧値Vout_refに復帰すると、電圧制御部51(すなわち、第1スイッチングデューティ)による駆動制御部に復帰させることによって行なわれる。 When the battery current value Ibat exceeds the power supply current threshold Ibat_ref, the selection is switched to drive control by the current control unit 55 (that is, the second switching duty), and the DC bus voltage value Vout returns to the output target voltage value Vout_ref. This is performed by returning to the drive control unit by the voltage control unit 51 (that is, the first switching duty).
 選択された駆動用デューティduty_refは、昇降圧切替部52に伝送される。なお、この駆動用デューティduty_refは、第1スイッチングデューティ、又は第2スイッチングデューティのいずれかであるため、昇圧駆動用の駆動用デューティには正の符号が付され、昇降圧駆動用の駆動用デューティには負の符号が付される。 The selected drive duty duty_ref is transmitted to the step-up / step-down switching unit 52. Since this driving duty duty_ref is either the first switching duty or the second switching duty, a positive sign is attached to the driving duty for boost driving, and the driving duty for step-up / down driving. Is assigned a negative sign.
 昇降圧切替部52は、制御切替部56から伝送される駆動用デューティduty_refの符号に基づき、この駆動用デューティduty_refによって駆動されるパワーモジュールを昇圧用PM53又は降圧用PM54のいずれかに決定する。 The step-up / step-down switching unit 52 determines, based on the sign of the driving duty duty_ref transmitted from the control switching unit 56, the power module driven by this driving duty duty_ref as either the step-up PM53 or the step-down PM54.
 なお、図5にはリアクトルを図示しないが、電源接続端子103から出力されるバッテリ電流値Ibatは、リアクトルを通流する電流である。 Although the reactor is not shown in FIG. 5, the battery current value Ibat output from the power connection terminal 103 is a current flowing through the reactor.
 図6A及び6Bは、本実施形態における電流制限方法を示す図である。図6Aはバッテリ電流許容値Ibat_lim、バッテリ電流値Ibat、及びDCバス110に通流する電流値(DCバス電流値)Idcの関係を示す特性図である。図6BはDCバス電流値Idcとインバータ18A、18B、及び20の各々に通流する電流値とを示す特性図である。 6A and 6B are diagrams showing a current limiting method in the present embodiment. FIG. 6A is a characteristic diagram showing the relationship between the allowable battery current value Ibat_lim, the battery current value Ibat, and the current value (DC bus current value) Idc flowing through the DC bus 110. FIG. 6B is a characteristic diagram showing the DC bus current value Idc and the current value flowing through each of the inverters 18A, 18B, and 20.
 図6Aに示すDCバス電流値Idcは、図2に示すインバータ18A、18B、及び20に通流する電流の合計となる。すなわち、図6Bに示すように、DCバス電流値Idcは、インバータ18Aに通流する電流値I1、インバータ18Bに通流する電流値I2、及びインバータ20に通流する電流値I3の合計であり、以下の式(1)が成立する。 The DC bus current value Idc shown in FIG. 6A is the sum of the currents flowing through the inverters 18A, 18B, and 20 shown in FIG. That is, as shown in FIG. 6B, the DC bus current value Idc is the sum of the current value I1 flowing through the inverter 18A, the current value I2 flowing through the inverter 18B, and the current value I3 flowing through the inverter 20. The following formula (1) is established.
 Idc =I1+I2+I3・・・(1)
 本実施例では、図4に示す制御ブロックによる電圧制御に加えて、図6Aに示すように、バッテリ電流値Ibatがバッテリ電流許容値Ibat_lim以下となるように電流制限を行ってもよい。このような電流制御は、例えば、電流閾値Ibat_ref を Ibat_limに設定することによって実現することができる。この電流制御を行った場合は、バッテリ電流値Ibatの動作領域からは図6Aに示すバッテリ電流許容値Ibat_limを超える領域が除かれることになる。
Idc = I1 + I2 + I3 (1)
In the present embodiment, in addition to the voltage control by the control block shown in FIG. 4, as shown in FIG. 6A, current limitation may be performed so that the battery current value Ibat is equal to or less than the battery current allowable value Ibat_lim. Such current control can be realized, for example, by setting the current threshold value Ibat_ref to Ibat_lim. When this current control is performed, a region exceeding the battery current allowable value Ibat_lim shown in FIG. 6A is excluded from the operation region of the battery current value Ibat.
 ここで、昇降圧コンバータ100における変換効率をηとして、電圧検出部111で検出されるDCバス電圧vdc_det、バッテリ電圧検出部112で検出されるバッテリ19の電圧値vbat_det、及びDCバス電流値Idcを用いると、バッテリ電流値Ibatは、以下の式(2)で表すことができる。 Here, assuming that the conversion efficiency in the buck-boost converter 100 is η, the DC bus voltage vdc_det detected by the voltage detector 111, the voltage value vbat_det of the battery 19 detected by the battery voltage detector 112, and the DC bus current value Idc are When used, the battery current value Ibat can be expressed by the following equation (2).
 Ibat=1/η×(vdc_det/vbat_det)×Idc・・・(2)
 このため、式(2)で表されるバッテリ電流値Ibatが駆動制御部50によってバッテリ電流許容値Ibat_lim以下となるように電流制限が行われることにより、バッテリ19(バッテリ19)の過電流を抑制することができる。このバッテリ電流許容値Ibat_limは、例えば、定格電流の値に設定すればよい。これにより、それぞれの駆動部における負荷要求が高くて、インバータ18A、18B、20に通電する電流に対して、バッテリの出力が制限されることで、過剰なバッテリの充放電を防止することができ、異常な発熱を防ぐことができる。これにより、バッテリの寿命を延ばすことができる。
Ibat = 1 / η × (vdc_det / vbat_det) × Idc (2)
For this reason, current limitation is performed by the drive control unit 50 so that the battery current value Ibat represented by the expression (2) is equal to or less than the battery current allowable value Ibat_lim, thereby suppressing the overcurrent of the battery 19 (battery 19). can do. The battery current allowable value Ibat_lim may be set to a rated current value, for example. Thereby, the load demand in each drive unit is high, and the output of the battery is limited with respect to the current supplied to the inverters 18A, 18B, and 20, thereby preventing excessive charge / discharge of the battery. Can prevent abnormal fever. Thereby, the lifetime of a battery can be extended.
 昇降圧コンバータ100における電流損失は、バッテリ電流値Ibatと昇降圧コンバータ100の内部抵抗との積で表される。本実施形態によれば、バッテリ電流値Ibatがバッテリ電流許容値Ibat_lim以下となるように制限されることにより、バッテリ電流値Ibatが比較的小さいため、昇降圧コンバータ100における電流損失を低減することができる。 The current loss in the buck-boost converter 100 is represented by the product of the battery current value Ibat and the internal resistance of the buck-boost converter 100. According to the present embodiment, since the battery current value Ibat is relatively small by limiting the battery current value Ibat to be equal to or less than the battery current allowable value Ibat_lim, current loss in the buck-boost converter 100 can be reduced. it can.
 また、負荷106の出力は、供給される電圧に比例するとともに電流値に比例する。ここで、負荷106の出力を増大させる場合には、電圧又は電流(あるいはこれらの両方)を増大させる必要がある。このため、DCバス電圧値の出力目標電圧値Vout_refを比較的高く設定しておけば、バッテリ電流値Ibatがバッテリ電流許容値Ibat_limに制限されていても、昇降圧コンバータ100における電流損失を低減しつつ、負荷106の出力を効率的に増大させることができる。 Also, the output of the load 106 is proportional to the supplied voltage and proportional to the current value. Here, when increasing the output of the load 106, it is necessary to increase the voltage and / or current (or both). Therefore, if the output target voltage value Vout_ref of the DC bus voltage value is set relatively high, even if the battery current value Ibat is limited to the allowable battery current value Ibat_lim, the current loss in the buck-boost converter 100 is reduced. Meanwhile, the output of the load 106 can be increased efficiently.
 なお、DCバス110にインバータ18A、18B、及び20を介して電動発電機12、リフティングマグネット6、及び旋回用電動機21が接続される形態について説明したが、作業要素はハイブリッド型作業機械の仕様に応じて変更されてもよい。例えば、リフティングマグネット6ではなくバケットを備えるハイブリッド型作業機械には、インバータ18B及びリフティングマグネット6は含まれない。また、ブーム軸やアーム軸等に発電機を備える場合は、この発電機をインバータを介してDCバス110に接続してもよい。 In addition, although the motor generator 12, the lifting magnet 6, and the turning electric motor 21 are connected to the DC bus 110 via the inverters 18A, 18B, and 20, the working elements are the specifications of the hybrid work machine. It may be changed accordingly. For example, the inverter 18B and the lifting magnet 6 are not included in a hybrid work machine including a bucket instead of the lifting magnet 6. Further, when a generator is provided on the boom shaft, arm shaft, or the like, this generator may be connected to the DC bus 110 via an inverter.
 (第2の実施形態)
 上述の第1の実施形態によれば、DCバスの電圧変動を抑制することができるが、より確実にDCバスの電圧変動を抑制するには、以下に説明する第2の実施形態のように、DCバスを分割することが好ましい。すなわち、第2の実施形態は上述の第1の実施形態をさらに発展させたものである。
(Second Embodiment)
According to the first embodiment described above, the voltage fluctuation of the DC bus can be suppressed. However, in order to more reliably suppress the voltage fluctuation of the DC bus, as in the second embodiment described below. The DC bus is preferably divided. That is, the second embodiment is a further development of the first embodiment described above.
 図7は、第2の実施形態によるハイブリッド型作業機械の構成を示すブロック図である。図7では、機械的動力系を二重線、高圧油圧ラインを実線、パイロットラインを破線、電気駆動・制御系を実線でそれぞれ示す。 FIG. 7 is a block diagram showing the configuration of the hybrid work machine according to the second embodiment. In FIG. 7, the mechanical power system is indicated by a double line, the high-pressure hydraulic line is indicated by a solid line, the pilot line is indicated by a broken line, and the electric drive / control system is indicated by a solid line.
 第2の実施形態によるハイブリッド型作業機械は、第1の実施形態によるハイブリッド型作業機械とは、DCバスが2つ(110Aと110B)に分割されている点が異なる。また、これに伴い、電動発電機12、リフティングマグネット6、及び旋回用電動機21の接続も実施の形態1とは異なる。さらに、電気負荷としてブーム4のブーム軸に接続される発電機200を備える点が第1の実施形態と異なる。その他の構成は第1の実施形態のハイブリッド型作業機械と同等であり、同一の構成要素には同一符号を付し、その説明を省略する。 The hybrid work machine according to the second embodiment is different from the hybrid work machine according to the first embodiment in that the DC bus is divided into two (110A and 110B). Accordingly, the connection of the motor generator 12, the lifting magnet 6, and the turning electric motor 21 is also different from that of the first embodiment. Furthermore, the point provided with the generator 200 connected to the boom axis | shaft of the boom 4 as an electric load differs from 1st Embodiment. Other configurations are the same as those of the hybrid work machine according to the first embodiment, and the same components are denoted by the same reference numerals and the description thereof is omitted.
 DCバス110Aには、インバータ18A、18B、及び18Cを介して電動発電機12、リフティングマグネット6、及び発電機200が接続されている。DCバス110Bには、インバータ20を介して旋回用電動発電機21が接続されている。 The motor generator 12, the lifting magnet 6, and the generator 200 are connected to the DC bus 110A via inverters 18A, 18B, and 18C. A turning motor generator 21 is connected to the DC bus 110 </ b> B via an inverter 20.
 発電機200は、図1に示すブーム4のブーム軸に接続されており、ブーム4がブームシリンダ7によって油圧で駆動される際に発電を行うブーム回生用の発電機である。発電された電力は、回生エネルギとしてインバータ18Cを経てDCバス110Aに供給される。 The generator 200 is connected to the boom shaft of the boom 4 shown in FIG. 1 and is a generator for boom regeneration that generates power when the boom 4 is hydraulically driven by the boom cylinder 7. The generated electric power is supplied as regenerative energy to the DC bus 110A via the inverter 18C.
 第2の実施形態によるハイブリッド型作業機械の駆動制御装置では、電動発電機12、リフティングマグネット6、及び発電機200と、旋回用電動機21とは、別々のDCバス110Aと110Bに接続されており、さらに、DCバス110Aとバッテリ19の間には、昇降圧コンバータ100が接続されている。 In the drive control device for the hybrid work machine according to the second embodiment, the motor generator 12, the lifting magnet 6, the generator 200, and the turning motor 21 are connected to separate DC buses 110A and 110B. Further, a step-up / down converter 100 is connected between the DC bus 110 </ b> A and the battery 19.
 このため、電動発電機12、リフティングマグネット6、及び発電機200は、DCバス110Aを介して昇降圧コンバータ100との間で電力の授受を行い、旋回用電動機21は、DCバス110Bとの間で電力の授受を行う。 Therefore, the motor generator 12, the lifting magnet 6, and the generator 200 exchange power with the step-up / down converter 100 via the DC bus 110A, and the turning motor 21 communicates with the DC bus 110B. Send and receive power at.
 このように、電動発電機12と旋回用電動機21との電力供給系統を分けているのは、電動発電機12、リフティングマグネット6、及び発電機200の供給電圧を一定にして、各駆動部を精度良く制御するためである。 In this way, the electric power supply system of the motor generator 12 and the turning electric motor 21 is divided so that the supply voltages of the motor generator 12, the lifting magnet 6, and the generator 200 are constant, and each drive unit is This is for controlling with high accuracy.
 DCバス110Aには、DCバスの電圧値(以下、実施の形態2においてDCバス電圧値と称す)を検出するためのDCバス電圧検出部111がそれぞれ配設されている。検出されるDCバス電圧値は、コントローラ30に入力される。 The DC bus 110A is provided with a DC bus voltage detector 111 for detecting a voltage value of the DC bus (hereinafter referred to as a DC bus voltage value in the second embodiment). The detected DC bus voltage value is input to the controller 30.
 バッテリ19の昇降圧コンバータ100が接続されている側の端子間には、バッテリ電圧値を検出するためのバッテリ電圧検出部112が接続されており、バッテリ19と昇降圧コンバータ100の間には、昇降圧コンバータ100を経てバッテリ19に流れるバッテリ電流値を検出するためのバッテリ電流検出部113が配設されている。これらによって検出されるバッテリ電圧値とコンバータ電流値は、コントローラ30に入力される。 A battery voltage detector 112 for detecting a battery voltage value is connected between the terminals of the battery 19 on which the buck-boost converter 100 is connected, and between the battery 19 and the buck-boost converter 100, A battery current detector 113 for detecting a battery current value flowing through the battery 19 via the step-up / down converter 100 is provided. The battery voltage value and converter current value detected by these are input to the controller 30.
 ここで、各検出部について説明する。 Here, each detection unit will be described.
 DCバス電圧検出部111は、DCバス110Aの電圧値を検出するための電圧検出部である。検出されるDCバス電圧値はコントローラ30に入力され、このDCバス電圧値を一定の範囲内に収めるための昇圧動作と降圧動作の切替制御を行うために用いられる。 The DC bus voltage detection unit 111 is a voltage detection unit for detecting the voltage value of the DC bus 110A. The detected DC bus voltage value is input to the controller 30, and is used for switching control between the step-up operation and the step-down operation for keeping the DC bus voltage value within a certain range.
 バッテリ電圧検出部112は、バッテリ19の電圧値を検出するための電圧検出部であり、バッテリの充電状態を検出するために用いられる。検出されるバッテリ電圧値は、コントローラ30に入力され、昇降圧コンバータ100の昇圧動作と降圧動作の切替制御を行うために用いられる。 The battery voltage detection unit 112 is a voltage detection unit for detecting the voltage value of the battery 19, and is used for detecting the state of charge of the battery. The detected battery voltage value is input to the controller 30 and used for switching control between the step-up / step-down operation of the step-up / step-down converter 100.
 バッテリ電流検出部113は、昇降圧コンバータ100を経てバッテリ19に供給される電流値を検出するための電流検出部である。バッテリ電流値は、バッテリ19から昇降圧コンバータ100に流れる電流を正の値として検出される。検出されるバッテリ電流値は、コントローラ30に入力され、昇降圧コンバータ100の昇降圧制御の応答性の向上のために用いられる。 The battery current detection unit 113 is a current detection unit for detecting a current value supplied to the battery 19 through the buck-boost converter 100. As the battery current value, a current flowing from the battery 19 to the step-up / down converter 100 is detected as a positive value. The detected battery current value is input to the controller 30 and used for improving the responsiveness of the step-up / step-down control of the step-up / step-down converter 100.
 本実施形態によるハイブリッド型作業機械は、エンジン11、電動発電機12、リフティングマグネット6、発電機200及び旋回用電動機21を動力源とするハイブリッド型作業機械である。これらの動力源は、図1に示す上部旋回体3に搭載される。以下、第1の実施形態と相違する各部の構成について説明する。 The hybrid work machine according to the present embodiment is a hybrid work machine that uses the engine 11, the motor generator 12, the lifting magnet 6, the generator 200, and the turning electric motor 21 as power sources. These power sources are mounted on the upper swing body 3 shown in FIG. Hereinafter, the configuration of each part different from the first embodiment will be described.
 インバータ18Aは、電動発電機12と昇降圧コンバータ100との間に設けられ、コントローラ30からの指令に基づき、電動発電機12の運転制御を行う。これにより、インバータ18Aが電動発電機12の電動(アシスト)運転を制御している際には、必要な電力をバッテリ19と昇降圧コンバータ100からDCバス110Aを介して電動発電機12に供給する。また、電動発電機12が発電運転を制御している際には、電動発電機12により発電された電力をDCバス110A及び昇降圧コンバータ100へ供給する。 The inverter 18A is provided between the motor generator 12 and the buck-boost converter 100, and controls the operation of the motor generator 12 based on a command from the controller 30. Thus, when the inverter 18A controls the electric (assist) operation of the motor generator 12, the necessary power is supplied from the battery 19 and the step-up / down converter 100 to the motor generator 12 via the DC bus 110A. . Further, when the motor generator 12 is controlling the power generation operation, the electric power generated by the motor generator 12 is supplied to the DC bus 110 </ b> A and the step-up / down converter 100.
 インバータ18Cは、発電機200と昇降圧コンバータ100との間に設けられ、発電機200の駆動制御を行う。具体的には、ブーム4が上昇又は下降されることによって発電機200が回生運転を行う際には、発電機200により発電された電力をDCバス110A及び昇降圧コンバータ100へ供給する。 The inverter 18 </ b> C is provided between the generator 200 and the buck-boost converter 100 and performs drive control of the generator 200. Specifically, when the generator 200 performs a regenerative operation by raising or lowering the boom 4, the electric power generated by the generator 200 is supplied to the DC bus 110 </ b> A and the step-up / down converter 100.
 バッテリ19は、一端側(図中左側)で昇降圧コンバータ100を介してインバータ18A、18B、及び18Cに接続されるとともに、他端側(図中右側)でインバータ20に接続されている。このため、バッテリ19は、電動発電機12の電動(アシスト)運転、リフティングマグネット6の励磁、又は旋回用電動機21の力行運転が行われる場合には必要な電力を供給する。また、電動発電機12の発電運転、リフティングマグネット6の消磁、発電機200の回生運転、又は旋回用電動機21の回生運転が行われる際には、回生電力を電気エネルギとして蓄積する。 The battery 19 is connected to the inverters 18A, 18B, and 18C via the buck-boost converter 100 on one end side (left side in the figure) and connected to the inverter 20 on the other end side (right side in the figure). Therefore, the battery 19 supplies necessary electric power when the motor generator 12 is electrically operated (assist), the lifting magnet 6 is excited, or the turning motor 21 is powered. In addition, when the motor generator 12 performs the power generation operation, the lifting magnet 6 demagnetization, the generator 200 regenerative operation, or the revolving motor 21 regenerative operation, the regenerative power is stored as electric energy.
 なお、DCバス110Aには、インバータ18A、18B、及び18Cを介して、電動発電機12、リフティングマグネット6、及び発電機200が接続されているため、電動発電機12で発電された電力がリフティングマグネット6に直接的に供給される場合がある。また、発電機200で回生された電力が電動発電機12又はリフティングマグネット6に供給される場合もある。 Since the motor generator 12, the lifting magnet 6, and the generator 200 are connected to the DC bus 110A via inverters 18A, 18B, and 18C, the electric power generated by the motor generator 12 is lifted. The magnet 6 may be supplied directly. Further, the electric power regenerated by the generator 200 may be supplied to the motor generator 12 or the lifting magnet 6.
 バッテリ19の充放電制御は、バッテリ19の充電状態、電動発電機12の運転状態(電動(アシスト)運転又は発電運転)、リフティングマグネット6の駆動状態、及び、発電機200の発電状態に基づき、昇降圧コンバータ100によって行われる。この昇降圧コンバータ100の昇圧動作と降圧動作の切替制御は、DCバス電圧検出部111によって検出されるDCバス電圧値、バッテリ電圧検出部112によって検出されるバッテリ電圧値、及びバッテリ電流検出部113によって検出されるバッテリ電流値に基づき、コントローラ30によって行われる。 The charge / discharge control of the battery 19 is based on the charge state of the battery 19, the operation state of the motor generator 12 (electric (assist) operation or power generation operation), the driving state of the lifting magnet 6, and the power generation state of the generator 200. This is done by the buck-boost converter 100. Switching control between the step-up / step-down operation of the step-up / step-down converter 100 is performed by controlling the DC bus voltage value detected by the DC bus voltage detection unit 111, the battery voltage value detected by the battery voltage detection unit 112, and the battery current detection unit 113. Is performed by the controller 30 based on the battery current value detected by.
 なお、旋回用電動機21は、DCバス110Bを介してバッテリ19に直接的に接続されているため、DCバス110Bの電圧値はバッテリ19の充電電圧値と等しく、昇降圧コンバータ100の昇降圧制御は、旋回用電動機21の運転状態(力行運転又は回生運転)とは無関係に行われる。 Since the turning electric motor 21 is directly connected to the battery 19 via the DC bus 110B, the voltage value of the DC bus 110B is equal to the charging voltage value of the battery 19, and the step-up / step-down control of the step-up / down converter 100 is performed. Is performed regardless of the operating state (powering operation or regenerative operation) of the electric motor 21 for turning.
 インバータ20は、旋回用電動機21とバッテリ19の間に直接的に設けられ、コントローラ30からの指令に基づき、旋回用電動機21に対して運転制御を行う。インバータが旋回用電動機21の力行運転を制御している際には、必要な電力がバッテリ19から旋回用電動機21に供給される。また、旋回用電動機21の回生運転を制御している際には、旋回用電動機21により発電された電力がDCバス110Bへ供給される。 The inverter 20 is directly provided between the turning electric motor 21 and the battery 19, and performs operation control on the turning electric motor 21 based on a command from the controller 30. When the inverter controls the power running operation of the turning electric motor 21, necessary electric power is supplied from the battery 19 to the turning electric motor 21. Further, when the regenerative operation of the turning electric motor 21 is controlled, the electric power generated by the turning electric motor 21 is supplied to the DC bus 110B.
 昇降圧コンバータ100は、一側がDCバス110A及びインバータ18A乃至18Cを介して電動発電機12、リフティングマグネット6、及び発電機200に接続されるとともに、他側がバッテリ19に接続されており、電動発電機12及びリフティングマグネット6の運転状態(駆動状態)と、発電機200の発電状態とに応じて、昇圧動作又は降圧動作を切り替える。 The buck-boost converter 100 is connected to the motor generator 12, the lifting magnet 6, and the generator 200 via the DC bus 110 </ b> A and inverters 18 </ b> A to 18 </ b> C on one side, and connected to the battery 19 on the other side. The step-up operation or the step-down operation is switched according to the operation state (drive state) of the machine 12 and the lifting magnet 6 and the power generation state of the generator 200.
 電動発電機12が電動(アシスト)運転を行う場合には、インバータ18Aを介して電動発電機12に電力を供給する必要があるため、DCバス電圧値を昇圧する。また、リフティングマグネット6を駆動する場合にも、インバータ18Bを介してリフティングマグネット6に電力を供給する必要があるため、DCバス電圧値を電動発電機12の回転数に応じて昇圧する。 When the motor generator 12 performs an electric driving (assist) operation, it is necessary to supply electric power to the motor generator 12 via the inverter 18A, so the DC bus voltage value is increased. Also, when driving the lifting magnet 6, it is necessary to supply power to the lifting magnet 6 via the inverter 18 </ b> B, so that the DC bus voltage value is increased according to the rotational speed of the motor generator 12.
 一方、電動発電機12が発電運転を行う場合には、発電された電力をインバータ18Aを介してバッテリ19に充電する必要があるため、DCバス電圧値を降圧する。また、リフティングマグネット6が消磁されて回生電力が得られる場合にも、電力をインバータ18Bを介してバッテリ19に充電する必要があるため、DCバス電圧値を降圧する。さらに、発電機200で発電が行われる場合にも、発電された電力をインバータ18Cを介してバッテリ19に充電する必要があるため、DCバス電圧値を降圧する。 On the other hand, when the motor generator 12 performs a power generation operation, it is necessary to charge the battery 19 through the inverter 18A with the generated power, so the DC bus voltage value is lowered. Even when the lifting magnet 6 is demagnetized and regenerative power is obtained, it is necessary to charge the battery 19 via the inverter 18B, so the DC bus voltage value is lowered. Furthermore, even when power generation is performed by the power generator 200, the battery 19 needs to be charged with the generated power via the inverter 18C, so the DC bus voltage value is reduced.
 このため、昇降圧コンバータ100は、電動発電機12及びリフティングマグネット6の運転状態(駆動状態)と発電機200の発電状態に応じて、DCバス110Aの電圧値が一定の範囲内に収まるように昇圧動作又は降圧動作を切り替える。 For this reason, the step-up / down converter 100 is configured so that the voltage value of the DC bus 110 </ b> A falls within a certain range in accordance with the operation state (drive state) of the motor generator 12 and the lifting magnet 6 and the power generation state of the generator 200. Switches between step-up and step-down operation.
 このように、DCバスを複数に分けた場合には、複数の駆動部が接続されているDCバスにインバータが接続される。これにより、図6を参照しながら説明したように、それぞれの駆動部における負荷要求が高くて、インバータ18A、18B、20に通電する電流に対して、バッテリの出力が制限されることで、過剰なバッテリの充放電を防止することができ、異常な発熱を防ぐことができる。これにより、バッテリの寿命を延ばすことができる。 Thus, when the DC bus is divided into a plurality of parts, an inverter is connected to the DC bus to which a plurality of drive units are connected. Accordingly, as described with reference to FIG. 6, the load demand in each drive unit is high, and the output of the battery is limited with respect to the current flowing through the inverters 18A, 18B, and 20 so that it is excessive. It is possible to prevent charging / discharging of the battery and to prevent abnormal heat generation. Thereby, the lifetime of a battery can be extended.
 そこで、本実施形態では、DCバスを2つに分割するとともに、一方のDCバス110Aだけに昇降圧コンバータ100を接続した。DCバスが2つに分割されることにより、一つのDCバスにすべての電気負荷を接続する場合よりもDCバスで取り扱う電力が小さくなるので、昇降圧コンバータの容量を小さくすることが可能になる。 Therefore, in this embodiment, the DC bus is divided into two, and the buck-boost converter 100 is connected to only one DC bus 110A. Since the DC bus is divided into two parts, the power handled by the DC bus is smaller than when all the electrical loads are connected to one DC bus, so that the capacity of the buck-boost converter can be reduced. .
 また、一方のDCバス110Aには昇降圧コンバータ100が接続されてDCバス電圧値はバッテリ19の電圧値(バッテリ電圧値)及び電流値(バッテリ電流値)を用いて略一定に保持されるため、昇降圧コンバータが接続されないDCバス110Bの電圧値は、DCバス110Aにも昇降圧コンバータが接続されない場合(すなわち2つのDCバス110A及び110Bのいずれにも昇降圧コンバータが接続されない場合)に比べて各段に安定する。 In addition, the step-up / down converter 100 is connected to one DC bus 110A, and the DC bus voltage value is held substantially constant using the voltage value (battery voltage value) and current value (battery current value) of the battery 19. The voltage value of the DC bus 110B to which the step-up / step-down converter is not connected is compared with the case where the step-up / step-down converter is not connected to the DC bus 110A (that is, the step-up / step-down converter is not connected to either of the two DC buses 110A and 110B). Stable in each stage.
 このため、本実施形態によれば、DCバスを2分割するとともに、その一方だけに昇降圧コンバータ100を接続することにより、動作の安定とコストダウンを両立したハイブリッド型作業機械を提供することができる。 For this reason, according to the present embodiment, by dividing the DC bus into two and connecting the buck-boost converter 100 to only one of them, it is possible to provide a hybrid work machine that achieves both stable operation and cost reduction. it can.
 また、このようにDCバス110Aの電圧値が略一定に保持されることにより、DCバス110Aに接続されている電動発電機12、リフティングマグネット6、及び発電機200だけでなく、昇降圧コンバータが配設されていないDCバス110Bに接続されている旋回用電動機21の制御性のばらつきや、過電流によるインバータの損傷等を抑制することができ、また、バッテリ19の損傷を抑制することができる。 In addition, since the voltage value of the DC bus 110A is held substantially constant in this way, not only the motor generator 12, the lifting magnet 6, and the generator 200 connected to the DC bus 110A, but also a step-up / down converter is provided. Variations in controllability of the turning electric motor 21 connected to the DC bus 110B that is not disposed, damage to the inverter due to overcurrent, and the like can be suppressed, and damage to the battery 19 can be suppressed. .
 また、本実施形態によれば、リフティングマグネット6が接続されるDCバス110Aとバッテリ19との間に昇降圧コンバータ100を備える。リフティングマグネット6は、重量の嵩む金属製の物品等を電磁吸着力によって吸着させて運搬作業を行うため、昇降圧コンバータ100が接続されるDCバス110Aに接続することにより、安定した電磁吸着力を発生させることができるので、制御性のばらつき抑制や、信頼性の向上を図ることができる。 Further, according to the present embodiment, the step-up / step-down converter 100 is provided between the DC bus 110 </ b> A to which the lifting magnet 6 is connected and the battery 19. The lifting magnet 6 adsorbs a heavy metal article or the like by an electromagnetic attraction force for carrying work. Therefore, the lifting magnet 6 is connected to the DC bus 110A to which the buck-boost converter 100 is connected, thereby providing a stable electromagnetic attraction force. Since it can be generated, controllability variation can be suppressed and reliability can be improved.
 なお、本実施形態では、DCバス110Aにインバータ18A、18B、及び18Cを介して電動発電機12、リフティングマグネット6、及び発電機200が接続され、DCバス110Bにインバータ20を介して旋回用電動機21が接続されているが、作業要素はハイブリッド型作業機械の仕様に応じて変更されてもよい。 In the present embodiment, the motor generator 12, the lifting magnet 6, and the generator 200 are connected to the DC bus 110A via the inverters 18A, 18B, and 18C, and the turning electric motor is connected to the DC bus 110B via the inverter 20. 21 is connected, but the work element may be changed according to the specifications of the hybrid work machine.
 例えば、リフティングマグネット6ではなくバケットを備えるハイブリッド型作業機械には、インバータ18B及びリフティングマグネット6は含まれない。また、ブーム軸の代わりに、あるいはブーム軸に加えてアーム軸等に発電機を備える場合は、その発電機がインバータを介してDCバス110Aに接続されてもよい。 For example, the inverter 18B and the lifting magnet 6 are not included in a hybrid work machine having a bucket instead of the lifting magnet 6. Further, when a generator is provided on the arm shaft or the like instead of the boom shaft or in addition to the boom shaft, the generator may be connected to the DC bus 110A via an inverter.
 また、昇降圧コンバータ100の昇降圧の切り替え制御は、第1の実施形態の変形例(図5及び図6A、6B)と同様に、電流制御を併せて行ってもよい。 Further, the step-up / step-down switching control of the step-up / down converter 100 may be performed together with the current control, as in the modification of the first embodiment (FIGS. 5 and 6A, 6B).
 (第3の実施形態)
 図8は、第3の実施形態によるハイブリッド型作業機械の構成を表すブロック図である。図8において、機械的動力系を二重線、高圧油圧ラインを実線、パイロットラインを破線、電気駆動・制御系を実線でそれぞれ示す。
(Third embodiment)
FIG. 8 is a block diagram showing the configuration of the hybrid work machine according to the third embodiment. In FIG. 8, the mechanical power system is indicated by a double line, the high-pressure hydraulic line is indicated by a solid line, the pilot line is indicated by a broken line, and the electric drive / control system is indicated by a solid line.
 第3の実施形態のハイブリッド型作業機械は、第2の実施形態のハイブリッド型作業機械とは、DCバスが2つ(110Aと110B)に分割されている点で共通するが、リフティングマグネット6、発電機200、及び昇降圧コンバータ100の接続が第2の実施形態とは異なる。また、これに伴い、DCバス電圧検出部111、バッテリ電圧検出部112、及びバッテリ電流検出部113の接続が第2の実施形態と異なる。その他の構成は第1の実施形態及び2のハイブリッド型作業機械と同等であるため、同一の構成要素には同一符号を付し、その説明を省略する。 The hybrid work machine of the third embodiment is the same as the hybrid work machine of the second embodiment in that the DC bus is divided into two (110A and 110B), but the lifting magnet 6, The connection between the generator 200 and the buck-boost converter 100 is different from that of the second embodiment. Accordingly, the connection of the DC bus voltage detection unit 111, the battery voltage detection unit 112, and the battery current detection unit 113 is different from that of the second embodiment. Since other configurations are the same as those of the first embodiment and the hybrid work machine of 2, the same components are denoted by the same reference numerals, and description thereof is omitted.
 DCバス110Aには、インバータ18Aを介して電動発電機12が接続されている。また、DCバス110Bには、インバータ20A、20B、及び20Cを介して旋回用電動発電機21、発電機200、及びリフティングマグネット6が接続されている。 The motor generator 12 is connected to the DC bus 110A via an inverter 18A. Further, the turning motor generator 21, the generator 200, and the lifting magnet 6 are connected to the DC bus 110B through inverters 20A, 20B, and 20C.
 本実施形態のハイブリッド型作業機械の駆動制御装置では、電動発電機12と、旋回用電動機21、発電機200、及びリフティングマグネット6とは、別々のDCバス110Aと110Bに接続されており、さらに、DCバス110Bとバッテリ19の間には、昇降圧コンバータ100が接続されている。 In the drive control device for the hybrid work machine of this embodiment, the motor generator 12, the turning electric motor 21, the generator 200, and the lifting magnet 6 are connected to separate DC buses 110A and 110B, and The buck-boost converter 100 is connected between the DC bus 110B and the battery 19.
 このため、電動発電機12は、DCバス110Aを介して昇降圧コンバータ100との間で電力の授受を行い、旋回用電動機21、発電機200、及びリフティングマグネット6は、DCバス110Bを介して昇降圧コンバータ100Bとの間で電力の授受を行う。 Therefore, the motor generator 12 exchanges power with the step-up / down converter 100 via the DC bus 110A, and the turning motor 21, the generator 200, and the lifting magnet 6 pass through the DC bus 110B. Power is exchanged with the buck-boost converter 100B.
 このように、電動発電機12と旋回用電動機21との電力供給系統を分けているのは、電動発電機12と旋回用電動機21、発電機200、及びリフティングマグネット6との定格電圧値及び定格電流値が大きく異なるため、別々の電力供給を可能にするためである。 As described above, the power supply system of the motor generator 12 and the turning motor 21 is divided into the rated voltage values and ratings of the motor generator 12, the turning motor 21, the generator 200, and the lifting magnet 6. This is because the current values are greatly different, so that separate power supply is possible.
 DCバス110Bには、DCバスの電圧値(以下、第3の実施形態においてDCバス電圧値と称す)を検出するためのDCバス電圧検出部111が配設されている。検出されるDCバス電圧値は、コントローラ30に入力される。 The DC bus 110B is provided with a DC bus voltage detection unit 111 for detecting a voltage value of the DC bus (hereinafter referred to as a DC bus voltage value in the third embodiment). The detected DC bus voltage value is input to the controller 30.
 また、バッテリ19の昇降圧コンバータ100が接続されている側の端子間には、バッテリ電圧値を検出するためのバッテリ電圧検出部112が接続されており、バッテリ19と昇降圧コンバータ100の間には、昇降圧コンバータ100を経てバッテリ19に流れるバッテリ電流値を検出するためのバッテリ電流検出部113が配設されている。これらによって検出されるバッテリ電圧値とコンバータ電流値は、コントローラ30に入力される。 A battery voltage detector 112 for detecting a battery voltage value is connected between the terminals of the battery 19 on which the step-up / step-down converter 100 is connected, and between the battery 19 and the step-up / down converter 100. Is provided with a battery current detector 113 for detecting a battery current value flowing through the battery 19 via the step-up / step-down converter 100. The battery voltage value and converter current value detected by these are input to the controller 30.
 ここで、各検出部について説明する。 Here, each detection unit will be described.
 DCバス電圧検出部111は、DCバス110Bの電圧値を検出するための電圧検出部である。検出されるDCバス電圧値はコントローラ30に入力され、このDCバス電圧値を一定の範囲内に収めるための昇圧動作と降圧動作の切替制御を行うために用いられる。 The DC bus voltage detection unit 111 is a voltage detection unit for detecting the voltage value of the DC bus 110B. The detected DC bus voltage value is input to the controller 30, and is used for switching control between the step-up operation and the step-down operation for keeping the DC bus voltage value within a certain range.
 バッテリ電圧検出部112は、バッテリ19の電圧値を検出するための電圧検出部であり、バッテリの充電状態を検出するために用いられる。検出されるバッテリ電圧値は、コントローラ30に入力され、昇降圧コンバータ100の昇圧動作と降圧動作の切替制御を行うために用いられる。 The battery voltage detection unit 112 is a voltage detection unit for detecting the voltage value of the battery 19, and is used for detecting the state of charge of the battery. The detected battery voltage value is input to the controller 30 and used for switching control between the step-up / step-down operation of the step-up / step-down converter 100.
 バッテリ電流検出部113は、昇降圧コンバータ100を経てバッテリ19に供給される電流値を検出するための電流検出部である。バッテリ電流値は、バッテリ19から昇降圧コンバータ100に流れる電流を正の値として検出される。検出されるバッテリ電流値は、コントローラ30に入力され、昇降圧コンバータ100の昇圧動作と降圧動作の切替制御を行うために用いられる。 The battery current detection unit 113 is a current detection unit for detecting a current value supplied to the battery 19 through the buck-boost converter 100. As the battery current value, a current flowing from the battery 19 to the step-up / down converter 100 is detected as a positive value. The detected battery current value is input to the controller 30 and used for switching control between the step-up / step-down operation of the step-up / down converter 100.
 本実施形態によるハイブリッド型作業機械は、エンジン11、電動発電機12、リフティングマグネット6、発電機200及び旋回用電動機21を動力源とするハイブリッド型建作業機械である。これらの動力源は、図1に示す上部旋回体3に搭載される。以下、第1の実施形態と相違する各部の構成について説明する。 The hybrid work machine according to the present embodiment is a hybrid building work machine that uses the engine 11, the motor generator 12, the lifting magnet 6, the generator 200, and the turning electric motor 21 as power sources. These power sources are mounted on the upper swing body 3 shown in FIG. Hereinafter, the configuration of each part different from the first embodiment will be described.
 インバータ18Aは、電動発電機12とDCバス110Aとの間に設けられ、コントローラ30からの指令に基づき、電動発電機12の運転制御を行う。これにより、インバータ18Aが電動発電機12の電動(アシスト)運転を制御している際には、必要な電力がバッテリ19からDCバス110Aを介して電動発電機12に供給される。また、電動発電機12の発電運転を制御している際には、電動発電機12により発電された電力がDCバス110Aへ供給される。 The inverter 18A is provided between the motor generator 12 and the DC bus 110A, and controls the operation of the motor generator 12 based on a command from the controller 30. Thereby, when the inverter 18A controls the electric (assist) operation of the motor generator 12, necessary electric power is supplied from the battery 19 to the motor generator 12 via the DC bus 110A. Further, when controlling the power generation operation of the motor generator 12, the power generated by the motor generator 12 is supplied to the DC bus 110A.
 バッテリ19は、一端側(図中左側)でインバータ18Aに接続されるとともに、他端側(図中右側)で昇降圧コンバータ100を介してインバータ20A、20B、20Cに接続されている。このため、バッテリ19は、電動発電機12の電動(アシスト)運転、リフティングマグネット6の励磁、又は旋回用電動機21の力行運転が行われる場合には必要な電力を供給する。また、電動発電機12の発電運転、リフティングマグネット6の消磁、発電機200の回生運転、又は旋回用電動機21の回生運転が行われる際には、回生電力を電気エネルギとして蓄積する。 The battery 19 is connected to the inverter 18A on one end side (left side in the figure) and connected to the inverters 20A, 20B, and 20C via the buck-boost converter 100 on the other end side (right side in the figure). Therefore, the battery 19 supplies necessary electric power when the motor generator 12 is electrically operated (assist), the lifting magnet 6 is excited, or the turning motor 21 is powered. In addition, when the motor generator 12 performs the power generation operation, the lifting magnet 6 demagnetization, the generator 200 regenerative operation, or the revolving motor 21 regenerative operation, the regenerative power is stored as electric energy.
 なお、DCバス110Bには、インバータ20A、20B、及び20Cを介して、旋回用電動機21、リフティングマグネット6、及び発電機200が接続されているため、旋回用電動機21で発電された電力がリフティングマグネット6に直接的に供給される場合もあり、リフティングマグネット6で回生された電力が旋回用電動機21に供給される場合もあり、さらに、発電機200で回生された電力が旋回用電動機21又はリフティングマグネット6に供給される場合もある。 Since the turning electric motor 21, the lifting magnet 6 and the generator 200 are connected to the DC bus 110B via inverters 20A, 20B and 20C, the electric power generated by the turning electric motor 21 is lifted. There are cases where the magnet 6 is directly supplied, electric power regenerated by the lifting magnet 6 is supplied to the turning electric motor 21, and electric power regenerated by the generator 200 is further supplied by the electric motor 21 for turning. In some cases, the lifting magnet 6 may be supplied.
 バッテリ19の充放電制御は、バッテリ19の充電状態、旋回用電動機21の運転状態(力行運転又は回生運転)、リフティングマグネット6の駆動状態、及び、発電機200の発電状態に基づき、昇降圧コンバータ100によって行われる。この昇降圧コンバータ100の昇圧動作と降圧動作の切替制御は、DCバス電圧検出部111によって検出されるDCバス電圧値、バッテリ電圧検出部112によって検出されるバッテリ電圧値、及びバッテリ電流検出部113によって検出されるコンバータ電流値に基づき、コントローラ30によって行われる。 The charge / discharge control of the battery 19 is based on the charge state of the battery 19, the operation state (powering operation or regenerative operation) of the turning electric motor 21, the driving state of the lifting magnet 6, and the power generation state of the generator 200. 100. Switching control between the step-up / step-down operation of the step-up / step-down converter 100 is performed by controlling the DC bus voltage value detected by the DC bus voltage detection unit 111, the battery voltage value detected by the battery voltage detection unit 112, and the battery current detection unit 113. Is performed by the controller 30 based on the converter current value detected by.
 なお、電動発電機12は、DCバス110Aを介してバッテリ19に直接的に接続されているため、DCバス110Aの電圧値はバッテリ19の充電電圧値と等しく、昇降圧コンバータ100の昇降圧制御は、電動発電機12の運転状態(電動運転又は発電運転)とは無関係に行われる。 Since the motor generator 12 is directly connected to the battery 19 via the DC bus 110A, the voltage value of the DC bus 110A is equal to the charge voltage value of the battery 19, and the step-up / step-down control of the step-up / down converter 100 is performed. Is performed regardless of the operation state of the motor generator 12 (electric operation or power generation operation).
 インバータ20Aは、旋回用電動機21とDCバス110Bの間に設けられ、コントローラ30からの指令に基づき、旋回用電動機21に対して運転制御を行う。インバータが旋回用電動機21の力行運転を制御している際には、必要な電力をバッテリ19からDCバス110Bを介して旋回用電動機21に供給する。また、旋回用電動機21の回生運転を制御している際には、旋回用電動機21により発電された電力をDCバス110B及び昇降圧コンバータ100へ供給する。 The inverter 20A is provided between the turning electric motor 21 and the DC bus 110B, and performs operation control on the turning electric motor 21 based on a command from the controller 30. When the inverter controls the power running operation of the turning electric motor 21, the necessary electric power is supplied from the battery 19 to the turning electric motor 21 via the DC bus 110 </ b> B. Further, when controlling the regenerative operation of the turning electric motor 21, the electric power generated by the turning electric motor 21 is supplied to the DC bus 110 </ b> B and the step-up / down converter 100.
 インバータ20Bは、リフティングマグネット6とDCバス110Bとの間に設けられ、コントローラ30からの指令に基づき、電磁石をオンにする際には、リフティングマグネット6へ要求された電力をDCバス110Bより供給する。また、電磁石をオフにする場合には、回生された電力をDCバス110B及び昇降圧コンバータ100に供給する。 The inverter 20B is provided between the lifting magnet 6 and the DC bus 110B. When the electromagnet is turned on based on a command from the controller 30, the required power is supplied to the lifting magnet 6 from the DC bus 110B. . When the electromagnet is turned off, the regenerated electric power is supplied to the DC bus 110B and the step-up / down converter 100.
 インバータ20Cは、発電機200とDCバス110Bとの間に設けられ、発電機200の駆動制御を行う。具体的には、ブーム4が上昇又は下降されることによって発電機200が回生運転を行う際には、発電機200により発電された電力をDCバス110B及び昇降圧コンバータ100へ供給する。 The inverter 20C is provided between the generator 200 and the DC bus 110B and performs drive control of the generator 200. Specifically, when the generator 200 performs a regenerative operation by raising or lowering the boom 4, the electric power generated by the generator 200 is supplied to the DC bus 110 </ b> B and the step-up / down converter 100.
 昇降圧コンバータ100は、一側がDCバス110B及びインバータ20A乃至20Cを介して旋回用電動機21、リフティングマグネット6、及び発電機200に接続されるとともに、他側がバッテリ19に接続されており、旋回用電動機21及びリフティングマグネット6の運転状態(駆動状態)と、発電機200の発電状態とに応じて、昇圧動作又は降圧動作を切り替える。 The buck-boost converter 100 has one side connected to the turning electric motor 21, the lifting magnet 6, and the generator 200 via the DC bus 110B and the inverters 20A to 20C, and the other side connected to the battery 19 for turning. The step-up operation or the step-down operation is switched according to the operation state (drive state) of the electric motor 21 and the lifting magnet 6 and the power generation state of the generator 200.
 旋回用電動機21が力行運転を行う場合には、インバータ20Aを介して旋回用電動機21に電力を供給する必要があるため、DCバス電圧値を昇圧する。また、リフティングマグネット6を駆動する場合にも、インバータ20Bを介してリフティングマグネット6に電力を供給する必要があるため、DCバス電圧値を電動発電機12の回転数に応じて、昇圧する。 When the turning electric motor 21 performs a power running operation, it is necessary to supply electric power to the turning electric motor 21 via the inverter 20A, so the DC bus voltage value is increased. Also, when driving the lifting magnet 6, it is necessary to supply electric power to the lifting magnet 6 via the inverter 20 </ b> B, so that the DC bus voltage value is increased according to the rotational speed of the motor generator 12.
 一方、旋回用電動機21が回生運転を行う場合には、発電された電力をインバータ20Aを介してバッテリ19に充電する必要があるため、DCバス電圧値を降圧する。また、リフティングマグネット6が消磁されて回生電力が得られる場合にも、電力をインバータ20Bを介してバッテリ19に充電する必要があるため、DCバス電圧値を降圧する。さらに、発電機200で発電が行われる場合にも、発電された電力をインバータ20Cを介してバッテリ19に充電する必要があるため、DCバス電圧値を降圧する。 On the other hand, when the turning electric motor 21 performs the regenerative operation, it is necessary to charge the battery 19 with the generated electric power via the inverter 20A, so the DC bus voltage value is lowered. Even when the lifting magnet 6 is demagnetized and regenerative power is obtained, it is necessary to charge the battery 19 via the inverter 20B, so the DC bus voltage value is lowered. Furthermore, even when power generation is performed by the power generator 200, the battery 19 needs to be charged with the generated power via the inverter 20C, so the DC bus voltage value is reduced.
 このため、昇降圧コンバータ100は、旋回用電動機21及びリフティングマグネット6の運転状態(駆動状態)と発電機200の発電状態に応じて、DCバス110Bの電圧値が一定の範囲内に収まるように昇圧動作又は降圧動作を切り替える。 For this reason, the buck-boost converter 100 is configured so that the voltage value of the DC bus 110B falls within a certain range according to the operating state (driving state) of the turning electric motor 21 and the lifting magnet 6 and the power generation state of the generator 200. Switches between step-up and step-down operation.
 このように、DCバスを複数に分けた場合には、複数の駆動部が接続されているDCバスにインバータが接続される。これにより、図6で説明したように、それぞれの駆動部における負荷要求が高くて、インバータ18A、18B、20に通電する電流に対して、バッテリの出力が制限されることで、過剰なバッテリの充放電を防止することができ、異常な発熱を防ぐことができる。これにより、バッテリの寿命を延ばすことができる。 Thus, when the DC bus is divided into a plurality of parts, an inverter is connected to the DC bus to which a plurality of drive units are connected. Accordingly, as described with reference to FIG. 6, the load requirement in each drive unit is high, and the output of the battery is limited with respect to the current that is supplied to the inverters 18A, 18B, 20. Charging / discharging can be prevented and abnormal heat generation can be prevented. Thereby, the lifetime of a battery can be extended.
 以上のように、本実施形態によるハイブリッド型作業機械によれば、DCバスが2つに分割されることにより、第1の実施形態のように一つのDCバスにすべての電気負荷を接続する場合よりもDCバスで取り扱う電力が小さくなるので、昇降圧コンバータの容量を小さくすることが可能になる。 As described above, according to the hybrid work machine according to the present embodiment, when the DC bus is divided into two, all electric loads are connected to one DC bus as in the first embodiment. Since the electric power handled by the DC bus becomes smaller than that, the capacity of the buck-boost converter can be reduced.
 また、一方のDCバス110Bには昇降圧コンバータ100が接続されてDCバス電圧値はバッテリ19の電圧値(バッテリ電圧値)及び電流値(バッテリ電流値)を用いて略一定に保持されるため、昇降圧コンバータが接続されないDCバス110Aの電圧値は、DCバス110Bにも昇降圧コンバータが接続されない場合(すなわち2つのDCバス110A及び110Bのいずれにも昇降圧コンバータが接続されない場合)に比べて各段に安定する。 In addition, the step-up / down converter 100 is connected to one DC bus 110B, and the DC bus voltage value is held substantially constant using the voltage value (battery voltage value) and current value (battery current value) of the battery 19. The voltage value of the DC bus 110A to which the step-up / step-down converter is not connected is compared with the case where the step-up / step-down converter is not connected to the DC bus 110B (that is, the step-up / step-down converter is not connected to either of the two DC buses 110A and 110B). Stable in each stage.
 このため、本実施形態によれば、DCバスを2分割するとともに、その一方だけに昇降圧コンバータ100を接続することにより、動作の安定とコストダウンを両立したハイブリッド型作業機械を提供することができる。 For this reason, according to the present embodiment, by dividing the DC bus into two and connecting the buck-boost converter 100 to only one of them, it is possible to provide a hybrid work machine that achieves both stable operation and cost reduction. it can.
 また、昇降圧コンバータが配設されないDCバス110Aには電圧変動の比較的少ない電動発電機12がインバータ18Aを介して接続されるとともに、電圧変動の大きい旋回用電動発電機21が接続されるDCバス110Bの電圧値は昇降圧コンバータ100によって略一定に保持されることにより、DCバス110Bに接続されている旋回用電動機21、リフティングマグネット6、及び発電機200だけでなく、昇降圧コンバータが配設されないDCバス110Aに接続される電動発電機12の制御性のばらつきや、過電流によるインバータの損傷等を抑制することができ、また、バッテリ19の損傷を抑制することができる。 The DC bus 110A not provided with the step-up / down converter is connected to the motor generator 12 having a relatively small voltage fluctuation via the inverter 18A, and to the DC bus 110A to which the turning motor generator 21 having a large voltage fluctuation is connected. The voltage value of the bus 110B is held substantially constant by the step-up / down converter 100, so that not only the turning electric motor 21, the lifting magnet 6 and the generator 200 connected to the DC bus 110B but also the step-up / down converter is arranged. Variations in controllability of the motor generator 12 connected to the DC bus 110A that is not provided, damage to the inverter due to overcurrent, and the like can be suppressed, and damage to the battery 19 can be suppressed.
 なお、本実施形態のハイブリッド型作業機械に用いる昇降圧コンバータの駆動制御装置の制御部は、電子回路又は演算処理装置のいずれでも実現することができる。 In addition, the control part of the drive control apparatus of the buck-boost converter used for the hybrid type work machine of this embodiment can be realized by either an electronic circuit or an arithmetic processing unit.
 また、上述の実施形態では、DCバス110Aにインバータ18Aを介して電動発電機12が接続され、DCバス110Bにインバータ20A、20B、及び20Cを介して旋回用電動機21、リフティングマグネット6、及び発電機200が接続される形態について説明したが、作業要素はハイブリッド型作業機械の仕様に応じて変更されてもよい。 In the above-described embodiment, the motor generator 12 is connected to the DC bus 110A via the inverter 18A, and the turning electric motor 21, the lifting magnet 6, and the power generator are connected to the DC bus 110B via the inverters 20A, 20B, and 20C. Although the embodiment in which the machine 200 is connected has been described, the work elements may be changed according to the specifications of the hybrid work machine.
 例えば、リフティングマグネット6ではなくバケットを備えるハイブリッド型作業機械には、インバータ20B及びリフティングマグネット6は含まれない。また、ブーム軸の代わりに、あるいはブーム軸に加えてアーム軸等に発電機を備える場合は、その発電機がインバータを介してDCバス110Bに接続されてもよい。 For example, the inverter 20B and the lifting magnet 6 are not included in a hybrid work machine having a bucket instead of the lifting magnet 6. Further, when a generator is provided on the arm shaft or the like instead of the boom shaft or in addition to the boom shaft, the generator may be connected to the DC bus 110B via an inverter.
 また、昇降圧コンバータ100の昇降圧の切り替え制御は、実施の形態1の変形例(図5及び図6)と同様に、電流制御を併せて行ってもよい。 Also, the step-up / step-down switching control of the step-up / down converter 100 may be performed together with the current control, similarly to the modification of the first embodiment (FIGS. 5 and 6).
 また、上述の実施形態では、PI制御を用いる形態について説明したが、制御方式はPI制御方式に限られるものではなく、ヒステリシス制御、ロバスト制御、適応制御、比例制御、積分制御、ゲインスケジューリング制御、又は、スライディングモード制御であってもよい。 In the above-described embodiment, the form using the PI control has been described. However, the control method is not limited to the PI control method, and hysteresis control, robust control, adaptive control, proportional control, integral control, gain scheduling control, Alternatively, sliding mode control may be used.
 (第4の実施形態)
 以下に、本発明の第4の実施形態について説明する。本発明の第4の実施形態によるハイブリッド型作業機械では、上述の第2の実施形態によるハイブリッド型作業機械と同様にDCバスを複数(第2の実施形態では2つ)設けてDCバス電圧の変動を抑制するのに加え、昇降圧コンバータを複数のDCバスの各々に設けることで、全てのDCバスの電圧変動を抑制している。
(Fourth embodiment)
The fourth embodiment of the present invention will be described below. In the hybrid work machine according to the fourth embodiment of the present invention, as in the hybrid work machine according to the second embodiment described above, a plurality of DC buses (two in the second embodiment) are provided to reduce the DC bus voltage. In addition to suppressing the fluctuations, voltage step-up / down converters are provided in each of the plurality of DC buses to suppress voltage fluctuations in all the DC buses.
 図9は、本発明の第4の実施形態によるハイブリッド型作業機械の構成を表すブロック図である。図9において、図7に示す構成部品と同等な部品には同じ符号を付し、その説明は適宜省略する。図9において、機械的動力系を二重線、高圧油圧ラインを実線、パイロットラインを破線、電気駆動・制御系を実線でそれぞれ示す。 FIG. 9 is a block diagram showing a configuration of a hybrid work machine according to the fourth embodiment of the present invention. 9, parts that are the same as the parts shown in FIG. 7 are given the same reference numerals, and descriptions thereof will be omitted as appropriate. In FIG. 9, the mechanical power system is indicated by a double line, the high-pressure hydraulic line is indicated by a solid line, the pilot line is indicated by a broken line, and the electric drive / control system is indicated by a solid line.
 本実施形態によるハイブリッド型作業機械の駆動制御装置では、エンジン11のアシスト用の電動発電機12及びリフティングマグネット6と、旋回用電動機21及びブーム回生用の発電機30とは、別々のDCバス110Aと110Bに接続されており、さらに、DCバス110Aと110Bとバッテリ19の間には、別々の昇降圧コンバータ100Aと100Bが接続されている。 In the drive control apparatus for the hybrid type work machine according to the present embodiment, the motor generator 12 and the lifting magnet 6 for assisting the engine 11, the electric motor 21 for turning, and the generator 30 for boom regeneration are separate DC buses 110A. 110B, and separate DC- boost converters 100A and 100B are connected between the DC buses 110A and 110B and the battery 19.
 このため、電動発電機12及びリフティングマグネット6は、DCバス110Aを介して昇降圧コンバータ100Aとの間で電力の授受を行い、旋回用電動機21及び発電機30は、DCバス110Bを介して昇降圧コンバータ100Bとの間で電力の授受を行う。このように、電動発電機12と旋回用電動機21との電力供給系統を分けているのは、電動発電機12と旋回用電動機21の定格電圧値及び定格電流値が大きく異なるため、別々の電力供給を可能にするためである。 Therefore, the motor generator 12 and the lifting magnet 6 exchange power with the step-up / down converter 100A via the DC bus 110A, and the turning motor 21 and the generator 30 move up and down via the DC bus 110B. Power is exchanged with pressure converter 100B. As described above, the power supply system of the motor generator 12 and the turning motor 21 is divided because the rated voltage value and the rated current value of the motor generator 12 and the turning motor 21 are greatly different, and thus the different power supply systems. This is to enable supply.
 本実施形態では、電動発電機12の定格電圧は360(V)、旋回用電動機21の定格電圧は300~400(V)とする。このため、昇降圧コンバータ100B及びDCバス110Bの容量は、昇降圧コンバータ100A及びDCバス110Aよりも高電圧・大電流に耐えられる容量に設定されている。 In this embodiment, the rated voltage of the motor generator 12 is 360 (V), and the rated voltage of the turning motor 21 is 300 to 400 (V). Therefore, the capacities of the buck-boost converter 100B and the DC bus 110B are set to capacities that can withstand higher voltages and larger currents than the buck-boost converter 100A and the DC bus 110A.
 DCバス110Aと110Bには、それぞれのDCバスの電圧値(以下、DCバス電圧値と称す)を検出するためのDCバス電圧検出部111A及び111Bがそれぞれ配設されている。検出されるDCバス電圧値は、コントローラ120に入力される。 DC bus voltage detectors 111A and 111B for detecting the voltage values of the respective DC buses (hereinafter referred to as DC bus voltage values) are arranged on the DC buses 110A and 110B, respectively. The detected DC bus voltage value is input to the controller 120.
 バッテリ19には、バッテリ電圧値を検出するためのバッテリ電圧検出部112A及び112Bが接続されており、バッテリ19と昇降圧コンバータ100A及び100Bの間には、昇降圧コンバータ100A及び100Bに流れるコンバータ電流値を検出するためのバッテリ電流検出部113A及び113Bが配設されている。これらによって検出されるバッテリ電圧値とコンバータ電流値は、コントローラ120に入力される。なお、バッテリ電流値は、バッテリ電流検出部113Aと113Bでそれぞれ検出されるコンバータ電流値の和で与えられる。 Battery voltage detectors 112A and 112B for detecting a battery voltage value are connected to the battery 19, and a converter current flowing in the buck- boost converters 100A and 100B is interposed between the battery 19 and the buck- boost converters 100A and 100B. Battery current detectors 113A and 113B for detecting values are provided. The battery voltage value and converter current value detected by these are input to the controller 120. The battery current value is given as the sum of the converter current values detected by battery current detectors 113A and 113B.
 ここで、各検出部について説明する。 Here, each detection unit will be described.
 DCバス電圧検出部111Aは、DCバス110Aの電圧値を検出するための電圧検出部である。検出されるDCバス電圧値はコントローラ120に入力され、このDCバス電圧値を一定の範囲内に収めるための昇圧動作と降圧動作の切替制御を行うために用いられる。 The DC bus voltage detection unit 111A is a voltage detection unit for detecting the voltage value of the DC bus 110A. The detected DC bus voltage value is input to the controller 120, and is used for switching control between the step-up operation and the step-down operation for keeping the DC bus voltage value within a certain range.
 同様に、DCバス電圧検出部111Bは、DCバス110Bの電圧値を検出するための電圧検出部である。検出されるDCバス電圧値はコントローラ120に入力され、このDCバス電圧値を一定の範囲内に収めるための昇圧動作と降圧動作の切替制御を行うために用いられる。 Similarly, the DC bus voltage detection unit 111B is a voltage detection unit for detecting the voltage value of the DC bus 110B. The detected DC bus voltage value is input to the controller 120, and is used for switching control between the step-up operation and the step-down operation for keeping the DC bus voltage value within a certain range.
 バッテリ電圧検出部112A及び112Bは、バッテリ19の電圧値を検出するための電圧検出部であり、バッテリの充電状態を検出するために用いられる。検出されるバッテリ電圧値は、コントローラ120に入力され、昇降圧コンバータ100A及び100Bの昇圧動作と降圧動作の切替制御を行うために用いられる。 Battery voltage detectors 112A and 112B are voltage detectors for detecting the voltage value of the battery 19, and are used for detecting the state of charge of the battery. The detected battery voltage value is input to the controller 120 and used for switching control between the step-up / step-down operation of the step-up / step-down converters 100A and 100B.
 バッテリ電流検出部113Aは、昇降圧コンバータ100Aのコンバータ電流値を検出するための電流検出部である。コンバータ電流値は、バッテリ19から昇降圧コンバータ100Aに流れる電流を正の値として検出される。検出されるコンバータ電流値は、コントローラ120に入力され、昇降圧コンバータ100Aの昇圧動作と降圧動作の切替制御を行うために用いられる。 The battery current detection unit 113A is a current detection unit for detecting the converter current value of the step-up / down converter 100A. The converter current value is detected as a positive value of the current flowing from the battery 19 to the buck-boost converter 100A. The detected converter current value is input to the controller 120 and used for switching control between the step-up / step-down converter 100A and the step-up / step-down operation.
 バッテリ電流検出部113Bは、昇降圧コンバータ100Bのコンバータ電流値を検出するための電流検出部である。コンバータ電流値は、バッテリ19から昇降圧コンバータ100Bに流れる電流を正の値として検出される。 Battery current detector 113B is a current detector for detecting the converter current value of buck-boost converter 100B. The converter current value is detected as a positive value of the current flowing from the battery 19 to the buck-boost converter 100B.
 旋回用電動機21の回転軸21Aには、レゾルバ22、メカニカルブレーキ23、及び旋回減速機24が接続される。また、パイロットポンプ15には、パイロットライン25を介して操作装置26が接続される。 A resolver 22, a mechanical brake 23, and a turning speed reducer 24 are connected to the rotating shaft 21A of the turning electric motor 21. An operation device 26 is connected to the pilot pump 15 through a pilot line 25.
 操作装置26には、油圧ライン27及び28を介して、コントロールバルブ17及びレバー操作検出部としての圧力センサ29がそれぞれ接続される。この圧力センサ29には、本実施の形態によるハイブリッド型作業機械の電気系の駆動制御を行うコントローラ120が接続されている。 The control device 17 and a pressure sensor 29 as a lever operation detection unit are connected to the operation device 26 via hydraulic lines 27 and 28, respectively. The pressure sensor 29 is connected to a controller 120 that performs drive control of the electric system of the hybrid work machine according to the present embodiment.
 本実施形態によるハイブリッド型作業機械は、エンジン11、電動発電機12、及び旋回用電動機21を動力源とするハイブリッド型作業機械である。これらの動力源は、上部旋回体3に搭載される。以下、電力供給系における各部について説明する。 The hybrid work machine according to the present embodiment is a hybrid work machine that uses the engine 11, the motor generator 12, and the turning electric motor 21 as power sources. These power sources are mounted on the upper swing body 3. Hereinafter, each part in an electric power supply system is demonstrated.
 「各部の構成」
 インバータ18Aは、上述の如く電動発電機12と昇降圧コンバータ100Aとの間に設けられ、コントローラ120からの指令に基づき、電動発電機12の運転制御を行う。これにより、インバータ18Aが電動発電機12の電動(アシスト)運転を制御している際には、必要な電力をバッテリ19と昇降圧コンバータ100AからDCバス110Aを介して電動発電機12に供給する。また、電動発電機12の発電運転を制御している際には、電動発電機12により発電された電力をDCバス110A及び昇降圧コンバータ100Aへ供給する。
"Configuration of each part"
The inverter 18A is provided between the motor generator 12 and the buck-boost converter 100A as described above, and controls the operation of the motor generator 12 based on a command from the controller 120. Thus, when the inverter 18A controls the electric (assist) operation of the motor generator 12, the necessary power is supplied from the battery 19 and the step-up / down converter 100A to the motor generator 12 via the DC bus 110A. . Further, when controlling the power generation operation of the motor generator 12, the electric power generated by the motor generator 12 is supplied to the DC bus 110A and the step-up / down converter 100A.
 インバータ18Bは、リフティングマグネット6と昇降圧コンバータ100Aとの間に設けられ、コントローラ120からの指令に基づき、電磁石をオンにする際には、リフティングマグネット6へ要求された電力をDCバス110Aより供給する。また、電磁石をオフにする場合には、回生された電力をDCバス100Aに供給する。 The inverter 18B is provided between the lifting magnet 6 and the buck-boost converter 100A, and supplies the requested power to the lifting magnet 6 from the DC bus 110A when the electromagnet is turned on based on a command from the controller 120. To do. When the electromagnet is turned off, the regenerated electric power is supplied to the DC bus 100A.
 バッテリ19は、昇降圧コンバータ100Aを介してインバータ18A及び18Bに接続されるとともに、昇降圧コンバータ100Bを介してインバータ20A及び20Bに接続されている。このため、バッテリ19は、電動発電機12の電動(アシスト)運転と旋回用電動機21の力行運転との少なくともどちらか一方が行われている際、又は、リフティングマグネット6を駆動する際には、必要な電力を供給する。また、電動発電機12が発電運転を行っている際、リフティングマグネット6をオフにするときに回生電力が発生している際、旋回用電動機21が回生運転を行っている際、又は、発電機30が発電運転を行っている際には、発電運転又は回生運転によって発生した回生電力を電気エネルギとして蓄積するための電源である。 The battery 19 is connected to the inverters 18A and 18B via the buck-boost converter 100A, and is connected to the inverters 20A and 20B via the buck-boost converter 100B. For this reason, the battery 19 is operated when at least one of the electric (assist) operation of the motor generator 12 and the power running operation of the turning electric motor 21 is performed, or when the lifting magnet 6 is driven. Supply the necessary power. Further, when the motor generator 12 is performing a power generation operation, when regenerative power is generated when the lifting magnet 6 is turned off, when the turning motor 21 is performing a regenerative operation, or When 30 is performing the power generation operation, it is a power source for accumulating regenerative power generated by the power generation operation or the regenerative operation as electric energy.
 なお、DCバス110Aには、インバータ18A及び18Bを介して、電動発電機12及びリフティングマグネット6が接続されているため、電動発電機12で発電された電力がリフティングマグネット6に直接的に供給される場合もある。 Since the motor generator 12 and the lifting magnet 6 are connected to the DC bus 110A via inverters 18A and 18B, the electric power generated by the motor generator 12 is directly supplied to the lifting magnet 6. There is also a case.
 バッテリ19の充放電制御は、バッテリ19の充電状態、電動発電機12の運転状態(電動(アシスト)運転又は発電運転)、発電機30の発電状態、リフティングマグネット6の駆動状態、及び、旋回用電動機21の運転状態(力行運転又は回生運転)に基づき、昇降圧コンバータ100A及び100Bによって行われる。この昇降圧コンバータ100A及び100Bの昇圧動作と降圧動作の切替制御は、DCバス電圧検出部111A及び111Bによって検出されるDCバス電圧値、バッテリ電圧検出部112A及び112Bによって検出されるバッテリ電圧値、及びバッテリ電流検出部113A及び113Bによって検出されるコンバータ電流値に基づき、コントローラ120によって行われる。 The charge / discharge control of the battery 19 includes the charge state of the battery 19, the operation state of the motor generator 12 (electric (assist) operation or power generation operation), the power generation state of the generator 30, the drive state of the lifting magnet 6, and This is performed by the step-up / down converters 100A and 100B based on the operation state (powering operation or regenerative operation) of the electric motor 21. The switching control between the step-up / step-down converters 100A and 100B is performed by a DC bus voltage value detected by the DC bus voltage detection units 111A and 111B, a battery voltage value detected by the battery voltage detection units 112A and 112B, And the controller 120 based on the converter current value detected by the battery current detectors 113A and 113B.
 インバータ20Aは、上述の如く旋回用電動機21と昇降圧コンバータ100Bとの間に設けられ、コントローラ120からの指令に基づき、旋回用電動機21に対して運転制御を行う。これにより、インバータが旋回用電動機21の力行運転を制御している際には、必要な電力をバッテリ19から昇降圧コンバータ100Bを介して旋回用電動機21に供給する。また、旋回用電動機21の回生運転を制御している際には、旋回用電動機21により発電された電力をDCバス110Bへ供給する。 The inverter 20A is provided between the turning electric motor 21 and the step-up / down converter 100B as described above, and performs operation control on the turning electric motor 21 based on a command from the controller 120. Thereby, when the inverter is controlling the power running operation of the turning electric motor 21, necessary electric power is supplied from the battery 19 to the turning electric motor 21 via the step-up / down converter 100 </ b> B. Further, when the regenerative operation of the turning electric motor 21 is controlled, the electric power generated by the turning electric motor 21 is supplied to the DC bus 110B.
 インバータ20Bは、発電機30と昇降圧コンバータ100Aとの間に設けられ、発電機30の駆動制御を行う。なお、DCバス110Bには、インバータ20Aを介して旋回用電動機21が接続されているため、発電機30で発電された電力が旋回用電動機21に直接的に供給される場合もある。 The inverter 20B is provided between the generator 30 and the buck-boost converter 100A, and performs drive control of the generator 30. Since the turning electric motor 21 is connected to the DC bus 110B via the inverter 20A, the electric power generated by the generator 30 may be directly supplied to the turning electric motor 21 in some cases.
 昇降圧コンバータ100Aは、一側がDCバス110A及びインバータ18A及び18Bを介して電動発電機12及びリフティングマグネット6に接続されるとともに、他側がバッテリ19に接続されており、電動発電機12及びリフティングマグネット6の運転状態(駆動状態)に応じて、昇圧動作又は降圧動作を切り替える。 The buck-boost converter 100A has one side connected to the motor generator 12 and the lifting magnet 6 via the DC bus 110A and inverters 18A and 18B, and the other side connected to the battery 19, and the motor generator 12 and the lifting magnet. The step-up operation or the step-down operation is switched according to the operation state (drive state) 6.
 電動発電機12が電動(アシスト)運転を行う場合には、インバータ18Aを介して電動発電機12に電力を供給する必要があるため、DCバス電圧値を昇圧する。また、リフティングマグネット6を駆動する場合にも、インバータ18Bを介してリフティングマグネット6に電力を供給する必要があるため、DCバス電圧値を電動発電機12の回転数に応じて、昇圧する。 When the motor generator 12 performs an electric driving (assist) operation, it is necessary to supply electric power to the motor generator 12 via the inverter 18A, so the DC bus voltage value is increased. Also, when driving the lifting magnet 6, it is necessary to supply electric power to the lifting magnet 6 via the inverter 18 </ b> B, so that the DC bus voltage value is increased according to the rotational speed of the motor generator 12.
 一方、電動発電機12が発電運転を行う場合には、発電された電力をインバータ18Aを介してバッテリ19に充電する必要があるため、DCバス電圧値を降圧する。このため、昇降圧コンバータ100Aは、電動発電機12、及びリフティングマグネット6の運転状態(駆動状態)に応じて、DCバス110Aの電圧値が一定の範囲内に収まるように昇圧動作又は降圧動作を切り替える。 On the other hand, when the motor generator 12 performs a power generation operation, it is necessary to charge the battery 19 through the inverter 18A with the generated power, so the DC bus voltage value is lowered. For this reason, the step-up / step-down converter 100A performs a step-up operation or a step-down operation so that the voltage value of the DC bus 110A falls within a certain range according to the operation state (drive state) of the motor generator 12 and the lifting magnet 6. Switch.
 また、発電機30で発電が行われる場合にも、発電された電力をインバータ20Bを介してバッテリ19に充電する必要があるため、DCバス電圧値を降圧する。 Also, when the generator 30 generates power, the generated power needs to be charged to the battery 19 via the inverter 20B, so the DC bus voltage value is reduced.
 ここで、エンジン11は一定回転数で回転しているため、電動発電機12も一定回転数で回転し、これにより、インバータ18Aの電圧値は一定になるように制御される。従って、電動発電機12及びインバータ18Aは電圧変動が少ないDCバス110Aへ接続される。また、同様にリフティングマグネット6も電圧値が一定のため、リフティングマグネット6を制御するインバータ18BもDCバス110Aへ接続される。このように、DCバス110Aは電圧変動が小さい駆動部と接続しているので、昇降圧コンバータ100AはDCバス110AにおけるDCバス電圧検出部111Aによって検出した電圧値が一定になるように、DCバス電圧検出部111Aとバッテリ電圧検出部112A及び112Bとの電圧値を比較し、バッテリ19との電力供給の制御を行う。 Here, since the engine 11 is rotating at a constant rotational speed, the motor generator 12 is also rotated at a constant rotational speed, whereby the voltage value of the inverter 18A is controlled to be constant. Therefore, the motor generator 12 and the inverter 18A are connected to the DC bus 110A with little voltage fluctuation. Similarly, since the voltage value of the lifting magnet 6 is constant, the inverter 18B that controls the lifting magnet 6 is also connected to the DC bus 110A. As described above, since the DC bus 110A is connected to the drive unit having a small voltage fluctuation, the step-up / down converter 100A is configured so that the voltage value detected by the DC bus voltage detection unit 111A in the DC bus 110A is constant. The voltage values of the voltage detector 111A and the battery voltage detectors 112A and 112B are compared, and the power supply to the battery 19 is controlled.
 一方、旋回用電動機21の回転速度は、作業内容に対応したオペレータのレバー操作量に基づいて変化するので、電動発電機12に比べて大きい。このため、旋回用電動機21へ供給されるためのDCバス110Bの電圧値は、旋回用電動機21の回転速度に応じて、大きく変化することになる。従って、一定の電圧値に制御されるDCバス110Aに旋回用電動機21を接続した場合、旋回用電動機21の回転速度が高速の場合、DCバス110Aの電圧値が十分に高くないため、高速での旋回動作を行うことができなくなる。しかも、高電圧の回生電力が旋回電動機21よりDCバス110Aへ供給されると、インバータ18Aの損傷につながってしまう。 On the other hand, the rotation speed of the turning electric motor 21 is larger than that of the motor generator 12 because it changes based on the lever operation amount of the operator corresponding to the work content. For this reason, the voltage value of the DC bus 110 </ b> B to be supplied to the turning electric motor 21 varies greatly according to the rotation speed of the turning electric motor 21. Therefore, when the turning electric motor 21 is connected to the DC bus 110A controlled to a constant voltage value, when the rotation speed of the turning electric motor 21 is high, the voltage value of the DC bus 110A is not sufficiently high. It becomes impossible to perform the turning operation. Moreover, if high voltage regenerative power is supplied from the swing motor 21 to the DC bus 110A, the inverter 18A is damaged.
 そこで、本実施形態では、電圧値を一定に制御するDCバス110A及び昇降圧コンバータ100Aとは別に、DCバス110B及び昇降圧コンバータ100Bを設けることで、各電動機を効率よく駆動できるようにした。 Therefore, in this embodiment, the DC bus 110B and the buck-boost converter 100B are provided separately from the DC bus 110A and the buck-boost converter 100A that control the voltage value to be constant, so that each electric motor can be driven efficiently.
 昇降圧コンバータ100Bは、一側がDCバス110Bを介して旋回用電動機21に接続されるとともに、他側がバッテリ19に接続されている。昇降圧コンバータ100Bは、旋回用電動機21に接続されたレゾルバ22によって検出された旋回速度に応じたDCバス110Bの電圧値になるように昇圧動作又は降圧動作を切り替える。昇降圧コンバータ100Bは、DCバス110Bの電圧値をDCバス110Aの電圧値よりも高い値に設定する。これは、電動発電機12と旋回用電動機21の使用方法の違いによるものである。 The buck-boost converter 100B has one side connected to the turning electric motor 21 via the DC bus 110B and the other side connected to the battery 19. The step-up / step-down converter 100 </ b> B switches the step-up operation or the step-down operation so that the voltage value of the DC bus 110 </ b> B corresponds to the turning speed detected by the resolver 22 connected to the turning electric motor 21. The step-up / down converter 100B sets the voltage value of the DC bus 110B to a value higher than the voltage value of the DC bus 110A. This is due to the difference in usage of the motor generator 12 and the turning electric motor 21.
 このように、昇降圧コンバータ100BがDCバス110Bの電圧値を可変制御するのは、旋回用電動機21は、駆動時における回転速度の変化が電動発電機12に比べてかなり大きいため、力行運転及び回生運転を行う際にDCバス110Bの電圧値は大きく変動するためである。なお、昇降圧動作の切替は、コントローラ120によって行われる。 As described above, the step-up / step-down converter 100B variably controls the voltage value of the DC bus 110B because the rotational speed of the turning motor 21 is considerably larger than that of the motor generator 12 during driving. This is because the voltage value of the DC bus 110B greatly fluctuates when performing regenerative operation. Note that switching of the step-up / step-down operation is performed by the controller 120.
 具体的には、レゾルバ22で検出された回転速度が高速である場合には、DCバス110Bには高電圧が必要とされる。この場合、DCバス電圧検出部111Bの電圧検出値が高速での回転速度に対応した電圧値となるように、昇降圧コンバータ100Bは、DCバス電圧検出部111Bとバッテリ電圧検出部112Bとの電圧値を比較し、バッテリ19との電力供給の制御を行う。 Specifically, when the rotational speed detected by the resolver 22 is high, a high voltage is required for the DC bus 110B. In this case, the step-up / step-down converter 100B has a voltage between the DC bus voltage detection unit 111B and the battery voltage detection unit 112B so that the voltage detection value of the DC bus voltage detection unit 111B becomes a voltage value corresponding to the rotation speed at a high speed. The values are compared, and the power supply to the battery 19 is controlled.
 レゾルバ22で検出された回転速度が低速である場合には、DCバス110Bの電圧は低い電圧で十分である。この場合、DCバス電圧が高い状態であると過電圧状態となるため、DCバス電圧検出部111Bの電圧検出値を、低速での回転速度に対応した電圧値となるように、昇降圧コンバータ100Bは、バッテリ19との電力供給の制御を行う。 When the rotational speed detected by the resolver 22 is low, a low voltage is sufficient for the DC bus 110B. In this case, since the overvoltage state occurs when the DC bus voltage is high, the step-up / down converter 100B is configured so that the voltage detection value of the DC bus voltage detection unit 111B becomes a voltage value corresponding to the low-speed rotation speed. The power supply to the battery 19 is controlled.
 上述の説明では、レゾルバ22によって検出された旋回速度に基づいてDCバス110Bの電圧値が変化するが、運転者のレバー操作量に対応した速度指令値に基づいて、DCバス110Bの電圧値を変更するようにしてもよい。 In the above description, the voltage value of the DC bus 110B changes based on the turning speed detected by the resolver 22, but the voltage value of the DC bus 110B is changed based on the speed command value corresponding to the lever operation amount of the driver. It may be changed.
 説明の便宜上、図2では図示を省略するが、昇降圧コンバータ100Bにはバイパス回路が並列に接続される。このバイパス回路は、昇降圧コンバータ100Bの異常時にDCバス110Bとバッテリ19との間を短絡するための回路であるが、その詳細については図10を用いて後述する。 For convenience of explanation, although not shown in FIG. 2, a bypass circuit is connected in parallel to the buck-boost converter 100B. This bypass circuit is a circuit for short-circuiting between the DC bus 110B and the battery 19 when the buck-boost converter 100B is abnormal, and details thereof will be described later with reference to FIG.
 なお、既述のように、DCバス電圧検出部111A及びDCバス電圧検出部111Bは、DCバス110A及びDCバス110Bの電圧値を検出するための電圧検出部であり、バッテリ電圧検出部112A及び112Bは、バッテリ19の電圧値を検出するための電圧検出部であり、バッテリ電流検出部113A及びバッテリ電流検出部113Bは、昇降圧コンバータ100A及び昇降圧コンバータ100Bのコンバータ電流値を検出するための電流検出部である。コンバータ電流値は、バッテリ19から昇降圧コンバータ100A及び100Bに流れる電流を正の値として検出される。 As described above, the DC bus voltage detection unit 111A and the DC bus voltage detection unit 111B are voltage detection units for detecting the voltage values of the DC bus 110A and the DC bus 110B. 112B is a voltage detection unit for detecting the voltage value of the battery 19, and the battery current detection unit 113A and the battery current detection unit 113B detect the converter current values of the step-up / down converter 100A and the step-up / down converter 100B. It is a current detection unit. The converter current value is detected as a positive value of the current flowing from the battery 19 to the buck- boost converters 100A and 100B.
 図10は、本実施形態のハイブリッド型作業機械に用いる昇降圧コンバータの回路構成を概略的に示す回路図である。昇降圧コンバータ100A及び100Bの構成は同一であるため、ここでは昇降圧コンバータ100Aを中心に説明を行う。 FIG. 10 is a circuit diagram schematically showing the circuit configuration of the buck-boost converter used in the hybrid work machine of the present embodiment. Since the configuration of the step-up / step-down converters 100A and 100B is the same, the description will focus on the step-up / step-down converter 100A.
 昇降圧コンバータ100Aは、リアクトル101、昇圧用IGBT(Insulated Gate Bipolar Transistor)102A、降圧用IGBT102B、バッテリ19を接続するための電源接続端子103A、負荷を接続するための出力端子104A、及び、一対の出力端子104Aに並列に挿入される平滑用のコンデンサ105を備える。昇降圧コンバータ100Aの出力端子104Aと負荷との間は、DCバス110Aによって接続される。 The step-up / down converter 100A includes a reactor 101, a boosting IGBT (Insulated Gate Bipolar Transistor) 102A, a step-down IGBT 102B, a power connection terminal 103A for connecting the battery 19, an output terminal 104A for connecting a load, and a pair of A smoothing capacitor 105 inserted in parallel with the output terminal 104A is provided. The output terminal 104A of the buck-boost converter 100A and the load are connected by a DC bus 110A.
 DCバス110Aに接続される負荷は、互いに並列接続される電動発電機12、発電機30、及びリフティングマグネット6である。 The loads connected to the DC bus 110A are the motor generator 12, the generator 30, and the lifting magnet 6 connected in parallel to each other.
 なお、図10では、図の簡略化のためにインバータ18A~18B(図9参照)を省略する。また、昇圧用IGBT102A及び降圧用IGBT102BをPWM駆動する駆動制御部120Aを省略する。 In FIG. 10, the inverters 18A to 18B (see FIG. 9) are omitted for simplification of the drawing. Further, the drive control unit 120A that PWM-drives the step-up IGBT 102A and the step-down IGBT 102B is omitted.
 また、昇降圧コンバータ100Aは自己診断機能を有しており、この自己診断機能は、昇降圧コンバータ100Aのバッテリ電流検出部113Aが電流値を監視することによって実現される。なお、この自己診断機能は、バッテリ電流検出部113Aの検出値を昇降圧コンバータ100Aが監視することによって実現されてもよい。 Further, the buck-boost converter 100A has a self-diagnosis function, and this self-diagnosis function is realized by the battery current detection unit 113A of the buck-boost converter 100A monitoring the current value. This self-diagnosis function may be realized by the step-up / down converter 100A monitoring the detection value of the battery current detection unit 113A.
 リアクトル101は、一端が昇圧用IGBT102A及び降圧用IGBT102Bの中間点に接続されるとともに、他端が電源接続端子103Aに接続されており、昇圧用IGBT102Aのオン/オフに伴って生じる誘導起電力をDCバス110Aに供給するために設けられている。 Reactor 101 has one end connected to an intermediate point between boosting IGBT 102A and step-down IGBT 102B, and the other end connected to power supply connection terminal 103A. The induced electromotive force generated when boosting IGBT 102A is turned on / off is generated. It is provided to supply to the DC bus 110A.
 昇圧用IGBT102A及び降圧用IGBT102Bは、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)をゲート部に組み込んだバイポーラトランジスタで構成され、大電力の高速スイッチングが可能な半導体素子である。昇圧用IGBT102A及び降圧用IGBT102Bは、駆動制御部120Aからゲート端子にPWM電圧が印加されることによって駆動される。昇圧用IGBT102A及び降圧用IGBT102Bには、整流素子であるダイオード102a及び102bが並列接続される。 The step-up IGBT 102A and the step-down IGBT 102B are semiconductor elements that are composed of bipolar transistors in which MOSFETs (Metal Oxide Semiconductors Field Effect Transistors) are incorporated in the gate portion and can perform high-power high-speed switching. The step-up IGBT 102A and the step-down IGBT 102B are driven by applying a PWM voltage from the drive control unit 120A to the gate terminal. Diodes 102a and 102b, which are rectifier elements, are connected in parallel to the step-up IGBT 102A and the step-down IGBT 102B.
 バッテリ19は、昇降圧コンバータ100Aを介してDCバス110Aとの間で電力の授受が行えるように、充放電可能な蓄電器であればよい。なお、図3には、蓄電器としてバッテリ19を示すが、バッテリ19の代わりに、コンデンサ、充放電可能な二次電池、又は、電力の授受が可能なその他の形態の電源を蓄電器として用いてもよい。 The battery 19 may be a chargeable / dischargeable battery so that power can be exchanged with the DC bus 110A via the buck-boost converter 100A. 3 shows the battery 19 as a capacitor, the capacitor 19 may be replaced with a capacitor, a chargeable / dischargeable secondary battery, or another form of power source capable of power transfer. Good.
 電源接続端子103Aは、バッテリ19が接続可能な端子であればよい。出力端子104Aは、DCバス110Aが接続可能な端子であればよい。 The power connection terminal 103A may be a terminal to which the battery 19 can be connected. The output terminal 104A may be any terminal to which the DC bus 110A can be connected.
 バッテリ19には、バッテリ電圧を検出するバッテリ電圧検出部112A及び112Bが接続される。また、DCバス110Aには、DCバス電圧を検出するDCバス電圧検出部111Aが接続される。 The battery 19 is connected to battery voltage detectors 112A and 112B that detect the battery voltage. In addition, a DC bus voltage detection unit 111A that detects a DC bus voltage is connected to the DC bus 110A.
 バッテリ電圧検出部112A及び112Bは、バッテリ19の電圧値を検出し、DCバス電圧検出部111Aは、DCバス110Aの電圧値を検出する。 The battery voltage detectors 112A and 112B detect the voltage value of the battery 19, and the DC bus voltage detector 111A detects the voltage value of the DC bus 110A.
 平滑用のコンデンサ105は、出力端子104Aの正極端子と負極端子との間に挿入され、DCバス110AのDCバス電圧を平滑化できる蓄電素子であればよい。 The smoothing capacitor 105 may be any storage element that is inserted between the positive terminal and the negative terminal of the output terminal 104A and can smooth the DC bus voltage of the DC bus 110A.
 バッテリ電流検出部113Aは、昇降圧コンバータ100Aのコンバータ電流値を検出可能な検出手段であればよく、電流検出用の抵抗器を含む。 The battery current detection unit 113A may be any detection means capable of detecting the converter current value of the buck-boost converter 100A, and includes a current detection resistor.
 昇降圧コンバータ100Bは、リアクトル101、昇圧用IGBT(Insulated Gate Bipolar Transistor)102A、降圧用IGBT102B、バッテリ19を接続するための電源接続端子103B、負荷を接続するための出力端子104B、及び、一対の出力端子104Bに並列に挿入される平滑用のコンデンサ105を備える。昇降圧コンバータ100Bの出力端子104Bと負荷との間は、DCバス110Bによって接続される。DCバス110Bに接続される負荷は、旋回用電動機21である。なお、図10では、図の簡略化のためにインバータ20A(図9参照)を省略する。 The step-up / down converter 100B includes a reactor 101, a step-up IGBT (Insulated Gate Bipolar Transistor) 102A, a step-down IGBT 102B, a power connection terminal 103B for connecting the battery 19, an output terminal 104B for connecting a load, and a pair of A smoothing capacitor 105 inserted in parallel with the output terminal 104B is provided. The output terminal 104B of the buck-boost converter 100B and the load are connected by a DC bus 110B. The load connected to the DC bus 110 </ b> B is the turning electric motor 21. In FIG. 10, the inverter 20A (see FIG. 9) is omitted for simplification of the drawing.
 また、昇降圧コンバータ100Bは自己診断機能を有しており、この自己診断機能は、昇降圧コンバータ100Bのバッテリ電流検出部113Bが電流値を監視することによって実現される。なお、この自己診断機能は、バッテリ電流検出部113Bの検出値を昇降圧コンバータ100Bが監視することによって実現されてもよい。 Further, the buck-boost converter 100B has a self-diagnosis function, and this self-diagnosis function is realized by the battery current detector 113B of the buck-boost converter 100B monitoring the current value. This self-diagnosis function may be realized by monitoring the detection value of the battery current detection unit 113B by the buck-boost converter 100B.
 リアクトル101は、一端が昇圧用IGBT102A及び降圧用IGBT102Bの中間点に接続されるとともに、他端が電源接続端子103Bに接続されており、昇圧用IGBT102Aのオン/オフに伴って生じる誘導起電力をDCバス110Bに供給するために設けられている。 Reactor 101 has one end connected to an intermediate point between boosting IGBT 102A and step-down IGBT 102B, and the other end connected to power supply connection terminal 103B. Reactor 101 generates induced electromotive force generated when ON / OFF of boosting IGBT 102A is generated. It is provided to supply to the DC bus 110B.
 昇圧用IGBT102A及び降圧用IGBT102Bの構成は、昇降圧コンバータ100Aと同一である。 The configuration of the step-up IGBT 102A and the step-down IGBT 102B is the same as that of the step-up / down converter 100A.
 バッテリ19は、昇降圧コンバータ100Bを介してDCバス110Bとの間で電力の授受を行う。 The battery 19 exchanges power with the DC bus 110B via the step-up / down converter 100B.
 電源接続端子103Bは、バッテリ19が接続可能な端子であればよい。出力端子104Bは、DCバス110Bが接続可能な端子であればよい。 The power connection terminal 103B may be any terminal to which the battery 19 can be connected. The output terminal 104B may be a terminal to which the DC bus 110B can be connected.
 また、DCバス110Bには、DCバス電圧を検出するDCバス電圧検出部111Bが接続される。DCバス電圧検出部111Bは、DCバス110Bの電圧値を検出する。 Further, a DC bus voltage detection unit 111B that detects a DC bus voltage is connected to the DC bus 110B. The DC bus voltage detection unit 111B detects the voltage value of the DC bus 110B.
 平滑用のコンデンサ105は、出力端子104Bの正極端子と負極端子との間に挿入され、DCバス110BのDCバス電圧を平滑化できる蓄電素子であればよい。 The smoothing capacitor 105 may be any storage element that is inserted between the positive terminal and the negative terminal of the output terminal 104B and can smooth the DC bus voltage of the DC bus 110B.
 バッテリ電流検出部113Bは、昇降圧コンバータ100Bのコンバータ電流値を検出可能な検出手段であればよく、電流検出用の抵抗器を含む。 The battery current detection unit 113B may be any detection means capable of detecting the converter current value of the buck-boost converter 100B, and includes a resistor for current detection.
 また、昇降圧コンバータ100Bには、バイパス回路130が並列に接続されている。このバイパス回路130は、昇降圧コンバータ100Bの異常時にDCバス110Bとバッテリ19との間を短絡するための回路であり、駆動制御部120Aによって開閉制御が行われるリレー130A及び130Bを含む。バイパス回路130の開閉制御については後述する。 Further, a bypass circuit 130 is connected in parallel to the buck-boost converter 100B. The bypass circuit 130 is a circuit for short-circuiting the DC bus 110B and the battery 19 when the buck-boost converter 100B is abnormal, and includes relays 130A and 130B that are controlled to open and close by the drive control unit 120A. The opening / closing control of the bypass circuit 130 will be described later.
 「昇降圧動作」
 このような昇降圧コンバータ100Aにおいて、DCバス110Aを昇圧する際には、昇圧用IGBT102Aのゲート端子にPWM電圧を印加し、降圧用IGBT102Bに並列に接続されたダイオード102bを介して、昇圧用IGBT102Aのオン/オフに伴ってリアクトル101に発生する誘導起電力をDCバス110Aに供給する。これにより、DCバス110Aが昇圧される。これは、昇降圧コンバータ100BとDCバス110Bとの関係においても同様である。
"Buck-boost operation"
In such a step-up / down converter 100A, when boosting the DC bus 110A, a PWM voltage is applied to the gate terminal of the boosting IGBT 102A, and the boosting IGBT 102A is connected via the diode 102b connected in parallel to the step-down IGBT 102B. The induced electromotive force generated in the reactor 101 when the power is turned on / off is supplied to the DC bus 110A. As a result, the DC bus 110A is boosted. The same applies to the relationship between the step-up / down converter 100B and the DC bus 110B.
 また、DCバス110Aを降圧する際には、降圧用IGBT102Bのゲート端子にPWM電圧を印加し、降圧用IGBT102Bを介して、電動発電機12によって発生される発電電力、又は発電機30によって発生される回生電力をDCバス110Aからバッテリ19に供給する。これにより、DCバス110Aに蓄積された電力がバッテリ19に充電され、DCバス110Aが降圧される。この降圧動作は、昇降圧コンバータ100BとDCバス110Bを介して接続された旋回用電動発電機21との間においても同様である。 When the DC bus 110A is stepped down, a PWM voltage is applied to the gate terminal of the step-down IGBT 102B, and the generated power generated by the motor generator 12 or the generator 30 is generated via the step-down IGBT 102B. Is supplied to the battery 19 from the DC bus 110A. As a result, the electric power stored in the DC bus 110A is charged in the battery 19, and the DC bus 110A is stepped down. This step-down operation is the same between the step-up / down converter 100B and the turning motor generator 21 connected via the DC bus 110B.
 図11は、本実施形態のハイブリッド型作業機械の昇降圧コンバータ100Aによって行われるバイパス回路130の駆動制御の処理手順を示すフローチャートである。この処理は、昇降圧コンバータ100Aの制御部によって実行される。 FIG. 11 is a flowchart showing a processing procedure of drive control of the bypass circuit 130 performed by the step-up / down converter 100A of the hybrid work machine of this embodiment. This process is executed by the control unit of the buck-boost converter 100A.
 昇降圧コンバータ100Aは、昇降圧コンバータ100Bから異常信号を受信したか否かを判定する(ステップS1)。この処理は、自己診断機能により異常判定を行う降圧コンバータ100Bから異常信号を受信するまで繰り返し実行される。 The step-up / down converter 100A determines whether or not an abnormal signal is received from the step-up / down converter 100B (step S1). This process is repeatedly executed until an abnormal signal is received from the step-down converter 100B that performs abnormality determination using the self-diagnosis function.
 昇降圧コンバータ100Aは、異常信号を受信した場合は、バイパス回路130をオンにするため、リレー130A及び130Bを閉成する(ステップS2)。これにより、昇降圧コンバータ100Bがバイパスされ、DCバス110Bはバッテリ19に直接的に接続される。 When receiving the abnormal signal, the step-up / down converter 100A closes the relays 130A and 130B to turn on the bypass circuit 130 (step S2). Thereby, the buck-boost converter 100B is bypassed, and the DC bus 110B is directly connected to the battery 19.
 次いで、昇降圧コンバータ100Aは、昇降圧コンバータ100Aの電流制限値を昇降圧コンバータ100Bの電流制限値に設定し、DCバス110A及び110Bの双方のDCバス電圧値を一定に制御するために昇圧動作又は降圧動作を行う。これにより、昇降圧コンバータ100Bに異常が生じて一時的に利用できなくなっても、DCバス110A側のシステム(インバータ18A等)によりバッテリ19の電圧を一定にすることができる。これにより、DCバス110Bはバッテリ電圧と同等の電圧を維持することができ、所定の作業が完了するまでの間、インバータ20Aを制御して旋回用電動機21を駆動することができる。 Next, the buck-boost converter 100A sets the current limit value of the buck-boost converter 100A to the current limit value of the buck-boost converter 100B, and boosts the voltage to control the DC bus voltage values of both the DC buses 110A and 110B to be constant. Alternatively, a step-down operation is performed. Thereby, even if abnormality occurs in the buck-boost converter 100B and it cannot be used temporarily, the voltage of the battery 19 can be made constant by the system (inverter 18A or the like) on the DC bus 110A side. Thus, the DC bus 110B can maintain a voltage equivalent to the battery voltage, and can control the inverter 20A to drive the turning electric motor 21 until a predetermined operation is completed.
 なお、ここでは、昇降圧コンバータ100Bの自己診断機能によって異常判定が行われた場合に、昇降圧コンバータ100Aによってバイパス回路130の駆動制御が行われる形態について説明したが、昇降圧コンバータ100Bが異常判定を行った場合に、上位制御部である駆動制御部120Aに異常信号を通報し、駆動制御部120Aがバイパス回路130の駆動制御を行なうようにしてもよい。 Here, although a description has been given of a mode in which drive control of the bypass circuit 130 is performed by the buck-boost converter 100A when abnormality determination is performed by the self-diagnosis function of the buck-boost converter 100B, the buck-boost converter 100B determines abnormality. When the operation is performed, an abnormality signal may be reported to the drive control unit 120A that is the host control unit, and the drive control unit 120A may perform drive control of the bypass circuit 130.
 以上のように、本実施形態によるハイブリッド型作業機械によれば、エンジン11のアシスト用の電動発電機12及びリフティングマグネット6と、旋回機構2を駆動するための旋回用電動機21及びブーム回生用の発電機30とは、別々のDCバス110Aと110Bに接続されているため、電動発電機12及びリフティングマグネット6と、旋回用電動機21とには別々のDCバス110A及び100Bを介して電力が供給される。 As described above, according to the hybrid work machine according to the present embodiment, the motor generator 12 and the lifting magnet 6 for assisting the engine 11, the electric motor 21 for turning and the boom regenerator for driving the turning mechanism 2 are used. Since the generator 30 is connected to separate DC buses 110A and 110B, electric power is supplied to the motor generator 12, the lifting magnet 6 and the turning motor 21 via separate DC buses 110A and 100B. Is done.
 このような構成により、定格出力の電動発電機12と旋回用電動機21の定格出力の違いに合わせてDCバス110Bの電圧値をDCバス110Aの電圧値よりも高く設定することができ、機器の損傷又は破損を抑制しつつ、各電動機を効率的に駆動することのできる昇降圧コンバータを用いたハイブリッド型作業機械を提供することができる。 With such a configuration, the voltage value of the DC bus 110B can be set higher than the voltage value of the DC bus 110A in accordance with the difference in the rated output of the motor generator 12 with the rated output and the motor 21 for turning. It is possible to provide a hybrid work machine using a step-up / step-down converter that can efficiently drive each electric motor while suppressing damage or breakage.
 さらに、DCバス及び昇降圧コンバータを複数に分けたため、一方の昇降圧コンバータが損傷しても、直ちに制御不能となることなく、他方のコンバータで所定の間、全ての作業を継続することができる。 Furthermore, since the DC bus and the step-up / down converter are divided into a plurality of parts, even if one of the step-up / step-down converters is damaged, all the work can be continued for a predetermined time with the other converter without immediately being out of control. .
 また、リフティングマグネット6と旋回用電動機21とを、共通のDCバス110Bで接続しているので、昇降圧コンバータ100Bが損傷しても、直ちにリフティングマグネット6への電流供給を継続させることができる。 Further, since the lifting magnet 6 and the turning electric motor 21 are connected by the common DC bus 110B, even if the buck-boost converter 100B is damaged, the current supply to the lifting magnet 6 can be continued immediately.
 本発明が適用されるハイブリッド型作業機械は、ハイブリッド型建設機械であってもよい。また、本発明が適用されるハイブリッド型作業機械は、建設機械以外の形態の作業機械であってもよく、例えば、ハイブリッド型の運搬荷役機械(クレーンやフォークリフト)であってもよい。 The hybrid work machine to which the present invention is applied may be a hybrid construction machine. In addition, the hybrid work machine to which the present invention is applied may be a work machine of a form other than a construction machine, and may be, for example, a hybrid transporting and handling machine (crane or forklift).
 例えば、図2に示すエンジン11及び電動発電機12をクレーンのエンジン及びアシスト用電動発電機として用い、図2に示す旋回用電動機21をクレーンの荷役作業において部品や貨物等を上昇又は下降させるための動力源に用いればよい。特に、部品や貨物等を上昇又は下降させるための動力源は、ワイヤの巻き取り、又は引出に伴って力行運転(巻き取り時)と回生運転(引出時)を行うため、上述のハイブリッド型作業機械と同様に実施することができる。 For example, the engine 11 and the motor generator 12 shown in FIG. 2 are used as the crane engine and the assist motor generator, and the turning electric motor 21 shown in FIG. 2 is used to raise or lower parts, cargo, etc. in the crane handling operation. Can be used as a power source. In particular, the power source for raising or lowering parts, cargo, etc., performs the power running operation (during winding) and regenerative operation (during withdrawal) accompanying the winding or drawing of the wire. It can be implemented in the same way as a machine.
 また、フォークリフトの場合も同様に、図2に示すエンジン11及び電動発電機12をフォークリフトのエンジン及びアシスト用電動発電機として用い、図2に示す旋回用電動機21をフォークリフトの荷役作業においてフォークを上昇又は下降させるための動力源に用いればよい。特に、フォークを上昇又は下降させるための動力源は、上下動作に伴って力行運転(巻き取り時)と回生運転(引出時)を行うため、上述のハイブリッド型作業機械と同様に実施することができる。 Similarly, in the case of a forklift, the engine 11 and motor generator 12 shown in FIG. 2 are used as a forklift engine and an assist motor generator, and the turning electric motor 21 shown in FIG. Alternatively, it may be used as a power source for lowering. In particular, the power source for raising or lowering the fork performs a power running operation (at the time of winding) and a regenerative operation (at the time of pulling out) in accordance with the up and down movement, so that it can be implemented in the same manner as the above-described hybrid type work machine. it can.
 以上、本発明の例示的な実施の形態のハイブリッド型作業機械について説明したが、本発明は、具体的に開示された実施の形態に限定されるものではなく、特許請求の範囲から逸脱することなく、種々の変形や変更が可能である。 The hybrid working machine according to the exemplary embodiment of the present invention has been described above, but the present invention is not limited to the specifically disclosed embodiment, and departs from the scope of the claims. Various modifications and changes are possible.
 本出願は2008年6月25日出願の優先権主張日本特許出願2008-166448号及び2008年2月12日出願の日本特許出願2008-030773号に基づくものであり、その全内容はここに援用される。 This application is based on Japanese Patent Application No. 2008-166448 filed on June 25, 2008 and Japanese Patent Application No. 2008-030773 filed on Feb. 12, 2008, the entire contents of which are incorporated herein by reference. Is done.
 本発明は、電力供給用の蓄電部を有するにハイブリッド型作業機械に適用可能である。 The present invention is applicable to a hybrid work machine having a power storage unit for supplying power.
 1 下部走行体
 1A、1B 走行機構
 2 旋回機構
 3 上部旋回体
 4 ブーム
 5 アーム
 6 リフティングマグネット
 7 ブームシリンダ
 8 アームシリンダ
 9 バケットシリンダ
 10 キャビン
 11 エンジン
 12 電動発電機
 13 減速機
 14 メインポンプ
 15 パイロットポンプ
 16 高圧油圧ライン
 17 コントロールバルブ
 18A、18B インバータ
 20A,20B インバータ
 19 バッテリ
 21 旋回用電動機
 22 レゾルバ
 23 メカニカルブレーキ
 24 旋回減速機
 25 パイロットライン
 26 操作装置
 26A、26B レバー
 26C ペダル
 27 油圧ライン
 28 油圧ライン
 29 圧力センサ
 30 コントローラ
 31 速度指令変換部
 32 駆動制御装置
 40 旋回駆動制御装置
 50 駆動制御部
 51 電圧制御部
 52 昇降圧切替部
 53 昇圧用PM
 54 降圧用PM
 55 電流制御部
 56 制御切替部
 100、100A,100B 昇降圧コンバータ
 101 リアクトル
 102A 昇圧用IGBT
 102B 降圧用IGBT
 103、103A、103B 電源接続端子
 104,104A,104B 出力端子
 105 コンデンサ
 106 負荷
 110、110A、110B DCバス
 111、111A、111B DCバス電圧検出部
 112、112A、112B バッテリ電圧検出部
 113、113A、113B バッテリ電流検出部
 120 コントローラ
 120A 駆動制御部
 120B 旋回駆動制御部
DESCRIPTION OF SYMBOLS 1 Lower traveling body 1A, 1B Traveling mechanism 2 Turning mechanism 3 Upper turning body 4 Boom 5 Arm 6 Lifting magnet 7 Boom cylinder 8 Arm cylinder 9 Bucket cylinder 10 Cabin 11 Engine 12 Motor generator 13 Decelerator 14 Main pump 15 Pilot pump 16 High pressure hydraulic line 17 Control valve 18A, 18B Inverter 20A, 20B Inverter 19 Battery 21 Electric motor for turning 22 Resolver 23 Mechanical brake 24 Turning speed reducer 25 Pilot line 26 Operating device 26A, 26B Lever 26C Pedal 27 Hydraulic line 28 Hydraulic line 29 Pressure sensor DESCRIPTION OF SYMBOLS 30 Controller 31 Speed command conversion part 32 Drive control apparatus 40 Turning drive control apparatus 50 Drive control part 51 Voltage control part 52 Buck-boost switching part 53 PM for boosting
54 PM for step-down
55 Current Control Unit 56 Control Switching Unit 100, 100A, 100B Buck-Boost Converter 101 Reactor 102A Boost IGBT
102B IGBT for step-down
103, 103A, 103B Power connection terminal 104, 104A, 104B Output terminal 105 Capacitor 106 Load 110, 110A, 110B DC bus 111, 111A, 111B DC bus voltage detector 112, 112A, 112B Battery voltage detector 113, 113A, 113B Battery current detection unit 120 controller 120A drive control unit 120B turning drive control unit

Claims (14)

  1.  複数の電動作業要素を駆動するための複数のインバータと、
     前記複数のインバータとの間で電力の授受を行う蓄電器と、
     前記複数のインバータに接続されるDCバスと、
     前記DCバスと前記蓄電器との間に配設された昇降圧コンバータと
     を有し、
     前記複数のインバータは、第1のインバータと第2のインバータとを含み、
     前記DCバスは、前記第1のインバータが接続される第1のDCバスと、前記第2のインバータが接続される第2のDCバスとを含み、
     前記昇降圧コンバータは、前記第1のDCバスと前記蓄電器との間に配設される
     ことを特徴とするハイブリッド型作業機械。
    A plurality of inverters for driving a plurality of electric work elements;
    A battery that exchanges power with the plurality of inverters;
    A DC bus connected to the plurality of inverters;
    A buck-boost converter disposed between the DC bus and the battery;
    The plurality of inverters includes a first inverter and a second inverter,
    The DC bus includes a first DC bus to which the first inverter is connected, and a second DC bus to which the second inverter is connected,
    The step-up / step-down converter is disposed between the first DC bus and the electric storage device.
  2.  請求項1記載のハイブリッド型作業機械であって、
     前記第1のDCバスには、エンジンをアシストする電動発電機を駆動制御するためのインバータが接続されることを特徴とするハイブリッド型作業機械。
    A hybrid work machine according to claim 1,
    An inverter for driving and controlling a motor generator that assists the engine is connected to the first DC bus.
  3.  請求項2記載のハイブリッド型作業機械であって、
     前記電動作業要素には、ブームの角度を調整するためのブーム用電動機が含まれており、前記ブーム用電動機を駆動するためのインバータは、前記第1のDCバスに接続されることを特徴とするハイブリッド型作業機械。
    A hybrid work machine according to claim 2,
    The electric work element includes a boom electric motor for adjusting an angle of the boom, and an inverter for driving the boom electric motor is connected to the first DC bus. Hybrid type work machine.
  4.  請求項1乃至3のうちいずれか一項記載のハイブリッド型作業機械であって、
     前記電動作業要素には、リフティングマグネット用の電磁石が含まれおり、前記電磁石を駆動するためのインバータは、前記第1のDCバスに接続されることを特徴とするハイブリッド型作業機械。
    A hybrid working machine according to any one of claims 1 to 3,
    The electric work element includes an electromagnet for a lifting magnet, and an inverter for driving the electromagnet is connected to the first DC bus.
  5.  請求項1記載のハイブリッド型作業機械であって、
     エンジンをアシストするための電動発電機を駆動制御するインバータは、前記第2のDCバスに接続されることを特徴とするハイブリッド型作業機械。
    A hybrid work machine according to claim 1,
    An inverter for driving and controlling a motor generator for assisting an engine is connected to the second DC bus.
  6.  請求項1乃至5のうちいずれか一項記載のハイブリッド型作業機械であって、
     前記蓄電器と前記昇降圧コンバータとの間を通流する電流値を検出する電流検出手段をさらに含み、
     前記昇降圧コンバータは、前記電流検出手段で検出される電流値が前記蓄電器の許容電流値以下になるように制御されることを特徴とするハイブリッド型作業機械。
    A hybrid work machine according to any one of claims 1 to 5,
    Current detection means for detecting a current value flowing between the capacitor and the buck-boost converter;
    The step-up / down converter is controlled so that a current value detected by the current detection means is equal to or less than an allowable current value of the battery.
  7.  油圧駆動作業要素の駆動に必要な油圧を発生する油圧ポンプを駆動するための内燃機関に機械的に接続され、電動(アシスト)運転及び発電運転を行う電動発電機と、
     電動駆動作業要素の駆動を行う電動駆動部と、
     前記電動発電機又は前記電動駆動部に供給するための電力を蓄積するとともに、前記電動発電機又は前記電動駆動部によって発電された電力を充電する蓄電器と、
     一側が第1のDCバスを介して前記電動発電機に接続されるとともに、他側が前記蓄電器に接続され、前記第1のDCバスの電圧値を昇圧又は降圧する第1昇降圧コンバータと、
     一側が第2のDCバスを介して前記電動駆動部に接続されるとともに、他側が前記蓄電器に接続され、前記第2のDCバスの電圧値を昇圧又は降圧する第2昇降圧コンバータと
     を有することを特徴とするハイブリッド型作業機械。
    A motor generator mechanically connected to an internal combustion engine for driving a hydraulic pump that generates a hydraulic pressure necessary for driving a hydraulically driven working element, and performing an electric (assist) operation and a power generation operation;
    An electric drive unit for driving an electric drive working element;
    A battery for accumulating electric power to be supplied to the motor generator or the electric drive unit and charging electric power generated by the motor generator or the electric drive unit;
    A first step-up / step-down converter that has one side connected to the motor generator via a first DC bus and the other side connected to the capacitor, stepping up or down the voltage value of the first DC bus;
    A second step-up / step-down converter that has one side connected to the electric drive unit via a second DC bus and the other side connected to the capacitor and that steps up or down the voltage value of the second DC bus. A hybrid work machine characterized by that.
  8.  請求項7記載のハイブリッド型作業機械であって、
     前記電動駆動部は、上部旋回体の旋回機構を回転駆動するための旋回用電動機であり、
     前記第1の昇降圧コンバータ及び前記第2の昇降圧コンバータの少なくとも一方は、前記旋回用電動機の回転速度に応じて前記第1のDCバス又は前記第2のDCバスの電圧値を可変制御することを特徴とするハイブリッド型作業機械。
    The hybrid work machine according to claim 7,
    The electric drive unit is a turning electric motor for rotationally driving the turning mechanism of the upper turning body,
    At least one of the first buck-boost converter and the second buck-boost converter variably controls the voltage value of the first DC bus or the second DC bus according to the rotational speed of the turning electric motor. A hybrid work machine characterized by that.
  9.  請求項7記載のハイブリッド型作業機械であって、
     前記電動駆動部は、上部旋回体の旋回機構を回転駆動するための旋回用電動機であり、
     前記第1の昇降圧コンバータ及び前記第2の昇降圧コンバータのいずれか一方は、前記旋回用電動機の回転速度に応じて前記第1のDCバス又は前記第2のDCバスの電圧値を可変制御し、前記第1の昇降圧コンバータ及び前記第2の昇降圧コンバータの他方は、前記第1のDCバス又は前記第2のDCバスの電圧値を一定値に制御することを特徴とするハイブリッド型作業機械。
    The hybrid work machine according to claim 7,
    The electric drive unit is a turning electric motor for rotationally driving the turning mechanism of the upper turning body,
    One of the first step-up / step-down converter and the second step-up / step-down converter variably controls the voltage value of the first DC bus or the second DC bus according to the rotational speed of the turning electric motor. The other of the first buck-boost converter and the second buck-boost converter controls the voltage value of the first DC bus or the second DC bus to a constant value. Work machine.
  10.  請求項9記載のハイブリッド型作業機械であって、
     前記電圧値が一定値に制御される前記第1のDCバス又は前記第2のDCバスには、リフティングマグネットの駆動回路、又は、電動式の走行機構の駆動回路が接続されることを特徴とするハイブリッド型作業機械。
    The hybrid work machine according to claim 9, wherein
    A driving circuit of a lifting magnet or a driving circuit of an electric traveling mechanism is connected to the first DC bus or the second DC bus whose voltage value is controlled to a constant value. Hybrid type work machine.
  11.  請求項7乃至10のうちいずれか一項記載のハイブリッド型作業機械であって、
     前記第1の昇降圧コンバータ及び前記第2の昇降圧コンバータの少なくとも一方は自己診断機能を有し、異常時には、異常を表す異常信号を他方に通報することを特徴とするハイブリッド型作業機械。
    A hybrid work machine according to any one of claims 7 to 10,
    At least one of the first step-up / step-down converter and the second step-up / step-down converter has a self-diagnosis function, and in the event of an abnormality, an abnormal signal indicating the abnormality is reported to the other.
  12.  請求項11記載のハイブリッド型作業機械であって、
     前記第1の昇降圧コンバータ又は前記第2の昇降圧コンバータは、自己診断機能により異常を検出した場合には、自己の電流制限値を他方の昇降圧コンバータの電流制限値に設定させることを特徴とするハイブリッド型作業機械。
    A hybrid work machine according to claim 11,
    When the first buck-boost converter or the second buck-boost converter detects an abnormality by a self-diagnosis function, the first buck-boost converter sets its own current limit value to the current limit value of the other buck-boost converter. Hybrid type work machine.
  13.  請求項7乃至10のうちいずれか一項記載のハイブリッド型作業機械であって、
     前記第1の昇降圧コンバータ及び前記第2の昇降圧コンバータのいずれか一方は自己診断機能を有し、異常時には、異常を表す異常信号を上位制御部に報知することを特徴とするハイブリッド型作業機械。
    A hybrid work machine according to any one of claims 7 to 10,
    One of the first step-up / step-down converter and the second step-up / down converter has a self-diagnosis function, and at the time of abnormality, an abnormal signal indicating the abnormality is notified to the host control unit. machine.
  14.  請求項7乃至13のうちいずれか一項記載のハイブリッド型作業機械であって、
     前記第1の昇降圧コンバータ及び前記第2昇降圧コンバータの少なくとも一方は、異常時に自己の昇降圧コンバータをバイパスさせるバイパス回路を有することを特徴とするハイブリッド型作業機械。
    A hybrid work machine according to any one of claims 7 to 13,
    At least one of the first buck-boost converter and the second buck-boost converter has a bypass circuit that bypasses its own buck-boost converter in the event of an abnormality.
PCT/JP2009/061527 2008-06-25 2009-06-24 Hybrid working machine WO2009157485A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-166448 2008-06-25
JP2008166448A JP5704676B2 (en) 2008-06-25 2008-06-25 Hybrid work machine

Publications (1)

Publication Number Publication Date
WO2009157485A1 true WO2009157485A1 (en) 2009-12-30

Family

ID=41444549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/061527 WO2009157485A1 (en) 2008-06-25 2009-06-24 Hybrid working machine

Country Status (2)

Country Link
JP (1) JP5704676B2 (en)
WO (1) WO2009157485A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011190623A (en) * 2010-03-15 2011-09-29 Sumitomo Heavy Ind Ltd Hybrid working machine
JP2011236013A (en) * 2010-05-11 2011-11-24 Hitachi Constr Mach Co Ltd Lifting magnet working machine
EP3268243B1 (en) * 2015-03-12 2023-04-05 Robert Bosch GmbH Power buffer for a battery system for operating an electrical machine and method for adjusting an electrical output which can be provided by means of a battery system for operating an electrical machine

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010007545A1 (en) * 2010-02-11 2011-08-11 Gottwald Port Technology GmbH, 40597 Crane, especially mobile harbor crane, with a hybrid propulsion system
US9379643B2 (en) * 2010-12-23 2016-06-28 The Regents Of The University Of Colorado, A Body Corporate Electrosurgical generator controller for regulation of electrosurgical generator output power
JP6987486B2 (en) * 2016-01-19 2022-01-05 住友建機株式会社 Lifting magnet work machine
US10770966B2 (en) * 2016-04-15 2020-09-08 Emerson Climate Technologies, Inc. Power factor correction circuit and method including dual bridge rectifiers
CN108879623B (en) * 2018-06-13 2020-06-05 南京南瑞继保电气有限公司 Multi-voltage-level direct current network system and control protection method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003244801A (en) * 2002-02-14 2003-08-29 Toyota Motor Corp Voltage converter
WO2006080100A1 (en) * 2005-01-31 2006-08-03 Sumitomo(Shi) Construction Machinery Manufacturing Co., Ltd. Working machine of lifting magnet specifications
JP2006288024A (en) * 2005-03-31 2006-10-19 Toyota Motor Corp Voltage converter and its control method
JP2008029126A (en) * 2006-07-21 2008-02-07 Fujitsu Ten Ltd Voltage booster circuit, motor driving circuit and electric power steering controller
JP2009191463A (en) * 2008-02-12 2009-08-27 Sumitomo Heavy Ind Ltd Hybrid construction machinery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60335080D1 (en) * 2002-01-16 2011-01-05 Toyota Motor Co Ltd TESTING PROCEDURE, STORAGE MEDIUM, PROGRAM, DRIVE
JP2007155586A (en) * 2005-12-07 2007-06-21 Sumitomo Heavy Ind Ltd Working machine and method for starting operation of working machine
JP2007318910A (en) * 2006-05-25 2007-12-06 Toyota Industries Corp Power supply device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003244801A (en) * 2002-02-14 2003-08-29 Toyota Motor Corp Voltage converter
WO2006080100A1 (en) * 2005-01-31 2006-08-03 Sumitomo(Shi) Construction Machinery Manufacturing Co., Ltd. Working machine of lifting magnet specifications
JP2006288024A (en) * 2005-03-31 2006-10-19 Toyota Motor Corp Voltage converter and its control method
JP2008029126A (en) * 2006-07-21 2008-02-07 Fujitsu Ten Ltd Voltage booster circuit, motor driving circuit and electric power steering controller
JP2009191463A (en) * 2008-02-12 2009-08-27 Sumitomo Heavy Ind Ltd Hybrid construction machinery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011190623A (en) * 2010-03-15 2011-09-29 Sumitomo Heavy Ind Ltd Hybrid working machine
JP2011236013A (en) * 2010-05-11 2011-11-24 Hitachi Constr Mach Co Ltd Lifting magnet working machine
EP3268243B1 (en) * 2015-03-12 2023-04-05 Robert Bosch GmbH Power buffer for a battery system for operating an electrical machine and method for adjusting an electrical output which can be provided by means of a battery system for operating an electrical machine

Also Published As

Publication number Publication date
JP2010011602A (en) 2010-01-14
JP5704676B2 (en) 2015-04-22

Similar Documents

Publication Publication Date Title
WO2009157485A1 (en) Hybrid working machine
EP2228491B1 (en) Hybrid construction machine and control method of hybrid construction machine
JP4949288B2 (en) Hybrid construction machine
JP5421074B2 (en) Hybrid construction machine
WO2010143628A1 (en) Hybrid excavator and manufacturing method therefor
EP2383880A1 (en) Hybrid working machine and servo control system
JP5674086B2 (en) Hybrid construction machine
JP5101400B2 (en) Hybrid construction machine
CN102134867B (en) Hybrid operation machine
JP5808779B2 (en) Excavator
JP5274978B2 (en) Hybrid construction machine
JP5122509B2 (en) Hybrid work machine
JP5583901B2 (en) Hybrid construction machine
JP5107167B2 (en) Hybrid work machine
JP5726929B2 (en) Construction machine and method for controlling construction machine
JP5550954B2 (en) Hybrid work machine
EP2518874A2 (en) Method for controlling an inverter for driving a swing motor
JP5307692B2 (en) Lifting magnet type self-propelled machine
JP5122548B2 (en) Hybrid construction machine
JP2011105454A (en) Lifting magnet type construction machine
JP6366978B2 (en) Industrial vehicle power supply
JP5107207B2 (en) Hybrid work machine
JP2013014915A (en) Shovel
JP2009294102A (en) Method of measuring internal resistance of electric storage device and internal resistance measuring apparatus
JP5356067B2 (en) Hybrid construction machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09770195

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09770195

Country of ref document: EP

Kind code of ref document: A1