WO2009155804A1 - 配置上下行子帧配比方法、及数据传输的方法、装置 - Google Patents

配置上下行子帧配比方法、及数据传输的方法、装置 Download PDF

Info

Publication number
WO2009155804A1
WO2009155804A1 PCT/CN2009/071445 CN2009071445W WO2009155804A1 WO 2009155804 A1 WO2009155804 A1 WO 2009155804A1 CN 2009071445 W CN2009071445 W CN 2009071445W WO 2009155804 A1 WO2009155804 A1 WO 2009155804A1
Authority
WO
WIPO (PCT)
Prior art keywords
ratio
uplink
subframe
downlink
subframes
Prior art date
Application number
PCT/CN2009/071445
Other languages
English (en)
French (fr)
Inventor
王俊伟
范霄安
李博
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2009155804A1 publication Critical patent/WO2009155804A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows

Definitions

  • the present invention relates to the field of wireless communications, and in particular, to a technology for configuring uplink-downlink subframe ratio and a technique for performing data transmission by using a configured uplink-downlink subframe ratio.
  • LTE Long Term Evolution
  • E-UMTS Evolved Universal Mobile Telecommunications System
  • OFDM Frequency Division Duplex
  • T DD split duplex
  • FDD frequency division duplex
  • T DD split duplex
  • the uplink and downlink sub-uses used in the system can be semi-statically different according to different traffic flows. The frame ratio is switched.
  • LTE Long Term Evolution
  • uplink and downlink subframe ratios may be applied to the TDD MBMS dedicated carrier system.
  • LTE MBMS defines single cell transmission mode (Single Cell transmission)
  • SFN mode multiple base stations in the same SFA (single-frequency network area) use the same modulation and coding technology and transmit the same data at the same frequency to improve the reception efficiency of the cell edge users.
  • MCE Multi-cell/multicast Coordination
  • MBSFN Multimedia Broadcast Multicast Service Signal Frequency Network
  • Entity multi-cell/multicast coordination entity, responsible for allocating and managing radio broadcast resources of all base stations in the SFA.
  • each MBMS service area (MBMS service)
  • MBSFN area consists of multiple adjacent single cells that provide the same MBMS service. All cells in each MBSFN area use the same uplink and downlink subframe ratio.
  • the MBSFN area can use different uplink and downlink subframe ratios according to the service type requirements. For example, MBSFN area 1 uses 0: 10 ratio; adjacent MBSFN area 2 uses 1 : 8 ratio. Since the MBSFN edge has a reserved cell (Reserve).
  • MBSFN exists to protect the MBSFN area from external frequency interference and to overcome interference caused by different uplink and downlink ratios in adjacent MBSFN areas.
  • the application of the uplink and downlink subframe ratio between the MBSFN areas and the configuration of the reserved cell and the transport-only cell are controlled by the MCE.
  • the TDD unicast and MBMS hybrid carrier system there are 8 different uplink and downlink subframe matching modes.
  • the system performs semi-static switching between different uplink and downlink subframe ratios by the base station according to service requirements.
  • the base station can reset the subframe ratio of the cell by "cold boot” or other means. After the subframe ratio is determined, only one uplink and downlink subframe ratio is used in a period of time.
  • the inventors of the present invention have found through in-depth analysis that: since only one uplink and downlink subframe ratio can be used in a period of time, if the system requires only one uplink subframe in 20 ms, The ratio of existing subframes cannot meet this requirement. For example, if 1: 8+1: 8 ratio is used within 20ms, two uplink subframes will be used within 20 ms, resulting in waste of uplink transmission resources. . In addition, during a period of time, the base station performs resource allocation and data transmission according to a ratio of 0:10.
  • the base station After a period of time, when the base station resets the uplink-downlink subframe ratio to 1:8 according to requirements, the base station follows 1: 8 uplink and downlink resource allocation allocation, data transmission, because only 0:10 uplink and downlink subframe ratio is used in a period of time, only downlink data transmission will occur, and no uplink data transmission, but in the next inter-segment Only use 1:8 uplink and downlink subframe ratio, it will make Only one uplink data transmission is used during this period, so the use of a single uplink-downlink subframe ratio in each inter-segment will not only make the uplink and downlink data transmission uneven, but also can not meet the system requirements.
  • the existing uplink and downlink subframe ratios only support the uplink and downlink transmission of the 10 ms generation period, and cannot support the uplink and downlink transmission of the generation period of 10 ms or longer.
  • the purpose of the embodiments of the present invention is to provide a method and a device for configuring an uplink subframe and a downlink subframe ratio, so as to reasonably allocate uplink and downlink resources to avoid resource waste.
  • the purpose of the embodiments of the present invention is to provide a data transmission method for reasonably allocating uplink and downlink resources to avoid resource waste.
  • a method for configuring an uplink subframe and a downlink subframe ratio including:
  • the system configures the ratio of the uplink subframe to the downlink subframe according to requirements
  • the configuration is to mix the at least two uplink subframes with the first ratio of the downlink subframes.
  • a device for configuring an uplink subframe and a downlink subframe comprising:
  • a configuration unit configured to configure a ratio of an uplink subframe to a downlink subframe according to system requirements
  • the configuration is that the configuration unit mixes the first ratio of the at least two uplink subframes and the downlink subframe.
  • a method of transmitting data comprising:
  • the configuration is to mix the at least two uplink subframes with the first ratio of the downlink subframes.
  • a device for transmitting data comprising:
  • a receiving unit configured to receive, by the receiving system, a ratio of an uplink subframe to a downlink subframe according to requirements
  • a transmitting unit configured to transmit data in a corresponding uplink or downlink subframe according to the ratio
  • the configuration is to mix the at least two uplink subframes with the first ratio of the downlink subframes.
  • a system in a period of time is configured to mix at least two uplink subframes with a first ratio of downlink subframes according to requirements, that is, there are at least two uplink subframes and a first subframe of a downlink subframe in one occurrence period.
  • the ratio of the uplink subframe to the downlink subframe can be flexibly configured in an occurrence period to meet the requirements of the system for uplink or downlink subframes, and at least two uplink subframes and downlink subframes are used in a period of time.
  • the first ratio can not only properly configure the data transmission of uplink or downlink subframes, but also avoid the waste of uplink or downlink resources caused by a single ratio.
  • the hybrid ratio is used, no downlink data transmission occurs in a period of time, and no uplink data transmission is performed, so that the uplink and downlink data transmission in a period of time is more uniform.
  • the occurrence period includes the number of the first ratio of the at least two uplink subframes and the downlink subframes, the uplink and downlink transmissions of the occurrence period of 10 ms or more can be supported.
  • FIG. 1 is a schematic diagram of a hybrid configuration of an uplink subframe and a downlink subframe ratio according to a second embodiment of the present invention
  • FIG. 2 is a schematic diagram of a hybrid configuration of an uplink subframe and a downlink subframe ratio according to a third embodiment of the present invention
  • FIG. 3 is a schematic diagram of a hybrid configuration of an uplink subframe and a downlink subframe ratio according to a fourth embodiment of the present invention.
  • FIG. 4 is a flowchart of a data transmission method according to a fifth embodiment of the present invention.
  • Figure 5 is a block diagram showing the structure of a data transmission apparatus according to a sixth embodiment of the present invention.
  • the first embodiment of the present invention provides a method for configuring an uplink subframe and a downlink subframe ratio, including:
  • the system configures the ratio of the uplink subframe to the downlink subframe according to requirements
  • the configuration is to mix and match at least two uplink subframes with a first ratio of downlink subframes.
  • the system is specifically according to requirements: The system is based on the number of users in the cell, or different service types or operators' own business needs.
  • the ratio of the uplink subframe to the downlink subframe configured by the system according to requirements is specifically:
  • the system determines an occurrence period of the uplink subframe and the downlink subframe according to the requirement; and configures, according to the occurrence period, the number of the first ratio of the uplink subframe to the downlink subframe.
  • the ratio of the uplink subframe to the downlink subframe may be specifically configured according to the requirement: the ratio of the uplink subframe to the downlink subframe may be specifically as follows: The serial number and the number of the first ratio are selected.
  • the occurrence period is determined according to the number of the first ratio of the uplink subframe and the downlink subframe involved in the hybrid configuration.
  • the number of the first ratio of the uplink subframe to the downlink subframe is determined by the system according to the number of users in the cell, or different service types, or the service requirements of the carrier, where different service types may be For interactive or on-demand services, for this part of the service, users need to send uplink data in the 50ms period, so it is necessary to use five kinds of matching configurations to achieve the system requirements.
  • the operator needs all users in the cell to feedback the broadcast quality, and may use 1:8 to carry all the feedback information; if only a small number of users feedback, it needs 1: 8 + 0 : 10 Proportion of mixed configuration.
  • the configuration of the first ratio of the at least two uplink subframes to the downlink subframes is as follows: the at least two uplink subframes are overlapped with the first ratio of the downlink subframes in a certain period, and then repeated. Configuring or repeating the first ratio of the first at least two uplink subframes and the downlink subframes in a certain period, and switching to the second at least two uplink subframes and the first downlink subframe after a certain period. The configuration of the uplink and the downlink subframes is repeated after a certain period of time, and the first ratio of the uplink subframe to the downlink subframe is repeated after a certain period. Configuration.
  • the occurrence period is greater than 10ms.
  • Uplink subframes There are 8 types of uplink subframes in the 10ms frame in the TDD system, as shown in Table 1, where D represents the downlink subframe, U represents the uplink subframe, and S represents the special subframe.
  • the subframes in which the different uplink and downlink ratios are mixed and configured may be a mixture of any two or more of Table 1, wherein the ratio of the uplink and downlink subframes of the ratio 0, 1, 2, and 6 is 5 ms. In this table, the same ratio is repeated twice in a 10 ms period, and the remaining uplink and downlink subframes have a sequence number of 10 ms. According to the requirements of the system, if you need to obtain the data transmission of an uplink subframe with a period of 20ms, you can use the uplink and downlink sub-subjects.
  • the frame ratio is a mixed configuration of 1:8 subframe ratio and 0:10 subframe ratio.
  • the ratio of the uplink and downlink subframes may be 0: 10, 0: 10 and 1: 8 sub-frame mix configuration, if you need to obtain data transmission of two uplink subframes with a period of 30ms, you can use the ratio of the uplink and downlink subframes to 0: 10, 0: 10 Mixed configuration with 2:7 subframe matching, or mixed configuration of 0:10, 1:8 and 1:8 subframe matching. Therefore, the ratio of the specifically generated hybrid configuration is determined according to the demand for the uplink or downlink subframes.
  • a system in a period of time is configured to mix at least two uplink subframes with a first ratio of downlink subframes according to requirements, that is, there are at least two uplink subframes and a downlink subframe first ratio in one occurrence period, Therefore, the uplink subframe and the downlink subframe ratio can be flexibly configured in an occurrence period to meet the requirement of the system for the uplink or downlink subframe, and at least two uplink subframes and downlink subframes are used in a period of time.
  • a ratio can not only properly configure the data transmission of uplink or downlink subframes, but also avoid the waste of uplink or downlink resources caused by a single ratio.
  • the uplink and downlink transmissions of the occurrence period can be supported.
  • the second embodiment of the present invention provides a method for configuring an uplink subframe and a downlink subframe.
  • the uplink and downlink subframes are matched to a 1:8 subframe in a certain period.
  • the ratio and the 0:10 subframe ratio are repeatedly configured after being mixed in the 20 ms occurrence period, so that an uplink subframe transmission occurs within 20 ms of the occurrence period, which specifically includes:
  • the system configures the ratio of the uplink subframe to the downlink subframe according to requirements
  • the configuration is that the first ratio of the uplink subframe to the downlink subframe is 1: 8 subframe ratio and the 0: 10 subframe ratio is repeatedly configured according to the occurrence period of 20 ms.
  • the mixed ratio of 1:8 subframe ratio and 0:10 subframe ratio is determined by the system requiring an uplink subframe transmission within 20ms of the occurrence period, that is, within 20ms of the occurrence period.
  • the two uplink subframes are matched with the downlink subframes, and one uplink subframe and the downlink subframe ratio must support one uplink subframe transmission.
  • the specific requirements of the system are determined by the system according to the number of users in the cell, or different service types or the carrier's own business needs.
  • the above repeated configuration uses a 1:8 subframe ratio and a 0:10 subframe ratio in a certain period according to the transmission.
  • the life cycle is continuously configured for 20ms.
  • the system uses 1:8 subframe ratio and 0:10 subframe ratio according to the requirements to be continuously configured according to the occurrence period of 20ms, which can not only satisfy the system to generate an uplink transmission in the occurrence period of 20ms.
  • the requirements, and the system can reasonably allocate the uplink and downlink transmissions according to the requirements, avoiding the uneven distribution of uplink or downlink subframes caused by only one subframe ratio in a period of time, thereby avoiding waste of resources.
  • it can support uplink and downlink transmissions of more than 20ms, and can provide one uplink and downlink transmission of a longer period.
  • the third embodiment of the present invention provides a method for configuring an uplink subframe and a downlink subframe.
  • the ratio of the uplink and downlink subframes is 1:8 in a certain period.
  • Frame ratio and 0: 10 subframe ratio are mixed and repeated in the 20 ms period, then switched to 1: 8 subframe ratio, 0: 10 subframe ratio and 0: 10 subframe ratio
  • the repeated configuration is repeated, and an uplink subframe transmission occurs in different periods of a period of time, which specifically includes:
  • the system configures the ratio of the uplink subframe to the downlink subframe according to requirements
  • the configuration is that the ratio of the uplink subframe to the downlink subframe is 1: 8 subframe ratio and 0: 10 subframe ratio in a period of time, according to the occurrence period of 20 ms, the hybrid configuration is repeated, in the next period.
  • the intra-frame switching is performed in the following manner: the ratio of the uplink subframe to the downlink subframe is 1:8 subframe ratio, the ratio of 0:10 subframes, and the ratio of 0:10 subframes are repeated according to the occurrence period of 30 ms.
  • the system determines, according to the number of users in the cell, or different service types or the service needs of the operator, that a 1:8 subframe ratio and a 0:10 subframe ratio occur in a certain period of time. The cycle is repeated for 20ms. If the system determines that the hybrid configuration cannot meet the actual requirements of the system, switch to 1: 8 subframe ratio, 0: 10 subframe ratio, and 0: 10 subframe ratio according to the generation period of 30ms. Repeated configuration, that is, the system generates an uplink subframe transmission within 20ms of the occurrence period, or an uplink subframe transmission occurs within 30ms of the occurrence period to determine that the hybrid configuration uses 1:8 subframe ratio and 0:10 sub-frame. Frame ratio, or use 1: 8 subframe ratio, 0: 10 subframe ratio and 0: 10 subframe ratio.
  • this embodiment only gives an example in which an uplink subframe transmission occurs once in an occurrence period of 20 ms, and an uplink subframe transmission occurs in an occurrence period of 30 ms. For an uplink subframe transmission or a downlink in which the occurrence period is greater than 10 ms, a different number of times occurs. Examples of sub-frame transmissions can be flexibly mixed according to the ratios in Table 1 above.
  • the system uses 1:8 subframe ratio and 0:10 subframe ratio according to requirements in a certain period.
  • the 1:8 subframe ratio, 0:10 subframe ratio and 0:10 subframe ratio can be continuously configured according to the occurrence period of 30ms, which can satisfy the system.
  • the requirement of uplink transmission occurs in the occurrence period of 20ms, and the system demand changes.
  • the system can flexibly switch the hybrid ratio according to requirements, which can not only be more reasonable.
  • the uplink and downlink transmissions are allocated, and the phenomenon that the uplink or downlink subframe allocation is uneven due to only a single hybrid ratio can be avoided in a period of time, thereby avoiding waste of resources.
  • it can also support the uplink and downlink transmission of 20ms or 30ms, and thus can provide one uplink and downlink transmission of a longer period.
  • the fourth embodiment of the present invention provides a method for configuring an uplink subframe and a downlink subframe ratio.
  • the ratio of the uplink and downlink subframes is 1:8 in a certain period.
  • Frame ratio and 0: 10 subframe ratio are mixed and repeated in the 20 ms period, and then switched to 0: 10 subframe ratio configuration, that is, an uplink subframe occurs in 20 ms in a period of time.
  • the transmission is switched to 10ms without uplink subframe transmission, including
  • the system configures the ratio of the uplink subframe to the downlink subframe according to requirements
  • the configuration is that the ratio of the uplink subframe to the downlink subframe is 1:8 subframe ratio and 0:10 subframe ratio is mixed according to the occurrence period of 20 ms, and the configuration is repeated in the next segment. Switch between 0 and 10 sub-frame configurations.
  • the system determines, according to the number of users in the cell, or different service types or the service requirements of the operator, that a 1:8 subframe ratio and a 0:10 subframe ratio occur in a certain period of time. If the system determines that no uplink subframe transmission is required, the system switches to 0: 10 subframe ratio, that is, the system generates an uplink subframe transmission within 20 ms of the occurrence period, or does not occur within 10 ms of the occurrence period. The uplink subframe transmission is used to determine whether the hybrid configuration uses a 1:8 subframe ratio and a 0:10 subframe ratio, or a 0:10 subframe ratio.
  • the system uses 1:8 subframe ratio and 0:10 subframe ratio according to requirements in a certain period.
  • the 0:10 subframe ratio can be used, which not only meets the requirements of the system to generate an uplink transmission in the 20ms period, but also changes the system requirements.
  • the transmission requirement of sub-frame matching the system can flexibly switch the hybrid ratio according to the demand, not only can allocate the uplink and downlink transmission more reasonably, but also avoid the uplink or the single hybrid ratio caused by the uplink or the downlink.
  • the downlink subframes are unevenly distributed, thereby avoiding waste of resources.
  • a fifth embodiment of the present invention provides a data transmission method, as shown in FIG. 4, which specifically includes the following steps.
  • [73] 402 transmit data according to the ratio in the corresponding uplink or downlink subframe
  • the ratio of the uplink subframe to the downlink subframe configured by the receiving system according to the requirement is specifically:
  • the base station receives the ratio of the uplink subframe to the downlink subframe configured by the MCE; or the terminal receives the ratio of the uplink subframe to the downlink subframe forwarded by the base station.
  • the ratio of the uplink subframe to the downlink subframe configured by the receiving system according to the requirement includes: The receiving system configures a ratio of the uplink subframe to the downlink subframe according to the resource requirement of the sent service.
  • MC E can control radio resources by using sub-frame mixing.
  • the MCE notifies the base station of the configuration information of the subframe matching through the M2 interface, and the base station transmits the channel in the SFN mode broadcast channel or the unicast broadcast channel PBCH (Physical Broadcast)
  • PBCH Physical Broadcast
  • DBCH Dynamic - Broadcast Channel
  • the physical multicast channel or other common channel, signals all terminals in the MBSFN area.
  • Corresponding reserved cell Reserve cell
  • only transported cell Transport only
  • the configuration change of cell is also controlled by MCE. By configuring the subframes of these cells, it can be adjacent to M.
  • the subframe in which the BSFN area and the MBSFN area may have interference is set as a dummy subframe, and no data transmission is performed in the subframe to eliminate uplink and downlink interference caused by the TDD system.
  • the configuration is to mix the at least two uplink subframes with the first ratio of the downlink subframes.
  • the system determines the period of occurrence of the uplink subframe and the downlink subframe according to the requirement, and configures the number of the first ratio of the uplink subframe and the downlink subframe according to the occurrence period.
  • the first ratio may be specific in Table 1. Any of the 8 ratios.
  • the occurrence period is determined according to the number of the first ratio of the uplink subframe to the downlink subframe in the hybrid configuration.
  • the number of the first ratio of the uplink subframe to the downlink subframe is determined by the system according to the number of users in the cell, or different service types, or the service requirements of the operator. The different service types may be interaction, or on-demand.
  • the operator needs all users in the cell to feedback the broadcast quality. It may use 1: 8 to carry all the feedback information. If only a small amount of user feedback is used, it needs 1: 8
  • + 0: 10 is achieved by means of a hybrid configuration.
  • the configuration of the first ratio of the at least two uplink subframes and the downlink subframes is specifically: the at least two uplink subframes are mixed with the first ratio of the downlink subframes in a certain period, and then repeatedly configured. Or repeating the first at least two uplink subframes and the first ratio of the downlink subframes in a certain period, and switching to the first at least two uplink subframes and the first subframe of the downlink subframe after a certain period; The configuration is repeated in a specific period; or the first ratio of the at least two uplink subframes and the downlink subframe is repeatedly configured in a certain period, and is switched to a first ratio configuration of the uplink subframe and the downlink subframe after a certain period. . Specifically, it is as described in the second, third, and fourth embodiments.
  • the occurrence period is greater than 10ms.
  • the subframe in which the different uplink and downlink ratios are mixed and configured may be a mixture of any two or more subframe ratios in Table 1, wherein the ratio period of the ratio 0, 1, 2, 6 is 5 ms. , repeat the same ratio twice in 10ms, and the ratio of the remaining ratios is 10ms. According to the requirements of the system, if a data transmission of an uplink subframe with a period of 20 m s is required, a hybrid configuration in which the uplink and downlink subframes have a ratio of 1:8 subframe ratio and 0:10 subframe ratio can be used.
  • the ratio of the uplink and downlink subframes can be 0: 10, 0: 10, and 2: 7 hybrid configurations of subframe ratio, or 0: 10, 1: 8 and 1 : 8 sub-frame matching mix configuration.
  • the ratio of the subframe ratio of the specifically generated hybrid configuration is determined according to the demand for the uplink or downlink subframe.
  • a system in a period of time is configured to mix at least two uplink subframes with a first ratio of downlink subframes according to requirements, that is, there are at least two uplink subframes and a first subframe of a downlink subframe in one occurrence period.
  • the system can meet the requirements of the uplink or downlink subframes, and use at least two uplink subframes and the downlink subframe for the first time in a period of time.
  • the data transmission of the uplink or downlink subframes can be reasonably configured to avoid the waste of uplink or downlink resources caused by a single ratio.
  • the hybrid ratio because the hybrid ratio is used, it will not cause only downlink data transmission in a period of time, and there is no uplink data transmission, so that the uplink and downlink data transmission in a period of time is more uniform.
  • the occurrence period since the occurrence period includes the first ratio of the at least two uplink subframes and the downlink subframes, the uplink and downlink transmissions of the occurrence period of 10 ms or more can be supported.
  • a sixth embodiment of the present invention provides an apparatus for configuring an uplink subframe and a downlink subframe ratio, where the apparatus includes
  • a configuration unit configured to configure a ratio of an uplink subframe to a downlink subframe according to system requirements
  • the configuration is to mix the at least two uplink subframes with the first ratio of the downlink subframes.
  • the configuration of the first ratio of the at least two uplink subframes to the downlink subframes is specifically: mixing the at least two uplink subframes with the first ratio of the downlink subframes in a certain period, and then repeatedly configuring Or repeating the first at least two uplink subframes and the first ratio of the downlink subframes in a certain period, and switching to the first at least two uplink subframes and the first subframe of the downlink subframe after a certain period;
  • the configuration is repeated in a specific period; or the first ratio of the at least two uplink subframes and the downlink subframe is repeatedly configured in a certain period, and is switched to a first ratio configuration of the uplink subframe and the downlink subframe after a certain period. .
  • it is as described in the second, third, and fourth embodiments.
  • the configuration unit can determine whether the subframe ratio used in the system needs to be switched in at least one of the following ways: the number of users in the area, different service types, and the service feedback period required by the operator.
  • the seventh embodiment of the present invention provides a device for transmitting data.
  • the device 50 includes: [89] a receiving unit 51, configured to receive, according to requirements, an uplink subframe and a downlink.
  • the transmission unit 52 is configured to transmit data on the corresponding uplink or downlink subframe according to the ratio; [91] where the configuration is to connect at least two uplink subframes with The first ratio hybrid configuration of the downlink subframe.
  • the ratio of the uplink subframe to the downlink subframe configured by the receiving system according to the requirement includes: The receiving system configures the ratio of the uplink subframe to the downlink subframe according to the requirements of the bearer transmission.
  • the MCE controls the radio resources by using the subframe mix, and the MCE notifies the base station of the configuration information of the subframe ratio through the M2 interface, and the base station broadcasts the channel in the SFN mode or the unicast broadcast channel PBCH ( Physical Broadcast Channel), or unicast dynamic broadcast channel
  • PBCH Physical Broadcast Channel
  • the signaling of the DBCH (Dynamic-Broadcast Channel) or PMCH (Physical Multicast CHannel), or other common channel notifies all terminals in the MBSFN area.
  • the configuration changes of the reserved cell and the transmission only cell to which the corresponding MBSFN area belongs are also controlled by the MCE.
  • the subframes that may be interfered in the adjacent MBSFN area and the MBSFN area may be set as dummy subframes, and no data transmission is performed in the subframes to eliminate the upper and lower sides caused by the TDD system. Line interference.
  • the configuration of the first ratio of the at least two uplink subframes and the downlink subframes is specifically: mixing the at least two uplink subframes with the first ratio of the downlink subframes in a certain period, and then repeatedly configuring Or repeating the first at least two uplink subframes and the first ratio of the downlink subframes in a certain period, and switching to the first at least two uplink subframes and the first subframe of the downlink subframe after a certain period;
  • the configuration is repeated in a specific period; or the first ratio of the at least two uplink subframes and the downlink subframe is repeatedly configured in a certain period, and is switched to a first ratio configuration of the uplink subframe and the downlink subframe after a certain period. .
  • it is as described in the second, third, and fourth embodiments.
  • the present invention can be implemented by hardware, or can be realized by means of software plus necessary general hardware platform, and the present invention is based on the present invention.
  • the technical solution can be embodied in the form of a software product, which can be stored in a non-volatile storage medium (which can be a CD-ROM, a USB flash drive, a mobile hard disk, etc.), including a number of instructions for making a computer
  • the device (which may be a personal computer, server, or network device, etc.) performs the methods described in various embodiments of the present invention.
  • the above description is only a preferred embodiment of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例涉及无线通信领域, 公开了一种配置上行子帧与下行子帧配比的方法, 包括: 系统根据需求配置上行子帧与下行子帧的配比; 所述配置是将至少两种上行子帧与下行子帧的第一配比混合配置。该实施例用以合理分配上下行资源, 避免资源浪费。同时, 本发明实施例也提供一种利用配置的上下行子帧配比进行数据传输的方法及装置。

Description

说明书 配置上下行子帧配比方法、 及数据传输的方法、 装置
[1] 本申请要求于 2008年 6月 24日提交中国专利局、 申请号为 200810068039.1、 发明 名称为"配置上下行子帧配比方法、 及数据传输的方法、 装置"的中国专利申请的 优先权, 其全部内容通过引用结合在本申请中。
[2] 技术领域
[3] 本发明涉及无线通信领域, 特别涉及配置上下行子帧配比的技术、 以及利用配 置的上下行子帧配比进行数据传输的技术。
[4] 发明背景
[5] 长期演进 (Long Term
Evolution, LTE) 是 3GPP推动的以 OFDM为核心技术对 E— UMTS (演进的通用 移动通讯系统) 技术的研究。 LTE系统中釆用频分双工 (FDD) 和吋分双工 (T DD) 两种模式来实施空中接口。 在吋分双全工模式中, 接收和传送在同一频率 信道即相同载波的不同吋隙, 在单播系统中, 根据业务流量的不同, 可以半静 态的对系统中所使用的上行与下行的子帧配比进行切换。 在现有 LTE
TDD单播与混合载波系统中, 共有 8种可以使用的上下行子帧配比。
[6] LTE MBMS (Multimedia Broadcast multicast
Service, 多媒体多播广播服务) 专用载波系统中, 全部吋频资源均用于下行资 源传输。 在 TDD
MBMS专用载波系统中, 只釆用上下行子帧配比 0: 10的子帧配比。 在带上行反 馈 LTE
MBMS专用载波系统中, 由于会有上行子帧出现, 可能会有其他上下行子帧配 比 (例如: 2:7, 1:8等) 应用在 TDD MBMS专用载波系统中。
[7] LTE MBMS定义了单小区传输模式 (Single Cell transmission
mode) 与单步 网模式 (Single Frequency Network transmission
mode) 。 在 SFN模式下, 相同 SFA (单频网区域) 下的多个基站在相同吋间与相 同频率釆用相同调制编码技术, 发送相同数据, 以提高小区边缘用户的接收效 果。 为实现 MBSFN (Multimedia Broadcast multicast service Signal Frequency Network, 多媒体广播多播服务单频网) 传输方式, 在接入网中引入 MCE (Multi -cell/multicast Coordination
Entity, 多小区 /多播协调实体) , 负责对 SFA内所有基站的无线广播资源进行分 配和管理。
[8] 在 TDD MBMS系统中, 每一个 MBMS服务区域 (MBMS service
area) 下可以包括多组提供不同 MBMS业务的 MBSFN区域。 每一个 MBSFN区域 由多个提供相同 MBMS业务的相邻单小区组成。 每一个 MBSFN区域内的所有小 区使用相同的上下行子帧配比。 MBSFN区域间可以根据业务种类需求釆用不同 的上下行子帧配比, 例如 MBSFN区域 1釆用 0: 10配比; 相邻 MBSFN区域 2釆用 1 : 8配比。 由于 MBSFN边缘有保留小区 (Reserve
cell) 和仅传输小区 (Transmission only
Cell) 存在, 其作用在于保障 MBSFN区域不受到外部的频率干扰, 并且可以克 服由于相邻 MBSFN区域釆用不同上下行配比而产生的干扰。 MBSFN区域间上下 行子帧配比的应用和保留小区与仅传输小区的配置通过 MCE进行控制。
[9] 现有 LTE
TDD单播与 MBMS混合载波系统中, 由于存在着 8种不同的上下行子帧配比方式 。 系统根据业务需求通过基站在不同上下行子帧配比间进行半静态切换。 基站 可以通过"冷启动"或其他方式重新设置本小区的子帧配比。 子帧配比确定后, 一 段吋间内, 只使用一种上下行子帧配比。
[10] 然而, 本发明的发明人通过深入分析发现: 由于在一段吋间内只能使用一种上 下行子帧配比, 若系统的需求为在 20ms内只需要一个上行子帧, 则根据现有子 帧的配比不能满足此种需求, 例如, 若在 20ms内使用 1 : 8+1: 8配比, 则会在 20 ms内使用两个上行子帧, 从而造成上行传输资源的浪费。 另外, 在一段吋间内 基站按照 0:10的配比进行资源分配、 传输数据, 在一段吋间后当基站根据需求重 新设置上下行子帧配比为 1:8后, 基站即按照 1:8的上下行资源配置分配, 传输数 据, 由于在一段吋间内只使用 0:10的上下行子帧配比, 会造成只发生下行数据传 输, 而没有上行数据传输, 而在下一个吋间段只使用 1:8上下行子帧配比, 会造 成在这段吋间只使用一个上行数据传输, 因此每个吋间段内使用单一的上下行 子帧配比不但会使上下行数据传输不均匀, 而且不能满足系统的需求。 还有, 现有的上下行子帧配比都只支持 10ms的发生周期的上下行传输, 不能支持 10ms 以上的发生周期上下行传输。
[11] 发明内容
[12] 本发明实施例的目的是提供一种配置上行子帧与下行子帧配比的方法与装置, 用以合理分配上下行资源, 避免资源浪费。
[13] 本发明实施例的目的是提供一种数据传输的方法, 用以合理分配上下行资源, 避免资源浪费。
[14] 为实现上述目的, 本发明实施例提供了如下技术方案:
[15] 一种配置上行子帧与下行子帧配比的方法, 包括:
[16] 系统根据需求配置上行子帧与下行子帧的配比;
[17] 所述配置是将至少两种上行子帧与下行子帧的第一配比混合配置。
[18] 一种配置上行子帧与下行子帧配比的装置, 包括:
[19] 配置单元, 用于根据系统需求配置上行子帧与下行子帧的配比;
[20] 其中, 所述配置是指所述配置单元将至少两种上行子帧与下行子帧的第一配比 混合配置。
[21] 一种数据的传输方法, 包括:
[22] 接收系统发送的根据需求配置上行子帧与下行子帧的配比;
[23] 根据所述的配比在对应的上行或下行子帧传输数据;
[24] 其中, 所述配置是将至少两种上行子帧与下行子帧的第一配比混合配置。
[25] 一种数据的传输的装置, 包括:
[26] 接收单元, 用于接收系统发送的根据需求配置上行子帧与下行子帧的配比; [27] 传输单元, 用于根据所述的配比在对应的上行或下行子帧传输数据;
[28] 其中, 所述配置是将至少两种上行子帧与下行子帧的第一配比混合配置。
[29] 本发明实施例与现有技术相比, 主要区别及其效果在于:
[30] 一段吋间内系统根据需求将至少两种上行子帧与下行子帧的第一配比混合配置 , 即在一个发生周期内至少存在两种上行子帧与下行子帧的第一配比, 如此在 一个发生周期内可通过灵活配置上行子帧与下行子帧的配比, 以满足系统对于 上行或下行子帧的需求, 而且在一段吋间内, 使用至少两种上行子帧与下行子 帧的第一配比, 不但可以合理配置上行或下行子帧的数据传输, 避免单一配比 造成的上行或下行资源的浪费。 另外, 因为釆用混合配比, 因此不会造成在一 段吋间内只发生下行数据传输, 而没有上行数据传输, 使一段吋间内上下行数 据传输更加均匀。 另外, 由于发生周期包括至少两个上行子帧与下行子帧的第 一配比的个数, 因此可以支持 10ms以上的发生周期上下行传输。
[31] 附图简要说明
[32] 图 1是本发明第二实施例上行子帧与下行子帧配比的混合配置示意图图;
[33] 图 2是本发明第三实施例上行子帧与下行子帧配比的混合配置示意图图;
[34] 图 3是本发明第四实施例上行子帧与下行子帧配比的混合配置示意图图;
[35] 图 4是本发明第五实施例数据传输方法流程图;
[36] 图 5是本发明第六实施例数据传输装置的结构示意图。
[37] 实施本发明的方式
[38] 下面将结合附图对本发明的实施方式详细描述。
[39] 本发明第一实施例提供一种配置上行子帧与下行子帧配比的方法, 包括:
[40] 系统根据需求配置上行子帧与下行子帧的配比;
[41] 所述配置是将至少两种上行子帧与下行子帧的第一配比混合配置。
[42] 其中, 所述系统根据需求具体为: 系统根据小区内的用户数、 或不同业务类型 或运营商自身业务需求。
[43] 其中, 所述系统根据需求配置上行子帧与下行子帧的配比具体为:
[44] 系统根据需要确定上行子帧与下行子帧的发生周期; 根据所述发生周期配置上 行子帧与下行子帧第一配比的数量。 由于所述第一配比可以为下表 1中的具体 8 种配比中任何一种, 因此所述系统根据需求配置上行子帧与下行子帧的配比也 可以具体为: 根据所述配比选择所述第一配比的序号和数量。
[45] 所述的发生周期根据混合配制中参与的上行子帧与下行子帧第一配比的数量确 定。 其中所述上行子帧与下行子帧第一配比的数量是系统根据小区内的用户数 、 或不同业务类型或运营商自身业务需求来确定, 其中不同的业务类型可以为 互动, 或点播等业务, 针对这部分业务, 用户需要在发生周期 50ms发一次上行 数据, 因此需要釆用 5种配比的混合配置来达到系统的需求。 其中根据运营商自 身的业务需求, 例如运营商需要小区内全部用户都反馈广播质量, 可能就要用 1 : 8才能承载所有反馈信息; 若只有少部分用户反馈的话, 就需要 1 : 8 + 0: 10 配比混合配置的方式来实现。
[46] 其中, 所述将至少两种上行子帧与下行子帧第一配比混合配置具体为: 一定的 周期内将至少两种上行子帧与下行子帧的第一配比混合后重复配置; 或一定的 周期内将第一至少两种上行子帧与下行子帧的第一配比混合重复配置, 在一定 周期后切换为第二至少两种上行子帧与下行子帧的第一配比混合重复配置; 或 一定的周期将至少两种上行子帧与下行子帧的第一配比混合重复配置, 在一定 周期后切换为一种上行子帧与下行子帧的第一配比配置。
[47] 所述的发生周期大于 10ms。
[48] LTE
TDD系统中 10ms帧中带有上行子帧的配比共有 8种, 如表 1所示, 其中 D代表下行 子帧, U代表上行子帧, S代表特殊子帧。
[49] 表 1 TDD系统上下行子帧配比
Figure imgf000007_0001
[51] 其中混合配置不同上下行配比的子帧可以是表 1中任何两种或两种以上的混合 , 其中配比序号 0, 1, 2, 6的上下行子帧配比周期为 5ms, 在本表中统一为以 10 ms周期内两次重复相同配比, 其余上下行子帧配比序号周期为 10ms。 根据系统 的需求, 若需得到发生周期 20ms的一个上行子帧的数据传输, 可釆用上下行子 帧配比为 1 : 8子帧配比和 0: 10子帧配比的混合配置, 若需得到发生周期 30ms的 一个上行子帧的数据传输, 可釆用上下行子帧配比为 0: 10, 0: 10和 1 : 8子帧 配比的混合配置, 若需得到发生周期 30ms的二个上行子帧的数据传输, 可釆用 上下行子帧配比为 0: 10, 0: 10和 2: 7子帧配比的混合配置、 或 0: 10, 1: 8和 1: 8子帧配比的混合配置。 因此具体发生的混合配置的配比是根据对上行或下 行子帧的需求量确定混合配置的子帧的比例。
[52] 一段吋间内系统根据需求将至少两种上行子帧与下行子帧第一配比混合配置, 即在一个发生周期内至少存在两种上行子帧与下行子帧第一配比, 从而在一个 发生周期内可灵活配置上行子帧与下行子帧配比, 以满足系统对于上行或下行 子帧的需求, 而且在一段吋间内, 使用至少两种上行子帧与下行子帧第一配比 , 不但可以合理配置上行或下行子帧的数据传输, 而且避免单一配比造成的上 行或下行资源的浪费。 另外, 因为釆用混合配比, 因此不会造成在一段吋间内 只发生下行数据传输, 而没有上行数据传输, 使一段吋间内上下行数据传输更 加均匀。 由于发生周期包括至少两个上行子帧与下行子帧第一配比的个数, 因 此可以支持 10ms以上的发生周期上下行传输。
[53] 本发明第二实施例提供一种配置上行子帧与下行子帧配比的方法, 如图 1所示 , 为在一定的周期内将上下行子帧配比为 1 : 8子帧配比和 0: 10子帧配比在 20ms 的发生周期内混合后重复配置, 从而在发生周期 20ms内发生一次上行子帧传输 , 具体包括:
[54] 系统根据需求配置上行子帧与下行子帧的配比;
[55] 所述配置是将上行子帧与下行子帧第一配比分别为 1 : 8子帧配比和 0: 10子帧 配比按照发生周期 20ms混合重复配置。
[56] 其中, 1 : 8子帧配比和 0: 10子帧配比的混合配比是系统要求在发生周期 20ms 内发生一次上行子帧传输来确定的, 即在发生周期 20ms内釆用 2个上行子帧与下 行子帧配比, 其中 1个上行子帧与下行子帧配比必需支持一次上行子帧传输。 其 中系统的具体需求是系统根据小区内的用户数、 或不同业务类型或运营商自身 业务需求来确定。
[57] 上述的重复配置是在一定的周期内使用 1 : 8子帧配比和 0: 10子帧配比按照发 生周期 20ms连续配置。
[58] 由此可见, 在一定的周期内系统根据需求使用 1 : 8子帧配比和 0: 10子帧配比 按照发生周期 20ms连续配置, 不但可以满足系统在发生周期 20ms发生一次上行 传输的要求, 而且系统根据需求能够合理的分配上行与下行的传输, 避免了一 段吋间内只釆用一种子帧配比造成的上行或下行子帧分配不均匀现象, 从而避 免了资源浪费。 另外, 还可以支持 20ms以上的发生周期上下行传输, 进而能够 提供更长周期的一次上下行传输。
[59] 本发明第三实施例提供一种配置上行子帧与下行子帧配比的方法, 如图 2所示 , 为在一定的周期内将上下行子帧的配比为 1 : 8子帧配比和 0: 10子帧配比在 20 ms的发生周期内混合后重复配置, 然后再切换为 1 : 8子帧配比、 0: 10子帧配比 和 0: 10子帧配比在 30ms的发生周期内混合重复配置, 在一段吋间的不同发生周 期内均发生一次上行子帧传输, 具体包括:
[60] 系统根据需求配置上行子帧与下行子帧的配比;
[61] 所述配置是在一段吋间内将上行子帧与下行子帧配比分别为 1 : 8子帧配比和 0 : 10子帧配比按照发生周期 20ms混合重复配置, 在下一段吋间内切换为上行子 帧与下行子帧配比分别为 1 : 8子帧配比、 0: 10子帧配比和 0: 10子帧配比按照 发生周期 30ms混合重复配置。
[62] 其中, 系统根据小区内的用户数、 或不同业务类型或运营商自身业务需求来确 定在一定的吋间内釆用 1 : 8子帧配比和 0: 10子帧配比按照发生周期 20ms混合重 复配置, 若系统确定该混合配置不能满足系统的实际要求, 则切换为 1 : 8子帧 配比、 0: 10子帧配比和 0: 10子帧配比按照发生周期 30ms混合重复配置, 即系 统根据是在发生周期 20ms内发生一次上行子帧传输, 还是发生周期 30ms内发生 一次上行子帧传输, 来确定混合配制是釆用 1 : 8子帧配比和 0: 10子帧配比, 还 是釆用 1 : 8子帧配比、 0: 10子帧配比和 0: 10子帧配比。
[63] 另外, 本实施例只给出发生周期 20ms发生一次上行子帧传输切换为发生周期 30 ms发生一次上行子帧传输的例子, 对于发生周期大于 10ms发生不同次数的上行 子帧传输或下行子帧传输的例子, 可根据上述表 1中的配比进行灵活的混合。
[64] 由此可见, 在一定的周期内系统根据需求使用 1 : 8子帧配比和 0: 10子帧配比 按照发生周期 20ms连续配置, 当系统需求变化后, 可釆用 1 : 8子帧配比、 0: 10 子帧配比和 0: 10子帧配比按照发生周期 30ms连续配置, 不但可以满足系统在发 生周期 20ms发生一次上行传输的要求, 而且系统需求变化吋通过切换混合配比 以满足发生周期 30ms发生一次上行传输的要求, 系统根据需求灵活的对混合配 比进行切换, 不但能更合理的分配上行与下行的传输, 而且能够避免一段吋间 内只釆用单一混合配比引起的上行或下行子帧分配不均匀的现象, 从而避免了 资源浪费。 另外, 还可以支持 20ms或 30ms发生周期上下行传输, 进而能够提供 更长周期的一次上下行传输。
[65] 本发明第四实施例提供一种配置上行子帧与下行子帧配比的方法, 如图 3所示 , 为在一定的周期内将上下行子帧的配比为 1 : 8子帧配比和 0: 10子帧配比在 20 ms的发生周期内混合后重复配置, 然后再切换为 0: 10子帧配比的配置, 即在一 段吋间内, 20ms发生一次上行子帧传输切换为 10ms无上行子帧传输, 具体包括
[66] 系统根据需求配置上行子帧与下行子帧的配比;
[67] 所述配置是在一段吋间内将上行子帧与下行子帧配比分别为 1 : 8子帧配比和 0 : 10子帧配比按照发生周期 20ms混合后重复配置, 在下一段吋间内切换为 0: 10 子帧配比的配置。
[68] 其中, 系统根据小区内的用户数、 或不同业务类型或运营商自身业务需求来确 定在一定的吋间内釆用 1 : 8子帧配比和 0: 10子帧配比按照发生周期 20ms混合重 复配置, 若系统确定不需要上行子帧的传输, 则切换为 0: 10子帧配比, 即系统 根据是在发生周期 20ms内发生一次上行子帧传输, 还是发生周期 10ms内无上行 子帧传输, 来确定混合配制是釆用 1 : 8子帧配比和 0: 10子帧配比, 还是釆用 0 : 10子帧配比。
[69] 另外, 本实施例只给出发生周期 20ms发生一次上行子帧传输切换为 10ms无上 行子帧传输的例子, 对于发生周期大于 10ms发生不同次数的上行子帧传输或下 行子帧传输切换为现有单一子帧配比的例子, 可根据上述表 1中的配比进行灵活 的混合。
[70] 由此可见, 在一定的周期内系统根据需求使用 1 : 8子帧配比和 0: 10子帧配比 按照发生周期 20ms连续配置, 当系统需求变化后, 可釆用 0: 10子帧配比, 如此 不但可以满足系统在发生周期 20ms发生一次上行传输的要求, 而且系统需求变 化吋还可切换现有子帧配比的传输需求, 系统根据需求灵活的对混合配比进行 切换, 不但能更合理的分配上行与下行的传输, 而且能够避免一段吋间内只釆 用单一混合配比引起的上行或下行子帧分配不均匀的现象, 从而避免了资源浪 费。
[71] 本发明第五实施例提供一种数据传输的方法, 如图 4所示, 具体包括如下步骤
[72] 401: 接收系统发送的根据需求配置上行子帧与下行子帧的配比;
[73] 402: 根据所述的配比在对应的上行或下行子帧上传输数据;
[74] 所述接收系统发送的根据需求配置上行子帧与下行子帧的配比具体为:
[75] 基站接收 MCE配置的上行子帧与下行子帧的配比; 或终端接收基站转发的上行 子帧与下行子帧的配比。
[76] 其中, 接收系统发送的根据需求配置上行子帧与下行子帧的配比具体包括: 接 收系统根据所发送业务的资源需求配置上行子帧与下行子帧的配比。 另外, MC E可以通过使用子帧配比混合来对无线资源进行控制,
MCE通过 M2接口将子帧配比的配置信息通知基站, 基站通过承载在 SFN方式广 播信道, 或单播方式广播信道 PBCH (Physical Broadcast
Channel , 或单播方式动态广播信道 DBCH (Dynamic - Broadcast Channel
Figure imgf000011_0001
物理多播信道) 、 或其他公共信道的信令通知 MBSFN区域内的所有终端。 相应 的保留小区 (Reserve cell) 与仅传输小区 (Transmission only
cell) 的配置更改也由 MCE控制, 通过对这些小区的子帧配置, 可以将在相邻 M
BSFN区域与本 MBSFN区域可能存在干扰的子帧设置为哑子帧, 在此子帧内不进 行数据传输, 以消除由 TDD系统所造成的上下行干扰。
[77] 所述配置是将至少两种上行子帧与下行子帧的第一配比混合配置。
[78] 系统根据需要确定上行子帧与下行子帧的发生周期; 根据所述发生周期配置上 行子帧与下行子帧的第一配比的数量。 其中, 所述第一配比可以为表 1中的具体 8种配比中任何一种。 所述的发生周期根据混合配制中的上行子帧与下行子帧的 第一配比的数量确定。 其中所述上行子帧与下行子帧第一配比的数量是系统根 据小区内的用户数、 或不同业务类型或运营商自身业务需求来确定, 其中不同 的业务类型可以为互动, 或点播等业务, 因这部分业务用户需要在发生周期 50m s发一次上行数据, 因此需要釆用 5种配比的混合配置来达到系统的需求。 根据运 营商自身的业务需求, 例如运营商需要小区内全部用户都反馈广播质量, 可能 就要用 1 : 8才能承载所有反馈信息; 若只用少部分用户反馈的话, 就需要 1 : 8
+ 0: 10配比混合配置的方式来实现。
[79] 所述将至少两种上行子帧与下行子帧的第一配比混合配置具体为: 一定的周期 内将至少两种上行子帧与下行子帧的第一配比混合后重复配置; 或一定的周期 内将第一至少两种上行子帧与下行子帧的第一配比混合重复配置, 在一定周期 后切换为第二至少两种上行子帧与下行子帧的第一配比混合重复配置; 或一定 的周期将至少两种上行子帧与下行子帧的第一配比混合重复配置, 在一定周期 后切换为一种上行子帧与下行子帧的第一配比配置。 具体如第二、 第三、 第四 实施例所述。
[80] 所述的发生周期大于 10ms。
[81] 其中混合配置不同上下行配比的子帧可以是表 1中任何两种或两种以上子帧配 比的混合, 其中配比序号 0, 1, 2, 6的配比周期为 5ms, 在 10ms内两次重复相同 配比, 其余配比序号的配比周期为 10ms。 根据系统需求, 若需得到发生周期 20m s的一个上行子帧的数据传输, 可釆用上下行子帧得配比为 1 : 8子帧配比和 0: 10 子帧配比的混合配置, 若需得到发生周期 30ms的一个上行子帧的数据传输, 可 釆用上下行子帧的配比为 0: 10, 0: 10和 1 : 8子帧配比的混合配置, 若需得到 发生周期 30ms的二个上行子帧的数据传输, 可釆用上下行子帧的配比为 0: 10, 0: 10和 2: 7子帧配比的混合配置、 或 0: 10, 1: 8和 1 : 8子帧配比的混合配置 。 具体发生的混合配置的子帧配比的比例是根据对上行或下行子帧的需求量确 定的。
[82] 一段吋间内系统根据需求将至少两种上行子帧与下行子帧的第一配比混合配置 , 即在一个发生周期内至少存在两种上行子帧与下行子帧的第一配比, 如此在 一个发生周期内通过灵活配置上行子帧与下行子帧配比, 能够满足系统对于上 行或下行子帧的需求, 而且在一段吋间内, 使用至少两种上行子帧与下行子帧 第一配比, 不但可以合理配置上行或下行子帧的数据传输, 避免单一配比造成 的上行或下行资源浪费。 另外, 因为釆用混合配比, 不会造成在一段吋间内只 发生下行数据传输, 而没有上行数据传输的现象, 使一段吋间内上下行数据传 输更加均匀。 另外, 由于发生周期包括至少两个上行子帧与下行子帧的第一配 比, 因此可以支持 10ms以上的发生周期上下行传输。
[83] 本发明第六实施例提供一种配置上行子帧与下行子帧配比的装置, 该装置包括
[84] 配置单元, 用于根据系统需求配置上行子帧与下行子帧的配比;
[85] 其中, 所述配置是将至少两种上行子帧与下行子帧的第一配比混合配置。
[86] 所述将至少两种上行子帧与下行子帧的第一配比混合配置具体为: 一定的周期 内将至少两种上行子帧与下行子帧的第一配比混合后重复配置; 或一定的周期 内将第一至少两种上行子帧与下行子帧的第一配比混合重复配置, 在一定周期 后切换为第二至少两种上行子帧与下行子帧的第一配比混合重复配置; 或一定 的周期将至少两种上行子帧与下行子帧的第一配比混合重复配置, 在一定周期 后切换为一种上行子帧与下行子帧的第一配比配置。 具体如第二、 第三、 第四 实施例所述。
[87] 配置单元可通过下面至少一种方式来判断系统中所使用的子帧配比是否需要切 换: 小区内用户数、 不同业务类型, 和运营商所需要的业务反馈周期。
[88] 本发明第七实施例提供一种数据的传输的装置, 如图 5所示, 该装置 50包括: [89] 接收单元 51, 用于接收系统发送的根据需求配置上行子帧与下行子帧的配比; [90] 传输单元 52, 用于根据所述的配比在对应的上行或下行子帧上传输数据; [91] 其中, 所述配置是将至少两种上行子帧与下行子帧的第一配比混合配置。
[92] 接收系统发送的根据需求配置上行子帧与下行子帧的配比具体包括: 接收系统 通过承载发送的根据需求配置上行子帧与下行子帧的配比。 另外, MCE通过使 用子帧配比混合来对无线资源进行控制, MCE通过 M2接口将子帧配比的配置信 息通知基站, 基站通过承载在 SFN方式广播信道, 或单播方式广播信道 PBCH ( Physical Broadcast Channel) , 或单播方式动态广播信道
DBCH (Dynamic— Broadcast Channel ) 或 PMCH (Physical Multicast CHannel 物理多播信道) 、 或其他公共信道的信令通知 MBSFN区域内的所有终端。 相应 的 MBSFN区域所属的保留小区 (Reserve cell) 与只传输小区 (Transmission only cell) 的配置更改也由 MCE进行控制,
通过对这些小区的子帧配置, 可以将在相邻 MBSFN区域与本 MBSFN区域可能存 在干扰的子帧设置为哑子帧, 在此子帧内不进行数据传输, 以消除由 TDD系统 所造成的上下行干扰。
[93] 所述将至少两种上行子帧与下行子帧的第一配比混合配置具体为: 一定的周期 内将至少两种上行子帧与下行子帧的第一配比混合后重复配置; 或一定的周期 内将第一至少两种上行子帧与下行子帧的第一配比混合重复配置, 在一定周期 后切换为第二至少两种上行子帧与下行子帧的第一配比混合重复配置; 或一定 的周期将至少两种上行子帧与下行子帧的第一配比混合重复配置, 在一定周期 后切换为一种上行子帧与下行子帧的第一配比配置。 具体如第二、 第三、 第四 实施例所述。
[94] 通过以上的实施方式的描述, 本领域的技术人员可以清楚地了解到本发明可以 通过硬件实现, 也可以可借助软件加必要的通用硬件平台的方式来实现基于这 样的理解, 本发明的技术方案可以以软件产品的形式体现出来, 该软件产品可 以存储在一个非易失性存储介质 (可以是 CD-ROM, U盘, 移动硬盘等) 中, 包 括若干指令用以使得一台计算机设备 (可以是个人计算机, 服务器, 或者网络 设备等) 执行本发明各个实施例所述的方法。 总之, 以上所述仅为本发明的较 佳实施例。
[95] 虽然通过参照本发明的某些优选实施方式, 已经对本发明进行了图示和描述, 但本领域的普通技术人员应该明白, 可以在形式上和细节上对其作各种改变, 而不偏离本发明的精神和范围。

Claims

权利要求书
[1] 一种配置上行子帧与下行子帧配比的方法, 其特征在于, 包括:
系统根据需求配置上行子帧与下行子帧的配比;
所述配置是将至少两种上行子帧与下行子帧的第一配比混合配置。
[2] 根据权利要求 1所述的方法, 其特征在于, 所述系统根据需求具体为系统根 据小区内的用户数、 或不同业务类型或运营商自身业务需求。
[3] 根据权利要求 1所述的方法, 其特征在于, 所述系统根据需求配置上行子帧 与下行子帧的配比具体为:
所述系统根据需求的上行子帧与下行子帧选择所述第一配比的序号和数量
[4] 根据权利要求 1所述的方法, 其特征在于, 所述将至少两种上行子帧与下行 子帧的第一配比混合配置具体为:
一定的周期内将至少两种上行子帧与下行子帧的第一配比混合后重复配置 ; 或
一定的周期内将第一至少两种上行子帧与下行子帧的第一配比混合重复配 置, 在一定周期后切换为第二至少两种上行子帧与下行子帧的第一配比混 合重复配置; 或
一定的周期内将至少两种上行子帧与下行子帧的第一配比混合重复配置, 在一定周期后切换为一种上行子帧与下行子帧第一配比配置。
[5] 根据权利要求 1至 4任何一项所述的方法, 其特征在于, 所述上行子帧与下 行子帧的第一配比是下面任何一种配比: 0:10、 5:3、 1:8、 2:7、 3:6、 1:3、 2:2、 3:1。
[6] 一种配置上行子帧与下行子帧配比的装置, 其特征在于, 包括:
配置单元, 用于根据系统需求配置上行子帧与下行子帧的配比; 其中, 所述配置是指所述配置单元将至少两种上行子帧与下行子帧的第一 配比混合配置。
[7] 根据权利要求 6所述的装置, 其特征在于, 所述将至少两种上行子帧与下行 子帧的第一配比混合配置具体为: 一定的周期内将至少两种上行子帧与下行子帧的第一配比混合后重复配置 ; 或
一定的周期内将第一至少两种上行子帧与下行子帧的第一配比混合重复配 置, 在一定周期后切换为第二至少两种上行子帧与下行子帧的第一配比混 合重复配置; 或
一定的周期内将至少两种上行子帧与下行子帧的第一配比混合重复配置, 在一定周期后切换为一种上行子帧与下行子帧第一配比配置。
[8] —种数据的传输方法, 其特征在于, 包括:
接收系统发送的根据需求配置上行子帧与下行子帧的配比; 根据所述的配比在对应的上行或下行子帧传输数据;
其中, 所述配置是将至少两种上行子帧与下行子帧的第一配比混合配置。
[9] 根据权利要求 8所述的方法, 其特征在于, 所述将至少两种上行子帧与下行 子帧的第一配比混合配置具体为:
一定的周期内将至少两种上行子帧与下行子帧的第一配比混合后重复配置 ; 或
一定的周期内将第一至少两种上行子帧与下行子帧的第一配比混合重复配 置, 在一定周期后切换为第二至少两种上行子帧与下行子帧的第一配比混 合重复配置; 或
一定的周期内将至少两种上行子帧与下行子帧的第一配比混合重复配置, 在一定周期后切换为一种上行子帧与下行子帧第一配比配置。
[10] 根据权利要求 8所述的方法, 其特征在于, 所述接收系统发送的根据需求配 置上行子帧与下行子帧的配比具体为:
基站接收 MCE配置的上行子帧与下行子帧的配比; 或
终端接收基站转发的上行子帧与下行子帧的配比。
[11] 根据权利要求 10所述的方法, 其特征在于,
所述基站接收 MCE配置的上行子帧与下行子帧的配比具体为: 所述基站接 收 MCE通过 M2接口发送的上行子帧与下行子帧的配比。
[12] 根据权利要求 10所述的方法, 其特征在于, 所述基站转发上行子帧与下行子帧的配比具体为: 所述基站通过承载在 SF N方式广播信道, 或单播方式广播信道 PBCH, 或单播方式动态广播信道 DBCH, 或物理多播信道 PMCH、 或其他公共信道上的信令通知上行子帧 与下行子帧的配比。
[13] 一种数据的传输的装置, 其特征在于, 包括:
接收单元, 用于接收系统发送的根据需求配置上行子帧与下行子帧的配比 传输单元, 用于根据所述的配比在对应的上行或下行子帧传输数据; 其中, 所述配置是将至少两种上行子帧与下行子帧的第一配比混合配置。
PCT/CN2009/071445 2008-06-24 2009-04-24 配置上下行子帧配比方法、及数据传输的方法、装置 WO2009155804A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810068039.1A CN101615947B (zh) 2008-06-24 2008-06-24 配置上下行子帧配比方法、及数据传输的方法、装置
CN200810068039.1 2008-06-24

Publications (1)

Publication Number Publication Date
WO2009155804A1 true WO2009155804A1 (zh) 2009-12-30

Family

ID=41444000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/071445 WO2009155804A1 (zh) 2008-06-24 2009-04-24 配置上下行子帧配比方法、及数据传输的方法、装置

Country Status (2)

Country Link
CN (1) CN101615947B (zh)
WO (1) WO2009155804A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103430610A (zh) * 2011-03-25 2013-12-04 北京新岸线移动多媒体技术有限公司 一种调度方法、网络设备和终端设备
CN107182065A (zh) * 2011-04-15 2017-09-19 中兴通讯股份有限公司 监测通讯系统子帧的方法及装置

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102271336B (zh) * 2010-06-04 2014-06-11 中兴通讯股份有限公司 一种上下行配比半静态配置的系统及方法
US20130142268A1 (en) * 2010-08-12 2013-06-06 Nokia Corporation Configuring an uplink and downlink splitting pattern for device-to-device communication under a cellular network
CN102035594B (zh) * 2010-12-09 2015-05-13 中兴通讯股份有限公司 数据传输方法、装置及无线帧
CN106850166B (zh) 2011-03-11 2020-11-06 Lg电子株式会社 在无线通信系统中设置动态子帧的方法及其设备
KR101921179B1 (ko) * 2011-03-23 2018-11-22 엘지전자 주식회사 무선 통신 시스템에서 동적 서브프레임 설정 시 재전송 방법 및 이를 위한 장치
CN103493525B (zh) * 2011-03-25 2016-06-08 北京新岸线移动多媒体技术有限公司 无线通信系统、网络设备及终端设备
US8923274B2 (en) * 2011-08-15 2014-12-30 Blackberry Limited Notifying a UL/DL configuration in LTE TDD systems
CN102573045B (zh) * 2012-01-18 2014-12-03 华为技术有限公司 LTE-TDD网络和WiMAX网络同步的方法、基站及系统
CN102638798B (zh) * 2012-03-19 2015-10-28 新邮通信设备有限公司 一种调整tdd中上下行配置的方法和系统及基站和ue
CN103516498B (zh) * 2012-06-20 2018-07-20 中兴通讯股份有限公司 Tdd上下行配置的更新方法及装置
CN103841643B (zh) * 2012-11-27 2017-12-05 华为技术有限公司 数据传输方法及装置、系统
CN103857039B (zh) * 2012-11-28 2018-11-13 索尼公司 无线通信系统中的装置和方法
CN103856907B (zh) * 2012-11-30 2018-05-15 中国移动通信集团公司 长期演进多媒体广播多播业务传输方法及基站
CN103974426B (zh) * 2013-01-30 2018-11-27 索尼公司 用于无线通信网络的通信方法和装置以及无线通信网络
CN104079397A (zh) * 2013-03-27 2014-10-01 华为技术有限公司 一种帧配置方法、装置及系统
WO2014186971A1 (zh) * 2013-05-23 2014-11-27 华为技术有限公司 一种配置子帧的方法及装置
CN104348595B (zh) * 2013-07-26 2017-07-21 普天信息技术有限公司 一种混合自动重传请求反馈信息的传输方法和系统
JP6376757B2 (ja) * 2014-01-14 2018-08-22 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
CN109039571B (zh) * 2014-08-21 2020-12-29 上海朗帛通信技术有限公司 时分双工系统信号的传输方法及装置
CN106488540B (zh) * 2015-09-01 2019-11-29 华为技术有限公司 一种基于tdd的m2m系统的通信方法、装置与系统
CN106572535A (zh) * 2015-10-08 2017-04-19 中兴通讯股份有限公司 资源动态分配方法及装置
CN106028452B (zh) * 2016-05-23 2019-10-22 宇龙计算机通信科技(深圳)有限公司 一种配置上下行子帧的方法及装置
CN107528666B (zh) * 2016-06-21 2020-07-03 中国移动通信有限公司研究院 一种无线通信系统的通信方法、网络节点、终端

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1909543A (zh) * 2006-08-02 2007-02-07 京信通信技术(广州)有限公司 利用调制解调器实现同步的td-scdma覆盖系统
CN101197615A (zh) * 2007-12-11 2008-06-11 中兴通讯股份有限公司 Lte tdd系统的信号发送方法和装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1909543A (zh) * 2006-08-02 2007-02-07 京信通信技术(广州)有限公司 利用调制解调器实现同步的td-scdma覆盖系统
CN101197615A (zh) * 2007-12-11 2008-06-11 中兴通讯股份有限公司 Lte tdd系统的信号发送方法和装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103430610A (zh) * 2011-03-25 2013-12-04 北京新岸线移动多媒体技术有限公司 一种调度方法、网络设备和终端设备
CN107182065A (zh) * 2011-04-15 2017-09-19 中兴通讯股份有限公司 监测通讯系统子帧的方法及装置
CN107466048A (zh) * 2011-04-15 2017-12-12 中兴通讯股份有限公司 监测通讯系统子帧的方法及装置
CN107182065B (zh) * 2011-04-15 2020-06-30 中兴通讯股份有限公司 监测通讯系统子帧的方法及装置

Also Published As

Publication number Publication date
CN101615947B (zh) 2016-10-05
CN101615947A (zh) 2009-12-30

Similar Documents

Publication Publication Date Title
WO2009155804A1 (zh) 配置上下行子帧配比方法、及数据传输的方法、装置
EP2134103B1 (en) Scheduling method directed to mbms, scheduling device and base station including scheduling device
KR101365580B1 (ko) Mbms 제어 정보의 배치 방법, 설비 및 시스템
TWI414190B (zh) 改善群播控制通道監聽機制的方法及通訊裝置
US8279791B2 (en) Configuration and indication methods of multicast/broadcast over a single frequency network frames and an identifying method used by a terminal
JP6321830B2 (ja) 基地局、ユーザ端末及び装置
TW201112805A (en) Method and apparatus for handling subframe of multimedia broadcast multicast service single frequency network in wireless communication system
WO2008151552A1 (fr) Procédé pour réaliser un multiplexage temporel dans un service de diffusion/multidiffusion multimédia (mbms) et son procédé de transmission d'informations
GB2474006A (en) Scheduling MBMS transmissions in subframes of radio frames
US8467720B2 (en) Method for managing multimedia broadcast multicast service transmission and related communication device
KR20120087109A (ko) Mbms 동적 스케줄링 정보를 처리하는 방법 및 장치
EP2101510B1 (en) A method,system and base station for transmitting broadcast services data over a single frequency network
WO2007082431A1 (fr) Procédé de multiplexage et démultiplexage de données de service diffusées en multidiffusion
WO2011018000A1 (zh) 多播/组播单频网络子帧的ofdm符号分配方法及系统
CN101873527B (zh) Mch物理资源的配置和传递的方法及装置
WO2010091605A1 (zh) 一种广播组播业务控制信令的发送方法及基站
CN102088660A (zh) 一种实现多媒体广播多播动态区域管理的方法、装置
WO2014153705A1 (zh) 新载波类型小区的业务处理方法、装置及通信系统
KR101227804B1 (ko) 멀티미디어 방송 다중송출 서비스의 송수신 방법 및 그 장치
WO2012019542A1 (zh) Mbms业务接收状态的上报方法和设备
CN101692718B (zh) 改进的演进的多媒体广播组播业务实现方法和设备
WO2010054572A1 (zh) 单小区传输的多媒体广播组播业务的子帧选择方法
Juretzek Integration of high tower, high power LTE-Advanced broadcast into mobile networks
WO2016023338A1 (zh) 子帧资源的分配、处理方法及装置
WO2009009946A1 (fr) Procédé pour réaliser un service de diffusion/multidiffusion multimédia amélioré dans une cellule multiporteuse

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09768729

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09768729

Country of ref document: EP

Kind code of ref document: A1