WO2009155864A1 - Method and device for downlink synchronization tracking - Google Patents

Method and device for downlink synchronization tracking Download PDF

Info

Publication number
WO2009155864A1
WO2009155864A1 PCT/CN2009/072435 CN2009072435W WO2009155864A1 WO 2009155864 A1 WO2009155864 A1 WO 2009155864A1 CN 2009072435 W CN2009072435 W CN 2009072435W WO 2009155864 A1 WO2009155864 A1 WO 2009155864A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
subframe
delay function
pdp
peak
Prior art date
Application number
PCT/CN2009/072435
Other languages
French (fr)
Chinese (zh)
Inventor
梁立宏
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2009155864A1 publication Critical patent/WO2009155864A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7073Synchronisation aspects
    • H04B1/7085Synchronisation aspects using a code tracking loop, e.g. a delay-locked loop

Definitions

  • the present invention relates to the field of code division multiple access (CDMA), and more particularly to a downlink synchronization tracking method and apparatus.
  • CDMA code division multiple access
  • the uplink channel and the downlink channel operate at the same frequency and different time slots.
  • the uplink channel and the downlink channel may interfere with each other.
  • the UE may be in a scene of stationary, slow moving, or high-speed movement.
  • the downlink synchronization tracking at the UE side can provide stable frame header information, and when the UE moves at high speed, such as in an intercity train or a maglev train scenario, the UE The position of the frame header caused by the fast movement changes rapidly, which brings difficulty to the downlink synchronization tracking of the UE.
  • the synchronization method in a CDMA system is: Using a pseudo-random code based on pseudo-random number (PN), the frame header information is captured by determining the correlation peak position, that is, the PN code generated locally for the UE The received PN code performs correlation operation to detect the identity of the two signals. If the two signal waveforms are the same, the peak appearing at the advance and the lag is the correlation peak, and the position of the correlation peak is the position of the frame header.
  • PN pseudo-random code based on pseudo-random number
  • the TD-SCDMA system is also a CDMA system.
  • the frame structure of the TD-SCDMA system is shown in Figure 1, each frame length is 10 ms.
  • each sub-frame is further divided into 7 regular time slots and 3 special times with a length of 675 ⁇ ⁇ Gap.
  • the seven regular time slots are TS0 to TS6, respectively, and the three special time slots are the downlink pilot time slot (DwPTS, Downlink Piloting Time Slot) of length 96 chips, and the guard interval of length 96chip (GP, Guard).
  • DwPTS downlink pilot time slot
  • GP Guard
  • UpPTS Uplink Piloting Time Slot
  • TS0 is always assigned to the downlink
  • TS1 is always assigned to the uplink.
  • the uplink time slot and the downlink time slot are separated by a transition point.
  • the DwPTS has a length of 75 ⁇ s and is structured as shown in Figure 2. It includes a 32-chip GP and a 64-chip downlink synchronization (SYNC-DL, Downlink Synchronize) code.
  • SYNC-DL Downlink Synchronize
  • the SYNC-DL code of one subframe of the TD-SCDMA transmitted from the far end is related to the local SYNC-DL code of the UE, and the relevant correlation is searched. Peak to achieve.
  • the simple SYNC of the sub-frame The DL code is associated with the local SYNC-DL code of the UE, and the method of searching for the correlation peak can obtain relatively accurate downlink synchronization information.
  • AWGN Additive White Gaussian Noise
  • the SYNC-DL code length of the TD-SCDMA system is only 64 chips, which is difficult to capture, especially when the UE moves quickly.
  • the main object of the present invention is to provide a downlink synchronization tracking method and apparatus, which filter information between subframes and improve downlink synchronization tracking performance.
  • a downlink synchronization tracking method comprising:
  • A. Obtain a downlink synchronization SYNC-DL code in the downlink pilot time slot DwPTS in each subframe, and correlate the obtained SYNC-DL code data segment with a downlink synchronization SYNC-DL code locally of the user equipment UE to obtain a delay function. a DP value, and calculating an energy delay function PDP value according to the delay function DP value; wherein, the SYNC-DL data segment in the downlink pilot time slot DwPTS includes a SYNC-DL code sequence and a guard interval of a predetermined number of chips before and after GP; B. Perform an infinite impulse response IIR filtering on the energy delay function PDP value of each subframe, and save the filtered energy delay function PDP value;
  • the method further includes:
  • step A is specifically:
  • Time Division Synchronous Code Division Multiple Access TD-SCDMA determines the number of GPs, downlink synchronization SYNC-DL codes, and downlink synchronization SYNC-DL codes of a certain number of chips before downlink synchronization SYNC-DL code.
  • Data of the GP of the chip, the data is correlated with the downlink synchronization SYNC-DL code of the user equipment UE by using at least 2 times the sampling rate, and the delay function DP value is obtained;
  • A2 Perform a n-time interpolation on the DP function of the delay function to obtain a delay function DP interpolation value, where n is a natural number;
  • the energy delay function PDP value is a delay function
  • the determining rule of the peak identification value of the subframe in step D is:
  • the peak identification value of the subframe is 1;
  • the peak identification value of the subframe is -1; If the peak position of the energy delay function PDP value of the current subframe is equal to the ideal peak position, the peak identification value of the subframe is zero.
  • step E the rule for adjusting the filter coefficient in step E is:
  • a downlink synchronization tracking device wherein the device includes: a correlator, an interpolation module, an energy delay function calculation module, a register, a filter, a peak comparator, and an output module, where
  • the correlator is configured to acquire a downlink synchronous SYNC-DL code data segment in a downlink pilot time slot DwPTS in each subframe of the TD-SCDMA by time division synchronization code division multiple access, and obtain the obtained SYNC-DL code data segment and the user.
  • the downlink synchronization SYNC-DL code of the local UE of the device performs a correlation operation to obtain a delay function DP value of each subframe.
  • the SYNC-DL data segment in the downlink pilot time slot DwPTS includes a SYNC-DL code sequence and before and after. Determining the number of chips of the GP;
  • the interpolation module is configured to perform n-time interpolation on the DP function of the delay function of each subframe to obtain an interpolation value of the delay function DP value;
  • the energy delay function calculation module is configured to calculate an energy delay function PDP value of each subframe according to the interpolated value of the DP value;
  • the register is configured to store an energy delay function PDP value of each subframe
  • the filter is configured to perform an infinite impulse response IIR filtering on the energy delay function PDP value of each subframe, and store the filtered energy delay function PDP value back to the corresponding position of the register;
  • the peak comparator is configured to find a peak value of a PDP value of each subframe, and send a peak position of a PDP value of each subframe to an output module;
  • the output module is configured to output a peak position of a PDP value of each subframe.
  • the apparatus further includes a buffer and a filter coefficient adjustment module, where The peak comparator is further configured to compare a peak position and an ideal peak position of a PDP value of each subframe to obtain a peak identification value of each subframe;
  • the buffer is configured to store a peak identification value of each subframe
  • the filter coefficient adjustment module is configured to count the peak identification value in the buffer, adjust the filter coefficient according to the set condition, and send the adjusted filter coefficient to the filter, and the filter performs an infinite impulse response IIR according to the adjusted filter coefficient. Filtering.
  • the buffer is a first in first out buffer.
  • the SYNC-DL code in the subframe is used as the object of downlink synchronization tracking, and the far-end SYNC-DL code is correlated with the local SYNC-DL code, and the time domain resolution of the original signal is improved by interpolation. And filtering the interference signal through the Infinite Impulse Response (IIR) filter to obtain the correlation peak, and adjusting the filter coefficient ⁇ of the IIR filter according to the comparison result of the correlation peak and the ideal peak, thereby ensuring that the UE moving speed is static, When changing between slow speed and high speed, the position of the frame header can be accurately captured to meet the downlink synchronization requirement.
  • IIR Infinite Impulse Response
  • FIG. 1 is a schematic diagram of a frame structure of a TD-SCDMA system
  • FIG. 2 is a schematic structural diagram of a downlink pilot time slot DwPTS
  • FIG. 3 is a flowchart of a downlink synchronization tracking method according to the present invention.
  • FIG. 4 is a structural diagram of an embodiment of a downlink synchronization tracking device according to the present invention.
  • FIG. 5 is a partially improved structural diagram of an embodiment of a downlink synchronization tracking device according to the present invention. Preferred embodiment of the invention
  • the basic idea of the present invention is to: use the SYNC-DL code in the subframe as the object of downlink synchronization tracking, correlate the far-end SYNC-DL code with the local SYNC-DL code, and use the interpolation method to improve the original signal.
  • the position of the frame header can be accurately captured to meet the downlink synchronization requirement.
  • the signal speed of the TD-SCDMA system is 350 km/h, and there are 128 sub-frames.
  • the filter coefficient ⁇ can be selected as 0.06, 0.125 or 0.25, the peak advance threshold is 6, and the peak delay threshold is 6, which is twice as large.
  • Rate, downlink synchronization tracking accuracy is l/8chip.
  • the sampling rate refers to the number of discrete signals extracted from consecutive signals of the same chip per second. The sampling rate is two samples per chip. The specific process of the downlink synchronization tracking method is shown in Figure 3:
  • Step 1 Acquire a SYNC-DL code data segment in a downlink pilot time slot DwPTS in each subframe of the TD-SCDMA, and correlate the SYNC-DL code data segment with a local SYNC-DL code of the UE to obtain a delay function (DP) And a delay profile value, the value of the power delay profile (PDP) of each subframe is calculated according to the DP value, where the SYNC-DL data segment in the downlink pilot time slot DwPTS includes the SYNC-DL code sequence and Determine the GP of the number of chips before and after.
  • DP delay function
  • PDP power delay profile
  • Step 1 specifically includes the following steps:
  • Step 101 Acquire a GP, a SYNC-DL code of a certain number of chips and a GP of a determined number of chips after the SYNC-DL code before the SYNC-DL code of the TD-SCDMA transmitted from the remote end,
  • the number of chips of the GP before the SYNC-DL code and the number of chips of the GP after the SYNC-DL code are determined according to specific conditions, and are generally determined according to the performance of the terminal and the complexity of the hardware.
  • the number of chips of the GP before the SYNC-DL code is 32 chips, and the number of chips of the GP after the SYNC-DL code is also 32 chips.
  • the SYNC-DL code is 64chip to obtain a total of 128 chips, 256 samples of data r ( ⁇ ), and the data r ( ⁇ ) is related to the UE's local SYNC-DL code sync:
  • DP(n) r(n) ® conj(sync) ( i )
  • 2 represents the convolution operation
  • r ( n ) represents the data of the received nth subframe
  • sync is the local SYNC-DL code of the UE
  • sync For 64 chips, 128 samples
  • conj represents the conjugate function
  • DP ( n ) value is the correlation result of the nth subframe
  • DP ( n ) value is 128 samples
  • n is a natural number.
  • the 32chip data before and after the SYNC-DL code is the information between the TD-SCDMA sub-frames. In the subsequent steps, the information is filtered together to eliminate the signal interference between the sub-frames.
  • Step 102 Perform 4 times interpolation on the DP value to obtain DP interpolated DPinterp with l/8 chip precision. value.
  • the so-called 4x interpolation is performed between every two DP(n) values.
  • three DPinter values are inserted at equal intervals, and the obtained DPinterp(n) value is 512 samples.
  • the DPinterp ( n ) value spectrum is the data of the DP ( n ) value spectrum which is compressed by 4 times, which improves the time domain resolution of the original signal. There are many mature methods for 4 times interpolation, and will not be described here.
  • Step 103 Calculate the PDP ( n ) value, and the PDP ( n ) value is the square of the modulus of the complex DPinterp ( n ) value:
  • the DPinterp ( n ) value is a complex form, including the real part and the imaginary part.
  • real means the real part
  • imag means the imaginary part
  • the PDP ( n ) value has a total of 512 samples.
  • Step 2 Perform IIR filtering on the PDP value of each subframe, and save the filtered PDP value.
  • the PDP ( ⁇ ) value is then stored back in the corresponding location of the register:
  • the PDP (1) value
  • Step 3 Find the peak value of the PDP value of each subframe and output the peak position.
  • the result of the downlink synchronization tracking is to find the peak position of each subframe, and output the peak position to the measurement module, the joint detection module, etc., so that the measurement module, the joint detection module, and the like perform subsequent operations.
  • step 3 The above is to filter the PDP value with a fixed filter coefficient ⁇ .
  • This method can meet the requirements of the UE mobile environment change under normal circumstances, but when the UE mobile environment is drastically varied, the synchronous tracking result using the fixed filter coefficient is not Ideally, for this reason, the present invention can also add the following steps after step 3:
  • Step 4 Comparing the peak position of the PDP value of each subframe with the ideal peak position, and determining and storing the peak identification value of each subframe according to the comparison result.
  • the peak value of the PDP ( n ) value is represented by the PDP ( k ) value, the natural number in [1, 512], since there are 512 samples per subframe, according to the probability statistics, the ideal peak should appear at the 257th sample.
  • Position, compare k and 257 the comparison result indicates whether the actual peak coincides with the ideal peak, and the peak identification flag is used to record the comparison result of k and 257, as shown in equation (4):
  • Step 5 Adjust the filter coefficient ⁇ according to the statistical result of the peak identification value in the buffer.
  • ⁇ — ⁇ 128 , indicating that the actual peak value of PDP ( ⁇ ) completely coincides with the ideal peak position, and the filter coefficient is reduced to track the signal more smoothly. For example: If the current filter coefficient ⁇ value is 0.25, the filter coefficient ⁇ is reduced to 0.125. If the current filter coefficient ⁇ is 0.125, the filter coefficient ⁇ is reduced to 0.06.
  • the filter coefficient needs to be increased to track the signal in time. For example: If the current filter coefficient ⁇ value is 0.06, the filter coefficient ⁇ is increased to 0.125; when the current filter coefficient ⁇ value is 0.125, the filter coefficient ⁇ is increased to 0.25.
  • the data in the FIFO is cleared, and in the subsequent 20 subframes, the flag value in the equation (3) is 0.
  • step 102 in addition to 4 times interpolation of the DP ( n ) value, n times interpolation may be performed as needed; the real number of the filter coefficient ⁇ ⁇ [0, 1] may be set by the user as needed; the peak early threshold and The peak delay threshold can also be set according to the user's needs; in the second case of step 5, in order to eliminate the influence of the existing flag value on subsequent tracking, the flag value of the subsequent 20 subframes is cleared, the method is for subsequent The flag value forms a guard interval, and the number of cleared subframes can also be increased or decreased according to user needs.
  • the present invention also provides a corresponding downlink synchronization tracking device, an implementation of the device is shown in FIG. 4, the device includes a correlator, an interpolation module, an energy delay function calculation module, a register, a filter, and a peak. Comparator and output module, wherein
  • a correlator configured to acquire a downlink pilot time slot DwPTS in each subframe of the TD-SCDMA
  • the DL data segment contains a sequence of SYNC-DL codes and a GP that determines the number of chips before and after.
  • An interpolation module configured to perform n times interpolation on the DP value of each subframe to obtain a DP value interpolation value
  • an energy delay function calculation module configured to calculate an energy delay function PDP value of each subframe according to the DP value interpolation value
  • a register for storing a PDP value of each subframe
  • a filter configured to perform IIR filtering on the PDP value of each subframe, and store the filtered PDP value back to the corresponding position of the register; a peak comparator for finding the peak value of the PDP value of each subframe, and each subframe The peak position of the PDP value is sent to the output module;
  • An output module configured to output a peak position of a PDP value of each subframe.
  • the apparatus may add a buffer and a filter coefficient adjustment module based on the foregoing apparatus.
  • the peak comparator is further configured to compare the peak position and the ideal peak position of the PDP value of each subframe to obtain a peak identification value of each subframe;
  • a buffer configured to store a peak identification value of each subframe
  • a filter coefficient adjustment module configured to count the peak identification value in the buffer, and according to the set condition The filter coefficient is adjusted, and the adjusted filter coefficient is sent to the filter, and the filter performs infinite impulse response IIR filtering according to the adjusted filter coefficient.
  • the buffer is a FIFO buffer, so that the peak identification value changes according to the order of the subframes.
  • the SYNC-DL code in the subframe is used as the object of downlink synchronization tracking, and the SYNC-DL code data segment of the far end is correlated with the local SYNC-DL code, and the time domain of the original signal is improved by interpolation. Resolution, and filtering the interference signal through the IIR filter to obtain the correlation peak. According to the comparison result of the correlation peak and the ideal peak, the filter coefficient ⁇ of the IIR filter is adjusted to ensure the UE moving speed is changed between static, slow and high speed. When the frame head position can be accurately captured to meet the downlink synchronization requirements, it has strong industrial applicability.

Abstract

A method and device for downlink synchronization tracking are provided by the present invention. The method includes the following steps: the Downlink Synchronization (SYNC-DL) code in the Downlink Piloting Time Slot (DwPTS) of each subframe is obtained, and the obtained SYNC-DL code data segment is correlated with the SYNC-DL code local to the User Equipment (UE) to obtain the Delay Profile (DP) values; the Power Delay Profile (PDP) values are calculated according to the DP values; Infinite Impulse Response (IIR) filtering is performed on the PDP values of each subframe, and the filtered PDP values are stored; the peak value of the PDP values of each subframe is searched for, and the position of the peak value is output. The present invention can guarantee that the position of the frame head can be captured exactly when the UE moving speed is changed among the static state, the slow speed and the high speed, so the downlink synchronization requirement is satisfied.

Description

一种下行同步跟踪方法及装置  Downlink synchronization tracking method and device
技术领域 Technical field
本发明涉及码分多址接入( CDMA, Code Division Multiple Access )技术 领域, 尤其是指一种下行同步跟踪方法及装置。  The present invention relates to the field of code division multiple access (CDMA), and more particularly to a downlink synchronization tracking method and apparatus.
背景技术 Background technique
时分同步码分多址接入 ( TD-SCDMA, Time Division Synchronous Code Division Multiple Access ) 系统中, 上行信道和下行信道工作在相同的频率、 不同的时隙。 对用户设备(UE, User Equipment ) 而言, 上行信道和下行信 道可能存在互相干扰, 同时, 不同的小区之间也存在干扰, 需要有较好的同 步技术保证 TD-SCDMA系统的通信质量。  In the TD-SCDMA (Time Division Synchronous Code Division Multiple Access) system, the uplink channel and the downlink channel operate at the same frequency and different time slots. For the user equipment (UE, User Equipment), the uplink channel and the downlink channel may interfere with each other. At the same time, there are interferences between different cells, and a better synchronization technique is needed to ensure the communication quality of the TD-SCDMA system.
实际应用中, UE可能处于静止、慢速移动或者高速移动的场景。 在静止 或者慢速移动时, 比如在室内或者步行场景下, UE端的下行同步跟踪能够给 系统提供稳定的帧头信息, 而在 UE 高速移动时, 比如在城际动车或者磁悬 浮列车场景下, UE快速移动引起的帧头位置变化较快, 给 UE端的下行同步 跟踪带来困难。  In practical applications, the UE may be in a scene of stationary, slow moving, or high-speed movement. When moving at a stationary or slow speed, such as indoors or in a walking scene, the downlink synchronization tracking at the UE side can provide stable frame header information, and when the UE moves at high speed, such as in an intercity train or a maglev train scenario, the UE The position of the frame header caused by the fast movement changes rapidly, which brings difficulty to the downlink synchronization tracking of the UE.
一般而言, CDMA 系统中的同步方法是: 釆用基于伪随机码 (PN, Pseudo-random Number )滑动相关, 通过确定相关峰值位置来捕获帧头信息, 即: 对 UE本地产生的 PN码与接收到的 PN码进行相关运算, 检测两个信号 的同一性, 如果两个信号波形相同, 则在提前、 滞后处出现的峰值为相关峰 值, 相关峰值的位置就是帧头所在位置。  In general, the synchronization method in a CDMA system is: Using a pseudo-random code based on pseudo-random number (PN), the frame header information is captured by determining the correlation peak position, that is, the PN code generated locally for the UE The received PN code performs correlation operation to detect the identity of the two signals. If the two signal waveforms are the same, the peak appearing at the advance and the lag is the correlation peak, and the position of the correlation peak is the position of the frame header.
TD-SCDMA系统也是一种 CDMA系统 , TD-SCDMA系统的帧结构如图 1所示, 每个帧长为 10 ms, 。帧 i和帧 i+1 ; 每个帧分成两个 5 ms的子帧, 且两个子帧的结构完全相同; 每个子帧又分成长度为 675 μ δ的 7个常规时隙 和 3个特殊时隙。 7个常规时隙分别为 TS0至 TS6, 3个特殊时隙分别为长度 96个码片 (chip ) 的下行导频时隙 (DwPTS, Downlink Piloting Time Slot ) 、 长度 96chip的保护间隔( GP, Guard Period )和长度 160chip的上行导频时隙 ( UpPTS, Uplink Piloting Time Slot ) 。 在 7个常规时隙中, TS0总是分配给 下行链路, 而 TS1总是分配给上行链路。 上行链路时隙和下行链路时隙之间 由转换点分开。 The TD-SCDMA system is also a CDMA system. The frame structure of the TD-SCDMA system is shown in Figure 1, each frame length is 10 ms. Frame i and frame i+1; each frame is divided into two 5 ms sub-frames, and the two sub-frames are identical in structure; each sub-frame is further divided into 7 regular time slots and 3 special times with a length of 675 μ δ Gap. The seven regular time slots are TS0 to TS6, respectively, and the three special time slots are the downlink pilot time slot (DwPTS, Downlink Piloting Time Slot) of length 96 chips, and the guard interval of length 96chip (GP, Guard). Period ) and uplink pilot time slot of length 160chip (UpPTS, Uplink Piloting Time Slot). In 7 regular time slots, TS0 is always assigned to the downlink, and TS1 is always assigned to the uplink. The uplink time slot and the downlink time slot are separated by a transition point.
DwPTS的长度为 75 μ s, 结构如图 2所示, 包括长度为 32chip的 GP和 长度为 64chip的下行同步(SYNC-DL, Downlink Synchronize )码。 现有的 TD-SCDMA系统的下行同步跟踪中, 由于两个子帧完全相同, 将远端传来的 TD-SCDMA一个子帧的 SYNC-DL码与 UE本地的 SYNC-DL码相关, 通过 搜索相关峰值来实现。  The DwPTS has a length of 75 μs and is structured as shown in Figure 2. It includes a 32-chip GP and a 64-chip downlink synchronization (SYNC-DL, Downlink Synchronize) code. In the downlink synchronization tracking of the existing TD-SCDMA system, since the two subframes are identical, the SYNC-DL code of one subframe of the TD-SCDMA transmitted from the far end is related to the local SYNC-DL code of the UE, and the relevant correlation is searched. Peak to achieve.
在第三代合作伙伴计划 ( 3GPP, Third Generation Partnership Project )描 述的几种典型的信道环境中,例如:加性白高斯噪声( AWGN, Additive White Gaussion Noise )信道下,简单的将子帧的 SYNC-DL码与 UE本地的 SYNC-DL 码相关, 搜索相关峰值的方法可以得到比较准确的下行同步信息。 但是, 在 多径衰落信道, 比如第三种情况(CASE3 ) 的信道下, 由于 TD-SCDMA 系 统的 SYNC-DL码长度仅有 64 chip, 难于捕捉, 特别是 UE快速移动时, 也 简单地釆用将单个子帧的 SYNC-DL码与 UE本地的 SYNC-DL码相关来获得 下行同步信息,就可能不够准确,难以满足 TD-SCDMA系统高精度的同步要 求。 发明内容  In the typical channel environment described by the 3GPP (Third Generation Partnership Project), for example, the Additive White Gaussian Noise (AWGN) channel, the simple SYNC of the sub-frame The DL code is associated with the local SYNC-DL code of the UE, and the method of searching for the correlation peak can obtain relatively accurate downlink synchronization information. However, in a multipath fading channel, such as the third case (CASE3), the SYNC-DL code length of the TD-SCDMA system is only 64 chips, which is difficult to capture, especially when the UE moves quickly. Obtaining downlink synchronization information by correlating the SYNC-DL code of a single subframe with the local SYNC-DL code of the UE may not be accurate enough to meet the high-precision synchronization requirements of the TD-SCDMA system. Summary of the invention
有鉴于此, 本发明的主要目的在于提供一种下行同步跟踪方法及装置, 对子帧之间的信息进行滤波, 提高下行同步跟踪性能。  In view of this, the main object of the present invention is to provide a downlink synchronization tracking method and apparatus, which filter information between subframes and improve downlink synchronization tracking performance.
为达到上述目的, 本发明的技术方案是这样实现的:  In order to achieve the above object, the technical solution of the present invention is achieved as follows:
一种下行同步跟踪方法, 该方法包括:  A downlink synchronization tracking method, the method comprising:
A、 获取各子帧中下行导频时隙 DwPTS中的下行同步 SYNC-DL码, 将 所获得的 SYNC-DL码数据段与用户设备 UE本地的下行同步 SYNC-DL码相 关, 得到时延函数 DP值, 并根据时延函数 DP值计算能量时延函数 PDP值; 其中, 所述下行导频时隙 DwPTS中的 SYNC-DL数据段包含 SYNC-DL码序 列和前后确定数量码片的保护间隔 GP; B、 对各子帧的能量时延函数 PDP值进行无限脉冲响应 IIR滤波, 并保 存滤波后的能量时延函数 PDP值; A. Obtain a downlink synchronization SYNC-DL code in the downlink pilot time slot DwPTS in each subframe, and correlate the obtained SYNC-DL code data segment with a downlink synchronization SYNC-DL code locally of the user equipment UE to obtain a delay function. a DP value, and calculating an energy delay function PDP value according to the delay function DP value; wherein, the SYNC-DL data segment in the downlink pilot time slot DwPTS includes a SYNC-DL code sequence and a guard interval of a predetermined number of chips before and after GP; B. Perform an infinite impulse response IIR filtering on the energy delay function PDP value of each subframe, and save the filtered energy delay function PDP value;
C、 寻找各子帧的能量时延函数 PDP值的峰值, 将峰值位置输出。  C. Find the energy delay function of each sub-frame The peak value of the PDP value, and output the peak position.
进一步地, 该方法还包括:  Further, the method further includes:
D、 将各子帧的能量时延函数 PDP值的峰值位置与理想峰值位置比较, 根据比较结果确定并存储各子帧的峰值标识值;  D. Comparing the peak position of the energy delay function PDP value of each subframe with the ideal peak position, and determining and storing the peak identification value of each subframe according to the comparison result;
E、 根据緩存器中峰值标识值统计结果, 调整滤波系数。  E. Adjust the filter coefficient according to the statistical result of the peak identification value in the buffer.
进一步地, 步骤 A具体为:  Further, step A is specifically:
Al、 获取时分同步码分多址接入 TD-SCDMA 的各子帧中下行同步 SYNC-DL码前确定数量的码片的 GP、 下行同步 SYNC-DL码和下行同步 SYNC-DL码后确定数量的码片的 GP的数据,所述数据釆用至少 2倍釆样率, 与用户设备 UE本地的下行同步 SYNC-DL码相关, 得到时延函数 DP值; Al. Obtaining Time Division Synchronous Code Division Multiple Access TD-SCDMA determines the number of GPs, downlink synchronization SYNC-DL codes, and downlink synchronization SYNC-DL codes of a certain number of chips before downlink synchronization SYNC-DL code. Data of the GP of the chip, the data is correlated with the downlink synchronization SYNC-DL code of the user equipment UE by using at least 2 times the sampling rate, and the delay function DP value is obtained;
A2、 对时延函数 DP值进行 n倍内插, 得到时延函数 DP内插值, n为自 然数; A2. Perform a n-time interpolation on the DP function of the delay function to obtain a delay function DP interpolation value, where n is a natural number;
A3、 计算能量时延函数 PDP值, 所述能量时延函数 PDP值为时延函数 A3. Calculating an energy delay function PDP value, the energy delay function PDP value is a delay function
DP内插值的模的平方。 The square of the modulus of the DP interpolated value.
较佳地, 步骤 B 中能量时延函数 PDP 值的计算公式为: PDP(n) = (1 -α)* PDP(n - \) + a * PDP(n) , 其中, PDP ( n )为第 n个子帧计算的能量时延函数 PDP值, PDP ( n-1 ) 为第 n个子帧的前一个子帧的能量时延函数 PDP值进行无限脉冲响应 IIR滤 波后的能量时延函数 PDP值, α为滤波系数; η=1时, 直接保存能量时延函 数 PDP ( 1 )值。  Preferably, the calculation formula of the energy delay function PDP value in step B is: PDP(n) = (1 -α)* PDP(n - \) + a * PDP(n) , where PDP ( n ) is The energy delay function PDP value calculated in the nth subframe, PDP (n-1) is the energy delay function PDP value of the previous subframe of the nth subframe, and the energy delay function PDP value after infinite impulse response IIR filtering , α is the filter coefficient; when η=1, the energy delay function PDP ( 1 ) value is directly saved.
较佳地, 步骤 D中子帧的峰值标识值的确定规则为:  Preferably, the determining rule of the peak identification value of the subframe in step D is:
如果当前子帧的能量时延函数 PDP值的峰值位置大于理想峰值位置, 则 该子帧的峰值标识值为 1 ;  If the peak position of the energy delay function PDP value of the current subframe is greater than the ideal peak position, the peak identification value of the subframe is 1;
如果当前子帧的能量时延函数 PDP值的峰值位置小于理想峰值位置, 则 该子帧的峰值标识值为 -1; 如果当前子帧的能量时延函数 PDP值的峰值位置等于理想峰值位置, 则 该子帧的峰值标识值为 0。 If the peak position of the energy delay function PDP value of the current subframe is less than the ideal peak position, the peak identification value of the subframe is -1; If the peak position of the energy delay function PDP value of the current subframe is equal to the ideal peak position, the peak identification value of the subframe is zero.
进一步地, 步骤 E中调整滤波系数的规则为:  Further, the rule for adjusting the filter coefficient in step E is:
Sl、 如果各子帧峰值位置与理想峰值位置完全重合, 则减小滤波系数; S2、 如果子帧的峰值位置小于理想峰值位置的数量超过设定门限值, 或 者子帧的峰值位置大于理想峰值位置的数量超过设定门限值, 则增大滤波系 数; 将当前全部峰值标识值清零, 且令随后的若干子帧的峰值标识值为 0;  Sl, if the peak position of each subframe completely coincides with the ideal peak position, the filter coefficient is reduced; S2, if the peak position of the subframe is less than the ideal peak position exceeds the set threshold, or the peak position of the subframe is larger than the ideal If the number of peak positions exceeds the set threshold, the filter coefficient is increased; all current peak identification values are cleared, and the peak identification values of subsequent subframes are 0;
S3、 如果不是 S1或 S2中的情况, 保持滤波系数不变。  S3. If it is not the case in S1 or S2, keep the filter coefficient unchanged.
一种下行同步跟踪装置, 其中, 该装置包括: 相关器、 内插模块、 能量 时延函数计算模块、 寄存器、 滤波器、 峰值比较器和输出模块, 其中, A downlink synchronization tracking device, wherein the device includes: a correlator, an interpolation module, an energy delay function calculation module, a register, a filter, a peak comparator, and an output module, where
所述相关器用于获取时分同步码分多址接入 TD-SCDMA各子帧中下行 导频时隙 DwPTS中的下行同步 SYNC-DL码数据段, 将所获得的 SYNC-DL 码数据段与用户设备 UE本地的下行同步 SYNC-DL码进行相关运算 ,获得各 子帧的时延函数 DP值; 其中, 所述下行导频时隙 DwPTS中的 SYNC-DL数 据段包含 SYNC-DL码序列和前后确定数量码片的 GP;  The correlator is configured to acquire a downlink synchronous SYNC-DL code data segment in a downlink pilot time slot DwPTS in each subframe of the TD-SCDMA by time division synchronization code division multiple access, and obtain the obtained SYNC-DL code data segment and the user. The downlink synchronization SYNC-DL code of the local UE of the device performs a correlation operation to obtain a delay function DP value of each subframe. The SYNC-DL data segment in the downlink pilot time slot DwPTS includes a SYNC-DL code sequence and before and after. Determining the number of chips of the GP;
所述内插模块用于对各子帧的时延函数 DP值进行 n倍内插, 得到时延 函数 DP值内插值;  The interpolation module is configured to perform n-time interpolation on the DP function of the delay function of each subframe to obtain an interpolation value of the delay function DP value;
所述能量时延函数计算模块用于根据 DP值内插值计算各子帧的能量时 延函数 PDP值;  The energy delay function calculation module is configured to calculate an energy delay function PDP value of each subframe according to the interpolated value of the DP value;
所述寄存器用于存储各子帧的能量时延函数 PDP值;  The register is configured to store an energy delay function PDP value of each subframe;
所述滤波器用于对各子帧的能量时延函数 PDP值进行无限脉冲响应 IIR 滤波, 并将滤波后的能量时延函数 PDP值存回寄存器相应位置;  The filter is configured to perform an infinite impulse response IIR filtering on the energy delay function PDP value of each subframe, and store the filtered energy delay function PDP value back to the corresponding position of the register;
所述峰值比较器用于寻找各子帧的 PDP值的峰值, 并将各子帧的 PDP 值的峰值位置发送到输出模块;  The peak comparator is configured to find a peak value of a PDP value of each subframe, and send a peak position of a PDP value of each subframe to an output module;
所述输出模块用于输出各子帧的 PDP值的峰值位置。  The output module is configured to output a peak position of a PDP value of each subframe.
进一步地, 该装置还包括緩存器和滤波系数调整模块, 其中, 所述峰值比较器还用于比较各子帧的 PDP值的峰值位置与理想峰值位 置, 得到各子帧的峰值标识值; Further, the apparatus further includes a buffer and a filter coefficient adjustment module, where The peak comparator is further configured to compare a peak position and an ideal peak position of a PDP value of each subframe to obtain a peak identification value of each subframe;
所述緩存器用于存储各子帧的峰值标识值;  The buffer is configured to store a peak identification value of each subframe;
所述滤波系数调整模块用于统计緩存器中峰值标识值, 并根据设定的条 件调整滤波系数, 将调整后的滤波系数发送到滤波器, 滤波器根据调整后的 滤波系数进行无限脉冲响应 IIR滤波。  The filter coefficient adjustment module is configured to count the peak identification value in the buffer, adjust the filter coefficient according to the set condition, and send the adjusted filter coefficient to the filter, and the filter performs an infinite impulse response IIR according to the adjusted filter coefficient. Filtering.
较佳地, 所述緩存器为先入先出緩存器。  Preferably, the buffer is a first in first out buffer.
本发明釆用子帧中的 SYNC-DL码作为下行同步跟踪的对象, 将远端的 SYNC-DL码与本地的 SYNC-DL码相关, 并釆用内插法提高原始信号的时域 分辨率, 并通过无限脉冲响应(IIR, Infinite Impulse Response )滤波器滤掉干 扰信号得到相关峰值, 根据相关峰值与理想峰值的比较结果, 调整 IIR滤波 器的滤波系数 α, 从而保证 UE移动速度在静态、 慢速、 高速之间变换时, 能 够准确捕获帧头位置, 满足下行同步要求。 附图概述  The SYNC-DL code in the subframe is used as the object of downlink synchronization tracking, and the far-end SYNC-DL code is correlated with the local SYNC-DL code, and the time domain resolution of the original signal is improved by interpolation. And filtering the interference signal through the Infinite Impulse Response (IIR) filter to obtain the correlation peak, and adjusting the filter coefficient α of the IIR filter according to the comparison result of the correlation peak and the ideal peak, thereby ensuring that the UE moving speed is static, When changing between slow speed and high speed, the position of the frame header can be accurately captured to meet the downlink synchronization requirement. BRIEF abstract
图 1为 TD-SCDMA系统的帧结构示意图;  1 is a schematic diagram of a frame structure of a TD-SCDMA system;
图 2为下行导频时隙 DwPTS结构示意图;  2 is a schematic structural diagram of a downlink pilot time slot DwPTS;
图 3为本发明下行同步跟踪方法的流程图;  3 is a flowchart of a downlink synchronization tracking method according to the present invention;
图 4为本发明下行同步跟踪装置一个实施例的结构图;  4 is a structural diagram of an embodiment of a downlink synchronization tracking device according to the present invention;
图 5为本发明下行同步跟踪装置一个实施例的部分改进结构图。 本发明的较佳实施方式  FIG. 5 is a partially improved structural diagram of an embodiment of a downlink synchronization tracking device according to the present invention. Preferred embodiment of the invention
本发明的基本思想是: 釆用子帧中的 SYNC-DL码作为下行同步跟踪的 对象,将远端的 SYNC-DL码与本地的 SYNC-DL码相关, 并釆用内插法提高 原始信号的时域分辨率, 并通过 IIR滤波器滤掉干扰信号得到相关峰值, 根 据相关峰值与理想峰值的比较结果,调整 IIR滤波器的滤波系数 α,从而保证 UE移动速度在静态、 慢速、 高速之间变换时, 能够准确捕获帧头位置, 满足 下行同步要求。 下面结合本发明的附图用具体的实施例对 TD-SCDMA 系统下行同步跟 踪方法进行说明。 The basic idea of the present invention is to: use the SYNC-DL code in the subframe as the object of downlink synchronization tracking, correlate the far-end SYNC-DL code with the local SYNC-DL code, and use the interpolation method to improve the original signal. The time domain resolution, and filtering the interference signal through the IIR filter to obtain the correlation peak, and adjusting the filter coefficient α of the IIR filter according to the comparison result of the correlation peak and the ideal peak, thereby ensuring the UE moving speed is static, slow, high speed When the transition is made, the position of the frame header can be accurately captured to meet the downlink synchronization requirement. The downlink synchronization tracking method of the TD-SCDMA system will be described below with reference to the accompanying drawings of the present invention.
本实施例 TD-SCDMA系统信号速度 350km/h, 共有子帧 128个, 滤波系 数 α可选值为 0.06、 0.125或 0.25, 峰值提前门限为 6、 峰值延迟门限为 6, 釆用两倍釆样率, 下行同步跟踪精度是 l/8chip。 釆样率是指每秒从同一码片 的连续信号中提取的离散信号的个数,两倍釆样率即每个码片选取两个样点。 下行同步跟踪方法具体过程如图 3所示:  In this embodiment, the signal speed of the TD-SCDMA system is 350 km/h, and there are 128 sub-frames. The filter coefficient α can be selected as 0.06, 0.125 or 0.25, the peak advance threshold is 6, and the peak delay threshold is 6, which is twice as large. Rate, downlink synchronization tracking accuracy is l/8chip. The sampling rate refers to the number of discrete signals extracted from consecutive signals of the same chip per second. The sampling rate is two samples per chip. The specific process of the downlink synchronization tracking method is shown in Figure 3:
步骤 1、 获取 TD-SCDMA 的各子帧中下行导频时隙 DwPTS 中的 SYNC-DL码数据段,将该 SYNC-DL码数据段与 UE本地 SYNC-DL码相关, 得到时延函数(DP, Delay Profile )值, 根据 DP值计算各子帧的能量时延函 数(PDP, Power Delay Profile )值, 其中, 该下行导频时隙 DwPTS 中的 SYNC-DL数据段包含 SYNC-DL码序列和前后确定数量码片的 GP。  Step 1: Acquire a SYNC-DL code data segment in a downlink pilot time slot DwPTS in each subframe of the TD-SCDMA, and correlate the SYNC-DL code data segment with a local SYNC-DL code of the UE to obtain a delay function (DP) And a delay profile value, the value of the power delay profile (PDP) of each subframe is calculated according to the DP value, where the SYNC-DL data segment in the downlink pilot time slot DwPTS includes the SYNC-DL code sequence and Determine the GP of the number of chips before and after.
步骤 1具体包括以下步骤:  Step 1 specifically includes the following steps:
步骤 101、 获取远端传来的 TD-SCDMA的 SYNC-DL码之前的确定数量 码片的 GP、 SYNC-DL码和 SYNC-DL码之后的确定数量码片的 GP ,  Step 101: Acquire a GP, a SYNC-DL code of a certain number of chips and a GP of a determined number of chips after the SYNC-DL code before the SYNC-DL code of the TD-SCDMA transmitted from the remote end,
这里, SYNC-DL码之前的 GP的码片数量和 SYNC-DL码之后的 GP的 码片数量根据具体情况确定, 一般根据终端的性能和硬件的复杂度确定。  Here, the number of chips of the GP before the SYNC-DL code and the number of chips of the GP after the SYNC-DL code are determined according to specific conditions, and are generally determined according to the performance of the terminal and the complexity of the hardware.
此处取 SYNC-DL码之前的 GP的码片数量为 32chip, SYNC-DL码之后 的 GP的码片数量也为 32chip。 SYNC-DL码为 64chip这样得到总共 128chip、 256个样点的数据 r ( η ) , 并将数据 r ( η )与 UE本地的 SYNC-DL码 sync 相关:  Here, the number of chips of the GP before the SYNC-DL code is 32 chips, and the number of chips of the GP after the SYNC-DL code is also 32 chips. The SYNC-DL code is 64chip to obtain a total of 128 chips, 256 samples of data r ( η ), and the data r ( η ) is related to the UE's local SYNC-DL code sync:
DP(n)=r(n) ® conj(sync) ( i ) 其中, ②表示卷积运算, r ( n )表示接收的第 n个子帧的数据, sync是 UE本地的 SYNC-DL码, sync为 64chip、 128个样点, conj表示共轭函数, DP ( n )值是第 n个子帧的相关结果, DP ( n )值为 128个样点, n为自然数。 在 SYNC-DL码之前、之后的各 32chip数据就是 TD-SCDMA各子帧之间的信 息, 后续步骤中, 将这些信息一同滤波, 能够消除各子帧之间的信号干扰。  DP(n)=r(n) ® conj(sync) ( i ) where 2 represents the convolution operation, r ( n ) represents the data of the received nth subframe, sync is the local SYNC-DL code of the UE, sync For 64 chips, 128 samples, conj represents the conjugate function, DP ( n ) value is the correlation result of the nth subframe, DP ( n ) value is 128 samples, and n is a natural number. The 32chip data before and after the SYNC-DL code is the information between the TD-SCDMA sub-frames. In the subsequent steps, the information is filtered together to eliminate the signal interference between the sub-frames.
步骤 102、对 DP值进行 4倍内插,得到 l/8chip精度的 DP内插值 DPinterp 值。 Step 102: Perform 4 times interpolation on the DP value to obtain DP interpolated DPinterp with l/8 chip precision. value.
所谓 4倍内插是在每两个 DP ( n )值之间, 根据 DP ( n )值的计算方式, 等间隔的插入 3个 DPinter 值,得到的 DPinterp( n )值为 512个样点。 DPinterp ( n )值频谱即是 DP ( n )值频谱经过 4倍压缩而成的, 提高了原始信号的时 域分辨率, 4倍内插现在有很多成熟的方法, 在此不再赘述。  The so-called 4x interpolation is performed between every two DP(n) values. According to the calculation of the DP(n) value, three DPinter values are inserted at equal intervals, and the obtained DPinterp(n) value is 512 samples. The DPinterp ( n ) value spectrum is the data of the DP ( n ) value spectrum which is compressed by 4 times, which improves the time domain resolution of the original signal. There are many mature methods for 4 times interpolation, and will not be described here.
步骤 103、 计算 PDP ( n )值, PDP ( n )值为复数 DPinterp ( n )值的模 的平方:  Step 103: Calculate the PDP ( n ) value, and the PDP ( n ) value is the square of the modulus of the complex DPinterp ( n ) value:
PDP(n) = (rea/(DPinterp(«)))2 + (imag(OVmterp(n))f ( 2 ) PDP(n) = (rea/(DPinterp(«))) 2 + (imag(OVmterp(n))f ( 2 )
DPinterp ( n )值是复数形式, 包括实部和虚部, ( 2 )式中, real表示取 实部, imag表示取虚部, PDP ( n )值共 512个样点。 The DPinterp ( n ) value is a complex form, including the real part and the imaginary part. In (2), real means the real part, imag means the imaginary part, and the PDP ( n ) value has a total of 512 samples.
步骤 2、 对各子帧的 PDP值进行 IIR滤波, 并保存滤波后的 PDP值。 这里, 具体的滤波过程为: 将第 n个子帧计算的 PDP ( n )值和前一个子 帧保存在寄存器中的 PDP ( n-1 )值进行 IIR滤波, 滤波系数 α=0.125, 将滤 波结果 PDP ( η )值再存回寄存器的相应位置:  Step 2. Perform IIR filtering on the PDP value of each subframe, and save the filtered PDP value. Here, the specific filtering process is: IRP filtering the PDP(n) value calculated in the nth subframe and the PDP(n-1) value stored in the register in the previous subframe, and the filter coefficient α=0.125, the filtering result The PDP ( η ) value is then stored back in the corresponding location of the register:
PDP(n) = (1— ) * PDP(n - \) + a * PDP(n) ( 3 ) 其中, n=l 时, 由于没有前一个子帧, 不需要滤波, 直接在寄存器中保 存计算的 PDP ( 1 )值。  PDP(n) = (1— ) * PDP(n - \) + a * PDP(n) ( 3 ) where n=l, since there is no previous sub-frame, no filtering is required, and the calculation is saved directly in the register. The PDP (1) value.
步骤 3、 寻找各子帧的 PDP值的峰值, 将峰值位置输出。  Step 3. Find the peak value of the PDP value of each subframe and output the peak position.
下行同步跟踪的结果就是找到各子帧的峰值位置, 将该峰值位置输出到 测量模块、 联合检测模块等, 以便测量模块、 联合检测模块等进行后续的操 作。  The result of the downlink synchronization tracking is to find the peak position of each subframe, and output the peak position to the measurement module, the joint detection module, etc., so that the measurement module, the joint detection module, and the like perform subsequent operations.
以上是釆用固定的滤波系数 α对 PDP值进行滤波, 该方法能够满足一般 情况下 UE移动环境变化的需求,但是当 UE移动环境剧烈多变时,釆用固定 滤波系数的同步跟踪结果并不理想, 为此, 本发明还可以在步骤 3之后增加 以下步骤:  The above is to filter the PDP value with a fixed filter coefficient α. This method can meet the requirements of the UE mobile environment change under normal circumstances, but when the UE mobile environment is drastically varied, the synchronous tracking result using the fixed filter coefficient is not Ideally, for this reason, the present invention can also add the following steps after step 3:
步骤 4、 将各子帧的 PDP值的峰值位置与理想峰值位置比较, 根据比较 结果确定并存储各子帧的峰值标识值。 PDP ( n )值的峰值用 PDP ( k )值表示, [1 , 512]中的自然数, 由于 每个子帧有 512个样点, 根据概率统计结果, 理想峰值应该出现在第 257个 样点所在位置, 比较 k与 257 , 比较结果说明实际峰值是否与理想峰值重合, 釆用峰值标识 flag来记录 k与 257的比较结果, 如式(4 )所示: Step 4: Comparing the peak position of the PDP value of each subframe with the ideal peak position, and determining and storing the peak identification value of each subframe according to the comparison result. The peak value of the PDP ( n ) value is represented by the PDP ( k ) value, the natural number in [1, 512], since there are 512 samples per subframe, according to the probability statistics, the ideal peak should appear at the 257th sample. Position, compare k and 257, the comparison result indicates whether the actual peak coincides with the ideal peak, and the peak identification flag is used to record the comparison result of k and 257, as shown in equation (4):
flag = sign(k - 251) ( 4 ) 其中, sign ( X )为符号函数, X大于 0时, sign ( x ) = 1 , x等于 0时, sign ( X ) =0 , X小于 0时, sign ( x ) = _ 1。  Flag = sign(k - 251) ( 4 ) where sign ( X ) is a symbol function, when X is greater than 0, sign ( x ) = 1 , when x is equal to 0, sign ( X ) =0 , X is less than 0, Sign ( x ) = _ 1.
每个子帧的实际峰值 PDP ( k )值位置 k与理想峰值位置 257的比较结果 产生一个 flag值,将各子帧的 flag值保存到緩存器中,该緩存器是深度为 128 的先入先出 ( FIFO , First Input First Output )緩存器。  The comparison of the actual peak PDP(k) value position k of each subframe with the ideal peak position 257 results in a flag value, and the flag value of each subframe is saved to the buffer, which is a first in first out of depth of 128. (FIFO, First Input First Output) buffer.
步骤 5、 根据緩存器中峰值标识值统计结果, 调整滤波系数 α。  Step 5. Adjust the filter coefficient α according to the statistical result of the peak identification value in the buffer.
统计 FIFO中 flag值的 1、 0和 -1的个数, 分别记为峰值提前 N— early、 峰 值重合 N— on和峰值延迟 N— delay, 按照下述情况分别调整滤波器系数 α: 当 Ν— οη=128, 即 N— early=0、 且 N— delay=0, 则将滤波系数 α减小。  The number of 1, 0, and -1 of the flag value in the statistical FIFO is recorded as the peak advance N- early, the peak coincidence N-on, and the peak delay N-delay, respectively, and the filter coefficient α is adjusted according to the following conditions: — οη=128, that is, N—earth=0, and N−delay=0, the filter coefficient α is decreased.
这里, Ν— οη=128 , 说明 PDP ( η ) 实际峰值与理想峰值位置完全重合, 减小滤波系数以便更为平稳的跟踪信号。 例如: 如果当前滤波系数 α值为 0. 25 , 则将滤波系数 α减小为 0.125 , 如果当前滤波系数 α值为 0.125 , 则将滤 波系数 α减小为 0.06。  Here, Ν— οη=128 , indicating that the actual peak value of PDP ( η ) completely coincides with the ideal peak position, and the filter coefficient is reduced to track the signal more smoothly. For example: If the current filter coefficient α value is 0.25, the filter coefficient α is reduced to 0.125. If the current filter coefficient α is 0.125, the filter coefficient α is reduced to 0.06.
当 N— early >峰值提前门限 6, 或者 N— delay >峰值延迟门限 6, 则将滤波 器系数 α增大。  When N- early > peak advance threshold 6, or N - delay > peak delay threshold 6, the filter coefficient α is increased.
这里, 峰值提前或延迟超过设定门限值, 说明当前 UE可能出现快速移 动,需要增大滤波系数,以便及时跟踪信号。例如: 当前滤波系数 α值为 0.06, 则将滤波系数 α增大为 0.125; 当前滤波系数 α值为 0.125 , 则将滤波系数 α 增大为 0.25。  Here, the peak advance or delay exceeds the set threshold, indicating that the current UE may have a fast move, and the filter coefficient needs to be increased to track the signal in time. For example: If the current filter coefficient α value is 0.06, the filter coefficient α is increased to 0.125; when the current filter coefficient α value is 0.125, the filter coefficient α is increased to 0.25.
同时为了消除 FIFO中已有的 flag值对后续跟踪的影响, 将 FIFO中的数 据都清零, 并在随后的 20个子帧内, 令式(3 ) 中的 flag值为 0。  At the same time, in order to eliminate the influence of the existing flag value in the FIFO on the subsequent tracking, the data in the FIFO is cleared, and in the subsequent 20 subframes, the flag value in the equation (3) is 0.
除了上述两种情况, 滤波系数 α不变。  Except for the above two cases, the filter coefficient α does not change.
以上方法中, 也可以根据需要釆用大于 2倍的釆样率, 以获得更精确的 数据。 步骤 102中除了对 DP ( n )值进行 4倍内插, 也可以根据需要进行 n 倍内插; 滤波系数 α ζ [0, 1]的实数, 用户可以根据需要自行设定; 峰值提前 门限和峰值延迟门限也可以根据用户的需求设定; 步骤 5的第二种情况下, 为了消除已有 flag值对后续跟踪的影响, 对后续 20个子帧的 flag值清零, 该 方法是为了对后续 flag值形成保护间隔, 也可以根据用户需要, 增加或减少 清零的子帧的个数。 根据以上方法, 本发明还提供了相应的下行同步跟踪装置, 该装置的一 个实施例如图 4所示, 该装置包括相关器、 内插模块、 能量时延函数计算模 块、 寄存器、 滤波器、 峰值比较器和输出模块, 其中, In the above method, it is also possible to use more than 2 times the sampling rate as needed to obtain more accurate Data. In step 102, in addition to 4 times interpolation of the DP ( n ) value, n times interpolation may be performed as needed; the real number of the filter coefficient α ζ [0, 1] may be set by the user as needed; the peak early threshold and The peak delay threshold can also be set according to the user's needs; in the second case of step 5, in order to eliminate the influence of the existing flag value on subsequent tracking, the flag value of the subsequent 20 subframes is cleared, the method is for subsequent The flag value forms a guard interval, and the number of cleared subframes can also be increased or decreased according to user needs. According to the above method, the present invention also provides a corresponding downlink synchronization tracking device, an implementation of the device is shown in FIG. 4, the device includes a correlator, an interpolation module, an energy delay function calculation module, a register, a filter, and a peak. Comparator and output module, wherein
相关器, 用于获取 TD-SCDMA各子帧中下行导频时隙 DwPTS 中的 a correlator, configured to acquire a downlink pilot time slot DwPTS in each subframe of the TD-SCDMA
SYNC-DL码数据段,将所获得的 SYNC-DL码数据段与 UE本地的 SYNC-DL 码进行相关运算, 获得各子帧的 DP值; 其中, 该下行导频时隙 DwPTS中的 SYNC-DL数据段包含 SYNC-DL码序列和前后确定数量码片的 GP。 SYNC-DL code data segment, correlating the obtained SYNC-DL code data segment with the local SYNC-DL code of the UE to obtain a DP value of each subframe; wherein, the SYNC- in the downlink pilot time slot DwPTS The DL data segment contains a sequence of SYNC-DL codes and a GP that determines the number of chips before and after.
内插模块, 用于对各子帧的 DP值进行 n倍内插, 得到 DP值内插值; 能量时延函数计算模块, 用于根据 DP值内插值计算各子帧的能量时延 函数 PDP值;  An interpolation module, configured to perform n times interpolation on the DP value of each subframe to obtain a DP value interpolation value; and an energy delay function calculation module, configured to calculate an energy delay function PDP value of each subframe according to the DP value interpolation value ;
寄存器, 用于存储各子帧的 PDP值;  a register for storing a PDP value of each subframe;
滤波器, 用于对各子帧的 PDP值进行 IIR滤波, 并将滤波后的 PDP值存 回寄存器相应位置; 峰值比较器,用于寻找各子帧的 PDP值的峰值,并将各子帧的 PDP值的 峰值位置发送到输出模块;  a filter, configured to perform IIR filtering on the PDP value of each subframe, and store the filtered PDP value back to the corresponding position of the register; a peak comparator for finding the peak value of the PDP value of each subframe, and each subframe The peak position of the PDP value is sent to the output module;
输出模块, 用于输出各子帧的 PDP值的峰值位置。  An output module, configured to output a peak position of a PDP value of each subframe.
为了适应 UE多变的信道环境, 可以对以上实施例进行改进, 如图 5所 示, 该装置可以在上述装置的基础上增加緩存器和滤波系数调整模块。 其中, 峰值比较器还用于比较各子帧的 PDP值的峰值位置与理想峰值位置, 得到各 子帧的峰值标识值;  In order to adapt to the variable channel environment of the UE, the above embodiment may be improved. As shown in FIG. 5, the apparatus may add a buffer and a filter coefficient adjustment module based on the foregoing apparatus. The peak comparator is further configured to compare the peak position and the ideal peak position of the PDP value of each subframe to obtain a peak identification value of each subframe;
緩存器, 用于存储各子帧的峰值标识值;  a buffer, configured to store a peak identification value of each subframe;
滤波系数调整模块, 用于统计緩存器中峰值标识值, 并根据设定的条件 调整滤波系数, 将调整后的滤波系数发送到滤波器, 滤波器根据调整后的滤 波系数进行无限脉冲响应 IIR滤波。 a filter coefficient adjustment module, configured to count the peak identification value in the buffer, and according to the set condition The filter coefficient is adjusted, and the adjusted filter coefficient is sent to the filter, and the filter performs infinite impulse response IIR filtering according to the adjusted filter coefficient.
其中, 緩存器为 FIFO緩存器, 以便峰值标识值根据子帧的顺序变化。 以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保护 范围。 本领域技术人员根据本发明所作的任何修饰和变更, 均不脱离本发明 所附带的权利要求的保护范围。  The buffer is a FIFO buffer, so that the peak identification value changes according to the order of the subframes. The above is only the preferred embodiment of the present invention and is not intended to limit the scope of the present invention. Any modifications and variations made by those skilled in the art in light of the present invention are intended to be within the scope of the appended claims.
工业实用性 Industrial applicability
本发明釆用子帧中的 SYNC-DL码作为下行同步跟踪的对象, 将远端的 SYNC-DL码数据段与本地的 SYNC-DL码相关, 并釆用内插法提高原始信号 的时域分辨率, 并通过 IIR滤波器滤掉干扰信号得到相关峰值, 根据相关峰 值与理想峰值的比较结果, 调整 IIR滤波器的滤波系数 α, 从而保证 UE移动 速度在静态、 慢速、 高速之间变换时, 能够准确捕获帧头位置, 满足下行同 步要求, 因此具有很强的工业实用性。  The SYNC-DL code in the subframe is used as the object of downlink synchronization tracking, and the SYNC-DL code data segment of the far end is correlated with the local SYNC-DL code, and the time domain of the original signal is improved by interpolation. Resolution, and filtering the interference signal through the IIR filter to obtain the correlation peak. According to the comparison result of the correlation peak and the ideal peak, the filter coefficient α of the IIR filter is adjusted to ensure the UE moving speed is changed between static, slow and high speed. When the frame head position can be accurately captured to meet the downlink synchronization requirements, it has strong industrial applicability.

Claims

权 利 要 求 书 Claims
1、 一种下行同步跟踪方法, 该方法包括:  1. A downlink synchronization tracking method, the method comprising:
A、 获取各子帧中下行导频时隙 DwPTS中的下行同步 SYNC-DL码, 将 所获得的 SYNC-DL码数据段与用户设备 UE本地的下行同步 SYNC-DL码相 关, 得到时延函数 DP值, 并根据时延函数 DP值计算能量时延函数 PDP值; 其中, 所述下行导频时隙 DwPTS中的 SYNC-DL数据段包含 SYNC-DL码序 列和前后确定数量码片的保护间隔 GP;  A. Obtain a downlink synchronization SYNC-DL code in the downlink pilot time slot DwPTS in each subframe, and correlate the obtained SYNC-DL code data segment with a downlink synchronization SYNC-DL code locally of the user equipment UE to obtain a delay function. a DP value, and calculating an energy delay function PDP value according to the delay function DP value; wherein, the SYNC-DL data segment in the downlink pilot time slot DwPTS includes a SYNC-DL code sequence and a guard interval of a predetermined number of chips before and after GP;
B、 对各子帧的能量时延函数 PDP值进行无限脉冲响应 IIR滤波, 并保 存滤波后的能量时延函数 PDP值;  B. The energy delay function PDP value of each sub-frame is subjected to infinite impulse response IIR filtering, and the filtered energy delay function PDP value is saved;
C、 寻找各子帧的能量时延函数 PDP值的峰值, 将峰值位置输出。  C. Find the energy delay function of each sub-frame The peak value of the PDP value, and output the peak position.
2、 根据权利要求 1所述的下行同步跟踪方法, 其中, 该方法还包括: 2. The downlink synchronization tracking method according to claim 1, wherein the method further comprises:
D、 将各子帧的能量时延函数 PDP值的峰值位置与理想峰值位置比较, 根据比较结果确定并存储各子帧的峰值标识值; D. Comparing the peak position of the energy delay function PDP value of each subframe with the ideal peak position, and determining and storing the peak identification value of each subframe according to the comparison result;
E、 根据緩存器中峰值标识值统计结果, 调整滤波系数。  E. Adjust the filter coefficient according to the statistical result of the peak identification value in the buffer.
3、 根据权利要求 1所述的下行同步跟踪方法, 其中, 步骤 A具体为: The downlink synchronization tracking method according to claim 1, wherein the step A is specifically:
Al、 获取时分同步码分多址接入 TD-SCDMA 的各子帧中下行同步 SYNC-DL码前确定数量的码片的 GP、 下行同步 SYNC-DL码和下行同步 SYNC-DL码后确定数量的码片的 GP的数据,所述数据釆用至少 2倍釆样率, 与用户设备 UE本地的下行同步 SYNC-DL码相关, 得到时延函数 DP值; A2、 对时延函数 DP值进行 n倍内插, 得到时延函数 DP内插值, n为自 然数; Al. Obtaining Time Division Synchronous Code Division Multiple Access TD-SCDMA determines the number of GPs, downlink synchronization SYNC-DL codes, and downlink synchronization SYNC-DL codes of a certain number of chips before downlink synchronization SYNC-DL code. Data of the GP of the chip, the data is correlated with the downlink synchronization SYNC-DL code of the user equipment UE by using at least 2 times sampling rate, and the delay function DP value is obtained; A2, the DP function of the delay function is performed. n times interpolation, the delay function DP is interpolated, and n is a natural number;
A3、 计算能量时延函数 PDP值, 所述能量时延函数 PDP值为时延函数 DP内插值的模的平方。  A3. Calculating an energy delay function PDP value, the energy delay function PDP value is a square of a modulus of a delay function DP interpolation value.
4、根据权利要求 1所述的下行同步跟踪方法, 其中, 步骤 B中能量时延 函数 PDP值的计算公式为: ^» = (l -«) * ^ -l) + « * ^» , 其中, PDP ( n )为第 n个子帧计算的能量时延函数 PDP值, PDP ( n-1 ) 为第 n个子帧的前一个子帧的能量时延函数 PDP值进行无限脉冲响应 IIR滤 波后的能量时延函数 PDP值, α为滤波系数; η=1时, 直接保存能量时延函 数 PDP ( 1 )值。 The downlink synchronization tracking method according to claim 1, wherein the calculation formula of the energy delay function PDP value in step B is: ^» = (l -«) * ^ -l) + « * ^» , wherein , PDP ( n ) is the energy delay function PDP value calculated for the nth subframe, and PDP ( n-1 ) is the energy delay function PDP value of the previous subframe of the nth subframe for infinite impulse response IIR filtering The energy delay function PDP value after the wave, α is the filter coefficient; when η=1, the energy delay function PDP ( 1 ) value is directly saved.
5、 根据权利要求 2所述的下行同步跟踪方法, 其中, 步骤 D中子帧的 峰值标识值的确定规则为:  The downlink synchronization tracking method according to claim 2, wherein the determining rule of the peak identification value of the subframe in step D is:
如果当前子帧的能量时延函数 PDP值的峰值位置大于理想峰值位置, 则 该子帧的峰值标识值为 1 ;  If the peak position of the energy delay function PDP value of the current subframe is greater than the ideal peak position, the peak identification value of the subframe is 1;
如果当前子帧的能量时延函数 PDP值的峰值位置小于理想峰值位置, 则 该子帧的峰值标识值为 -1;  If the peak position of the energy delay function PDP value of the current subframe is less than the ideal peak position, the peak identification value of the subframe is -1;
如果当前子帧的能量时延函数 PDP值的峰值位置等于理想峰值位置, 则 该子帧的峰值标识值为 0。  If the peak position of the energy delay function PDP value of the current subframe is equal to the ideal peak position, the peak identification value of the subframe is 0.
6、根据权利要求 2所述的下行同步跟踪方法, 其中, 步骤 Ε中调整滤波 系数的规则为:  The downlink synchronization tracking method according to claim 2, wherein the rule of adjusting the filter coefficient in step Ε is:
51、 如果各子帧峰值位置与理想峰值位置完全重合, 则减小滤波系数; 51. If the peak position of each subframe completely coincides with the ideal peak position, reduce the filter coefficient;
52、 如果子帧的峰值位置小于理想峰值位置的数量超过设定门限值, 或 者子帧的峰值位置大于理想峰值位置的数量超过设定门限值, 则增大滤波系 数; 将当前全部峰值标识值清零, 且令随后的若干子帧的峰值标识值为 0; 52. If the peak position of the subframe is smaller than the ideal peak position exceeds the set threshold, or the peak position of the subframe is greater than the ideal peak position exceeds the set threshold, the filter coefficient is increased; The identification value is cleared, and the peak identification value of the subsequent subframes is 0;
53、 如果不是 S1或 S2中的情况, 保持滤波系数不变。  53. If it is not the case in S1 or S2, keep the filter coefficients unchanged.
7、 一种下行同步跟踪装置, 其中, 该装置包括: 相关器、 内插模块、 能 量时延函数计算模块、 寄存器、 滤波器、 峰值比较器和输出模块, 其中, 所述相关器用于获取时分同步码分多址接入 TD-SCDMA各子帧中下行 导频时隙 DwPTS中的下行同步 SYNC-DL码数据段, 将所获得的 SYNC-DL 码数据段与用户设备 UE本地的下行同步 SYNC-DL码进行相关运算 ,获得各 子帧的时延函数 DP值; 其中, 所述下行导频时隙 DwPTS中的 SYNC-DL数 据段包含 SYNC-DL码序列和前后确定数量码片的 GP;  A downlink synchronization tracking device, wherein the device comprises: a correlator, an interpolation module, an energy delay function calculation module, a register, a filter, a peak comparator, and an output module, wherein the correlator is configured to acquire a time division The synchronous code division multiple access accesses the downlink synchronous SYNC-DL code data segment in the downlink pilot time slot DwPTS in each subframe of the TD-SCDMA, and synchronizes the obtained SYNC-DL code data segment with the local downlink of the user equipment UE. The DL code performs a correlation operation to obtain a delay function DP value of each subframe; wherein, the SYNC-DL data segment in the downlink pilot time slot DwPTS includes a SYNC-DL code sequence and a GP of a predetermined number of chips before and after;
所述内插模块用于对各子帧的时延函数 DP值进行 n倍内插, 得到时延 函数 DP值内插值;  The interpolation module is configured to perform n-time interpolation on the DP function of the delay function of each subframe to obtain an interpolation value of the delay function DP value;
所述能量时延函数计算模块用于根据 DP值内插值计算各子帧的能量时 延函数 PDP值; 所述寄存器用于存储各子帧的能量时延函数 PDP值; The energy delay function calculation module is configured to calculate an energy delay function PDP value of each subframe according to the DP value interpolation value; The register is configured to store an energy delay function PDP value of each subframe;
所述滤波器用于对各子帧的能量时延函数 PDP值进行无限脉冲响应 IIR 滤波, 并将滤波后的能量时延函数 PDP值存回寄存器相应位置;  The filter is configured to perform an infinite impulse response IIR filtering on the energy delay function PDP value of each subframe, and store the filtered energy delay function PDP value back to the corresponding position of the register;
所述峰值比较器用于寻找各子帧的 PDP值的峰值, 并将各子帧的 PDP 值的峰值位置发送到输出模块;  The peak comparator is configured to find a peak value of a PDP value of each subframe, and send a peak position of a PDP value of each subframe to an output module;
所述输出模块用于输出各子帧的 PDP值的峰值位置。  The output module is configured to output a peak position of a PDP value of each subframe.
8、 根据权利要求 7所述的下行同步跟踪装置, 其中, 该装置还包括緩存 器和滤波系数调整模块, 其中,  The downlink synchronization tracking device according to claim 7, wherein the device further comprises a buffer and a filter coefficient adjustment module, wherein
所述峰值比较器还用于比较各子帧的 PDP值的峰值位置与理想峰值位 置, 得到各子帧的峰值标识值;  The peak comparator is further configured to compare a peak position and an ideal peak position of a PDP value of each subframe to obtain a peak identification value of each subframe;
所述緩存器用于存储各子帧的峰值标识值;  The buffer is configured to store a peak identification value of each subframe;
所述滤波系数调整模块用于统计緩存器中峰值标识值, 并根据设定的条 件调整滤波系数, 将调整后的滤波系数发送到滤波器, 滤波器根据调整后的 滤波系数进行无限脉冲响应 IIR滤波。  The filter coefficient adjustment module is configured to count the peak identification value in the buffer, adjust the filter coefficient according to the set condition, and send the adjusted filter coefficient to the filter, and the filter performs an infinite impulse response IIR according to the adjusted filter coefficient. Filtering.
9、 根据权利要求 8所述的下行同步跟踪装置, 其中, 所述緩存器为先入 先出緩存器。  The downlink synchronization tracking device according to claim 8, wherein the buffer is a first-in first-out buffer.
PCT/CN2009/072435 2008-06-24 2009-06-24 Method and device for downlink synchronization tracking WO2009155864A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810126320.6 2008-06-24
CN 200810126320 CN101615922B (en) 2008-06-24 2008-06-24 Downlink synchronous tracking method and downlink synchronous tracking device

Publications (1)

Publication Number Publication Date
WO2009155864A1 true WO2009155864A1 (en) 2009-12-30

Family

ID=41444044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/072435 WO2009155864A1 (en) 2008-06-24 2009-06-24 Method and device for downlink synchronization tracking

Country Status (2)

Country Link
CN (1) CN101615922B (en)
WO (1) WO2009155864A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102970081A (en) * 2012-07-17 2013-03-13 珠海银邮光电技术发展股份有限公司 Method and system for judging downlink pilot time slot of time division-synchronous code division multiple access (TD-SCDMA) repeater

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102447506A (en) * 2010-10-11 2012-05-09 中兴通讯股份有限公司 Method and device for enhancing downlink synchronization reliability
CN104518786B (en) * 2013-09-30 2017-12-15 华为技术有限公司 A kind of auto frequency control method, automatic frequency control apparatus and user equipment
CN107403441B (en) * 2016-05-19 2020-11-27 视辰信息科技(上海)有限公司 Tracking method of augmented reality system and terminal equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1710833A (en) * 2005-06-17 2005-12-21 凯明信息科技股份有限公司 Relative method for primary synchronizing in CDMA mobile communication system
US20060133464A1 (en) * 2001-10-11 2006-06-22 Interdigital Technology Corporation Acquisition circuit for low chip rate option for mobile telecommunication system
CN1885744A (en) * 2006-07-11 2006-12-27 京信通信技术(广州)有限公司 Synchronization method for adapting FPGA realization in mobile communication system
CN1996770A (en) * 2006-12-06 2007-07-11 重庆重邮信科股份有限公司 A method for the chip precise synchronization in the initial searching of the user terminal cell
CN101136697A (en) * 2007-09-30 2008-03-05 中兴通讯股份有限公司 Downlink synchronization tracking method of time-division synchronization CDMA access system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060133464A1 (en) * 2001-10-11 2006-06-22 Interdigital Technology Corporation Acquisition circuit for low chip rate option for mobile telecommunication system
CN1710833A (en) * 2005-06-17 2005-12-21 凯明信息科技股份有限公司 Relative method for primary synchronizing in CDMA mobile communication system
CN1885744A (en) * 2006-07-11 2006-12-27 京信通信技术(广州)有限公司 Synchronization method for adapting FPGA realization in mobile communication system
CN1996770A (en) * 2006-12-06 2007-07-11 重庆重邮信科股份有限公司 A method for the chip precise synchronization in the initial searching of the user terminal cell
CN101136697A (en) * 2007-09-30 2008-03-05 中兴通讯股份有限公司 Downlink synchronization tracking method of time-division synchronization CDMA access system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102970081A (en) * 2012-07-17 2013-03-13 珠海银邮光电技术发展股份有限公司 Method and system for judging downlink pilot time slot of time division-synchronous code division multiple access (TD-SCDMA) repeater
CN102970081B (en) * 2012-07-17 2014-09-24 珠海银邮光电技术发展股份有限公司 Method and system for judging downlink pilot time slot of time division-synchronous code division multiple access (TD-SCDMA) repeater

Also Published As

Publication number Publication date
CN101615922B (en) 2012-12-05
CN101615922A (en) 2009-12-30

Similar Documents

Publication Publication Date Title
JP4701344B2 (en) Method and apparatus for maintaining synchronized tracking of TDD wireless communications
CN1135725C (en) Search window delay tracking in code division multiple access communication systems
US8300574B2 (en) Method of uplink synchronization establishment based on the united transmission technology
US6680968B2 (en) CDMA searcher with time offset compensation
CN107241794B (en) Rapid synchronous tracking method and device for TDD-OFDM downlink
WO2011127730A1 (en) Method for estimating frequency offset and apparatus thereof
TWI394386B (en) Efficient frame tracking in mobile receivers
WO2009155864A1 (en) Method and device for downlink synchronization tracking
CN100525132C (en) A method for the chip precise synchronization in the initial searching of the user terminal cell
CN101047422B (en) Method for implementing synchronous under code stage of time-division-synchronous CDMA system
CN101136697B (en) Downlink synchronization tracking method of time-division synchronization CDMA access system
CN107911328B (en) Frame synchronization judging device and judging method
CN101252390B (en) Frame synchronization method and realizing device based on paralleling tactic
CN100364254C (en) Frequency deviation evaluation device and method
WO2012048564A1 (en) Method and device for improving stability of downlink synchronization
CN112104390A (en) Rapid capturing method based on GPS pulse per second
WO2011157088A1 (en) Method and apparatus for confirming downlink synchronous code of single-sampled data in td-scdma
KR101784237B1 (en) Timing synchronization method and apparatus in wireless communications system
KR20080060817A (en) Aparatus and method for searching channel signal in mobile communication system
WO2001097397A1 (en) The synchronization capture method of downline in cdma system
KR101137344B1 (en) Method and apparatus for estimating frame synchronization
CN108347765B (en) Pseudo-range measurement method based on CDMA forward link signal
CN103517289B (en) The method and apparatus determining window channel impulse response in TD-SCDMA system common frequency multi-cell
TWI374616B (en) Method to maintain synchronization tracking in tdd wireless communication and terminal based on tdd wireless communication
CN1493124A (en) Method and device for capturing of down synchronization in CDMA communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09768789

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09768789

Country of ref document: EP

Kind code of ref document: A1