WO2009157058A1 - Method for designing photomask, equipment for designing photomask, program, recording medium, and method for manufacturing semiconductor device - Google Patents

Method for designing photomask, equipment for designing photomask, program, recording medium, and method for manufacturing semiconductor device Download PDF

Info

Publication number
WO2009157058A1
WO2009157058A1 PCT/JP2008/061463 JP2008061463W WO2009157058A1 WO 2009157058 A1 WO2009157058 A1 WO 2009157058A1 JP 2008061463 W JP2008061463 W JP 2008061463W WO 2009157058 A1 WO2009157058 A1 WO 2009157058A1
Authority
WO
WIPO (PCT)
Prior art keywords
functional block
photomask
information
accuracy information
optical proximity
Prior art date
Application number
PCT/JP2008/061463
Other languages
French (fr)
Japanese (ja)
Inventor
一弥 須川
雅彦 峯村
武敏 小俣
秀二 片瀬
典正 永瀬
Original Assignee
富士通マイクロエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通マイクロエレクトロニクス株式会社 filed Critical 富士通マイクロエレクトロニクス株式会社
Priority to PCT/JP2008/061463 priority Critical patent/WO2009157058A1/en
Publication of WO2009157058A1 publication Critical patent/WO2009157058A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/36Masks having proximity correction features; Preparation thereof, e.g. optical proximity correction [OPC] design processes

Definitions

  • the present invention relates to a photomask design method and program using optical proximity effect correction, and a semiconductor device manufacturing method.
  • the pattern of the adjacent pattern Calculate and calculate the impact and make corrections.
  • This correction is called optical proximity correction (OPC).
  • OPC optical proximity correction
  • the OPC correction process takes into account the exposure conditions (NA, Sigma), exposure conditions (resist material, exposure wavelength), etc., and calculates the correction amount by calculating the effect of the optical proximity effect or by experiment. This is a technique for correcting the pattern dimensions for the design data.
  • photomask data is created by correcting the relationship between its own pattern data and adjacent pattern data based on a condition file including specified intervals, pattern widths, and optical conditions. ing.
  • OPC correction processing since interference of pattern data must be taken into consideration, if the pattern data outside the adjacent area is different even if there is a repeated pattern, the correction processing is performed on each pattern data. ing.
  • Patent Document 1 discloses a method of registering each basic cell that has been subjected to OPC correction processing in advance in the creation stage of mask pattern design data and performing layout design using the basic cell.
  • Japanese Patent Application Laid-Open No. 2004-228561 discloses a method of determining an allowable value of a model fitting residue from a test pattern in an OPC correction process based on a model, and providing an allowable value for fitting while maintaining OPC correction accuracy.
  • a circuit pattern is converted into a DB (library), and when it is determined that the pattern is the same as a pattern registered in the DB, a correction value is obtained from the DB, thereby correcting the OPC based on the model.
  • a technique for minimizing time simulation is disclosed.
  • Patent Document 1 has a problem that the design data size of the photomask becomes enormous.
  • Patent Document 2 there is a problem that an enormous number of test patterns must be prepared.
  • Patent Document 3 has a problem that it is difficult to sufficiently cope with various device patterns in recent years.
  • the OPC processing is performed with the correction accuracy required for each functional block corresponding to a wide variety of device patterns, and the output data size is reduced. It is an object of the present invention to provide a photomask design method and program, and a semiconductor device manufacturing method capable of reducing (optimizing) and realizing a significant reduction in time required for correction processing.
  • the photomask design method of the present case includes a first step of recognizing information of a plurality of functional blocks from photomask data, and first accuracy information of optical proximity effect correction defined in advance for each functional block. A second step for each functional block, and a third step for performing optical proximity effect correction on the functional block based on the first accuracy information.
  • the photomask design device of the present invention is a photomask design device using optical proximity effect correction, and includes a data storage unit that stores data of the photomask, and a plurality of data according to the data read from the data storage unit.
  • a functional block recognizing unit for recognizing information of the functional block, a first accuracy information storing unit for storing first accuracy information of optical proximity effect correction defined in advance for each functional block, and the first accuracy
  • An accuracy information providing unit that provides the first accuracy information read from the information storage unit for each functional block; and a correction unit that performs optical proximity effect correction on the functional block based on the first accuracy information; including.
  • the method of manufacturing a semiconductor device includes a step of designing a photomask using optical proximity effect correction, a step of manufacturing a photomask based on the designed mask pattern data, and a semiconductor device using the photomask.
  • the photomask design program of the present case includes a first step of recognizing information of a plurality of functional blocks from photomask data, and first accuracy information of optical proximity effect correction defined in advance for each functional block, It is a program for causing a computer to execute a second step given to each functional block and a third step of performing optical proximity effect correction on the functional block based on the first accuracy information.
  • the OPC processing is performed with the correction accuracy required for each functional block corresponding to various device patterns, the output data size is reduced (optimized), and the correction processing is performed. A significant reduction in the time required can be realized.
  • FIG. 1 is a block diagram showing a schematic configuration of a photomask designing apparatus according to the first embodiment.
  • FIG. 2 is a flowchart showing the photomask design method according to the first embodiment in the order of steps.
  • FIG. 3 is a flowchart showing a comparative example (prior art) of the first embodiment in the order of steps.
  • FIG. 4 is a schematic diagram showing various types of information recognized by the functional block recognition unit.
  • FIG. 5 is a diagram illustrating an example of the OPC correction map.
  • FIG. 6 is a diagram illustrating an example of functional block rank definition information.
  • FIG. 7 is a diagram illustrating an example of OPC rank information.
  • FIG. 8 is a diagram illustrating an example of a mask set correction map.
  • FIG. 1 is a block diagram showing a schematic configuration of a photomask designing apparatus according to the first embodiment.
  • FIG. 2 is a flowchart showing the photomask design method according to the first embodiment in the order of steps.
  • FIG. 3
  • FIG. 9 is a schematic diagram showing the positional relationship between the photomasks constituting the mask set corresponding to the mask set correction map.
  • FIG. 10 is a schematic diagram illustrating an internal configuration of the personal user terminal device.
  • FIG. 11 is a flowchart showing the MOS transistor manufacturing method according to the third embodiment in the order of steps.
  • FIG. 12 is a schematic cross-sectional view showing a MOS transistor manufactured by the semiconductor device manufacturing method according to the third embodiment.
  • the conventional technique has a problem that various data such as an OPC processing time and an output data size after OPC become enormous.
  • various data such as an OPC processing time and an output data size after OPC become enormous.
  • attention was paid to the OPC correction accuracy, and consideration was given to increasing or decreasing the OPC correction accuracy as necessary.
  • the line width and interval of the mask pattern of the photomask can be considered as targets of the OPC correction accuracy.
  • high-precision OPC is required if the line width or interval is narrow, and OPC does not require much precision if it is relatively wide.
  • the required OPC correction accuracy does not necessarily depend on the line width / interval of the mask pattern. If attention is paid only to the line width / interval of the mask pattern, it becomes difficult to maintain the required OPC correction accuracy due to layout design dependence.
  • information of a plurality of functional blocks is recognized from the mask pattern design data of the photomask, and OPC first accuracy information defined in advance for each functional block is given to each functional block. Then, OPC is performed on the functional block based on the first accuracy information.
  • the functional block includes a plurality of layers (photomasks corresponding to element isolation structures, gates, contact holes, wirings, via holes, etc.) according to the constituent elements.
  • OPC second accuracy information defined in advance for each layer is given for each layer.
  • the OPC correction accuracy is finely defined for each functional block and further for each layer constituting each functional block.
  • each functional block arranged in the design data is recognized.
  • an OPC correction map indicating the recognized functional block area is created by using the connection information of the design data and cell naming rules.
  • the cell naming rule is a cell name rule to prevent child cells (parts) in a functional block from having the same cell name when combining multiple functional blocks on one design data. It is a naming convention to be converted. If this naming convention does not exist, there is a problem that child cells of the functional block are replaced (deformed) when the functional block is synthesized. In this case, this naming convention is expressed as a cell naming rule.
  • second accuracy information OPC rank information
  • first accuracy information function block rank definition
  • mask set correction map that defines the correction accuracy of the OPC process
  • OPC processing is performed while maintaining the connection accuracy of the upper and lower layers while maintaining the necessary minimum accuracy for each functional block for each layer. That is, each functional block and each layer constituting the functional block are ranked based on the required correction accuracy, and OPC accuracy (for example, convergence rate) given in the calculation is assigned to each rank. As a result, the calculation time can be reduced while sufficiently maintaining the correction accuracy required for the OPC process.
  • the OPC correction process is optimized to avoid an unnecessary OPC process, and effects such as shortening the OPC correction process time and reducing the output data size are expected.
  • the functional block correction is optimized between the layers, which is extremely effective for forming a device pattern.
  • FIG. 1 is a block diagram showing a schematic configuration of a photomask designing apparatus according to the first embodiment.
  • FIG. 2 is a flowchart showing the photomask design method according to the first embodiment in the order of steps, and
  • FIG. 3 is a flowchart showing the comparative example (prior art) of the first embodiment in the order of steps.
  • reference numeral 10 denotes a data storage unit for storing various data of the photomask.
  • the data storage unit 10 stores a design data storage unit 11 that stores design data of a mask pattern of a photomask, and connection information (information indicating a connection state such as between wirings and between wirings and vias) in each functional block. It has the connection information storage part 12 to memorize
  • Reference numeral 14 denotes a first accuracy information storage unit that stores first accuracy information (functional block rank definition information) of optical proximity effect correction (OPC) defined in advance for each functional block.
  • Reference numeral 15 denotes a second accuracy information storage unit that stores second accuracy information (OPC rank information) of OPC defined in advance for each layer constituting each functional block.
  • the design data storage unit 11 the connection information storage unit 12, the cell name information storage unit 13, the first accuracy information storage unit 14, and the second accuracy information storage unit 15, respectively, a database, a computer
  • Various recording media such as a RAM, a ROM, a CD-ROM, a flexible disk, a hard disk, a magnetic tape, a magneto-optical disk, and a nonvolatile memory card can be applied.
  • Reference numeral 1 denotes a functional block recognition unit for recognizing information on a plurality of functional blocks based on various data read from the data storage unit 10 (mask pattern design data, connection information, cell naming rules, and the like).
  • Reference numeral 2 denotes a first map creation unit that creates a first map (OPC correction map) representing the area of each functional block based on the information on the functional block recognized by the functional block recognition unit 1.
  • 3 assigns the functional block rank definition information read from the first accuracy information storage unit 14 for each functional block, and assigns the OPC rank information read from the second accuracy information storage unit 15 for each layer. It is the 2nd map creation part which creates 2 maps (mask set correction map).
  • the second map creation unit 3 calculates the OPC convergence rate for each layer of each functional block based on the functional block rank definition information and the OPC rank information, and posts it on the mask set correction map.
  • This convergence rate is defined as the following formula (1).
  • OPC convergence rate (%) ⁇ (a + b) / (A + B) ⁇ ⁇ 100 (1)
  • a coefficient of each functional block (correction accuracy)
  • b coefficient of each layer
  • A maximum value of coefficient of functional block
  • B maximum value of coefficient of layer.
  • Reference numeral 4 denotes a correction unit that performs OPC for each layer of each functional block based on the mask set correction map created by the second map creation unit 3.
  • Reference numeral 16 denotes a photomask data storage unit that stores data of a photomask having a mask pattern subjected to OPC by the correction unit 4.
  • the photomask data storage unit 16 includes various recording media such as databases, computer RAM and ROM, CD-ROM, flexible disk, hard disk, magnetic tape, magneto-optical disk, and nonvolatile memory card. Applicable.
  • the functional block recognition unit 1 receives the design data of the photomask mask pattern from the design data storage unit 11 of the data storage unit 10, the connection information in each functional block from the connection information storage unit 12, and the cell name information storage unit 13.
  • the cell naming rule of each cell constituting each functional block is read out from and the information of each functional block is recognized (step S1).
  • the functional block recognition unit 1 associates the functional block with the cell name based on the design data, the connection information indicating the functional block and the cell name, the cell naming rule, and the like.
  • Each function block is recognized using the information extracted in the form.
  • the first map creation unit 2 creates a first map (OPC correction map) representing the area of each functional block based on the information on the functional block recognized by the functional block recognition unit 1 (step S2). ).
  • An example of the OPC correction map is shown in FIG.
  • the OPC correction map can be created as a recognition area (frame) using different layer numbers for areas of each functional block (here, RAM, ROM, PLL, Analog, I / O), Two-point coordinate notation on the lower left and upper right can also be indicated.
  • the second map creation unit 3 assigns the functional block rank definition information read from the first accuracy information storage unit 14 for each functional block, and also reads the OPC rank read from the second accuracy information storage unit 15. Information is assigned to each layer, and a second map (mask set correction map) is created (step S3). In step S3, the second map creation unit 3 calculates the OPC convergence rate for each layer of each functional block based on the functional block rank definition information and the OPC rank information.
  • the functional block rank definition information is information that defines the correction accuracy of each functional block as a coefficient.
  • the OPC rank information is information that defines the accuracy of each layer with a coefficient. The value of the coefficient in each piece of information is appropriately determined by a designer, a user, or the like.
  • element separation, gate (electrode, wiring), contact hole, wiring-1 (first layer wiring), via hole-1 (first layer via hole), wiring-2 and subsequent Examples of wiring after the second layer) and via holes ⁇ 1 and later (via holes after the second layer) are illustrated.
  • FIG. 9 schematically shows the positional relationship between the photomasks constituting the mask set corresponding to the mask set correction map.
  • photomasks M1 to M4 are determined for each layer, and function blocks A to E (A: RAM, B: ROM, C: PLL, D) are respectively located in the same area (position) in the photomasks M1 to M4. : Analog, E: I / O).
  • the correction unit 4 performs OPC for each layer of each functional block based on the mask set correction map created by the second map creation unit 3 (step S4). Then, photomask data having a mask pattern subjected to OPC by the correction unit 4 is stored in the photomask data storage unit 16 (step S5).
  • the present embodiment it is possible to avoid excessively performing OPC with a convergence rate (including iteration) more than necessary while maintaining OPC correction accuracy in units of functional blocks. Become. Further, by using the connection information of the design data, it is possible to lower the OPC correction rank for cells (dummy etc.) that are not in the connection information. In addition, when functional blocks that require the same accuracy are sparsely and densely divided, it is possible to prevent the OPC correction accuracy of the functional blocks arranged in the sparse part from being deteriorated. By optimizing the OPC correction process by the above method, it is possible to reduce the OPC correction processing time, the output data size, and the like. Further, by incorporating the OPC correction map, the OPC correction processing of the functional block between the layers is optimized, which is extremely effective for device formation.
  • a comparative example of this embodiment is shown in FIG.
  • the OPC correction processing is performed based on the OPC correction processing condition file (interval, pattern width, optical conditions, etc.).
  • the OPC correction processing condition file (interval, pattern width, optical conditions, etc.).
  • step S101 pattern data for creating a photomask is stored (step S102).
  • the OPC correction processing is not provided with a strength, so that the OPC processing time, the output data size after OPC, and the like become enormous.
  • the program is recorded on a recording medium such as a CD-ROM or provided to a computer via various transmission media.
  • a recording medium for recording the program besides a CD-ROM, a flexible disk, a hard disk, a magnetic tape, a magneto-optical disk, a nonvolatile memory card, or the like can be used.
  • the program transmission medium a communication medium in a computer network system for propagating and supplying program information as a carrier wave can be used.
  • the computer network is a WAN such as a LAN or the Internet, a wireless communication network, or the like
  • the communication medium is a wired line such as an optical fiber or a wireless line.
  • the program included in the present invention is not limited to the one in which the functions of the above-described embodiments are realized by the computer executing the supplied program.
  • a program is also included in the present invention when the function of the above-described embodiment is realized in cooperation with an OS (operating system) or other application software running on the computer.
  • OS operating system
  • the program is also included in the present invention.
  • FIG. 10 is a schematic diagram showing an internal configuration of a personal user terminal device.
  • reference numeral 1200 denotes a personal computer (PC) having a CPU 1201.
  • the PC 1200 executes device control software stored in the ROM 1202 or the hard disk (HD) 1211 or supplied from the flexible disk drive (FD) 1212.
  • the PC 1200 generally controls each device connected to the system bus 1204.
  • the program stored in the CPU 1201, the ROM 1202, or the hard disk (HD) 1211 of the PC 1200 implements the procedures of steps S1 to S5 in FIG.
  • a keyboard controller (KBC) 1205 controls instruction input from a keyboard (KB) 1209, a device (not shown), or the like.
  • CRT controller 1206 is a CRT controller (CRTC), which controls display on a CRT display (CRT) 1210.
  • Reference numeral 1207 denotes a disk controller (DKC).
  • the DKC 1207 controls access to a hard disk (HD) 1211 and a flexible disk (FD) 1212 that store a boot program, a plurality of applications, an editing file, a user file, a network management program, and the like.
  • the boot program is a startup program: a program for starting execution (operation) of hardware and software of a personal computer.
  • NIC network interface card
  • FIG. 11 is a flowchart showing the MOS transistor manufacturing method according to the third embodiment in the order of steps.
  • FIG. 12 is a schematic cross-sectional view showing a MOS transistor manufactured by the semiconductor device manufacturing method according to the third embodiment.
  • the semiconductor device manufacturing method of the present embodiment includes a step S21 of designing a photomask using OPC, and a step S22 of manufacturing a photomask using, for example, an electron beam drawing apparatus based on the designed mask pattern data. And step S23 of forming various device patterns of the semiconductor device using the manufactured photomask (here, a mask set including a plurality of photomasks).
  • step S21 includes steps S1 to S5 described in the first embodiment.
  • step S23 first, a resist pattern for element isolation is formed in the element isolation region of the silicon substrate 21 by lithography using a photomask corresponding to the element isolation layer. Using this resist pattern as a mask, the semiconductor substrate is dry etched to form element isolation grooves. The resist pattern is removed by ashing or the like. Then, an insulating film for embedding the element isolation trench, such as a silicon oxide film, is deposited by CVD or the like, and planarized by a chemical mechanical polishing (CMP) method or the like, and the inside of the element isolation trench is silicon oxide. Then, an STI (Shallow Trench Isolation) element isolation structure 22 is formed.
  • CMP chemical mechanical polishing
  • a thin insulating film here a silicon oxide film
  • a polycrystalline silicon film is deposited by a CVD method or the like.
  • a resist pattern for the gate is formed on the polycrystalline silicon film by lithography using a photomask corresponding to the gate layer.
  • the polycrystalline silicon film and the silicon oxide film are dry-etched to pattern the gate electrode 24 on the silicon substrate 21 with the gate insulating film 23 interposed therebetween.
  • the resist pattern is removed by ashing or the like.
  • impurities boron (B + ) or the like for P-type, phosphorus (P + ) or arsenic (As + ) or the like for N-type
  • the ion implantation is performed with the dose amount and the acceleration energy.
  • extension regions 25 are formed on both sides of the gate electrode 24.
  • an insulating film here a silicon oxide film
  • a silicon oxide film is deposited on the entire surface of the silicon substrate 21 including the gate electrode 24 by CVD or the like.
  • the entire surface of the silicon oxide film is anisotropically dry etched (etched back) to leave the silicon oxide only on both sides of the gate electrode 24 and the gate insulating film 23, thereby forming the sidewall insulating film 26.
  • impurities such as boron (B + ) in the case of P type) or phosphorus (P + ) or arsenic (As in the case of N type) are formed on the surface layer of the silicon substrate 1.
  • + ) Etc. is ion-implanted with a predetermined dose and acceleration energy.
  • source / drain regions 27 partially overlapping with the extension regions 25 are formed on both sides of the sidewall insulating film 26.
  • an insulating film here, a silicon oxide film is deposited on the entire surface of the silicon substrate 21 so as to have a film thickness for embedding the gate electrode 24 by a CVD method or the like, thereby forming an interlayer insulating film 28.
  • a resist pattern for contact holes is formed on the interlayer insulating film 28 by lithography using a photomask corresponding to the contact hole layer.
  • the interlayer insulating film 28 is dry-etched to form a contact hole exposing a part of the surface of the source / drain region 27.
  • the resist pattern is removed by ashing or the like.
  • a conductive material, here tungsten (W) or the like is deposited on the interlayer insulating film 28 by a CVD method or the like so as to embed the contact hole via a predetermined glue film or the like, and is flattened by a CMP method or the like.
  • a contact plug 29 filling the inside with W is formed.
  • a wiring material here, an Al alloy or the like is deposited on the interlayer insulating film 28 by sputtering or the like.
  • a resist pattern for contact holes is formed on the wiring material by lithography using a photomask corresponding to the first wiring layer. Using this resist pattern as a mask, the wiring material is dry-etched to form a wiring 31 connected to the contact plug 29. The resist pattern is removed by ashing or the like.
  • an insulating film here a silicon oxide film, is deposited on the entire surface of the interlayer insulating film 28 so as to have a film thickness for embedding the wiring 31 by a CVD method or the like, thereby forming an interlayer insulating film 32.
  • the first-layer wiring may be formed by a so-called damascene method. Specifically, for example, after forming the interlayer insulating film 32 (the lower layer portion thereof), the wiring groove is formed on the interlayer insulating film 32 by lithography using a photomask corresponding to the wiring groove layer of the first layer wiring. A resist pattern is formed. Using this resist pattern as a mask, the interlayer insulating film 32 is dry-etched to form a wiring groove exposing a part of the surface of the contact plug 29. The resist pattern is removed by ashing or the like.
  • a conductive material here copper (Cu) or Cu alloy or the like is deposited by a plating method or the like so as to fill the wiring groove, is flattened by a CMP method or the like, and the wiring filling the wiring groove with Cu or Cu alloy is formed.
  • an interlayer insulating film 32 (upper layer portion) is formed so as to embed the wiring.
  • a resist pattern for via holes is formed on the interlayer insulating film 32 by lithography using a photomask corresponding to the via hole layer.
  • the interlayer insulating film 32 is dry-etched to form a via hole exposing a part of the surface of the wiring 31.
  • the resist pattern is removed by ashing or the like.
  • a conductive material, here tungsten (W) or the like is deposited on the interlayer insulating film 32 by a CVD method or the like so as to embed the via hole via a predetermined glue film or the like, and is planarized by a CMP method or the like.
  • a via plug 33 for filling the inside with W is formed.
  • a wiring material here, an Al alloy or the like is deposited on the interlayer insulating film 32 by a sputtering method or the like.
  • a resist pattern for contact holes is formed on the wiring material by lithography using a photomask corresponding to the second wiring layer.
  • the wiring material is dry-etched to form a wiring 34 connected to the via plug 33.
  • the resist pattern is removed by ashing or the like.
  • the second-layer wiring may be formed by a damascene method as in the first-layer wiring.
  • an insulating film here, a silicon oxide film is deposited on the entire surface of the interlayer insulating film 32 so as to have a film thickness for embedding the wiring 34 by CVD or the like, and an interlayer insulating film 35 is formed. Thereafter, a further upper layer wiring and an interlayer insulating film are formed to complete the MOS transistor.
  • a photomask is designed by the design method according to the first embodiment, and a MOS transistor is manufactured using a photomask (mask set) produced based on this design. . Therefore, each device pattern constituting the MOS transistor is accurately formed in the desired shape and size, and a highly reliable MOS transistor that can sufficiently meet the demand for further miniaturization and higher integration is realized.
  • the OPC processing is performed with the correction accuracy required for each functional block corresponding to various device patterns, the output data size is reduced (optimized), and the correction processing is performed. A significant reduction in the time required can be realized.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)

Abstract

Information on a plurality of functional blocks is recognized from design data on a mask pattern of a photomask to give first accuracy information on the OPC which is predefined on per-functional block basis for each of the functional blocks, while giving second accuracy information on the OPC which is predefined on per-layer basis for each of the layers. Subsequently, the OPC is executed for the functional blocks in accordance with the first and second accuracy information. With such a configuration, in correction processing operation by the OPC, the OPC processing operation is performed at a correction accuracy required for each functional block correspondingly to a wide variety of device patterns to reduce (optimize) the output data size, resulting in the time required for correction processing operation being significantly reduced.

Description

フォトマスクの設計方法及び装置、プログラム、記録媒体、並びに半導体装置の製造方法Photomask design method and apparatus, program, recording medium, and semiconductor device manufacturing method
 本発明は、光近接効果補正を用いたフォトマスクの設計方法及びプログラム、並びに半導体装置の製造方法に関する。 The present invention relates to a photomask design method and program using optical proximity effect correction, and a semiconductor device manufacturing method.
 近年では、半導体装置の微細化・高集積化が進み、そのため高精度なデバイスパターンの形成技術が必要とされている。
 高精度なデバイスパターンを形成するには、マスクパターンのレジストへの露光転写時において、微細なレジストパターンを精度良く転写するため、露光光の波長、レチクル構造を最適にする他に近接するパターンの影響を計算・算出し、補正を行う。この補正は光近接効果補正(Optical Proximity Correction:OPC)と呼ばれている。OPCの補正処理は、露光装置の照明条件(NA, Sigma)や露光条件(レジスト材料、 露光波長)等を考慮して、光近接効果の影響を計算若しくは実験により補正量を算出し、マスクパターンの設計データに対して、パターン寸法を補正する技術である。
In recent years, miniaturization and high integration of semiconductor devices have progressed, and therefore a highly accurate device pattern forming technique is required.
In order to form a highly accurate device pattern, in order to accurately transfer a fine resist pattern during exposure transfer of the mask pattern to the resist, in addition to optimizing the wavelength of the exposure light and the reticle structure, the pattern of the adjacent pattern Calculate and calculate the impact and make corrections. This correction is called optical proximity correction (OPC). The OPC correction process takes into account the exposure conditions (NA, Sigma), exposure conditions (resist material, exposure wavelength), etc., and calculates the correction amount by calculating the effect of the optical proximity effect or by experiment. This is a technique for correcting the pattern dimensions for the design data.
 従来のOPCの補正処理では、自身のパターンデータと隣り合うパターンデータとの関係を、指定された間隔、パターン幅、光学的条件を含む条件ファイルに基づき補正処理を行い、フォトマスクデータを作成している。OPCの補正処理に関しては、パターンデータの干渉も考慮しなければならないため、繰り返しパターンが存在しても隣り合う領域外のパターンデータが異なる場合には、それぞれのパターンデータに対して補正処理を行っている。 In conventional OPC correction processing, photomask data is created by correcting the relationship between its own pattern data and adjacent pattern data based on a condition file including specified intervals, pattern widths, and optical conditions. ing. Regarding the OPC correction processing, since interference of pattern data must be taken into consideration, if the pattern data outside the adjacent area is different even if there is a repeated pattern, the correction processing is performed on each pattern data. ing.
 ここで、例えば特許文献1には、マスクパターンの設計データの作成段階で予めOPCの補正処理を実施した各基本セルを登録し、その基本セルを使用してレイアウト設計を行う手法が開示されている。
 特許文献2には、モデルベースによるOPCの補正処理において、モデルのフィッティング残渣の許容値をテストパターンから定め、OPCの補正精度を維持しながらフィッティングの許容値を持たせる手法が開示されている。
 特許文献3には、回路パターンをDB(ライブラリ)化し、DBに登録されたパターンと同じであると判断された場合には、補正値をDBから取得することで、モデルベースによるOPCの補正処理時のシミュレーション(計算)を最小限にする技術が開示されている。
Here, for example, Patent Document 1 discloses a method of registering each basic cell that has been subjected to OPC correction processing in advance in the creation stage of mask pattern design data and performing layout design using the basic cell. Yes.
Japanese Patent Application Laid-Open No. 2004-228561 discloses a method of determining an allowable value of a model fitting residue from a test pattern in an OPC correction process based on a model, and providing an allowable value for fitting while maintaining OPC correction accuracy.
In Patent Document 3, a circuit pattern is converted into a DB (library), and when it is determined that the pattern is the same as a pattern registered in the DB, a correction value is obtained from the DB, thereby correcting the OPC based on the model. A technique for minimizing time simulation is disclosed.
特開2007-199234号公報JP 2007-199234 A 特開2004-163472号公報JP 2004-163472 A 特開2004-109453号公報JP 2004-109453 A
 従来のOPCでは、マスクパターンの設計データに対して、条件ファイルに基づいて補正処理する。そのため、高精度な補正を必要としないマスクパターンに対しても、高い収束率でOPCの補正処理を実行しており、近年のデバイスパターンの微細化に伴い、OPCの処理時間やOPC後の出力データサイズ等が膨大となるという深刻な問題がある。 In conventional OPC, the mask pattern design data is corrected based on a condition file. For this reason, OPC correction processing is executed with a high convergence rate even for mask patterns that do not require high-accuracy correction. OPC processing time and output after OPC are accompanied by the recent miniaturization of device patterns. There is a serious problem that the data size becomes enormous.
 また、特許文献1の技術では、フォトマスクの設計データサイズが膨大となるという問題がある。
 特許文献2の技術では、膨大なテストパターンを用意しなければならないという問題がある。
 特許文献3の技術では、近年の多種多様なデバイスパターンに対して十分な対応が困難であるという問題がある。
Further, the technique of Patent Document 1 has a problem that the design data size of the photomask becomes enormous.
In the technique of Patent Document 2, there is a problem that an enormous number of test patterns must be prepared.
The technique of Patent Document 3 has a problem that it is difficult to sufficiently cope with various device patterns in recent years.
 本件は、上記の課題に鑑みてなされたものであり、OPCによる補正処理に際して、多種多様なデバイスパターンに対応して、機能ブロック毎に要求される補正精度でOPC処理を行い、出力データサイズを減少(最適化)させ、補正処理に要する時間の大幅な短縮化を実現することができるフォトマスクの設計方法及びプログラム、並びに半導体装置の製造方法を提供することを目的とする。 This case has been made in view of the above-mentioned problems. In the correction processing by OPC, the OPC processing is performed with the correction accuracy required for each functional block corresponding to a wide variety of device patterns, and the output data size is reduced. It is an object of the present invention to provide a photomask design method and program, and a semiconductor device manufacturing method capable of reducing (optimizing) and realizing a significant reduction in time required for correction processing.
 本件のフォトマスクの設計方法は、フォトマスクのデータから複数の機能ブロックの情報を認識する第1の工程と、前記機能ブロック毎に予め規定された光近接効果補正の第1の精度情報を、前記機能ブロック毎に付与する第2の工程と、前記第1の精度情報に基づいて、前記機能ブロックに光近接効果補正を施す第3の工程とを含む。 The photomask design method of the present case includes a first step of recognizing information of a plurality of functional blocks from photomask data, and first accuracy information of optical proximity effect correction defined in advance for each functional block. A second step for each functional block, and a third step for performing optical proximity effect correction on the functional block based on the first accuracy information.
 本件のフォトマスクの設計装置は、光近接効果補正を用いたフォトマスクの設計装置であって、前記フォトマスクのデータを格納するデータ記憶部と、前記データ記憶部から読み出した前記データにより、複数の機能ブロックの情報を認識する機能ブロック認識部と、前記機能ブロック毎に予め規定された光近接効果補正の第1の精度情報を格納する第1の精度情報記憶部と、前記第1の精度情報記憶部から読み出した前記第1の精度情報を、前記機能ブロック毎に付与する精度情報付与部と、前記第1の精度情報に基づいて、前記機能ブロックに光近接効果補正を施す補正部とを含む。 The photomask design device of the present invention is a photomask design device using optical proximity effect correction, and includes a data storage unit that stores data of the photomask, and a plurality of data according to the data read from the data storage unit. A functional block recognizing unit for recognizing information of the functional block, a first accuracy information storing unit for storing first accuracy information of optical proximity effect correction defined in advance for each functional block, and the first accuracy An accuracy information providing unit that provides the first accuracy information read from the information storage unit for each functional block; and a correction unit that performs optical proximity effect correction on the functional block based on the first accuracy information; including.
 本件の半導体装置の製造方法は、光近接効果補正を用いてフォトマスクを設計する工程と、設計されたマスクパターンデータに基づいてフォトマスクを製造する工程と、前記フォトマスクを用いて半導体装置のデバイスパターンを形成する工程とを含み、前記フォトマスクを設計する工程は、前記フォトマスクのデータから複数の機能ブロックの情報を認識する第1の工程と、前記機能ブロック毎に予め規定された光近接効果補正の第1の精度情報を、前記機能ブロック毎に付与する第2の工程と、前記第1の精度情報に基づいて、前記機能ブロックに光近接効果補正を施す第3の工程とを含む。 The method of manufacturing a semiconductor device according to the present invention includes a step of designing a photomask using optical proximity effect correction, a step of manufacturing a photomask based on the designed mask pattern data, and a semiconductor device using the photomask. Forming a device pattern, wherein the step of designing the photomask includes a first step of recognizing information of a plurality of functional blocks from the data of the photomask, and light pre-defined for each functional block. A second step of providing first accuracy information of proximity effect correction for each functional block; and a third step of performing optical proximity effect correction on the functional block based on the first accuracy information. Including.
 本件のフォトマスクの設計プログラムはフォトマスクのデータから複数の機能ブロックの情報を認識する第1の工程と、前記機能ブロック毎に予め規定された光近接効果補正の第1の精度情報を、前記機能ブロック毎に付与する第2の工程と、前記第1の精度情報に基づいて、前記機能ブロックに光近接効果補正を施す第3の工程とをコンピュータに実行させるためのプログラムである。 The photomask design program of the present case includes a first step of recognizing information of a plurality of functional blocks from photomask data, and first accuracy information of optical proximity effect correction defined in advance for each functional block, It is a program for causing a computer to execute a second step given to each functional block and a third step of performing optical proximity effect correction on the functional block based on the first accuracy information.
 本件によれば、OPCによる補正処理に際して、多種多様なデバイスパターンに対応して、機能ブロック毎に要求される補正精度でOPC処理を行い、出力データサイズを減少(最適化)させ、補正処理に要する時間の大幅な短縮化を実現することができる。 According to the present case, in the correction processing by OPC, the OPC processing is performed with the correction accuracy required for each functional block corresponding to various device patterns, the output data size is reduced (optimized), and the correction processing is performed. A significant reduction in the time required can be realized.
図1は、第1の実施形態によるフォトマスクの設計装置の概略構成を示すブロック図である。FIG. 1 is a block diagram showing a schematic configuration of a photomask designing apparatus according to the first embodiment. 図2は、第1の実施形態によるフォトマスクの設計方法をステップ順に示すフロー図である。FIG. 2 is a flowchart showing the photomask design method according to the first embodiment in the order of steps. 図3は、第1の実施形態の比較例(従来技術)をステップ順に示すフロー図である。FIG. 3 is a flowchart showing a comparative example (prior art) of the first embodiment in the order of steps. 図4は、機能ブロック認識部で認識される各種情報を示す模式図である。FIG. 4 is a schematic diagram showing various types of information recognized by the functional block recognition unit. 図5は、OPC補正マップの一例を示す図である。FIG. 5 is a diagram illustrating an example of the OPC correction map. 図6は、機能ブロックランク定義情報の一例を示す図である。FIG. 6 is a diagram illustrating an example of functional block rank definition information. 図7は、OPCランク情報の一例を示す図である。FIG. 7 is a diagram illustrating an example of OPC rank information. 図8は、マスクセット補正マップの一例を示す図である。FIG. 8 is a diagram illustrating an example of a mask set correction map. 図9は、マスクセット補正マップに対応して、マスクセットを構成する各フォトマスクの位置関係を示す模式図である。FIG. 9 is a schematic diagram showing the positional relationship between the photomasks constituting the mask set corresponding to the mask set correction map. 図10は、パーソナルユーザ端末装置の内部構成を示す模式図である。FIG. 10 is a schematic diagram illustrating an internal configuration of the personal user terminal device. 図11は、第3の実施形態によるMOSトランジスタの製造方法をステップ順に示すフロー図である。FIG. 11 is a flowchart showing the MOS transistor manufacturing method according to the third embodiment in the order of steps. 図12は、第3の実施形態による半導体装置の製造方法により作製されたMOSトランジスタを示す概略断面図である。FIG. 12 is a schematic cross-sectional view showing a MOS transistor manufactured by the semiconductor device manufacturing method according to the third embodiment.
 上記のように、従来の技術では、OPCの処理時間やOPC後の出力データサイズ等の諸々のデータが膨大となるという問題がある。本件では、この問題を解決すべく、OPCの補正精度に着目し、OPCの補正精度に必要に応じて強弱をつけることを考察した。 As described above, the conventional technique has a problem that various data such as an OPC processing time and an output data size after OPC become enormous. In this case, in order to solve this problem, attention was paid to the OPC correction accuracy, and consideration was given to increasing or decreasing the OPC correction accuracy as necessary.
 ここで、OPCの補正精度の強弱の対象としては、例えばフォトマスクのマスクパターンの線幅や間隔が考えられる。この場合、線幅や間隔が狭ければ高精度のOPCを要し、比較的広ければOPCはさほどの精度を要しない。しかしながら、要求されるOPCの補正精度は、マスクパターンの線幅・間隔に必ずしも依存するものではない。また、マスクパターンの線幅・間隔のみに着目したのでは、レイアウト設計依存により、必要とされるOPCの補正精度を保持することが困難となる。 Here, for example, the line width and interval of the mask pattern of the photomask can be considered as targets of the OPC correction accuracy. In this case, high-precision OPC is required if the line width or interval is narrow, and OPC does not require much precision if it is relatively wide. However, the required OPC correction accuracy does not necessarily depend on the line width / interval of the mask pattern. If attention is paid only to the line width / interval of the mask pattern, it becomes difficult to maintain the required OPC correction accuracy due to layout design dependence.
 そこで本件では、設計データ内に配置されている機能ブロック(例えばRAM,ROM,PLL,アナログ回路(Analog),入出力インターフェース(I/O)等)に着目する。OPCの補正精度の強弱の対象としては、例えば、RAMとI/Oとで同じ線幅・間隔であっても,RAMの寸法精度の方を重要とする等の理由から、機能ブロックを基準とするのが最も妥当であると考えられる。そのため、機能ブロック毎に要求に応じてOPCの補正精度に強弱を設けることが好適である。 Therefore, in this case, attention is paid to functional blocks (for example, RAM, ROM, PLL, analog circuit (Analog), input / output interface (I / O), etc.) arranged in the design data. As the object of OPC correction accuracy, for example, even if the same line width and interval are used for RAM and I / O, the functional block is used as a reference because the dimensional accuracy of RAM is more important. It is considered the most appropriate to do this. For this reason, it is preferable to provide a strength of OPC correction accuracy as required for each functional block.
 本件では、フォトマスクのマスクパターンの設計データから複数の機能ブロックの情報を認識し、機能ブロック毎に予め規定されたOPCの第1の精度情報を機能ブロック毎に付与する。そして、第1の精度情報に基づいて、機能ブロックにOPCを施す。 In this case, information of a plurality of functional blocks is recognized from the mask pattern design data of the photomask, and OPC first accuracy information defined in advance for each functional block is given to each functional block. Then, OPC is performed on the functional block based on the first accuracy information.
 ここで、機能ブロックはその構成要素に応じて複数のレイヤー(層)(素子間分離構造、ゲート、コンタクト孔、配線、ビア孔等にそれぞれ対応するフォトマスク)からなる。本件では、各機能ブロックに対応した第1の精度情報と共に、レイヤー毎に予め規定されたOPCの第2の精度情報をレイヤー毎に付与する。
 本件では、第1の精度情報に加えて第2の精度情報を利用することにより、機能ブロック毎に、更には各機能ブロックを構成するレイヤー毎に、きめ細かくOPCの補正精度を規定する。これにより、ユーザの要求に忠実に対応したOPCを、最適化された出力データサイズ等で短時間に行うことが可能となる。
Here, the functional block includes a plurality of layers (photomasks corresponding to element isolation structures, gates, contact holes, wirings, via holes, etc.) according to the constituent elements. In this case, together with the first accuracy information corresponding to each functional block, OPC second accuracy information defined in advance for each layer is given for each layer.
In this case, by using the second accuracy information in addition to the first accuracy information, the OPC correction accuracy is finely defined for each functional block and further for each layer constituting each functional block. As a result, it is possible to perform OPC corresponding to the user's request in a short time with an optimized output data size or the like.
 具体的には、先ず設計データ内に配置されている各機能ブロックを認識する。認識する手法としては、設計データの結線情報とセルネーミングルール等を用いて行い、認識した機能ブロックの領域を示す、OPC補正マップを作成する。
 ここで、セルネーミングルールとは、1つの設計データ上に複数の機能ブロックを合成する際に、機能ブロック内の子セル(パーツ)が同じセル名にならないようにするために、セル名をルール化しておく命名規約である。この命名規約が存在しなければ、機能ブロックの合成時に、機能ブロックの子セルが置き換わってしまう(変形する)不具合が発生する。本件では、この命名規約をセルネーミングルールと表現する。
 続いて、作成されたOPC補正マップに、レイヤー(層)毎にランクを定義した第2の精度情報(OPCランク情報)及び機能ブロック毎にランクを定義した第1の精度情報(機能ブロックランク定義情報)を入力し、OPC処理の補正精度を定義する、マスクセット補正マップを作成する。
 そして、このマスクセット補正マップの情報に基づいて、条件ファイルを用いてOPC処理を行う。
Specifically, first, each functional block arranged in the design data is recognized. As a method for recognizing, an OPC correction map indicating the recognized functional block area is created by using the connection information of the design data and cell naming rules.
Here, the cell naming rule is a cell name rule to prevent child cells (parts) in a functional block from having the same cell name when combining multiple functional blocks on one design data. It is a naming convention to be converted. If this naming convention does not exist, there is a problem that child cells of the functional block are replaced (deformed) when the functional block is synthesized. In this case, this naming convention is expressed as a cell naming rule.
Subsequently, in the created OPC correction map, second accuracy information (OPC rank information) that defines a rank for each layer and first accuracy information (function block rank definition) that defines a rank for each functional block Information) and a mask set correction map that defines the correction accuracy of the OPC process is created.
Then, based on the information of this mask set correction map, OPC processing is performed using a condition file.
 このように本件では、層毎の機能ブロック単位に、必要最低限の精度を保ちながら、上下層の接続精度を保持しつつ、OPC処理を行う。即ち、求められる補正精度に基づいて各機能ブロック及びこれを構成する各レイヤーをランク付けし、そのランク毎に計算において与えるOPC精度(例えば収束率)を割り当てる。これにより、OPC処理に要求される補正精度を十分に保持しつつも、計算時間の短縮が実現する。 In this way, in this case, OPC processing is performed while maintaining the connection accuracy of the upper and lower layers while maintaining the necessary minimum accuracy for each functional block for each layer. That is, each functional block and each layer constituting the functional block are ranked based on the required correction accuracy, and OPC accuracy (for example, convergence rate) given in the calculation is assigned to each rank. As a result, the calculation time can be reduced while sufficiently maintaining the correction accuracy required for the OPC process.
 即ち、本件を適用することにより、機能ブロック毎の補正精度を維持しながら、必要以上の過度なOPCの補正を回避することが可能となる。また、各層毎においても補正精度を維持することが可能であるため、目的とするパターン形状が得られる。また、設計データの結線情報を用いることで、結線情報上にないセル(ダミー等)に対して、OPCの補正精度を下げる等の対応も可能となる。これにより、OPCの補正処理が最適化されることで必要以上のOPC処理を回避し、OPCの補正処理時間の短縮や出力データサイズの軽減等の効果が見込まれる。また、OPC補正マップを取り入れることにより、各層間において機能ブロックの補正が最適化されるため、デバイスパターンの形成に極めて有効となる。本件を適用することにより、従来技術に対して、例えば、OPCの補正処理時間は約30%、出力データサイズは約20%の削減が見込まれる。 That is, by applying this case, it is possible to avoid excessive OPC correction more than necessary while maintaining the correction accuracy for each functional block. In addition, since the correction accuracy can be maintained for each layer, a target pattern shape can be obtained. Further, by using the connection information of the design data, it is possible to cope with a cell (such as a dummy) that is not on the connection information by reducing the OPC correction accuracy. As a result, the OPC correction process is optimized to avoid an unnecessary OPC process, and effects such as shortening the OPC correction process time and reducing the output data size are expected. Further, by incorporating the OPC correction map, the functional block correction is optimized between the layers, which is extremely effective for forming a device pattern. By applying this case, for example, the OPC correction processing time is expected to be reduced by about 30%, and the output data size is expected to be reduced by about 20% with respect to the prior art.
 ―本件を適用した好適な諸実施形態―
 以下、本件を適用した具体的な諸実施形態について、図面を参照しながら詳細に説明する。
-Preferred embodiments to which this case is applied-
Hereinafter, specific embodiments to which the present application is applied will be described in detail with reference to the drawings.
 [第1の実施形態]
 本実施形態では、フォトマスクの設計装置及びこれを用いた設計方法を開示する。
 図1は、第1の実施形態によるフォトマスクの設計装置の概略構成を示すブロック図である。図2は、第1の実施形態によるフォトマスクの設計方法をステップ順に示すフロー図であり、図3は、第1の実施形態の比較例(従来技術)をステップ順に示すフロー図である。
[First Embodiment]
In the present embodiment, a photomask design apparatus and a design method using the same are disclosed.
FIG. 1 is a block diagram showing a schematic configuration of a photomask designing apparatus according to the first embodiment. FIG. 2 is a flowchart showing the photomask design method according to the first embodiment in the order of steps, and FIG. 3 is a flowchart showing the comparative example (prior art) of the first embodiment in the order of steps.
 (フォトマスクの設計装置)
 図1において、10はフォトマスクの各種データを格納するデータ記憶部である。このデータ記憶部10は、フォトマスクのマスクパターンの設計データを記憶する設計データ記憶部11と、各機能ブロックにおける結線情報(配線間、配線とビアとの間等の結線状況を示す情報)を記憶する結線情報記憶部12と、各機能ブロックを構成する各セルの名称情報(セルネーミングルール)を記憶するセル名称情報記憶部13とを有している。
(Photomask design equipment)
In FIG. 1, reference numeral 10 denotes a data storage unit for storing various data of the photomask. The data storage unit 10 stores a design data storage unit 11 that stores design data of a mask pattern of a photomask, and connection information (information indicating a connection state such as between wirings and between wirings and vias) in each functional block. It has the connection information storage part 12 to memorize | store, and the cell name information memory | storage part 13 which memorize | stores the name information (cell naming rule) of each cell which comprises each functional block.
 14は、機能ブロック毎に予め規定された光近接効果補正(OPC)の第1の精度情報(機能ブロックランク定義情報)を格納する第1の精度情報記憶部である。
 15は、各機能ブロックを構成するレイヤー毎に予め規定されたOPCの第2の精度情報(OPCランク情報)を格納する第2の精度情報記憶部である。
Reference numeral 14 denotes a first accuracy information storage unit that stores first accuracy information (functional block rank definition information) of optical proximity effect correction (OPC) defined in advance for each functional block.
Reference numeral 15 denotes a second accuracy information storage unit that stores second accuracy information (OPC rank information) of OPC defined in advance for each layer constituting each functional block.
 具体的に、設計データ記憶部11、結線情報記憶部12、セル名称情報記憶部13、第1の精度情報記憶部14、第2の精度情報記憶部15としては、それぞれ、データベースや、コンピュータのRAMやROM等、CD-ROM、フレキシブルディスク、ハードディスク、磁気テープ、光磁気ディスク、不揮発性メモリカード等の各種の記録媒体が適用できる。 Specifically, as the design data storage unit 11, the connection information storage unit 12, the cell name information storage unit 13, the first accuracy information storage unit 14, and the second accuracy information storage unit 15, respectively, a database, a computer Various recording media such as a RAM, a ROM, a CD-ROM, a flexible disk, a hard disk, a magnetic tape, a magneto-optical disk, and a nonvolatile memory card can be applied.
 1は、データ記憶部10から読み出した各種のデータ(マスクパターンの設計データ、結線情報、及びセルネーミングルール等)により、複数の機能ブロックの情報を認識する機能ブロック認識部である。
 2は、機能ブロック認識部1で認識された機能ブロックの情報に基づき、各機能ブロックの領域を表す第1のマップ(OPC補正マップ)を作成する第1のマップ作成部である。
 3は、第1の精度情報記憶部14から読み出した機能ブロックランク定義情報を機能ブロック毎に付与すると共に、第2の精度情報記憶部15から読み出したOPCランク情報をレイヤー毎に付与し、第2のマップ(マスクセット補正マップ)を作成する第2のマップ作成部である。
 第2のマップ作成部3は、機能ブロックランク定義情報及びOPCランク情報に基づいて、各機能ブロックのレイヤー毎にOPCの収束率を算出し、マスクセット補正マップに掲載する。この収束率は、以下の式(1)のように定義される。
 OPCの収束率(%)={(a+b)/(A+B)}×100 ・・・(1)
 ここで、a:各機能ブロックの係数(補正精度)、b:各レイヤーの係数、A:機能ブロックの係数の最大値、B:レイヤーの係数の最大値である。
Reference numeral 1 denotes a functional block recognition unit for recognizing information on a plurality of functional blocks based on various data read from the data storage unit 10 (mask pattern design data, connection information, cell naming rules, and the like).
Reference numeral 2 denotes a first map creation unit that creates a first map (OPC correction map) representing the area of each functional block based on the information on the functional block recognized by the functional block recognition unit 1.
3 assigns the functional block rank definition information read from the first accuracy information storage unit 14 for each functional block, and assigns the OPC rank information read from the second accuracy information storage unit 15 for each layer. It is the 2nd map creation part which creates 2 maps (mask set correction map).
The second map creation unit 3 calculates the OPC convergence rate for each layer of each functional block based on the functional block rank definition information and the OPC rank information, and posts it on the mask set correction map. This convergence rate is defined as the following formula (1).
OPC convergence rate (%) = {(a + b) / (A + B)} × 100 (1)
Here, a: coefficient of each functional block (correction accuracy), b: coefficient of each layer, A: maximum value of coefficient of functional block, B: maximum value of coefficient of layer.
 4は、第2のマップ作成部3で作成されたマスクセット補正マップに基づいて、各機能ブロックの各レイヤー毎にOPCを施す補正部である。
 16は、補正部4でOPCが施されたマスクパターンを有するフォトマスクのデータを格納するフォトマスクデータ記憶部である。
 具体的に、フォトマスクデータ記憶部16としては、データベースや、コンピュータのRAMやROM等、CD-ROM、フレキシブルディスク、ハードディスク、磁気テープ、光磁気ディスク、不揮発性メモリカード等の各種の記録媒体が適用できる。
Reference numeral 4 denotes a correction unit that performs OPC for each layer of each functional block based on the mask set correction map created by the second map creation unit 3.
Reference numeral 16 denotes a photomask data storage unit that stores data of a photomask having a mask pattern subjected to OPC by the correction unit 4.
Specifically, the photomask data storage unit 16 includes various recording media such as databases, computer RAM and ROM, CD-ROM, flexible disk, hard disk, magnetic tape, magneto-optical disk, and nonvolatile memory card. Applicable.
 (フォトマスクの設計方法)
 以下、上記した設計装置を用いたフォトマスクの設計方法について、図2を用いて説明する。
 先ず、機能ブロック認識部1は、データ記憶部10の設計データ記憶部11からフォトマスクのマスクパターンの設計データを、結線情報記憶部12から各機能ブロックにおける結線情報を、セル名称情報記憶部13から各機能ブロックを構成する各セルのセルネーミングルールを読み出し、各機能ブロックの情報を認識する(ステップS1)。
 ステップS1では、機能ブロック認識部1は、例えば図4に示すように、上記の設計データと共に、機能ブロック及びセル名を示す結線情報及びセルネーミングルール等から、機能ブロックとセル名とを紐付けした形で抜粋した情報を用いて、各機能ブロックの認識を行う。
(Photomask design method)
Hereinafter, a photomask design method using the above-described design apparatus will be described with reference to FIG.
First, the functional block recognition unit 1 receives the design data of the photomask mask pattern from the design data storage unit 11 of the data storage unit 10, the connection information in each functional block from the connection information storage unit 12, and the cell name information storage unit 13. The cell naming rule of each cell constituting each functional block is read out from and the information of each functional block is recognized (step S1).
In step S1, for example, as shown in FIG. 4, the functional block recognition unit 1 associates the functional block with the cell name based on the design data, the connection information indicating the functional block and the cell name, the cell naming rule, and the like. Each function block is recognized using the information extracted in the form.
 続いて、第1のマップ作成部2は、機能ブロック認識部1で認識された機能ブロックの情報に基づき、各機能ブロックの領域を表す第1のマップ(OPC補正マップ)を作成する(ステップS2)。
 OPC補正マップの一例を図5に示す。OPC補正マップは、各機能ブロック(ここでは、RAM,ROM,PLL,Analog,I/O)の領域を異なるレイヤー番号を用いて、認識領域(枠)として作成することも可能であり、また、左下・右上の2点座標表記をすることもできる。
Subsequently, the first map creation unit 2 creates a first map (OPC correction map) representing the area of each functional block based on the information on the functional block recognized by the functional block recognition unit 1 (step S2). ).
An example of the OPC correction map is shown in FIG. The OPC correction map can be created as a recognition area (frame) using different layer numbers for areas of each functional block (here, RAM, ROM, PLL, Analog, I / O), Two-point coordinate notation on the lower left and upper right can also be indicated.
 続いて、第2のマップ作成部3は、第1の精度情報記憶部14から読み出した機能ブロックランク定義情報を機能ブロック毎に付与すると共に、第2の精度情報記憶部15から読み出したOPCランク情報をレイヤー毎に付与し、第2のマップ(マスクセット補正マップ)を作成する(ステップS3)。
 ステップS3では、第2のマップ作成部3は、機能ブロックランク定義情報及びOPCランク情報に基づいて、各機能ブロックのレイヤー毎にOPCの収束率を算出する。
Subsequently, the second map creation unit 3 assigns the functional block rank definition information read from the first accuracy information storage unit 14 for each functional block, and also reads the OPC rank read from the second accuracy information storage unit 15. Information is assigned to each layer, and a second map (mask set correction map) is created (step S3).
In step S3, the second map creation unit 3 calculates the OPC convergence rate for each layer of each functional block based on the functional block rank definition information and the OPC rank information.
 機能ブロックランク定義情報の一例を図6に、OPCランク情報の一例を図7にそれぞれ示す。また、マスクセット補正マップの一例を図8に示す。
 機能ブロックランク定義情報は、各機能ブロックの補正精度を係数として定義付けする情報である。OPCランク情報は、レイヤー毎の精度を係数で定義付けする情報である。各々の情報における係数の値は、設計者やユーザ等により適宜決定される。ここでは、各レイヤーとして、素子間分離、ゲート(電極,配線)、コンタクト孔、配線-1(1層目の配線)、ビア孔-1(1層目のビア孔)、配線-2以降(2層目以降の配線)、ビア孔-1以降(2層目以降のビア孔)を例示する。
An example of functional block rank definition information is shown in FIG. 6, and an example of OPC rank information is shown in FIG. An example of the mask set correction map is shown in FIG.
The functional block rank definition information is information that defines the correction accuracy of each functional block as a coefficient. The OPC rank information is information that defines the accuracy of each layer with a coefficient. The value of the coefficient in each piece of information is appropriately determined by a designer, a user, or the like. Here, as each layer, element separation, gate (electrode, wiring), contact hole, wiring-1 (first layer wiring), via hole-1 (first layer via hole), wiring-2 and subsequent ( Examples of wiring after the second layer) and via holes −1 and later (via holes after the second layer) are illustrated.
 マスクセット補正マップは、各機能ブロックの係数と各レイヤーの係数により計算され、OPC処理の収束率が上記の式(1)により決定されてなるものである。なお、図示は省略するが、OPC処理の収束率には、補正のイタレーション(補正・計算回数)も含まれる。
 マスクセット補正マップに対応して、マスクセットを構成する各フォトマスクの位置関係を、図9に模式的に示す。ここでは、レイヤー毎にフォトマスクM1~M4が定められており、フォトマスクM1~M4において夫々同一の領域(位置)に機能ブロックA~E(A:RAM,B:ROM,C:PLL,D:Analog,E:I/O)が定められている。
The mask set correction map is calculated from the coefficients of each functional block and the coefficients of each layer, and the convergence rate of the OPC process is determined by the above equation (1). Although not shown, the convergence rate of the OPC process includes correction iteration (correction / calculation count).
FIG. 9 schematically shows the positional relationship between the photomasks constituting the mask set corresponding to the mask set correction map. Here, photomasks M1 to M4 are determined for each layer, and function blocks A to E (A: RAM, B: ROM, C: PLL, D) are respectively located in the same area (position) in the photomasks M1 to M4. : Analog, E: I / O).
 続いて、補正部4は、第2のマップ作成部3で作成されたマスクセット補正マップに基づいて、各機能ブロックの各レイヤー毎にOPCを施す(ステップS4)。
 そして、補正部4でOPCが施されたマスクパターンを有するフォトマスクのデータがフォトマスクデータ記憶部16に格納される(ステップS5)。
Subsequently, the correction unit 4 performs OPC for each layer of each functional block based on the mask set correction map created by the second map creation unit 3 (step S4).
Then, photomask data having a mask pattern subjected to OPC by the correction unit 4 is stored in the photomask data storage unit 16 (step S5).
 以上説明したように、本実施形態によれば、機能ブロック単位のOPC補正精度を維持しながら、必要以上の収束率(イタレーションを含む)でOPCを過度に行うことを回避することが可能になる。また、設計データの結線情報等を用いることで、結線情報に無いセル(ダミー等)に対して、OPC補正ランクを下げることも可能になる。また、同じ精度を必要とする機能ブロックが疎密で分かれていた場合に、疎の部分に配置された機能ブロックのOPC補正精度が劣ることを防止することが可能となる。
 上記手法により、OPCの補正処理が最適化されることで、OPC補正処理時間の短縮や出力データサイズの軽減等が実現する。また、OPC補正マップを取り入れることにより、各レイヤー間における機能ブロックのOPC補正処理が最適化されるため、デバイス形成に極めて有効となる。
As described above, according to the present embodiment, it is possible to avoid excessively performing OPC with a convergence rate (including iteration) more than necessary while maintaining OPC correction accuracy in units of functional blocks. Become. Further, by using the connection information of the design data, it is possible to lower the OPC correction rank for cells (dummy etc.) that are not in the connection information. In addition, when functional blocks that require the same accuracy are sparsely and densely divided, it is possible to prevent the OPC correction accuracy of the functional blocks arranged in the sparse part from being deteriorated.
By optimizing the OPC correction process by the above method, it is possible to reduce the OPC correction processing time, the output data size, and the like. Further, by incorporating the OPC correction map, the OPC correction processing of the functional block between the layers is optimized, which is extremely effective for device formation.
 本実施形態の比較例を図3に示す。
 この比較例のOPC補正処理では、フォトマスクのマスクパターンの設計データを読み込んだ後、OPCの補正処理用の条件ファイル(間隔・パターン幅・光学的条件等)に基づき、OPCの補正処理を行う(ステップS101)。ステップS101の後、フォトマスク作成用のパターンデータが格納される(ステップS102)。
A comparative example of this embodiment is shown in FIG.
In the OPC correction processing of this comparative example, after the design data of the photomask mask pattern is read, the OPC correction processing is performed based on the OPC correction processing condition file (interval, pattern width, optical conditions, etc.). (Step S101). After step S101, pattern data for creating a photomask is stored (step S102).
 このように、比較例では、OPCの補正処理に強弱が設けられないため、OPCの処理時間やOPC後の出力データサイズ等が膨大となる。 Thus, in the comparative example, the OPC correction processing is not provided with a strength, so that the OPC processing time, the output data size after OPC, and the like become enormous.
 [第2の実施形態]
 上述した第1の実施形態によるフォトマスクの設計装置の各構成要素(図1の機能ブロック認識部1、第1のマップ作成部2、第2のマップ作成部3、補正部4)等の機能は、コンピュータのRAMやROM等に記憶されたプログラムが動作することによって実現できる。同様に、フォトマスクの設計方法の各ステップ(図2のステップS1~S5等)は、コンピュータのRAMやROM等に記憶されたプログラムが動作することによって実現できる。このプログラム及び当該プログラムを記録したコンピュータ読み取り可能な記憶媒体は本発明に含まれる。
[Second Embodiment]
Functions of the constituent elements of the photomask design apparatus according to the first embodiment described above (the functional block recognition unit 1, the first map creation unit 2, the second map creation unit 3, the correction unit 4 in FIG. 1), etc. Can be realized by operating a program stored in a RAM or ROM of a computer. Similarly, each step of the photomask design method (steps S1 to S5 in FIG. 2, etc.) can be realized by operating a program stored in a RAM or ROM of a computer. This program and a computer-readable storage medium storing the program are included in the present invention.
 具体的に、前記プログラムは、例えばCD-ROMのような記録媒体に記録し、或いは各種伝送媒体を介し、コンピュータに提供される。前記プログラムを記録する記録媒体としては、CD-ROM以外に、フレキシブルディスク、ハードディスク、磁気テープ、光磁気ディスク、不揮発性メモリカード等を用いることができる。他方、前記プログラムの伝送媒体としては、プログラム情報を搬送波として伝搬させて供給するためのコンピュータネットワークシステムにおける通信媒体を用いることができる。ここで、コンピュータネットワークとは、LAN、インターネットの等のWAN、無線通信ネットワーク等であり、通信媒体とは、光ファイバ等の有線回線や無線回線等である。 Specifically, the program is recorded on a recording medium such as a CD-ROM or provided to a computer via various transmission media. As a recording medium for recording the program, besides a CD-ROM, a flexible disk, a hard disk, a magnetic tape, a magneto-optical disk, a nonvolatile memory card, or the like can be used. On the other hand, as the program transmission medium, a communication medium in a computer network system for propagating and supplying program information as a carrier wave can be used. Here, the computer network is a WAN such as a LAN or the Internet, a wireless communication network, or the like, and the communication medium is a wired line such as an optical fiber or a wireless line.
 また、本発明に含まれるプログラムとしては、供給されたプログラムをコンピュータが実行することにより上述の実施形態の機能が実現されるようなもののみではない。例えば、そのプログラムがコンピュータにおいて稼働しているOS(オペレーティングシステム)或いは他のアプリケーションソフト等と共同して上述の実施形態の機能が実現される場合にも、かかるプログラムは本発明に含まれる。また、供給されたプログラムの処理の全て或いは一部がコンピュータの機能拡張ボードや機能拡張ユニットにより行われて上述の実施形態の機能が実現される場合にも、かかるプログラムは本発明に含まれる。 Further, the program included in the present invention is not limited to the one in which the functions of the above-described embodiments are realized by the computer executing the supplied program. For example, such a program is also included in the present invention when the function of the above-described embodiment is realized in cooperation with an OS (operating system) or other application software running on the computer. Further, when all or part of the processing of the supplied program is performed by the function expansion board or function expansion unit of the computer and the functions of the above-described embodiment are realized, the program is also included in the present invention.
 例えば、図10は、パーソナルユーザ端末装置の内部構成を示す模式図である。この図10において、1200はCPU1201を備えたパーソナルコンピュータ(PC)である。PC1200は、ROM1202またはハードディスク(HD)1211に記憶された、又はフレキシブルディスクドライブ(FD)1212より供給されるデバイス制御ソフトウェアを実行する。このPC1200は、システムバス1204に接続される各デバイスを総括的に制御する。 For example, FIG. 10 is a schematic diagram showing an internal configuration of a personal user terminal device. In FIG. 10, reference numeral 1200 denotes a personal computer (PC) having a CPU 1201. The PC 1200 executes device control software stored in the ROM 1202 or the hard disk (HD) 1211 or supplied from the flexible disk drive (FD) 1212. The PC 1200 generally controls each device connected to the system bus 1204.
 PC1200のCPU1201、ROM1202またはハードディスク(HD)1211に記憶されたプログラムにより、本実施形態の図2におけるステップS1~S5の手順等が実現される。 The program stored in the CPU 1201, the ROM 1202, or the hard disk (HD) 1211 of the PC 1200 implements the procedures of steps S1 to S5 in FIG.
 1203はRAMであり、CPU1201の主メモリ、ワークエリア等として機能する。1205はキーボードコントローラ(KBC)であり、キーボード(KB)1209や不図示のデバイス等からの指示入力を制御する。 1203 is a RAM that functions as a main memory, work area, and the like of the CPU 1201. A keyboard controller (KBC) 1205 controls instruction input from a keyboard (KB) 1209, a device (not shown), or the like.
 1206はCRTコントローラ(CRTC)であり、CRTディスプレイ(CRT)1210の表示を制御する。1207はディスクコントローラ(DKC)である。DKC1207は、ブートプログラム、複数のアプリケーション、編集ファイル、ユーザファイルそしてネットワーク管理プログラム等を記憶するハードディスク(HD)1211、及びフレキシブルディスク(FD)1212とのアクセスを制御する。ここで、ブートプログラムとは、起動プログラム:パソコンのハードやソフトの実行(動作)を開始するプログラムである。 1206 is a CRT controller (CRTC), which controls display on a CRT display (CRT) 1210. Reference numeral 1207 denotes a disk controller (DKC). The DKC 1207 controls access to a hard disk (HD) 1211 and a flexible disk (FD) 1212 that store a boot program, a plurality of applications, an editing file, a user file, a network management program, and the like. Here, the boot program is a startup program: a program for starting execution (operation) of hardware and software of a personal computer.
 1208はネットワーク・インターフェースカード(NIC)で、LAN1220を介して、ネットワークプリンタ、他のネットワーク機器、或いは他のPCと双方向のデータのやり取りを行う。 1208 is a network interface card (NIC) that exchanges data bidirectionally with a network printer, another network device, or another PC via the LAN 1220.
 [第3の実施形態]
 本実施形態では、第1の実施形態によるフォトマスクの設計方法を用いた半導体装置の製造方法を開示する。ここでは、半導体装置として、機能ブロック(例えばRAM)の構成要素であるMOSトランジスタを例示する。勿論、半導体装置として、MOSトランジスタ以外の半導体メモリ(例えば機能ブロックであるROMの構成要素)や他の機能ブロックの構成要素である種々の半導体デバイスにも適用可能である。
 図11は、第3の実施形態によるMOSトランジスタの製造方法をステップ順に示すフロー図である。図12は、第3の実施形態による半導体装置の製造方法により作製されたMOSトランジスタを示す概略断面図である。
[Third Embodiment]
In the present embodiment, a semiconductor device manufacturing method using the photomask design method according to the first embodiment is disclosed. Here, a MOS transistor which is a component of a functional block (for example, RAM) is illustrated as a semiconductor device. Of course, the semiconductor device can be applied to a semiconductor memory other than a MOS transistor (for example, a constituent element of a ROM that is a functional block) and various semiconductor devices that are constituent elements of another functional block.
FIG. 11 is a flowchart showing the MOS transistor manufacturing method according to the third embodiment in the order of steps. FIG. 12 is a schematic cross-sectional view showing a MOS transistor manufactured by the semiconductor device manufacturing method according to the third embodiment.
 本実施形態の半導体装置の製造方法は、OPCを用いてフォトマスクを設計するステップS21と、設計されたマスクパターンデータに基づいて、例えば電子線描画装置等を用いてフォトマスクを製造するステップS22と、製造されたフォトマスク(ここでは複数のフォトマスクからなるマスクセット)を用いて半導体装置の各種デバイスパターンを形成するステップS23とを有している。
 ここで、ステップS21は、第1の実施形態で説明したステップS1~S5からなる。
The semiconductor device manufacturing method of the present embodiment includes a step S21 of designing a photomask using OPC, and a step S22 of manufacturing a photomask using, for example, an electron beam drawing apparatus based on the designed mask pattern data. And step S23 of forming various device patterns of the semiconductor device using the manufactured photomask (here, a mask set including a plurality of photomasks).
Here, step S21 includes steps S1 to S5 described in the first embodiment.
 ステップS23では、先ず、素子間分離のレイヤーに対応したフォトマスクを用いて、リソグラフィーにより、シリコン基板21の素子分離領域に素子分離用のレジストパターンを形成する。このレジストパターンをマスクとして半導体基板をドライエッチングして、素子分離溝を形成する。レジストパターンは灰化処理等により除去される。
 そして、CVD法等により、素子分離溝を埋め込む絶縁膜、ここではシリコン酸化膜等を堆積し、化学機械研磨(Chemical Mechanical Polishing:CMP)法等により平坦化して、素子分離溝内をシリコン酸化物で充填するSTI(Shallow Trench Isolation)素子分離構造22を形成する。
In step S23, first, a resist pattern for element isolation is formed in the element isolation region of the silicon substrate 21 by lithography using a photomask corresponding to the element isolation layer. Using this resist pattern as a mask, the semiconductor substrate is dry etched to form element isolation grooves. The resist pattern is removed by ashing or the like.
Then, an insulating film for embedding the element isolation trench, such as a silicon oxide film, is deposited by CVD or the like, and planarized by a chemical mechanical polishing (CMP) method or the like, and the inside of the element isolation trench is silicon oxide. Then, an STI (Shallow Trench Isolation) element isolation structure 22 is formed.
 続いて、熱酸化法等により、シリコン基板21上に薄い絶縁膜、ここではシリコン酸化膜を形成した後、CVD法等により多結晶シリコン膜を堆積する。
 そして、ゲートのレイヤーに対応したフォトマスクを用いて、リソグラフィーにより、多結晶シリコン膜上にゲート用のレジストパターンを形成する。このレジストパターンをマスクとして多結晶シリコン膜及びシリコン酸化膜をドライエッチングして、シリコン基板21上にゲート絶縁膜23を介したゲート電極24をパターン形成する。レジストパターンは灰化処理等により除去される。
Subsequently, after a thin insulating film, here a silicon oxide film, is formed on the silicon substrate 21 by a thermal oxidation method or the like, a polycrystalline silicon film is deposited by a CVD method or the like.
Then, a resist pattern for the gate is formed on the polycrystalline silicon film by lithography using a photomask corresponding to the gate layer. Using this resist pattern as a mask, the polycrystalline silicon film and the silicon oxide film are dry-etched to pattern the gate electrode 24 on the silicon substrate 21 with the gate insulating film 23 interposed therebetween. The resist pattern is removed by ashing or the like.
 続いて、ゲート電極24をマスクとして、シリコン基板1の表層に不純物(P型であればホウ素(B)等、N型であればリン(P)や砒素(As)等)を所定のドーズ量及び加速エネルギーでイオン注入する。これにより、ゲート電極24の両側にエクステンション領域25が形成される。 Subsequently, using the gate electrode 24 as a mask, impurities (boron (B + ) or the like for P-type, phosphorus (P + ) or arsenic (As + ) or the like for N-type) are predetermined on the surface layer of the silicon substrate 1. The ion implantation is performed with the dose amount and the acceleration energy. As a result, extension regions 25 are formed on both sides of the gate electrode 24.
 続いて、CVD法等により、ゲート電極24を含むシリコン基板21の全面に絶縁膜、ここではシリコン酸化膜を堆積する。
 そして、シリコン酸化膜の全面を異方性ドライエッチング(エッチバック)し、シリコン酸化物をゲート電極24及びゲート絶縁膜23の両側のみに残し、サイドウォール絶縁膜26を形成する。
Subsequently, an insulating film, here a silicon oxide film, is deposited on the entire surface of the silicon substrate 21 including the gate electrode 24 by CVD or the like.
Then, the entire surface of the silicon oxide film is anisotropically dry etched (etched back) to leave the silicon oxide only on both sides of the gate electrode 24 and the gate insulating film 23, thereby forming the sidewall insulating film 26.
 続いて、ゲート電極24及びサイドウォール絶縁膜26をマスクとして、シリコン基板1の表層に不純物(P型であればホウ素(B)等、N型であればリン(P)や砒素(As)等)を所定のドーズ量及び加速エネルギーでイオン注入する。これにより、サイドウォール絶縁膜26の両側にエクステンション領域25と一部重畳されてなるソース/ドレイン領域27が形成される。 Subsequently, using the gate electrode 24 and the sidewall insulating film 26 as a mask, impurities (such as boron (B + ) in the case of P type) or phosphorus (P + ) or arsenic (As in the case of N type) are formed on the surface layer of the silicon substrate 1. + ) Etc.) is ion-implanted with a predetermined dose and acceleration energy. As a result, source / drain regions 27 partially overlapping with the extension regions 25 are formed on both sides of the sidewall insulating film 26.
 続いて、CVD法等により、ゲート電極24を埋め込む膜厚となるように、シリコン基板21の全面に絶縁膜、ここではシリコン酸化膜を堆積し、層間絶縁膜28を形成する。 Subsequently, an insulating film, here, a silicon oxide film is deposited on the entire surface of the silicon substrate 21 so as to have a film thickness for embedding the gate electrode 24 by a CVD method or the like, thereby forming an interlayer insulating film 28.
 続いて、コンタクト孔のレイヤーに対応したフォトマスクを用いて、リソグラフィーにより、層間絶縁膜28上にコンタクト孔用のレジストパターンを形成する。このレジストパターンをマスクとして層間絶縁膜28をドライエッチングして、ソース/ドレイン領域27の表面の一部を露出させるコンタクト孔を形成する。レジストパターンは灰化処理等により除去される。
 そして、所定のグルー膜等を介してコンタクト孔を埋め込むように導電材料、ここではタングステン(W)等をCVD法等により層間絶縁膜28上に堆積し、CMP法等により平坦化して、コンタクト孔内をWで充填するコンタクトプラグ29を形成する。
Subsequently, a resist pattern for contact holes is formed on the interlayer insulating film 28 by lithography using a photomask corresponding to the contact hole layer. Using this resist pattern as a mask, the interlayer insulating film 28 is dry-etched to form a contact hole exposing a part of the surface of the source / drain region 27. The resist pattern is removed by ashing or the like.
Then, a conductive material, here tungsten (W) or the like is deposited on the interlayer insulating film 28 by a CVD method or the like so as to embed the contact hole via a predetermined glue film or the like, and is flattened by a CMP method or the like. A contact plug 29 filling the inside with W is formed.
 続いて、層間絶縁膜28上に配線材料、ここではAl合金等をスパッタ法等により堆積する。
 そして、1層目の配線のレイヤーに対応したフォトマスクを用いて、リソグラフィーにより、配線材料上にコンタクト孔用のレジストパターンを形成する。このレジストパターンをマスクとして配線材料をドライエッチングして、コンタクトプラグ29と接続される配線31を形成する。レジストパターンは灰化処理等により除去される。
Subsequently, a wiring material, here, an Al alloy or the like is deposited on the interlayer insulating film 28 by sputtering or the like.
Then, a resist pattern for contact holes is formed on the wiring material by lithography using a photomask corresponding to the first wiring layer. Using this resist pattern as a mask, the wiring material is dry-etched to form a wiring 31 connected to the contact plug 29. The resist pattern is removed by ashing or the like.
 続いて、CVD法等により、配線31を埋め込む膜厚となるように、層間絶縁膜28の全面に絶縁膜、ここではシリコン酸化膜を堆積し、層間絶縁膜32を形成する。 Subsequently, an insulating film, here a silicon oxide film, is deposited on the entire surface of the interlayer insulating film 28 so as to have a film thickness for embedding the wiring 31 by a CVD method or the like, thereby forming an interlayer insulating film 32.
 なお、1層目の配線としては、いわゆるダマシン法により形成しても良い。
 詳細には、例えば、層間絶縁膜32(の下層部分)を形成した後、1層目の配線の配線溝のレイヤーに対応したフォトマスクを用いて、リソグラフィーにより、層間絶縁膜32上に配線溝用のレジストパターンを形成する。このレジストパターンをマスクとして層間絶縁膜32をドライエッチングして、コンタクトプラグ29の表面の一部を露出させる配線溝を形成する。レジストパターンは灰化処理等により除去される。
 そして、配線溝を埋め込むように導電材料、ここでは銅(Cu)又はCu合金等をメッキ法等により堆積し、CMP法等により平坦化して、配線溝内をCu又はCu合金で充填する配線を形成する。
 その後、配線を埋め込むように層間絶縁膜32(の上層部分)を形成する。
Note that the first-layer wiring may be formed by a so-called damascene method.
Specifically, for example, after forming the interlayer insulating film 32 (the lower layer portion thereof), the wiring groove is formed on the interlayer insulating film 32 by lithography using a photomask corresponding to the wiring groove layer of the first layer wiring. A resist pattern is formed. Using this resist pattern as a mask, the interlayer insulating film 32 is dry-etched to form a wiring groove exposing a part of the surface of the contact plug 29. The resist pattern is removed by ashing or the like.
Then, a conductive material, here copper (Cu) or Cu alloy or the like is deposited by a plating method or the like so as to fill the wiring groove, is flattened by a CMP method or the like, and the wiring filling the wiring groove with Cu or Cu alloy is formed. Form.
Thereafter, an interlayer insulating film 32 (upper layer portion) is formed so as to embed the wiring.
 続いて、ビア孔のレイヤーに対応したフォトマスクを用いて、リソグラフィーにより、層間絶縁膜32上にビア孔用のレジストパターンを形成する。このレジストパターンをマスクとして層間絶縁膜32をドライエッチングして、配線31の表面の一部を露出させるビア孔を形成する。レジストパターンは灰化処理等により除去される。
 そして、所定のグルー膜等を介してビア孔を埋め込むように導電材料、ここではタングステン(W)等をCVD法等により層間絶縁膜32上に堆積し、CMP法等により平坦化して、ビア孔内をWで充填するビアプラグ33を形成する。
Subsequently, a resist pattern for via holes is formed on the interlayer insulating film 32 by lithography using a photomask corresponding to the via hole layer. Using this resist pattern as a mask, the interlayer insulating film 32 is dry-etched to form a via hole exposing a part of the surface of the wiring 31. The resist pattern is removed by ashing or the like.
Then, a conductive material, here tungsten (W) or the like is deposited on the interlayer insulating film 32 by a CVD method or the like so as to embed the via hole via a predetermined glue film or the like, and is planarized by a CMP method or the like. A via plug 33 for filling the inside with W is formed.
 続いて、層間絶縁膜32上に配線材料、ここではAl合金等をスパッタ法等により堆積する。
 そして、2層目の配線のレイヤーに対応したフォトマスクを用いて、リソグラフィーにより、配線材料上にコンタクト孔用のレジストパターンを形成する。このレジストパターンをマスクとして配線材料をドライエッチングして、ビアプラグ33と接続される配線34を形成する。レジストパターンは灰化処理等により除去される。
 なお、2層目の配線についても、1層目の配線と同様に、ダマシン法により形成しても良い。
Subsequently, a wiring material, here, an Al alloy or the like is deposited on the interlayer insulating film 32 by a sputtering method or the like.
Then, a resist pattern for contact holes is formed on the wiring material by lithography using a photomask corresponding to the second wiring layer. Using this resist pattern as a mask, the wiring material is dry-etched to form a wiring 34 connected to the via plug 33. The resist pattern is removed by ashing or the like.
Note that the second-layer wiring may be formed by a damascene method as in the first-layer wiring.
 続いて、CVD法等により、配線34を埋め込む膜厚となるように、層間絶縁膜32の全面に絶縁膜、ここではシリコン酸化膜を堆積し、層間絶縁膜35を形成する。
 しかる後、更なる上層配線及び層間絶縁膜を形成し、MOSトランジスタを完成させる。
Subsequently, an insulating film, here, a silicon oxide film is deposited on the entire surface of the interlayer insulating film 32 so as to have a film thickness for embedding the wiring 34 by CVD or the like, and an interlayer insulating film 35 is formed.
Thereafter, a further upper layer wiring and an interlayer insulating film are formed to complete the MOS transistor.
 以上説明したように、本実施形態によれば、第1の実施形態による設計方法でフォトマスクを設計し、この設計に基づいて作製されたフォトマスク(マスクセット)を用いてMOSトランジスタを製造する。そのため、MOSトランジスタを構成する各デバイスパターンが所期の形状・サイズに正確に形成され、更なる微細化・高集積化の要請に十分応えることのできる信頼性の高いMOSトランジスタが実現する。 As described above, according to this embodiment, a photomask is designed by the design method according to the first embodiment, and a MOS transistor is manufactured using a photomask (mask set) produced based on this design. . Therefore, each device pattern constituting the MOS transistor is accurately formed in the desired shape and size, and a highly reliable MOS transistor that can sufficiently meet the demand for further miniaturization and higher integration is realized.
 本件によれば、OPCによる補正処理に際して、多種多様なデバイスパターンに対応して、機能ブロック毎に要求される補正精度でOPC処理を行い、出力データサイズを減少(最適化)させ、補正処理に要する時間の大幅な短縮化を実現することができる。 According to the present case, in the correction processing by OPC, the OPC processing is performed with the correction accuracy required for each functional block corresponding to various device patterns, the output data size is reduced (optimized), and the correction processing is performed. A significant reduction in the time required can be realized.

Claims (20)

  1.  フォトマスクのデータから複数の機能ブロックの情報を認識する第1の工程と、
     前記機能ブロック毎に予め規定された光近接効果補正の第1の精度情報を、前記機能ブロック毎に付与する第2の工程と、
     前記第1の精度情報に基づいて、前記機能ブロックに光近接効果補正を施す第3の工程と
     を含むことを特徴とするフォトマスクの設計方法。
    A first step of recognizing information of a plurality of functional blocks from photomask data;
    A second step of providing, for each functional block, first accuracy information of optical proximity effect correction that is defined in advance for each functional block;
    And a third step of performing optical proximity effect correction on the functional block based on the first accuracy information.
  2.  前記機能ブロックは複数のレイヤーからなり、
     前記第2の工程において、前記第1の精度情報と共に、前記レイヤー毎に予め規定された光近接効果補正の第2の精度情報を、前記レイヤー毎に付与することを特徴とする請求項1に記載のフォトマスクの設計方法。
    The functional block is composed of a plurality of layers,
    The said 2nd process WHEREIN: The 2nd precision information of the optical proximity effect correction prescribed | regulated previously for every said layer with the said 1st precision information is provided for every said layer, It is characterized by the above-mentioned. The photomask design method described.
  3.  前記第2の工程において、前記第1の精度情報及び前記第2の精度情報に基づいて、前記各機能ブロックの前記レイヤー毎に光近接効果補正の収束率を算出することを特徴とする請求項2に記載のフォトマスクの設計方法。 The optical proximity effect correction convergence rate is calculated for each of the layers of the functional blocks based on the first accuracy information and the second accuracy information in the second step. 3. A method for designing a photomask according to 2.
  4.  前記第1の工程において、前記フォトマスクのデータとして、前記フォトマスクのマスクパターンの設計データ、前記各機能ブロックにおける結線情報、及び前記各機能ブロックを構成する各セルの名称情報を認識することを特徴とする請求項1に記載のフォトマスクの設計方法。 In the first step, the photomask mask pattern design data, connection information in each functional block, and name information of each cell constituting each functional block are recognized as the photomask data. The method of designing a photomask according to claim 1, wherein:
  5.  光近接効果補正を用いたフォトマスクの設計装置であって、
     前記フォトマスクのデータを格納するデータ記憶部と、
     前記データ記憶部から読み出した前記データにより、複数の機能ブロックの情報を認識する機能ブロック認識部と、
     前記機能ブロック毎に予め規定された光近接効果補正の第1の精度情報を格納する第1の精度情報記憶部と、
     前記第1の精度情報記憶部から読み出した前記第1の精度情報を、前記機能ブロック毎に付与する精度情報付与部と、
     前記第1の精度情報に基づいて、前記機能ブロックに光近接効果補正を施す補正部と
     を含むことを特徴とするフォトマスクの設計装置。
    A photomask design apparatus using optical proximity correction,
    A data storage unit for storing the photomask data;
    A functional block recognition unit that recognizes information of a plurality of functional blocks based on the data read from the data storage unit;
    A first accuracy information storage unit that stores first accuracy information of optical proximity effect correction defined in advance for each functional block;
    An accuracy information giving unit that gives the first accuracy information read from the first accuracy information storage unit for each functional block;
    And a correction unit that performs optical proximity correction on the functional block based on the first accuracy information.
  6.  前記機能ブロックは複数のレイヤーからなり、
     前記レイヤー毎に予め規定された光近接効果補正の第2の精度情報を格納する第2の精度情報記憶部を更に含み、
     前記精度情報付与部は、前記第2の精度情報記憶部から読み出した前記第2の精度情報を、前記レイヤー毎に付与することを特徴とする請求項5に記載のフォトマスクの設計装置。
    The functional block is composed of a plurality of layers,
    A second accuracy information storage unit for storing second accuracy information of optical proximity effect correction pre-defined for each layer;
    6. The photomask design apparatus according to claim 5, wherein the accuracy information providing unit provides the second accuracy information read from the second accuracy information storage unit for each layer.
  7.  前記精度情報付与部は、前記第1の精度情報及び前記第2の精度情報に基づいて、前記各機能ブロックの前記レイヤー毎に光近接効果補正の収束率を算出することを特徴とする請求項6に記載のフォトマスクの設計装置。 The accuracy information giving unit calculates a convergence rate of optical proximity effect correction for each layer of the functional blocks based on the first accuracy information and the second accuracy information. 7. The photomask design apparatus according to 6.
  8.  前記データ記憶部は、前記フォトマスクのデータとして、前記フォトマスクのマスクパターンの設計データ、前記各機能ブロックにおける結線情報、及び前記各機能ブロックを構成する各セルの名称情報を記憶することを特徴とする請求項5に記載のフォトマスクの設計装置。 The data storage unit stores, as the photomask data, design data of the mask pattern of the photomask, connection information in each functional block, and name information of each cell constituting each functional block. The photomask design apparatus according to claim 5.
  9.  光近接効果補正を用いてフォトマスクを設計する工程と、
     設計されたマスクパターンデータに基づいてフォトマスクを製造する工程と、
     前記フォトマスクを用いて半導体装置のデバイスパターンを形成する工程と
     を含み、
     前記フォトマスクを設計する工程は、
     前記フォトマスクのデータから複数の機能ブロックの情報を認識する第1の工程と、
     前記機能ブロック毎に予め規定された光近接効果補正の第1の精度情報を、前記機能ブロック毎に付与する第2の工程と、
     前記第1の精度情報に基づいて、前記機能ブロックに光近接効果補正を施す第3の工程と
     を含むことを特徴とする半導体装置の製造方法。
    Designing a photomask using optical proximity correction;
    Manufacturing a photomask based on the designed mask pattern data;
    Forming a device pattern of a semiconductor device using the photomask, and
    The step of designing the photomask includes
    A first step of recognizing information of a plurality of functional blocks from the photomask data;
    A second step of providing, for each functional block, first accuracy information of optical proximity effect correction that is defined in advance for each functional block;
    And a third step of performing optical proximity correction on the functional block based on the first accuracy information. A method for manufacturing a semiconductor device, comprising:
  10.  前記機能ブロックは複数のレイヤーからなり、
     前記第2の工程において、前記第1の精度情報と共に、前記レイヤー毎に予め規定された光近接効果補正の第2の精度情報を、前記レイヤー毎に付与することを特徴とする請求項9に記載の半導体装置の製造方法。
    The functional block is composed of a plurality of layers,
    10. The second step, wherein, in addition to the first accuracy information, second accuracy information for optical proximity effect correction that is defined in advance for each layer is provided for each layer. The manufacturing method of the semiconductor device of description.
  11.  前記第2の工程において、前記第1の精度情報及び前記第2の精度情報に基づいて、前記各機能ブロックの前記レイヤー毎に光近接効果補正の収束率を算出することを特徴とする請求項10に記載の半導体装置の製造方法。 The optical proximity effect correction convergence rate is calculated for each of the layers of the functional blocks based on the first accuracy information and the second accuracy information in the second step. 10. A method for manufacturing a semiconductor device according to 10.
  12.  前記第1の工程において、前記フォトマスクのデータとして、前記フォトマスクのマスクパターンの設計データ、前記各機能ブロックの結線情報、及び前記各機能ブロックを構成するセルの名称情報を認識することを特徴とする請求項9に記載の半導体装置の製造方法。 In the first step, the photomask mask pattern design data, the connection information of each functional block, and the name information of the cells constituting each functional block are recognized as the photomask data. A method for manufacturing a semiconductor device according to claim 9.
  13.  フォトマスクのデータから複数の機能ブロックの情報を認識する第1の工程と、
     前記機能ブロック毎に予め規定された光近接効果補正の第1の精度情報を、前記機能ブロック毎に付与する第2の工程と、
     前記第1の精度情報に基づいて、前記機能ブロックに光近接効果補正を施す第3の工程と
     をコンピュータに実行させるためのフォトマスクの設計プログラム。
    A first step of recognizing information of a plurality of functional blocks from photomask data;
    A second step of providing, for each functional block, first accuracy information of optical proximity effect correction that is defined in advance for each functional block;
    A photomask design program for causing a computer to execute a third step of performing optical proximity correction on the functional block based on the first accuracy information.
  14.  前記機能ブロックは複数のレイヤーからなり、
     前記第2の工程において、前記第1の精度情報と共に、前記レイヤー毎に予め規定された光近接効果補正の第2の精度情報を、前記レイヤー毎に付与することを特徴とする請求項13に記載のフォトマスクの設計プログラム。
    The functional block is composed of a plurality of layers,
    14. In the second step, together with the first accuracy information, second accuracy information for optical proximity effect correction defined in advance for each layer is provided for each layer. The photomask design program described.
  15.  前記第2の工程において、前記第1の精度情報及び前記第2の精度情報に基づいて、前記各機能ブロックの前記レイヤー毎に光近接効果補正の収束率を算出することを特徴とする請求項14に記載のフォトマスクの設計プログラム。 The optical proximity effect correction convergence rate is calculated for each of the layers of the functional blocks based on the first accuracy information and the second accuracy information in the second step. 14. A photomask design program according to 14.
  16.  前記第1の工程において、前記フォトマスクのデータとして、前記フォトマスクのマスクパターンの設計データ、前記各機能ブロックの結線情報、及び前記各機能ブロックを構成するセルの名称情報を認識することを特徴とする請求項13に記載のフォトマスクの設計プログラム。 In the first step, the photomask mask pattern design data, the connection information of each functional block, and the name information of the cells constituting each functional block are recognized as the photomask data. The photomask design program according to claim 13.
  17.  フォトマスクのデータから複数の機能ブロックの情報を認識する第1の工程と、
     前記機能ブロック毎に予め規定された光近接効果補正の第1の精度情報を、前記機能ブロック毎に付与する第2の工程と、
     前記第1の精度情報に基づいて、前記機能ブロックに光近接効果補正を施す第3の工程と
     をコンピュータに実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体。
    A first step of recognizing information of a plurality of functional blocks from photomask data;
    A second step of providing, for each functional block, first accuracy information of optical proximity effect correction that is defined in advance for each functional block;
    A computer-readable recording medium recording a program for causing a computer to execute a third step of performing optical proximity effect correction on the functional block based on the first accuracy information.
  18.  前記機能ブロックは複数のレイヤーからなり、
     前記第2の工程において、前記第1の精度情報と共に、前記レイヤー毎に予め規定された光近接効果補正の第2の精度情報を、前記レイヤー毎に付与することを特徴とする請求項17に記載の記録媒体。
    The functional block is composed of a plurality of layers,
    18. In the second step, the second accuracy information of the optical proximity effect correction defined in advance for each layer is provided for each layer together with the first accuracy information. The recording medium described.
  19.  前記第2の工程において、前記第1の精度情報及び前記第2の精度情報に基づいて、前記各機能ブロックの前記レイヤー毎に光近接効果補正の収束率を算出することを特徴とする請求項18に記載の記録媒体。 The optical proximity effect correction convergence rate is calculated for each of the layers of the functional blocks based on the first accuracy information and the second accuracy information in the second step. 18. The recording medium according to 18.
  20.  前記第1の工程において、前記フォトマスクのデータとして、前記フォトマスクのマスクパターンの設計データ、前記各機能ブロックの結線情報、及び前記各機能ブロックを構成するセルの名称情報を認識することを特徴とする請求項17に記載の記録媒体。 In the first step, the photomask mask pattern design data, the connection information of each functional block, and the name information of the cells constituting each functional block are recognized as the photomask data. The recording medium according to claim 17.
PCT/JP2008/061463 2008-06-24 2008-06-24 Method for designing photomask, equipment for designing photomask, program, recording medium, and method for manufacturing semiconductor device WO2009157058A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/061463 WO2009157058A1 (en) 2008-06-24 2008-06-24 Method for designing photomask, equipment for designing photomask, program, recording medium, and method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/061463 WO2009157058A1 (en) 2008-06-24 2008-06-24 Method for designing photomask, equipment for designing photomask, program, recording medium, and method for manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
WO2009157058A1 true WO2009157058A1 (en) 2009-12-30

Family

ID=41444136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/061463 WO2009157058A1 (en) 2008-06-24 2008-06-24 Method for designing photomask, equipment for designing photomask, program, recording medium, and method for manufacturing semiconductor device

Country Status (1)

Country Link
WO (1) WO2009157058A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005250360A (en) * 2004-03-08 2005-09-15 Toshiba Microelectronics Corp Verification apparatus and verification method for mask pattern
WO2006118098A1 (en) * 2005-04-26 2006-11-09 Renesas Technology Corp. Semiconductor device and its manufacturing method, semiconductor manufacturing mask, and optical proximity processing method
JP2008020751A (en) * 2006-07-13 2008-01-31 National Institute Of Advanced Industrial & Technology Mask pattern design method and semiconductor device manufacturing method using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005250360A (en) * 2004-03-08 2005-09-15 Toshiba Microelectronics Corp Verification apparatus and verification method for mask pattern
WO2006118098A1 (en) * 2005-04-26 2006-11-09 Renesas Technology Corp. Semiconductor device and its manufacturing method, semiconductor manufacturing mask, and optical proximity processing method
JP2008020751A (en) * 2006-07-13 2008-01-31 National Institute Of Advanced Industrial & Technology Mask pattern design method and semiconductor device manufacturing method using the same

Similar Documents

Publication Publication Date Title
US8142961B2 (en) Mask pattern correcting method, mask pattern inspecting method, photo mask manufacturing method, and semiconductor device manufacturing method
EP2926364B1 (en) Metal density distribution for double pattern lithography
US8719740B2 (en) Semiconductor device which is subjected to optical proximity correction
CN100392662C (en) Manufacturing method and system for design layout and mask, semiconductor device manufacturing method
JP4254871B2 (en) Optical proximity effect correction method, optical proximity effect correction device, optical proximity effect correction program, semiconductor device manufacturing method, pattern design constraint formulation method, and optical proximity effect correction condition calculation method
JP5530804B2 (en) Semiconductor device, mask for manufacturing semiconductor device, and optical proximity correction method
TWI804797B (en) Semiconductor device and method for manufacturing semiconductor device
JP2002296754A (en) Production method for mask
US8584053B2 (en) Manufacturability enhancements for gate patterning process using polysilicon sub layer
US20060033049A1 (en) Design pattern data preparing method, mask pattern data preparing method, mask manufacturing method, semiconductor device manufacturing method, and program recording medium
US7949967B2 (en) Design Pattern correcting method, process proximity effect correcting method, and semiconductor device manufacturing method
JP4874149B2 (en) Mask pattern correction method and semiconductor device manufacturing method
JP2010045309A (en) Exposure method, and method of manufacturing semiconductor device
TW202310189A (en) Integrated circuits
JP2002110801A (en) Wiring resistance correction method
TWI472015B (en) Dynamic array architecture
US10691862B2 (en) Layouts for connecting contacts with metal tabs or vias
CN114038901A (en) Semiconductor device and method of manufacturing the same
US20100234973A1 (en) Pattern verifying method, method of manufacturing a semiconductor device and pattern verifying program
WO2009157058A1 (en) Method for designing photomask, equipment for designing photomask, program, recording medium, and method for manufacturing semiconductor device
JP4643302B2 (en) Mask pattern creation method, layout creation method, photomask manufacturing method, photomask, and semiconductor device manufacturing method
JP4153678B2 (en) Mask data generation method, exposure mask creation method, and pattern formation method
TW202139293A (en) Semiconductor device and manufacturing method thereof
TW202326282A (en) Methods of fabricating semiconductor devices
JP2011039201A (en) Method of preparing pattern data and method of manufacturing semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08765807

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 08765807

Country of ref document: EP

Kind code of ref document: A1