WO2009157420A1 - Thin film fuel cell and method for manufacturing thin film fuel cell - Google Patents

Thin film fuel cell and method for manufacturing thin film fuel cell Download PDF

Info

Publication number
WO2009157420A1
WO2009157420A1 PCT/JP2009/061356 JP2009061356W WO2009157420A1 WO 2009157420 A1 WO2009157420 A1 WO 2009157420A1 JP 2009061356 W JP2009061356 W JP 2009061356W WO 2009157420 A1 WO2009157420 A1 WO 2009157420A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrode layer
fuel cell
thin film
film fuel
Prior art date
Application number
PCT/JP2009/061356
Other languages
French (fr)
Japanese (ja)
Inventor
松田 厚範
裕介 大幸
Original Assignee
国立大学法人豊橋技術科学大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人豊橋技術科学大学 filed Critical 国立大学法人豊橋技術科学大学
Priority to JP2010518014A priority Critical patent/JPWO2009157420A1/en
Publication of WO2009157420A1 publication Critical patent/WO2009157420A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8875Methods for shaping the electrode into free-standing bodies, like sheets, films or grids, e.g. moulding, hot-pressing, casting without support, extrusion without support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8896Pressing, rolling, calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1053Polymer electrolyte composites, mixtures or blends consisting of layers of polymers with at least one layer being ionically conductive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure relates to a thin film fuel cell and a thin film fuel cell manufacturing method.
  • Fuel cells can generate electricity with high efficiency in principle. Even if the fuel cell is small, sufficient power can be taken out. Therefore, the fuel cell is expected to be applied as a power source for mobile devices such as mobile phones and notebook computers. Also, by reducing the size of the fuel cell, it is possible to suppress the amount of expensive constituent materials such as noble metal materials used as electrode materials and perfluorocarbon sulfonic acids used as electrolyte layer materials. Therefore, the cost of the fuel cell can be suppressed.
  • the present disclosure has been made to solve the above-described problems, and is a thin film fuel cell in which an electrolyte membrane and an electrode membrane are thinned in a stable state, and a thin film in an electrolyte membrane and an electrode membrane in a stable state.
  • An object of the present invention is to provide a method for manufacturing a thin film fuel cell.
  • an electrolyte layer having a structure in which an anionic substance and a cationic substance are alternately laminated, and an anode electrode layer and a cathode electrode that are arranged to be opposed to each other with the electrolyte layer interposed therebetween
  • the anode electrode layer and the cathode electrode layer wherein at least one of the anode electrode layer and the cathode electrode layer has a structure in which anionic substances and cationic substances are alternately laminated.
  • a thin film fuel cell comprising:
  • a method for producing a thin film fuel cell comprising a second electrode layer forming step of forming the other electrode layer of the cathode electrode layers.
  • FIG. 1 is a schematic diagram showing a cross-sectional configuration of a thin film fuel cell 100.
  • FIG. 3 is a flowchart showing a method for manufacturing the thin film fuel cell 100.
  • 1 is a schematic diagram showing a cross-sectional configuration of a thin film fuel cell 100.
  • FIG. It is a schematic diagram which shows the pre-processing process with respect to the Vycor glass 1.
  • FIG. is a schematic diagram showing a process for forming a third conductive layer 2.
  • FIG. 4 is a schematic diagram showing a lamination process for laminating primer layer 3 to second conductive layer 8. It is a schematic diagram which shows the process of connecting the electrodes 21 and 22.
  • FIG. It is a time-dependent change characteristic of an open circuit voltage. It is a time-dependent change characteristic of an open circuit voltage. It is an impedance measurement result.
  • the thin film fuel cell 100 includes Vycor glass 1 and 11.
  • Third conductive layers 2 and 10 which are electron conductive layers, are formed on the surfaces of Vycor glass 1 and 11, respectively.
  • Primer layers 3 and 9 are provided.
  • a first conductive layer 4 and a second conductive layer 8 which are electron conductive layers are provided.
  • An anode electrode layer 5, an electrolyte layer 6, and a cathode electrode layer 7 are provided.
  • the primer layer 3 is laminated on the side surface opposite to the surface in contact with the Vycor glass 1.
  • the first conductive layer 4 is laminated on the side of the primer layer 3 opposite to the side in contact with the third conductive layer 2.
  • An anode electrode layer 5 is stacked on the side surface of the first conductive layer 4 opposite to the surface in contact with the primer layer 3.
  • An electrolyte layer 6 is laminated on the side of the anode electrode layer 5 opposite to the side in contact with the first conductive layer 4.
  • a cathode electrode layer 7 is laminated on the side of the electrolyte layer 6 opposite to the surface in contact with the anode electrode layer 5.
  • a second conductive layer 8 is laminated on the side of the cathode electrode layer 7 opposite to the side in contact with the electrolyte layer 6.
  • a primer layer 9 is laminated on the side surface of the second conductive layer 8 opposite to the surface in contact with the cathode electrode layer 7. The side opposite to the surface in contact with the second conductive layer 8 in the primer layer 9 is in contact with the third conductive layer 10 in the state formed on the surface of the Vycor glass 11.
  • electrodes 21 and 22 are connected to the first conductive layer 4 and the second conductive layer 8, respectively.
  • a load 23 is connected to the opposite end of the electrode 21 on the side connected to the first conductive layer 4 and the opposite end of the electrode 22 on the side connected to the second conductive layer 8.
  • Vycor glass 1 and 11 are layers (primer layers 3 and 9, first conductive layer 4, anode electrode layer 5, electrolyte layer 6, cathode electrode layer 7) sandwiched between Vycor glass 1 and Vycor glass 11. , Support the second conductive layer 8, the third conductive layer 2 and 10).
  • Vycor glass 1 and 11 is used as a base substrate for imparting strength to the main body of the thin film fuel cell 100.
  • Vycor glass 1 and 11 has a porous property, and can transmit gas and liquid. Fuel (hydrogen gas or the like) or oxidant (oxygen gas or the like) supplied from the outside passes through the Vycor glass 1 and 11. The permeated fuel causes an electrochemical reaction in the anode electrode layer 5, the electrolyte layer 6, and the cathode electrode layer 7 (details will be described later).
  • a cationic substance is used as a material constituting each of the above-described layers (primer layers 3 and 9, first conductive layer 4, anode electrode layer 5, electrolyte layer 6, cathode electrode layer 7, and second conductive layer 8). And anionic substances are used (details will be described later).
  • the cationic substance has a positive charge.
  • Anionic substances have a negative charge.
  • the first conductive layer 4, the anode electrode layer 5, the electrolyte layer 6, the cathode electrode layer 7, and the second conductive layer 8 are each composed of an anionic substance and a cationic substance. And may be alternately stacked. Accordingly, when another layer is stacked on one of the above-described layers, the charge polarity of each layer disposed in the contact portion can be easily reversed.
  • Vycor glasses 1 and 11 are usually produced by phase separation and etching of alkali borosilicate (Na 2 OB 2 O 3 —SiO 2 ) glass and have porosity. Vycor glass 1 and 11 are normally negatively charged in an aqueous solution. In addition to the Vycor glass 1 and 11, a well-known material having porosity and allowing gas or liquid to permeate can be used.
  • a porous substrate prepared by mixing hydrophobic binder particles (fluorine resin powder) with carbon fine particles (carbon black) and hot pressing the same is also used in place of Vycor glass 1 and 11. be able to.
  • porous stainless steel or a porous stainless steel tube can also be used.
  • a carbon-based porous substrate or a porous stainless material since the substrate itself has high electronic conductivity, it is possible to omit the lamination of third conductive layers 2 and 10 described later. Note that the carbon-based porous substrate and the porous stainless steel material have a characteristic that they are easily charged in a water solution although they have a smaller charge than Vycor glass.
  • Third conductive layers 2 and 10 are formed on the surfaces of Vycor glass 1 and 11, respectively.
  • the third conductive layer 2 collects the current generated in the anode electrode layer 5 by an electrochemical reaction and makes it easy to take it out.
  • the third conductive layer 2 lowers an electron flow barrier when electrons are taken out to the outside.
  • the third conductive layer 2 can efficiently transfer electrons to the electrode.
  • the third conductive layer 10 is provided to facilitate supplying electrons from the outside to the cathode electrode layer 7.
  • the third conductive layer 10 lowers the electron flow barrier when electrons are supplied from the outside.
  • the third conductive layer 10 can efficiently transfer electrons to the cathode electrode layer 7.
  • the material constituting the third conductive layers 2 and 10 conventionally known materials having electronic conductivity are used. For example, gold or Baytron (registered trademark) is used.
  • a method of laminating the third conductive layers 2 and 10 a conventionally known method capable of thinning and laminating the electron conductive material to be used is used. For example, a vacuum deposition method, a dip coating method, or a spin coating method is used.
  • the electrodes 21 and 22 are connected to the first conductive layer 4 and the second conductive layer 8.
  • the present disclosure is not limited to this configuration.
  • the third conductive layers 2 and 10 have electronic conductivity. For this reason, even when the electrodes 21 and 22 are connected to the third conductive layers 2 and 10, electrons flow efficiently and a current flows through the load 23.
  • the primer layers 3 and 9 are provided in order to smoothly laminate the first conductive layer 4 and the second conductive layer 8 laminated adjacent to each other with a uniform layer thickness.
  • Vycor glass 1 and 11 has porosity. For this reason, many holes are formed on the surface. Primer layers 3 and 9 are filled into these holes.
  • a smooth surface composed of the primer layers 3 and 9 is formed on the surfaces of the Vycor glass 1 and 11. As a result, the first conductive layer 4 and the second conductive layer 8 having smooth surfaces can be laminated. Since the thicknesses of the first conductive layer 4 and the second conductive layer 8 are uniform, the occurrence of a thin film defect is prevented.
  • a material capable of forming a smooth surface on the surface of the Vycor glass 1 and 11 is used.
  • PDDA polydiallyldimethylammonium chloride
  • PSS polystyrene sulfonic acid
  • a substance having a polarity opposite to the charged polarity of the layers adjacent to the primer layers 3 and 9 (Vycor glass 1 and 11, the first conductive layer 4, the second conductive layer 8, etc.) is used.
  • an electrostatic force acts between the adjacent layers and the primer layers 3 and 9 in the attracting direction. For this reason, the primer layers 3 and 9 firmly adhered to the adjacent layers are formed.
  • a plurality of the above substances may be used, and an anionic substance and a cationic substance may be alternately stacked.
  • an electrostatic force acts in the attracting direction between the cationic substance and the anionic substance. For this reason, an anionic substance and a cationic substance adhere closely.
  • Primer layers 3 and 9 having no defect are formed.
  • a method for laminating the primer layers 3 and 9 a conventionally well-known method capable of thinning and laminating materials used as the primer layers 3 and 9 is used. For example, a dip coating method or a spin coating method is used.
  • the first conductive layer 4 lowers the flow barrier when electrons flow from the adjacent anode electrode layer 5 to the electrode 21.
  • the first conductive layer 4 collects electrons generated in the adjacent anode electrode layer 5 and makes it easy to take out to the outside through the electrode. In the configuration shown in FIG. 1, electrons generated in the anode electrode layer 5 and collected in the first conductive layer 4 flow to the load 23 through the electrode 21 attached to the first conductive layer 4.
  • the material constituting the first conductive layer 4 a conventionally known material having electronic conductivity is used.
  • PDDA which is a cationic substance
  • Baytron which is an anionic substance
  • a substance having a polarity opposite to the charging polarity of the layers (primer layer 3, anode electrode layer 5, etc.) adjacent to the first conductive layer 4 is used.
  • an electrostatic force acts between the two in the attracting direction.
  • the 1st conductive layer 4 closely_contact
  • a plurality of these substances may be used, and a cationic substance and an anionic substance may be alternately laminated.
  • the first conductive layer 4 having no defect is formed.
  • a method for laminating the first conductive layer 4 a conventionally well-known method capable of thinning and laminating a material used as the first conductive layer 4 is used. For example, a dip coating method or a spin coating method is used.
  • the fuel that has passed through the Vycor glass 1 is oxidized, and protons and electrons are generated.
  • the generated electrons are collected by the first conductive layer 4 and taken out through the electrode 21.
  • the generated protons are transmitted through the electrolyte layer 6 to the cathode electrode layer 7.
  • anode electrode layer 5 As the material constituting the anode electrode layer 5, conventionally known materials used as electrode catalysts for fuel cells are used. For example, platinum or carbon-supported platinum in which platinum particles are supported on carbon black is used. Conventionally known materials are used as the cationic substance and the anionic substance. For example, PDDA is used as the cationic substance, and platinum colloid is used as the anionic substance. A substance having a polarity opposite to the charging polarity of a layer adjacent to the anode electrode layer 5 (the first conductive layer 4, the electrolyte layer 6 and the like) is used. As a result, an electrostatic force acts in the attracting direction between the adjacent layer and the anode electrode layer 5. For this reason, the anode electrode layer 5 firmly adhered to the adjacent layer is formed.
  • the anode electrode layer 5 having no defect is formed.
  • a method for laminating the anode electrode layer 5 a conventionally well-known method capable of thinning and laminating materials used as the anode electrode layer 5 is used. For example, a dip coating method or a spin coating method is used.
  • the electrolyte layer 6 transmits protons generated in the anode electrode layer 5 to the cathode electrode layer 7.
  • the electrolyte layer 6 is isolated so that the fuel and the oxidant are not mixed.
  • a defect or the like exists in a part of the electrolyte layer 6, a short circuit phenomenon occurs between the anode electrode layer 5 and the cathode electrode layer 7, and the battery does not function.
  • the electrolyte layer 6 has a laminated structure in which a cathodic substance and an anodic substance are laminated. Thereby, even when the electrolyte layer 6 is thinned, the occurrence of a defective portion is prevented. It is possible to prevent a short circuit from occurring in the thin film fuel cell 100.
  • a cationic substance and an anionic substance are used as a material constituting the electrolyte layer 6.
  • a cationic substance and an anionic substance are used.
  • PAH polyallylamine hydrochloride
  • Nafion registered trademark
  • the cationic substance is preferably any one of a primary amine salt, a secondary amine salt, a tertiary amine salt, and a quaternary ammonium salt.
  • the anionic substance preferably has a sulfo group (SO 3 H) or a phospho group (PO (OH) 2 ). These groups have a negatively charged anionic property. For this reason, when it is set as a laminated structure, affinity with a cationic substance is strong. By using these substances, the electrolyte layer 6 which is more firmly adhered and has no defect portion is formed.
  • a conventionally well-known laminating method capable of thinning and laminating a material used as the electrolyte layer 6 is used.
  • a dip coating method or a spin coating method is used.
  • water is generated from protons, an oxidant supplied from the outside, and electrons supplied from the electrode 22.
  • Protons are generated in the anode electrode layer 5, pass through the electrolyte layer 6, and reach the vicinity of the cathode electrode layer 7.
  • the generated water passes through the Vycor glass 11 and is discharged to the outside.
  • the cathode electrode layer 7 As the material constituting the cathode electrode layer 7, conventionally known materials used as electrode catalysts for fuel cells are used. For example, platinum or carbon-supported platinum in which platinum particles are supported on carbon black is used. Conventionally known materials are used as the cationic substance and the anionic substance. For example, PDDA is used as the cationic substance. Platinum colloid is used as the anionic substance. A substance having a polarity opposite to the charging polarity of a layer (electrolyte layer 6, second conductive layer 8, etc.) adjacent to the cathode electrode layer 7 is used. Thereby, an electrostatic force acts between the adjacent layers and the cathode electrode layer 7 in the attracting direction. For this reason, the anode electrode layer 5 firmly adhered to the adjacent layer is formed.
  • a layer electrostatic force
  • a cathode electrode layer 7 having no defect is formed.
  • a method for laminating the cathode electrode layer 7 a conventionally well-known method capable of thinning and laminating a material used as the cathode electrode layer 7 is used. For example, a dip coating method or a spin coating method is used.
  • the second conductive layer 8 lowers the electron flow barrier when electrons flowing from the electrode 22 flow to the cathode electrode layer 7 adjacent to the second conductive layer 8.
  • the second conductive layer 8 promotes the inflow of electrons to the cathode electrode layer 7. As a result, electrons flowing from the electrode 21 to the electrode 22 via the load 23 are supplied to the cathode electrode layer 7.
  • the material constituting the second conductive layer 8 a conventionally known material having electronic conductivity is used.
  • PDDA which is a cationic substance
  • Baytron which is an anionic substance
  • a substance having a polarity opposite to the charging polarity of a layer (primer layer 9, cathode electrode layer 7, etc.) adjacent to the second conductive layer 8 is used. Thereby, an electrostatic force acts between the adjacent layers and the second conductive layer 8 in the attracting direction. For this reason, the 2nd conductive layer 8 closely_contact
  • a plurality of these substances may be used, and a cationic substance and an anionic substance may be alternately laminated.
  • the second conductive layer 8 having no defect is formed.
  • a method for laminating the second conductive layer 8 a conventionally well-known method capable of thinning and laminating a material used as the second conductive layer 8 is used. For example, a dip coating method or a spin coating method is used.
  • the thin film fuel cell 100 causes an electrochemical reaction to generate an electromotive force.
  • the side opposite to the side where the above-mentioned layers (primer layers 3 and 9, first conductive layer 4, anode electrode layer 5, electrolyte layer 6, cathode electrode layer 7, and second conductive layer 8) of Vycor glass 1 are laminated.
  • Fuel hydrogen gas, methanol, etc.
  • an oxidant oxygen gas or the like is supplied from the side opposite to the side on which the above-described layers of Vycor glass 11 are laminated.
  • the fuel supplied to the Vycor glass 1 penetrates the Vycor glass 1. Further, the third conductive layer 2, the primer layer 3, and the first conductive layer 4 penetrate. Then, it reaches the anode electrode layer 5. The fuel is oxidized at the anode electrode layer 5. Protons and electrons are generated.
  • the generated electrons are extracted to the outside through the first conductive layer 4 and the electrode 21 connected to the first conductive layer 4.
  • the extracted electrons are supplied to a load 23 connected to the electrode 21.
  • the electrons supplied to the load 23 flow into the electrode 22. Further, the generated protons pass through the electrolyte layer 6. Then, it reaches the cathode electrode layer 7.
  • Electrons flowing from the electrode 22 are supplied to the cathode electrode layer 7 via the second conductive layer 8.
  • the oxidizing agent supplied to the Vycor glass 11 penetrates the third conductive layer 10, the primer layer 9, and the second conductive layer 8. Then, it reaches the cathode electrode layer 7.
  • protons, electrons, and an oxidizing agent react to generate water.
  • the generated water is discharged to the outside through the second conductive layer 8, the primer layer 9, the third conductive layer 10, and the Vycor glass 11.
  • the thin film fuel cell 100 operates as a “battery”.
  • the thin film fuel cell 100 can pass a current through the load 23.
  • the voltage that can be extracted from the thin film fuel cell 100 is theoretically about 1.2V. Therefore, the configuration of the thin film fuel cell 100 is stacked in multiple stages and connected in series. This makes it possible to extract a large voltage.
  • the diffusion resistance component decreases as the thickness of the electrolyte layer 6 decreases.
  • the electrolyte layer 6 is thinned, there is a high possibility that a defective portion is partially generated.
  • a defect portion exists in the electrolyte layer 6, electrons generated in the anode electrode layer 5 reach the cathode electrode layer 7 directly through the electrolyte layer 6. For this reason, the electric current taken out decreases and the power generation efficiency decreases.
  • the electrolyte layer 6 is formed by laminating a cationic substance and an anionic substance. As a result, it is possible to suppress the occurrence of a defective portion of the layer as compared with the conventional electrolyte layer forming method. The occurrence of a short circuit between the anode electrode layer 5 and the cathode electrode layer 7 can be suppressed. In addition, the layer can be thinned. This reduces the resistance component when protons pass through the electrolyte layer 6. It is possible to suppress the voltage drop and improve the power generation efficiency.
  • the cationic substance and the anionic substance are laminated alternately.
  • the cationic substance and the anionic substance are firmly adhered to each other by the electrostatic force in the attracting direction generated between the cationic substance and the anionic substance.
  • An electrolyte layer 6 that is difficult to peel is formed.
  • the electrolyte layer 6 having excellent strength is formed even when the layer thickness is reduced.
  • each layer (primer layers 3 and 9, first conductive layer 4, anode electrode layer 5, cathode electrode layer 7, second conductive layer 8) is formed by laminating a cationic substance and an anionic substance. Is done.
  • the electrolyte layer 6 it is possible to suppress generation of a defect portion of the layer and reduce the entire layer thickness. For this reason, the thickness of the entire thin film fuel cell 100 in the stacking direction is suppressed.
  • the thin film fuel cell 100 can be downsized. Furthermore, an electrostatic force in the attracting direction is generated between the cationic substance and the anionic substance. Thereby, each layer (primer layers 3 and 9, first conductive layer 4, anode electrode layer 5, cathode electrode layer 7, second conductive layer 8) having excellent strength is formed.
  • a method of manufacturing the thin film fuel cell 100 will be described with reference to FIG. In the following embodiment, it is assumed that the thin film fuel cell 100 is manufactured using the negatively charged Vycor glass 1 and 11. However, the charging characteristics of the Vycor glass 1 are not limited to such a case.
  • the thin film fuel cell 100 may be produced using the positively charged Vycor glass 1.
  • each layer third conductive layer 2, primer layer 3, first conductive layer 4, anode electrode layer 5, electrolyte layer 6, cathode electrode layer 7, second conductive layer of Vycor glass 1 in FIG.
  • the side on which the layer 8, the primer layer 9, and the third conductive layer 10) are formed is defined as the upper side.
  • the third conductive layer 2 is formed on the upper side of the Vycor glass 1 (S11).
  • the process in which the third conductive layer 2 is formed on the surface of the Vycor glass 1 is referred to as a “third conductive layer forming process”.
  • the primer layer 3 is laminated on the upper side of the third conductive layer 2 formed on the upper side of the Vycor glass 1 in the third conductive layer forming step (S13, S15).
  • the material constituting the primer layer 3 two types of a cationic substance (hereinafter referred to as “primer cation”) and an anionic substance (hereinafter referred to as “primer anion”) are used.
  • the primer layers 3 are formed by alternately laminating the respective substances.
  • the step of forming the primer layer 3 on the third conductive layer 2 is referred to as “primer layer forming step”.
  • a primer cation having a polarity opposite to the charged polarity (minus) of the Vycor glass 1 is laminated on the third conductive layer 2 (S13).
  • An electrostatic force acts between the Vycor glass 1 and the primer cation in the attracting direction. For this reason, the Vycor glass 1 and the primer cation adhere firmly.
  • a primer anion having a polarity opposite to the polarity (plus) of the primer cation is stacked on the upper side of the stacked primer cations (S15).
  • An electrostatic force acts between the primer cation and the primer anion in the attracting direction. For this reason, the primer cation and the primer anion are firmly adhered.
  • the first conductive layer 4 is laminated on the upper side of the primer layer 3 formed in the primer layer forming step (S19, S21).
  • the material constituting the first conductive layer 4 two kinds of materials, that is, a cationic substance (hereinafter referred to as “first conductive cation”) and an anionic substance (hereinafter referred to as “first conductive anion”) are used. .
  • the first conductive layer 4 is formed by alternately laminating each material.
  • the process in which the first conductive layer 4 is formed on the primer layer 3 is referred to as a “first conductive layer forming process”.
  • a first polarity having a polarity opposite to the charging polarity of the uppermost layer of the primer layer 3 (primer anion is laminated on the uppermost layer.
  • the charging polarity is negative. See S15).
  • Conductive cations are stacked on the upper side of the primer layer 3 (S19).
  • An electrostatic force acts between the first conductive cation and the primer layer 3 in the attracting direction. For this reason, the first conductive cation and the primer layer 3 are firmly adhered.
  • a first conductive anion having a polarity opposite to that of the stacked first conductive cation is stacked on the upper side of the first conductive cation (S21).
  • An electrostatic force acts between the first conductive cation and the first conductive anion in the attracting direction. For this reason, the first conductive cation and the first conductive anion are firmly adhered.
  • the first conductive layer forming step is ended. Subsequently, the formation process of the anode electrode layer 5 is performed.
  • the anode electrode layer 5 is laminated on the upper side of the first conductive layer 4 formed in the first conductive layer forming step (S25, S27).
  • a material constituting the anode electrode layer 5 two kinds of materials, a cationic substance (hereinafter referred to as “anode cation”) and an anionic substance (hereinafter referred to as “anode anion”) are used.
  • the anode electrode layer 5 is formed by alternately laminating each material.
  • the process in which the anode electrode layer 5 is formed on the first conductive layer 4 is referred to as an “anode electrode layer forming process”.
  • the anode electrode layer forming step first, the polarity opposite to the charged polarity of the uppermost layer of the first conductive layer 4 (the first conductive anion is laminated on the uppermost layer. The charged polarity is negative. See S21).
  • the anode cation having the same is laminated on the upper side of the first conductive layer 4 (S25).
  • An electrostatic force acts between the anode cation and the first conductive layer 4 in the attracting direction. For this reason, the anode cation and the first conductive layer 4 are firmly adhered.
  • an anode anion having a polarity opposite to that of the laminated anode cation is laminated on the anode cation (S27).
  • An electrostatic force acts between the anode cation and the anode anion in the attracting direction. For this reason, the anode cation and the anode anion are firmly adhered.
  • the anode electrode layer forming step is ended. Subsequently, the formation process of the electrolyte layer 6 is performed.
  • the electrolyte layer 6 is laminated on the upper side of the anode electrode layer 5 formed in the anode electrode layer forming step (S31, S33).
  • the material constituting the electrolyte layer 6 two kinds of materials, that is, a cationic substance (hereinafter referred to as “electrolyte cation”) and an anionic substance (hereinafter referred to as “electrolyte anion”) are used. Each material is laminated alternately. Thereby, the electrolyte layer 6 is formed.
  • electrolyte layer formation process the process in which the electrolyte layer 6 is formed on the anode electrode layer 5 is referred to as “electrolyte layer formation process”.
  • an electrolyte cation having a polarity opposite to the charging polarity of the uppermost layer of the anode electrode layer 5 (the anode anion is laminated on the uppermost layer.
  • the charging polarity is negative. See S27).
  • it is laminated on the upper side of the anode electrode layer 5 (S31).
  • An electrostatic force acts between the electrolyte cation and the anode electrode layer 5 in the attracting direction. For this reason, the electrolyte cation and the anode electrode layer 5 are firmly adhered.
  • an electrolyte anion having a polarity opposite to that of the stacked electrolyte cation is stacked on the upper side of the electrolyte cation (S33).
  • An electrostatic force acts between the electrolyte cation and the electrolyte anion in the attracting direction. For this reason, the electrolyte cation and the electrolyte anion are firmly adhered.
  • the electrolyte layer forming step is ended.
  • a step of forming the cathode electrode layer 7 is performed.
  • the cathode electrode layer 7 is laminated on the upper side of the electrolyte layer 6 formed in the electrolyte layer forming step (S37, S39).
  • the material constituting the cathode electrode layer 7 two kinds of materials, ie, a cationic substance (hereinafter referred to as “cathode cation”) and an anionic substance (hereinafter referred to as “cathode anion”) are used. Each material is laminated alternately. Thereby, the cathode electrode layer 7 is formed.
  • the step of forming the cathode electrode layer 7 on the electrolyte layer 6 is referred to as “cathode electrode layer forming step”.
  • a cathode cation having a polarity opposite to the charged polarity of the uppermost layer of the electrolyte layer 6 electrolyte anion is laminated on the uppermost layer.
  • the charged polarity is negative. See S33).
  • S37 it is laminated on the upper side of the electrolyte layer 6 (S37).
  • An electrostatic force acts between the cathode cation and the electrolyte layer 6 in the attracting direction. For this reason, the anode cation and the electrolyte layer 6 are firmly adhered.
  • a cathode anion having a polarity opposite to that of the stacked cathode cation is stacked on the upper side of the cathode cation (S39).
  • An electrostatic force acts between the cathode cation and the cathode anion in the attracting direction. For this reason, the cathode cation and the cathode anion are firmly adhered.
  • the cathode electrode layer forming step is ended. Subsequently, the formation process of the 2nd conductive layer 8 is performed.
  • the second conductive layer 8 is laminated on the upper side of the cathode electrode layer 7 formed in the cathode electrode layer forming step (S43, S45).
  • a material constituting the second conductive layer 8 two kinds of materials, a cationic substance (hereinafter referred to as “second conductive cation”) and an anionic substance (hereinafter referred to as “second conductive anion”) are used. . Each material is laminated alternately. Thereby, the second conductive layer 8 is formed.
  • the process in which the second conductive layer 8 is formed on the cathode electrode layer 7 is referred to as a “second conductive layer forming process”.
  • the uppermost layer of the cathode electrode layer 7 is charged with the opposite polarity to the charged polarity (the cathode anion is laminated on the uppermost layer.
  • the charged polarity is negative, see S39).
  • Biconductive cations are stacked on the upper side of the cathode electrode layer 7 (S43). An electrostatic force acts between the second conductive cation and the cathode electrode layer 7 in the attracting direction. For this reason, the second conductive cation and the cathode electrode layer 7 are firmly adhered.
  • a second conductive anion having a polarity opposite to that of the stacked second conductive cation is stacked on the upper side of the second conductive cation (S45).
  • An electrostatic force acts between the second conductive cation and the second conductive anion in the attracting direction. For this reason, the second conductive cation and the second conductive anion are firmly adhered.
  • the Vycor glass 11 with the third conductive layer 10 and the primer layer 9 formed on the surface is pasted on the formed second conductive layer 8 ( S49).
  • the Vycor glass 11 is stuck in the direction in which the second conductive layer 8 and the primer layer 9 are in contact with each other. Then, the thin film fuel cell manufacturing process is completed.
  • the thin film fuel cell 100 having the thin electrolyte layer 6 without any defect is manufactured.
  • the electrolyte layer 6 is formed by laminating a cationic substance and an anionic substance. This prevents the occurrence of a defect in the electrolyte layer 6. Therefore, a voltage drop due to a short circuit between the anode electrode layer 5 and the cathode electrode layer 7 is suppressed. It becomes possible to manufacture the thin film fuel cell 100 with high power generation efficiency.
  • the cationic substance and the anionic substance are firmly adhered to each other by the electrostatic force acting between the cationic substance and the anionic substance. Therefore, it is possible to prevent the electrolyte layer 6 from peeling off.
  • a stable and durable thin film fuel cell 100 is manufactured.
  • the electrolyte layer 6 By making the electrolyte layer 6 thin, the amount of the material constituting the electrolyte layer 6 is suppressed. The cost of the thin film fuel cell 100 can be reduced. By making the electrolyte layer 6 thinner, the thickness of the thin film fuel cell 100 in the stacking direction becomes smaller.
  • the thin film fuel cell 100 can be downsized. Specifically, the thickness of the thin film fuel cell 100 can be set to 100 ⁇ m or less.
  • the primer layer 3, the first conductive layer 4, the anode electrode layer 5, the cathode electrode layer 7, the second conductive layer 8, and the primer layer 9 are formed by laminating the cationic substance and the anionic substance. As a result, even when these layers are thinned, the occurrence of a defect portion is prevented. A short circuit between layers is prevented.
  • the fuel cell can be miniaturized.
  • the cationic substance and the anionic substance are firmly adhered by the electrostatic force acting between the cationic substance and the anionic substance. Therefore, it is possible to prevent the peeling of each layer.
  • a stable and durable thin film fuel cell 100 is manufactured. The amount of material used for each layer is reduced. As a result, the cost of the thin film fuel cell 100 can be reduced.
  • the thin film fuel cell 100 has a configuration including the first conductive layer 4 and the second conductive layer 8.
  • the present disclosure is not limited to this configuration, and may include the first conductive layer 4 and the second conductive layer 8. Even if the first conductive layer 4 and the second conductive layer 8 are not included, the thin film fuel cell 100 is driven on the same principle as described above to generate an electromotive force.
  • the electrodes 21 and 22 are connected to the other conductive layers (third conductive layers 2 and 10), the anode electrode layer 5, and the cathode electrode layer 7. As a result, the electromotive force generated in the thin film fuel cell 100 can be taken out.
  • the thin film fuel cell 100 had a configuration including the primer layers 3 and 9.
  • the present disclosure is not limited to this configuration, and may be a configuration that does not include the primer layers 3 and 9. Even if the primer layers 3 and 9 are not included, the thin film fuel cell 100 is driven on the same principle as described above to generate an electromotive force.
  • the material constituting the primer layers 3 and 9 in the thin film fuel cell 100 As the material constituting the primer layers 3 and 9 in the thin film fuel cell 100, a material having electron conductivity is used. By connecting the electrodes 21 and 22 to the primer layers 3 and 9, the electromotive force generated in the thin film fuel cell 100 can be taken out to the outside.
  • the thin film fuel cell 100 has a configuration including the third conductive layers 2 and 10.
  • the present disclosure is not limited to this configuration, and may include the third conductive layers 2 and 10. Even if the third conductive layers 2 and 10 are not included, the thin film fuel cell 100 is driven on the same principle as described above to generate an electromotive force.
  • the thin film fuel cell 100 had a configuration including Vycor glass 1 and 11.
  • the present disclosure is not limited to this configuration, and may be a configuration that does not include Vycor glass 1 and 11. Even in a configuration that does not include the Vycor glass 1 and 11, the thin film fuel cell 100 is driven on the same principle as described above to generate an electromotive force.
  • a primer layer 3, a first conductive layer 4, an anode electrode layer 5, an electrolyte layer 6, a cathode electrode layer 7, a second conductive layer 8, a primer layer 9, and Vycor are disposed above the Vycor glass 1. Glasses 11 were sequentially laminated. The present disclosure is not limited to this manufacturing method. On the upper side of the Vycor glass 11, the primer layer 9, the second conductive layer 8, the cathode electrode layer 7, the electrolyte layer 6, the anode electrode layer 5, the first conductive layer 4, the primer layer 3, and the Vycor glass 1 are sequentially laminated. It doesn't matter how.
  • the thin film fuel cell manufacturing method of the present disclosure may be a manufacturing method in which the third conductive layer forming step, the primer layer forming step, the first conductive layer forming step, and the second conductive layer forming step are omitted.
  • a method in which the third conductive layers 2 and 10, the primer layer 3, the first conductive layer 4, and the second conductive layer 8 are not formed may be used.
  • each step (primer layer forming step, first conductive layer forming step, anode electrode layer forming step, electrolyte layer forming step, cathode electrode layer forming step, and second conductive layer forming step)
  • the active substance was first laminated, and then the anionic substance was laminated.
  • the present disclosure is not limited to this method.
  • an anionic substance having a negative polarity may be laminated first.
  • an anionic substance is laminated in each step (primer layer forming step, first conductive layer forming step, anode electrode layer forming step, cathode electrode layer forming step, and second conductive layer forming step). After that, it was determined whether or not a predetermined number of layers were stacked. However, the present disclosure is not limited to this determination method. Similarly, it may be determined whether or not a predetermined number of layers have been stacked after the cationic substances are stacked.
  • each step in each step (primer layer forming step, first conductive layer forming step, anode electrode layer forming step, cathode electrode layer forming step, and second conductive layer forming step), a cationic substance and an anionic property
  • a cationic substance and an anionic property Each layer was formed by alternately laminating substances.
  • the present disclosure is not limited to this lamination method. Therefore, each layer may be formed by laminating a single substance.
  • the structure of the prepared thin film fuel cell 100 will be described with reference to FIG.
  • the upper side in FIG. 3 is defined as the upper side of the thin film fuel cell 100.
  • the third conductive layer 2, the primer layer 3, the anode electrode layer 5, the electrolyte layer 6, the cathode electrode layer 7, and the second conductive layer 8 are sequentially formed on the Vycor glass 1. Laminated. The first conductive layer 4, the primer layer 9, the third conductive layer 10, and the Vycor glass 11 are not laminated. Electrodes 21 and 22 were connected to the primer layer 3 and the second conductive layer 8, respectively.
  • Fuel (hydrogen or methanol) is supplied from the lower side of the Vycor glass 1.
  • An electrochemical reaction is caused in the anode electrode layer 5 and the cathode electrode layer 7.
  • the oxidant (oxygen) necessary for the electrochemical reaction is not forcibly supplied into the thin film fuel cell 100. It was naturally supplied by bringing air into contact with the upper side of the second conductive layer 8. 2.
  • the materials used are supplied from the lower side of the Vycor glass 1.
  • Vycor glass 1 “7930” manufactured by USA Corning was used. Vycor glass 1 was cut into a size of 2 cm ⁇ 3 cm and used.
  • the primer layer 3 was formed by laminating primer cations and primer anions.
  • the anode electrode layer 5 was formed by laminating anode cations and anode anions.
  • the electrolyte layer 6 was formed by stacking electrolyte cations and electrolyte anions on each other.
  • the cathode electrode layer 7 was formed by laminating a cathode cation and a cathode anion.
  • the second conductive layer 8 was formed by alternately laminating the second conductive cation and the second conductive anion.
  • the primer cation and primer anion were laminated in four layers. Four layers of anode cations and anode anions were laminated. 20 layers of electrolyte cations and electrolyte anions were laminated. The cathode cation and cathode anion were laminated in four layers. The second conductive cation and the second conductive anion were laminated in four layers.
  • PDDA was used as a primer cation constituting the primer layer 3.
  • PSS was used as a primer anion constituting the primer layer 3.
  • PDDA was used as an anode cation constituting the anode electrode layer 5.
  • Platinum colloid was used as the anode anion constituting the anode electrode layer 5.
  • PAH was used as the electrolyte cation constituting the electrolyte layer 6.
  • Nafion was used as the electrolyte anion constituting the electrolyte layer 6.
  • PDDA was used as a cathode cation constituting the cathode electrode layer 7.
  • a platinum colloid was used as a cathode anion constituting the cathode electrode layer 7.
  • PDDA was used as the second conductive cation constituting the second conductive layer 8.
  • Baytron was used as the second conductive anion constituting the second conductive layer 8.
  • Aldrich products were used as PDDA.
  • a 0.5 mol / l aqueous sodium chloride solution was added to PDDA.
  • the concentration was adjusted so that the content of PDDA was 1 mg / ml.
  • Aldrich products were used as PSS. Similar to PDDA, 0.5 mol / l aqueous sodium chloride solution was added to PDDA.
  • the concentration of PDDA was adjusted and used so that the content of PSS was 1 mg / ml.
  • reagent A hexachloroplatinic (IV) acid (hexahydrate) aqueous solution
  • methanol referred to as “reagent B”
  • 0.04 mol / l trisodium citrate aqueous solution (“reagent” C ") was used.
  • ultraviolet light center wavelength: 365 nm, intensity: 10 mW / cm 2
  • a photoreduction method was generated by ultraviolet irradiation, and a colloidal solution in which platinum nanoparticles were dispersed was obtained. The resulting colloidal solution was used as a platinum colloid.
  • Aldrich product was used as PAH. A 0.5 mol / l aqueous sodium chloride solution was added to the PAH. The concentration was adjusted so that the PAH content was 1 mg / ml. Aldrich product Nafion was used. A 90% by volume aqueous methanol solution was added, and the concentration was adjusted so that the Nafion content was 1 mg / ml.
  • a masking tape 31 (a heat release sheet “Riva Alpha” manufactured by Nitto Denko Corporation) was attached to a part of Vycor glass 1.
  • the masking tape 31 is affixed to prevent the electrode 22 from being short-circuited with the electrode 21 when the electrode 22 is connected.
  • the third conductive layer 2 was not laminated on the applied part.
  • the third conductive layer forming step will be described with reference to FIG.
  • the third conductive layer 2 was formed on the Vycor glass 1 with a masking tape 31 attached to a part thereof.
  • a sputtering method was adopted as a lamination method.
  • a third conductive layer 2 made of gold was formed on the surface of Vycor glass 1.
  • a masking tape 32 (Nitto Denko Thermal Release Sheet “Riva Alpha”) was attached to a part of the third conductive layer 2. By affixing the masking tape 32, other layers were prevented from being laminated on the affixed portion.
  • the lamination process of laminating the primer layer 3 to the second conductive layer 8 will be described. As shown in FIG. 6, in the laminating step, the primer layer 3, the anode electrode layer 5, the electrolyte layer 6, the cathode electrode layer 7, and the second conductive layer 8 are sequentially placed above the Vycor glass 1 and the third conductive layer 2. Laminated.
  • a spin coating method was used as a method of laminating the primer layer 3, the anode electrode layer 5, the electrolyte layer 6, the cathode electrode layer 7, and the second conductive layer 8, a spin coating method was used.
  • Vycor glass 1 with the third conductive layer 2 laminated thereon was set on a spin coater.
  • the rotation speed was set to 2000 to 3000 rpm.
  • the above-mentioned preparation reagents were sequentially dropped from above. Thereby, each layer was formed.
  • Preparation reagent was added dropwise one by one. Immediately after the dropping, several drops of ion-exchanged water were dropped. This removed excess reagent. Immediately after the ion-exchanged water was dropped, one drop of the reagent constituting the next layer was dropped. This process was repeated for the desired number of layers.
  • the primer layer 3 was formed by laminating four layers of first conductive cations (PDDA) and first conductive anions (PSS) alternately.
  • the anode electrode layer 5 was formed by alternately stacking four layers of anode cations (PDDA) and anode anions (platinum colloids).
  • the electrolyte layer 6 was formed by alternately stacking 20 layers of electrolyte cations (PAH) and electrolyte anions (Nafion).
  • the cathode electrode layer 7 was formed by alternately stacking four layers of cathode cations (PDDA) and cathode anions (platinum colloids).
  • the second conductive layer 8 was formed by alternately stacking four layers of second conductive cations (PDDA) and second conductive anions (Baytron).
  • the thickness of each layer composed of a cationic substance and an anionic substance is about one molecule of the constituent substance (PDDA, PSS, PAH: about 1 nm, Nafion: about 5 to 10 nm), transparent Layer was formed.
  • each layer was measured by a quartz crystal microbalance (QCM) (product name: TYPE 7B) manufactured by USAI.
  • QCM uses the piezoelectric effect of a crystal resonator to convert a change in resonance frequency into a weight.
  • QCM can measure a change in weight on the order of nanograms in a gas phase and a liquid phase. The measurement is performed as follows, for example. First, the surface of the QCM substrate (gold is deposited as an electrode) is cleaned, and after drying, the frequency is measured. This value becomes the reference frequency (F0). Next, each layer is formed on the QCM substrate by the film forming method described above. After forming the layer, it is thoroughly washed with water and then dried with nitrogen gas or the like. The frequency is then measured.
  • QCM quartz crystal microbalance
  • the thickness per layer (d) (unit: nm) can be obtained from the following equation from the frequency change ( ⁇ F) of the QCM and the density ( ⁇ ) of the polymer film (unit: g / cm 3 ).
  • d (f ⁇ ⁇ F) / ⁇ f is a constant determined by the device and the electrode area.
  • the connection process of the electrodes 21 and 22 is demonstrated.
  • the masking tape 32 in a state of being stuck on the third conductive layer 2 was peeled off.
  • a copper wire was fixed to the third conductive layer 2 exposed by peeling off the masking tape 32 with a silver paste.
  • the fixed wire becomes the electrode 21.
  • the copper wire was fixed to the part equivalent to the part which affixed the masking tape 31 (refer FIG. 3) in the pre-processing process among the uppermost 2nd conductive layers 8 with the silver paste.
  • the fixed wire becomes the electrode 22.
  • the thickness was estimated as follows.
  • the thickness per layer when the PDDA was laminated was 1 nm, which is about the size of one PDDA molecule.
  • the thickness per layer when PSS was laminated was set to 1 nm, which is about the size of one PSS molecule.
  • the thickness per layer when platinum colloid was laminated was 5 to 10 nm.
  • the thickness per layer when PAH was laminated was set to 1 nm which is about the size of PAH1 molecule.
  • Nafion was stacked, the thickness per layer was set to 5 to 10 nm, which was about one Nafion molecule.
  • the thickness per layer when Baytron was laminated was 5 to 10 nm.
  • the thin film fuel cell 100 of the order of several hundred nm can be produced in this embodiment. Since the thickness of the conventional fuel cell in the stacking direction is several hundred ⁇ m, it has become clear that it is possible to produce a fuel cell that is much thinner than the conventional one.
  • the number of layers described above is an example, and the present disclosure is not limited to this number of layers.
  • the thickness of the thin film fuel cell 100 in the stacking direction is about 26 nm.
  • the thickness of the thin film fuel cell 100 in the stacking direction is about 36 ⁇ m. Accordingly, it has been clarified that the thin film fuel cell 100 having a thickness of at least about 100 ⁇ m or less can be produced even when the Vycor glass 1 (several tens of ⁇ m) is used. 4). Evaluation method and conditions
  • the evaluation method of the prepared thin film fuel cell 100 will be described.
  • An open circuit voltage measurement was performed on the prepared thin film fuel cell 100.
  • the voltage between the electrode 21 and the electrode 22 in a state where no load was applied was measured.
  • impedance measurement was performed.
  • the impedance between the electrode 21 and the electrode 22 was measured for the prepared thin film fuel cell 100.
  • the presence / absence of a short circuit and battery characteristics were evaluated.
  • a potentron galvanostat “1287” manufactured by Solartron was used as a measuring instrument for measuring an open circuit voltage.
  • the open circuit voltage was measured under conditions where pure hydrogen was supplied as fuel and methanol was supplied.
  • the battery characteristics of the thin film fuel cell 100 were evaluated from the measurement results of the battery voltage.
  • pure hydrogen was supplied as the fuel
  • pure hydrogen was supplied from the lower side of the Vycor glass 1 so that the flow rate was 10 ml / min.
  • methanol was supplied as a fuel, a 20% by volume methanol aqueous solution was supplied to the lower side of the Vycor glass 1 using a syringe.
  • the potentio galvanostat “1287” manufactured by Solartron was used as a measuring instrument for measuring impedance.
  • a square wave having an amplitude of 1000 mV and a frequency of 1 to 100 kHz was applied between the electrode 21 and the electrode 22. Impedance was measured when a square wave was applied.
  • the measurement was performed under conditions in which the prepared thin film fuel cell 100 was held in the air and methanol was supplied as fuel. The presence or absence of a short circuit between the electrode 21 and the electrode 22 was confirmed, and the battery characteristics were evaluated.
  • methanol was supplied as the fuel
  • an aqueous methanol solution was supplied to the Vycor glass 1 under the same conditions as the supply conditions at the time of open circuit voltage measurement. 5). Evaluation results
  • FIG. 8 shows a time-dependent change characteristic of the open circuit voltage generated between the electrode 21 and the electrode 22 when pure hydrogen is supplied as the fuel.
  • FIG. 9 shows the time-varying characteristics of the open circuit voltage generated between the electrode 21 and the electrode 22 when methanol is supplied as the fuel.
  • the open circuit voltage when pure hydrogen was used as the fuel was about 0.016 V at the maximum when about 50 seconds passed after the supply of pure hydrogen was started. However, the voltage did not increase after that, and was almost 0 V after 150 seconds. From this result, it was found that sufficient electromotive force could not be obtained when pure hydrogen was supplied as fuel to the prepared thin film fuel cell 100. This is presumably because the element was not sufficiently humidified. It is known that Nafion constituting the electrolyte layer 6 has good proton conductivity in a state containing water. However, in this example, special moisture management was not performed particularly on the anode electrode layer side which is easy to dry. It is presumed that this was caused by insufficient humidification of Nafion.
  • the measurement result of the change over time of the open circuit voltage when methanol is used as the fuel will be described.
  • the open circuit voltage when methanol was used as the fuel was about 0.2 V at the maximum when about 150 seconds had elapsed since the start of methanol supply. It has been found that it is possible to generate a significantly larger voltage than when pure hydrogen is used as fuel. From this result, it was revealed that the prepared thin film fuel cell 100 can be used as a battery.
  • FIG. 10 shows an impedance measurement result between the electrode 21 and the electrode 22 when the prepared thin film fuel cell 100 is placed in the air. Moreover, the impedance measurement result between the electrode 21 and the electrode 22 when methanol is supplied as the fuel is shown.
  • a curve 41 is an impedance measurement result when the thin film fuel cell 100 is placed in the air.
  • a curve 42 is an impedance measurement result in a state where methanol is supplied to the thin film fuel cell 100.

Abstract

Disclosed is a thin film fuel cell (100) composed of Vycor glasses (1, 11); third conductive layers (2, 10) which are electron conducting layers respectively formed on a surface of the Vycor glasses (1, 11); primer layers (3, 9); a first conductive layer (4) and a second conductive layer (8) which are electron conducting layers; an anode electrode layer (5); an electrolyte layer (6); and a cathode electrode layer (7).  The primer layers (3, 9), the first conductive layer (4), the anode electrode layer (5), the electrolyte layer (6), the cathode electrode layer (7) and the second conductive layer (8) respectively have a structure wherein a cationic substance and an anionic substance are alternately laminated.  Consequently, there can be formed flat and smooth layers having no defect, which are in firm and close contact with each other by the electrostatic action between the layers.

Description

薄膜燃料電池及び薄膜燃料電池製造方法Thin film fuel cell and thin film fuel cell manufacturing method
 本開示は薄膜燃料電池及び薄膜燃料電池製造方法に関する。 The present disclosure relates to a thin film fuel cell and a thin film fuel cell manufacturing method.
 燃料電池は、原理上高い効率で発電することが可能である。燃料電池は、小型であっても十分な電力を取り出すことが可能である。従って燃料電池は、携帯電話やノートパソコン等、モバイル機器用電源としての応用が期待されている。また、燃料電池を小型化することによって、電極材料として使用される貴金属材料や、電解質層材料として使用されるパーフルオロカーボンスルホン酸等、高価な構成材料の使用量を抑制することが可能となる。従って、燃料電池のコストを抑制することが可能となる。 Fuel cells can generate electricity with high efficiency in principle. Even if the fuel cell is small, sufficient power can be taken out. Therefore, the fuel cell is expected to be applied as a power source for mobile devices such as mobile phones and notebook computers. Also, by reducing the size of the fuel cell, it is possible to suppress the amount of expensive constituent materials such as noble metal materials used as electrode materials and perfluorocarbon sulfonic acids used as electrolyte layer materials. Therefore, the cost of the fuel cell can be suppressed.
 燃料電池の高発電効率化、及び小型化の具体的手段として、燃料電池を形成する電解質膜や電極膜の膜厚を薄くする方法が検討されている。膜厚の薄膜化により、構成材料の使用量を抑制することが可能となる。また、セルの積層方向の厚さを抑制することが可能となる。さらに、電解質膜の抵抗率が小さくなるので、発電効率を向上させることが可能となる。現在、電解質膜や電極膜の膜厚の薄膜化を実現するための研究が盛んに行われている(例えば、特許文献1参照)。
特開2003-187825号公報
As a specific means for improving the power generation efficiency and miniaturization of a fuel cell, a method of reducing the thickness of the electrolyte membrane and electrode membrane forming the fuel cell has been studied. By reducing the film thickness, the amount of the constituent material used can be suppressed. In addition, the thickness in the cell stacking direction can be suppressed. Furthermore, since the resistivity of the electrolyte membrane is reduced, the power generation efficiency can be improved. Currently, active research is being conducted to reduce the thickness of electrolyte membranes and electrode membranes (see, for example, Patent Document 1).
JP 2003-187825 A
 しかしながら、均一の膜厚を保持しつつ電解質膜や電極膜を薄膜化することは、非常に難易度が高い。また、電解質膜や電極膜の薄膜化により、膜が基材基板や他層から剥がれ易くなってしまう。これらの要因で、電解質膜や電極膜の膜厚は、モバイル機器用電源へ応用することが可能なレベルに到達できていないという問題点があった。 However, it is very difficult to reduce the thickness of the electrolyte membrane and the electrode membrane while maintaining a uniform film thickness. In addition, the membrane is easily peeled off from the base substrate or other layers due to the thinning of the electrolyte membrane or the electrode membrane. Due to these factors, there has been a problem that the thicknesses of the electrolyte membrane and the electrode membrane have not reached a level that can be applied to a power supply for mobile devices.
 本開示は上述の問題点を解決するためになされたものであり、電解質膜や電極膜を安定な状態で薄膜化した薄膜燃料電池、及び、電解質膜や電極膜を安定な状態で薄膜化することが可能な薄膜燃料電池製造方法を提供することを目的とする。 The present disclosure has been made to solve the above-described problems, and is a thin film fuel cell in which an electrolyte membrane and an electrode membrane are thinned in a stable state, and a thin film in an electrolyte membrane and an electrode membrane in a stable state. An object of the present invention is to provide a method for manufacturing a thin film fuel cell.
 本開示の第一の態様によれば、アニオン性物質とカチオン性物質とが交互に積層した構造を有する電解質層と、前記電解質層を挟み対向して配置され積層されたアノード電極層とカソード電極層であって、前記アノード電極層と前記カソード電極層とのうち少なくとも一方が、アニオン性物質とカチオン性物質とが交互に積層した構造を有している前記アノード電極層と前記カソード電極層とを備えた薄膜燃料電池が提供される。 According to the first aspect of the present disclosure, an electrolyte layer having a structure in which an anionic substance and a cationic substance are alternately laminated, and an anode electrode layer and a cathode electrode that are arranged to be opposed to each other with the electrolyte layer interposed therebetween The anode electrode layer and the cathode electrode layer, wherein at least one of the anode electrode layer and the cathode electrode layer has a structure in which anionic substances and cationic substances are alternately laminated. A thin film fuel cell comprising:
 本開示の第二の態様によれば、アニオン性物質とカチオン性物質とを交互に積層させることにより、アノード電極層又はカソード電極層のうち一方の電極層を形成させる第一電極層形成工程と、前記第一電極層形成工程にて形成された前記一方の電極層における一方の面に、アニオン性物質とカチオン性物質とを交互に積層させることにより電解質層を形成させる電解質層形成工程と、前記電解質層形成工程にて形成された前記電解質層における、前記一方の電極層と接する面の反対側の面に、アニオン性物質とカチオン性物質とを交互に積層させることにより、アノード電極層又はカソード電極層のうち他方の電極層を形成させる第二電極層形成工程とを備えた薄膜燃料電池製造方法が提供される。 According to the second aspect of the present disclosure, the first electrode layer forming step of forming one electrode layer of the anode electrode layer or the cathode electrode layer by alternately laminating an anionic substance and a cationic substance; An electrolyte layer forming step of forming an electrolyte layer by alternately laminating an anionic substance and a cationic substance on one surface of the one electrode layer formed in the first electrode layer forming step; By alternately laminating an anionic substance and a cationic substance on the surface of the electrolyte layer formed in the electrolyte layer forming step on the opposite side of the surface in contact with the one electrode layer, the anode electrode layer or There is provided a method for producing a thin film fuel cell comprising a second electrode layer forming step of forming the other electrode layer of the cathode electrode layers.
薄膜燃料電池100の断面構成を示す模式図である。1 is a schematic diagram showing a cross-sectional configuration of a thin film fuel cell 100. FIG. 薄膜燃料電池100の製造方法を示すフローチャートである。3 is a flowchart showing a method for manufacturing the thin film fuel cell 100. 薄膜燃料電池100の断面構成を示す模式図である。1 is a schematic diagram showing a cross-sectional configuration of a thin film fuel cell 100. FIG. バイコールガラス1に対する前処理工程を示す模式図である。It is a schematic diagram which shows the pre-processing process with respect to the Vycor glass 1. FIG. 第三伝導層2の形成工程を示す模式図である。FIG. 5 is a schematic diagram showing a process for forming a third conductive layer 2. プライマー層3~第二伝導層8を積層させる積層工程を示す模式図である。FIG. 4 is a schematic diagram showing a lamination process for laminating primer layer 3 to second conductive layer 8. 電極21及び22を接続する工程を示す模式図である。It is a schematic diagram which shows the process of connecting the electrodes 21 and 22. FIG. 開回路電圧の経時変化特性である。It is a time-dependent change characteristic of an open circuit voltage. 開回路電圧の経時変化特性である。It is a time-dependent change characteristic of an open circuit voltage. インピーダンス測定結果である。It is an impedance measurement result.
 以下、本開示を具体化した薄膜燃料電池100、及び、薄膜燃料電池製造方法の実施の形態について、図面を参照して説明する。なお、これらの図面は、本開示が採用しうる技術的特徴を説明するために用いられるものであり、記載されている内容は、それのみに限定する趣旨ではなく、単なる説明例である。 Hereinafter, embodiments of a thin film fuel cell 100 and a thin film fuel cell manufacturing method embodying the present disclosure will be described with reference to the drawings. Note that these drawings are used to explain technical features that can be adopted by the present disclosure, and the contents described are merely illustrative examples, not a limitation.
 はじめに、図1を参照し、薄膜燃料電池100の構成について説明する。 First, the configuration of the thin film fuel cell 100 will be described with reference to FIG.
 図1に示すように、薄膜燃料電池100は、バイコールガラス1及び11を備えている。バイコールガラス1及び11の表面にそれぞれ形成された電子伝導層である第三伝導層2及び10を備えている。プライマー層3及び9を備えている。電子伝導層である第一伝導層4及び第二伝導層8を備えている。アノード電極層5と、電解質層6と、カソード電極層7とを備えている。バイコールガラス1の表面に形成された第三伝導層2のうち、バイコールガラス1と接する面の反対側面にプライマー層3が積層される。プライマー層3のうち第三伝導層2と接する面の反対側面に第一伝導層4が積層される。第一伝導層4のうちプライマー層3と接する面の反対側面にアノード電極層5が積層される。アノード電極層5のうち第一伝導層4と接する面の反対側面に電解質層6が積層される。電解質層6のうちアノード電極層5と接する面の反対側面にカソード電極層7が積層される。カソード電極層7のうち電解質層6と接する面の反対側面に第二伝導層8が積層される。第二伝導層8のうちカソード電極層7と接する面の反対側面にプライマー層9が積層される。プライマー層9における第二伝導層8と接する面と反対側面が、バイコールガラス11の表面に形成された状態の第三伝導層10と接している。 As shown in FIG. 1, the thin film fuel cell 100 includes Vycor glass 1 and 11. Third conductive layers 2 and 10, which are electron conductive layers, are formed on the surfaces of Vycor glass 1 and 11, respectively. Primer layers 3 and 9 are provided. A first conductive layer 4 and a second conductive layer 8 which are electron conductive layers are provided. An anode electrode layer 5, an electrolyte layer 6, and a cathode electrode layer 7 are provided. Of the third conductive layer 2 formed on the surface of the Vycor glass 1, the primer layer 3 is laminated on the side surface opposite to the surface in contact with the Vycor glass 1. The first conductive layer 4 is laminated on the side of the primer layer 3 opposite to the side in contact with the third conductive layer 2. An anode electrode layer 5 is stacked on the side surface of the first conductive layer 4 opposite to the surface in contact with the primer layer 3. An electrolyte layer 6 is laminated on the side of the anode electrode layer 5 opposite to the side in contact with the first conductive layer 4. A cathode electrode layer 7 is laminated on the side of the electrolyte layer 6 opposite to the surface in contact with the anode electrode layer 5. A second conductive layer 8 is laminated on the side of the cathode electrode layer 7 opposite to the side in contact with the electrolyte layer 6. A primer layer 9 is laminated on the side surface of the second conductive layer 8 opposite to the surface in contact with the cathode electrode layer 7. The side opposite to the surface in contact with the second conductive layer 8 in the primer layer 9 is in contact with the third conductive layer 10 in the state formed on the surface of the Vycor glass 11.
 また、第一伝導層4と第二伝導層8には、電極21及び22がそれぞれ接続している。電極21における第一伝導層4と接続する側の反対側端、及び電極22における第二伝導層8と接続する側の反対側端に、負荷23が接続している。薄膜燃料電池100にて電気化学反応が生じた場合、電極21及び22を介し、第一伝導層4から第二伝導層8に向けて電子が流れる。これによって、負荷23に電流が通流する。 Further, electrodes 21 and 22 are connected to the first conductive layer 4 and the second conductive layer 8, respectively. A load 23 is connected to the opposite end of the electrode 21 on the side connected to the first conductive layer 4 and the opposite end of the electrode 22 on the side connected to the second conductive layer 8. When an electrochemical reaction occurs in the thin film fuel cell 100, electrons flow from the first conductive layer 4 toward the second conductive layer 8 through the electrodes 21 and 22. As a result, a current flows through the load 23.
 バイコールガラス1及び11は、バイコールガラス1とバイコールガラス11との間に挟まれた状態の各層(プライマー層3及び9、第一伝導層4、アノード電極層5、電解質層6、カソード電極層7、第二伝導層8、第三伝導層2及び10)を支持する。バイコールガラス1及び11は、薄膜燃料電池100本体に強度を持たせるための基材基板として使用される。バイコールガラス1及び11は、多孔質性を備えており、気体や液体を透過させることが可能である。外部から供給される燃料(水素ガスなど)や酸化剤(酸素ガスなど)が、バイコールガラス1及び11を透過する。透過した燃料は、アノード電極層5、電解質層6、及びカソード電極層7において電気化学反応を生じさせる(詳細は後述する。)。 Vycor glass 1 and 11 are layers ( primer layers 3 and 9, first conductive layer 4, anode electrode layer 5, electrolyte layer 6, cathode electrode layer 7) sandwiched between Vycor glass 1 and Vycor glass 11. , Support the second conductive layer 8, the third conductive layer 2 and 10). Vycor glass 1 and 11 is used as a base substrate for imparting strength to the main body of the thin film fuel cell 100. Vycor glass 1 and 11 has a porous property, and can transmit gas and liquid. Fuel (hydrogen gas or the like) or oxidant (oxygen gas or the like) supplied from the outside passes through the Vycor glass 1 and 11. The permeated fuel causes an electrochemical reaction in the anode electrode layer 5, the electrolyte layer 6, and the cathode electrode layer 7 (details will be described later).
 本実施の形態では、上述の各層(プライマー層3及び9、第一伝導層4、アノード電極層5、電解質層6、カソード電極層7、第二伝導層8)を構成する材料としてカチオン性物質及びアニオン性物質が使用される(詳細は後述する)。カチオン性物質は、正電荷を有する。アニオン性物質は、負電荷を有する。アニオン性物質とカチオン性物質とが交互に積層されることによって、バイコールガラス1及び11上に安定的に上述の各層が形成される。また、バイコールガラス1及び11がプラス又はマイナスに帯電した状態で各層が積層される。これによって、各層はバイコールガラス1及び11に対して強固に密着する。なお図1にて示されているように、第一伝導層4、アノード電極層5、電解質層6、カソード電極層7、及び第二伝導層8の其々は、アニオン性物質とカチオン性物質とが交互に積層されていてもよい。これによって、上述の各層のうち一の層に他の層を積層する場合において、接する部分に配置される其々の層の帯電極性を逆極性とすることが容易に可能となる。 In the present embodiment, a cationic substance is used as a material constituting each of the above-described layers ( primer layers 3 and 9, first conductive layer 4, anode electrode layer 5, electrolyte layer 6, cathode electrode layer 7, and second conductive layer 8). And anionic substances are used (details will be described later). The cationic substance has a positive charge. Anionic substances have a negative charge. By alternately laminating an anionic substance and a cationic substance, the above-described layers are stably formed on the Vycor glass 1 and 11. Each layer is laminated in a state where the Vycor glasses 1 and 11 are positively or negatively charged. As a result, each layer adheres firmly to the Vycor glass 1 and 11. As shown in FIG. 1, the first conductive layer 4, the anode electrode layer 5, the electrolyte layer 6, the cathode electrode layer 7, and the second conductive layer 8 are each composed of an anionic substance and a cationic substance. And may be alternately stacked. Accordingly, when another layer is stacked on one of the above-described layers, the charge polarity of each layer disposed in the contact portion can be easily reversed.
 バイコールガラス1及び11は、通常アルカリボロシリケート(Na2O-B2O3-SiO2)ガラスの分相とエッチングによって製造され、多孔性を有している。また、バイコールガラス1及び11は、通常水溶液中ではマイナスに帯電している。バイコールガラス1及び11以外にも、多孔質性を有し気体や液体が透過可能な従来周知の材料を使用することができる。 Vycor glasses 1 and 11 are usually produced by phase separation and etching of alkali borosilicate (Na 2 OB 2 O 3 —SiO 2 ) glass and have porosity. Vycor glass 1 and 11 are normally negatively charged in an aqueous solution. In addition to the Vycor glass 1 and 11, a well-known material having porosity and allowing gas or liquid to permeate can be used.
 例えば、炭素微粒子(カーボンブラック)に疎水性バインダー粒子(フッ素樹脂粉末)を混合し、これをホットプレスして多孔質状に作製された多孔質基板も、バイコールガラス1及び11の代わりに使用することができる。また、バイコールガラス1及び11又は炭素系多孔質基板の代わりに、多孔質ステンレスや多孔質ステンレス管も使用することができる。炭素系多孔質基板や多孔質ステンレス材料が使用された場合には、基板自身が高い電子伝導性を有するため、後述の第三伝導層2、及び10の積層を省略することが可能となる。なお、炭素系多孔質基板および多孔質ステンレス材料は、バイコールガラスに比べると電荷は小さいが、水溶液中でマイナイスに帯電しやすい特性を有している。 For example, a porous substrate prepared by mixing hydrophobic binder particles (fluorine resin powder) with carbon fine particles (carbon black) and hot pressing the same is also used in place of Vycor glass 1 and 11. be able to. Further, instead of Vycor glass 1 and 11 or a carbon-based porous substrate, porous stainless steel or a porous stainless steel tube can also be used. When a carbon-based porous substrate or a porous stainless material is used, since the substrate itself has high electronic conductivity, it is possible to omit the lamination of third conductive layers 2 and 10 described later. Note that the carbon-based porous substrate and the porous stainless steel material have a characteristic that they are easily charged in a water solution although they have a smaller charge than Vycor glass.
 バイコールガラス1及び11の表面には、第三伝導層2及び10がそれぞれ形成される。第三伝導層2は、電気化学反応によってアノード電極層5に発生する電流を集電し、外部に取り出し易くする。第三伝導層2は、外部に電子が取り出される場合における電子の通流障壁を下げる。電子を取り出すための電極が第三伝導層2に接続された場合に、第三伝導層2は効率よく電子を電極に受け渡すことができる。第三伝導層10は、カソード電極層7に外部から電子を供給し易くするために設けられる。第三伝導層10は、外部から電子が供給される場合における電子の通流障壁を下げる。電子を供給する為の電極が第三伝導層10に接続された場合に、第三伝導層10は効率よく電子をカソード電極層7に受け渡すことができる。 Third conductive layers 2 and 10 are formed on the surfaces of Vycor glass 1 and 11, respectively. The third conductive layer 2 collects the current generated in the anode electrode layer 5 by an electrochemical reaction and makes it easy to take it out. The third conductive layer 2 lowers an electron flow barrier when electrons are taken out to the outside. When an electrode for extracting electrons is connected to the third conductive layer 2, the third conductive layer 2 can efficiently transfer electrons to the electrode. The third conductive layer 10 is provided to facilitate supplying electrons from the outside to the cathode electrode layer 7. The third conductive layer 10 lowers the electron flow barrier when electrons are supplied from the outside. When an electrode for supplying electrons is connected to the third conductive layer 10, the third conductive layer 10 can efficiently transfer electrons to the cathode electrode layer 7.
 第三伝導層2及び10を構成する材料としては、電子伝導性を有している従来周知の材料が使用される。例えば、金やBaytron(登録商標)が使用される。また、第三伝導層2及び10の積層方法としては、使用する電子伝導性材料を薄膜化して積層することが可能な従来周知の方法が使用される。例えば、真空蒸着法やディップコート法、スピンコート法が使用される。 As the material constituting the third conductive layers 2 and 10, conventionally known materials having electronic conductivity are used. For example, gold or Baytron (registered trademark) is used. In addition, as a method of laminating the third conductive layers 2 and 10, a conventionally known method capable of thinning and laminating the electron conductive material to be used is used. For example, a vacuum deposition method, a dip coating method, or a spin coating method is used.
 なお図1においては、電極21及び22は第一伝導層4及び第二伝導層8に接続されている。しかしながら本開示はこの構成に限定されない。第三伝導層2及び10は電子伝導性を有している。このため、第三伝導層2及び10に電極21及び22を接続した場合であっても、効率よく電子が通流し、負荷23に電流が流れる。 In FIG. 1, the electrodes 21 and 22 are connected to the first conductive layer 4 and the second conductive layer 8. However, the present disclosure is not limited to this configuration. The third conductive layers 2 and 10 have electronic conductivity. For this reason, even when the electrodes 21 and 22 are connected to the third conductive layers 2 and 10, electrons flow efficiently and a current flows through the load 23.
 プライマー層3及び9は、隣接して積層される第一伝導層4及び第二伝導層8を均一層厚にて平滑に積層させるために設けられる。バイコールガラス1及び11は多孔質性を有している。このため、その表面には多数の孔が形成されている。プライマー層3及び9がこれらの孔に充填される。バイコールガラス1及び11の表面に、プライマー層3及び9からなる平滑面が形成される。これによって、表面が平滑な第一伝導層4及び第二伝導層8を積層することが可能となる。第一伝導層4及び第二伝導層8の層厚が均一となるので、薄膜の欠損部の発生が防止される。 The primer layers 3 and 9 are provided in order to smoothly laminate the first conductive layer 4 and the second conductive layer 8 laminated adjacent to each other with a uniform layer thickness. Vycor glass 1 and 11 has porosity. For this reason, many holes are formed on the surface. Primer layers 3 and 9 are filled into these holes. A smooth surface composed of the primer layers 3 and 9 is formed on the surfaces of the Vycor glass 1 and 11. As a result, the first conductive layer 4 and the second conductive layer 8 having smooth surfaces can be laminated. Since the thicknesses of the first conductive layer 4 and the second conductive layer 8 are uniform, the occurrence of a thin film defect is prevented.
 プライマー層3及び9を構成する材料としては、バイコールガラス1及び11の表面に平滑な表面を形成させることが可能な材料が使用される。例えば、カチオン性物質であるポリジアリルジメチルアンモニウムクロリド(PDDA)や、アニオン性物質であるポリスチレンスルホン酸(PSS)が使用される。プライマー層3及び9に隣接する層(バイコールガラス1及び11、第一伝導層4、第二伝導層8など)の有する帯電極性と反対極性を有する物質が使用される。これによって、隣接する層とプライマー層3及び9との間には、引き合う方向に静電気的な力が作用する。このため、隣接層と強固に密着したプライマー層3及び9が形成される。また、上述の物質が複数使用され、アニオン性物質とカチオン性物質とが交互に積層されてもよい。カチオン性物質とアニオン性物質とが交互に積層されることによって、カチオン性物質とアニオン性物質との間には、引き合う方向に静電気的な力が作用する。このため、アニオン性物質とカチオン性物質とが強固に密着する。欠損部のないプライマー層3及び9が形成される。プライマー層3及び9の積層方法としては、プライマー層3及び9として使用する材料を薄膜化して積層することが可能な従来周知の方法が使用される。例えば、ディップコート法やスピンコート法が使用される。 As the material constituting the primer layers 3 and 9, a material capable of forming a smooth surface on the surface of the Vycor glass 1 and 11 is used. For example, polydiallyldimethylammonium chloride (PDDA) that is a cationic substance and polystyrene sulfonic acid (PSS) that is an anionic substance are used. A substance having a polarity opposite to the charged polarity of the layers adjacent to the primer layers 3 and 9 ( Vycor glass 1 and 11, the first conductive layer 4, the second conductive layer 8, etc.) is used. As a result, an electrostatic force acts between the adjacent layers and the primer layers 3 and 9 in the attracting direction. For this reason, the primer layers 3 and 9 firmly adhered to the adjacent layers are formed. In addition, a plurality of the above substances may be used, and an anionic substance and a cationic substance may be alternately stacked. By alternately laminating the cationic substance and the anionic substance, an electrostatic force acts in the attracting direction between the cationic substance and the anionic substance. For this reason, an anionic substance and a cationic substance adhere closely. Primer layers 3 and 9 having no defect are formed. As a method for laminating the primer layers 3 and 9, a conventionally well-known method capable of thinning and laminating materials used as the primer layers 3 and 9 is used. For example, a dip coating method or a spin coating method is used.
 第一伝導層4は、隣接するアノード電極層5から電極21に対して電子が流れる場合における通流障壁を下げる。第一伝導層4は、隣接するアノード電極層5に発生する電子を集電し、電極を介して外部に取り出し易くする。図1に示す構成では、アノード電極層5にて発生し、第一伝導層4にて集電された電子は、第一伝導層4に取り付けられた電極21を介して負荷23に流れる。 The first conductive layer 4 lowers the flow barrier when electrons flow from the adjacent anode electrode layer 5 to the electrode 21. The first conductive layer 4 collects electrons generated in the adjacent anode electrode layer 5 and makes it easy to take out to the outside through the electrode. In the configuration shown in FIG. 1, electrons generated in the anode electrode layer 5 and collected in the first conductive layer 4 flow to the load 23 through the electrode 21 attached to the first conductive layer 4.
 第一伝導層4を構成する材料については、電子伝導性を有している従来周知の材料が使用される。例えば、カチオン性物質であるPDDAや、アニオン性物質であるBaytronが使用される。なお、第一伝導層4に隣接する層(プライマー層3、アノード電極層5など)の有する帯電極性と反対極性を有する物質が使用される。これによって、双方の間には、引き合う方向に静電気的な力が作用する。このため、隣接層と強固に密着した第一伝導層4が形成される。またこれらの物質が複数使用され、カチオン性物質とアニオン性物質とが交互に積層されてもよい。アニオン性物質とカチオン性物質とが交互に積層されることによって、アニオン性物質とカチオン性物質との間には、引き合う方向に静電気的な力が作用する。このため、アニオン性物質とカチオン性物質とが強固に密着する。欠損部のない第一伝導層4が形成される。第一伝導層4の積層方法としては、第一伝導層4として使用する材料を薄膜化して積層することが可能な従来周知の方法が使用される。例えば、ディップコート法やスピンコート法が使用される。 As the material constituting the first conductive layer 4, a conventionally known material having electronic conductivity is used. For example, PDDA, which is a cationic substance, and Baytron, which is an anionic substance, are used. A substance having a polarity opposite to the charging polarity of the layers (primer layer 3, anode electrode layer 5, etc.) adjacent to the first conductive layer 4 is used. As a result, an electrostatic force acts between the two in the attracting direction. For this reason, the 1st conductive layer 4 closely_contact | adhered with the adjacent layer is formed. A plurality of these substances may be used, and a cationic substance and an anionic substance may be alternately laminated. By alternately laminating the anionic substance and the cationic substance, an electrostatic force acts in the attracting direction between the anionic substance and the cationic substance. For this reason, an anionic substance and a cationic substance adhere closely. The first conductive layer 4 having no defect is formed. As a method for laminating the first conductive layer 4, a conventionally well-known method capable of thinning and laminating a material used as the first conductive layer 4 is used. For example, a dip coating method or a spin coating method is used.
 アノード電極層5では、バイコールガラス1を透過した燃料が酸化され、プロトンと電子とが生成される。図1に示す構成では、生成された電子は、第一伝導層4にて集電され、電極21を介して外部に取り出される。生成されたプロトンは、電解質層6を透過してカソード電極層7に伝達する。 In the anode electrode layer 5, the fuel that has passed through the Vycor glass 1 is oxidized, and protons and electrons are generated. In the configuration shown in FIG. 1, the generated electrons are collected by the first conductive layer 4 and taken out through the electrode 21. The generated protons are transmitted through the electrolyte layer 6 to the cathode electrode layer 7.
 アノード電極層5を構成する材料としては、燃料電池の電極触媒として使用される従来周知の材料が使用される。例えば、白金や、カーボンブラックに白金粒子を担持させたカーボン担持白金が使用される。また、カチオン性物質及びアニオン性物質として従来周知の材料が使用される。例えば、カチオン性物質としてはPDDAが使用され、アニオン性物質としては白金コロイドが使用される。アノード電極層5に隣接する層(第一伝導層4、電解質層6など)の有する帯電極性と反対極性を有する物質が使用される。これによって、隣接する層とアノード電極層5との間には引き合う方向に静電気的な力が作用する。このため、隣接層と強固に密着したアノード電極層5が形成される。また、これらの物質が複数使用され、カチオン性物質とアニオン性物質とが交互に積層されることによって、アニオン性物質とカチオン性物質との間には、引き合う方向に力が作用する。このため、アニオン性物質とカチオン性物質とが強固に密着する。欠損部のないアノード電極層5が形成される。アノード電極層5の積層方法としては、アノード電極層5として使用する材料を薄膜化して積層することが可能な従来周知の方法が使用される。例えば、ディップコート法やスピンコート法が使用される。 As the material constituting the anode electrode layer 5, conventionally known materials used as electrode catalysts for fuel cells are used. For example, platinum or carbon-supported platinum in which platinum particles are supported on carbon black is used. Conventionally known materials are used as the cationic substance and the anionic substance. For example, PDDA is used as the cationic substance, and platinum colloid is used as the anionic substance. A substance having a polarity opposite to the charging polarity of a layer adjacent to the anode electrode layer 5 (the first conductive layer 4, the electrolyte layer 6 and the like) is used. As a result, an electrostatic force acts in the attracting direction between the adjacent layer and the anode electrode layer 5. For this reason, the anode electrode layer 5 firmly adhered to the adjacent layer is formed. In addition, when a plurality of these substances are used and the cationic substances and the anionic substances are alternately laminated, a force acts in the attracting direction between the anionic substances and the cationic substances. For this reason, an anionic substance and a cationic substance adhere closely. The anode electrode layer 5 having no defect is formed. As a method for laminating the anode electrode layer 5, a conventionally well-known method capable of thinning and laminating materials used as the anode electrode layer 5 is used. For example, a dip coating method or a spin coating method is used.
 電解質層6は、アノード電極層5にて生成したプロトンをカソード電極層7に伝達する。また電解質層6は、燃料と酸化剤とが混ざり合わないように隔離する。電解質層6の一部に欠損等が存在している場合、アノード電極層5とカソード電極層7との間で短絡現象が発生し、電池として作用しなくなってしまう。本実施の形態では、電解質層6はカソード性物質とアノード性物質とを積層した積層構造を有している。これによって、電解質層6を薄化させた場合であっても、欠損部の発生が防止される。薄膜燃料電池100の短絡発生を防止することが可能となる。 The electrolyte layer 6 transmits protons generated in the anode electrode layer 5 to the cathode electrode layer 7. The electrolyte layer 6 is isolated so that the fuel and the oxidant are not mixed. When a defect or the like exists in a part of the electrolyte layer 6, a short circuit phenomenon occurs between the anode electrode layer 5 and the cathode electrode layer 7, and the battery does not function. In the present embodiment, the electrolyte layer 6 has a laminated structure in which a cathodic substance and an anodic substance are laminated. Thereby, even when the electrolyte layer 6 is thinned, the occurrence of a defective portion is prevented. It is possible to prevent a short circuit from occurring in the thin film fuel cell 100.
 電解質層6を構成する材料としては、カチオン性物質とアニオン性物質とが使用される。例えば、カチオン性物質としてはポリアリルアミンハイドロクロリド(PAH)が使用される。アニオン性物質としてはNafion(登録商標)が使用される。カチオン性物質とアニオン性物質とが交互に積層されることによって、アニオン性物質とカチオン性物質との間には、引き合う方向に静電気的な力が作用する。このため、アニオン性物質とカチオン性物質とが強固に密着する。欠損部のない電解質層6が形成される。カチオン性物質は、第1級アミン塩、第2級アミン塩、第3級アミン塩、及び第4級アンモニウム塩のいずれかであることが好ましい。これらの物質は、正に帯電するカチオン性を有している。このため、積層構造とした場合にアニオン性物質との親和性が強い。アニオン性物質は、スルホ基(SOH)やホスホ基(PO(OH))を有していることが好ましい。これらの基は、負に帯電するアニオン性を有している。このため、積層構造とした場合にカチオン性物質との親和性が強い。これらの物質が使用されることによって、より強固に密着し、欠損部のない電解質層6が形成される。 As a material constituting the electrolyte layer 6, a cationic substance and an anionic substance are used. For example, polyallylamine hydrochloride (PAH) is used as the cationic substance. Nafion (registered trademark) is used as the anionic substance. By alternately laminating the cationic substance and the anionic substance, an electrostatic force acts in the attracting direction between the anionic substance and the cationic substance. For this reason, an anionic substance and a cationic substance adhere closely. The electrolyte layer 6 having no defect is formed. The cationic substance is preferably any one of a primary amine salt, a secondary amine salt, a tertiary amine salt, and a quaternary ammonium salt. These substances have a positively charged cationic property. For this reason, when it is set as a laminated structure, affinity with an anionic substance is strong. The anionic substance preferably has a sulfo group (SO 3 H) or a phospho group (PO (OH) 2 ). These groups have a negatively charged anionic property. For this reason, when it is set as a laminated structure, affinity with a cationic substance is strong. By using these substances, the electrolyte layer 6 which is more firmly adhered and has no defect portion is formed.
 カチオン性物質とアニオン性物質とを交互に積層する場合における積層方法は、電解質層6として使用する材料を薄膜化して積層することが可能な従来周知の積層方法が使用される。例えば、ディップコート法やスピンコート法が使用される。 As a method of laminating a cationic substance and an anionic substance alternately, a conventionally well-known laminating method capable of thinning and laminating a material used as the electrolyte layer 6 is used. For example, a dip coating method or a spin coating method is used.
 カソード電極層7では、プロトンと、外部より供給される酸化剤と、電極22より供給される電子とから水が生成される。プロトンは、アノード電極層5にて生成され、電解質層6を透過してカソード電極層7の近傍に到達する。生成された水は、バイコールガラス11を透過して外部に排出される。 In the cathode electrode layer 7, water is generated from protons, an oxidant supplied from the outside, and electrons supplied from the electrode 22. Protons are generated in the anode electrode layer 5, pass through the electrolyte layer 6, and reach the vicinity of the cathode electrode layer 7. The generated water passes through the Vycor glass 11 and is discharged to the outside.
 カソード電極層7を構成する材料としては、燃料電池の電極触媒として使用される従来周知の材料が使用される。例えば、白金や、カーボンブラックに白金粒子を担持させたカーボン担持白金が使用される。また、カチオン性物質及びアニオン性物質として従来周知の材料が使用される。例えば、カチオン性物質としてはPDDAが使用される。アニオン性物質としては白金コロイドが使用される。カソード電極層7に隣接する層(電解質層6、第二伝導層8など)の有する帯電極性と反対極性を有する物質が使用される。これによって、隣接する層とカソード電極層7との間には、引き合う方向に静電気的な力が作用する。このため、隣接層と強固に密着したアノード電極層5が形成される。また、これらの物質が複数使用され、カチオン性物質とアニオン性物質とが交互に積層されることによって、カチオン性物質とアニオン性物質との間には引き合う方向に力が作用する。このため、カチオン性物質とアニオン性物質とが強固に密着する。欠損部のないカソード電極層7が形成される。カソード電極層7の積層方法としては、カソード電極層7として使用する材料を薄膜化して積層することが可能な従来周知の方法が使用される。例えば、ディップコート法やスピンコート法が使用される。 As the material constituting the cathode electrode layer 7, conventionally known materials used as electrode catalysts for fuel cells are used. For example, platinum or carbon-supported platinum in which platinum particles are supported on carbon black is used. Conventionally known materials are used as the cationic substance and the anionic substance. For example, PDDA is used as the cationic substance. Platinum colloid is used as the anionic substance. A substance having a polarity opposite to the charging polarity of a layer (electrolyte layer 6, second conductive layer 8, etc.) adjacent to the cathode electrode layer 7 is used. Thereby, an electrostatic force acts between the adjacent layers and the cathode electrode layer 7 in the attracting direction. For this reason, the anode electrode layer 5 firmly adhered to the adjacent layer is formed. In addition, when a plurality of these substances are used and the cationic substance and the anionic substance are alternately laminated, a force acts in the attracting direction between the cationic substance and the anionic substance. For this reason, the cationic substance and the anionic substance adhere firmly. A cathode electrode layer 7 having no defect is formed. As a method for laminating the cathode electrode layer 7, a conventionally well-known method capable of thinning and laminating a material used as the cathode electrode layer 7 is used. For example, a dip coating method or a spin coating method is used.
 第二伝導層8は、電極22から流れ込む電子を、第二伝導層8に隣接するカソード電極層7へ流す場合における電子の通流障壁を下げる。第二伝導層8は、カソード電極層7への電子の流入を促進する。これによって、電極21から負荷23を経由して電極22に流れ込む電子がカソード電極層7に供給される。 The second conductive layer 8 lowers the electron flow barrier when electrons flowing from the electrode 22 flow to the cathode electrode layer 7 adjacent to the second conductive layer 8. The second conductive layer 8 promotes the inflow of electrons to the cathode electrode layer 7. As a result, electrons flowing from the electrode 21 to the electrode 22 via the load 23 are supplied to the cathode electrode layer 7.
 第二伝導層8を構成する材料としては、電子伝導性を有している従来周知の材料が使用される。例えば、カチオン性物質であるPDDAや、アニオン性物質であるBaytronが使用される。第二伝導層8に隣接する層(プライマー層9、カソード電極層7など)の有する帯電極性と反対極性を有する物質が使用される。これによって、隣接する層と第二伝導層8との間には、引き合う方向に静電気的な力が作用する。このため、隣接層と強固に密着した第二伝導層8が形成される。またこれらの物質が複数使用され、カチオン性物質とアニオン性物質とが交互に積層されてもよい。アニオン性物質とカチオン性物質とが交互に積層されることによって、カチオン性物質とアニオン性物質との間には引き合う方向に静電気的な力が作用する。このため、カチオン性物質とアニオン性物質とが強固に密着する。欠損部のない第二伝導層8が形成される。第二伝導層8の積層方法としては、第二伝導層8として使用する材料を薄膜化して積層することが可能な従来周知の方法が使用される。例えば、ディップコート法やスピンコート法が使用される。 As the material constituting the second conductive layer 8, a conventionally known material having electronic conductivity is used. For example, PDDA, which is a cationic substance, and Baytron, which is an anionic substance, are used. A substance having a polarity opposite to the charging polarity of a layer (primer layer 9, cathode electrode layer 7, etc.) adjacent to the second conductive layer 8 is used. Thereby, an electrostatic force acts between the adjacent layers and the second conductive layer 8 in the attracting direction. For this reason, the 2nd conductive layer 8 closely_contact | adhered with the adjacent layer is formed. A plurality of these substances may be used, and a cationic substance and an anionic substance may be alternately laminated. By alternately laminating the anionic substance and the cationic substance, an electrostatic force acts in the attracting direction between the cationic substance and the anionic substance. For this reason, the cationic substance and the anionic substance adhere firmly. The second conductive layer 8 having no defect is formed. As a method for laminating the second conductive layer 8, a conventionally well-known method capable of thinning and laminating a material used as the second conductive layer 8 is used. For example, a dip coating method or a spin coating method is used.
 次に、薄膜燃料電池100の駆動原理について、図1を参照して概説する。薄膜燃料電池100にて電気化学反応を生じさせ、起電力を生じさせる。はじめに、バイコールガラス1における上述の各層(プライマー層3及び9、第一伝導層4、アノード電極層5、電解質層6、カソード電極層7、第二伝導層8)が積層される側と反対側面から、燃料(水素ガス、メタノール等)が供給される。また、バイコールガラス11における上述の各層が積層される側と反対側面から、酸化剤(酸素ガス等)が供給される。 Next, the driving principle of the thin film fuel cell 100 will be outlined with reference to FIG. The thin film fuel cell 100 causes an electrochemical reaction to generate an electromotive force. First, the side opposite to the side where the above-mentioned layers (primer layers 3 and 9, first conductive layer 4, anode electrode layer 5, electrolyte layer 6, cathode electrode layer 7, and second conductive layer 8) of Vycor glass 1 are laminated. Fuel (hydrogen gas, methanol, etc.) is supplied. Further, an oxidant (oxygen gas or the like) is supplied from the side opposite to the side on which the above-described layers of Vycor glass 11 are laminated.
 バイコールガラス1に供給された燃料は、バイコールガラス1を浸透する。さらに第三伝導層2、プライマー層3、及び第一伝導層4を浸透する。そしてアノード電極層5に到達する。アノード電極層5にて燃料は酸化される。プロトンと電子とが生成される。 The fuel supplied to the Vycor glass 1 penetrates the Vycor glass 1. Further, the third conductive layer 2, the primer layer 3, and the first conductive layer 4 penetrate. Then, it reaches the anode electrode layer 5. The fuel is oxidized at the anode electrode layer 5. Protons and electrons are generated.
 生成された電子は、第一伝導層4を経由し、第一伝導層4に接続された電極21を介して外部に取り出される。取り出された電子は、電極21に接続された負荷23に供給される。負荷23に供給された電子は、電極22に流れ込む。また、生成されたプロトンは、電解質層6を透過する。そしてカソード電極層7に到達する。 The generated electrons are extracted to the outside through the first conductive layer 4 and the electrode 21 connected to the first conductive layer 4. The extracted electrons are supplied to a load 23 connected to the electrode 21. The electrons supplied to the load 23 flow into the electrode 22. Further, the generated protons pass through the electrolyte layer 6. Then, it reaches the cathode electrode layer 7.
 カソード電極層7には、電極22より流れ込んだ電子が、第二伝導層8を経由して供給される。バイコールガラス11に供給された酸化剤が、第三伝導層10、プライマー層9、及び第二伝導層8を浸透する。そしてカソード電極層7に到達する。カソード電極層7において、プロトンと電子と酸化剤とが反応し、水が生成される。生成された水は、第二伝導層8、プライマー層9、第三伝導層10、及びバイコールガラス11を経由し、外部に排出される。 Electrons flowing from the electrode 22 are supplied to the cathode electrode layer 7 via the second conductive layer 8. The oxidizing agent supplied to the Vycor glass 11 penetrates the third conductive layer 10, the primer layer 9, and the second conductive layer 8. Then, it reaches the cathode electrode layer 7. In the cathode electrode layer 7, protons, electrons, and an oxidizing agent react to generate water. The generated water is discharged to the outside through the second conductive layer 8, the primer layer 9, the third conductive layer 10, and the Vycor glass 11.
 以上のように、薄膜燃料電池100内にて電気化学反応を生じさせる。このことによって、薄膜燃料電池100は「電池」として動作する。薄膜燃料電池100は、負荷23に電流を通流させることが可能となる。図1に示す構成では、薄膜燃料電池100から取り出せる電圧は理論上約1.2V程度である。従って、薄膜燃料電池100の構成を多段に積層し直列に接続する。このことによって、大きな電圧を取り出すことが可能となる。 As described above, an electrochemical reaction is caused in the thin film fuel cell 100. Thus, the thin film fuel cell 100 operates as a “battery”. The thin film fuel cell 100 can pass a current through the load 23. In the configuration shown in FIG. 1, the voltage that can be extracted from the thin film fuel cell 100 is theoretically about 1.2V. Therefore, the configuration of the thin film fuel cell 100 is stacked in multiple stages and connected in series. This makes it possible to extract a large voltage.
 プロトンが電解質層6を透過する場合、拡散抵抗成分が小さいほど、プロトンの透過により生ずる電圧降下のレベルが小さくなる。このため、より大きな電圧を取り出すことができ、発電効率が向上する。拡散抵抗成分は、電解質層6の層厚が薄くなることによって小さくなる。ところが、電解質層6が薄化した場合、部分的に欠損部分が発生する可能性が高くなる。電解質層6に欠損部が存在する場合、アノード電極層5にて発生した電子は、電解質層6を経由して直接カソード電極層7に到達する。このため、外部に取り出される電流が減少して発電効率が減少する。 When protons pass through the electrolyte layer 6, the smaller the diffusion resistance component, the lower the level of voltage drop caused by proton transmission. For this reason, a larger voltage can be taken out and the power generation efficiency is improved. The diffusion resistance component decreases as the thickness of the electrolyte layer 6 decreases. However, when the electrolyte layer 6 is thinned, there is a high possibility that a defective portion is partially generated. When a defect portion exists in the electrolyte layer 6, electrons generated in the anode electrode layer 5 reach the cathode electrode layer 7 directly through the electrolyte layer 6. For this reason, the electric current taken out decreases and the power generation efficiency decreases.
 本開示の薄膜燃料電池100では、電解質層6は、カチオン性物質とアニオン性物質とが積層されて形成される。これによって、従来の電解質層形成方法と比較して、層の欠損部の発生を抑制することが可能となる。アノード電極層5とカソード電極層7との間の短絡の発生を抑制することが可能となる。また、層を薄化することが可能となる。これによって、プロトンが電解質層6を透過する場合の抵抗成分を小さくする。電圧降下量を抑え、発電効率を向上させることが可能となる。 In the thin film fuel cell 100 of the present disclosure, the electrolyte layer 6 is formed by laminating a cationic substance and an anionic substance. As a result, it is possible to suppress the occurrence of a defective portion of the layer as compared with the conventional electrolyte layer forming method. The occurrence of a short circuit between the anode electrode layer 5 and the cathode electrode layer 7 can be suppressed. In addition, the layer can be thinned. This reduces the resistance component when protons pass through the electrolyte layer 6. It is possible to suppress the voltage drop and improve the power generation efficiency.
 また、カチオン性物質とアニオン性物質とは交互に積層される。カチオン性物質とアニオン性物質との間に発生する引き合う方向の静電気力によって、カチオン性物質とアニオン性物質とは強固に密着する。剥離しにくい電解質層6が形成される。層厚を薄化した状態でも優れた強度を有する電解質層6が形成される。 Also, the cationic substance and the anionic substance are laminated alternately. The cationic substance and the anionic substance are firmly adhered to each other by the electrostatic force in the attracting direction generated between the cationic substance and the anionic substance. An electrolyte layer 6 that is difficult to peel is formed. The electrolyte layer 6 having excellent strength is formed even when the layer thickness is reduced.
 また本開示では、各層(プライマー層3及び9、第一伝導層4、アノード電極層5、カソード電極層7、第二伝導層8)は、カチオン性物質とアニオン性物質とが積層されて形成される。これによって、電解質層6と同様、層の欠損部の発生を抑制し、且つ全体の層厚を薄化することが可能となる。このため、薄膜燃料電池100全体の積層方向の厚さが抑制される。薄膜燃料電池100の小型化が可能となる。さらに、カチオン性物質とアニオン性物質との間に、引き合う方向の静電気力が生じる。これによって、優れた強度を有する各層(プライマー層3及び9、第一伝導層4、アノード電極層5、カソード電極層7、第二伝導層8)が形成される。 In the present disclosure, each layer (primer layers 3 and 9, first conductive layer 4, anode electrode layer 5, cathode electrode layer 7, second conductive layer 8) is formed by laminating a cationic substance and an anionic substance. Is done. As a result, like the electrolyte layer 6, it is possible to suppress generation of a defect portion of the layer and reduce the entire layer thickness. For this reason, the thickness of the entire thin film fuel cell 100 in the stacking direction is suppressed. The thin film fuel cell 100 can be downsized. Furthermore, an electrostatic force in the attracting direction is generated between the cationic substance and the anionic substance. Thereby, each layer (primer layers 3 and 9, first conductive layer 4, anode electrode layer 5, cathode electrode layer 7, second conductive layer 8) having excellent strength is formed.
 薄膜燃料電池100の製造方法について、図2を参照して説明する。なお、以下の実施形態においては、マイナスに帯電したバイコールガラス1及び11が使用されて薄膜燃料電池100が製造される場合を想定している。しかしながら、バイコールガラス1の帯電特性はこのような場合に限定されない。プラスに帯電するバイコールガラス1を使用して薄膜燃料電池100が作成されてもかまわない。以下の説明においては、図1におけるバイコールガラス1のうち、各層(第三伝導層2、プライマー層3、第一伝導層4、アノード電極層5、電解質層6、カソード電極層7、第二伝導層8、プライマー層9、第三伝導層10)が形成される側を上側と定義する。 A method of manufacturing the thin film fuel cell 100 will be described with reference to FIG. In the following embodiment, it is assumed that the thin film fuel cell 100 is manufactured using the negatively charged Vycor glass 1 and 11. However, the charging characteristics of the Vycor glass 1 are not limited to such a case. The thin film fuel cell 100 may be produced using the positively charged Vycor glass 1. In the following description, each layer (third conductive layer 2, primer layer 3, first conductive layer 4, anode electrode layer 5, electrolyte layer 6, cathode electrode layer 7, second conductive layer of Vycor glass 1 in FIG. The side on which the layer 8, the primer layer 9, and the third conductive layer 10) are formed is defined as the upper side.
 図2に示すように、薄膜燃料電池100が製造される工程では、はじめに、バイコールガラス1の上側に第三伝導層2が形成される(S11)。以下、第三伝導層2がバイコールガラス1の表面に形成される工程を、「第三伝導層形成工程」という。 As shown in FIG. 2, in the process of manufacturing the thin film fuel cell 100, first, the third conductive layer 2 is formed on the upper side of the Vycor glass 1 (S11). Hereinafter, the process in which the third conductive layer 2 is formed on the surface of the Vycor glass 1 is referred to as a “third conductive layer forming process”.
 次いで、第三伝導層形成工程にてバイコールガラス1の上側に形成された第三伝導層2の上側に、プライマー層3が積層される(S13、S15)。プライマー層3を構成する材料として、カチオン性物質(以下、「プライマーカチオン」という。)とアニオン性物質(以下「プライマーアニオン」という。)との2種類が使用される。其々の物質が交互に積層されることによって、プライマー層3が形成される。以下、プライマー層3が第三伝導層2上に形成される工程を、「プライマー層形成工程」という。 Next, the primer layer 3 is laminated on the upper side of the third conductive layer 2 formed on the upper side of the Vycor glass 1 in the third conductive layer forming step (S13, S15). As the material constituting the primer layer 3, two types of a cationic substance (hereinafter referred to as “primer cation”) and an anionic substance (hereinafter referred to as “primer anion”) are used. The primer layers 3 are formed by alternately laminating the respective substances. Hereinafter, the step of forming the primer layer 3 on the third conductive layer 2 is referred to as “primer layer forming step”.
 プライマー層形成工程では、はじめに、バイコールガラス1の帯電極性(マイナス)と反対の極性を有するプライマーカチオンが、第三伝導層2の上側に積層される(S13)。バイコールガラス1とプライマーカチオンとの間には、引き合う方向に静電気的な力が作用する。このため、バイコールガラス1とプライマーカチオンとは強固に密着する。次いで、積層されたプライマーカチオンの上側に、プライマーカチオンの極性(プラス)と反対の極性を有するプライマーアニオンが積層される(S15)。プライマーカチオンとプライマーアニオンとの間には、引き合う方向に静電気的な力が作用する。このため、プライマーカチオンとプライマーアニオンとは強固に密着する。 In the primer layer forming step, first, a primer cation having a polarity opposite to the charged polarity (minus) of the Vycor glass 1 is laminated on the third conductive layer 2 (S13). An electrostatic force acts between the Vycor glass 1 and the primer cation in the attracting direction. For this reason, the Vycor glass 1 and the primer cation adhere firmly. Next, a primer anion having a polarity opposite to the polarity (plus) of the primer cation is stacked on the upper side of the stacked primer cations (S15). An electrostatic force acts between the primer cation and the primer anion in the attracting direction. For this reason, the primer cation and the primer anion are firmly adhered.
 次いで、S13及びS15にて積層されたプライマーカチオンとプライマーアニオンとが、所定の層数分積層されたか否かが判断される(S17)。所定の層数分積層されていない場合には(S17:NO)、S13に戻る。プライマーアニオンの上側にプライマーカチオンが積層される(S13)。プライマーアニオンとプライマーカチオンとの間には引き合う方向に静電気的な力が作用する。このため、プライマーアニオンとプライマーカチオンとは強固に密着する。そして上述の処理が繰り返される。一方、プライマーカチオンとプライマーアニオンとが所定の層数分積層された場合には(S17:YES)、プライマー層形成工程は終了される。次いで、第一伝導層4の形成工程が実行される。 Next, it is determined whether or not the primer cations and primer anions stacked in S13 and S15 have been stacked for a predetermined number of layers (S17). When the predetermined number of layers are not stacked (S17: NO), the process returns to S13. A primer cation is laminated on the upper side of the primer anion (S13). An electrostatic force acts between the primer anion and the primer cation in the attracting direction. For this reason, the primer anion and the primer cation are firmly adhered. Then, the above process is repeated. On the other hand, when the primer cation and the primer anion are stacked for a predetermined number of layers (S17: YES), the primer layer forming step is ended. Subsequently, the formation process of the 1st conductive layer 4 is performed.
 プライマー層形成工程の終了後、プライマー層形成工程にて形成されたプライマー層3の上側に、第一伝導層4が積層される(S19、S21)。第一伝導層4を構成する材料として、カチオン性物質(以下、「第一伝導カチオン」という。)とアニオン性物質(以下、「第一伝導アニオン」という。)との2種類が使用される。其々の物質が交互に積層されることによって、第一伝導層4が形成される。以下、第一伝導層4がプライマー層3上に形成される工程を、「第一伝導層形成工程」という。 After completion of the primer layer forming step, the first conductive layer 4 is laminated on the upper side of the primer layer 3 formed in the primer layer forming step (S19, S21). As the material constituting the first conductive layer 4, two kinds of materials, that is, a cationic substance (hereinafter referred to as “first conductive cation”) and an anionic substance (hereinafter referred to as “first conductive anion”) are used. . The first conductive layer 4 is formed by alternately laminating each material. Hereinafter, the process in which the first conductive layer 4 is formed on the primer layer 3 is referred to as a “first conductive layer forming process”.
 第一伝導層形成工程では、はじめに、プライマー層3の最上層の帯電極性(最上層にはプライマーアニオンが積層されている。帯電極性はマイナスである。S15参照)と反対の極性を有する第一伝導カチオンが、プライマー層3の上側に積層される(S19)。第一伝導カチオンとプライマー層3との間には、引き合う方向に静電気的な力が作用する。このため、第一伝導カチオンとプライマー層3とは強固に密着する。次いで、積層された第一伝導カチオンと反対の極性を有する第一伝導アニオンが、第一伝導カチオンの上側に積層される(S21)。第一伝導カチオンと第一伝導アニオンとの間には引き合う方向に静電気的な力が作用する。このため、第一伝導カチオンと第一伝導アニオンとは強固に密着する。 In the first conductive layer forming step, first, a first polarity having a polarity opposite to the charging polarity of the uppermost layer of the primer layer 3 (primer anion is laminated on the uppermost layer. The charging polarity is negative. See S15). Conductive cations are stacked on the upper side of the primer layer 3 (S19). An electrostatic force acts between the first conductive cation and the primer layer 3 in the attracting direction. For this reason, the first conductive cation and the primer layer 3 are firmly adhered. Next, a first conductive anion having a polarity opposite to that of the stacked first conductive cation is stacked on the upper side of the first conductive cation (S21). An electrostatic force acts between the first conductive cation and the first conductive anion in the attracting direction. For this reason, the first conductive cation and the first conductive anion are firmly adhered.
 次いで、S19及びS21にて積層された第一伝導カチオンと第一伝導アニオンとが、所定の層数分積層されたか否かが判断される(S23)。所定の層数分積層されていない場合には(S23:NO)、S19に戻る。第一伝導アニオンの上側に第一伝導カチオンが積層される(S19)。第一伝導アニオンと第一伝導カチオンとの間には、引き合う方向に静電気的な力が作用する。このため、第一伝導アニオンと第一伝導カチオンとは強固に密着する。そして上述の処理が繰り返される。一方、第一伝導カチオンと第一伝導アニオンとが所定の層数分積層された場合には(S23:YES)、第一伝導層形成工程は終了される。次いで、アノード電極層5の形成工程が実行される。 Next, it is determined whether or not the first conductive cation and the first conductive anion laminated in S19 and S21 are laminated for a predetermined number of layers (S23). If the predetermined number of layers are not stacked (S23: NO), the process returns to S19. A first conductive cation is stacked on the upper side of the first conductive anion (S19). An electrostatic force acts between the first conductive anion and the first conductive cation in the attracting direction. For this reason, the first conductive anion and the first conductive cation are firmly adhered. Then, the above process is repeated. On the other hand, when the first conductive cation and the first conductive anion are stacked for a predetermined number of layers (S23: YES), the first conductive layer forming step is ended. Subsequently, the formation process of the anode electrode layer 5 is performed.
 第一伝導層形成工程の終了後、第一伝導層形成工程にて形成された第一伝導層4の上側に、アノード電極層5が積層される(S25、S27)。アノード電極層5を構成する材料として、カチオン性物質(以下、「アノードカチオン」という。)とアニオン性物質(以下、「アノードアニオン」という。)との2種類が使用される。其々の物質が交互に積層されることによって、アノード電極層5が形成される。以下、アノード電極層5が第一伝導層4上に形成される工程を、「アノード電極層形成工程」という。 After completion of the first conductive layer forming step, the anode electrode layer 5 is laminated on the upper side of the first conductive layer 4 formed in the first conductive layer forming step (S25, S27). As a material constituting the anode electrode layer 5, two kinds of materials, a cationic substance (hereinafter referred to as “anode cation”) and an anionic substance (hereinafter referred to as “anode anion”) are used. The anode electrode layer 5 is formed by alternately laminating each material. Hereinafter, the process in which the anode electrode layer 5 is formed on the first conductive layer 4 is referred to as an “anode electrode layer forming process”.
 アノード電極層形成工程では、はじめに、第一伝導層4の最上層の帯電極性(最上層には第一伝導アニオンが積層されている。帯電極性はマイナスである。S21参照)と反対の極性を有するアノードカチオンが、第一伝導層4の上側に積層される(S25)。アノードカチオンと第一伝導層4との間には引き合う方向に静電気的な力が作用する。このため、アノードカチオンと第一伝導層4とは強固に密着する。次いで、積層されたアノードカチオンと反対の極性を有するアノードアニオンが、アノードカチオンの上側に積層される(S27)。アノードカチオンとアノードアニオンとの間には引き合う方向に静電気的な力が作用する。このため、アノードカチオンとアノードアニオンとは強固に密着する。 In the anode electrode layer forming step, first, the polarity opposite to the charged polarity of the uppermost layer of the first conductive layer 4 (the first conductive anion is laminated on the uppermost layer. The charged polarity is negative. See S21). The anode cation having the same is laminated on the upper side of the first conductive layer 4 (S25). An electrostatic force acts between the anode cation and the first conductive layer 4 in the attracting direction. For this reason, the anode cation and the first conductive layer 4 are firmly adhered. Next, an anode anion having a polarity opposite to that of the laminated anode cation is laminated on the anode cation (S27). An electrostatic force acts between the anode cation and the anode anion in the attracting direction. For this reason, the anode cation and the anode anion are firmly adhered.
 次いで、S25及びS27にて積層されたアノードカチオンとアノードアニオンとが、所定の層数分積層されたか否かが判断される(S29)。所定の層数分積層されていない場合には(S29:NO)、S25に戻る。アノードアニオンの上側にアノードカチオンが積層される(S25)。アノードアニオンとアノードカチオンとの間には引き合う方向に静電気的な力が作用する。このため、アノードアニオンとアノードカチオンとは強固に密着する。そして上述の処理が繰り返される。一方、アノードカチオンとアノードアニオンとが所定の層数分積層された場合には(S29:YES)、アノード電極層形成工程は終了される。次いで、電解質層6の形成工程が実行される。 Next, it is determined whether or not the anode cations and anode anions stacked in S25 and S27 have been stacked for a predetermined number of layers (S29). When the predetermined number of layers are not stacked (S29: NO), the process returns to S25. An anode cation is stacked on the upper side of the anode anion (S25). An electrostatic force acts between the anode anion and the anode cation in the attracting direction. For this reason, the anode anion and the anode cation are firmly adhered. Then, the above process is repeated. On the other hand, when the anode cation and the anode anion are stacked for a predetermined number of layers (S29: YES), the anode electrode layer forming step is ended. Subsequently, the formation process of the electrolyte layer 6 is performed.
 アノード電極層形成工程の終了後、アノード電極層形成工程にて形成されたアノード電極層5の上側に、電解質層6が積層される(S31、S33)。電解質層6を構成する材料として、カチオン性物質(以下、「電解質カチオン」という。)とアニオン性物質(以下、「電解質アニオン」という。)との2種類が使用される。其々の物質が交互に積層される。これによって、電解質層6が形成される。以下、電解質層6がアノード電極層5上に形成される工程を、「電解質層形成工程」という。 After completion of the anode electrode layer forming step, the electrolyte layer 6 is laminated on the upper side of the anode electrode layer 5 formed in the anode electrode layer forming step (S31, S33). As the material constituting the electrolyte layer 6, two kinds of materials, that is, a cationic substance (hereinafter referred to as “electrolyte cation”) and an anionic substance (hereinafter referred to as “electrolyte anion”) are used. Each material is laminated alternately. Thereby, the electrolyte layer 6 is formed. Hereinafter, the process in which the electrolyte layer 6 is formed on the anode electrode layer 5 is referred to as “electrolyte layer formation process”.
 電解質層形成工程では、はじめに、アノード電極層5の最上層の帯電極性(最上層にはアノードアニオンが積層されている。帯電極性はマイナスである。S27参照)と反対の極性を有する電解質カチオンが、アノード電極層5の上側に積層される(S31)。電解質カチオンとアノード電極層5との間には、引き合う方向に静電気的な力が作用する。このため、電解質カチオンとアノード電極層5とは強固に密着する。次いで、積層された電解質カチオンと反対の極性を有する電解質アニオンが、電解質カチオンの上側に積層される(S33)。電解質カチオンと電解質アニオンとの間には、引き合う方向に静電気的な力が作用する。このため、電解質カチオンと電解質アニオンとは強固に密着する。 In the electrolyte layer forming step, first, an electrolyte cation having a polarity opposite to the charging polarity of the uppermost layer of the anode electrode layer 5 (the anode anion is laminated on the uppermost layer. The charging polarity is negative. See S27). Then, it is laminated on the upper side of the anode electrode layer 5 (S31). An electrostatic force acts between the electrolyte cation and the anode electrode layer 5 in the attracting direction. For this reason, the electrolyte cation and the anode electrode layer 5 are firmly adhered. Next, an electrolyte anion having a polarity opposite to that of the stacked electrolyte cation is stacked on the upper side of the electrolyte cation (S33). An electrostatic force acts between the electrolyte cation and the electrolyte anion in the attracting direction. For this reason, the electrolyte cation and the electrolyte anion are firmly adhered.
 次いで、S31及びS33にて積層された電解質カチオンと電解質アニオンとが、所定の層数分積層されたか否かが判断される(S35)。所定の層数分積層されていない場合には(S35:NO)、S31に戻る。電解質アニオンの上側に電解質カチオンが積層される(S31)。電解質アニオンと電解質カチオンとの間には、引きう方向に静電気的な力が作用する。このため、電解質アニオンと電解質カチオンとは強固に密着する。そして上述の処理が繰り返される。一方、電解質カチオンと電解質アニオンとが所定の層数分積層された場合には(S35:YES)、電解質層形成工程は終了される。次いで、カソード電極層7の形成工程が実行される。 Next, it is determined whether or not the electrolyte cation and the electrolyte anion laminated in S31 and S33 are laminated for a predetermined number of layers (S35). When the predetermined number of layers are not stacked (S35: NO), the process returns to S31. An electrolyte cation is stacked on the upper side of the electrolyte anion (S31). An electrostatic force acts in the pulling direction between the electrolyte anion and the electrolyte cation. For this reason, the electrolyte anion and the electrolyte cation are firmly adhered. Then, the above process is repeated. On the other hand, when the electrolyte cation and the electrolyte anion are stacked by the predetermined number of layers (S35: YES), the electrolyte layer forming step is ended. Next, a step of forming the cathode electrode layer 7 is performed.
 電解質層形成工程の終了後、電解質層形成工程にて形成された電解質層6の上側に、カソード電極層7が積層される(S37、S39)。カソード電極層7を構成する材料として、カチオン性物質(以下、「カソードカチオン」という。)とアニオン性物質(以下、「カソードアニオン」という。)との2種類が使用される。其々の物質が交互に積層される。これによって、カソード電極層7が形成される。以下、カソード電極層7が電解質層6上に形成される工程を、「カソード電極層形成工程」という。 After completion of the electrolyte layer forming step, the cathode electrode layer 7 is laminated on the upper side of the electrolyte layer 6 formed in the electrolyte layer forming step (S37, S39). As the material constituting the cathode electrode layer 7, two kinds of materials, ie, a cationic substance (hereinafter referred to as “cathode cation”) and an anionic substance (hereinafter referred to as “cathode anion”) are used. Each material is laminated alternately. Thereby, the cathode electrode layer 7 is formed. Hereinafter, the step of forming the cathode electrode layer 7 on the electrolyte layer 6 is referred to as “cathode electrode layer forming step”.
 カソード電極層形成工程では、はじめに、電解質層6の最上層の帯電極性(最上層には電解質アニオンが積層されている。帯電極性はマイナスである。S33参照)と反対の極性を有するカソードカチオンが、電解質層6の上側に積層される(S37)。カソードカチオンと電解質層6との間には、引き合う方向に静電気的な力が作用する。このため、アノードカチオンと電解質層6とは強固に密着する。次いで、積層されたカソードカチオンと反対の極性を有するカソードアニオンが、カソードカチオンの上側に積層される(S39)。カソードカチオンとカソードアニオンとの間には、引き合う方向に静電気的な力が作用する。このため、カソードカチオンとカソードアニオンとは強固に密着する。 In the cathode electrode layer forming step, first, a cathode cation having a polarity opposite to the charged polarity of the uppermost layer of the electrolyte layer 6 (electrolyte anion is laminated on the uppermost layer. The charged polarity is negative. See S33). Then, it is laminated on the upper side of the electrolyte layer 6 (S37). An electrostatic force acts between the cathode cation and the electrolyte layer 6 in the attracting direction. For this reason, the anode cation and the electrolyte layer 6 are firmly adhered. Next, a cathode anion having a polarity opposite to that of the stacked cathode cation is stacked on the upper side of the cathode cation (S39). An electrostatic force acts between the cathode cation and the cathode anion in the attracting direction. For this reason, the cathode cation and the cathode anion are firmly adhered.
 次いで、S37及びS39にて積層されたカソードカチオンとカソードアニオンとが、所定の層数分積層されたか否かが判断される(S41)。所定の層数分積層されていない場合には(S41:NO)、S37に戻る。カソードアニオンの上側にカソードカチオンが積層される(S37)。カソードアニオンとカソードカチオンとの間には引き合う方向に静電気的な力が作用する。このため、カソードアニオンとカソードカチオンとは強固に密着する。そして上述の処理が繰り返される。一方、カソードカチオンとカソードアニオンとが所定の層数分積層された場合には(S41:YES)、カソード電極層形成工程は終了される。次いで、第二伝導層8の形成工程が実行される。 Next, it is determined whether or not the cathode cation and the cathode anion laminated in S37 and S39 are laminated for a predetermined number of layers (S41). When the predetermined number of layers are not stacked (S41: NO), the process returns to S37. A cathode cation is stacked on the upper side of the cathode anion (S37). An electrostatic force acts between the cathode anion and the cathode cation in the attracting direction. For this reason, the cathode anion and the cathode cation are firmly adhered. Then, the above process is repeated. On the other hand, when the cathode cation and the cathode anion are stacked for a predetermined number of layers (S41: YES), the cathode electrode layer forming step is ended. Subsequently, the formation process of the 2nd conductive layer 8 is performed.
 カソード電極層形成工程の終了後、カソード電極層形成工程にて形成されたカソード電極層7の上側に、第二伝導層8が積層される(S43、S45)。第二伝導層8を構成する材料として、カチオン性物質(以下、「第二伝導カチオン」という。)とアニオン性物質(以下、「第二伝導アニオン」という。)との2種類が使用される。其々の物質が交互に積層される。これによって、第二伝導層8が形成される。以下、第二伝導層8がカソード電極層7上に形成される工程を、「第二伝導層形成工程」という。 After completion of the cathode electrode layer forming step, the second conductive layer 8 is laminated on the upper side of the cathode electrode layer 7 formed in the cathode electrode layer forming step (S43, S45). As a material constituting the second conductive layer 8, two kinds of materials, a cationic substance (hereinafter referred to as “second conductive cation”) and an anionic substance (hereinafter referred to as “second conductive anion”) are used. . Each material is laminated alternately. Thereby, the second conductive layer 8 is formed. Hereinafter, the process in which the second conductive layer 8 is formed on the cathode electrode layer 7 is referred to as a “second conductive layer forming process”.
 第二伝導層形成工程では、はじめに、カソード電極層7の最上層の帯電極性(最上層にはカソードアニオンが積層されている。帯電極性はマイナスである。S39参照)と反対の極性を有する第二伝導カチオンが、カソード電極層7の上側に積層される(S43)。第二伝導カチオンとカソード電極層7との間には、引き合う方向に静電気的な力が作用する。このため、第二伝導カチオンとカソード電極層7とは強固に密着する。 In the second conductive layer forming step, first, the uppermost layer of the cathode electrode layer 7 is charged with the opposite polarity to the charged polarity (the cathode anion is laminated on the uppermost layer. The charged polarity is negative, see S39). Biconductive cations are stacked on the upper side of the cathode electrode layer 7 (S43). An electrostatic force acts between the second conductive cation and the cathode electrode layer 7 in the attracting direction. For this reason, the second conductive cation and the cathode electrode layer 7 are firmly adhered.
 次いで、積層された第二伝導カチオンと反対の極性を有する第二伝導アニオンが、第二伝導カチオンの上側に積層される(S45)。第二伝導カチオンと第二伝導アニオンとの間には引き合う方向に、静電気的な力が作用する。このため、第二伝導カチオンと第二伝導アニオンとは強固に密着する。 Next, a second conductive anion having a polarity opposite to that of the stacked second conductive cation is stacked on the upper side of the second conductive cation (S45). An electrostatic force acts between the second conductive cation and the second conductive anion in the attracting direction. For this reason, the second conductive cation and the second conductive anion are firmly adhered.
 次いで、S43及びS45にて積層された第二伝導カチオンと第二伝導アニオンとが、所定の層数分積層されたか否かが判断される(S47)。所定の層数分積層されていない場合には(S47:NO)、S43に戻る。第二伝導アニオンの上側に第二伝導カチオンが積層される(S43)。第二伝導アニオンと第二伝導カチオンとの間には、引き合う方向に静電気的な力が作用する。このため、第二伝導アニオンと第二伝導カチオンとは強固に密着する。そして上述の処理が繰り返される。一方、第二伝導カチオンと第二伝導アニオンとが所定の層数分積層された場合には(S47:YES)、第二伝導層形成工程は終了される。 Next, it is determined whether or not the second conductive cation and the second conductive anion stacked in S43 and S45 are stacked for a predetermined number of layers (S47). When the predetermined number of layers are not stacked (S47: NO), the process returns to S43. A second conductive cation is stacked on the upper side of the second conductive anion (S43). An electrostatic force acts between the second conducting anion and the second conducting cation in the attracting direction. For this reason, the second conductive anion and the second conductive cation are firmly adhered. Then, the above process is repeated. On the other hand, when the second conductive cation and the second conductive anion are stacked for a predetermined number of layers (S47: YES), the second conductive layer forming step is ended.
 第二伝導層形成工程の終了後(S47:YES)、形成された第二伝導層8に、第三伝導層10及びプライマー層9が表面に形成された状態のバイコールガラス11が貼付される(S49)。、バイコールガラス11は、第二伝導層8とプライマー層9とが面接する向きで貼付される。そして薄膜燃料電池製造工程は終了される。 After the end of the second conductive layer forming step (S47: YES), the Vycor glass 11 with the third conductive layer 10 and the primer layer 9 formed on the surface is pasted on the formed second conductive layer 8 ( S49). The Vycor glass 11 is stuck in the direction in which the second conductive layer 8 and the primer layer 9 are in contact with each other. Then, the thin film fuel cell manufacturing process is completed.
 以上説明した工程を経ることによって、欠損部がなく薄い電解質層6を備えた薄膜燃料電池100が製造される。本製造方法では、カチオン性物質とアニオン性物質とを積層させることによって電解質層6が形成される。これによって、電解質層6に欠損部が発生することが防止される。従って、アノード電極層5とカソード電極層7との短絡による電圧降下が抑制される。発電効率の高い薄膜燃料電池100を製造することが可能となる。カチオン性物質とアニオン性物質との間に働く静電気力によって、カチオン性物質とアニオン性物質とが強固に密着する。従って、電解質層6の剥離の発生を防止することが可能となる。安定で耐久性のある薄膜燃料電池100が製造される。電解質層6を薄くすることによって、電解質層6を構成する材料の使用量が抑制される。薄膜燃料電池100の低コスト化が可能となる。電解質層6を薄くすることによって、薄膜燃料電池100の積層方向の厚さが小さくなる。薄膜燃料電池100を小型化することが可能となる。具体的には、薄膜燃料電池100の厚さを100μm以下とすることが可能となる。 Through the steps described above, the thin film fuel cell 100 having the thin electrolyte layer 6 without any defect is manufactured. In this manufacturing method, the electrolyte layer 6 is formed by laminating a cationic substance and an anionic substance. This prevents the occurrence of a defect in the electrolyte layer 6. Therefore, a voltage drop due to a short circuit between the anode electrode layer 5 and the cathode electrode layer 7 is suppressed. It becomes possible to manufacture the thin film fuel cell 100 with high power generation efficiency. The cationic substance and the anionic substance are firmly adhered to each other by the electrostatic force acting between the cationic substance and the anionic substance. Therefore, it is possible to prevent the electrolyte layer 6 from peeling off. A stable and durable thin film fuel cell 100 is manufactured. By making the electrolyte layer 6 thin, the amount of the material constituting the electrolyte layer 6 is suppressed. The cost of the thin film fuel cell 100 can be reduced. By making the electrolyte layer 6 thinner, the thickness of the thin film fuel cell 100 in the stacking direction becomes smaller. The thin film fuel cell 100 can be downsized. Specifically, the thickness of the thin film fuel cell 100 can be set to 100 μm or less.
 カチオン性物質とアニオン性物質とが積層されることによって、プライマー層3、第一伝導層4、アノード電極層5、カソード電極層7、第二伝導層8、及びプライマー層9が形成される。これによって、これらの層を薄くした場合であっても、欠損部の発生が防止される。層と層との短絡が防止される。燃料電池を小型化することが可能となる。カチオン性物質とアニオン性物質との間に働く静電気力によって、カチオン性物質とアニオン性物質が強固に密着する。従って、各層の剥離の発生を防止することが可能となる。安定で耐久性のある薄膜燃料電池100が製造される。各層を構成する材料の使用量が抑制される。これによって、薄膜燃料電池100の低コスト化が可能となる。 The primer layer 3, the first conductive layer 4, the anode electrode layer 5, the cathode electrode layer 7, the second conductive layer 8, and the primer layer 9 are formed by laminating the cationic substance and the anionic substance. As a result, even when these layers are thinned, the occurrence of a defect portion is prevented. A short circuit between layers is prevented. The fuel cell can be miniaturized. The cationic substance and the anionic substance are firmly adhered by the electrostatic force acting between the cationic substance and the anionic substance. Therefore, it is possible to prevent the peeling of each layer. A stable and durable thin film fuel cell 100 is manufactured. The amount of material used for each layer is reduced. As a result, the cost of the thin film fuel cell 100 can be reduced.
 なお、本開示は上記実施の形態に限定されるものではなく、種々の変更が可能である。 In addition, this indication is not limited to the said embodiment, A various change is possible.
 薄膜燃料電池100では、第一伝導層4及び第二伝導層8を含む構成を有していた。本開示はこの構成に限定されず、第一伝導層4及び第二伝導層8を含まない構成であってもよい。第一伝導層4及び第二伝導層8を含まない構成であっても、薄膜燃料電池100は上述の説明と同様の原理にて駆動し、起電力を発生させる。この構成の場合、他の伝導層(第三伝導層2及び10)やアノード電極層5、カソード電極層7に電極21及び22が接続される。これによって、薄膜燃料電池100で発生した起電力を外部に取り出すことが可能となる。 The thin film fuel cell 100 has a configuration including the first conductive layer 4 and the second conductive layer 8. The present disclosure is not limited to this configuration, and may include the first conductive layer 4 and the second conductive layer 8. Even if the first conductive layer 4 and the second conductive layer 8 are not included, the thin film fuel cell 100 is driven on the same principle as described above to generate an electromotive force. In this configuration, the electrodes 21 and 22 are connected to the other conductive layers (third conductive layers 2 and 10), the anode electrode layer 5, and the cathode electrode layer 7. As a result, the electromotive force generated in the thin film fuel cell 100 can be taken out.
 薄膜燃料電池100では、プライマー層3及び9を含む構成を有していた。本開示はこの構成に限定されず、プライマー層3及び9を含まない構成であってもよい。プライマー層3及び9を含まない構成であっても、薄膜燃料電池100は上述の説明と同様の原理にて駆動し、起電力を発生させる。 The thin film fuel cell 100 had a configuration including the primer layers 3 and 9. The present disclosure is not limited to this configuration, and may be a configuration that does not include the primer layers 3 and 9. Even if the primer layers 3 and 9 are not included, the thin film fuel cell 100 is driven on the same principle as described above to generate an electromotive force.
 薄膜燃料電池100のうちプライマー層3及び9を構成する材料として、電子伝導性を有する材料を使用する。プライマー層3及び9に電極21及び22接続することによって、薄膜燃料電池100で発生した起電力を外部に取り出すことが可能となる。 As the material constituting the primer layers 3 and 9 in the thin film fuel cell 100, a material having electron conductivity is used. By connecting the electrodes 21 and 22 to the primer layers 3 and 9, the electromotive force generated in the thin film fuel cell 100 can be taken out to the outside.
 薄膜燃料電池100では、第三伝導層2及び10を含む構成を有していた。本開示はこの構成に限定されず、第三伝導層2及び10を含まない構成であってもよい。第三伝導層2及び10を含まない構成であっても、薄膜燃料電池100は上述の説明と同様の原理にて駆動し、起電力を発生させる。 The thin film fuel cell 100 has a configuration including the third conductive layers 2 and 10. The present disclosure is not limited to this configuration, and may include the third conductive layers 2 and 10. Even if the third conductive layers 2 and 10 are not included, the thin film fuel cell 100 is driven on the same principle as described above to generate an electromotive force.
 薄膜燃料電池100では、バイコールガラス1及び11を含む構成を有していた。本開示はこの構成に限定されず、バイコールガラス1及び11を含まない構成であってもよい。バイコールガラス1及び11を含まない構成であっても、薄膜燃料電池100は上述の説明と同様の原理にて駆動し、起電力を発生させる。 The thin film fuel cell 100 had a configuration including Vycor glass 1 and 11. The present disclosure is not limited to this configuration, and may be a configuration that does not include Vycor glass 1 and 11. Even in a configuration that does not include the Vycor glass 1 and 11, the thin film fuel cell 100 is driven on the same principle as described above to generate an electromotive force.
 薄膜燃料電池製造方法では、バイコールガラス1の上側に、プライマー層3、第一伝導層4、アノード電極層5、電解質層6、カソード電極層7、第二伝導層8、プライマー層9、及びバイコールガラス11が順次積層されていた。本開示はこの製造方法に限定されない。バイコールガラス11の上側に、プライマー層9、第二伝導層8、カソード電極層7、電解質層6、アノード電極層5、第一伝導層4、プライマー層3、及びバイコールガラス1が順次積層される方法であってもかまわない。 In the thin film fuel cell manufacturing method, a primer layer 3, a first conductive layer 4, an anode electrode layer 5, an electrolyte layer 6, a cathode electrode layer 7, a second conductive layer 8, a primer layer 9, and Vycor are disposed above the Vycor glass 1. Glasses 11 were sequentially laminated. The present disclosure is not limited to this manufacturing method. On the upper side of the Vycor glass 11, the primer layer 9, the second conductive layer 8, the cathode electrode layer 7, the electrolyte layer 6, the anode electrode layer 5, the first conductive layer 4, the primer layer 3, and the Vycor glass 1 are sequentially laminated. It doesn't matter how.
 本開示の薄膜燃料電池製造方法では、第三伝導層形成工程、プライマー層形成工程、第一伝導層形成工程、及び第二伝導層形成工程を省略した製造方法であってもよい。第三伝導層2及び10、プライマー層3、第一伝導層4、及び第二伝導層8を形成させない方法であってもよい。 The thin film fuel cell manufacturing method of the present disclosure may be a manufacturing method in which the third conductive layer forming step, the primer layer forming step, the first conductive layer forming step, and the second conductive layer forming step are omitted. A method in which the third conductive layers 2 and 10, the primer layer 3, the first conductive layer 4, and the second conductive layer 8 are not formed may be used.
 薄膜燃料電池製造方法では、各工程(プライマー層形成工程、第一伝導層形成工程、アノード電極層形成工程、電解質層形成工程、カソード電極層形成工程、及び第二伝導層形成工程)において、カチオン性物質がはじめに積層され、次いで、アニオン性物質が積層されていた。しかしながら本開示はこの方法限定されない。下地層の帯電極性がプラスである場合には、マイナスの極性を有するアニオン性物質をはじめに積層してもかまわない。 In the thin film fuel cell manufacturing method, in each step (primer layer forming step, first conductive layer forming step, anode electrode layer forming step, electrolyte layer forming step, cathode electrode layer forming step, and second conductive layer forming step) The active substance was first laminated, and then the anionic substance was laminated. However, the present disclosure is not limited to this method. When the charging polarity of the underlayer is positive, an anionic substance having a negative polarity may be laminated first.
 薄膜燃料電池製造方法では、各工程(プライマー層形成工程、第一伝導層形成工程、アノード電極層形成工程、カソード電極層形成工程、及び第二伝導層形成工程)において、アニオン性物質を積層させた後、所定の層数分積層されたか否かが判断されていた。しかしながら本開示はこの判断方法に限定されない。カチオン性物質が積層された後も同様に、所定の層数分積層されたか否かが判断されてもよい。 In the thin film fuel cell manufacturing method, an anionic substance is laminated in each step (primer layer forming step, first conductive layer forming step, anode electrode layer forming step, cathode electrode layer forming step, and second conductive layer forming step). After that, it was determined whether or not a predetermined number of layers were stacked. However, the present disclosure is not limited to this determination method. Similarly, it may be determined whether or not a predetermined number of layers have been stacked after the cationic substances are stacked.
 薄膜燃料電池製造方法では、各工程(プライマー層形成工程、第一伝導層形成工程、アノード電極層形成工程、カソード電極層形成工程、及び第二伝導層形成工程)において、カチオン性物質とアニオン性物質とが交互に積層されることによって、各層が形成されていた。しかしながら本開示はこの積層方法に限定されない。従って、唯一の物質が積層されることによって、各層が形成されてもかまわない。
<実施例>
In the thin film fuel cell manufacturing method, in each step (primer layer forming step, first conductive layer forming step, anode electrode layer forming step, cathode electrode layer forming step, and second conductive layer forming step), a cationic substance and an anionic property Each layer was formed by alternately laminating substances. However, the present disclosure is not limited to this lamination method. Therefore, each layer may be formed by laminating a single substance.
<Example>
 本開示の実施例について説明する。以下「1.薄膜燃料電池100の構成」「2.使用した材料について」「3.薄膜燃料電池100作成手順概略」「4.評価方法及び評価条件」「5.評価結果」の順に説明する。
1.薄膜燃料電池100の構成
Examples of the present disclosure will be described. Hereinafter, “1. Configuration of the thin film fuel cell 100”, “2. About used materials”, “3. Outline of manufacturing procedure of the thin film fuel cell 100”, “4.
1. Configuration of thin film fuel cell 100
 作成した薄膜燃料電池100の構成について、図3を参照して説明する。図3における紙面上側を薄膜燃料電池100の上側と定義する。 The structure of the prepared thin film fuel cell 100 will be described with reference to FIG. The upper side in FIG. 3 is defined as the upper side of the thin film fuel cell 100.
 図3に示すように、本実施例では、バイコールガラス1上に、第三伝導層2、プライマー層3、アノード電極層5、電解質層6、カソード電極層7、及び第二伝導層8が順に積層された。第一伝導層4、プライマー層9、第三伝導層10、及びバイコールガラス11は積層されていない。プライマー層3及び第二伝導層8にそれぞれ電極21及び22が接続された。 As shown in FIG. 3, in this embodiment, the third conductive layer 2, the primer layer 3, the anode electrode layer 5, the electrolyte layer 6, the cathode electrode layer 7, and the second conductive layer 8 are sequentially formed on the Vycor glass 1. Laminated. The first conductive layer 4, the primer layer 9, the third conductive layer 10, and the Vycor glass 11 are not laminated. Electrodes 21 and 22 were connected to the primer layer 3 and the second conductive layer 8, respectively.
 バイコールガラス1の下側より燃料(水素又はメタノール)が供給される。アノード電極層5、及びカソード電極層7にて電気化学反応を生じさせる。これによって、電極21及び電極22から電流が取り出される。電気化学反応時において必要な酸化剤(酸素)は、薄膜燃料電池100内へ強制的に供給されない。第二伝導層8の上側に空気を接触させることによって自然供給された。
2.使用した材料について
Fuel (hydrogen or methanol) is supplied from the lower side of the Vycor glass 1. An electrochemical reaction is caused in the anode electrode layer 5 and the cathode electrode layer 7. As a result, current is extracted from the electrode 21 and the electrode 22. The oxidant (oxygen) necessary for the electrochemical reaction is not forcibly supplied into the thin film fuel cell 100. It was naturally supplied by bringing air into contact with the upper side of the second conductive layer 8.
2. About the materials used
 バイコールガラス1として、USA Corning社製「7930」が使用された。バイコールガラス1は、2cm×3cmの大きさにカットされ使用された。プライマー層3は、プライマーカチオンとプライマーアニオンとが相互に積層されることによって形成された。アノード電極層5は、アノードカチオンとアノードアニオンとが相互に積層されることによって形成された。電解質層6は、電解質カチオンと電解質アニオンとが相互に積層されることによって形成された。カソード電極層7は、カソードカチオンとカソードアニオンとが相互に積層されることによって形成された。第二伝導層8は、第二伝導カチオンと第二伝導アニオンとが交互に積層されることによって形成された。プライマーカチオンとプライマーアニオンとは4層ずつ積層された。アノードカチオンとアノードアニオンとは4層ずつ積層された。電解質カチオンと電解質アニオンとは20層ずつ積層された。カソードカチオンとカソードアニオンとは4層ずつ積層された。第二伝導カチオンと第二伝導アニオンとは4層ずつ積層された。 As the Vycor glass 1, “7930” manufactured by USA Corning was used. Vycor glass 1 was cut into a size of 2 cm × 3 cm and used. The primer layer 3 was formed by laminating primer cations and primer anions. The anode electrode layer 5 was formed by laminating anode cations and anode anions. The electrolyte layer 6 was formed by stacking electrolyte cations and electrolyte anions on each other. The cathode electrode layer 7 was formed by laminating a cathode cation and a cathode anion. The second conductive layer 8 was formed by alternately laminating the second conductive cation and the second conductive anion. The primer cation and primer anion were laminated in four layers. Four layers of anode cations and anode anions were laminated. 20 layers of electrolyte cations and electrolyte anions were laminated. The cathode cation and cathode anion were laminated in four layers. The second conductive cation and the second conductive anion were laminated in four layers.
 プライマー層3を構成するプライマーカチオンとしてPDDAが使用された。プライマー層3を構成するプライマーアニオンとしてPSSが使用された。アノード電極層5を構成するアノードカチオンとしてPDDAが使用された。アノード電極層5を構成するアノードアニオンとして白金コロイドが使用された。電解質層6を構成する電解質カチオンとしてPAHが使用された。電解質層6を構成する電解質アニオンとしてNafionが使用された。カソード電極層7を構成するカソードカチオンとしてPDDAが使用された。カソード電極層7を構成するカソードアニオンとして白金コロイドが使用された。第二伝導層8を構成する第二伝導カチオンとしてPDDAが使用された。第二伝導層8を構成する第二伝導アニオンとしてBaytronが使用された。上述の内容をまとめて表1に示す。
Figure JPOXMLDOC01-appb-T000001
PDDA was used as a primer cation constituting the primer layer 3. PSS was used as a primer anion constituting the primer layer 3. PDDA was used as an anode cation constituting the anode electrode layer 5. Platinum colloid was used as the anode anion constituting the anode electrode layer 5. PAH was used as the electrolyte cation constituting the electrolyte layer 6. Nafion was used as the electrolyte anion constituting the electrolyte layer 6. PDDA was used as a cathode cation constituting the cathode electrode layer 7. A platinum colloid was used as a cathode anion constituting the cathode electrode layer 7. PDDA was used as the second conductive cation constituting the second conductive layer 8. Baytron was used as the second conductive anion constituting the second conductive layer 8. The above contents are summarized in Table 1.
Figure JPOXMLDOC01-appb-T000001
 PDDAとしてAldrich社製品が使用された。0.5mol/lの塩化ナトリウム水溶液がPDDAに加えられた。PDDAの含有量が1mg/mlとなるように濃度が調製された。PSSとしてAldrich社製品が使用された。PDDAと同様、0.5mol/lの塩化ナトリウム水溶液がPDDAに加えられた。PSSの含有量が1mg/mlとなるようにPDDAの濃度が調製され使用された。 Aldrich products were used as PDDA. A 0.5 mol / l aqueous sodium chloride solution was added to PDDA. The concentration was adjusted so that the content of PDDA was 1 mg / ml. Aldrich products were used as PSS. Similar to PDDA, 0.5 mol / l aqueous sodium chloride solution was added to PDDA. The concentration of PDDA was adjusted and used so that the content of PSS was 1 mg / ml.
 1重量部のヘキサクロロ白金(IV)酸(6水和物)水溶液(「試薬A」という。)、メタノール(「試薬B」という。)、0.04mol/lのクエン酸3ナトリウム水溶液(「試薬C」という。)が使用された。試薬A(100μl)、試薬B(9000μl)、及び試薬C(200μl)が混合された後、紫外光(中心波長:365nm、強度:10mW/cm)が10分間照射された。紫外線照射によって光還元法が生じ、白金ナノ粒子が分散したコロイド溶液が得られた。得られたコロイド溶液が白金コロイドとして使用された。 1 part by weight of hexachloroplatinic (IV) acid (hexahydrate) aqueous solution (referred to as “reagent A”), methanol (referred to as “reagent B”), 0.04 mol / l trisodium citrate aqueous solution (“reagent” C ") was used. After mixing reagent A (100 μl), reagent B (9000 μl), and reagent C (200 μl), ultraviolet light (center wavelength: 365 nm, intensity: 10 mW / cm 2 ) was irradiated for 10 minutes. A photoreduction method was generated by ultraviolet irradiation, and a colloidal solution in which platinum nanoparticles were dispersed was obtained. The resulting colloidal solution was used as a platinum colloid.
 PAHとしてAldrich社製品が使用された。0.5mol/lの塩化ナトリウム水溶液がPAHに加えられた。PAHの含有量が1mg/mlとなるように濃度が調製された。Aldrich社製品Nafionが使用された。90体積%のメタノール水溶液が加えられ、Nafionの含有量が1mg/mlとなるように濃度が調製され使用された。 Aldrich product was used as PAH. A 0.5 mol / l aqueous sodium chloride solution was added to the PAH. The concentration was adjusted so that the PAH content was 1 mg / ml. Aldrich product Nafion was used. A 90% by volume aqueous methanol solution was added, and the concentration was adjusted so that the Nafion content was 1 mg / ml.
 ティーエーケミカル株式会社製品Baytronが使用された。0.5mol/lの塩化ナトリウム水溶液が加えられ、Baytronの含有量が1mg/mlとなるように濃度が調製され使用された。
3.薄膜燃料電池100作成手順概略
TA Chemical Co., Ltd. product Baytron was used. A 0.5 mol / l aqueous sodium chloride solution was added, and the concentration was adjusted and used so that the content of Baytron was 1 mg / ml.
3. Outline of production procedure of thin film fuel cell 100
 薄膜燃料電池100の作成手順の概略について、図4~図7を参照して説明する。 An outline of the production procedure of the thin film fuel cell 100 will be described with reference to FIGS.
 図4を参照して、バイコールガラス1に対する前処理工程について説明する。図4に示すように、はじめに、バイコールガラス1の一部分にマスキングテープ31(日東電工社製熱剥離シート「リバアルファ」)が貼付された。マスキングテープ31は、電極22を接続する場合に、電極22が電極21と短絡してしまうことを防止するために貼付された。マスキングテープ31を貼付することによって、貼付部分に第三伝導層2が積層されないようにした。 Referring to FIG. 4, the pretreatment process for Vycor glass 1 will be described. As shown in FIG. 4, first, a masking tape 31 (a heat release sheet “Riva Alpha” manufactured by Nitto Denko Corporation) was attached to a part of Vycor glass 1. The masking tape 31 is affixed to prevent the electrode 22 from being short-circuited with the electrode 21 when the electrode 22 is connected. By applying the masking tape 31, the third conductive layer 2 was not laminated on the applied part.
 図5を参照して、第三伝導層形成工程について説明する。図5に示すように、第三伝導層形成工程では、一部分にマスキングテープ31が貼付された状態のバイコールガラス1に、第三伝導層2が形成された。積層方法としてスパッタリング法が採用された。金からなる第三伝導層2がバイコールガラス1の表面に形成された。 The third conductive layer forming step will be described with reference to FIG. As shown in FIG. 5, in the third conductive layer forming step, the third conductive layer 2 was formed on the Vycor glass 1 with a masking tape 31 attached to a part thereof. A sputtering method was adopted as a lamination method. A third conductive layer 2 made of gold was formed on the surface of Vycor glass 1.
 次いで、前処理工程にて貼付されたマスキングテープ31が剥離された。次いで、形成された第三伝導層2に電極21を接続するため、第三伝導層2の一部分にマスキングテープ32(日東電工社製熱剥離シート「リバアルファ」)が貼付された。マスキングテープ32を貼付することによって、貼付部分に他の層が積層されないようにした。 Next, the masking tape 31 attached in the pretreatment process was peeled off. Next, in order to connect the electrode 21 to the formed third conductive layer 2, a masking tape 32 (Nitto Denko Thermal Release Sheet “Riva Alpha”) was attached to a part of the third conductive layer 2. By affixing the masking tape 32, other layers were prevented from being laminated on the affixed portion.
 図6を参照し、プライマー層3~第二伝導層8を積層させる積層工程について説明する。図6に示すように、積層工程では、プライマー層3、アノード電極層5、電解質層6、カソード電極層7、及び第二伝導層8が、バイコールガラス1及び第三伝導層2の上側に順次積層された。 With reference to FIG. 6, the lamination process of laminating the primer layer 3 to the second conductive layer 8 will be described. As shown in FIG. 6, in the laminating step, the primer layer 3, the anode electrode layer 5, the electrolyte layer 6, the cathode electrode layer 7, and the second conductive layer 8 are sequentially placed above the Vycor glass 1 and the third conductive layer 2. Laminated.
 プライマー層3、アノード電極層5、電解質層6、カソード電極層7、及び第二伝導層8の積層方法として、スピンコート法が使用された。第三伝導層2が積層された状態のバイコールガラス1が、スピンコーターにセットされた。回転数が2000~3000rpmに設定された。バイコールガラス1を回転させた状態で、上方から上述の調製試薬が順次滴下された。これによって、各層が形成された。 As a method of laminating the primer layer 3, the anode electrode layer 5, the electrolyte layer 6, the cathode electrode layer 7, and the second conductive layer 8, a spin coating method was used. Vycor glass 1 with the third conductive layer 2 laminated thereon was set on a spin coater. The rotation speed was set to 2000 to 3000 rpm. In the state where the Vycor glass 1 was rotated, the above-mentioned preparation reagents were sequentially dropped from above. Thereby, each layer was formed.
 調製試薬の滴下は1滴ずつ行われた。滴下後、直ぐにイオン交換水が数滴滴下された。これによって余分な試薬が除去された。イオン交換水滴下後、直ぐに次層を構成する試薬が1滴滴下された。この工程が、所望の層数分繰り返された。これによって、プライマー層3、アノード電極層5、電解質層6、カソード電極層7、及び第二伝導層8が積層された。プライマー層3は、第一伝導カチオン(PDDA)と第一伝導アニオン(PSS)とが交互に4層ずつ積層されることによって形成された。アノード電極層5は、アノードカチオン(PDDA)とアノードアニオン(白金コロイド)とが交互に4層ずつ積層されることによって形成された。電解質層6は、電解質カチオン(PAH)と電解質アニオン(Nafion)とが交互に20層ずつ積層されることによって形成された。カソード電極層7は、カソードカチオン(PDDA)とカソードアニオン(白金コロイド)とが交互に4層ずつ積層されることによって形成された。第二伝導層8は、第二伝導カチオン(PDDA)と第二伝導アニオン(Baytron)とが交互に4層ずつ積層されることによって形成された。 Preparation reagent was added dropwise one by one. Immediately after the dropping, several drops of ion-exchanged water were dropped. This removed excess reagent. Immediately after the ion-exchanged water was dropped, one drop of the reagent constituting the next layer was dropped. This process was repeated for the desired number of layers. As a result, the primer layer 3, the anode electrode layer 5, the electrolyte layer 6, the cathode electrode layer 7, and the second conductive layer 8 were laminated. The primer layer 3 was formed by laminating four layers of first conductive cations (PDDA) and first conductive anions (PSS) alternately. The anode electrode layer 5 was formed by alternately stacking four layers of anode cations (PDDA) and anode anions (platinum colloids). The electrolyte layer 6 was formed by alternately stacking 20 layers of electrolyte cations (PAH) and electrolyte anions (Nafion). The cathode electrode layer 7 was formed by alternately stacking four layers of cathode cations (PDDA) and cathode anions (platinum colloids). The second conductive layer 8 was formed by alternately stacking four layers of second conductive cations (PDDA) and second conductive anions (Baytron).
 上述のように、アニオン性物質及びカチオン性物質の組み合わせ、調製試薬におけるアニオン性物質及びカチオン性物質の濃度、塩化ナトリウムの濃度等が決定された。このことによって、カチオン性物質及びアニオン性物質からなる各層の厚さが、構成物質の1分子程度の大きさ(PDDA、PSS、PAH:約1nm、Nafion:約5~10nm)程度である、透明な層が形成された。 As described above, the combination of the anionic substance and the cationic substance, the concentration of the anionic substance and the cationic substance in the preparation reagent, the concentration of sodium chloride, and the like were determined. As a result, the thickness of each layer composed of a cationic substance and an anionic substance is about one molecule of the constituent substance (PDDA, PSS, PAH: about 1 nm, Nafion: about 5 to 10 nm), transparent Layer was formed.
 各層の厚さは、ユーエスアイ社製水晶振動子微量天秤(QCM)(製品名:TYPE 7B)によって測定された。QCMは、水晶振動子の圧電効果を利用して、共振周波数の変化を重量に換算する。QCMは、気相および液相中においてナノグラムオーダーでの重量変化が測定可能である。測定は、例えば以下のようにして行われる。はじめに、QCM基板(金が電極として蒸着されているもの)の表面が洗浄され、乾燥後、周波数が測定される。この値が基準周波数(F0)となる。次いで、QCM基板上に既述の製膜方法で各々の層が形成される。層形成後、水でよく洗浄され、その後窒素ガスなどで乾燥される。その後周波数が測定される。基準周波数との差(ΔF)から、単位面積当たりに積層された層の重量がナノグラムオーダーの精度で求められる。QCMの周波数変化(ΔF)、及び高分子膜の密度(ρ)(単位:g/cm)から、一層当たりの厚さ(d)(単位:nm)は次式により求められる。
d = (f×ΔF)/ρ
fは、装置や電極面積などで決まる定数である。
The thickness of each layer was measured by a quartz crystal microbalance (QCM) (product name: TYPE 7B) manufactured by USAI. QCM uses the piezoelectric effect of a crystal resonator to convert a change in resonance frequency into a weight. QCM can measure a change in weight on the order of nanograms in a gas phase and a liquid phase. The measurement is performed as follows, for example. First, the surface of the QCM substrate (gold is deposited as an electrode) is cleaned, and after drying, the frequency is measured. This value becomes the reference frequency (F0). Next, each layer is formed on the QCM substrate by the film forming method described above. After forming the layer, it is thoroughly washed with water and then dried with nitrogen gas or the like. The frequency is then measured. From the difference (ΔF) from the reference frequency, the weight of the layers stacked per unit area is obtained with nanogram order accuracy. The thickness per layer (d) (unit: nm) can be obtained from the following equation from the frequency change (ΔF) of the QCM and the density (ρ) of the polymer film (unit: g / cm 3 ).
d = (f × ΔF) / ρ
f is a constant determined by the device and the electrode area.
 Nafionの密度(1.64g/cm)から、Nafion層の一層当たりの平均厚さは、pH8のPAH溶液を用いた場合に5nmとなることわかった。なお、Nafion層の一層当たりの平均厚さは、pH10のPAH溶液を用いた場合に14nmとなった。積層されるNafion層の厚さは、PAH溶液のpHに大きく依存することがわかった。他の物質(PDDA、PSS、PAH)が使用された場合の層についても同様に測定が行われた。層の厚さは、構成物質の1分子程度の大きさ程度となることが確認された。 From the density of Nafion (1.64 g / cm 3 ), it was found that the average thickness per layer of the Nafion layer was 5 nm when a pH 8 PAH solution was used. The average thickness per layer of the Nafion layer was 14 nm when a pH 10 PAH solution was used. It was found that the thickness of the Nafion layer to be laminated greatly depends on the pH of the PAH solution. Similar measurements were made for layers where other materials (PDDA, PSS, PAH) were used. It was confirmed that the thickness of the layer was about one molecule of the constituent material.
 図7を参照して、電極21及び22の接続工程について説明する。この工程では、図7に示すように、第三伝導層2上に貼付された状態のマスキングテープ32が剥離された。マスキングテープ32が剥離されることによって露になった第三伝導層2に銅製のワイヤーが銀ペーストによって固定された。固定されたワイヤーが電極21となる。また、最上層の第二伝導層8のうち、前処理工程においてマスキングテープ31(図3参照)を貼付した部分に相当する部分に、銅製のワイヤーが銀ペーストにより固定された。固定されたワイヤーが電極22となる。以上の工程を経て、薄膜燃料電池100が作成された。作成された薄膜燃料電池100のうちバイコールガラス1を除く部分の積層方向の厚さは、約200~360nmであった。なお、バイコールガラス1の厚さは、数十μmである。 With reference to FIG. 7, the connection process of the electrodes 21 and 22 is demonstrated. In this step, as shown in FIG. 7, the masking tape 32 in a state of being stuck on the third conductive layer 2 was peeled off. A copper wire was fixed to the third conductive layer 2 exposed by peeling off the masking tape 32 with a silver paste. The fixed wire becomes the electrode 21. Moreover, the copper wire was fixed to the part equivalent to the part which affixed the masking tape 31 (refer FIG. 3) in the pre-processing process among the uppermost 2nd conductive layers 8 with the silver paste. The fixed wire becomes the electrode 22. Through the above steps, the thin film fuel cell 100 was produced. The thickness of the thin film fuel cell 100 except the Vycor glass 1 in the stacking direction was about 200 to 360 nm. Note that the thickness of the Vycor glass 1 is several tens of μm.
 厚さは、以下のようにして試算された。PDDAが積層された場合の1層当たりの厚さを、PDDA1分子程度の大きさである1nmとした。PSSが積層された場合の1層当たりの厚さを、PSS1分子程度の大きさである1nmとした。白金コロイドが積層された場合の1層当たりの厚さを、5~10nmとした。PAHが積層された場合の1層当たりの厚さを、PAH1分子程度の大きさである1nmとした。Nafionが積層された場合の1層当たりの厚さを、Nafion1分子程度の大きさである5~10nmとした。Baytronが積層された場合の1層当たりの厚さを、5~10nmとした。 The thickness was estimated as follows. The thickness per layer when the PDDA was laminated was 1 nm, which is about the size of one PDDA molecule. The thickness per layer when PSS was laminated was set to 1 nm, which is about the size of one PSS molecule. The thickness per layer when platinum colloid was laminated was 5 to 10 nm. The thickness per layer when PAH was laminated was set to 1 nm which is about the size of PAH1 molecule. When Nafion was stacked, the thickness per layer was set to 5 to 10 nm, which was about one Nafion molecule. The thickness per layer when Baytron was laminated was 5 to 10 nm.
 そして各層の厚さを、積層数分乗算した。プライマー層3の厚さは(1nm(PDDA)+1nm(PSS))×4(層)=8nmとなった。アノード伝導層5の厚さは(1nm(PDDA)+5~10nm(白金コロイド))×4(層)=24~44nmとなった。電解質層6の厚さは(1nm(PAH)+5~10nm(Nafion))×20(層)=120~220nmとなった。カソード電極層7の厚さは(1nm(PDDA)+5~10nm(白金コロイド))×4(層)=24nm~44nmとなった。第二伝導層8の厚さは(1nm(PDDA)+5~10nm(Baytron))×4(層)=24~44nmとなった。これらを合計し、200~360nmとなった。 And the thickness of each layer was multiplied by the number of layers. The thickness of the primer layer 3 was (1 nm (PDDA) +1 nm (PSS)) × 4 (layer) = 8 nm. The thickness of the anode conductive layer 5 was (1 nm (PDDA) +5 to 10 nm (platinum colloid)) × 4 (layer) = 24 to 44 nm. The thickness of the electrolyte layer 6 was (1 nm (PAH) +5 to 10 nm (Nafion)) × 20 (layer) = 120 to 220 nm. The thickness of the cathode electrode layer 7 was (1 nm (PDDA) +5 to 10 nm (platinum colloid)) × 4 (layer) = 24 nm to 44 nm. The thickness of the second conductive layer 8 was (1 nm (PDDA) +5 to 10 nm (Baytron)) × 4 (layer) = 24 to 44 nm. The total of these was 200 to 360 nm.
 このように、本実施例において数百nmのオーダーの薄膜燃料電池100を作成可能であることが明らかとなった。従来の燃料電池の積層方向の厚さは数百μmであることから、従来と比較して非常に薄い燃料電池を作成することが可能であることが明らかとなった。 Thus, it has become clear that the thin film fuel cell 100 of the order of several hundred nm can be produced in this embodiment. Since the thickness of the conventional fuel cell in the stacking direction is several hundred μm, it has become clear that it is possible to produce a fuel cell that is much thinner than the conventional one.
 なお、上述した各層の積層数は一例であって、本開示はこの積層数に限定されない。例えば、各層を2以上繰り返し積層しない構成としてもよい。この場合、薄膜燃料電池100の積層方向の厚さは、約26nmとなる。また、各層を上述の積層数の100倍積層した構成としてもよい。この場合、薄膜燃料電池100の積層方向の厚さは、約36μmとなる。従って、バイコールガラス1(厚さ数十μm)が使用される場合であっても、少なくとも約100μm以下の厚さを有する薄膜燃料電池100を作成することが可能であることが明らかとなった。
4.評価方法及び評価条件
Note that the number of layers described above is an example, and the present disclosure is not limited to this number of layers. For example, it is good also as a structure which does not laminate | stack repeatedly each layer 2 or more. In this case, the thickness of the thin film fuel cell 100 in the stacking direction is about 26 nm. Moreover, it is good also as a structure which laminated | stacked each layer 100 times the above-mentioned lamination | stacking number. In this case, the thickness of the thin film fuel cell 100 in the stacking direction is about 36 μm. Accordingly, it has been clarified that the thin film fuel cell 100 having a thickness of at least about 100 μm or less can be produced even when the Vycor glass 1 (several tens of μm) is used.
4). Evaluation method and conditions
 作成された薄膜燃料電池100の評価方法について説明する。作成された薄膜燃料電池100に対して、開回路電圧測定を行った。作成された薄膜燃料電池100に対して、負荷をかけていない状態での電極21と電極22との間の電圧が測定された。また、インピーダンス測定を行った。作成された薄膜燃料電池100に対して、電極21と電極22との間のインピーダンスが測定された。短絡発生の有無、及び電池特性の評価が行われた。 The evaluation method of the prepared thin film fuel cell 100 will be described. An open circuit voltage measurement was performed on the prepared thin film fuel cell 100. For the prepared thin film fuel cell 100, the voltage between the electrode 21 and the electrode 22 in a state where no load was applied was measured. In addition, impedance measurement was performed. The impedance between the electrode 21 and the electrode 22 was measured for the prepared thin film fuel cell 100. The presence / absence of a short circuit and battery characteristics were evaluated.
 開回路電圧を測定する測定器としては、Solartron社製ポテンショ・ガルバノスタット「1287」が使用された。燃料として純水素が供給された条件と、メタノールが供給された条件とで、開回路電圧が測定された。電池電圧の測定結果から、薄膜燃料電池100の電池特性が評価された。燃料として純水素が供給された場合には、バイコールガラス1の下側より10ml/minの流速となるように純水素が供給された。燃料としてメタノールが供給される場合には、20体積%のメタノール水溶液が、シリンジを使用してバイコールガラス1の下側に供給された。 As a measuring instrument for measuring an open circuit voltage, a potentron galvanostat “1287” manufactured by Solartron was used. The open circuit voltage was measured under conditions where pure hydrogen was supplied as fuel and methanol was supplied. The battery characteristics of the thin film fuel cell 100 were evaluated from the measurement results of the battery voltage. When pure hydrogen was supplied as the fuel, pure hydrogen was supplied from the lower side of the Vycor glass 1 so that the flow rate was 10 ml / min. When methanol was supplied as a fuel, a 20% by volume methanol aqueous solution was supplied to the lower side of the Vycor glass 1 using a syringe.
 インピーダンス測定を行う測定器としては、Solartron社製ポテンショ・ガルバノスタット「1287」が使用された。振幅:1000mV、周波数:1~100kHzの方形波が、電極21と電極22との間に印加された。方形波が印加された場合のインピーダンスが測定された。測定は、作成した薄膜燃料電池100を空気中に保持した条件と、燃料としてメタノールを供給した条件とで行われた。電極21と電極22との間の短絡の有無が確認され、電池特性が評価された。燃料としてメタノールが供給される場合には、開回路電圧測定時における供給条件と同一条件にてメタノール水溶液がバイコールガラス1に供給された。
5.評価結果
The potentio galvanostat “1287” manufactured by Solartron was used as a measuring instrument for measuring impedance. A square wave having an amplitude of 1000 mV and a frequency of 1 to 100 kHz was applied between the electrode 21 and the electrode 22. Impedance was measured when a square wave was applied. The measurement was performed under conditions in which the prepared thin film fuel cell 100 was held in the air and methanol was supplied as fuel. The presence or absence of a short circuit between the electrode 21 and the electrode 22 was confirmed, and the battery characteristics were evaluated. When methanol was supplied as the fuel, an aqueous methanol solution was supplied to the Vycor glass 1 under the same conditions as the supply conditions at the time of open circuit voltage measurement.
5). Evaluation results
 開回路電圧の測定結果について、図8及び図9を参照して説明する。図8は、燃料として純水素が供給された場合において、電極21と電極22との間に発生した開回路電圧の経時変化特性が示されている。図9は、燃料としてメタノールが供給された場合において、電極21と電極22との間に発生した開回路電圧の経時変化特性が示されている。 The measurement result of the open circuit voltage will be described with reference to FIGS. FIG. 8 shows a time-dependent change characteristic of the open circuit voltage generated between the electrode 21 and the electrode 22 when pure hydrogen is supplied as the fuel. FIG. 9 shows the time-varying characteristics of the open circuit voltage generated between the electrode 21 and the electrode 22 when methanol is supplied as the fuel.
 図8を参照して、燃料として純水素が使用された場合における開回路電圧の経時変化の測定結果について説明する。図8に示すように、純水素が燃料として使用された場合の開回路電圧は、純水素の供給が開始されてから約50秒経過した場合に、最大約約0.016Vとなった。しかしながらその後電圧は上昇せず、150秒経過後以降はほぼ0Vであった。この結果から、作成された薄膜燃料電池100に対し、燃料として純水素が供給された場合には、十分な起電力を得ることができないことがわかった。この原因は、素子の加湿が不十分であったためであると推察される。電解質層6を構成するNafionは、水を含んだ状態で良好なプロトン伝導性を有することが知られている。しかしながら本実施例では、特に、乾燥しやすいアノード電極層側において特段の水分管理を行わなかった。Nafionの加湿が不十分となってしまったことが原因であると推定される。 Referring to FIG. 8, the measurement result of the change over time in the open circuit voltage when pure hydrogen is used as the fuel will be described. As shown in FIG. 8, the open circuit voltage when pure hydrogen was used as the fuel was about 0.016 V at the maximum when about 50 seconds passed after the supply of pure hydrogen was started. However, the voltage did not increase after that, and was almost 0 V after 150 seconds. From this result, it was found that sufficient electromotive force could not be obtained when pure hydrogen was supplied as fuel to the prepared thin film fuel cell 100. This is presumably because the element was not sufficiently humidified. It is known that Nafion constituting the electrolyte layer 6 has good proton conductivity in a state containing water. However, in this example, special moisture management was not performed particularly on the anode electrode layer side which is easy to dry. It is presumed that this was caused by insufficient humidification of Nafion.
 図9を参照し、燃料としてメタノールが使用された場合における開回路電圧の経時変化の測定結果について説明する。図9に示すように、メタノールが燃料として使用された場合の開回路電圧は、メタノールの供給が開始されてから約150秒経過した場合に、最大約0.2Vとなった。純水素が燃料として使用された場合と比較して飛躍的に大きな電圧を発生させることが可能であることがわかった。この結果から、作成された薄膜燃料電池100が電池として使用可能であることが明らかとなった。 Referring to FIG. 9, the measurement result of the change over time of the open circuit voltage when methanol is used as the fuel will be described. As shown in FIG. 9, the open circuit voltage when methanol was used as the fuel was about 0.2 V at the maximum when about 150 seconds had elapsed since the start of methanol supply. It has been found that it is possible to generate a significantly larger voltage than when pure hydrogen is used as fuel. From this result, it was revealed that the prepared thin film fuel cell 100 can be used as a battery.
 インピーダンス測定の結果について、図10を参照して説明する。図10には、作成された薄膜燃料電池100が空気中に置かれた場合の、電極21と電極22との間のインピーダンス測定結果が示されている。また、燃料としてメタノールが供給された場合の、電極21と電極22との間のインピーダンス測定結果が示されている。曲線41が、薄膜燃料電池100が空気中に置かれた場合におけるインピーダンス測定結果である。曲線42が、薄膜燃料電池100に対してメタノールが供給された状態におけるインピーダンス測定結果である。 The results of impedance measurement will be described with reference to FIG. FIG. 10 shows an impedance measurement result between the electrode 21 and the electrode 22 when the prepared thin film fuel cell 100 is placed in the air. Moreover, the impedance measurement result between the electrode 21 and the electrode 22 when methanol is supplied as the fuel is shown. A curve 41 is an impedance measurement result when the thin film fuel cell 100 is placed in the air. A curve 42 is an impedance measurement result in a state where methanol is supplied to the thin film fuel cell 100.
 図10に示すように、インピーダンス測定の結果から、空気中に薄膜燃料電池100が置かれた場合(曲線41)と比較して、燃料としてメタノールが供給された場合(曲線42)の方が、インピーダンスが大きく低下することがわかった。理由は、メタノール燃料中に含まれる水分が電解質層6中に供給されたことによって、電解質層6が加湿され、プロトンがより動き易くなったためであることが推察される。また、周波数応答の結果から、空気中に薄膜燃料電池100が配置された場合(曲線41)、及び燃料としてメタノールが供給された場合(曲線42)において、入力された信号の周波数が100kHzから1Hzの条件にて、インピーダンスの複素数成分が0以下の値となっていることがわかった。電極21と電極22との間で短絡が生じている状態では、インピーダンスの複素成分は正の値をとる。このことから、作成した薄膜燃料電池100が超薄膜でありながら短絡していないことがわかった。従って、電解質層6に欠損部が存在していないことが明らかとなった。 As shown in FIG. 10, from the result of the impedance measurement, the case where methanol is supplied as the fuel (curve 42), compared to the case where the thin film fuel cell 100 is placed in the air (curve 41), It was found that the impedance was greatly reduced. The reason is presumed that the moisture contained in the methanol fuel is supplied into the electrolyte layer 6 so that the electrolyte layer 6 is humidified and protons are more easily moved. Further, from the result of the frequency response, when the thin film fuel cell 100 is disposed in the air (curve 41) and when methanol is supplied as the fuel (curve 42), the frequency of the input signal is 100 kHz to 1 Hz. Under these conditions, it was found that the complex component of the impedance was 0 or less. In a state where a short circuit occurs between the electrode 21 and the electrode 22, the complex component of the impedance takes a positive value. From this, it was found that the prepared thin film fuel cell 100 was an ultrathin film but not short-circuited. Therefore, it has been clarified that no defect portion exists in the electrolyte layer 6.

Claims (17)

  1.  アニオン性物質とカチオン性物質とが交互に積層した構造を有する電解質層と、
     前記電解質層を挟み対向して配置され積層されたアノード電極層とカソード電極層であって、前記アノード電極層と前記カソード電極層とのうち少なくとも一方が、アニオン性物質とカチオン性物質とが交互に積層した構造を有している前記アノード電極層と前記カソード電極層と
    を備えた薄膜燃料電池。
    An electrolyte layer having a structure in which an anionic substance and a cationic substance are alternately laminated;
    An anode electrode layer and a cathode electrode layer disposed opposite to each other with the electrolyte layer interposed therebetween, wherein at least one of the anode electrode layer and the cathode electrode layer is alternately an anionic substance and a cationic substance A thin-film fuel cell comprising the anode electrode layer and the cathode electrode layer having a structure laminated on each other.
  2.  前記電解質層を構成するアニオン性物質は、スルホ基又はホスホ基を備えていることを特徴とする請求項1に記載の薄膜燃料電池。 The thin film fuel cell according to claim 1, wherein the anionic substance constituting the electrolyte layer has a sulfo group or a phospho group.
  3.  前記電解質層を構成する前記カチオン性物質は、第1級アミン塩、第2級アミン塩、第3級アミン塩、及び第4級アンモニウム塩のうちいずれかであることを特徴とする請求項1又は2に記載の薄膜燃料電池。 The cationic substance constituting the electrolyte layer is any one of a primary amine salt, a secondary amine salt, a tertiary amine salt, and a quaternary ammonium salt. Or the thin film fuel cell of 2.
  4.  アニオン性物質とカチオン性物質とが交互に積層した構造を有する前記アノード電極層及び前記カソード電極層のうち少なくとも一方は、アニオン性物質とカチオン性物質とが少なくとも2層以上積層していることを特徴とする請求項1乃至3のいずれかに記載の薄膜燃料電池。 At least one of the anode electrode layer and the cathode electrode layer having a structure in which an anionic substance and a cationic substance are alternately laminated is that at least two layers of an anionic substance and a cationic substance are laminated. The thin film fuel cell according to any one of claims 1 to 3.
  5.  多孔質性の基材基板を備え、
     前記アノード電極層及び前記カソード電極層のうち少なくとも一方は、前記基材基板の表面側に積層されていることを特徴とする請求項1乃至4のいずれかに記載の薄膜燃料電池。
    Equipped with a porous substrate,
    5. The thin film fuel cell according to claim 1, wherein at least one of the anode electrode layer and the cathode electrode layer is laminated on a surface side of the base substrate.
  6.  前記基材基板の表面に電子伝導層が形成されていることを特徴とする請求項5に記載の薄膜燃料電池。 6. The thin film fuel cell according to claim 5, wherein an electron conductive layer is formed on a surface of the base substrate.
  7.  前記アノード電極層における前記電解質層と接する面の反対側の面に、電子伝導層が積層されていることを特徴とする請求項1乃至6のいずれかに記載の薄膜燃料電池。 The thin film fuel cell according to any one of claims 1 to 6, wherein an electron conductive layer is laminated on a surface of the anode electrode layer opposite to a surface in contact with the electrolyte layer.
  8.  前記カソード電極層における前記電解質層と接する面の反対側の面に、電子伝導層が積層されていることを特徴とする請求項1乃至7のいずれかに記載の薄膜燃料電池。 The thin film fuel cell according to any one of claims 1 to 7, wherein an electron conductive layer is laminated on a surface of the cathode electrode layer opposite to a surface in contact with the electrolyte layer.
  9.  前記電極層に積層した前記電子伝導層は、アニオン性物質とカチオン性物質とが交互に積層した構造を有することを特徴とする請求項7又は8に記載の薄膜燃料電池。 The thin film fuel cell according to claim 7 or 8, wherein the electron conductive layer laminated on the electrode layer has a structure in which an anionic substance and a cationic substance are alternately laminated.
  10.  前記アノード電極層と前記カソード電極層とのうち少なくとも一方を構成するアニオン性物質は、白金コロイドであることを特徴とする請求項1乃至9のいずれかに記載の薄膜燃料電池。 10. The thin film fuel cell according to claim 1, wherein an anionic substance constituting at least one of the anode electrode layer and the cathode electrode layer is a platinum colloid.
  11.  前記電解質層のうち前記アノード電極層と接する部分の層の帯電極性と、前記アノード電極層のうち前記電解質層と接する部分の層の帯電極性とが反対極性であり、
     前記電解質層のうち前記カソード電極層と接する部分の層の帯電極性と、前記カソード電極層のうち前記電解質層と接する部分の層の帯電極性とが反対極性であることを特徴とする請求項1乃至10のいずれかに記載の薄膜燃料電池。
    The charged polarity of the portion of the electrolyte layer in contact with the anode electrode layer is opposite to the charged polarity of the portion of the anode electrode layer in contact with the electrolyte layer,
    2. The charged polarity of a portion of the electrolyte layer in contact with the cathode electrode layer and the charged polarity of a portion of the cathode electrode layer in contact with the electrolyte layer are opposite in polarity. The thin film fuel cell according to any one of 1 to 10.
  12.  前記薄膜燃料電池の厚さが100μm以下であることを特徴とする請求項1乃至11のいずれかに記載の薄膜燃料電池。 The thin film fuel cell according to any one of claims 1 to 11, wherein the thickness of the thin film fuel cell is 100 µm or less.
  13.  アニオン性物質とカチオン性物質とを交互に積層させることにより、アノード電極層又はカソード電極層のうち一方の電極層を形成させる第一電極層形成工程と、
     前記第一電極層形成工程にて形成された前記一方の電極層における一方の面に、アニオン性物質とカチオン性物質とを交互に積層させることにより電解質層を形成させる電解質層形成工程と、
     前記電解質層形成工程にて形成された前記電解質層における、前記一方の電極層と接する面の反対側の面に、アニオン性物質とカチオン性物質とを交互に積層させることにより、アノード電極層又はカソード電極層のうち他方の電極層を形成させる第二電極層形成工程と
    を備えた薄膜燃料電池製造方法。
    A first electrode layer forming step of forming one electrode layer of an anode electrode layer or a cathode electrode layer by alternately laminating an anionic substance and a cationic substance;
    An electrolyte layer forming step of forming an electrolyte layer by alternately laminating an anionic substance and a cationic substance on one surface of the one electrode layer formed in the first electrode layer forming step;
    By alternately laminating an anionic substance and a cationic substance on the surface of the electrolyte layer formed in the electrolyte layer forming step on the opposite side of the surface in contact with the one electrode layer, the anode electrode layer or A thin film fuel cell manufacturing method comprising: a second electrode layer forming step of forming the other electrode layer of the cathode electrode layers.
  14.  前記第一電極層形成工程は、基材基板の表面側に前記カソード電極層又は前記アノード電極層を形成させることを特徴とする請求項13に記載の薄膜燃料電池製造方法。 14. The method of manufacturing a thin film fuel cell according to claim 13, wherein in the first electrode layer forming step, the cathode electrode layer or the anode electrode layer is formed on a surface side of a base substrate.
  15.  前記基材基板の表面に電子伝導層が形成されていることを特徴とする請求項14に記載の薄膜燃料電池製造方法。 15. The method of manufacturing a thin film fuel cell according to claim 14, wherein an electron conductive layer is formed on a surface of the base substrate.
  16.  前記第一電極層形成工程、及び、前記第二電極層形成工程のうち少なくとも一方は、前記電解質層と接する面の反対側の面に、電子伝導層を形成させる伝導層形成工程を備えたことを特徴とする請求項13乃至15に記載の薄膜燃料電池製造方法。 At least one of the first electrode layer forming step and the second electrode layer forming step includes a conductive layer forming step of forming an electron conductive layer on a surface opposite to the surface in contact with the electrolyte layer. The method of manufacturing a thin film fuel cell according to claim 13.
  17.  前記伝導層形成工程は、アニオン性物質とカチオン性物質とを交互に積層することにより前記電子伝導層を形成させることを特徴とする請求項16に記載の薄膜燃料電池製造方法。 The method of manufacturing a thin film fuel cell according to claim 16, wherein the conductive layer forming step forms the electron conductive layer by alternately laminating an anionic substance and a cationic substance.
PCT/JP2009/061356 2008-06-23 2009-06-23 Thin film fuel cell and method for manufacturing thin film fuel cell WO2009157420A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010518014A JPWO2009157420A1 (en) 2008-06-23 2009-06-23 Thin film fuel cell and thin film fuel cell manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008163752 2008-06-23
JP2008-163752 2008-06-23

Publications (1)

Publication Number Publication Date
WO2009157420A1 true WO2009157420A1 (en) 2009-12-30

Family

ID=41444486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/061356 WO2009157420A1 (en) 2008-06-23 2009-06-23 Thin film fuel cell and method for manufacturing thin film fuel cell

Country Status (2)

Country Link
JP (1) JPWO2009157420A1 (en)
WO (1) WO2009157420A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07335233A (en) * 1994-06-02 1995-12-22 Toyota Central Res & Dev Lab Inc Fuel cell
JP2002203568A (en) * 2000-10-23 2002-07-19 Mitsubishi Chemicals Corp Film/electrode zygote, and fuel cell using it
JP2005026119A (en) * 2003-07-03 2005-01-27 Mitsubishi Chemicals Corp Self-organization proton conductor film
JP2006260797A (en) * 2005-03-15 2006-09-28 Samsung Sdi Co Ltd Proton conductive electrolyte film for fuel cell, its manufacturing method as well as device, and fuel cell
WO2007088975A1 (en) * 2006-02-02 2007-08-09 Ube Industries, Ltd. Carbon membrane having biological molecule immobilized thereon
WO2008053770A1 (en) * 2006-10-27 2008-05-08 Tokuyama Corporation Diaphragm for solid polymer fuel cell and membrane-electrode assembly
JP2009139164A (en) * 2007-12-05 2009-06-25 Toyohashi Univ Of Technology Sensor of chemical substance, and its manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07335233A (en) * 1994-06-02 1995-12-22 Toyota Central Res & Dev Lab Inc Fuel cell
JP2002203568A (en) * 2000-10-23 2002-07-19 Mitsubishi Chemicals Corp Film/electrode zygote, and fuel cell using it
JP2005026119A (en) * 2003-07-03 2005-01-27 Mitsubishi Chemicals Corp Self-organization proton conductor film
JP2006260797A (en) * 2005-03-15 2006-09-28 Samsung Sdi Co Ltd Proton conductive electrolyte film for fuel cell, its manufacturing method as well as device, and fuel cell
WO2007088975A1 (en) * 2006-02-02 2007-08-09 Ube Industries, Ltd. Carbon membrane having biological molecule immobilized thereon
WO2008053770A1 (en) * 2006-10-27 2008-05-08 Tokuyama Corporation Diaphragm for solid polymer fuel cell and membrane-electrode assembly
JP2009139164A (en) * 2007-12-05 2009-06-25 Toyohashi Univ Of Technology Sensor of chemical substance, and its manufacturing method

Also Published As

Publication number Publication date
JPWO2009157420A1 (en) 2011-12-15

Similar Documents

Publication Publication Date Title
TWI469428B (en) Current collector, electrochemical cell electrode and electrochemical cell
CN103219164B (en) Ultra-thin, self-supporting, flexibility, all-solid-state supercapacitor and preparation method thereof
TWI484690B (en) Method for making current collector
TWI606634B (en) Current collector, electrochemical cell electrode and electrochemical cell
WO2004025750A2 (en) Method of fabricating fuel cells and membrane electrode assemblies
JP4697378B2 (en) Gas diffusing electrode, method for producing the same, conductive ionic conductor, and electrochemical device
Chu et al. An improved miniature direct formic acid fuel cell based on nanoporous silicon for portable power generation
TW200402159A (en) Layered electrochemical cell and manufacturing method therefor
JPH09511362A (en) Improved energy storage device and manufacturing method thereof
WO2007052650A1 (en) Method for producing membrane electrode assembly for solid polymer fuel cell
TW201218396A (en) Dye-sensitized solar cell and dye-sensitized solar cell module
WO2011061818A1 (en) Manufacturing method of battery electrodes
EP3223342B1 (en) Method for the fabrication of a thin-film solid-state battery with ni(oh)2 electrode, battery cell and battery
CN102820474A (en) Preparation method of polymer electrolytic membrane electrode
Bassyouni et al. Microsized electrochemical energy storage devices and their fabrication techniques for portable applications
Sabaté et al. New approach for batch microfabrication of silicon-based micro fuel cells
Min et al. Fabrication of novel MEMS-based polymer electrolyte fuel cell architectures with catalytic electrodes supported on porous SiO2
CN102263271B (en) Electrode containing nano-structured thin catalytic layers and method of making
KR101167409B1 (en) Membrane-electrode assembly for fuel cell, fuel cell and manufacturing method thereof
KR20100055766A (en) Manufacturing method of porous cnt electrode and the porous cnt electrode
JP7054164B2 (en) Capacitive energy storage device and method of making the device
WO2009157420A1 (en) Thin film fuel cell and method for manufacturing thin film fuel cell
JP2004247294A (en) Power generation element for fuel cell, its manufacturing method, and fuel cell using power generation element
JP2003059507A (en) Electrolyte film and electrode junction for fuel cell, its manufacturing method and polymer electrolyte fuel cell
JP2014060097A (en) Catalyst ink for forming electrode of fuel cell, production method therefor and manufacturing method of fuel cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09770130

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2010518014

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09770130

Country of ref document: EP

Kind code of ref document: A1