WO2009157115A1 - 中性子線量計 - Google Patents

中性子線量計 Download PDF

Info

Publication number
WO2009157115A1
WO2009157115A1 PCT/JP2009/000906 JP2009000906W WO2009157115A1 WO 2009157115 A1 WO2009157115 A1 WO 2009157115A1 JP 2009000906 W JP2009000906 W JP 2009000906W WO 2009157115 A1 WO2009157115 A1 WO 2009157115A1
Authority
WO
WIPO (PCT)
Prior art keywords
neutron
data
dose equivalent
energy
wave height
Prior art date
Application number
PCT/JP2009/000906
Other languages
English (en)
French (fr)
Inventor
中村尚司
布宮智也
Original Assignee
富士電機システムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機システムズ株式会社 filed Critical 富士電機システムズ株式会社
Priority to CN200980100274.5A priority Critical patent/CN101796430B/zh
Priority to US12/674,861 priority patent/US20110101234A1/en
Priority to EP09769825A priority patent/EP2290405A1/en
Publication of WO2009157115A1 publication Critical patent/WO2009157115A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T3/00Measuring neutron radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T3/00Measuring neutron radiation
    • G01T3/06Measuring neutron radiation with scintillation detectors

Definitions

  • the present invention relates to a neutron dosimeter that detects neutron energy in various leaky neutron fields that may be exposed to neutrons, such as nuclear facilities and accelerator facilities, and displays a peripheral dose equivalent (1 cm dose equivalent) that is a practical amount.
  • a portable neutron dosimeter (commonly called REM counter) is used for such measurement.
  • the neutron dosimeter receives thermal neutrons or medium-fast neutrons with higher energy than the thermal neutrons, obtains detection signals, processes these detection signals, converts them to the ambient dose equivalent as described above, and immediately It is displayed on the display and enables direct reading of ambient dose equivalent.
  • This neutron dosimeter includes a thermal neutron detector.
  • a thermal neutron detector As the thermal neutron detector, a BF 3 proportional counter, a 3 He proportional counter, a 6 LiI (Eu) scintillation detector, or the like is used.
  • FIG. 17 is an explanatory diagram of a conventional neutron dosimeter
  • FIG. 17 (a) is an internal structure diagram of a first example of the prior art
  • FIG. 17 (b) is an internal structure diagram of a second example of the prior art
  • FIG. 17C is an internal structure diagram of the third example of the prior art
  • FIG. 17D is an internal structure diagram of the fourth example of the prior art.
  • BF 3 is an example of using a proportional counter 101, BF 3 around the proportional counter 101 polyethylene material 102 covers a moderator Furthermore, a boron plastic material 103 which is a thermal neutron absorber is covered, and finally it is covered with a polyethylene material 104 which is a moderator, and the peripheral dose equivalent is displayed after the detection signal is processed by the rate meter 105 (Not shown).
  • a LiI (Eu) scintillation detector is constructed.
  • the 6 LiI (Eu) scintillator 201 is covered with a polyethylene moderator 204 through a polyethylene disk 203, further covered with a thermal neutron absorber cadmium 205, and finally covered with a polyethylene moderator 206.
  • the photomultiplier tube 202 is covered with a polyethylene material 207.
  • the polyethylene moderator 206 is formed as a sphere, and the photomultiplier tube 202 is held on the polyethylene moderator 206 by the holding ring 208.
  • neutron dosimeter 300 of the third example of the prior art shown in FIG. 17 (c) an example of using a 3 He proportional counter 301, around the 3 He proportional counter 301 is covered with a polyethylene material 302 moderator Further, it has a multilayer structure covered with a thermal neutron absorbing material 303 and finally covered with a polyethylene material 304 as a moderator, and after the detection signal is calculated by the signal processing unit 305, the peripheral dose equivalent is displayed on the operation panel 306. (Not shown). Most of the outermost polyethylene material 304 is formed as a sphere.
  • 3 He proportional counter 401 is covered by a polyethylene member 402 of the moderator, further It has a multilayer structure covered with a thermal neutron absorber 403 and finally covered with a moderator polyethylene material 404.
  • the peripheral dose equivalent is displayed on an external display (not shown). ) Is displayed.
  • the outermost polyethylene material 404 is formed substantially as a sphere.
  • a BF 3 proportional counter or a 3 He proportional counter will be described as an example.
  • the principle of detection of neutrons by the BF 3 proportional counter or 3 He proportional counter is based on the charged gas (BF) caused by charged particles generated by the nuclear reaction between incident thermal neutrons and the enclosed gas (BF 3 , 3 He) in the proportional counter. 3 , 3 He) is ionized to obtain a pulsed detection signal.
  • FIG. 18 is a characteristic diagram showing the response of the proportional counter to the energy of neutrons.
  • the sensitivity of such a proportional counter to neutrons is sensitive to neutrons in the nine-digit energy range from thermal neutrons to medium fast neutrons, but as shown in FIG. 18, the total energy range (0.025 eV Compared with a response of ⁇ 15 MeV (about 9 digits), a response in a partial energy range (10 eV to several hundred keV (about 4 digits)) is reduced to about 1/10 to 1/1000.
  • This property is determined by the neutron reaction cross section of the enclosed gas (BF 3 , 3 He). For this reason, the proportional counter alone outputs a constant wave height that does not depend on the energy of neutrons as shown in the characteristic diagram for the output of the mixed gas detector in FIG. 19, and the sensitivity is not good as it is. It was.
  • the proportional counter is surrounded by a polyethylene moderator. Since the polyethylene moderator converts medium fast neutrons into thermal neutrons by elastic scattering, the proportional counter can also detect incident medium fast neutrons.
  • This neutron fluence-peripheral dose equivalent (1 cm dose equivalent) conversion coefficient curve is a curve plotting conversion factors for neutron fluence detected for a certain neutron energy into ambient dose equivalent (1 cm dose equivalent) for each neutron energy. Yes, for example, a curve with thick lines as shown in FIG. FIG.
  • FIG. 20 is an explanatory diagram for explaining a response characteristic curve of detection sensitivity with respect to neutron energy and an ICRP74H * (10) response curve.
  • This neutron fluence-ambient dose equivalent (1 cm dose equivalent) conversion coefficient curve is shown as a neutron energy-ICRP74 H * (10) response curve together with the units in FIG.
  • a detection signal from a thermal neutron detector combining a proportional counter and a polyethylene moderator is converted based on such a neutron fluence-peripheral dose equivalent (1 cm dose equivalent) conversion coefficient curve, thereby obtaining a neutron dosimeter. Then, the ambient dose equivalent (1 cm dose equivalent) can be directly read from the detection signal indicating the count rate per fluence.
  • Neutron dosimeters using such thermal neutron detectors are widely available on the market and are used in various environments where there is a risk of neutron exposure.
  • a neutron dosimeter using a conventional 6 LiI (Eu) scintillation detector detects thermal neutrons based on the same principle. Prior art neutron dosimeters 100-400 are such.
  • Patent Document 1 relating to the invention of the present applicant and the present inventor (Japanese Patent Publication No. 2007-218657, title of invention, neutron detector and neutron dosimeter) The invention described in is known.
  • Patent Document 1 includes a proportional counter in which a mixed gas obtained by mixing nitrogen gas and organic compound gas at a predetermined mixing ratio is enclosed, and the neutron energy-response characteristic, which is the detection sensitivity of the proportional counter, is indicated by radiation damage.
  • the neutron detector approximates a neutron fluence-peripheral dose equivalent (1 cm dose equivalent) conversion coefficient curve as stipulated in laws and regulations related to prevention (laws concerning the prevention of radiation damage caused by radioactive isotopes, etc.).
  • the detection signal output from the neutron detector is processed to display a peripheral dose equivalent which is a practical amount, and is a neutron dosimeter.
  • Patent Document 2 Japanese Patent Publication No. 2006-275602, title of invention, high-sensitivity dosimetry method for high energy neutrons, photons and muons.
  • the invention is known.
  • Patent Document 2 discloses that light emitted from a detector in which an organic liquid scintillator and a silver mixed zinc sulfide sheet scintillator containing lithium-6 are combined into an electric signal by a photomultiplier tube and then branched into several. Analyzing the voltage of each tributary using a digital waveform analyzer determines the type of radiation incident on the detector and the amount of emitted light, and uses a light emission to dose conversion operator corresponding to each radiation. Neutron, photon and muon doses are measured in real time and with high sensitivity. Japanese Patent Publication No. 2007-218657, corresponding US Patent Application No. 12 / 034,552 Japanese Patent Publication No. 2006-275602
  • the polyethylene 104 of the neutron dosimeter using the prior art BF 3 proportional counter shown in FIG. 17A has a large diameter exceeding 20 cm, and the neutron dosimeter 100 is large and heavy.
  • the polyethylene moderator 206 of the neutron dosimeter using the prior art 6 LiI (Eu) scintillation detector shown in FIG. 17B has a large diameter of 20 cm and 30 cm, and the neutron dosimeter 200 is also large. It was heavy.
  • the polyethylene materials 304 and 404 of the neutron dosimeter using the prior art 3 He proportional counter shown in FIGS. 17C and 17D have a large diameter exceeding 20 cm in diameter, and the neutron dosimeter 300 400 was also large and heavy.
  • the weight exceeds 10 kg, and even the lightest one weighs about 8 kg.
  • a portable neutron dosimeter for carrying around there is a problem that it is very difficult to use that the weight is nearly 10 kg.
  • the neutron energy-response characteristics are approximated to the neutron fluence-peripheral dose equivalent (1 cm dose equivalent) conversion factor curve specified by law. It wasn't.
  • the energy characteristics (calculated values and experimental values) representing the sensitivity of the thermal neutron detector are neutron energy-ICRP74 H * (10) at 1 eV or less and 100 keV or more.
  • the response curve (neutron fluence-peripheral dose equivalent (1 cm dose equivalent) conversion coefficient curve) is in good agreement, but is overestimated between 1 eV and 100 keV.
  • the neutron dosimeter described in Patent Document 1 enables a neutron detector to detect a wide range of neutron energy ranging from thermal neutrons and medium-fast neutrons based on a novel detection principle, as well as the neutron fluence stipulated by law.
  • this neutron detector is sensitive to medium-fast neutrons, minimizing the use of moderators to slow down medium-fast neutrons and generate thermal neutrons as in the prior art.
  • the weight of the neutron detector is reduced by minimizing the use of thermal neutron absorbers so that the detection sensitivity of the neutron detector closely matches the neutron fluence-ambient dose equivalent (1 cm dose equivalent) conversion coefficient curve.
  • the neutron dosimeter described in Patent Document 1 is excellent in that the moderator is reduced in volume to a light neutron dosimeter of about 2 kg or less, but there is a high demand for further weight reduction. . Therefore, it is possible to reduce the weight by eliminating the moderator, and to deal with detection signal processing to match the detection sensitivity to the neutron fluence-ambient dose equivalent (1 cm dose equivalent) conversion coefficient curve.
  • the neutron dosimeter described in Patent Document 1 when a wave height is obtained by a wave height discriminator (discrete circuit), there is a lower limit level of measurement due to electrical noise of the circuit and noise mixed with ⁇ -ray signals.
  • the detection sensitivity in a partial energy range of, for example, 10 eV to several hundred keV (about 4 digits) is lowered, as in the characteristics shown in FIG. ) May not be detected, and the neutron dosimeter described in Patent Document 1 has a moderation material and only an organic mixed gas with a partial energy range (10 eV to several hundred keV (about 4 digits)). It was found that measuring neutrons with high accuracy is difficult in practice.
  • the detection sensitivity of the detector is a neutron whose detection sensitivity is closely approximated to the neutron fluence-ambient dose equivalent (1 cm dose equivalent) conversion factor curve (neutron energy-ICRP74 H * (10) response curve). Since it deviates from detection sensitivity with energy-response characteristics (hereinafter referred to as target detection sensitivity), it was necessary to consider compensation.
  • the purpose of the present invention is to reduce the weight significantly without using a moderator for detection, and the actual detection sensitivity differs from the target detection sensitivity due to the absence of the moderator.
  • Another object of the present invention is to provide a neutron dosimeter that maintains detection performance by compensating by signal processing and improves user convenience.
  • the neutron dosimeter of the present invention comprises nitrogen gas and an organic compound gas, and the sum of the mixing ratio ⁇ of the nitrogen gas and the mixing ratio ⁇ of the organic compound gas is 1.
  • a mixed gas in which the mixing ratio ⁇ of nitrogen gas is 0.05 ⁇ ⁇ ⁇ 0.25 and the mixing ratio ⁇ of the organic compound gas is 1.0 ⁇ is encapsulated.
  • a mixed gas detector that outputs a detection pulse signal with a pulse height according to energy, an amplifier that amplifies the detection pulse signal output from the mixed gas detector to a predetermined peak level, and a detection pulse signal output from the amplifier
  • An A / D converter for converting to pulse data and G (L) function data are registered for each wave height level L.
  • the detected pulse data output from the A / D converter is converted to G ( L) Convert to function data
  • the data correction unit and the number of G (L) function data output from the data correction unit are counted for each wave height level to generate count data for each wave height level, and the G (L) function data and count data for each wave height level.
  • a display that displays ambient dose equivalent (1 cm dose equivalent) using data, and characteristics when neutron energy is on the horizontal axis and ambient dose equivalent (1 cm dose equivalent) is on the vertical axis neutron fluence the trend of - ambient dose equivalent (1cm dose equivalent) conversion coefficient curve approximation of the (neutron energy -ICRP74 H * (10) response curve) And so that a G (L) function data.
  • the organic compound gas is methane gas
  • the mixed gas sealed in the mixed gas detector preferably has an internal pressure of 0.1 atm (0.01 MPa) to 25 atm (2.5 MPa).
  • the data correction unit detects the detected pulse data with a wave height level of 400 keV or less.
  • the detection pulse data is discarded when the pulse is input, and the G ′ (L) function data corrected for the pulse height level is output when the detection pulse data of the pulse height level of 400 keV to 15 MeV is input.
  • the unit multiplies the G ′ (L) function data corrected for each wave height level and the count data to generate multiplication data having a wave height of 400 keV to 15 MeV, and the data obtained by adding up all the multiplication data of the wave heights of 400 keV to 15 MeV. Output as dose equivalent (1 cm dose equivalent) data.
  • FIG. 3A is a detailed view of each part
  • FIG. 3A is a detailed view of a data correction unit
  • FIG. 3B is a detailed view of a dose equivalent calculation unit. It is a characteristic view which shows the number of neutrons with respect to the neutron energy of 100 keV or less which injects into a mixed gas detector. It is a characteristic view which shows the count number with respect to neutron energy of 100 keV or less.
  • FIG. 6 is a characteristic diagram of G (L) and G ′ (L) with respect to an output wave height L. It is explanatory drawing of the neutron dosimeter of a prior art, FIG.
  • FIG. 17 (a) is an internal structure figure of the 1st example of a prior art
  • FIG.17 (b) is an internal structure figure of the 2nd example of a prior art
  • FIG. ) Is an internal structural diagram of the third example of the prior art
  • FIG. 17D is an internal structural diagram of the fourth example of the prior art. It is a characteristic view which shows the response of the proportional counter with respect to the energy of neutron. It is a characteristic view which shows the response of the proportional counter with respect to neutron energy. It is explanatory drawing explaining the response curve of detection sensitivity with respect to neutron energy, and H * (10) response curve.
  • FIG. 1 is a block diagram of the neutron dosimeter of this embodiment.
  • FIG. 2 is an explanatory view of a mixed gas detector (hollow cylindrical type)
  • FIG. 2 (a) is a perspective view
  • FIG. 2 (b) is a front view
  • FIG. 2 (c) is a sectional view.
  • FIG. 3 is a detailed view of each part
  • FIG. 3 (a) is a detailed view of a data correction unit
  • FIG. 3 (b) is a detailed view of a dose equivalent calculation unit.
  • the neutron dosimeter 1 includes a mixed gas detector 10, a processing circuit unit 20, and a display unit 30.
  • the mixed gas detector 10 includes a detector main body 11 and an enclosed space 12.
  • the processing circuit unit 20 includes a high-voltage power source 21, a preamplifier 22, a waveform shaping amplifier 23, an A / D conversion unit 24, a data correction unit 25, and a dose equivalent calculation unit 26, as shown in FIG.
  • the data correction unit 25 includes a CPU 251 and a G (L) function storage unit 252 as shown in FIG.
  • the dose equivalent calculation unit 26 includes a CPU 261 and a storage unit 262 as shown in more detail in FIG.
  • the display unit 30 includes a display driver 31 and a display 32 as shown in FIG.
  • the mixed gas detector 10 (1) discriminates the energy of incident neutrons, and the processing circuit unit to cope with a partial range where the discrimination accuracy of neutron energy is not high 20
  • the neutron dosimeter is corrected by the G (L) function to discriminate the energy of the incident neutrons over the entire range.
  • the accuracy of the neutron dosimeter correction by the G (L) function is improved. Improvements have been made in terms of improving detection accuracy.
  • the neutron dosimeter 1 is capable of synergistically combining these improvements to maintain detection performance even without a moderator.
  • the mixed gas detector 10 will be described with reference to FIG.
  • the mixed gas detector 10 of this form is demonstrated as what is a hollow cylinder type, even if it is set as the spherical mixed gas detector 10, for example, the structure which has a spherical enclosure space is employ
  • an enclosed space 12 is formed in a detector body 11 formed in a hollow cylindrical shape whose both sides are closed by discs.
  • a mixed gas described later is sealed in the sealed space 12.
  • the material of the detector body 11 is SUS304, and the thickness of the wall surface and both ends is 0.3 mm. It has a pressure resistance of 5 atmospheres (60 ° C.) with a thickness of 0.3 mm. This is about 25% of the material strength limit. Note that even if the material is thinned by 0.1 mm due to processing accuracy or impact, it is about 35% of the material strength limit and there is no risk of rupture or the like.
  • the thickness is set to 0.8 mm to ensure sufficient strength. Electrodes are formed on the discs on both sides of the detector body 11 so as to sandwich the enclosed space 12, and a high electric field is applied to the mixed gas in the enclosed space 12 by these electrodes.
  • nitrogen gas and organic compound gas are mixed and sealed as a mixed gas sealed in the mixed gas detector 10 at a predetermined mixing ratio.
  • the organic compound gas is sealed with either methane, ethane, or propane. Alternatively, it is a combination of any two of methane, ethane, or propane. Or, methane, ethane, and propane are all enclosed.
  • low energy neutrons medium energy neutrons and high energy neutrons are classifications for convenience in the present specification.
  • nitrogen gas detects neutrons by reaction with low energy neutrons (about 100 keV or less). That is, detection of low energy neutrons depends on the amount of nitrogen gas.
  • Organic compound gas detects neutrons by reaction with medium energy neutrons (about 100 keV to 10 MeV) and high energy neutrons (about 10 MeV or more). In other words, the detection of medium and high energy neutrons depends on the amount of organic compound gas (methane, ethane, propane).
  • FIG. 4 is a characteristic diagram showing the number of neutrons with respect to neutron energy of 100 keV or less incident on the mixed gas detector
  • FIG. 5 is a characteristic diagram showing the count number with respect to neutron energy of 100 keV or less.
  • detection is performed mainly by charged particles generated by nuclear reaction with nitrogen gas.
  • a detection signal having the characteristics as shown is output. This is because when the number of incident neutrons shown in FIG. 4 increases or decreases, the peak count indicated by hatching in FIG. 5 increases or decreases.
  • the detection sensitivity by low energy neutrons below about 100 keV can be adjusted by the amount of nitrogen gas.
  • the low energy neutrons (a, b, c, d) below about 100 keV appear in the same channel of 0.7 MeV or 0.8 MeV in the detection signal output. Therefore, there is no energy information of incident neutrons.
  • the detection signal passes through an amplifier 22 and a waveform shaping amplifier 23, and as shown in FIG. 5, a detection pulse signal having a wave height level L (horizontal axis) ranging from 0.1 MeV to 20 MeV.
  • FIG. 6 is a characteristic diagram showing the number of neutrons for neutron energy of 100 keV or more incident on the mixed gas detector
  • FIG. 7 is a characteristic diagram showing the count number for neutron energy of 100 keV or more
  • FIG. 8 is a characteristic diagram (actual measurement diagram) showing the response of the mixed gas detector 10 to the energy of neutrons.
  • H (n, n) p mainly with organic compound gas (methane, ethane, propane). Since detection is performed using charged particles generated by elastic scattering or nuclear reaction, a detection signal having characteristics as shown in FIG. 7 is output. When the number of incident neutrons shown in FIG. 6 increases or decreases, the count shown in FIG. 7 increases or decreases. Moreover, the detection sensitivity by medium and high energy exceeding about 100 keV can be adjusted by the amount of organic compound gas (methane, ethane, propane). Further, as is apparent from FIG.
  • the detection signal passes through an amplifier 22 and a waveform shaping amplifier 23, and as shown in FIG. 7, a detection pulse signal having a wave height level L (horizontal axis) ranging from 0.1 MeV to 20 MeV.
  • the detection signal output from 10 includes information on the wave height of energy when medium energy neutrons (about 100 keV to 10 MeV) are incident. Although not shown, it has been confirmed that information on the wave height of energy is also included when high-energy neutrons (about 10 MeV or more) are incident. Thus, detection of medium and high energy neutrons is achieved by organic compound gases (methane, ethane, propane).
  • the neutron energy-response characteristics representing the detection sensitivity (count rate per fluence) of this proportional counter to the neutron energy by appropriately selecting the mixing ratio of nitrogen gas and organic compound gas and the enclosed atmospheric pressure, the neutron fluence-periphery It can be approximated to a dose equivalent (1 cm dose equivalent) conversion factor curve (neutron energy-ICRP74 H * (10) response curve).
  • the mixing ratio ⁇ of nitrogen gas is In the energy range of about 5 digits of 0.025 eV to 10 eV and 400 keV to 15 MeV by making 0.05 ⁇ ⁇ ⁇ 0.5 and the mixing ratio ⁇ of the organic compound gas is 1.0 ⁇ . It was found that the neutron energy-response characteristics as detection sensitivity can be approximated to a neutron fluence-ambient dose equivalent (1 cm dose equivalent) conversion coefficient curve (neutron energy-ICRP74 H * (10) response curve).
  • the mixing ratio has a range because the optimum value varies depending on various design matters such as the shape of the proportional counter and the selection of the organic compound gas, and the mixing ratio cannot be completely specified.
  • the mixing ratio thereof is also adjusted. For example, if ethane (C 2 H 6 ) or propane (C 3 H 8 ) with more hydrogen atoms is enclosed than methane (CH 4 ) with fewer hydrogen atoms, H (n, n) p elastic scattering is more likely to occur. It is expected that the charged particles due to the recoil protons p can be increased to adjust the detection sensitivity.
  • Mixing ratios of methane, ethane, or propane can also be used for adjustment. By satisfying such a range, it is possible to obtain neutron energy-response characteristics which are better detection sensitivity than the prior art.
  • FIG. 9 is a characteristic diagram showing characteristics according to the mixing ratio of the organic mixed gas.
  • the methane gas component is 95% or more, the nitrogen gas is 5% or less, so the thermal neutron (0.025 eV) is underestimated to 50% or less.
  • the characteristic (simulation) starting from the point ⁇ on the characteristic diagram, the entire ICRP Pub. It is far from the neutron peripheral dose equivalent conversion constant of 74 recommendation, and is not appropriate.
  • the methane gas component is 75% or less, the nitrogen gas will be 25% or more, so the thermal neutrons will be overestimated twice or more. This is because the point ⁇ on the characteristic diagram is ICRP Pub. This is also clear from the fact that the neutron peripheral dose equivalent conversion constant of 74 Recommendations is significantly deviated upward.
  • FIG. 10 is a characteristic diagram of the radiation dose rate with respect to the distance from the neutron source
  • FIG. 11 is a characteristic diagram of a statistical error with respect to the radiation dose rate.
  • the radiation dose rate using fast neutrons (sensitivity to 252Cf) as a neutron source and the radiation dose rate of neutrons in the environment are as shown in FIG.
  • neutrons from neutron sources with a BSS exemption level (10 kBq) (10 nSv / h to 1 ⁇ Sv / h) neutrons from neutron sources with a BSS exemption level (10 kBq) (1 ⁇ Sv) / H to 10 mSv / h).
  • the neutron sensitivity of such fast neutrons (sensitivity to 252Cf) is determined by ICRP Pub.
  • the objective is to set the statistical error ( ⁇ 2 ⁇ ) of the detected neutron count to 20% or less.
  • the pressure of the mixed gas necessary to make the statistical error ( ⁇ 2 ⁇ ) of the count value of detected neutrons 20% or less is mainly neutrons in the environment (5 nSv / h to 10 nSv). / H) is measured, the point x on the characteristic diagram is 20% or less, so the optimum internal pressure must be 25 atm or more. Also, when measuring neutrons (10 nSv / h to 1 ⁇ Sv / h) mainly from neutron sources with a BSS exemption level (10 kBq), the point x, point ⁇ , and point ⁇ on the characteristic diagram should be 20% or less. To 1 atm or more.
  • the point x, the point ⁇ , the point ⁇ , the point ⁇ , and the point ⁇ on the characteristic diagram are 20 % Or less, it is necessary to set the pressure to 0.1 atmosphere or more.
  • the internal pressure of the mixed gas in the enclosed space 12 of the mixed gas detector may be 0.1 atm (0.01 MPa) or more and 25 atm (2.5 MPa) or less. In particular, at 25 atmospheres (2.5 MPa), the statistical error ( ⁇ 2 ⁇ ) of the count values of all detected neutrons can be reduced to 20% or less.
  • the output characteristics of the mixed gas detector are, for example, as shown in the characteristic diagram showing the characteristics according to the mixing ratio of the organic mixed gas in FIG.
  • the detection sensitivity for the energy range of about five digits of neutron energy incident on the mixed gas detector from 0.025 eV to 10 eV and 400 keV to 15 MeV is equivalent to neutron energy-response characteristics, neutron fluence, ambient dose equivalent (1 cm). It can be seen that it is close to the dose equivalent) conversion coefficient curve (neutron energy-ICRP74 H * (10) response curve).
  • the mixed gas detector 10 is such. Next, the processing circuit unit 20 will be described.
  • the high voltage power supply 21 supplies a high voltage of 1000 V to 4000 V to the pair of electrodes of the mixed gas detector 10.
  • a detection pulse signal based on the current output extracted from the electrode of the mixed gas detector 10 is output. This detection pulse signal is input to the preamplifier 22.
  • the preamplifier 22 amplifies the detection pulse signal until it has a wave height that can be used by the waveform shaping amplifier 23.
  • the waveform shaping amplifier 23 outputs a detection pulse signal obtained by amplifying the detection pulse signal so as to have a wave height waveform that can be A / D converted by the A / D converter 24.
  • These preamplifier 22 and waveform shaping amplifier 23 constitute the amplifier of the present invention.
  • the A / D converter 24 converts the detection pulse signal output from the waveform shaping amplifier 23 into detection pulse data.
  • This detected pulse data is pulse data having a wave height proportional to the neutron energy.
  • pulse height analysis of pulse data which is energy information of neutrons, is performed.
  • the detection pulse signal is a signal having a wave height level L ranging from 0.1 MeV to 20 MeV
  • the A / D converted detection pulse data is data having a wave height level L ranging from 0.1 MeV to 20 MeV.
  • the data correction unit 25 converts the detection pulse data into G (L) function data described later. Specifically, it is performed as follows.
  • the CPU 251 functions as means for discriminating the input detection pulse data into a predetermined range level (from the lower wave height level to the upper wave height level) for each wave height level of the detection pulse data. Since the detection pulse data also has a wave height level L ranging from 0.1 MeV to 20 MeV, the wave height level L is divided into a plurality of levels from 0.1 MeV to 20 MeV. For example, the first wave height level, the second wave height level,..., The nth wave height level are distinguished into n-stage wave height levels.
  • the first to sixth wave height levels are used, and the range level of neutron energy (MeV) is 0.1 to 0.5, 0.5 to 1.0, 1.0 to 2.0, 2.0. Discrimination is made at wave height levels in the range of -5.0, 5.0-10.0, 10.0-20.0. This example is roughly divided into 6 levels for the sake of simplicity of explanation, but in actuality, it is classified into about 100 levels, for example.
  • MeV neutron energy
  • This CPU 251 can remove unnecessary components below a predetermined level (noise signal and ⁇ -ray signal) and extract only a desired detection signal based on neutrons. A plurality of detection signals classified according to wave height levels are output.
  • the CPU 251 functions as means for selecting G (L) function data corresponding to the detection pulse data divided according to the pulse height level L and reading it from the G (L) function storage unit 252, and further, this G (L) function data is used as the dose. It functions as a means for outputting to the equivalent calculation unit 26. This corrects to change the weight to the dose per pulse. Details of this weight change will be described later.
  • the CPU 261 of the dose equivalent calculation unit 26 functions as a means for discriminating the input G (L) function data into a predetermined range of wave height levels (from the lower wave height level to the upper wave height level).
  • the first wave height level, the second wave height level,..., The nth wave height level are distinguished into n stages.
  • the wave height levels of the neutron energy (MeV) are G 1 (L), G 2 (L), G 3 (L), G 4 (L), G 5 ( L) and G 6 (L) are discriminated at the wave height level. This example is roughly divided into 6 levels for the sake of simplicity of explanation, but in actuality, it is classified into about 100 levels, for example.
  • the CPU 261 of the dose equivalent calculation unit 26 counts the number of G (L) function data divided for each wave height level for each wave height level, and generates count data for each wave height level.
  • Count data for each peak level among the count data n 1 (L), n 2 (L), n 3 (L), n 4 (L), n 5 (L), and n 6 (L) Is incremented by +1 and stored in the storage unit 262.
  • This count data indicates a count value (that is, a count rate) per unit time in a certain range of wave height level L (energy value E).
  • Such a process is performed each time G (L) function data is input from the data correction unit 25.
  • This example is roughly divided into 6 levels for the sake of simplicity of explanation, but in actuality, it is classified into about 100 levels, for example.
  • the CPU 261 of the dose equivalent calculation unit 26 counts data n 1 (L), n 2 (L), n 3 (L), n 4 (L), n 5 (L), and n 6 (L) every predetermined period. Are multiplied by G 1 (L), G 2 (L), G 3 (L), G 4 (L), G 5 (L), and G 6 (L), respectively, to obtain multiplication data for each peak level. It generates and functions as a means for outputting the peripheral dose equivalent (1 cm dose equivalent), which is a value obtained by adding and adding all the multiplication data for each wave height level.
  • a is a proportionality constant, it is expressed as the following equation (1).
  • the response by the count value follows the neutron energy-response characteristic which is the original sensitivity curve of the neutron detector 10, as shown in FIG. .
  • the detection sensitivity is a characteristic when the neutron energy is on the horizontal axis and the peripheral dose equivalent (1 cm dose equivalent) is on the vertical axis. Is approximated to a neutron fluence-peripheral dose equivalent (1 cm dose equivalent) conversion coefficient curve (neutron energy-ICRP74 H * (10) response curve) to increase detection sensitivity.
  • Equation 1 the range level is narrowed by finely dividing the range of the crest level described above (increasing the number of n), and the response due to the ambient dose equivalent (1 cm dose equivalent) is neutron fluence-ambient dose equivalent. (1 cm dose equivalent) conversion coefficient curve (neutron energy-ICRP74 H * (10) response curve) is further followed. As described above, by further dividing the range of the crest level, that is, by increasing the value of the number of additions n in Equation 1, higher accuracy can be achieved.
  • the display driver 31 of the display unit 30 inputs the peripheral dose equivalent (1 cm dose equivalent) data from the dose equivalent calculation unit 26 and controls the display 32.
  • the display 32 of the display unit 30 displays the peripheral dose equivalent (1 cm dose equivalent) so as to be directly readable according to the control from the display driver 31.
  • the configuration described above is housed in a portable case.
  • Such a neutron dosimeter 1 displays the ambient dose equivalent (1 cm dose equivalent) on the display 32 so that it can be directly read with high accuracy.
  • the mixed gas detector has a neutron energy incident on the mixed gas detector of 0.025 eV to 10 eV and 400 keV to 15 MeV, as shown in the characteristic diagram showing the characteristics of the organic mixed gas according to the mixing ratio in FIG.
  • the sensitivity is not sufficient at 10 eV to 400 keV, and the detection accuracy is low. Therefore, correction by the G (L) function is performed to correct the neutron dose in the energy range of 10 eV to 400 keV with insufficient accuracy.
  • FIG. 13 shows the energy spectrum of the background neutrons (due to cosmic rays)
  • Fig. 14 shows the neutron energy after the neutrons generated from the high energy accelerator (800 MeV) have passed through the concrete shield (actual field). It is a figure which shows a spectrum.
  • FIG. 15 is a diagram showing a neutron energy spectrum generated from a 252 Cf neutron radiation source and a neutron energy spectrum of a field where a shield is present (an actual field).
  • the region below 1 MeV has the same spectrum shape (1 / E spectrum).
  • 10 eV to 400 keV is constant in proportion to the number of neutrons of 1 MeV or more. This indicates a 1 / E spectrum. This is because most of the neutrons of 1 MeV or less are slowed down by the interaction of the neutrons of 1 MeV or more with the substance. That is, it can be said that the change in the number of neutrons of 1 MeV or more is caused by the change of the number of neutrons of 1 MeV or less, and the number is in a proportional relationship. From this, the number of neutrons of 10 eV to 400 keV can be corrected from the number of neutrons of 1 MeV or more.
  • the neutron dose equivalent of 10 eV to 400 keV which is a problem is corrected using the G (L) function from the information of 1 MeV to 2 MeV.
  • the neutron doses H and h (E) can be generally expressed as Equation 2 as a neutron ambient dose equivalent conversion constant [pSvcm2] according to the ICRP 74 recommendation.
  • 0.025 eV to 15 MeV represents the neutron energy incident on the mixed gas detector.
  • Equation 3 The first and third terms of Equation 3 can be detected with high accuracy by the mixed gas detector 10, and for the second term, the incident neutron energy ranges from 100 keV to 400 keV among 10 eV to 400 keV. In this case, detection with high accuracy is possible, but only low accuracy can be detected in the range of the crest level of 10 eV to 100 keV, so the detection accuracy is low as it is. Therefore, correction is performed using other information.
  • Equation 2 the conversion of Equation 2 is performed.
  • the wave height value from the organic mixed gas is L
  • the wave height distribution by neutron is P (L)
  • the neutron response of the detector is R (E, L)
  • the G (E) function corresponding to the wave height value is G (L).
  • Equation 6 Substituting Equation 4 above into Equation 2 yields Equation 6 below.
  • Equation 8 the energy ranges of the first term, the second term, and the third term of Equation 3 in question can be expressed as Equations 8 to 10 below. First, looking at the first term, the following equation 8 is obtained.
  • Equation 9 This region of 10 eV to 400 keV can be corrected using the wave height L of 1 MeV to 2 MeV according to the explanation of the linearity described above. Next, looking at the third term, the following equation 10 is obtained.
  • Equation 11 The output energy from the elastic scattering of hydrogen in methane has information on the incident neutron energy and can be calculated. Substituting Equation 8, Equation 9, and Equation 10 into Equation 3 yields Equation 11 below.
  • Equation 12 it is possible to obtain a neutron dose with improved characteristics of 10 eV to 400 keV, which has been a problem, by using a signal output using an organic mixed gas.
  • a characteristic diagram of G (L) and G ′ (L) with respect to the output wave height L taking such circumstances into consideration is shown in FIG. G (L) represents before correction, and G ′ (L) represents after correction.
  • Such characteristics are divided into n at the wave height level, and replaced with G 1 (L), G 2 (L), G 3 (L),..., G n (L) before correction.
  • G ′ 1 (L), G ′ 2 (L), G ′ 3 (L),..., G ′ n (L) are registered in the G (L) function storage unit 252. From the thermal energy neutrons to the high energy neutrons exceeding 10 MeV, the final output value can match the energy characteristics well with the 1 cm dose equivalent conversion factor.
  • the data correction unit 25 and the dose equivalent calculation unit 26 function as follows.
  • the CPU 251 of the data correction unit 25 discards the detection pulse data when the detection pulse data with a wave height of 400 keV or less is input, and corrects for each wave height level when the detection pulse data with a wave height of 400 keV to 15 MeV is input.
  • the G ′ (L) function data is read from the G (L) function storage unit 252 and the G ′ (L) function data is output to the dose equivalent calculation unit 26.
  • the CPU 261 of the dose equivalent calculation unit 26 multiplies the G ′ (L) function data corrected for each wave height level and the count data to generate multiplication data having a wave height of 400 keV to 15 MeV, and the multiplication data of these wave heights 400 keV to 15 MeV.
  • the data obtained by adding all of the above is output as ambient dose equivalent (1 cm dose equivalent) data. Correction is performed in this way. According to such a neutron dosimeter of the present invention, the ambient dose equivalent (1 cm dose equivalent) can be directly read with high accuracy.
  • Equation 12 a configuration using G (L) based on the above equation 7 may be adopted for the entire region of 0.1 MeV to 20 MeV from the mixed gas detector 10 without correction, but the detection accuracy decreases. In view of this, it is preferable to perform the correction as shown in Equation 12 above.
  • the neutron dosimeter of the present invention has been described above.
  • the mixed gas detector in which the mixed gas is enclosed is detected so as to have information with respect to neutron energy of a wide range of wave height levels as described above, so that correction can be made based on the information.
  • the detection accuracy is ensured.
  • the detection medium other than the detector main body 11 is only gas and does not require a thermal neutron absorber, it is significantly lighter than a conventional neutron dosimeter and is portable so that it is very easy to carry. Ideal for dosimeters. Needless to say, although it is lighter, it is not limited to a portable type and may be used as a stationary neutron dosimeter. Such a neutron dosimeter can be said to be a new type of neutron dosimeter that did not exist before.
  • the neutron dosimeter according to the present invention as described above, weight reduction is realized. Recently, the number of facilities that generate neutrons has increased rapidly, mainly in accelerator facilities, and in recent years, the occurrence of soft errors due to cosmic ray neutrons in semiconductor devices has become a major problem mainly in the semiconductor industry.
  • the neutron dosimeter according to the present invention can be expected to have a great effect.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)

Abstract

 中性子エネルギーを横軸に、また、周辺線量当量(1cm線量当量)を縦軸としたときの特性の傾向を中性子フルエンス-周辺線量当量(1cm線量当量)換算係数曲線(中性子エネルギー-ICRP74 H(10)レスポンス曲線)に近似させるようなG(L)関数データにより、窒素ガスと有機化合物ガスとからなる混合ガスを封入して中性子の検出に応じてそのエネルギーに応じた波高の検出パルス信号を出力する混合ガス検出器の出力を補償するようにした中性子線量計とした。

Description

中性子線量計
 本発明は、原子力施設や加速器施設など中性子被ばくの恐れがある様々な漏洩中性子場で中性子エネルギーを検出して実用量である周辺線量当量(1cm線量当量)を表示する中性子線量計に関する。
 中性子による被ばくが人体に与える影響の度合いを示す実効線量がICRP1990年勧告で導入されているが、この実効線量は直接には測定できない量であるため、その対応として実用量が考え出されている。周辺線量当量は、実効線量の実用量として測定について法令で定められている。
 このような測定に可搬型の中性子線量計(通称はレムカウンタである。)が用いられる。中性子線量計は、熱中性子や、この熱中性子よりもエネルギーが大きい中高速中性子を入射して検出信号を得て、この検出信号を信号処理して上記のような周辺線量当量に換算して直ちに表示器に表示し、周辺線量当量の直読を可能としている。この中性子線量計は、熱中性子検出器を備える。熱中性子検出器としてはBF比例計数管、He比例計数管、または、LiI(Eu)シンチレーション検出器などを用いる。
 このような従来技術の中性子線量計について図を参照しつつ説明する。図17は従来技術の中性子線量計の説明図であり、図17(a)は従来技術の第1例の内部構造図、図17(b)は従来技術の第2例の内部構造図、図17(c)は従来技術の第3例の内部構造図、図17(d)は従来技術の第4例の内部構造図である。
 図17(a)に示す従来技術の第1例の中性子線量計100では、BF比例計数管101を用いる例であり、BF比例計数管101の周囲を減速材であるポリエチレン材102が覆い、さらに熱中性子吸収材であるホウ素プラスチック材103が覆い、最終的に減速材であるポリエチレン材104で覆う多層構造を有し、レートメータ105で検出信号を演算処理の後に周辺線量当量を表示器(図示せず)に表示する。
 図17(b)に示す従来技術の第2例の中性子線量計200では、LiI(Eu)シンチレーション検出器を用いる例であり、LiI(Eu)シンチレータ201と光電子増倍管202とによりLiI(Eu)シンチレーション検出器を構成する。そして、LiI(Eu)シンチレータ201は、ポリエチレンディスク203を介して周囲がポリエチレン減速材204で覆われ、さらに熱中性子吸収材のカドミウム205により覆われ、最後にポリエチレン減速材206により全体が覆われる。また光電子増倍管202は、ポリエチレン材207により覆われる。ポリエチレン減速材206は球体として形成され、保持リング208により、光電子増倍管202がポリエチレン減速材206に保持される。
 図17(c)に示す従来技術の第3例の中性子線量計300では、He比例計数管301を用いる例であり、He比例計数管301の周囲は減速材のポリエチレン材302に覆われ、さらに熱中性子吸収材303に覆われ、最後に減速材のポリエチレン材304で覆われる多層構造を有し、信号処理部305で検出信号を演算処理の後に周辺線量当量を操作パネル306の表示器(図示せず)により表示する。最外のポリエチレン材304は、大部分が球体として形成される。
 図17(d)に示す従来技術の第4例の中性子線量計400では、He比例計数管401を用いる例であり、He比例計数管401は減速材のポリエチレン材402により覆われ、さらに熱中性子吸収材403により覆われ、最後に減速材のポリエチレン材404により覆われる多層構造を有し、信号処理部405で検出信号を演算処理の後に周辺線量当量を外部の表示器(図示せず)により表示する。最外のポリエチレン材404は、ほぼ球体として形成される。
 続いて、第1例~第4例で検出箇所がそれぞれポリエチレン部材で覆われる理由について説明する。ここでは説明の具体化のため、BF比例計数管やHe比例計数管を例に挙げて説明する。BF比例計数管やHe比例計数管による中性子の検出原理は、入射した熱中性子と比例計数管内の封入気体(BFHe)との核反応によって生じた荷電粒子により封入気体(BFHe)が電離してパルス状の検出信号を得る、というものである。
 このような比例計数管のレスポンスについて説明する。図18は中性子のエネルギーに対する比例計数管のレスポンスを示す特性図である。このような比例計数管の中性子に対する感度は、熱中性子から中高速中性子までに至る9桁のエネルギー範囲の中性子に対して感度を持つが、図18で示すように、全エネルギー範囲(0.025eV~15MeV(約9桁))のレスポンスに比べて、一部エネルギー範囲(10eV~数100keV(約4桁))のレスポンスが1/10~1/1000程度まで減少する。この特性は封入気体(BFHe)の中性子反応断面積により決定される。このため、比例計数管単体では、図19の混合ガス検出器の出力についての特性図で示すように、中性子のエネルギーによらない一定の波高を出力するものであり、このままでは感度が良好ではなかった。
 そこで、この10eV~数100keV(約4桁)という一部エネルギー範囲のレスポンスを向上させて中性子線量を得るため、この比例計数管の周りをポリエチレン減速材で取り囲んでいる。ポリエチレン減速材は中高速中性子を弾性散乱により熱中性子に変換するため、比例計数管は、入射された中高速中性子の検出も可能としている。
 さらに、カドミウム(Cd)やボロン(B)などの熱中性子吸収材をポリエチレン減速材の内部に適当に配置することにより、熱中性子検出器の感度を表す感度特性(フルエンス当たりの計数率)である中性子エネルギー-レスポンス特性が、法令に定める中性子フルエンス-周辺線量当量(1cm線量当量)換算係数曲線に近づくようにしている。この中性子フルエンス-周辺線量当量(1cm線量当量)換算係数曲線は、ある中性子エネルギーに対して検出された中性子フルエンスを周辺線量当量(1cm線量当量)へ換算する換算係数を中性子エネルギー別にプロットした曲線であり、例えば図20で示すような太線による曲線である。この図20は、中性子エネルギーに対する検出感度のレスポンス特性曲線およびICRP74 H(10)レスポンス曲線を説明する説明図である。なお、この中性子フルエンス-周辺線量当量(1cm線量当量)換算係数曲線は、この図20では、単位を併せて中性子エネルギー-ICRP74 H(10)レスポンス曲線として図示されている。
 そして、比例計数管とポリエチレン減速材とを組み合わせた熱中性子検出器からの検出信号はこのような中性子フルエンス-周辺線量当量(1cm線量当量)換算係数曲線に基づいて変換することにより、中性子線量計ではフルエンス当たりの計数率を表す検出信号から周辺線量当量(1cm線量当量)を直読できるようにしている。このような熱中性子検出器を用いる中性子線量計は広く市販されており、中性子被ばくの恐れがある様々な環境中で用いられている。また、従来技術のLiI(Eu)シンチレーション検出器を用いる中性子線量計でも同様の原理により熱中性子の検出を行っている。従来技術の中性子線量計100~400はこのようなものである。
 また、他の従来技術として、例えば、本出願人および本発明者による発明に係る特許文献1(日本国特許公開公報特開2007-218657号公報,発明の名称,中性子検出器および中性子線量計)に記載された発明が知られている。
 特許文献1には、窒素ガスと有機化合物ガスとを所定混合比で混合してなる混合ガスを封入した比例計数管を備え、比例計数管の検出感度である中性子エネルギー-レスポンス特性を、放射線障害防止関係法令(放射性同位元素等による放射線障害の防止に関する法律等)に定める中性子フルエンス-周辺線量当量(1cm線量当量)換算係数曲線に近似させた中性子検出器としている。また、この中性子検出器から出力される検出信号を処理して実用量である周辺線量当量を表示する中性子線量計としている。
 さらにまた、他の従来技術として、例えば、特許文献2(日本国特許公開公報特開2006-275602号公報,発明の名称,高エネルギー中性子,光子及びミューオンに対する高感度線量測定方法)に記載された発明が知られている。
 特許文献2には、有機液体シンチレータと、リチウム-6を含有した銀混入硫化亜鉛シート状シンチレータを組み合わせた検出器からの発光を、光電子増倍管で電気信号に変換した後に数本に分岐させ、各支流の電圧を、デジタル波形解析装置を用いて解析することにより検出器に入射した放射線の種類及びその発光量を決定し、各放射線に対応する発光量から線量への変換演算子を用いることにより、リアルタイムかつ高感度で中性子、光子及びミューオン線量を測定する。
日本国特許公開公報特開2007-218657号公報、対応米国特許出願12/034,552号 日本国特許公開公報特開2006-275602号公報
 図17(a)で示した従来技術のBF比例計数管を用いる中性子線量計のポリエチレン104は直径20cmを超える大径であり、中性子線量計100は大型で重いものであった。
 また、図17(b)で示した従来技術のLiI(Eu)シンチレーション検出器を用いる中性子線量計のポリエチレン減速材206は、直径20cm,30cmと大径であり、中性子線量計200も大型で重いものであった。
 また、図17(c),(d)で示した従来技術のHe比例計数管を用いる中性子線量計のポリエチレン材304,404は、いずれも直径20cmを超える大径であり、中性子線量計300,400も大型で重いものであった。
 以上説明したように、従来技術では大きさが約20cmほどのポリエチレン減速材を用いるため、重量が10kgを超え、最も軽いものでも約8kgの重さである。可搬型として持ち歩くための中性子線量計としては、重量が10kg近いというのは非常に使いにくいという問題があった。
 また、従来技術の中性子線量計では、中性子エネルギー-レスポンス特性が、法令に定める中性子フルエンス-周辺線量当量(1cm線量当量)換算係数曲線と近似するようにしているが、実際には必ずしも近似したものではなかった。この点について、先に説明した図20に示すように、熱中性子検出器の感度を表すエネルギー特性(計算値,実験値)は、1eV以下と100keV以上では、中性子エネルギー-ICRP74 H(10)レスポンス曲線(中性子フルエンス-周辺線量当量(1cm線量当量)換算係数曲線)とよく一致しているが、1eVから100keVの間ではかなりの過大評価となっている。このように従来技術では、中性子エネルギー-レスポンス特性は、法令に定める中性子フルエンス-周辺線量当量(1cm線量当量)換算係数曲線と傾向が相違する箇所があり、必ずしも良好に近似したものとはいえないという問題があった。
 また、特許文献1に記載の中性子線量計は、新規な検出原理により、中性子の検出器が、熱中性子や中高速中性子に至る広範囲の中性子エネルギーを検出できるようにするとともに、法令に定める中性子フルエンス-周辺線量当量(1cm線量当量)換算係数曲線によく一致した検出感度を持ち、図17(a),(b),(c),(d)に記載のような既存の中性子検出器の検出感度と比較して、特に1eVから100keVまでの間でよりよい特性をもつようにしている。さらに、この中性子検出器が中高速中性子に対しても検出感度を有するようにして、従来技術のように中高速中性子を減速して熱中性子を生成するための減速材の使用を最小限に抑え、さらに中性子検出器の検出感度が中性子フルエンス-周辺線量当量(1cm線量当量)換算係数曲線によく一致するようにして熱中性子吸収材の使用も最小限に抑えることで軽量化を図っている。
 このように、特許文献1に記載の中性子線量計では、減速材を減容して2kg程度かそれ以下の軽い中性子線量計とした優れたものであるが、更なる軽量化の要望が高かった。そこで減速材をなくして最軽量化を図り、また、検出感度については中性子フルエンス-周辺線量当量(1cm線量当量)換算係数曲線に一致させるため検出信号の信号処理で対処することが考えられるが、特許文献1に記載の中性子線量計では、波高弁別器(ディスクリ回路)により波高を得る際には、回路の電気的ノイズやγ線の信号混入ノイズにより、測定の下限レベルが存在する。減速材がない場合には、図19でも示した特性と同様に、例えば10eV~数100keV(約4桁)という一部エネルギー範囲の検出感度が低下し、この領域では波高弁別器(ディスクリ回路)では検出できない事態も生じるというものであり、特許文献1に記載の中性子線量計では減速材をなしにして有機混合ガスのみとすると一部エネルギー範囲(10eV~数100keV(約4桁))の中性子を精度良く測定することは実用上困難であることが知見された。
 また、特許文献2に記載の有機液体シンチレータと、リチウム-6を含有した銀混入硫化亜鉛シート状シンチレータを組み合わせた検出器では、液体を用いていることからも明らかなように軽量化が困難であった。
 このように中性子線量計の軽量化を実現するため、今までにはない新規な原理が求められていた。特に減速材を使用しないようにすると、検出器の検出感度が、中性子フルエンス-周辺線量当量(1cm線量当量)換算係数曲線(中性子エネルギー-ICRP74 H(10)レスポンス曲線)によく近似させた中性子エネルギー-レスポンス特性を持つ検出感度(以下目標検出感度という)から乖離するため、補償に配慮する必要があった。
 このような本発明の目的は、検出のための減速材を用いないようにして大幅な軽量化を行うと共に、減速材がないことに起因して目標検出感度に対する実際の検出感度が乖離しても信号処理にて補償することで検出性能を維持し、使用者の使い勝手を向上させた中性子線量計を提供することにある。
 上記課題を解決するため、本発明の中性子線量計は、窒素ガスと、有機化合物ガスと、からなり、窒素ガスの混合比αと有機化合物ガスの混合比βとの混合比の総和が1.0であるときに窒素ガスの混合比αが0.05≦α≦0.25で有機化合物ガスの混合比βが1.0-αとなる混合ガスを封入し、中性子の検出に応じてそのエネルギーに応じた波高の検出パルス信号を出力する混合ガス検出器と、混合ガス検出器から出力される検出パルス信号を所定の波高レベルまで増幅するアンプと、アンプから出力される検出パルス信号を検出パルスデータに変換するA/D変換部と、波高レベルL別にG(L)関数データが登録されており、A/D変換部から出力された検出パルスデータをその波高レベルLに対応するG(L)関数データに変換するデータ補正部と、データ補正部から出力されたG(L)関数データの数をそれぞれ波高レベル別にカウントして波高レベル別にカウントデータを生成し、波高レベル別のG(L)関数データとカウントデータとを乗算して波高レベル別の乗算データを生成し、これら波高レベル別の乗算データを全て合算して周辺線量当量(1cm線量当量)データを出力する線量当量演算部と、周辺線量当量(1cm線量当量)データを用いて周辺線量当量(1cm線量当量)を表示する表示部と、を備え、 中性子エネルギーを横軸に、また、周辺線量当量(1cm線量当量)を縦軸としたときの特性の傾向を中性子フルエンス-周辺線量当量(1cm線量当量)換算係数曲線(中性子エネルギー-ICRP74 H(10)レスポンス曲線)に近似させるようなG(L)関数データとする。
 また、本発明の中性子線量計は、有機化合物ガスをメタンガスとし、窒素ガスの混合比をα=0.20と、また、メタンガスの混合比をβ=0.80とすることが好ましい。
 また、本発明の中性子線量計は、前記混合ガス検出器に封入される混合ガスは、その内圧を0.1気圧(0.01MPa)以上25気圧(2.5MPa)以下とすることがより好ましい。
[規則91に基づく訂正 04.08.2009] 
 また、本発明の中性子線量計は、入射する中性子の中性子エネルギー0.025eV~15MeVの全領域のうち中性子エネルギー10eV~400keVについて補正するため、前記データ補正部は、波高レベル400keV以下の検出パルスデータが入力されたときにこれら検出パルスデータを破棄し、波高レベル400keV~15MeVの検出パルスデータが入力されたときに波高レベル別に補正されたG’(L)関数データを出力し、前記線量当量演算部は、波高レベル別に補正されたG’(L)関数データとカウントデータとを乗算して波高400keV~15MeVの乗算データを生成し、これら波高400keV~15MeVの乗算データを全て合算したデータを周辺線量当量(1cm線量当量)データとして出力する。
本発明を実施するための最良の形態の中性子線量計のブロック構成図である。 混合ガス検出器(空洞円柱型)の説明図であり、図2(a)は斜視図、図2(b)は正面図、図2(c)は断面図である。 各部の詳細図であり、図3(a)はデータ補正部の詳細図、図3(b)は線量当量演算部の詳細図である。 混合ガス検出器に入射する100keV以下の中性子エネルギーに対する中性子数を示す特性図である。 100keV以下の中性子エネルギーに対するカウント数を示す特性図である。 混合ガス検出器に入射する100keV以上の中性子エネルギーに対する中性子数を示す特性図である。 100keV以上の中性子エネルギーに対するカウント数を示す特性図である。 中性子エネルギーに対する混合ガス検出器のレスポンスを示す特性図である(実測図)。 有機混合ガスの混合比別の特性を示す特性図である。 中性子源からの距離に対する放射線量率の特性図である。 放射線量率に対する統計的誤差の特性図である。 有機混合ガスの混合比別の特性を示す特性図である。 バックグランド中性子のエネルギースペクトル(宇宙線起因によるもの)を示す特性図である。 高エネルギー加速器(800MeV)から発生する中性子がコンクリート遮蔽体を透過した後(実際に近い場)の中性子エネルギースペクトルを示す図である。 252Cf中性子線源から発生する中性子エネルギースペクトルと遮蔽体が存在する場(実際に近い場)の中性子エネルギースペクトルを示す図である。 出力波高Lに対するG(L)およびG’(L)の特性図である。 従来技術の中性子線量計の説明図であり、図17(a)は従来技術の第1例の内部構造図、図17(b)は従来技術の第2例の内部構造図、図17(c)は従来技術の第3例の内部構造図、図17(d)は従来技術の第4例の内部構造図である。 中性子のエネルギーに対する比例計数管のレスポンスを示す特性図である。 中性子エネルギーに対する比例計数管のレスポンスを示す特性図である。 中性子エネルギーに対する検出感度のレスポンス曲線およびH(10)レスポンス曲線を説明する説明図である。
 続いて、本発明を実施するための最良の形態について、図を参照しつつ説明する。まず、中性子線量計1の回路構成について説明する。図1は本形態の中性子線量計のブロック構成図である。図2は混合ガス検出器(空洞円柱型)の説明図であり、図2(a)は斜視図、図2(b)は正面図、図2(c)は断面図である。図3は各部の詳細図であり、図3(a)はデータ補正部の詳細図、図3(b)は線量当量演算部の詳細図である。
 中性子線量計1は、図1のブロック構成図に示すように、混合ガス検出器10、処理回路部20、表示部30を備える。
 混合ガス検出器10は、詳しくは図2で示すように、検出器本体11、封入空間12を備える。
 処理回路部20は、さらに詳しくは図1で示すように、高圧電源21、プリアンプ22、波形成形アンプ23、A/D変換部24、データ補正部25、線量当量演算部26を備える。データ補正部25は、さらに詳しくは図3(a)で示すように、CPU251、G(L)関数記憶部252を備えている。また、線量当量演算部26は、さらに詳しくは図3(b)で示すように、CPU261、記憶部262を備えている。
 表示部30は、さらに詳しくは図1で示すように、表示用ドライバ31、表示器32を備える。
 本形態の中性子線量計1は、特に混合ガス検出器10が、(1)入射中性子のエネルギーの判別を行い、また、中性子のエネルギーの判別精度が高くない一部範囲に対処するため処理回路部20が、(2)G(L)関数による中性子線量計の補正を行って全範囲で入射中性子のエネルギーの判別を行うと同時に、(3)G(L)関数による中性子線量計補正の精度の向上を行って検出精度を高めた点で改良されている。
 中性子線量計1は、これら改良が相乗的に相俟って減速材がなくても検出性能の維持を実現している。
 続いて各部について説明する。まず、混合ガス検出器10について図2を参照しつつ説明する。なお、本形態の混合ガス検出器10は、空洞円柱型であるものとして説明しているが、例えば球型の混合ガス検出器10とし、球形の封入空間を有するような構成を採用しても良い。
 この混合ガス検出器10は、図2で示すように、両側が円板で塞がれた空洞円柱状に形成された検出器本体11の中に封入空間12が形成されている。この封入空間12内には後述する混合ガスが封入される。検出器本体11の材質はSUS304であり、壁面および両端の厚さを0.3mmとしている。0.3mmの厚さで5気圧(60℃)に耐圧を持つ。これは材料強度限度の約25%である。なお、材料の加工精度又は衝撃等で0.1mm薄くなっても材料強度限度の約35%であり破裂等の危険性はない。また、後述するが封入する混合ガスを25気圧とする場合には厚さを0.8mmとして充分な強度を確保する。そして、検出器本体11の両側の円板には封入空間12を挟むように電極が形成されており、これら電極により封入空間12内の混合ガスに高い電界を印加する。
 本形態では、混合ガス検出器10に封止される混合ガスとして、窒素ガスと、有機化合物ガス(メタン、エタン、プロパン)と、が所定混合比で混合され、封入されている。有機化合物ガスは、メタン、エタン、または、プロパンの何れかを封入したものである。または、メタン、エタン、または、プロパンの何れか二種を組み合わせて封入したものである。またはメタン、エタン、および、プロパンを全て封入したものである。
 このような混合ガスが封止された混合ガス検出器10に中性子が入射すると、以下のような検出がなされる。
 約100keVを下回る低エネルギー中性子は、主に窒素ガス分子との衝突でN(n,p)核反応により陽子pという荷電粒子を生成する。
 約100keVから約10MeVまでの中エネルギー中性子は、主に有機化合物ガス(メタン、エタン、プロパン、およびこれらの混合ガス)分子との衝突でH(n,n)p弾性散乱が起こって反跳陽子pという荷電粒子を生成する。
 約10MeVを上回る高エネルギー中性子の場合は有機化合物ガス分子との衝突でのH(n,n)p弾性散乱による反跳陽子pに加えてC(n,p),C(n,α),N(n,α)などの核反応が起こって、陽子pやα粒子という荷電粒子を生成する。
 なお、低エネルギー中性子、中エネルギー中性子および高エネルギー中性子は本明細書中における便宜上の分類である。
 まとめると、窒素ガスは、低エネルギー中性子(約100keV以下)との反応により中性子を検出する。つまり、低エネルギー中性子の検出は窒素ガスの量に依存する。
 有機化合物ガス(メタン、エタン、プロパン)は、中エネルギー中性子(約100keV~10MeV)および高エネルギー中性子(約10MeV以上)との反応により中性子を検出する。つまり中・高エネルギー中性子の検出は有機化合物ガス(メタン、エタン、プロパン)の量に依存する。
 これらの生成された荷電粒子が混合ガス検出器中で電離作用によりイオン対を作り、それがガス増幅されることによって、電流パルスとして出力される。
 続いてこのような混合ガス検出器10による中性子の入射に対する出力の関係について図を参照しつつ説明する。まず、混合ガス検出器に約100keVを下回る低エネルギー中性子が入射されたときについて図を参照しつつ検討する。図4は混合ガス検出器に入射する100keV以下の中性子エネルギーに対する中性子数を示す特性図、図5は100keV以下の中性子エネルギーに対するカウント数を示す特性図である。
 本発明の混合ガス検出器に図4に示すような約100keVを下回る低エネルギー中性子が入射されたとき、主に窒素ガスとの核反応で生成する荷電粒子により検出するようにしたため、図5に示すような特性の検出信号が出力される。これは図4に示す入射する中性子数が増減すると図5に斜線で示すピークカウントが増減する。また、約100keVを下回る低エネルギー中性子による検出感度は窒素ガスの量により調整できることとなる。しかしながら、この約100keVを下回る低エネルギー中性子(a,b,c,d)は検出信号の出力ではa,b,c,dの中性子エネルギーはともに、0.7MeVまたは0.8MeVという同じチャネルに出現するため、入射中性子のエネルギー情報はない。なお、検出信号はアンプ22・波形整形アンプ23を経て、この図5で示すように、波高レベルL(横軸)が0.1MeV~20MeVにわたる検出パルス信号となっている。
 続いて、混合ガス検出器に約100keVを上回る中・高エネルギー中性子が入射されたときについて図を参照しつつ検討する。図6は混合ガス検出器に入射する100keV以上の中性子エネルギーに対する中性子数を示す特性図、図7は100keV以上の中性子エネルギーに対するカウント数を示す特性図である。図8は中性子のエネルギーに対する混合ガス検出器10のレスポンスを示す特性図(実測図)である。
 本発明の混合ガス検出器に図6に示すような約100keVを上回る中・高エネルギー中性子が入射されたとき、主に有機化合物ガス(メタン、エタン、プロパン)とのH(n,n)p弾性散乱や核反応で生成する荷電粒子により検出するようにしたため、図7に示すような特性の検出信号が出力される。これは図6に示す入射する中性子数が増減すると図7に示すカウントが増減する。また、約100keVを上回る中・高エネルギーによる検出感度は有機化合物ガス(メタン、エタン、プロパン)の量により調整できることとなる。さらに、図7でも明らかなように、入射する中性子エネルギー(A,B,C)が異なれば検出信号の出力も異なっており入射中性子(A,B,C)についてのエネルギー情報を取得することができる。なお、検出信号はアンプ22・波形整形アンプ23を経て、この図7で示すように、波高レベルL(横軸)が0.1MeV~20MeVにわたる検出パルス信号となっている。
 例えば、図8において、入射中性子のエネルギーが550keV、1MeV、2MeVと変化するにつれてカウント数がそれぞれ550keV、1MeV、2MeVについて得られることが実験等で確認されており、換言すれば、混合ガス検出器10から出力される検出信号では、中エネルギー中性子(約100keV~10MeV)が入射したときにエネルギーの波高の情報が含まれていることが見てとれる。また、図示しないが、高エネルギー中性子(約10MeV以上)が入射したときもエネルギーの波高の情報も含まれることが確認されている。このように、中・高エネルギー中性子の検出は有機化合物ガス(メタン、エタン、プロパン)により達成される。
 続いて混合ガスにおける混合比の最適化について説明する。窒素ガスと有機化合物ガスとの混合比・封入気圧を適切に選ぶことによって、この比例計数管の中性子エネルギーに対する検出感度(フルエンス当たりの計数率)を表す中性子エネルギー-レスポンス特性を、中性子フルエンス-周辺線量当量(1cm線量当量)換算係数曲線(中性子エネルギー-ICRP74 H(10)レスポンス曲線)に近づけることができる。
 まず、一般化した混合比であるが、本発明者による研究の結果、窒素ガスと有機化合物ガスとの混合比の総和をα+β=1.0としたとき、好ましくは窒素ガスの混合比αが0.05≦α≦0.5であり、有機化合物ガスの混合比βが1.0-αであるようにすることで、0.025eV~10eV、400keV~15MeVの約5桁のエネルギー範囲において、検出感度である中性子エネルギー-レスポンス特性を中性子フルエンス-周辺線量当量(1cm線量当量)換算係数曲線(中性子エネルギー-ICRP74 H(10)レスポンス曲線)へ近づけることが可能であると知見された。
 なお、混合比が範囲を持つのは比例計数管の形状や有機化合物ガスの選択など各種設計事項により最適値が異なり、混合比を完全に特定できないためである。
 ここで有機化合物ガスがメタン、エタン、または、プロパンの何れか二以上を組み合わせて封入した場合には、さらにこれらの混合比も調整される。例えば、水素原子が少ないメタン(CH)よりも水素原子が多いエタン(C)やプロパン(C)を封入した方がH(n,n)p弾性散乱が起こり易いと予想され、反跳陽子pによる荷電粒子が増えて、検出感度を増加させる調整ができると推定される。メタン、エタン、または、プロパンの混合比も調整に利用できる。このような範囲を満たすようにすれば、従来技術よりも良好な検出感度である中性子エネルギー-レスポンス特性を得ることができる。
 続いて混合ガスの具体的な混合比について説明する。この混合比の最適化では、有機化合物ガスを特定する必要があるが、各種実験の結果に鑑みて、メタンガスを選択するものとして説明する。以下、有機化合物ガスはメタンガスであるものとして説明する。
 熱中性子のエネルギー特性(感度)をICRP Pub.74勧告の中性子周辺線量当量換算定数にあわせるため、有機混合ガスの成分はメタンガス75~95%、窒素ガス5~25%である必要が、さらに好ましくはメタンガス約80%、窒素ガス約20%である必要がある。この点について図を参照しつつ説明する。図9は有機混合ガスの混合比別の特性を示す特性図である。
 メタンガスの成分が95%以上になると、窒素ガスが5%以下になるため、熱中性子(0.025eV)を50%以下まで過小評価してしまう。これは特性図上における点◇から始まる特性(シミュレーション)からも明らかなように、全体的にICRP Pub.74勧告の中性子周辺線量当量換算定数から下側へ大幅に外れており、適当ではない。
 メタンガスの成分が75%以下になると、窒素ガスが25%以上になるため、熱中性子を2倍以上に過大評価してしまう。これは特性図上における点△が、ICRP Pub.74勧告の中性子周辺線量当量換算定数から上側に大幅に外れている点からも明らかである。
 そして、メタンガスの成分が80%で窒素ガスが20%になると、これは特性図上における点×やシミュレーション特性が、0.025eV~10eV、400keV~15MeVの約5桁のエネルギー範囲において、検出感度である中性子エネルギー-レスポンス特性を中性子フルエンス-周辺線量当量(1cm線量当量)換算係数曲線(中性子エネルギー-ICRP74 H(10)レスポンス曲線)へ近づけることが可能であると知見された。また、特性図上における点◆のように試作器による実測値でも同様の効果があることが確認された。
 続いて混合ガス検出器の封入空間12内の混合ガスによる内圧について図を参照しつつ説明する。図10は中性子源からの距離に対する放射線量率の特性図、図11は放射線量率に対する統計的誤差の特性図である。高速中性子(252Cfに対する感度)を中性子源とする放射線量率および環境中の中性子の放射線量率は図10に示すようになる。ここに高速中性子(252Cfに対する感度)として、BSS免除レベル(10kBq)の中性子線源からの中性子(10nSv/h~1μSv/h)、BSS免除レベル(10kBq)を超える中性子線源からの中性子(1μSv/h~10mSv/h)を用いている。
 これらのような高速中性子(252Cfに対する感度)の中性子感度をICRP Pub.74の中性子周辺線量当量換算定数にあわせるため、検出した中性子の計数値の統計的な誤差(±2σ)を20%以下にすることを目標とする。
 検出した中性子の計数値の統計的な誤差(±2σ)を20%以下にするために必要な混合ガスの圧力は、図11に示すように、主に環境中の中性子(5nSv/h~10nSv/h)を測定する場合は特性図上における点×が20%以下となることから最適な内圧は25気圧以上とする必要がある。また、主にBSS免除レベル(10kBq)の中性子線源からの中性子(10nSv/h~1μSv/h)を測定する場合は特性図上における点×、点△、点■が20%以下となることから1気圧以上とする必要がある。また、BSS免除レベル(10kBq)を超える中性子線源からの中性子(1μSv/h~10mSv/h)を測定する場合は特性図上における点×、点△、点■、点○、点◇が20%以下となることから0.1気圧以上とする必要がある。これら条件を考慮して、混合ガス検出器の封入空間12内の混合ガスによる内圧は0.1気圧(0.01MPa)以上、25気圧(2.5MPa)以下とすれば良い。特に25気圧(2.5MPa)ならば全て検出した中性子の計数値の統計的な誤差(±2σ)を20%以下にすることが可能となる。
 上記ガス条件を実現することで、混合ガス検出器の出力特性は、例えば、図12の有機混合ガスの混合比別の特性を表す特性図で示すようになる。このように混合ガス検出器に入射する中性子エネルギーが、0.025eV~10eV、400keV~15MeVの約5桁のエネルギー範囲についての検出感度は、中性子エネルギー-レスポンス特性を中性子フルエンス-周辺線量当量(1cm線量当量)換算係数曲線(中性子エネルギー-ICRP74 H(10)レスポンス曲線)に近いことがわかる。
 また、10eV~400keVについても、10eV~約100keV以下で窒素ガスの反応であるためエネルギー情報がないが、約100keV以上では有機ガスが反応して、検出信号が有効な情報を含むため、後述するデータ補正部25や線量当量演算部26での補正(後述するG(L)関数やG’(L)関数による補正)によりこの10eV~400keVについても情報を得ることが可能な点が知見された。その結果、全エネルギー範囲(0.025eV~15MeV)で中性子感度を高めることができる。
 これは従来技術のBF比例計数管、He比例計数管、または、LiI(Eu)シンチレーション検出器では中性子反応断面積に依存するものであるため一部エネルギー範囲(10eV~数100keV)では著しく中性子感度が低くなってこの範囲についての情報が得るのが困難であることと比べると、優れている。
 混合ガス検出器10はこのようなものである。
 続いて処理回路部20について説明する。
 高圧電源21は、混合ガス検出器10の一対の電極に対して1000V~4000Vの高電圧を供給する。混合ガス検出器10の電極から取り出された電流出力による検出パルス信号が出力される。この検出パルス信号は、プリアンプ22へ入力される。
 プリアンプ22は、検出パルス信号を波形成形アンプ23で利用できる波高とするまで増幅する。
 波形成形アンプ23は、検出パルス信号をA/D変換部24でA/D変換できる波高の波形となるように増幅した検出パルス信号を出力する。これらプリアンプ22および波形成形アンプ23は本発明のアンプを構成するものである。
 A/D変換部24は、波形成形アンプ23から出力される検出パルス信号を検出パルスデータに変換する。この検出パルスデータは中性子エネルギーに比例する波高のパルスデータとなる。これは、いわば中性子のエネルギー情報であるパルスデータの波高分析を行うものである。先ほど説明したように、検出パルス信号は波高レベルLが0.1MeV~20MeVにわたる信号であるため、A/D変換された検出パルスデータは波高レベルLが0.1MeV~20MeVにわたるデータである。
 データ補正部25は、検出パルスデータを変換して後述するG(L)関数データに変換する。具体的には以下のように行う。
 CPU251は、入力された検出パルスデータに対してその検出パルスデータの波高レベル別に所定の範囲レベル(下側の波高レベルから上側の波高レベルまで)に弁別する手段として機能する。検出パルスデータも波高レベルLが0.1MeV~20MeVにわたるため、波高レベルLが0.1MeV~20MeVにわたって複数レベルに分割される。例えば、第1波高レベル、第2波高レベル、・・・、第n波高レベルというn段の波高レベルに弁別する。一例であるが、第1~第6波高レベルとし、中性子エネルギー(MeV)の範囲レベルが0.1~0.5、0.5~1.0、1.0~2.0、2.0~5.0、5.0~10.0、10.0 ~20.0という範囲の波高レベルで弁別する。なお、この例は説明の簡易化のため、6レベルというように大まかに分けているが、実際は例えば100レベル程度に分類したものである。
 このCPU251の弁別により所定レベル以下の不要成分(ノイズ信号とγ線による信号)を取り除いて、中性子による所望の検出信号だけを取り出すことができる。波高レベル別に分別された複数の検出信号が出力される。
 CPU251は波高レベルL別に分けられた検出パルスデータに対応するG(L)関数データを選択してG(L)関数記憶部252から読み出す手段として機能し、さらにこのG(L)関数データを線量当量演算部26へ出力する手段として機能する。これは1パルス当たりの線量への重みを変化させる補正を行っている。なおこの重み変化の詳細については後述する。
 線量当量演算部26のCPU261は、入力されたG(L)関数データに対して所定の範囲の波高レベル(下側の波高レベルから上側の波高レベルまで)に弁別する手段として機能する。例えば、第1波高レベル、第2波高レベル、・・・、第n波高レベルというn段のレベルに弁別する。一例であるが、第1~第6波高レベルとし、中性子エネルギー(MeV)の波高レベルがG(L)、G(L)、G(L)、G(L)、G(L)、G(L)という波高レベルで弁別する。なお、この例は説明の簡易化のため、6レベルというように大まかに分けているが、実際は例えば100レベル程度に分類したものである。
 線量当量演算部26のCPU261は、波高レベル別に分けられたG(L)関数データの数をそれぞれ波高レベル別にカウントして波高レベル別のカウントデータを生成する。波高レベル別のカウントデータn(L)、n(L)、n(L)、n(L)、n(L)、n(L)のうち対応する波高レベルのカウントデータを+1増加させ、記憶部262に記憶する。このカウントデータは、ある範囲の波高レベルL(エネルギー値E)における単位時間当たりの計数値(すなわち計数率)を示している。このような処理はデータ補正部25からG(L)関数データが入力される都度行われる。なお、この例は説明の簡易化のため、6レベルというように大まかに分けているが、実際は例えば100レベル程度に分類したものである。
 線量当量演算部26のCPU261は、所定期間毎にカウントデータn(L)、n(L)、n(L)、n(L)、n(L)、n(L)に対してG(L)、G(L)、G(L)、G(L)、G(L)、G(L)をそれぞれ乗算して波高レベル別の乗算データを生成し、これら波高レベル別の乗算データを全て合算して加算した値である周辺線量当量(1cm線量当量)を出力する手段として機能する。aを比例定数とすると次式の式1のように表される。
Figure JPOXMLDOC01-appb-M000001
  ・・・式1
 このようなG(L)関数による補正がない場合は、カウント値によるレスポンスは、図12で示すように、中性子検出器10の本来の感度曲線である中性子エネルギー-レスポンス特性に追従するものとなる。しかしながら、先に説明したようにG(L)関数データの重み付けを施すことにより、検出感度として、中性子エネルギーを横軸に、また、周辺線量当量(1cm線量当量)を縦軸としたときの特性の傾向を中性子フルエンス-周辺線量当量(1cm線量当量)換算係数曲線(中性子エネルギー-ICRP74 H(10)レスポンス曲線)に近似させており、検出感度を高めている。
 なお、式1では上記した波高レベルの範囲を細かく分割する(nの数を増やす)ことで、範囲レベルを狭くするとともに、周辺線量当量(1cm線量当量)によるレスポンスは、中性子フルエンス-周辺線量当量(1cm線量当量)換算係数曲線(中性子エネルギー-ICRP74 H(10)レスポンス曲線)にさらに一層追従するようになる。このように波高レベルの範囲を細かく分割する、つまり式1の加算数nの値を増やすことでさらなる高精度化も可能となる。
 表示部30の表示用ドライバ31は、 線量当量演算部26からの周辺線量当量(1cm線量当量)データを入力して表示器32を制御する。
 表示部30の表示器32は、表示用ドライバ31からの制御に応じて周辺線量当量(1cm線量当量)を直読可能に表示する。以上説明した構成は、可搬型のケース内に収納される。このような中性子線量計1は周辺線量当量(1cm線量当量)を精度よく直読できるように表示器32に表示するようにした。
 続いてG(L)関数について説明する。
 混合ガス検出器は、図12の有機混合ガスの混合比別の特性を示す特性図で示すように、混合ガス検出器へ入射する中性子エネルギーが0.025eV~10eV、400keV~15MeVの約5桁のエネルギー範囲が精度良く測定可能となっているが、10eV~400keVでは感度が十分ではなく検出精度が低い。そこで、G(L)関数による補正を行って、精度が不十分な10eV~400keVのエネルギー領域の中性子線量を補正するものである。
 入射する中性子エネルギーが10eV~400keVという精度が不十分なエネルギー領域において、G(L)関数による補正の精度を向上させるために、次のような工夫を行った。
 まず補正原理について下記に記す。中性子エネルギースペクトルはほとんどの場合、1MeV以下の領域はスペクトルの形状が同じ(1/Eスペクトル)であることが知られている。この点について図を参照しつつ説明する。図13はバックグランド中性子のエネルギースペクトル(宇宙線起因によるもの)を示す図、図14は高エネルギー加速器(800MeV)から発生する中性子がコンクリート遮蔽体を透過した後(実際に近い場)の中性子エネルギースペクトルを示す図である。図15は、252Cf中性子線源から発生する中性子エネルギースペクトルと遮蔽体が存在する場(実際に近い場)の中性子エネルギースペクトルを示す図である。
 図13で示すように1MeV以下の領域はスペクトルの形状が同じ(1/Eスペクトル)である。また、図14,図15で示すように10eV~400keVは、1MeV以上の中性子数に比例して、一定である。これは1/Eスペクトルであることを示している。これは1MeV以下の中性子については、そのほとんどが1MeV以上の中性子が物質との相互作用により減速されたものだからである。つまり、1MeV以上の中性子数の変化が、1MeV以下の中性子数の変化に起因しており、その数は比例関係にあるということができる。このことから、10eV~400keVの中性子数は、1MeV以上の中性子数から補正が可能である。
 そこで、本発明では、1MeV~2MeVの情報からG(L)関数を用いて、問題となっている10eV~400keVの中性子線量当量を補正する。
 中性子線量をH、h(E)はICRP74勧告による中性子周辺線量当量換算定数[pSvcm2]として、一般的に式2と表すことができる。ここに0.025eV~15MeVは混合ガス検出器へ入射する中性子エネルギーを表している。
Figure JPOXMLDOC01-appb-M000002
  ・・・式2
 この式2を0.025eVから15MeVまで積分することになるが、これは次式の式3のように分解ができる。
Figure JPOXMLDOC01-appb-M000003
  ・・・式3
 式3の第1項と第3項は混合ガス検出器10により高い精度で検出可能であり、また、第2項については入射する中性子エネルギーが10eV~400keVのうち100keV~400keVの波高レベルの範囲では精度の高い検出が可能であるが、10eV~100keVの波高レベルの範囲では低い精度しか検出できないため、このままでは検出精度が低いものとなる。そこで、他の情報を用いて補正するものである。
 しかしながら、上記のΦ(E)は直接求めることができないので、式2の変換を行う。ここに有機混合ガスからの波高値をL、中性子による波高分布をP(L)、検出器の中性子レスポンスをR(E,L)、波高値に対応するG(E)関数をG(L)(←波高にエネルギー情報があるために可能)とすると次式の式4,式5のようになる。
Figure JPOXMLDOC01-appb-M000004
  ・・・式4
Figure JPOXMLDOC01-appb-M000005
  ・・・式5
 上記の式4を式2に代入すると次式の式6のようになる。
Figure JPOXMLDOC01-appb-M000006
  ・・・式6
 さらに上記の式5を式6に代入すると次式の式7のようになる。
Figure JPOXMLDOC01-appb-M000007
  ・・・式7
 これにより問題となっている式3の第1項,第2項,第3項のエネルギー範囲では次式の式8乃至式10のように表すことができる。まず第1項について見ると次式の式8のようになる。
Figure JPOXMLDOC01-appb-M000008
 ・・・式8
 これは窒素N(n,p)の反応によるpが626keV(約700keV)の出力を持つことを利用する。次に第2項について見ると次式の式9のようになる。
Figure JPOXMLDOC01-appb-M000009
 ・・・式9
 この10eV~400keVの領域は前述の線形性の説明により1MeV~2MeVの波高Lを利用して補正することが可能である。次に第3項について見ると次式の式10のようになる。
Figure JPOXMLDOC01-appb-M000010
 ・・・式10
 メタンが有する水素の弾性散乱による出力エネルギーには入射中性子エネルギーの情報があるため計算可能である。これら式8,式9,式10を式3に代入すると次式の式11のようになる。
Figure JPOXMLDOC01-appb-M000011
 ・・・式11
 この式11は以下の式12のように変形される。
[規則91に基づく訂正 04.08.2009] 
Figure JPOXMLDOC01-appb-M000012
 ・・・式12
 したがって、式12により、有機混合ガスを利用した信号の出力を用いて、問題となっていた10eV~400keVの特性を改善した中性子線量を得ることが可能となる。そして、このような事情を考慮に入れた出力波高Lに対するG(L)およびG’(L)の特性図が、図16に表される。G(L)は修正前、G’(L)は修正後を表している。このような特性を波高レベルでn分割して、上記した修正前のG(L)、G(L)、G(L)、・・・、G(L)に代えて、新たに修正後のG’(L)、G’(L)、G’(L)、・・・、G’(L)をG(L)関数記憶部252に登録しておけば、最終的な出力値は、熱エネルギー中性子から10MeVを越える高エネルギー中性子まで、そのエネルギー特性を1cm線量当量換算係数と良く一致させることができる。
 このように入射する中性子の中性子エネルギー0.025eV~15MeVの全領域のうち中性子エネルギー10eV~400keVについて補正するため、混合ガス検出器10からの0.1MeV~20MeVの全領域のうち補正する場合のデータ補正部25,線量当量演算部26は以下のように機能する。
 データ補正部25のCPU251は、波高400keV以下の検出パルスデータが入力されたときにこれら検出パルスデータを破棄し、また、波高400keV~15MeVの検出パルスデータが入力されたときに波高レベル別に補正されたG’(L)関数データをG(L)関数記憶部252から読み出してこのG’(L)関数データを線量当量演算部26へ出力する。
[規則91に基づく訂正 04.08.2009] 
 前記線量当量演算部26のCPU261は、波高レベル別に補正されたG’(L)関数データとカウントデータとを乗算して波高400keV~15MeVの乗算データを生成し、これら波高400keV~15MeVの乗算データを全て合算したデータを周辺線量当量(1cm線量当量)データとして出力する。このようにして補正を行う。このような本発明の中性子線量計によれば、周辺線量当量(1cm線量当量)を精度よく直読できるものとなる。
 なお、補正を行わず混合ガス検出器10からの0.1MeV~20MeVの全領域に対して、上記式7に基づいてG(L)を用いる構成を採用しても良いが検出精度が低下することを考えれば上記式12のような補正を行うことが好ましい。
 以上本発明の中性子線量計について説明した。まず、混合ガスを封入した混合ガス検出器は、先に説明したように広い範囲の波高レベルの中性子エネルギーに対して情報を持つように検出するようにしたため、情報に基づいて補正を可能にして検出精度を確保している。
 そして、検出器本体11以外の検出媒体は気体のみであるとともに熱中性子吸収材を不要としたため、従来の中性子線量計よりも大幅に軽くして、持ち運びが非常に楽な点で可搬型の中性子線量計に最適である。なお、軽量化されているが可搬型に限定するものではなく定置式の中性子線量計として用いても良いことはいうまでもない。このような中性子線量計は、これまでに存在しなかった新しいタイプの中性子線量計であると言える。
 以上説明したような本発明による中性子線量計によれば、軽量化を実現する。最近中性子を発生する施設が加速器施設を中心に急速に増え、また、近年半導体素子の宇宙線中性子によるソフトエラーの発生が半導体産業を中心に大きな問題となっている現状から、軽量型の中性子線量計への要望が高く、本発明による中性子線量計は大きな効果を期待することができる。
 また、従来技術のように波高弁別器(ディスクリ回路)を用いた回路により波高を得る際には、回路の電気的ノイズやγ線の信号混入ノイズにより、測定の下限レベルが存在し、特許文献1のようなディスクリ回路では対処できず、ディスクリレベルをある値以下に下げられないことが、有機混合ガスを用いて数100keV以下の中性子を精度良く測定することを非常に困難にしていたが、本形態ではこのような問題を解消して検出性能を維持しつつ軽量化も実現し、その結果使い勝手を大幅に向上させた。
 また、G(E)関数によるこのような補正方法は固体検出器を利用したγ線計測で利用されているが、ガス検出器を用いた中性子検出器に対する適用は例が無い。
 以上のような本発明によれば、検出のための減速材を用いないようにして大幅な軽量化を行うと共に、減速材がないことに起因して目標検出感度に対する実際の検出感度が乖離しても信号処理にて補償することで検出性能を維持し、使用者の使い勝手を向上させた中性子線量計を提供することができる。

Claims (4)

  1.  窒素ガスと、有機化合物ガスと、からなり、窒素ガスの混合比αと有機化合物ガスの混合比βとの混合比の総和が1.0であるときに窒素ガスの混合比αが0.05≦α≦0.25で有機化合物ガスの混合比βが1.0-αとなる混合ガスを封入し、中性子の検出に応じてそのエネルギーに応じた波高の検出パルス信号を出力する混合ガス検出器と、
     混合ガス検出器から出力される検出パルス信号を所定の波高レベルまで増幅するアンプと、
     アンプから出力される検出パルス信号を検出パルスデータに変換するA/D変換部と、
     波高レベルL別にG(L)関数データが登録されており、A/D変換部から出力された検出パルスデータをその波高レベルLに対応するG(L)関数データに変換するデータ補正部と、
     データ補正部から出力されたG(L)関数データの数をそれぞれ波高レベル別にカウントして波高レベル別にカウントデータを生成し、波高レベル別のG(L)関数データとカウントデータとを乗算して波高レベル別の乗算データを生成し、これら波高レベル別の乗算データを全て合算して周辺線量当量(1cm線量当量)データを出力する線量当量演算部と、
     周辺線量当量(1cm線量当量)データを用いて周辺線量当量(1cm線量当量)を表示する表示部と、
     を備え、
     中性子エネルギーを横軸に、また、周辺線量当量(1cm線量当量)を縦軸としたときの特性の傾向を中性子フルエンス-周辺線量当量(1cm線量当量)換算係数曲線(中性子エネルギー-ICRP74 H(10)レスポンス曲線)に近似させるようなG(L)関数データとすることを特徴とする中性子線量計。
  2.  請求項1に記載の中性子線量計において、
     有機化合物ガスをメタンガスとし、
     窒素ガスの混合比をα=0.20と、また、メタンガスの混合比をβ=0.80とすることを特徴とする中性子線量計。
  3.  請求項2記載の中性子線量計において、
     前記混合ガス検出器に封入される混合ガスは、その内圧を0.1気圧(0.01MPa)以上25気圧(2.5MPa)以下とすることを特徴とする中性子線量計。
  4. [規則91に基づく訂正 04.08.2009] 
     請求項1に記載の中性子線量計において、
     入射する中性子の中性子エネルギー0.025eV~15MeVの全領域のうち中性子エネルギー10eV~400keVについて補正するため、
     前記データ補正部は、
     波高レベル400keV以下の検出パルスデータが入力されたときにこれら検出パルスデータを破棄し、
     波高レベル400keV~15MeVの検出パルスデータが入力されたときに波高レベル別に補正されたG’(L)関数データを出力し、
     前記線量当量演算部は、波高レベル別に補正されたG’(L)関数データとカウントデータとを乗算して波高400keV~15MeVの乗算データを生成し、
     これら波高400keV~15MeVの乗算データを全て合算したデータを周辺線量当量(1cm線量当量)データとして出力することを特徴とする中性子線量計。
PCT/JP2009/000906 2008-06-24 2009-02-27 中性子線量計 WO2009157115A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN200980100274.5A CN101796430B (zh) 2008-06-24 2009-02-27 中子剂量计
US12/674,861 US20110101234A1 (en) 2008-06-24 2009-02-27 Neutron dosimeter
EP09769825A EP2290405A1 (en) 2008-06-24 2009-02-27 Neutron dosimeter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008164588A JP4583480B2 (ja) 2008-06-24 2008-06-24 中性子線量計
JP2008-164588 2008-06-24

Publications (1)

Publication Number Publication Date
WO2009157115A1 true WO2009157115A1 (ja) 2009-12-30

Family

ID=41444188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/000906 WO2009157115A1 (ja) 2008-06-24 2009-02-27 中性子線量計

Country Status (6)

Country Link
US (1) US20110101234A1 (ja)
EP (1) EP2290405A1 (ja)
JP (1) JP4583480B2 (ja)
KR (1) KR20110034576A (ja)
CN (1) CN101796430B (ja)
WO (1) WO2009157115A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11307311B2 (en) 2018-10-23 2022-04-19 Thermo Fisher Scientific Messtechnik Gmbh Gamma ray and neutron dosimeter

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8633455B2 (en) * 2010-01-12 2014-01-21 Landauer, Inc. Optical system for dosimeter reader
EP2857862A3 (en) 2010-04-09 2015-07-29 Landauer, Inc. Power system for dosimeter reader
CN103135126B (zh) * 2011-11-25 2015-01-21 中国原子能科学研究院 结构可变的模块化中子检测装置
TWI472791B (zh) * 2012-10-23 2015-02-11 Nat Univ Tsing Hua 增敏劑與含增敏劑之膠片劑量計及其應用
FR3007848B1 (fr) * 2013-07-01 2017-03-24 Commissariat Energie Atomique Dispositif de detection de neutrons
WO2015019515A1 (ja) 2013-08-08 2015-02-12 三菱電機株式会社 放射線測定装置
KR101662727B1 (ko) 2014-01-02 2016-10-05 한국수력원자력 주식회사 자가 진단 기능을 갖는 bf3 중성자 계측시스템 및 그 방법
US9841508B2 (en) * 2014-08-26 2017-12-12 Mitsubishi Electric Corporation Dose rate measuring device
KR101672488B1 (ko) 2015-04-29 2016-11-04 한밭대학교 산학협력단 고속 고정밀 중성자 측정 시스템
CN105629284B (zh) * 2015-12-28 2018-05-01 广州兰泰胜辐射防护科技有限公司 一种电离辐射剂量获取方法及装置
CN107643537A (zh) * 2016-07-21 2018-01-30 环境保护部核与辐射安全中心 航空辐射监测方法
US20180149762A1 (en) * 2016-11-30 2018-05-31 Landauer, Inc. Fluorescent nuclear track detectors as criticality dosimeters
CN106873019B (zh) * 2017-01-06 2019-04-05 中国科学院高能物理研究所 一种辐射剂量测量方法
CN108535757B (zh) * 2017-03-06 2022-07-29 中国辐射防护研究院 一种可同时测量辐射场中两种定向剂量当量率的探测器
CN109839657B (zh) * 2017-11-28 2022-05-20 中国辐射防护研究院 一种辐射剂量仪能量响应补偿分析的方法
CN108051847B (zh) * 2017-12-05 2019-10-29 清华大学 利用溴化镧探测器测量中子剂量率的方法和中子剂量率仪
KR102059103B1 (ko) * 2018-03-07 2019-12-24 한국과학기술원 인공 신경망을 이용한 섬광체 기반 실시간 선량 측정 장치 및 방법
CN108398707B (zh) * 2018-05-02 2023-09-12 西安艾克斯光电科技有限公司 能量补偿方法及装置
CN113877079A (zh) * 2020-07-03 2022-01-04 中硼(厦门)医疗器械有限公司 中子捕获治疗设备及其监测系统的运行步骤
CN114534117B (zh) * 2020-11-25 2023-09-01 中硼(厦门)医疗器械有限公司 中子捕获治疗设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005257524A (ja) * 2004-03-12 2005-09-22 Japan Nuclear Cycle Development Inst States Of Projects 中性子測定システム
JP2006275602A (ja) 2005-03-28 2006-10-12 Japan Atomic Energy Agency 高エネルギー中性子,光子及びミューオンに対する高感度線量測定方法
JP2007218657A (ja) 2006-02-15 2007-08-30 Fuji Electric Systems Co Ltd 中性子検出器および中性子線量計

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000149864A (ja) * 1998-11-12 2000-05-30 Mitsubishi Electric Corp 3弗化ホウ素ガス比例計数管及びこれを用いた中性子検出器
CN2664003Y (zh) * 2003-09-11 2004-12-15 清华大学 一种用于放射性物质监测的中子探测器
DE102004020979A1 (de) * 2004-04-22 2005-11-17 GSI Gesellschaft für Schwerionenforschung mbH Dosimeter zur Erfassung von Neutronenstrahlung
US20060165209A1 (en) * 2005-01-27 2006-07-27 Cheng Alexander Y Neutron detector assembly with variable length rhodium emitters
CN1948997B (zh) * 2005-10-14 2010-09-08 核工业西南物理研究院 氦冷却固体增殖剂产氚包层的中子通量和能谱测量系统
CN201017035Y (zh) * 2006-04-03 2008-02-06 李建平 一种新型高灵敏度环境中子探测器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005257524A (ja) * 2004-03-12 2005-09-22 Japan Nuclear Cycle Development Inst States Of Projects 中性子測定システム
JP2006275602A (ja) 2005-03-28 2006-10-12 Japan Atomic Energy Agency 高エネルギー中性子,光子及びミューオンに対する高感度線量測定方法
JP2007218657A (ja) 2006-02-15 2007-08-30 Fuji Electric Systems Co Ltd 中性子検出器および中性子線量計

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11307311B2 (en) 2018-10-23 2022-04-19 Thermo Fisher Scientific Messtechnik Gmbh Gamma ray and neutron dosimeter
US11693128B2 (en) 2018-10-23 2023-07-04 Thermo Fisher Scientific Messtechnik Gmbh Gamma ray and neutron dosimeter

Also Published As

Publication number Publication date
JP2010008083A (ja) 2010-01-14
CN101796430A (zh) 2010-08-04
KR20110034576A (ko) 2011-04-05
US20110101234A1 (en) 2011-05-05
JP4583480B2 (ja) 2010-11-17
EP2290405A1 (en) 2011-03-02
CN101796430B (zh) 2013-01-30

Similar Documents

Publication Publication Date Title
JP4583480B2 (ja) 中性子線量計
Thomas et al. Bonner sphere spectrometers—a critical review
Di Fulvio et al. Passive assay of plutonium metal plates using a fast-neutron multiplicity counter
JP4548732B2 (ja) 中性子検出器および中性子線量計
West Energy measurements with proportional counters
Thomas Neutron spectrometry for radiation protection
Olsher et al. PRESCILA: a new, lightweight neutron rem meter
Silari et al. Intercomparison of radiation protection devices in a high-energy stray neutron field. Part III: Instrument response
US4588898A (en) Apparatus for measuring dose energy in stray radiation fields
CN112904403A (zh) 一种宽能谱中子注量在线监测系统
Park et al. Ambient dose equivalent measurement with a CsI (Tl) based electronic personal dosimeter
Richards et al. High count rate pulse shape discrimination algorithms for neutron scattering facilities
Ishikawa et al. Evaluation of the thermal neutron sensitivity, output linearity, and gamma-ray response of optical fiber-based neutron detectors using Li-glass scintillator
Kaburagi et al. Neutron/γ-ray discrimination based on the property and thickness controls of scintillators using Li glass and LiCAF (Ce) in a γ-ray field
Qin et al. A CsI (Tl) hodoscope on CSHINE for Bremsstrahlung γ-rays in heavy ion reactions
CN113126141A (zh) 一种便携式中子及伽马射线剂量测量装置
Luszik-Bhadra et al. A new neutron monitor with silver activation
JP2010276561A (ja) 中性子線量計
Korun Measurement of the total-to-peak ratio of a low-energy germanium gamma-ray detector
Luszik-Bhadra et al. Development of personal neutron dosemeters at the PTB and first measurements in the space station MIR
Horváth et al. Comparison of two liquid scintillators used for neutron detection
Lotfi et al. Detection and dosimetry studies on the response of silicon diodes to an 241Am-Be source
Nakamura et al. Neutron-sensitive ZnS/10B2O3 ceramic scintillator detector as an alternative to a 3He-gas-based detector for a plutonium canister assay system
Nakamura Neutron detector development and measurements around particle accelerators
Wang et al. Development and test of a GEM-based TEPC for neutron protection dosimetry

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980100274.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09769825

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107004101

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 718/KOLNP/2010

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2009769825

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12674861

Country of ref document: US