WO2009155876A1 - 数字广播信号的发送装置、发送方法和发送系统 - Google Patents

数字广播信号的发送装置、发送方法和发送系统 Download PDF

Info

Publication number
WO2009155876A1
WO2009155876A1 PCT/CN2009/072468 CN2009072468W WO2009155876A1 WO 2009155876 A1 WO2009155876 A1 WO 2009155876A1 CN 2009072468 W CN2009072468 W CN 2009072468W WO 2009155876 A1 WO2009155876 A1 WO 2009155876A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
unit
modulation
transmitting
differential
Prior art date
Application number
PCT/CN2009/072468
Other languages
English (en)
French (fr)
Inventor
鲍东山
司宏伟
刘飞
周玉宝
Original Assignee
北京新岸线移动多媒体技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京新岸线移动多媒体技术有限公司 filed Critical 北京新岸线移动多媒体技术有限公司
Priority to EP09768801A priority Critical patent/EP2306724A4/en
Priority to AU2009264458A priority patent/AU2009264458A1/en
Publication of WO2009155876A1 publication Critical patent/WO2009155876A1/zh
Priority to US12/976,304 priority patent/US20120147903A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/015High-definition television systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/238Interfacing the downstream path of the transmission network, e.g. adapting the transmission rate of a video stream to network bandwidth; Processing of multiplex streams
    • H04N21/2383Channel coding or modulation of digital bit-stream, e.g. QPSK modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H20/00Arrangements for broadcast or for distribution combined with broadcast
    • H04H20/28Arrangements for simultaneous broadcast of plural pieces of information
    • H04H20/30Arrangements for simultaneous broadcast of plural pieces of information by a single channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H20/00Arrangements for broadcast or for distribution combined with broadcast
    • H04H20/65Arrangements characterised by transmission systems for broadcast
    • H04H20/71Wireless systems
    • H04H20/72Wireless systems of terrestrial networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H60/00Arrangements for broadcast applications with a direct linking to broadcast information or broadcast space-time; Broadcast-related systems
    • H04H60/09Arrangements for device control with a direct linkage to broadcast information or to broadcast space-time; Arrangements for control of broadcast-related services
    • H04H60/11Arrangements for counter-measures when a portion of broadcast information is unavailable
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/85Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using pre-processing or post-processing specially adapted for video compression
    • H04N19/89Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using pre-processing or post-processing specially adapted for video compression involving methods or arrangements for detection of transmission errors at the decoder
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/24Systems for the transmission of television signals using pulse code modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems

Definitions

  • Digital broadcast signal transmitting device transmitting method and transmitting system
  • the present invention relates to the field of mobile multimedia broadcast technologies, and in particular, to a digital broadcast signal transmitting apparatus, and to a digital broadcast signal transmitting method and a digital broadcast signal transmitting system. Background technique
  • the world's mainstream mobile TV/mobile multimedia broadcast transmission standards include the DAB series of standards, the DVB-H standard, and the MediaFLO standard.
  • the DAB series of standards use a 1.712 MHz bandwidth mode of operation
  • the DVB-H and MediaFLO standards use multiple bandwidth modes of operation.
  • the transmitting end when transmitting the digital broadcast signal, the transmitting end needs to transmit the first group of data through the primary traffic channel (MSC) and the second group of data through the fast information channel (FIC).
  • the first set of data is transmitted by the MSC over at least one subchannel.
  • the first set of data includes service data of at least one of a plurality of services, and the plurality of services mainly include services such as audio, video, and data.
  • the second group of data mainly includes configuration information, service information of the service data, and emergency information broadcast.
  • DQPSK differential phase shift keying
  • the modulation method is fixed and very inflexible
  • the technical problem to be solved by the present invention is to provide a transmitting apparatus for a digital broadcast signal to solve the deficiencies of the DAB system.
  • the apparatus comprises: at least one first coding unit, each of the first coding units for performing forward error correction coding on data in one subchannel; at least one time domain interleaving a unit, each time domain interleaving unit receives the encoded data output by the first coding unit, and performs time domain interleaving on the encoded data.
  • the first multiplexing unit is configured to output the interleaved output of each time domain interleaving unit.
  • Data is multiplexed into primary service channel MSC data; a second coding unit, configured to perform forward error correction coding on the second group of data to obtain fast information channel FIC data; a differential modulation unit, configured to perform differential modulation on the FIC data by using the first modulation mode, and use at least two modulations
  • the method performs differential modulation on the MSC data, where the modulation level of the first modulation mode is lower than or equal to the modulation level of each modulation mode used for the MSC data; and, the frame generation and transmission unit, the differential modulation symbol sequence generated by the differential modulation unit
  • a signal unit is transmitted to transmit a frame and the signal unit is transmitted to transmit the frame.
  • a modulation scheme is used for the FIC data, and a plurality of modulation schemes are used for the MSC data. Since a variety of modulation methods are used, the flexibility of modulation is greatly increased. Moreover, since the MSC data is modulated by a high-order modulation method, the frequency resource utilization is greatly improved.
  • the method includes: performing forward error correction coding and time domain interleaving independently on data of each subchannel; multiplexing time-domain interleaved data of each subchannel into MSC data; Performing forward error correction coding to obtain FIC data; ⁇ differentially modulating the FIC data by using the first modulation method, and performing differential modulation on the MSC data by using at least two modulation modes; wherein the modulation level of the first modulation mode is lower than or A modulation level equal to each modulation mode for the MSC data; a differential modulation symbol sequence generated by the differential modulation to generate a signal unit transmission frame and transmit the signal unit transmission frame.
  • a modulation scheme is used for the FIC data, and a plurality of modulation schemes are used for the MSC data. Modulation flexibility is greatly increased due to the variety of modulation methods used. Moreover, since the MSC data is modulated by a high-order modulation method, the frequency resource utilization is greatly improved.
  • a still further technical problem to be solved by the present invention is to provide a transmission system for digital broadcast signals.
  • the system comprises: N digital broadcast signal transmitting devices, wherein N is an integer greater than 1; and a frequency division multiplexing unit for N signal units generated by the N digital broadcast signal transmitting devices
  • the transmission frame is frequency division multiplexed into one baseband transmission frame transmission. Multiple digital broadcast signals can be transmitted using this system.
  • Figure 1 is a schematic illustration of an embodiment of an apparatus provided by the present invention
  • FIG. 2 is a schematic illustration of another embodiment of the apparatus provided by the present invention.
  • Figure 3 is a schematic illustration of another embodiment of the apparatus provided by the present invention 4 is a flow chart of an embodiment of a method provided by the present invention
  • Figure 5 is a flow chart of another method embodiment provided by the present invention.
  • FIG. 6 is a schematic illustration of one system embodiment provided by the present invention. detailed description
  • FIG. 1 shows a structure of a digital broadcast signal transmitting apparatus, in which at least one first encoding unit S11, at least one time domain interleaving unit S12, a first multiplexing unit S13, and a second encoding unit S14 are included in the apparatus 100.
  • Each of the first coding units S1 is configured to perform forward error correction coding on the data in one subchannel, and each time domain interleaving unit S12 receives the encoded data output by the first coding unit S11, and the encoded data. Perform time domain interleaving.
  • the first multiplexing unit S13 is configured to multiplex the interleaved data output by each time domain interleaving unit S12 into MSC data.
  • the second coding unit S14 is configured to perform forward error correction coding on the second group of data to obtain FIC data.
  • the differential modulation unit S 15 is configured to differentially modulate the FIC data by using the first modulation mode, and differentially modulate the MSC data by using at least two modulation modes; wherein, the modulation level of the first modulation mode is lower than or equal to that for the MSC.
  • the modulation level of each modulation mode of the data The frame generation transmitting unit S16 generates a signal unit transmission frame using the differential modulation symbol sequence generated by the differential modulation unit S15 and transmits the signal unit transmission frame.
  • first coding unit S11 There are many forward error correction coding methods available to the first coding unit S11.
  • first coding unit S11 uses low density parity check (LDPC) coding method for data in the subchannel. Encode.
  • second coding unit S14 there are many forward error correction coding methods available to the second coding unit S14.
  • second coding unit S14 encodes the second set of data by a convolutional coding method.
  • LDPC low density parity check
  • the manner of time domain interleaving the data in the subchannel includes but is not limited to the following two types:
  • the time domain interleaving of the data in the subchannel is performed in a variable manner.
  • the time domain interleaving unit S12 may perform time domain interleaving on the received data directly according to the pre-configured fixed parameters after receiving the data from the first coding unit S11.
  • the time domain interleaving unit S12 needs to perform time domain interleaving on the received data according to the interleaving depth indicated by the configuration information after receiving the data from the first coding unit S11.
  • the first way its The advantage is that the implementation is relatively simple, and the disadvantage is that the single interleaving method lacks flexibility.
  • the second way has the advantage that the interleaving method is diverse and flexible, and the disadvantage is that the implementation is relatively complicated.
  • the interleaved data of each subchannel output by each time domain interleaving unit S12 is grouped into a common interleaved frame (CIF) in the first multiplexing unit S13, i.e., multiplexed into MSC data.
  • CIF interleaved frame
  • the differential modulation unit S15 the MSC data output from the first multiplexing unit S13 and the FIC data output from the second coding unit S14 are differentially modulated by different modulation methods.
  • DQPSK can be used for differential modulation.
  • DQPSK and eight-phase differential phase shift keying (8DPSK) can be used for differential modulation.
  • DQPSK and sixteen phase differential amplitude and phase joint keys can also be used.
  • the control (16DAPSK) method is used for differential modulation. It can also be differentially modulated with 8DPSK and 16DAPSK, or differential modulation with DQPSK, 8DPSK and 16DAPSK.
  • 8DPSK has strong anti-interference ability, good error performance, high spectrum utilization, and can solve the phase ambiguity problem caused by octal absolute phase shift keying (8PSK) in the coherent demodulation process, so that the performance of the system can be improved. improve.
  • 8PSK octal absolute phase shift keying
  • 16DAPSK has strong anti-interference ability, good error performance and high spectrum utilization. It can also solve the phase ambiguity problem caused by hexadecimal absolute phase shift keying (16PSK) in the coherent demodulation process.
  • the manner in which the MSC data is differentially modulated while the system is running includes but is not limited to the following two types:
  • the MSC data is differentially modulated in a fixed manner.
  • the fixed manner means that the position of each subchannel in the MSC is predetermined and the modulation scheme of each subchannel is specified.
  • the differential modulation unit S15 can directly differentially modulate the subchannels at the corresponding positions by using a predetermined modulation scheme.
  • the variable mode means that the position of each subchannel in the MSC and the modulation mode of each subchannel are not specified, but the location of each subchannel in the MSC and the modulation mode of each subchannel are indicated by the configuration information.
  • the differential modulation unit S15 needs to differentially modulate the subchannel of the corresponding position according to the indicated modulation scheme according to the indication of the configuration information.
  • the frame generation and transmission unit S16 may perform orthogonal frequency division multiplexing (OFDM) modulation on the differential modulation symbol sequence together with the phase reference symbol and the null symbol to generate respective OFDM symbols.
  • OFDM orthogonal frequency division multiplexing
  • the resulting continuous OFDM The symbols are multiplexed into signal unit transmission frames; or, the differential modulation symbol sequences are OFDM-modulated along with the phase reference symbols to respectively generate respective OFDM symbols, and then the generated continuous OFDM symbols are multiplexed into null signal symbols into signal unit transmission frames.
  • the signal unit transmission frame includes a synchronization channel, an FIC, and an MSC.
  • Fig. 2 shows a more specific structure of a digital broadcast signal transmitting apparatus in an application scenario.
  • the data in the subchannel is time-interleaved in a variable manner, and the MSC data is differentially modulated in a variable manner. Therefore, the interleaving depth used is indicated.
  • the parameters for defining the subchannel organization need to be set in the configuration information, including but not limited to the symbol mapping manner.
  • the punctured convolutional coding unit S24 performs punctured convolutional coding on the second set of data including the configuration information.
  • the LDPC coding unit S21 and the time domain interleaving unit S22 in series are independently performing LDPC coding and time domain interleaving on data of one subchannel; the main traffic channel multiplexing unit S23 is configured to output each time domain interleaving unit S22.
  • the interleaved data of each subchannel constitutes a CIF.
  • the capacity of the subchannel is calculated by a capacity unit (CU), and the size of the CU is 32 ⁇ n bits.
  • QPSK quadrature phase shift keying
  • 8PSK eight-phase phase shift keying
  • n 3
  • 16PSK sixteen phase When shift keying (16PSK)
  • the time domain interleaving unit S22 After the LDPC encoding unit S21 performs LDPC encoding on the data, the time domain interleaving unit S22 performs time domain interleaving on the encoded data between the LDPC encoding blocks of the same subchannel according to the interleaving depth indicated by the configuration information. An optional manner is that the time domain interleaving unit S22 performs bit-based convolutional interleaving on the encoded data according to the interleaving depth.
  • the main service channel multiplexing unit S23 continuously arranges CUs of the same length, and inserts padding data between CUs of different lengths, thereby composing CIFs of time-interleaved data of each sub-channel.
  • the bit transmission frame multiplexing unit S25 performs bit transmission frame multiplexing on the CIF obtained by the primary traffic channel multiplexing unit S23 and the convolutionally encoded FIC data obtained by the punctured convolutional coding unit S24, thereby combining the two channels of data into one path.
  • the symbol mapping unit S26 performs symbol mapping on the data of each subchannel in the MSC data according to the instruction of the configuration information, and performs symbol mapping on the FIC data by the QPSK method.
  • the modulating unit S27 performs corresponding differential modulation on the CIF and FIC data. A sequence of differential modulation symbols. In an optional manner, the modulating unit S27 performs differential modulation on the same subcarrier of the adjacent OFDM symbol.
  • the OFDM symbol generating unit S28 is configured to OFDM-modulate the differential modulation symbol sequence together with the phase reference symbol and the null symbol to generate respective OFDM symbols.
  • the symbol transmission frame multiplexes the unit transmission frame.
  • the spectrum of the data is dispersed and kept constant, and may be in each LDPC coding unit S21.
  • a first energy diffusion unit is added to perform energy diffusion on the data of each subchannel. As shown in FIG. 3, the first energy diffusion unit S31 performs bitwise modulo 2 according to the input sequence and the pseudo random sequence. After the addition, the data after the energy diffusion can be generated. Similarly, a second energy diffusion unit S32 can be added before the punctured convolutional coding unit S24 for energy diffusion of the second set of data.
  • a frequency domain interleaving unit S33 may be added between the mapping unit S26 and the modulating unit S27 for performing frequency domain interleaving on the symbols obtained by mapping the symbol mapping unit 26.
  • the frequency domain interleaving unit S33 converts the symbols obtained by the mapping into OFDM according to different transmission modes.
  • the symbol effective subcarrier number K is divided into blocks for frequency domain interleaving, and then the modulating unit S27 differentially modulates the frequency domain interleaved symbols.
  • the frequency domain interleaving is a block interleave of symbols, and the interleave block size is equal to the number K of effective subcarriers.
  • FIG. 4 shows a flow of a method for transmitting a digital broadcast signal, the method comprising:
  • step 41 forward error correction coding and time domain interleaving are performed independently for the data of each subchannel.
  • step 42 the time-interleaved data of each sub-channel is multiplexed into MSC data, that is, the data interleaved by each sub-channel is formed into a CIF.
  • step 43 forward error correction coding is performed on the second set of data to obtain FIC data.
  • step 44 the FIC data is differentially modulated by the first modulation method, and the MSC data is differentially modulated by at least two modulation methods.
  • the modulation level of the first modulation mode is lower than or equal to the modulation level of each modulation mode used for the MSC data.
  • the signal unit transmission frame is generated using the differential modulation symbol sequence generated by the differential modulation and the signal unit transmission frame is transmitted.
  • forward error correction coding methods used for data of each subchannel
  • the method chosen is to encode the data in the subchannel by using the LDPC coding method.
  • forward error correction codes for the second set of data there are many forward error correction codes for the second set of data.
  • An alternative method is to encode the second set of data using a convolutional coding method.
  • the manner of time domain interleaving the data in the subchannel includes but is not limited to the following two types:
  • the time domain interleaving of the data in the subchannel is performed in a variable manner.
  • the received data when the data in the subchannel is interleaved, the received data may be directly interleaved in time domain according to the pre-specified parameters.
  • the second mode when interleaving the data in the subchannel, the received data needs to be time-interleaved according to the interleaving depth indicated by the configuration information.
  • the first way the advantage is that the implementation is relatively simple, and the disadvantage is that the transaction mode is single and lacks flexibility.
  • the second way has the advantage that the interleaving method is diverse and flexible, and the disadvantage is that the implementation is relatively complicated.
  • the FIC data can be differentially modulated by the DQPSK method
  • the MSC data can be differentially modulated by the 8DPSK method
  • the differential modulation can be performed by the 16DAPSK method
  • the differential modulation can be performed by a higher order method.
  • the manner in which the MSC data is differentially modulated while the system is running includes but is not limited to the following two types:
  • the MSC data is differentially modulated in a fixed manner.
  • the fixed manner means that the position of each subchannel in the MSC is predetermined and the modulation scheme of each subchannel is specified.
  • the subchannels at the corresponding positions can be directly differentially modulated by a predetermined modulation scheme.
  • variable mode means that the position of each subchannel in the MSC and the modulation mode of each subchannel are not specified, but the location of each subchannel in the MSC and the modulation mode of each subchannel are indicated by the configuration information. In this case, when modulating the MSC data, it is necessary to differentially modulate the subchannel of the corresponding location according to the indicated modulation scheme according to the indication of the configuration information.
  • the differential modulation symbol sequence may be OFDM-modulated along with the phase reference symbol and the null symbol to respectively generate respective OFDM symbols, and then the generated continuous OFDM symbols are multiplexed into signal unit transmission frames; or, the difference is
  • the modulation symbol sequence is OFDM modulated along with the phase reference symbols to generate respective OFDM symbols, which are then generated
  • the continuous OFDM symbols are multiplexed with null symbols into signal unit transmission frames.
  • Fig. 5 shows a more specific flow of a method of transmitting a digital broadcast signal in an application scenario.
  • the data in the subchannel is time-interleaved in a variable manner, and the MSC data is differentially modulated in a variable manner. Therefore, the interleaving depth used is indicated.
  • the parameters for defining the subchannel organization need to be set in the configuration information, including but not limited to the symbol mapping manner.
  • step 51 the FIC data is obtained by performing punctured convolutional coding on the second set of data including the configuration information at the FIC.
  • the MSC independently performs LDPC encoding and time domain interleaving on the data for each subchannel.
  • the encoded data is time-interleaved according to the interleaving depth indicated by the configuration information between the LDPC coded blocks of the same subchannel.
  • An alternative is to perform bit-based convolutional interleaving of the encoded data based on the interleaving depth.
  • step 53 the data interleaved by each subchannel is formed into a CIF.
  • the data interleaved by time domain of each subchannel is formed into a CIF.
  • step 54 the CIF and FIC data are subjected to bit transmission frame multiplexing, thereby combining the two channels of data into one data bit stream.
  • step 55 the FIC data is symbol-mapped by the QPSK method, and the data of each sub-channel in the MSC data is symbol-mapped according to the indication of the configuration information.
  • step 56 the differential modulation symbol sequence ⁇
  • An alternative is to perform differential modulation on the same subcarrier of adjacent OFDM symbols.
  • the differential modulation symbol sequence is OFDM modulated along with the phase reference symbols and the null symbols to generate respective OFDM symbols.
  • the generated consecutive OFDM symbols are multiplexed into signal unit transmission frames and transmitted.
  • energy diffusion may be increased before step 52 in order to limit the occurrence of consecutive "0" or continuous " ⁇ " lengths of data in the subchannel to keep the spectrum of the data dispersed and remain stable.
  • the step of increasing energy diffusion before step 51 may be used to perform energy diffusion on the second set of data.
  • a frequency domain interleaving process may be added between step 55 and step 56 for frequency domain interleaving of the symbols obtained by the mapping.
  • the symbols obtained by the mapping are divided into blocks according to the number of effective OFDM symbols of the OFDM symbol in different transmission modes to perform frequency domain interleaving, and then the symbols interleaved in the frequency domain are differentially modulated.
  • the frequency domain interleaving is a block interleave of symbols, and the interleave block size is equal to the number of effective subcarriers! ⁇
  • Fig. 6 shows a structure of a digital broadcast signal transmitting system in which N digital broadcast signal transmitting means S61 and a frequency division multiplexing unit S62 are included, where N is an integer greater than one.
  • the digital broadcast signal transmitting apparatus S61 can employ any of the digital broadcast signal transmitting apparatuses described in the above embodiments.
  • the frequency division multiplexing unit S62 is configured to frequency-multiplex multiplex the N-channel signal unit transmission frames generated by the N digital broadcast signal transmitting devices S61 into one baseband transmission frame transmission.
  • the frequency division multiplexing unit S62 moves the N-channel signal unit transmission frame to N frequency points, and the interval between two adjacent frequency points is 1.544 MHz.
  • the N-channel signal unit transmission frame may be generated by using the digital broadcast signal transmitting method described in each of the foregoing embodiments; and then, the N-channel signal unit transmission frame frequency is divided. It is transmitted as a baseband transmission frame.
  • An optional method is to move the N-channel signal unit transmission frame to N frequency points, and the interval between two adjacent frequency points is 1.544 MHz.
  • N the interval between two adjacent frequency points
  • the present invention also provides an integrated circuit for implementing the method, apparatus or system of any of the above embodiments.
  • the present invention also provides a computer readable medium storing a program for implementing the method of any of the above embodiments.
  • the method or apparatus involved in the above embodiments may be used to generate a baseband signal or may be used to generate a non-baseband signal. That is to say, the baseband signal transmission frame generated by the above embodiment may be a baseband signal or a non-baseband signal.
  • the present invention also provides an integrated circuit for implementing the method or apparatus of any of the above embodiments.
  • the invention also provides a computer readable medium storing a program for implementing the method of any of the above embodiments.
  • the method or apparatus involved in the above embodiments may be used to generate a baseband signal or may be used to generate a non-baseband signal. That is to say, the baseband signal transmission frame generated by the above embodiment may be a baseband signal or a non-baseband signal.
  • DSPs digital signal processors
  • ASICs application specific integrated circuits
  • FPGAs field programmable gate arrays
  • a general purpose processor may be a microprocessor, but in another case the processor may be any conventional processor, controller, microcontroller or state machine.
  • the processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such structure.
  • the steps of the method described in connection with the above disclosed embodiments may be embodied directly in hardware, a software module executed by a processor, or a combination of both.
  • Software modules may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM, or any other form of storage medium known in the art.
  • a typical storage medium is coupled to the processor such that the processor can read information from the storage medium and can write information to the storage medium.
  • the storage medium is an integral part of the processor.
  • the processor and storage medium may exist in an ASIC.
  • the ASIC may exist in a subscriber station.
  • the processor and storage medium may exist as discrete components in the subscriber station.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Description

数字广播信号的发送装置、 发送方法和发送系统 技术领域
本发明涉及移动多媒体广播技术领域, 尤其涉及一种数字广播信号发 送装置, 还涉及一种数字广播信号发送方法和一种数字广播信号发送系统。 背景技术
目前, 全球主流手机电视 /移动多媒体广播传输标准有 DAB系列标准、 DVB-H标准以及 MediaFLO标准。 在信道带宽方面, DAB 系列标准使用 1.712MHz带宽的工作模式, DVB-H标准和 MediaFLO标准使用多种带宽 的工作模式。
在 DAB系统中, 发送端在发送数字广播信号时, 需要通过主业务信道 ( MSC )传输第一组数据, 通过快速信息信道(FIC )传输第二组数据。 在 MSC通过至少一个子信道传输第一组数据。 第一组数据包括多种业务中至 少一种业务的业务数据, 所述多种业务主要包括音频、 视频、 数据等业务。 第二组数据主要包括配置信息、 所述业务数据的业务信息和紧急信息广播 等信息。 无论是对 FIC还是对 MSC中的各个子信道, DAB系统都釆用统 一的四相差分相移键控(DQPSK ) 方式对这些信道和子信道中的数据进行 差分调制。 其不足之处主要有两点:
1、 调制方式固定, 很不灵活;
2、 只釆用低阶差分调制, 频率资源利用率低。 发明内容
有鉴于此, 本发明要解决的技术问题是提供一种数字广播信号的发送 装置, 以解决 DAB系统的不足。
在数字广播信号发送装置的一个实施例中, 该装置包括: 至少一个第 一编码单元, 每个第一编码单元用于对一个子信道中的数据进行前向纠错 编码; 至少一个时域交织单元, 每个时域交织单元接收一个第一编码单元 输出的编码后的数据, 对编码后的数据进行时域交织; 第一复用单元, 用 于将各时域交织单元输出的交织后的数据复用成主业务信道 MSC数据; 第 二编码单元,用于对第二组数据进行前向糾错编码,获得快速信息信道 FIC 数据; 差分调制单元, 用于釆用第一调制方式对 FIC数据进行差分调制, 釆用至少两种调制方式对 MSC数据进行差分调制; 其中, 第一调制方式的 调制级别低于或等于用于 MSC数据的各调制方式的调制级别; 和, 帧生成 发送单元, 利用差分调制单元生成的差分调制符号序列生成信号单元传输 帧并发送所述信号单元传输帧。 在该实施例中对 FIC数据釆用了一种调制 方式, 而对 MSC数据釆用了多种调制方式。 由于釆用了多种调制方式, 因 此大大增加了调制的灵活性。 而且, 由于釆用高阶的调制方式对 MSC数据 进行调制, 因此大大提高了频率资源利用率。
本发明要解决的另一个技术问题是提供一种数字广播信号的发送方 法。 在一个实施例中, 该方法包括: 对每个子信道的数据独立地进行前向 纠错编码和时域交织; 将各子信道时域交织后的数据复用成 MSC数据; 对 第二组数据进行前向纠错编码, 获得 FIC数据; 釆用第一调制方式对 FIC 数据进行差分调制, 釆用至少两种调制方式对 MSC数据进行差分调制; 其 中,第一调制方式的调制级别低于或等于用于 MSC数据的各调制方式的调 制级别; 利用差分调制生成的差分调制符号序列生成信号单元传输帧并发 送所述信号单元传输帧。 在该实施例中对 FIC数据釆用了一种调制方式, 而对 MSC数据釆用了多种调制方式。 由于釆用了多种调制方式, 因此大大 增加了调制的灵活性。 而且, 由于釆用高阶的调制方式对 MSC数据进行调 制, 因此大大提高了频率资源利用率。
本发明要解决的更进一步的技术问题是提供一种数字广播信号的发送 系统。 在一些实施例中, 该系统包括: N个数字广播信号发送装置, 其中 N 为大于 1的整数; 和一个频分复用单元, 用于将 N个数字广播信号发送装置 生成的 N路信号单元传输帧频分复用成一路基带传输帧发送。利用该系统可 以发送多路数字广播信号。 附图说明
图 1是本发明提供的一个装置实施例的示意图;
图 2是本发明提供的另一个装置实施例的示意图;
图 3是本发明提供的另一个装置实施例的示意图 图 4是本发明提供的一个方法实施例的流程图;
图 5是本发明提供的另一个方法实施例的流程图;
图 6是本发明提供的一个系统实施例的示意图。 具体实施方式
图 1示出了数字广播信号发送装置的一种结构, 在该装置 100中包括至 少一个第一编码单元 Sl l、 至少一个时域交织单元 S12、 第一复用单元 S13、 第二编码单元 S14、 差分调制单元 S15和帧生成发送单元 S16。
每个第一编码单元 Sl l用于对一个子信道中的数据进行前向糾错编码, 每个时域交织单元 S12接收一个第一编码单元 S11输出的编码后的数据, 对 编码后的数据进行时域交织。
第一复用单元 S13用于将各时域交织单元 S12输出的交织后的数据复用 成 MSC数据。 第二编码单元 S14用于对第二组数据进行前向纠错编码, 获得 FIC数据。 差分调制单元 S 15用于釆用第一调制方式对 FIC数据进行差分调 制, 釆用至少两种调制方式对 MSC数据进行差分调制; 其中, 第一调制方 式的调制级别低于或等于用于 MSC数据的各调制方式的调制级别。 帧生成 发送单元 S16利用差分调制单元 S15生成的差分调制符号序列生成信号单元 传输帧并发送所述信号单元传输帧。
其中, 可供第一编码单元 S11 使用的前向纠错编码方法有很多, 一种 可选的方法是第一编码单元 S11釆用低密度奇偶校验 ( LDPC )编码方法对 子信道中的数据进行编码。 同样, 可供第二编码单元 S14使用的前向纠错 编码方法也有很多, 一种可选的方法是第二编码单元 S14釆用卷积编码方 法对第二组数据进行编码。
在系统运行时, 对子信道中的数据进行时域交织的方式包括但不限于 下述两种:
一、 釆用固定的方式对子信道中的数据进行时域交织;
二、 釆用可变的方式对子信道中的数据进行时域交织。
选用第一种方式时, 时域交织单元 S12从第一编码单元 S11收到数据 后直接按预先配置好的固定参数对收到的数据进行时域交织即可。 选用第 二种方式时, 时域交织单元 S12从第一编码单元 S11收到数据后需要根据 配置信息所指示的交织深度对收到的数据进行时域交织。 第一种方式, 其 优点是实现相对简单, 缺点是交织方式单一缺乏灵活性。 第二种方式, 其 优点是交织方式多样比较灵活, 缺点是实现相对复杂。
各时域交织单元 S12 输出的各子信道交织后的数据在第一复用单元 S13中被组成公共交织帧( CIF ),即复用成 MSC数据。在差分调制单元 S15 , 釆用不同的调制方式对第一复用单元 S13输出的 MSC数据和第二编码单元 S14输出的 FIC数据进行差分调制。
对 FIC数据可以釆用 DQPSK方式进行差分调制, 对 MSC数据可以釆 用 DQPSK和八相差分相移键控( 8DPSK )方式进行差分调制, 也可以釆用 DQPSK和十六相差分幅度和相位联合键控( 16DAPSK )方式进行差分调制, 也可以釆用 8DPSK和 16DAPSK方式进行差分调制, 也可以釆用 DQPSK、 8DPSK和 16DAPSK方式进行差分调制。 通过对不同子信道中的数据釆用 不同的方式调制, 即可实现釆用多种调制方式对 MSC数据进行差分调制。
8DPSK的优点在于, 抗干扰能力强、 误码性能好、 频谱利用率高, 而 且能够地解决八进制绝对移相键控(8PSK )在相干解调过程中产生的相位 模糊问题,使系统的性能得以提高。 16DAPSK的优点在于,抗干扰能力强、 误码性能好、频谱利用率高,也能够地解决十六进制绝对移相键控( 16PSK ) 在相干解调过程中产生的相位模糊问题。
在系统运行时,对 MSC数据进行差分调制的方式包括但不限于下述两 种:
A、釆用固定的方式对 MSC数据进行差分调制。所谓固定的方式是指, 预先规定各子信道在 MSC中的位置并规定每个子信道的调制方式。
在这种情况下, 差分调制单元 S15在对 MSC数据进行调制时, 可以直 接对相应位置的子信道釆用规定的调制方式进行差分调制。
B、釆用可变的方式对 MSC数据进行差分调制。 所谓可变的方式是指, 不规定各子信道在 MSC中的位置以及每个子信道的调制方式, 而是通过配 置信息指示各子信道在 MSC中的位置以及每个子信道的调制方式。在这种 情况下, 差分调制单元 S15在对 MSC数据进行调制时, 需要根据配置信息 的指示, 对相应位置的子信道按指示的调制方式进行差分调制。
帧生成发送单元 S16从差分调制单元 S15收到差分调制符号序列后, 可以将差分调制符号序列连同相位参考符号和空符号进行正交频分复用 ( OFDM )调制, 分别生成各自的 OFDM符号, 然后将生成的连续 OFDM 符号复用成信号单元传输帧; 或者, 将差分调制符号序列连同相位参考符 号进行 OFDM调制,分别生成各自的 OFDM符号,然后将生成的连续 OFDM 符号连同空符号复用成信号单元传输帧。 其中, 所述信号单元传输帧包括 同步信道、 FIC和 MSC。
图 2示出了在某一应用场景下数字广播信号发送装置的一种更具体的 结构。 在该应用场景下, 釆用可变的方式对子信道中的数据进行时域交织、 釆用可变的方式对 MSC数据进行差分调制, 因此需要对釆用的交织深度加 以指示。 在配置信息中需要设置用于定义子信道组织的参数, 所述参数包 括但不限于符号映射方式。
在 FIC, 删余卷积编码单元 S24对包括配置信息在内的第二组数据进行 删余卷积编码。
在 MSC,—路串联的 LDPC编码单元 S21和时域交织单元 S22独立地对一 个子信道的数据进行 LDPC编码和时域交织; 主业务信道复用单元 S23用于 将各时域交织单元 S22输出的各子信道交织后的数据组成 CIF。
其中, 子信道的容量以容量单元 (CU )计算, CU的大小为 32χη比特
( bit ) , n的取值与符号映射方式有关, 即 n与差分调制方式有关。 例如当 符号映射方式为四相相移键控 ( QPSK ) 时, n=2; 当符号映射方式为八相 相移键控 ( 8PSK ) 时, n=3; 当符号映射方式为十六相相移键控(16PSK ) 时, n=4。
LDPC编码单元 S21对数据进行 LDPC编码后, 时域交织单元 S22在同一 子信道的 LDPC编码块之间根据配置信息指示的交织深度对编码后的数据 进行时域交织。 一种可选的方式是时域交织单元 S22根据所述交织深度对编 码后的数据进行基于比特的卷积交织。
主业务信道复用单元 S23将相同长度的 CU连续排列, 在不同长度的 CU 之间插入填充数据, 从而将各子信道时域交织后的数据组成 CIF。
比特传输帧复用单元 S25将主业务信道复用单元 S23获得的 CIF和删余 卷积编码单元 S24获得的卷积编码后的 FIC数据进行比特传输帧复用, 从而 将两路数据合并为一路数据比特流。 符号映射单元 S26按配置信息的指示, 对 MSC数据中各子信道的数据进行符号映射, 对 FIC数据釆用 QPSK方式进 行符号映射。 然后, 调制单元 S27对 CIF和 FIC数据进行相应的差分调制获得 差分调制符号序列。 其中一种可选的方式是, 调制单元 S27在相邻 OFDM符 号的同一个子载波上进行差分调制。
OFDM符号生成单元 S28用于将差分调制符号序列连同相位参考符号 和空符号进行 OFDM调制, 分别生成各自的 OFDM符号。符号传输帧复用单 元传输帧。
在图 2所述的实施例中, 为限制子信道中的数据出现连续的 "0"或连续 的 "Γ,的长度, 使数据的频谱弥散而保持稳恒, 可以在每个 LDPC编码单元 S21 之前增加一个第一能量扩散单元, 用于对各子信道的数据进行能量扩 散。 如图 3所示, 第一能量扩散单元 S31将数据的比特流按照输入顺序与 伪随机序列进行逐位模二相加后, 即可产生能量扩散后数据。 同理, 也可 以在删余卷积编码单元 S24之前增加一个第二能量扩散单元 S32,用于对第 二组数据进行能量扩散。 另外, 在符号映射单元 S26和调制单元 S27之间 可以增加一个频域交织单元 S33 , 用于将符号映射单元 26映射获得的符号 进行频域交织。 频域交织单元 S33 将映射获得的符号按不同传输模式下 OFDM符号有效子载波数 K划分成块进行频域交织, 然后调制单元 S27对 频域交织后的符号进行差分调制。 这里, 频域交织是符号的块交织, 交织 块大小等于有效子载波数 K。
图 4示出了数字广播信号发送方法的一个流程, 该方法包括:
在步骤 41 , 对每个子信道的数据独立地进行前向纠错编码和时域交织。 在步骤 42, 将各子信道时域交织后的数据复用成 MSC数据, 也就是将 各子信道交织后的数据组成 CIF。
在步骤 43 , 对第二组数据进行前向糾错编码获得 FIC数据。
在步骤 44, 釆用第一调制方式对 FIC数据进行差分调制, 釆用至少两种 调制方式对 MSC数据进行差分调制。
其中, 第一调制方式的调制级别低于或等于用于 MSC数据的各调制方 式的调制级别。
在步骤 45 , 利用差分调制生成的差分调制符号序列生成信号单元传输 帧并发送所述信号单元传输帧。
其中, 对每个子信道的数据使用的前向纠错编码方法有很多, 一种可 选的方法是釆用 LDPC编码方法对子信道中的数据进行编码。 同样, 对第 二组数据进行前向糾错编码也有很多, 一种可选的方法是釆用卷积编码方 法对第二组数据进行编码。
在系统运行时, 对子信道中的数据进行时域交织的方式包括但不限于 下述两种:
一、 釆用固定的方式对子信道中的数据进行时域交织;
二、 釆用可变的方式对子信道中的数据进行时域交织。
选用第一种方式的情况下, 在对子信道中的数据进行交织时直接按预 先规定的参数对收到的数据进行时域交织即可。 选用第二种方式的情况下 , 在对子信道中的数据进行交织时需要根据配置信息所指示的交织深度对收 到的数据进行时域交织。 第一种方式, 其优点是实现相对简单, 缺点是交 织方式单一缺乏灵活性。 第二种方式, 其优点是交织方式多样比较灵活, 缺点是实现相对复杂。
进行差分调制时,对 FIC数据可以釆用 DQPSK方式进行差分调制,对 MSC数据可以釆用 8DPSK方式进行差分调制,也可以釆用 16DAPSK方式 进行差分调制, 或者釆用更高阶的方式进行差分调制。
在系统运行时,对 MSC数据进行差分调制的方式包括但不限于下述两 种:
A、釆用固定的方式对 MSC数据进行差分调制。所谓固定的方式是指, 预先规定各子信道在 MSC中的位置并规定每个子信道的调制方式。
在这种情况下, 在对 MSC数据进行调制时, 可以直接对相应位置的子 信道釆用规定的调制方式进行差分调制。
B、釆用可变的方式对 MSC数据进行差分调制。 所谓可变的方式是指, 不规定各子信道在 MSC中的位置以及每个子信道的调制方式, 而是通过配 置信息指示各子信道在 MSC中的位置以及每个子信道的调制方式。在这种 情况下, 在对 MSC数据进行调制时, 需要根据配置信息的指示, 对相应位 置的子信道按指示的调制方式进行差分调制。
获得差分调制符号序列后, 可以将差分调制符号序列连同相位参考符 号和空符号进行 OFDM调制, 分别生成各自的 OFDM符号, 然后将生成的 连续 OFDM符号复用成信号单元传输帧; 或者, 将差分调制符号序列连同 相位参考符号进行 OFDM调制, 分别生成各自的 OFDM符号, 然后将生成 的连续 OFDM符号连同空符号复用成信号单元传输帧。
图 5示出了在某一应用场景下数字广播信号发送方法的一种更具体的 流程。 在该应用场景下, 釆用可变的方式对子信道中的数据进行时域交织、 釆用可变的方式对 MSC数据进行差分调制, 因此需要对釆用的交织深度加 以指示。 在配置信息中需要设置用于定义子信道组织的参数, 所述参数包 括但不限于符号映射方式。
在步骤 51 , 在 FIC对包括配置信息在内的第二组数据进行删余卷积编码 获得 FIC数据。
在步骤 52,在 MSC独立地对每个子信道的数据进行 LDPC编码和时域交 织。
在每个子信道, 对数据进行 LDPC编码后, 在同一子信道的 LDPC编码 块之间根据配置信息指示的交织深度对编码后的数据进行时域交织。 一种 可选的方式是根据所述交织深度对编码后的数据进行基于比特的卷积交 织。
在步骤 53 , 将各子信道交织后的数据组成 CIF。 通过将相同长度的 CU 连续排列, 在不同长度的 CU之间插入填充数据, 完成将各子信道时域交织 后的数据组成 CIF。
在步骤 54, 将 CIF和 FIC数据进行比特传输帧复用, 从而将两路数据合 并为一路数据比特流。
在步骤 55 , 对 FIC数据釆用 QPSK方式进行符号映射, 按配置信息的指 示, 对 MSC数据中各子信道的数据进行符号映射。
在步骤 56, 对 CIF和 FIC数据进行相应的差分调制获得差分调制符号序 歹 |J。其中一种可选的方式是,在相邻 OFDM符号的同一个子载波上进行差分 调制。
在步骤 57 ,将差分调制符号序列连同相位参考符号和空符号进行 OFDM 调制, 分别生成各自的 OFDM符号。
在步骤 58, 将生成的连续 OFDM符号复用成信号单元传输帧并发送。 在图 5所述的实施例中, 为限制子信道中的数据出现连续的 "0"或连续 的 "Γ,的长度,使数据的频谱弥散而保持稳恒,可以在步骤 52之前增加能量 扩散的步骤, 用于对各子信道的数据进行能量扩散。 同理, 也可以在步骤 51之前增加能量扩散的步骤, 用于对第二组数据进行能量扩散。 另外, 在步骤 55和步骤 56之间可以增加频域交织的过程, 用于将映 射获得的符号进行频域交织。 将映射获得的符号按不同传输模式下 OFDM 符号有效子载波数 K划分成块进行频域交织, 再对频域交织后的符号进行 差分调制。 这里, 频域交织是符号的块交织, 交织块大小等于有效子载波 数!^
图 6示出了数字广播信号发送系统的一个结构, 在发送系统 600中, 包括 N个数字广播信号发送装置 S61和一个频分复用单元 S62, 其中 N为 大于 1的整数。
数字广播信号发送装置 S61 可以釆用上述各实施例中描述的任何一种 数字广播信号发送装置。 频分复用单元 S62用于将 N个数字广播信号发送 装置 S61生成的 N路信号单元传输帧频分复用成一路基带传输帧发送。
需要指出的是, 所述频分复用单元 S62将 N路信号单元传输帧搬移到 N个频点上, 相邻两个频点的间隔为 1.544MHz。 在某些应用场合下, 例如 在提供 8MHz带宽的场合下, 可以将 5路信号单元传输帧, 即 N=5, 进行 频分复用发送, 从而达到尽可能提高频谱利用率的目的。
在另一个数字广播信号发送方法的实施例中, 可以利用上述各实施例 中描述的数字广播信号发送方法, 生成 N路信号单元传输帧; 然后, 将所 述 N路信号单元传输帧频分复用成一路基带传输帧发送。
一种可选的方式是, 将 N路信号单元传输帧搬移到 N个频点上, 相邻 两个频点的间隔为 1.544MHz。 在某些应用场合下, 例如在提供 8MHz带宽 的场合下, 可以将 5路信号单元传输帧, 即 N=5, 进行频分复用发送, 从 而达到尽可能提高频谱利用率的目的。
本发明还提供一种集成电路, 用于实现上述任一实施例项所述的方法、 装置或系统。 本发明还提供一种计算机可读介质, 存储有用于实现上述任 一实施例所述方法的程序。
还需要说明的是上述实施例所涉及的方法或装置可以被用于生成基带 信号, 也可以被用于生成非基带信号。 也就是说, 釆用上述实施例生成的 基带信号传输帧, 可以是基带信号, 也可以是非基带信号。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围, 凡在本发明的精神和原则之内所做的任何修改、 等同替换、 改进 等, 均应包含在本发明的保护范围之内。 本发明还提供一种集成电路, 用于实现上述任一实施例项所述的方法 或装置。 本发明还提供一种计算机可读介质, 存储有用于实现上述任一实 施例所述方法的程序。
还需要说明的是上述实施例所涉及的方法或装置可以被用于生成基带 信号, 也可以被用于生成非基带信号。 也就是说, 釆用上述实施例生成的 基带信号传输帧, 可以是基带信号, 也可以是非基带信号。
本领域技术人员可以明白, 这里结合所公开的实施例描述的各种示例 性的方法步骤和装置单元均可以电子硬件、 软件或二者的结合来实现。 为 了清楚地示出硬件和软件之间的可交换性, 以上对各种示例性的步骤和单 元均以其功能性的形式进行总体上的描述。 这种功能性是以硬件实现还是 以软件实现依赖于特定的应用和整个系统所实现的设计约束。 本领域技术 人员能够针对每个特定的应用, 以多种方式来实现所描述的功能性, 但是 这种实现的结果不应解释为倒是背离本发明的范围。
利用通用处理器、 数字信号处理器 (DSP )、 专用集成电路(ASIC )、 现场可编程门阵列 (FPGA )或者其它可编程的逻辑器件、 分立门或者晶体 管逻辑、 分立硬件组件或者他们之中的任意组合, 可以实现或执行结合这 里公开的实施例描述的各种示例性的单元。 通用处理器可能是微处理器, 但是在另一种情况中, 该处理器可能是任何常规的处理器、 控制器、 微控 制器或者状态机。 处理器也可能被实现为计算设备的组合, 例如, DSP和 微处理器的组合、 多个微处理器、 一个或者更多结合 DSP核心的微处理器 或者任何其他此种结构。
结合上述公开的实施例所描述的方法的步骤可直接体现为硬件、 由处 理器执行的软件模块或者这二者的组合。 软件模块可能存在于 RAM存储 器、 闪存、 ROM存储器、 EPROM存储器、 EEPROM存储器、 寄存器、 硬 盘、 移动磁盘、 CD-ROM或者本领域熟知的任何其他形式的存储媒质中。 一种典型存储媒质与处理器耦合, 从而使得处理器能够从该存储媒质中读 信息, 且可向该存储媒质写信息。 在替换实例中, 存储媒质是处理器的组 成部分。 处理器和存储媒质可能存在于一个 ASIC中。 该 ASIC可能存在于 一个用户站中。 在一个替换实例中, 处理器和存储媒质可以作为用户站中 的分立组件存在。 根据所述公开的实施例, 可以使得本领域技术人员能够实现或者使用 本发明。 对于本领域技术人员来说, 这些实施例的各种修改是显而易见的, 并且这里定义的总体原理也可以在不脱离本发明的范围和主旨的基础上应 用以限制本发明, 凡在本发明的精神和原则之内, 所作的任何修改、 等同 替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求
1、 一种数字广播信号发送装置, 其特征在于, 包括:
至少一个第一编码单元, 每个第一编码单元用于对一个子信道中的数 据进行前向纠错编码;
至少一个时域交织单元, 每个时域交织单元接收一个第一编码单元输 出的编码后的数据, 对编码后的数据进行时域交织;
一个第一复用单元, 用于将各时域交织单元输出的交织后的数据复用 成主业务信道 MSC数据;
一个第二编码单元, 用于对第二组数据进行前向糾错编码, 获得快速 信息信道 FIC数据;
一个差分调制单元, 用于釆用第一调制方式对 FIC数据进行差分调制 , 釆用至少两种调制方式对 MSC数据进行差分调制; 其中, 第一调制方式的 调制级别低于或等于用于 MSC数据的各调制方式的调制级别; 和
一个帧生成发送单元, 利用差分调制单元生成的差分调制符号序列生 成信号单元传输帧并发送所述信号单元传输帧。
2、 如权利要求 1所述的发送装置, 其特征在于, 差分调制单元釆用四 相差分相移键控 DQPSK方式对 FIC数据进行差分调制。
3、 如权利要求 1 所述的发送装置, 其特征在于, 差分调制单元釆用 DQPSK和八相差分相移键控 8DPSK方式对 MSC数据进行差分调制。
4、 如权利要求 1 所述的发送装置, 其特征在于, 差分调制单元釆用 DQPSK和十六相差分幅度和相位联合键控 16DAPSK方式对 MSC数据进 行差分调制。
5、 如权利要求 1 所述的发送装置, 其特征在于, 差分调制单元釆用 8DPSK和 16DAPSK方式对 MSC数据进行差分调制。
6、 如权利要求 1 所述的发送装置, 其特征在于, 差分调制单元釆用 DQPSK, 8DPSK和 16DAPSK方式对 MSC数据进行差分调制。
7、 如权利要求 1所述的发送装置, 其特征在于, 帧生成发送单元将所 述差分调制符号序列连同相位参考符号和空符号进行正交频分复用 OFDM 调制, 分别生成各自的 OFDM符号, 并将生成的连续 OFDM符号复用成信 号单元传输帧。
8、 如权利要求 1所述的发送装置, 其特征在于, 帧生成发送单元将所 述差分调制符号序列连同相位参考符号进行 OFDM调制, 分别生成各自的 OFDM符号, 并将生成的连续 OFDM符号连同空符号复用成信号单元传输 帧。
9、 如权利要求 1至 8任一项所述的发送装置, 其特征在于, 第二编码单 元对第二组数据进行删余卷积编码。
10、 如权利要求 1至 8任一项所述的发送装置, 其特征在于, 第一编码 单元对每个子信道中的数据进行低密度奇偶校验 LDPC编码。
11、 如权利要求 1至 8任一项所述的发送装置, 其特征在于, 还包括 多个第一能量扩散单元, 每个第一能量扩散单元用于对一个子信道的数据 进行能量扩散, 并将结果输出给该子信道的第一编码单元。
12、 如权利要求 1至 8任一项所述的发送装置, 其特征在于, 还包括 第二能量扩散单元, 用于对第二组数据进行能量扩散, 并将结果输出给第 二编码单元。
13、 如权利要求 1至 8任一项所述的发送装置, 其特征在于, 数据第 二组数据包括配置信息。
14、 一种数字广播信号发送方法, 其特征在于, 包括:
对每个子信道的数据独立地进行前向纠错编码和时域交织;
将各子信道时域交织后的数据复用成主业务信道 MSC数据;
对数据第二组数据进行前向纠错编码, 获得快速信息信道 FIC数据; 釆用第一调制方式对 FIC数据进行差分调制, 釆用至少两种调制方式对 MSC数据进行差分调制; 其中, 第一调制方式的调制级别低于或等于用于 MSC数据的各调制方式的调制级别;
利用差分调制生成的差分调制符号序列生成信号单元传输帧并发送所 述信号单元传输帧。
15、 如权利要求 14所述的发送方法, 其特征在于, 釆用四相差分相移 键控 DQPSK方式对 FIC数据进行差分调制。
16、 如权利要求 14所述的发送方法, 其特征在于, 釆用 DQPSK和八 相差分相移键控 8DPSK方式对 MSC数据进行差分调制。
17、 如权利要求 14所述的发送方法, 其特征在于, 釆用 DQPSK和十 六相差分幅度和相位联合键控 16DAPSK方式对 MSC数据进行差分调制。
18、 如权利要求 14 所述的发送方法, 其特征在于, 釆用 8DPSK 和
16DAPSK方式对 MSC数据进行差分调制。
19、如权利要求 14所述的发送方法,其特征在于,釆用 DQPSK、 8DPSK 和 16DAPSK方式对 MSC数据进行差分调制。
20、 如权利要求 14所述的发送方法, 其特征在于, 将所述差分调制符 号序列连同相位参考符号和空符号进行正交频分复用 OFDM调制, 分别生 成各自的 OFDM符号,并将生成的连续 OFDM符号复用成信号单元传输帧。
21、 如权利要求 14所述的发送方法, 其特征在于, 将所述差分调制符 号序列连同相位参考符号进行 OFDM调制, 分别生成各自的 OFDM符号, 并将生成的连续 OFDM符号连同空符号复用成信号单元传输帧。
22、 如权利要求 14至 21任一项所述的发送方法, 其特征在于, 对第二 组数据进行删余卷积编码。
23、 如权利要求 14至 21任一项所述的发送方法, 其特征在于, 对每个 子信道的数据进行低密度奇偶校验 LDPC编码。
24、 如权利要求 14至 21任一项所述的发送方法, 其特征在于, 对每 个子信道的数据独立地进行前向糾错编码前还包括: 对每个子信道的数据 独立地进行能量扩散。
25、 如权利要求 14至 21任一项所述的发送方法, 其特征在于, 对第 二组数据进行前向纠错编码前还包括: 对第二组数据进行能量扩散。
26、 如权利要求 14至 21任一项所述的发送方法, 其特征在于, 第二 组数据包括配置信息。
27、 一种数字广播信号发送系统, 其特征在于, 包括:
N个如权利要求 1至 13任一项所述的数字广播信号发送装置, 其中 N 为大于 1的整数; 和
一个频分复用单元, 用于将 N个数字广播信号发送装置生成的 N路信 号单元传输帧频分复用成一路基带传输帧发送。
28、 如权利要求 27所述的系统, 其特征在于, 所述频分复用单元将 N 路信号单元传输帧搬移到 N个频点上, 相邻两个频点的间隔为 1.544MHz。
29、 如权利要求 28所述的系统, 其特征在于, N=5。
30、 一种数字广播信号发送方法, 其特征在于, 包括:
利用如权利要求 14至 26任一项所述的数字广播信号发送方法,生成 N 路信号单元传输帧;
将所述 N路信号单元传输帧频分复用成一路基带传输帧发送。
31、 如权利要求 30所述的方法, 其特征在于, 将 N路信号单元传输帧 搬移到 N个频点上, 相邻两个频点的间隔为 1.544MHz。
32、 如权利要求 31所述的方法, 其特征在于, N=5。
PCT/CN2009/072468 2008-06-27 2009-06-26 数字广播信号的发送装置、发送方法和发送系统 WO2009155876A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09768801A EP2306724A4 (en) 2008-06-27 2009-06-26 DEVICE, METHOD AND SYSTEM FOR DIGITAL BROADCASTING SIGNAL TRANSMISSION
AU2009264458A AU2009264458A1 (en) 2008-06-27 2009-06-26 Device, method and system for transmitting digital broadcast signals
US12/976,304 US20120147903A1 (en) 2008-06-27 2010-12-22 Device, method and system for transmitting digital broadcast signals

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810126460.3 2008-06-27
CNA2008101264603A CN101582740A (zh) 2008-06-27 2008-06-27 数字广播信号的发送装置、发送方法和发送系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/976,304 Continuation US20120147903A1 (en) 2008-06-27 2010-12-22 Device, method and system for transmitting digital broadcast signals

Publications (1)

Publication Number Publication Date
WO2009155876A1 true WO2009155876A1 (zh) 2009-12-30

Family

ID=41364727

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/072468 WO2009155876A1 (zh) 2008-06-27 2009-06-26 数字广播信号的发送装置、发送方法和发送系统

Country Status (6)

Country Link
US (1) US20120147903A1 (zh)
EP (1) EP2306724A4 (zh)
KR (1) KR20110025695A (zh)
CN (1) CN101582740A (zh)
AU (1) AU2009264458A1 (zh)
WO (1) WO2009155876A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101309126A (zh) * 2008-05-21 2008-11-19 北京新岸线移动多媒体技术有限公司 公共交织帧的组帧方法及组帧装置
US9130811B2 (en) * 2012-12-14 2015-09-08 Broadcom Corporation Orthogonal frequency division multiplexing (OFDM) interleaving
WO2015046919A1 (en) 2013-09-27 2015-04-02 Lg Electronics Inc. Apparatus for transmitting broadcast signals, apparatus for receiving broadcast signals, method for transmitting broadcast signals and method for receiving broadcast signals
KR20160068888A (ko) 2013-11-11 2016-06-15 엘지전자 주식회사 방송 신호 송신 장치, 방송 신호 수신 장치, 방송 신호 송신 방법 및 방송 신호 수신 방법
US9379928B2 (en) 2013-11-17 2016-06-28 Lg Electronics Inc. Apparatus for transmitting broadcast signals, apparatus for receiving broadcast signals, method for transmitting broadcast signals and method for receiving broadcast signals

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050055714A1 (en) * 2003-07-25 2005-03-10 Lg Electronics, Inc. Apparatus for transmitting/receiving information for DMB service and method thereof
CN101022435A (zh) * 2006-12-08 2007-08-22 鲍东山 基于免费dab的地面移动多媒体广播收发方法与系统
CN101022440A (zh) * 2006-03-30 2007-08-22 鲍东山 兼容dab的地面移动多媒体广播收发方法及系统
CN101022445A (zh) * 2006-10-11 2007-08-22 鲍东山 在兼容dab的t-mmb系统中使用多种调制方式的方法和系统
CN101094025A (zh) * 2006-12-08 2007-12-26 鲍东山 T-mmb系统接收端实现多种解调方式的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100539925B1 (ko) * 2003-08-22 2005-12-28 삼성전자주식회사 직교주파수분할다중 시스템에서 부반송파 할당 장치 및 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050055714A1 (en) * 2003-07-25 2005-03-10 Lg Electronics, Inc. Apparatus for transmitting/receiving information for DMB service and method thereof
CN101022440A (zh) * 2006-03-30 2007-08-22 鲍东山 兼容dab的地面移动多媒体广播收发方法及系统
CN101022445A (zh) * 2006-10-11 2007-08-22 鲍东山 在兼容dab的t-mmb系统中使用多种调制方式的方法和系统
CN101022435A (zh) * 2006-12-08 2007-08-22 鲍东山 基于免费dab的地面移动多媒体广播收发方法与系统
CN101094025A (zh) * 2006-12-08 2007-12-26 鲍东山 T-mmb系统接收端实现多种解调方式的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2306724A4 *

Also Published As

Publication number Publication date
US20120147903A1 (en) 2012-06-14
CN101582740A (zh) 2009-11-18
KR20110025695A (ko) 2011-03-10
AU2009264458A1 (en) 2009-12-30
EP2306724A4 (en) 2011-11-09
EP2306724A1 (en) 2011-04-06

Similar Documents

Publication Publication Date Title
WO2009155875A1 (zh) 数字广播信号的发送装置、发送方法和发送系统
US9806852B2 (en) Broadcast signal transmitter/receiver, and broadcast signal transceiving method
KR101028974B1 (ko) 계층 변조를 통해 계층 데이터 및 비-계층 데이터를 송신하는 방법 및 장치
US9882731B2 (en) Broadcasting signal transmitter/receiver and broadcasting signal transmission/reception method
CN106797364B (zh) 广播信号发送装置、广播信号接收装置、广播信号发送方法以及广播信号接收方法
US9954709B2 (en) Apparatus for transmitting broadcast signals, apparatus for receiving broadcast signals, method for transmitting broadcast signals and method for receiving broadcast signals
TWI599196B (zh) 發送及接收廣播信號的裝置及方法
KR102004274B1 (ko) 방송 신호 송신 장치, 방송 신호 수신 장치, 방송 신호 송신 방법, 및 방송 신호 수신 방법
JP2013179718A (ja) 通信システムにおける制御情報を符号化する方法とその制御情報を送信及び受信する方法及び装置
CN111510247A (zh) 接收广播信号的方法和装置及发送广播信号的方法和装置
ES2599616T3 (es) Aparato de transmisión de señal de difusión, aparato de recepción de señal de difusión y métodos correspondiente
WO2010000187A1 (zh) 用于正交频分复用系统的多路复用装置及方法
AU2014307164B2 (en) Apparatus for transmitting broadcast signals, apparatus for receiving broadcast signals, method for transmitting broadcast signals and method for receiving broadcast signals
WO2009155876A1 (zh) 数字广播信号的发送装置、发送方法和发送系统
WO2007037618A1 (en) Apparatus for transmitting and receiving digital multimedia broadcasting for high-quality video service
WO2011057562A1 (zh) 一种ofdm系统的信息传输方法及信号生成装置
WO2010037345A1 (zh) 用于地面移动多媒体广播的接收机、接收装置和接收方法
KR20080105883A (ko) 데이터 전송 방법과 수신 방법 및 프레임 구조
TW200803331A (en) Communications system with selective baseband pilot injected carrier (BPIC) and input data modulation and related methods
WO2010091622A1 (zh) 移动多媒体广播发送系统
KR20080105882A (ko) 데이터 전송 방법 및 데이터 수신 방법
WO2009140921A1 (zh) 公共交织帧的组帧方法及组帧装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09768801

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009264458

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 20117002020

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009768801

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2009264458

Country of ref document: AU

Date of ref document: 20090626

Kind code of ref document: A