WO2009155773A1 - 下一代网络中传输多媒体业务的方法、系统、 及媒体网关、媒体网关控制器 - Google Patents

下一代网络中传输多媒体业务的方法、系统、 及媒体网关、媒体网关控制器 Download PDF

Info

Publication number
WO2009155773A1
WO2009155773A1 PCT/CN2009/000299 CN2009000299W WO2009155773A1 WO 2009155773 A1 WO2009155773 A1 WO 2009155773A1 CN 2009000299 W CN2009000299 W CN 2009000299W WO 2009155773 A1 WO2009155773 A1 WO 2009155773A1
Authority
WO
WIPO (PCT)
Prior art keywords
media gateway
receiving
fec
gateway controller
sending
Prior art date
Application number
PCT/CN2009/000299
Other languages
English (en)
French (fr)
Inventor
罗忠
郭春芳
宋彬
蒋小兵
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2009155773A1 publication Critical patent/WO2009155773A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/80Responding to QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/40Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass for recovering from a failure of a protocol instance or entity, e.g. service redundancy protocols, protocol state redundancy or protocol service redirection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/10Architectures or entities
    • H04L65/102Gateways
    • H04L65/1043Gateway controllers, e.g. media gateway control protocol [MGCP] controllers

Definitions

  • the present invention relates to the field of network communications, and in particular, to a method, system, and media gateway and media gateway controller for transmitting multimedia services in a next generation network.
  • NGN Next Generation Network
  • NGN Next Generation Network
  • the basic characteristics of NGN are: to provide a large number of broadband services to increase business revenue; to integrate various network services, such as data, voice, multimedia, and various emerging Internet services, such as instant messaging, IPTV (Internet Protocol Te lev is ion, In the meantime, NGN should become a flexible platform for transmitting various multimedia value-added services.
  • the H.248 protocol is a media gateway control protocol, and is an interface protocol between a softswitch device (such as a media gateway controller) and a media gateway, and is used by a softswitch device to control a media gateway.
  • Softswitch is the control function entity of NGN and is the core of network call and control.
  • the softswitch-based network system can be divided into service/application layer, control layer, transport layer and media/access layer from top to bottom. This hierarchical structure separates services from call control, separates calls from bearers, and connects and communicates between entities through standard protocols.
  • an attribute is defined, that is, the maximum value of the jitter buffer in the MG (Media Ga teway); in addition, a QoS alarm event is defined, which allows the MG to report the reduction of the network connection QoS.
  • the MGC Media Ga teway Cont ller, Media Gateway Controller
  • the statistics are also defined in the packet, such as the number of received bytes and the number of bytes sent by the MG.
  • the content related to the user QoS is mainly the five statistical parameters defined in the packet: the number of packets received, the number of packets sent, the packet loss rate, the average delay of the packet, and the delay jitter.
  • the MGC can estimate the current network status and user QoS through these five statistical parameters reported by the MG.
  • a quality alarm termination event is defined in the quality alarm abort packet, which is used in conjunction with the QoS alarm event defined in the network packet.
  • the MGC When the MGC receives the QoS alarm event reported by the MG, the MGC will take certain measures to improve the network status. If the MG detects that the percentage of quality loss falls below the threshold after a period of time, the MG reports to the MGC the definition defined in the packet. Quality alarm termination event.
  • some characteristic parameters of the jitter buffer in the MG are defined, such as: the minimum value of the jitter buffer, the current value of the jitter buffer, and the jitter buffer type (adaptive/non-adaptive).
  • the MGC reports the QoS alarm event/quality alarm termination event reported by the MG, and the network reported by the MG.
  • the network statistics and RTP statistics are used to adjust the attribute parameters of the adaptive jitter buffer on the MG and other network parameters in real time to improve the QoS of the receiver.
  • the current ITU-T H.248 solution only reports the monitored network status parameters to the MGC to adjust the attribute parameters and other network parameters of the adaptive jitter buffer on the MG in real time.
  • the current ITU-T H.248 solution only reports the monitored network status parameters to the MGC to adjust the attribute parameters and other network parameters of the adaptive jitter buffer on the MG in real time.
  • an embodiment of the present invention provides a method, a system, a media gateway, and a media gateway controller for transmitting multimedia services in a next-generation network, which can provide forward error correction protection for transmitting data at a application layer for a multimedia real-time service.
  • the user's QoS is guaranteed.
  • a method of transmitting multimedia services in a next generation network including,
  • the receiving media gateway controller MGC determines whether the condition for creating the FEC stream is established
  • the receiving end MGC requests the receiving end MG media gateway to create an FEC stream;
  • the sending end MGC requests the sending end MG to create an FEC stream;
  • An FEC stream is created between the receiving end MG and the transmitting end MG.
  • a system for transmitting multimedia services in a next generation network comprising: a receiving end MGC, a receiving end MG, a transmitting end MGC, and a transmitting end MG;
  • the receiving end MGC is configured to determine whether a condition for creating an FEC stream is established, and when the condition is established, requesting the receiving end MG to create an FEC stream;
  • the receiving end MG is configured to: create an FEC flow according to the received receiving end MGC request;
  • the sending end MGC is configured to request the sending end MG to create an FEC stream
  • the sending end MG is configured to create an FEC stream according to the received sending end MGC request.
  • a media gateway controller MGC comprising:
  • a judging unit configured to determine whether a condition for creating an FEC stream is established
  • a media gateway MG including:
  • a receiving unit configured to receive a request for creating an FEC stream from the receiving end MGC
  • a creating unit configured to create an FEC stream according to the received request.
  • the method and system for transmitting multimedia services in the next generation network provided by the embodiment of the present invention, and the media gateway and the media gateway controller, when the receiving media gateway controller MGC determines that the condition for creating the FEC stream is established, for example, the network service quality is relatively poor,
  • the MGC requests the MG FEC protection algorithm to provide forward error correction protection for the transmission of data for the multimedia real-time service at the application layer, ensuring the user's Q OS .
  • FIG. 1 is a flow chart of a first embodiment of a method for transmitting multimedia services in a next generation network according to the present invention
  • FIG. 2 is a flow chart of a second embodiment of a method for transmitting multimedia services in a next generation network according to the present invention
  • Figure 3 is a schematic diagram of the principle of the FEC algorithm
  • FIG. 4 is a flow chart showing an application of the second embodiment of the method for transmitting multimedia services in the next generation network of the present invention in FIG. 2;
  • FIG. 5 is a flow chart of a third embodiment of a method for transmitting multimedia services in a next generation network according to the present invention.
  • FIG. 11 is a structural diagram of a fifth embodiment of a system for transmitting multimedia services in a next generation network according to the present invention.
  • Figure 12 is a structural view showing a first embodiment of the MGC of the present invention.
  • Figure 13 is a structural view of a second embodiment of the MGC of the present invention.
  • Figure 14 is a structural view of a third embodiment of the MGC of the present invention.
  • Figure 15 is a structural view showing a first embodiment of the MG of the present invention.
  • Figure 16 is a structural diagram of a second embodiment of the MG of the present invention.
  • an embodiment of the present invention provides a method for transmitting a multimedia service in a next generation network.
  • Example 1
  • a method for transmitting multimedia services in a next generation network including,
  • the receiving end MGC judges whether the condition for creating a FEC (Forward Era s e correc t ion) stream is established; when the condition is satisfied, the next step is executed.
  • FEC Forward Era s e correc t ion
  • the receiving end MGC requests the receiving end MG to create an FEC stream
  • the message sent by the receiving end MGC to the receiving end MG carries the MG and the receiving end Establishing information of the transmitting end MG of the data stream;
  • the receiving end MGC requests the receiving end MG to create the FEC stream.
  • the method includes: sending the relevant parameters of the FEC algorithm to the receiving end MG; the related parameters of the FEC algorithm include: FEC encoding mode, FEC redundancy, and the like.
  • the sending end MGC requests the sending end MG to create an FEC stream
  • the message sent by the sending end MGC to the sending end MG carries a receiving end MG that will create a data stream with the transmitting end MG;
  • the sending end MGC requesting the sending end MG to create the FEC stream includes: sending the relevant parameters of the FEC algorithm to the sending end MG;
  • the receiving end MGC and the transmitting end MGC may be the same MGC;
  • the receiving end MGC and the transmitting end MGC are different MGCs, that is, the receiving end MG and the transmitting end MG are controlled by different MGCs, and information exchange between different MGCs is performed by, for example, SIP (Ses s ion Ini t ia t Ion Protocol, protocol initiation protocol) protocol communication.
  • SIP Ses s ion Ini t ia t Ion Protocol, protocol initiation protocol
  • the receiving media gateway controller requesting the receiving media gateway to create an FEC stream further includes: The receiving media gateway controller sends FEC stream information to the sending media gateway controller.
  • the method for transmitting multimedia services in the next-generation network provided by the embodiment of the present invention, when the receiving end MGC determines that the condition for creating the FEC stream is established, for example, when the network service quality is relatively poor, the MGC requests the MG to use the FEC protection algorithm, which can be used for the multimedia real-time service.
  • the application layer provides forward error correction protection for the transmitted data, ensuring the QoS of the user.
  • Forward Error Correction Code (FEC) does not require feedback, and has good real-time performance to meet the minimum delay requirements of multimedia real-time services.
  • FEC Forward Error Correction Code
  • An embodiment of the present invention is an example in which an MGC simultaneously controls two MGs at the receiving end and the transmitting end. It can be understood by those skilled in the art that the embodiments of the present invention can be applied to application scenarios in which the receiving end MG and the transmitting end MG are controlled by different MGCs.
  • a method for transmitting multimedia services in a next generation network includes: 5201.
  • the receiving end MGC receives a report that the network QoS quality loss percentage monitored by the receiving end MG reaches a predetermined threshold.
  • the receiving end MGC receives network statistics information from the receiving end MG, where the network statistics information includes: number of received bytes, number of transmitted bytes, number of received RTP packets, number of sent RTP packets, packet loss rate, average delay, and time Delay jitter
  • the receiving end MGC determines, according to the network statistics, redundancy of the FEC algorithm. After using the FEC algorithm due to network packet loss, the channel burden will increase, and the possibility of network congestion will increase, which may increase congestion. Therefore, when the FEC protection algorithm needs to be used in an IP network, it is necessary to comprehensively consider various factors such as network packet loss rate, delay, and receiver buffer, and select an appropriate FEC protection strength.
  • the receiving end MGC requests the receiving end MG to create an FEC stream, and sends the relevant parameters of the FEC algorithm to the receiving end MG through the FEC packet extended by the ITU-T H.248;
  • the ITU-T H.248 protocol is an interface protocol between a softswitch device (such as a Media Gateway Controller, MGC) and a Media Gateway (MG) for softswitch devices to control media gateways.
  • Packet is a term in ITU-T H.248 that can be understood as an extension of the I TU-T H.248 protocol, ie when the user needs to extend the functionality of the ITU-T H.248 protocol , can be achieved by defining a new package, which is the flexibility of the ITU-T H.248 protocol.
  • the extension package of the ITU-T H.248 protocol can be defined. (FEC package).
  • the packet is used by the MGC to request the MG to use the FEC algorithm.
  • five related parameters of the FEC algorithm are defined in the FEC packet, and the five related parameters are used for interaction information between the transport layer and the application layer/control layer.
  • the package identifier (Packe t ID) of the FEC package is: fee
  • the relevant parameters of the FEC package can include:
  • FEC type which identifies the FEC encoding method used, such as TN code and RS code. With this parameter, the receiver selects the appropriate decoder.
  • FEC Redundancy the greater the redundancy, the stronger the protection of the FEC algorithm.
  • the number of source data symbols (Number-of-or ig ina l-Symbo ls ) contained in the block, identifying the number of source data symbols included in the block, and the MG according to the parameter and FEC redundancy Degree, the number of protected data symbols in the block can be calculated.
  • the sender MGC requests the sender MG to create a FEC stream, and sends the relevant parameters of the FEC algorithm to the sender MG through the FEC packet extended by the ITU-T H.248;
  • the FEC algorithm uses the source data symbol as the input of the FEC encoder to generate FEC encoded data symbols with redundant information. When the number of missing symbols does not exceed the FEC capability range, the receiving end can The source data information is restored according to the received lost data information.
  • the input of the FEC encoder is in units of source data symbols, each source data symbol is composed of several bytes, and each source data symbol is equal in size.
  • the K source data symbols are one input of the FEC encoder, and after FEC encoding, generate N encoded data symbols, including K source data symbols, and (NK) protected data symbols, and protect the size of the data symbols and The source data symbols are equal.
  • the receiving end receives J ( J ⁇ N ) such encoded data symbols.
  • the FEC decoder can completely recover K source data symbols.
  • FEC coding provides reliable data transmission, and the receiving end can reconstruct the original data information within the FEC protection capability by using the received FEC coding symbols. After using FEC encoding, it can be used as little as possible, even without the feedback line mainly used for data retransmission from the receiving end to the transmitting end.
  • the MGC detects a change in the network status, in particular, the network bandwidth resource is sufficient.
  • the throughput of the receiving end does not decrease, and when the packet loss rate of the communication increases, the MGC requests the MG to use a certain protection strength FEC protection algorithm for each communication link to ensure the reliability of data transmission, thereby improving the real-time QoS of the user.
  • the application process includes:
  • the MG detects that the link's quality loss percentage reaches Threshold1 (Thresholdl), and then uses the "not ify” command to report the "QoS Alert (Qua ler t)" event to the MGC.
  • Threshold1 Threshold1
  • the MGC asks the receiving MG for statistics on the MG via the "modi fy" command.
  • the MG reports statistics through network packets and RTP packets: the number of received bytes, the number of bytes sent, the number of RTP packets received, the number of RTP packets sent, the packet loss rate, the average delay, and the delay jitter.
  • the MGC requires the receiving end MG to create a new FEC stream through the "modify" command, and transmits the relevant parameters of the FEC algorithm to the receiving end MG.
  • the FEC attribute value is given in the descriptor "loca lcontrol" of the ITU-T H.248 protocol, and the FEC stream message is given in the descriptor "loca l" of the ITU-T H.248 protocol.
  • FEC related messages are transmitted by extending the ITU-T H.248 packet.
  • the MGC requests the transmitting end MG to create a new FEC stream, and transmits the relevant parameters of the FEC algorithm to the transmitting end MG.
  • the relevant parameters of the FEC algorithm include the FEC encoding method, the FEC redundancy, and the total of the transmitted files. Length, length of the encoded symbol, (number of source data symbols included in the block.
  • the FEC packet can be used together with other ITU-T H.248 packets such as a network packet, a quality alarm termination packet, and an RTP packet.
  • the MGC requests the receiving end MG to monitor the QoS alarm event.
  • the MG detects that the QoS quality loss percentage of the network reaches a certain threshold, the event is reported to the MGC, and the actions of the MGC and the MG are completed through the "network packet”.
  • the MGC requests the MG to report the current network statistics.
  • the MG replies, and the MGC and MG actions are completed through the "network packet" and the "RTP packet".
  • the MGC reports the quality according to each stream.
  • the alarm event determines whether to use the FEC algorithm on the MG/transport object.
  • the MGC selects the appropriate FEC protection strength based on the RTP statistics and network statistics collected from each stream. After that, the MGC requires the MGs at both ends to establish FEC streams respectively, and starts to use the FEC algorithm to use the FEC algorithm on the MG or on a certain stream of the MG. These actions are implemented by using the FEC packet. After defining the FEC packet, the FEC packet fills a gap in the ITU-T H.248 protocol, including the FEC packet and the ITU-T H.248 protocol network packet, RTP packet, adaptive jitter buffer packet, and quality alarm termination packet.
  • the transport layer can report the network status to the MGC using the ITU-T H.248 protocol.
  • the MGC can also use the ITU-T H.248 protocol to directly request MG access measures to reduce network environment changes to user QoS. influences.
  • the SDP is used to transmit the relevant parameters of the FEC message in the next-generation network by extending the SDP (Sss Descr Ip Protocol) protocol.
  • the receiving end MGC and the transmitting end MGC are the same MGC.
  • the method for transmitting a multimedia service in a next-generation network includes: S501: A receiving end MGC searches for a receiving end user with a high priority from an application layer, and if a receiving end user with a high priority is found, Then perform the next step; 5502.
  • the receiving end MGC receives network statistics information from the receiving end MG, where the network statistics information includes: number of received bytes, number of sent bytes, number of received RTP packets, number of sent RTP packets, packet loss rate, average delay, and time Delay jitter
  • the receiving end MGC determines, according to the network statistics, redundancy of the FEC algorithm.
  • the receiving end MGC requests the receiving end MG to create an FEC stream for the receiving end user with a higher priority, and sends the relevant parameters of the FEC algorithm to the receiving end MG by using the SDP protocol, and using the FEC related parameter as part of the SDP protocol. Transfer between communication entities.
  • the SDP protocol is a session description protocol defined by RFC 4566 that describes the information required for session announcements, session invitations, and other forms of multimedia session application initialization. It is a pure text description language. If the ITU-T H.248 protocol uses a text encoding format, SDP is used to describe the session content.
  • the value attribute of SDP can be used as an extension of SDP, and the FEC attribute is its extended attribute.
  • an FEC type attribute is defined, by which the receiving end selects an appropriate FEC decoder.
  • the coding type is generally RS, Tornado, etc.:
  • the receiving MG uses these two parameters to calculate the encoded data that a source block should generate after inputting the FEC encoder. The number of symbols.
  • the SDP protocol is used to transmit the attributes of the media stream in the ITU-T H.248 protocol, and the FEC data is also a type of media stream, so the SDP protocol can be extended, and the relevant parameters of the FEC are transmitted using the SDP protocol.
  • the sender MGC requests the sender MG to create a FEC stream for the receiver with the highest priority, and uses the SDP protocol to send the relevant parameters of the FEC algorithm to the sender MG;
  • S506 Create an FEC flow between the receiving end MG and the sending end MG for the receiving user with the highest priority.
  • the policy server of the application layer requires the receiving end MGC to use the FEC algorithm for the receiving end user, and the MGC slave application layer
  • the MGC first requests the MG to report the network statistics to determine the FEC redundancy and select the appropriate FEC protection strength for the receiving end user. Then the MGC requires the MGs at the receiving end and the transmitting end to establish FEC flows respectively to ensure the QoS of the receiving end users. Therefore, when the receiving end user has a higher priority, the MGC can request the MG to use a certain protection strength FEC algorithm for the receiving end user in order to meet the QoS requirements of the receiving end user.
  • the method includes:
  • the MGC queries the priority of the receiving end user from the application layer, and finds the receiving end user with higher priority, and uses the FEC algorithm for the receiving end user.
  • Receiver MG reports statistics: such as packet loss rate, average delay, and delay jitter.
  • 4 MGC requires the receiving MG to create a new FEC stream via the "modi fy" command, and The relevant parameters of the FEC algorithm are transmitted to the receiving end MG.
  • the media format is 0 for PCM encoded audio, which is protected by a FEC stream with payload type 78.
  • the FEC stream is sent to the same multicast group as the audio, and the TTL parameters are the same, but the port number is 2 (49172).
  • the coding type used for FEC rogue is RS coding.
  • the video stream is protected by a FEC stream with a payload type number of 79.
  • the port number of this FEC stream is the same, but the multicast address is different.
  • the FEC has a redundancy of 60, indicating a FEC protection strength of 60%.
  • the MGC requests the transmitting end MG to create a new FEC stream, and transmits the relevant parameters of the FEC algorithm to the transmitting end MG.
  • the embodiment of the present invention uses the FEC algorithm in conjunction with the ITU-T H.248 protocol and the SDP protocol. Network operators can better meet the quality of service (QoS) requirements of users.
  • QoS quality of service
  • the embodiment of the present invention provides a system for transmitting multimedia services in a next-generation network.
  • the method includes: a receiving end MGC 11, a receiving end MG 12, a transmitting end MGC 21, and a sending end MG 22;
  • the receiving end MGC 11 is configured to determine whether a condition for creating an FEC stream is established, and when the condition is established, requesting the receiving end MG to create an FEC stream;
  • the receiving end MG 12 is configured to create an FEC stream according to the received request from the receiving end MGC;
  • the sending end MGC 21 is configured to request the sending end MG to create an FEC stream;
  • the transmitting end MG 22 is configured to create an FEC stream according to the received request from the transmitting end MGC.
  • the receiving end MGC determines that the condition for creating the FEC stream is established, the requesting end MG creates an FEC stream, and sends the relevant parameters of the FEC algorithm to the receiving end MG;
  • the transmitting end MGC requests the transmitting end MG to create an FEC stream, and sends the relevant parameters of the FEC algorithm to the sending end MG;
  • the receiving end MG and the sending end MG create an FEC stream according to the received request, therefore,
  • the condition for creating an FEC stream is established, for example, when the quality of the network service is relatively poor, the forward error correction protection of the transmission data can be provided at the application layer for the multimedia real-time service, and the QoS of the user is guaranteed.
  • the system for transmitting multimedia services in the next generation network in the embodiment of the present invention may be in a Cl ient/Server mode, and is applied to an application scenario that the client downloads from the server, and the receiving media gateway is a client media gateway, and is sent.
  • the end media gateway is a server-side media gateway, and the receiving end MGC and the transmitting end MGC are the same MGC.
  • the system for transmitting multimedia services in the next generation network is also in the Client/Server mode.
  • the difference from FIG. 8 is that the receiving end MGC and the transmitting end MGC are different MGCs, and the receiving end media gateway The controller is a client media gateway controller, and the sender media gateway controller is a server-side media gateway controller.
  • the receiving media gateway controller and the sending media gateway controller are different media gateway controllers, the receiving media gateway controller is further configured to send FEC stream information to the sending media gateway controller.
  • the system for transmitting multimedia services in the next generation network in the embodiment of the present invention may be in a peer-to-peer mode, and the receiving end MGC and the transmitting end MGC are the same MGC.
  • the system for transmitting multimedia services in the next generation network in the embodiment of the present invention is also in a peer-to-peer mode, and different from FIG. 10, the receiving end MGC and the transmitting end MGC. For different MGCs.
  • the FEC algorithm is used in time when the network service quality is degraded.
  • the receiving end MG 1 2 is further configured to report to the receiving end MGC when the network QoS quality loss percentage reaches a predetermined threshold.
  • the receiving end MGC 1 1 is further configured to request the receiving end MG 12 to create an FEC stream according to the received report of the receiving end MGC 12.
  • the receiving end MGC 12 is also used to find the user with a high priority from the application layer, and requests the receiving end MG 1 1 to create the receiving end user with the highest priority.
  • the receiving end MG 1 1 is further configured to create an FEC stream for the receiving end user with a higher priority according to the request of the receiving end MGC;
  • the sending end MGC 21 is further configured to request the sending end MG 22 as the The receiving end user with a high priority creates an FEC stream;
  • the transmitting end MG 22 is further configured to create an FEC stream for the receiving end user with a higher priority according to the request of the sending end MGC.
  • the receiving end MG 12 is further configured to send network statistics information, where the network statistics information includes: a number of received bytes, a number of bytes sent, a number of received RTP packets, and an RTP packet.
  • the number of the FEC algorithm is determined according to the network statistics.
  • the embodiment of the present invention discloses a media gateway controller MGC, as shown in FIG. 12, comprising: a determining unit 1 1 1 and a requesting unit 1 12 .
  • the judging unit 1 1 1 is for judging whether the condition for creating the FEC stream is established; the request unit 1 12 is configured to request the media gateway MG to create the FEC stream when the condition is satisfied.
  • the media gateway controller MGC determines whether the condition for creating the FEC stream is established.
  • the requesting unit requests the media gateway MG to create an FEC stream. Therefore, when it is judged that the condition for creating the FEC stream is established, for example, the network service quality is relatively poor, the request MG FEC is requested.
  • the protection algorithm can provide forward error correction protection for transmitting data at the application layer for the multimedia real-time service, and guarantee the QoS of the user.
  • the media gateway controller MGC of the embodiment of the present invention further includes: a first receiving unit 113, configured to receive and receive MG monitoring.
  • the network QoS quality loss percentage reaches a predetermined threshold report; the determining unit 111 is further configured to: when the report is received, determine that the condition for creating the FEC stream is established.
  • the MGC further includes: a searching unit 114, configured to search for a user with a high priority from the application layer; and the determining unit 111 is further configured to: when the searching unit finds the priority When the receiver of the higher level is the user, it is determined that the condition for creating the FEC stream is established.
  • the requesting unit 111 is further configured to request the media gateway MG to create an FEC stream for the receiver user with the highest priority.
  • the MGC further includes: a second receiving unit 115, configured to receive network statistics information from the receiving end MG, where the network statistics information includes: The number of bytes to be transmitted, the number of received RTP packets, the number of RTP packets to be transmitted, the packet loss rate, the average delay, and the delay jitter.
  • the determining unit 116 is configured to determine the redundancy of the FEC algorithm according to the network statistics.
  • an embodiment of the present invention provides a media gateway MG, as shown in FIG. 15, including: a receiving unit 121, configured to receive a request for creating an FEC stream from a receiving end MGC; and a creating unit 122, configured to Receive the request, create an FEC stream.
  • the receiving unit receives a request for creating an FEC stream from the receiving end MGC; the creating unit creates an FEC stream according to the received request, so when the network service quality is poor, the multimedia device can be multimedia.
  • Real-time services provide forward error correction protection for transmitting data at the application layer, ensuring user QoS.
  • the media gateway MG further includes: a monitoring unit 123, configured to monitor a quality loss percentage of the network QoS; and a first sending unit 124, configured to report to the receiving end MGC when the network QoS quality loss percentage reaches a predetermined threshold
  • the second sending unit 125 sends the network system to the receiving end MGC
  • the network statistics information includes: the number of received bytes, the number of bytes sent, the number of received RTP packets, the number of RTP packets sent, the packet loss rate, the average delay, and the delay jitter. Therefore, the media gateway can monitor the quality loss percentage of the network QoS in time, report to the media gateway controller, enable the media gateway controller to select an appropriate FEC protection strength, and request the media gateway to create an FEC stream.
  • the storage medium may be a magnetic disk, an optical disk, a Read-Only Memory (ROM), or a Random Acces s Memory (RAM).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Multimedia (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Description

下一代网络中传输多媒体业务的方法、 系统、
及媒体网关、 媒体网关控制器
本申请要求于 2008 年 6 月 24 日提交中国专利局、 申请号为 200810126529. 2 , 发明名称为 "下一代网絡中传输多媒体业务的方法、 系统、 及媒体网关、 媒体网关控制器" 的中国专利申请的优先权, 其全部内容通过 引用结合在本申请中。
技术领域
本发明涉及网絡通信领域, 尤其涉及一种下一代网絡中传输多媒体业务 的方法、 系统及媒体网关、 媒体网关控制器。
背景技术
NGN (下一代网絡, Next Genera t ion Network)是一个分组网絡, 提供包 括电信业务在内的多种业务。 NGN的基本特征是: 提供大量宽带业务, 以增加 业务收入; 融合各种网絡业务, 诸如数据、 话音、 多媒体以及各种正在兴起 的互联网业务, 如即时消息、 IPTV (Internet Protocol Te lev i s ion, 网洛协 议电视)、 视频点播等流媒体业务, 总之, NGN应成为一个传送各种多媒体增 值业务的灵活平台。
在 NGN网絡体系和标准的设计过程中, 釆用 IP ( Internet Protocol , 因 特网协议)技术作为 NGN业务的承载网的基础技术的趋势已经很明朗。 但是, 传统的 IP技术难以满足 NGN网絡业务的多样性、 实时性、 安全性的要求。 目 前的 IP网絡技术还不能很好地解决 QoS ( Qua l i ty of Service, 服务质量) 问题,在现有的公共 IP网絡上还不能为软交换网絡提供大规模的、有一定 QoS 保证的承载服务。并且,在 NGN中, QoS问题比较复杂,其中的业务种类繁多, 同时输入 NGN 网的可有语音、 数据, 还可有视频等多媒体业务。 它们对 QoS 的要求各不相同, 例如语音、 视频等实时业务, 对时延很敏感, 要求尽可能 小的时延, 而允许有一定的丟包率。 H. 248协议是媒体网关控制协议, 是软交换设备(如媒体网关控制器) 和媒体网关之间的一种接口协议, 用于软交换设备控制媒体网关。 软交换是 NGN的控制功能实体,是网絡呼叫与控制的核心,基于软交换的网絡系统由上 至下可分为业务 /应用层、 控制层、 传输层和媒体 /接入层。 这种分层结构使 得业务与呼叫控制分离,呼叫与承载分离, 各实体之间通过标准协议进行连接 和通信。
为了保证通信的 QoS , 不仅提出了 ITU-T H. 248网絡包、 RTP包等协议基 本包(Packe t );还提出了质量告警中止包、 自适应抖动緩存包等 ITU-T H. 248 扩展包。
在网絡包中, 定义了一个属性, 即 MG (Media Ga teway,媒体网关)中抖动 緩存的最大值; 另外, 定义了一个 QoS告警事件, 该事件允许 MG报告网絡连 接 QoS的降低。 首先, MGC (Media Ga teway Cont ro l l er , 媒体网关控制器)通 过一定的算法, 并考虑丟包率、 时延和时延抖动等, 计算出一个质量损失百 分比门限, 然后, MG通过同样的算法, 当监测到质量损失百分比达到该门限 时, 将这一事件报告给 MGC; 在该包中还定义了一些统计特性, 如 MG的接收 字节数和发送字节数等。
在 RTP包中, 与用户 QoS相关的内容主要是包中定义的五个统计参数: 收包数、 发包数、 丟包率、 包的平均时延、 时延抖动。 MGC可以通过 MG报告 的这五个统计参数, 估计目前网絡的状况和用户 QoS。
质量告警中止包中定义了一个质量告警终止事件, 该事件和网絡包中定 义的 QoS告警事件配合使用。 当 MGC收到 MG报告的 QoS告警事件时, MGC会 釆取一定的措施来改善网絡状况, 如果一段时间之后, MG监测到质量损失百 分比降到门限以下时, MG向 MGC报告该包中定义的质量告警终止事件。
在自适应抖动緩存包中, 定义了 MG中抖动緩存的一些特性参数, 如: 抖 动緩存的最小值、抖动緩存的当前值、抖动緩存类型(自适应 /非自适应)等。
MGC根据 MG报告的 QoS告警事件 /质量告警终止事件, 以及 MG报告的网 絡统计信息和 RTP统计信息, 来实时地调整 MG上的自适应抖动緩存的属性参 数和其他的网絡参数,来提高接收端的 QoS。通过以上四个包的配合使用, MGC 可以在一定程度上提高用户 QoS。
在实现本发明实施例的过程中, 发明人发现现有技术中至少存在如下问 题:
目前的 ITU-T H. 248方案只是将监测到的网絡状况参数上报给 MGC, 来实 时地调整 MG上的自适应抖动緩存的属性参数和其他的网絡参数。 但对实时业 务, 特别是实时视频业务, 缺少在应用层对传输数据的前向纠错保护, 无法 保证用户的 QoS。
发明内容
一方面, 本发明的实施例提供一种在下一代网絡中传输多媒体业务的方 法、 系统及媒体网关、 媒体网关控制器, 能够为多媒体实时业务在应用层提 供传输数据的前向纠错保护, 保证了用户的 QoS。
为达到上述目的, 本发明的实施例釆用如下技术方案:
一种在下一代网絡中传输多媒体业务的方法, 包括,
接收端媒体网关控制器 MGC判断创建 FEC流的条件是否成立;
当所述条件成立时, 接收端 MGC请求接收端 MG媒体网关创建 FEC流; 发送端 MGC请求发送端 MG创建 FEC流;
在接收端 MG和发送端 MG之间创建 FEC流。
一种在下一代网絡中传输多媒体业务的系统, 包括: 接收端 MGC、接收端 MG、 发送端 MGC、 发送端 MG;
所述接收端 MGC用于, 判断创建 FEC流的条件是否成立, 当所述条件成 立时, 请求接收端 MG创建 FEC流;
所述接收端 MG用于, 根据接收的接收端 MGC请求创建 FEC流;
所述发送端 MGC用于, 请求发送端 MG创建 FEC流;
所述发送端 MG用于, 根据接收的发送端 MGC请求创建 FEC流。 一种媒体网关控制器 MGC, 包括:
判断单元, 用于判断创建 FEC流的条件是否成立,
请求单元, 用于当所述条件成立时, 请求媒体网关 MG创建 FEC流。 一种媒体网关 MG, 包括:
接收单元, 用于从接收端 MGC接收创建 FEC流的请求;
创建单元, 用于根据所述接收的请求, 创建 FEC流。
本发明实施例提供的下一代网絡中传输多媒体业务的方法、 系统及媒体 网关、 媒体网关控制器, 当接收端媒体网关控制器 MGC判断创建 FEC流的条 件成立, 例如网絡服务质量比较差时, MGC请求 MG FEC保护算法, 能够为多 媒体实时业务在应用层提供传输数据的前向纠错保护, 保证了用户的 QOS。 附图说明 施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面 描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1 为本发明在下一代网絡中传输多媒体业务的方法第一实施例的流程 图;
图 2 为本发明在下一代网絡中传输多媒体业务的方法第二实施例的流程 图;
图 3为 FEC算法的原理示意图;
图 4为图 2中本发明在下一代网絡中传输多媒体业务的方法第二实施例 的应用流程图;
图 5 为本发明在下一代网絡中传输多媒体业务的方法第三实施例的流程 图;
图 6为图 5中本发明在下一代网絡中传输多媒体业务的方法第三实施例 的应用流程图; 图 7为本发明在下一代网絡中传输多媒体业务的系统第一实施例结构图; 图 8为本发明在下一代网絡中传输多媒体业务的系统第二实施例结构图; 图 9为本发明在下一代网絡中传输多媒体业务的系统第三实施例结构图; 图 10 为本发明在下一代网絡中传输多媒体业务的系统第四实施例结构 图;
图 11 为本发明在下一代网絡中传输多媒体业务的系统第五实施例结构 图;
图 12为本发明 MGC第一实施例的结构图;
图 1 3为本发明 MGC第二实施例的结构图;
图 14为本发明 MGC第三实施例的结构图;
图 15为本发明 MG第一实施例的结构图;
图 16为本发明 MG第二实施例的结构图。
具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而 不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作 出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
为使本发明实施例的技术方案的优点更加清楚, 下面结合附图和具体实 施例对本发明的实施例作进一步的详细说明。
一方面, 本发明实施例提供一种在下一代网絡中传输多媒体业务的方法。 实施例 1
如图 1所示, 一种在下一代网絡中传输多媒体业务的方法, 包括,
51 01 , 接收端 MGC判断创建 FEC ( Forward Era s e correc t ion, 前向纠删) 流的条件是否成立; 当条件成立时, 则执行下一步骤。
51 02 , 接收端 MGC请求接收端 MG创建 FEC流;
其中, 接收端 MGC发送给接收端 MG的消息中, 携带有将与接收端 MG创 建数据流的发送端 MG的信息;
接收端 MGC请求接收端 MG创建 FEC流的步骤包括: 将 FEC算法的相关参 数发送给接收端 MG; FEC算法的相关参数包括: FEC编码方式、 FEC冗余度等。
5103 , 发送端 MGC请求发送端 MG创建 FEC流;
其中, 发送端 MGC发送给发送端 MG的消息中, 携带有将与发送端 MG创 建数据流的接收端 MG;
发送端 MGC请求发送端 MG创建 FEC流的步骤包括: 将所述 FEC算法的相 关参数发送给发送端 MG;
5104 , 在接收端 MG和发送端 MG之间创建 FEC流。
其中, 如图 8所示, 接收端 MGC和发送端 MGC可以为同一 MGC;
或, 如图 9所示, 接收端 MGC和发送端 MGC为不同 MGC, 即接收端 MG和 发送端 MG受不同 MGC控制, 不同 MGC之间的信息交换通过例如 SIP ( Ses s ion Ini t ia t ion Protocol , 会话起始协议)协议通信。 当所述接收端媒体网关控 制器和所述发送端媒体网关控制器为不同媒体网关控制器时 , 所述接收端媒 体网关控制器请求所述接收端媒体网关创建 FEC 流的步骤之后还包括: 所述 接收端媒体网关控制器向所述发送端媒体网关控制器发送 FEC流信息。
本发明实施例提供的下一代网絡中传输多媒体业务的方法,当接收端 MGC 判断创建 FEC流的条件成立, 例如网絡服务质量比较差时, MGC请求 MG使用 FEC 保护算法, 能够为多媒体实时业务在应用层提供传输数据的前向纠错保 护, 保证了用户的 QoS。 前向纠错码(FEC)不需要反馈, 实时性好, 满足多媒 体实时业务尽可能小的时延要求。
实施例 2
本发明的实施例是以一个 MGC同时控制接收端和发送端的两个 MG为例。 本领域技术人员可以理解, 本发明实施例可用于接收端 MG和发送端 MG受不 同 MGC控制的应用场景。
如图 2所示, 一种在下一代网絡中传输多媒体业务的方法, 包括: 5201 , 接收端 MGC接收到接收端 MG所监测的网絡 QoS质量损失百分比达 到预定门限的报告;
5202 , 接收端 MGC从接收端 MG接收网絡统计信息, 所述网絡统计信息包 括: 接收字节数、 发送字节数、 接收 RTP包数、 发送 RTP包数、 丟包率、 平 均时延和时延抖动;
5203 , 接收端 MGC根据所述网絡统计信息, 确定 FEC算法的冗余度。 由于网絡丟包而使用 FEC算法后, 信道负担会增大, 网絡发生拥塞的可 能性也会增大, 即可能加剧拥塞。 所以, 当需要在 IP网絡中使用 FEC保护算 法时, 需要综合考虑网絡丟包率、 时延和接收端緩存等多方面的因素, 选择 合适的 FEC保护强度。
5204 , 接收端 MGC请求接收端 MG创建 FEC流, 通过 ITU-T H. 248扩展的 FEC包将 FEC算法的相关参数发送给接收端 MG;
ITU-T H. 248协议是软交换设备(如媒体网关控制器, MGC )和媒体网关 ( MG )之间的一种接口协议, 用于软交换设备控制媒体网关。 包(packe t ) 是 ITU-T H. 248中的一个术语, 可以理解为 I TU-T H. 248协议的一种扩展机 制, 即, 当用户需要扩展 ITU-T H. 248 协议的功能时, 可以通过定义新的包 来实现,这是 ITU-T H. 248协议的灵活之处。本实施例中,当需要在基于 MG/MGC 的下一代网絡中使用 FEC算法时,且 MG和 MGC之间使用 ITU-T H. 248协议时, 可以定义 ITU-T H. 248协议的扩展包( FEC包)。 该包用于 MGC向 MG请求使用 FEC算法; 同时, 在 FEC包中定义了 FEC算法的五个相关参数, 该五个相关参 数用于传输层和应用层 /控制层之间交互信息。
以下描述包的定义:
FEC包的包标识(Packe t ID )为: fee
FEC包的相关参数可以包括:
( l ) FEC类型 (FEC type ), 标识了所使用的 FEC编码方法, 如, TN码、 RS码。 通过该参数, 接收端选择合适的解码器。 ( 2 ) FEC冗余度 ( FEC Redundancy ),冗余度越大, FEC算法的保护强度 越强。
( 3 )传输文件的总长度( Trans fer-Leng th )。
( 4 )编码符号的长度(Symbo l-Leng th ), 标识了一个源数据符号或保护 数据符号的字节数。
( 5 )块中所包含的源数据符号的个数 ( Number-of-or i g ina l-Symbo l s ), 标识该块中所包含的源数据符号的个数, MG根据该参数和 FEC冗余度, 可以 计算得到该块中的保护数据符号的个数。
5205 , 发送端 MGC请求发送端 MG创建 FEC流, 通过 ITU-T H. 248扩展的 FEC包将所述 FEC算法的相关参数发送给发送端 MG;
5206 , 在接收端 MG和发送端 MG之间创建 FEC流。
以下简单描述 FEC算法的基本思想: FEC算法以源数据符号为 FEC编码器 的输入, 生成含有冗余信息的 FEC 已编码数据符号, 在丟失符号的个数不超 过 FEC 能力范围时, 接收端可以根据收到的有丟失的数据信息, 恢复源数据 信息。
如图 3所示, FEC编码器的输入以源数据符号为单位,每个源数据符号由 若干字节组成, 且每个源数据符号的大小相等。 假设 K个源数据符号为 FEC 编码器的一次输入, 经 FEC编码后, 生成 N个已编码数据符号, 其中包含 K 个源数据符号、 和(N-K )个保护数据符号, 保护数据符号的大小和源数据符 号相等。 假设接收端收到 J ( J<N )个这样的已编码数据符号, 当丟失的符号 数在 FEC能力范围内时(如, 当使用 Tornado码对源数据进行 FEC保护时, 只 要接收端收到 K个或多于 K个已编码数据符号), FEC解码器就可以完全恢复 K个源数据符号。 因此, FEC编码提供了可靠的数据传输, 接收端可以利用接 收到的 FEC编码符号, 在 FEC保护能力范围内重建原始的数据信息。 在使用 FEC编码后, 可以尽量少用, 甚至不用从接收端到发送端主要用于数据重传的 反馈线路。 本发明实施例在下一代网絡中传输多媒体业务的方法, 在基于 MG/MGC的 下一代网絡中进行视频等实时通信时, 当 MGC监测到网絡状况发生变化, 特 别是监测到网絡带宽资源充足, 且接收端的吞吐量没有下降, 而通信的丟包 率增大时, MGC请求 MG为各个通信链路使用一定保护强度的 FEC保护算法, 保证数据传输的可靠性, 从而提高用户的实时 QoS。
以下描述本发明实施例的一个应用, 如图 4所示, 该应用流程包括:
① MGC通过 "modify"命令请求接收端 MG监测 QoS告警事件( Qua ler t ) "质量损失百分比达到门限 1 ( Thresholdl ),,。
② 接收端 MG回复。
③ 接收端 MG监测到链路的质量损失百分比达到门限 1 ( Thresholdl ), 于是使用 "not ify" 命令向 MGC报告 "QoS告警(Qua ler t )" 事件。
④ MGC回复。
⑤ MGC通过 "modi fy" 命令要求接收端 MG上^艮统计信息。
⑥ 接收端 MG通过网絡包、 RTP包上报统计信息: 接收字节数、 发送字节 数、 接收 RTP包数、 发送 RTP包数、 丟包率、 平均时延和时延抖动。
⑦ MGC通过 "modify" 命令要求接收端 MG创建一个新的 FEC流, 将 FEC 算法的相关参数传给接收端 MG。 其中 FEC属性值在 ITU-T H. 248协议的描述 符 " loca lcontrol"中给出, FEC流消息在 ITU-T H. 248协议的描述符 " loca l " 中给出。
"f ec/ f ec type, f ec/ f ecredun, fee/ trans len, fee/ symlen, fec/numor i sym" 分别代表在 FEC包中定义的五个 FEC属性。 此实施例中通过扩展 ITU-T H. 248 包的方式, 传输 FEC相关消息。
⑧ 接收端 MG回复。
⑨ 按照⑦中的方法, MGC请求发送端 MG创建一个新的 FEC流, 将 FEC算 法的相关参数传给发送端 MG。
所述 FEC算法的相关参数包括 FEC编码方法、 FEC冗余度、传输文件的总 长度、 编码符号的长度、 (块中所包含的源数据符号的个数。
⑩ 发送端 MG回复。
本发明实施例中, FEC包可以和网絡包、 质量告警终止包、 RTP包等其他 ITU-T H. 248包配合使用。 首先, MGC请求接收端 MG监测 QoS告警事件, 当 MG 监测到网絡的 QoS 质量损失百分比达到一定的门限时, 将该事件报告给 MGC, MGC和 MG的这些动作是通过 "网絡包" 来完成的; MGC在收到 QoS告 警事件后, 要求 MG上报当前的网絡统计信息, MG回复, MGC和 MG的这些动 作是通过 "网絡包"、 "RTP包"来完成的; MGC根据各流报告的质量告警事件, 决定是否在 MG上 /传输对象上使用 FEC算法, MGC根据从各个流收集的 RTP统 计信息和网絡统计信息, 选择合适的 FEC保护强度。 之后, MGC要求两端的 MG分别建立 FEC流,开始使用 FEC算法,在 MG上或者 MG的某个流上使用 FEC 算法, 这些动作是通过使用 FEC包来实现的。 在定义 FEC包后, FEC包填补了 ITU-T H. 248协议的一个不足, 通过 FEC包和 ITU-T H. 248协议的网絡包、 RTP 包、 自适应抖动緩存包和质量告警终止包等的配合使用, 传输层不仅能使用 ITU-T H. 248协议将网絡状况报告给 MGC, MGC还可以使用 ITU-T H. 248协议 直接请求 MG釆取措施, 降低网絡环境的变化对用户 QoS的影响。
本领域技术人员可以了解, 本发明实施例中所述的使用 FEC 包传输 FEC 算法的相关参数可以用于其他实施例。
实施例 3
本发明实施例在下一代网絡中传输多媒体业务的方法中, 通过扩展 SDP ( Ses s ion Descr ipt ion Protocol , 会话描述协议)协议, 使用 SDP在下一 代网絡中传输 FEC消息的相关参数。 此实施例中, 接收端 MGC和发送端 MGC 为同一 MGC。
如图 5所示, 本发明实施例在下一代网絡中传输多媒体业务的方法包括: S501 , 接收端 MGC从应用层查找优先级高的接收端用户, 如果查找到优 先级高的接收端用户, 则执行下一步骤; 5502 , 接收端 MGC从接收端 MG接收网絡统计信息, 所述网絡统计信息包 括: 接收字节数、 发送字节数、 接收 RTP包数、 发送 RTP包数、 丟包率、 平 均时延和时延抖动;
5503 , 接收端 MGC根据所述网絡统计信息, 确定 FEC算法的冗余度。
5504 , 接收端 MGC请求接收端 MG为所述优先级高的接收端用户创建 FEC 流, 使用 SDP协议将 FEC算法的相关参数发送给接收端 MG , 将 FEC相关参数 做为 SDP协议的一部分, 在通信实体之间传输。
SDP协议是由 RFC4566所定义的会话描述协议, 描述在会话公告、会话邀 请和其它一些形式的多媒体会话应用初始化时所需的信息, 它是一种纯粹的 文本描述语言。 如果 ITU-T H. 248协议使用文本编码格式时, 使用 SDP来描 述会话内容。 SDP的值属性可以作为 SDP的扩展, FEC属性即是其扩展属性。
以下描述 SDP协议的扩展:
(1) SDP的 5个 FEC属性
为了指出 FEC编码器的编码类型, 定义了 FEC类型属性, 接收端通过该 属性选择合适的 FEC解码器。 编码类型一般为 RS、 Tornado等:
a=FEC-type: < type name>
为了计算出 FEC保护强度,定义了冗余度和块中所包含的源数据符号的个 数两个属性:
a=FEC-redundydgree: < redundancy - degree - va lue>
a=FEC-sda tanum: <source-da ta- symbo l-number>
其中冗余度越大, FEC算法的保护强度越强,但同时也占用更多的信道带 宽; 接收端 MG使用这两个参数计算出一个源块在输入 FEC编码器后应该生成 的已编码数据符号的个数。
为了统计一个源数据符号或保护数据符号的字节数时,使用符号长度 FEC 属性: a=FEC-b i tnum: <da ta_symbo l_b i t s >
在多媒体通信中, 如果接收端需要知道传输对象的总长度时, 用到传输 对象的总长度属性, 然而该属性不一定在所有的多媒体通信中使用。 该属性 的格式: a=FEC-obj leg th: <ob jec t_leng th>。
其中, 在 ITU-T H. 248协议中使用了 SDP协议传输媒体流的属性, 而 FEC 数据也是媒体流的一种, 所以可以扩展 SDP协议, 使用 SDP协议传输 FEC的 相关参数。
5505 , 发送端 MGC请求发送端 MG为所述优先级高的接收端用户创建 FEC 流, 使用 SDP协议将 FEC算法的相关参数发送给发送端 MG;
5506 , 在接收端 MG和发送端 MG之间为所述优先级高的接收端用户创建 FEC流。
本领域技术人员可以了解,本发明实施例中所述的使用 SDP协议传输 FEC 算法的相关参数可以用于其他实施例。
本发明实施例在下一代网絡中传输多媒体业务的方法中, 当接收端用户 的优先级比较高时, 应用层的策略服务器会要求接收端 MGC 为该接收端用户 使用 FEC算法, MGC从应用层查询到接收端用户的优先级, 并决定为该接收端 用户使用 FEC算法时, MGC首先要求 MG上报网絡统计信息, 来确定 FEC冗余 度, 为该接收端用户选择合适的 FEC保护强度。 接着 MGC要求接收端和发送 端的 MG分别建立 FEC流, 来保证接收端用户的 QoS。 因此, 当接收端用户有 较高的优先级时, MGC为了满足接收端用户的 QoS需求, 可以请求 MG为该接 收端用户使用一定保护强度的 FEC算法。
以下描述本发明实施例在下一代网絡中传输多媒体业务的方法的应用, 如图 6所示, 包括:
① MGC从应用层查询接收端用户的优先级, 发现优先级较高的接收端用 户, 为接收端用户使用 FEC算法。
② MGC通过 "modi fy" 命令要求接收端 MG上^艮统计信息。
③接收端 MG上报统计信息: 如丟包率、 平均时延和时延抖动等。
④ MGC通过 "modi fy" 命令要求接收端 MG创建一个新的 FEC流, 并将 FEC算法的相关参数传给接收端 MG。
FEC属性应用举例
v=0
o=hamming 2890844526 2890842807 IN IP4 126.16.64.4
s=FEC Seminar
c=IN IP4 224.2.17.12/127
t=0 0
m=audio 49170 RTP/AVP 0 78
a=rtpmap: 78 parityfec/8000
a=fmtp: 78 49172 IN IP4 224.2.17.12/127
a=FEC- type: RS
m=video 51372 RTP/AVP 31 79
a=rtpmap: 79 parityfec/8000
a=fmtp: 79 51372 IN IP4 224.2.17.13/127
a=FEC-redundydgree: 60
在上面的 SDP描述中, 存在两个媒体流, 一个音频流和一个视频流, 因 此有两个 m行。 媒体格式为 0代表用 PCM编码的音频, 它被荷载类型号为 78 的 FEC流保护。 FEC流被发往与音频相同的多播组, TTL参数也相同, 但端口 号大 2 ( 49172 )。 其中 FEC流釆用的编码类型是 RS编码。 视频流被荷载类型 号为 79的 FEC流保护,这个 FEC流的端口号是一样的,但是多播地址不一样。 FEC的冗余度为 60, 表明 FEC保护强度是 60%。
⑤接收端 MG回复。
⑥按照④中的方法, MGC请求发送端 MG创建一个新的 FEC流, 并将 FEC 算法的相关参数传给发送端 MG。
⑦发送端 MG回复。
本发明实施例通过 FEC算法与 ITU-T H.248协议、 SDP协议的配合使用, 网絡运营商可以更好的满足用户的服务质量(QoS )要求。
另一方面, 本发明实施例提供一种在下一代网絡中传输多媒体业务的系 统, 如图 7所示, 包括: 接收端 MGC 11、 接收端 MG 12、 发送端 MGC 21、 发 送端 MG 22 ;
所述接收端 MGC 11用于判断创建 FEC流的条件是否成立, 当所述条件成 立时, 请求接收端 MG创建 FEC流;
所述接收端 MG 12用于根据接收到的来自接收端 MGC请求创建 FEC流; 所述发送端 MGC 21用于请求发送端 MG创建 FEC流;
所述发送端 MG 22用于根据接收到的来自发送端 MGC请求创建 FEC流。 本发明实施例在下一代网絡中传输多媒体业务的系统, 所述接收端 MGC 判断创建 FEC流的条件成立时, 请求接收端 MG创建 FEC流, 并将 FEC算法的 相关参数发送给接收端 MG; 所述发送端 MGC请求发送端 MG创建 FEC流, 并将 所述 FEC算法的相关参数发送给发送端 MG; 所述接收端 MG和所述发送端 MG, 根据接收的请求创建 FEC流, 因此, 当创建 FEC流的条件成立时, 例如网絡 服务质量比较差时, 能够为多媒体实时业务在应用层提供传输数据的前向纠 错保护, 保证了用户的 QoS。
如图 8 所示, 本发明实施例在下一代网絡中传输多媒体业务的系统可以 为 Cl ient/Server模式, 应用于客户端从服务器下载的应用场景, 接收端媒 体网关为客户端媒体网关,发送端媒体网关为服务器端媒体网关,接收端 MGC 和发送端 MGC为同一 MGC。
如图 9 所示, 本发明实施例在下一代网絡中传输多媒体业务的系统也为 Cl ient/Server模式,与图 8不同的是,接收端 MGC和发送端 MGC为不同 MGC, 接收端媒体网关控制器为客户端媒体网关控制器 , 发送端媒体网关控制器为 服务器端媒体网关控制器。 当所述接收端媒体网关控制器和所述发送端媒体 网关控制器为不同媒体网关控制器时, 所述接收端媒体网关控制器还用于向 所述发送端媒体网关控制器发送 FEC流信息。 如图 1 0所示, 本发明实施例在下一代网絡中传输多媒体业务的系统可以 为对等模式, 接收端 MGC和发送端 MGC为同一 MGC。
如图 1 1所示, 本发明实施例在下一代网絡中传输多媒体业务的系统也为 对等模式(peer-to-peer )模式, 与图 1 0不同的是,接收端 MGC和发送端 MGC 为不同 MGC。
为了监测网絡服务质量, 当网絡服务质量下降时及时地釆用 FEC 算法, 可选的, 所述接收端 MG 1 2还用于监测到网絡 QoS质量损失百分比达到预定 门限时, 报告给接收端 MGC 1 1 ; 接收端 MGC 1 1还用于根据接收到的所述接收 端 MGC 12的报告时, 请求接收端 MG 12创建 FEC流。
为了保证优先级高的用户的 QoS,可选的, 接收端 MGC 12还用于从应用层 查找出优先级高的用户, 并请求接收端 MG 1 1 为所述优先级高的接收端用户 创建 FEC流; 所述接收端 MG 1 1还用于根据接收端 MGC的请求, 为所述优先 级高的接收端用户创建 FEC流; 所述发送端 MGC 21还用于请求发送端 MG 22 为所述优先级高的接收端用户创建 FEC流;发送端 MG 22还用于根据发送端 MGC 的请求, 为所述优先级高的接收端用户创建 FEC流。
为了合理的选择 FEC算法的保护强度, 所述接收端 MG 12还用于, 发送 网絡统计信息, 所述网絡统计信息包括: 接收字节数、 发送字节数、 接收 RTP 包数、 发送 RTP包数、 丟包率、 平均时延和时延抖动; 所述接收端 MGC 1 1还 用于, 根据所述网絡统计信息, 确定 FEC算法的冗余度。
另一方面, 本发明实施例公开了一种媒体网关控制器 MGC , 如图 1 2所示, 包括: 判断单元 1 1 1及请求单元 1 12。 判断单元 1 1 1用于判断创建 FEC流的条 件是否成立;请求单元 1 12用于当所述条件成立时,请求媒体网关 MG创建 FEC 流。
本发明实施例媒体网关控制器 MGC ,判断单元判断创建 FEC流的条件是否 成立, 当创建 FEC流的条件成立时, 请求单元请求媒体网关 MG创建 FEC流。 因此,当判断创建 FEC流的条件成立,例如网絡服务质量比较差时,请求 MG FEC 保护算法, 能够为多媒体实时业务在应用层提供传输数据的前向纠错保护, 保证了用户的 QoS。
如图 13所示, 为了监测网絡服务质量, 当网絡服务质量下降时及时地釆 用 FEC算法, 本发明实施例媒体网关控制器 MGC还包括: 第一接收单元 113, 用于接收接收端 MG监测的网絡 QoS质量损失百分比达到预定门限的报告; 所 述判断单元 111还用于当接收到所述报告时, 则判断为创建 FEC流的条件成 立。
如图 14所示,为了保证优先级高的用户的 QoS, MGC还包括:查找单元 114, 用于从应用层查找优先级高的用户; 所述判断单元 111 还用于当查找单元查 找到优先级高的接收端用户时, 则判断为创建 FEC 流的条件成立。 所述请求 单元 111还用于请求媒体网关 MG为所述优先级高的接收端用户创建 FEC流。
为了选择合适的 FEC保护强度, 如图 13或者图 14所示, MGC还包括: 第 二接收单元 115, 用于从接收端 MG接收网絡统计信息, 所述网絡统计信息包 括: 接收字节数、 发送字节数、 接收 RTP包数、 发送 RTP包数、 丟包率、 平 均时延和时延抖动; 确定单元 116, 用于根据所述网絡统计信息, 确定 FEC算 法的冗余度。
另一方面, 本发明实施例提供了一种媒体网关 MG, 如图 15所示, 包括: 接收单元 121, 用于从接收端 MGC接收创建 FEC流的请求; 创建单元 122, 用 于根据所述接收的请求, 创建 FEC流。
本发明实施例所述的媒体网关 MG, 接收单元从接收端 MGC接收创建 FEC 流的请求; 创建单元根据所述接收的请求, 创建 FEC 流, 因此, 当网絡服务 质量比较差时, 能够为多媒体实时业务在应用层提供传输数据的前向纠错保 护, 保证了用户的 QoS。
如图 16所示, 媒体网关 MG还包括: 监测单元 123, 用于监测网絡 QoS的 质量损失百分比; 第一发送单元 124, 用于当网絡 QoS质量损失百分比达到预 定门限时, 向接收端 MGC报告; 第二发送单元 125, 向接收端 MGC发送网絡统 计信息, 所述网絡统计信息包括: 接收字节数、 发送字节数、 接收 RTP包数、 发送 RTP 包数、 丟包率、 平均时延和时延抖动。 因此, 媒体网关能够及时监 测网絡 QoS 的质量损失百分比, 向媒体网关控制器报告, 使得媒体网关控制 器能够选择合适的 FEC保护强度, 并请求媒体网关创建 FEC流。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流 程, 是可以通过计算机程序来指令相关的硬件来完成, 所述的程序可存储于 一计算机可读取存储介质中, 该程序在执行时, 可包括如上述各方法的实施 例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体( Read-Only Memory, ROM )或随机存储记忆体 ( Random Acces s Memory , RAM )等。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护 范围应所述以权利要求的保护范围为准。

Claims

权利 要 求 书
1、 一种在下一代网絡中传输多媒体业务的方法, 其特征在于, 包括, 接收端媒体网关控制器判断创建 FEC流的条件是否成立;
当所述条件成立时, 所述接收端媒体网关控制器请求接收端媒体网关创建 FEC流;
发送端媒体网关控制器请求发送端媒体网关创建 FEC流;
在所述接收端媒体网关和所述发送端媒体网关之间创建 FEC流。
2、 根据权利要求 1所述的在下一代网絡中传输多媒体业务的方法, 其特征 在于,
所述接收端媒体网关控制器和所述发送端媒体网关控制器为同一媒体网关 控制器; 或, 所述接收端媒体网关控制器和所述发送端媒体网关控制器为不同 媒体网关控制器;
当所述接收端媒体网关控制器和所述发送端媒体网关控制器为不同媒体网 关控制器时, 所述接收端媒体网关控制器请求所述接收端媒体网关创建 FEC 流 的步骤之后还包括: 所述接收端媒体网关控制器向所述发送端媒体网关控制器 发送 FEC流信息。
3、 根据权利要求 1所述的在下一代网絡中传输多媒体业务的方法, 其特征 在于, 所述创建 FEC 流的条件为: 所述接收端媒体网关控制器接收到所述接收 端媒体网关所监测的网絡 QoS质量损失百分比达到预定门限的报告。
4、 根据权利要求 1所述的在下一代网絡中传输多媒体业务的方法, 其特征 在于, 所述创建 FEC 流的条件为: 所述接收端媒体网关控制器从应用层查找到 优先级高的接收端用户;
所述接收端媒体网关控制器请求所述接收端媒体网关创建 FEC流的步骤为: 所述接收端媒体网关控制器请求所述接收端媒体网关为所述优先级高的接收端 用户创建 FEC流;
所述发送端媒体网关控制器请求所述发送端媒体网关创建 FEC流的步骤为: 所述发送端媒体网关控制器请求所述发送端媒体网关为所述优先级高的接收端 用户创建 FEC流;
在所述接收端媒体网关和所述发送端媒体网关之间创建 FEC 流的步骤为: 在所述接收端媒体网关和所述发送端媒体网关之间为所述优先级高的接收端用 户创建 FEC流。
5、 根据权利要求 1所述的在下一代网絡中传输多媒体业务的方法, 其特征 在于, 所述接收端媒体网关控制器判断出创建 FEC 流的条件成立的步骤之后, 还包括:
所述接收端媒体网关控制器从所述接收端媒体网关接收网絡统计信息, 所 述网絡统计信息包括: 接收字节数、 发送字节数、 接收 RTP包数、 发送 RTP包 数、 丟包率、 平均时延和时延抖动;
所述接收端媒体网关控制器根据所述网絡统计信息, 确定 FEC 算法的冗余 度。
6、 根据权利要求 1所述的在下一代网絡中传输多媒体业务的方法, 其特征 在于,
所述接收端媒体网关控制器请求所述接收端媒体网关创建 FEC 流的步骤包 括: 将 FEC算法的相关参数发送给所述接收端媒体网关;
所述发送端媒体网关控制器请求所述发送端媒体网关创建 FEC 流的步骤包 括: 将所述 FEC算法的相关参数发送给所述发送端媒体网关。
7、 根据权利要求 6所述的在下一代网絡中传输多媒体业务的方法, 其特征 在于,
所述将 FEC算法的相关参数传给所述接收端媒体网关为: 使用 ITU-T H. 248 协议或者 SDP协议将 FEC算法的相关参数发送给所述接收端媒体网关;
所述将所述 FEC算法的相关参数传给发送端媒体网关为: 使用 ITU-T H. 248 协议或者 SDP协议将 FEC算法的相关参数发送给所述发送端媒体网关。
8、 一种在下一代网絡中传输多媒体业务的系统, 其特征在于, 包括: 接收 端媒体网关控制器、 接收端媒体网关、 发送端媒体网关控制器、 发送端媒体网 关;
所述接收端媒体网关控制器, 用于当判断出创建 FEC 流的条件成立时, 请 求所述接收端媒体网关创建 FEC流;
所述接收端媒体网关, 用于根据接收到的来自所述接收端媒体网关控制器 的请求创建 FEC流;
所述发送端媒体网关控制器, 用于请求所述发送端媒体网关创建 FEC流; 所述发送端媒体网关, 用于根据接收到的来自所述发送端媒体网关控制器 的请求创建 FEC流。
9、 根据权利要求 8所述的在下一代网絡中传输多媒体业务的系统, 其特征 在于,
所述接收端媒体网关控制器和所述发送端媒体网关控制器为同一媒体网关 控制器;
或 , 所述接收端媒体网关控制器和所述发送端媒体网关控制器为不同媒体 网关控制器; 当所述接收端媒体网关控制器和所述发送端媒体网关控制器为不 同媒体网关控制器时, 所述接收端媒体网关控制器还用于向所述发送端媒体网 关控制器发送 FEC流信息。
1 0、 根据权利要求 8 所述的在下一代网絡中传输多媒体业务的系统, 其特 征在于,
所述接收端媒体网关还用于当监测到网絡 QoS质量损失百分比达到预定门 限时, 报告给所述接收端媒体网关控制器;
所述接收端媒体网关控制器还用于当接收到所述接收端媒体网关的报告 时, 请求所述接收端媒体网关创建 FEC流。
1 1、 根据权利要求 8 所述的在下一代网絡中传输多媒体业务的系统, 其特 征在于,
所述接收端媒体网关控制器还用于从应用层查找优先级高的接收端用户, 当查找到优先级高的接收端用户时, 请求所述接收端媒体网关为所述优先级高 的接收端用户创建 FEC流;
所述接收端媒体网关还用于根据所述接收端媒体网关控制器的请求, 为所 述优先级高的接收端用户创建 FEC流;
所述发送端媒体网关控制器还用于请求所述发送端媒体网关为所述优先级 高的接收端用户创建 FEC流;
所述发送端媒体网关还用于根据所述发送端媒体网关控制器的请求, 为所 述优先级高的接收端用户创建 FEC流。
12、 根据权利要求 10或 11所述的在下一代网絡中传输多媒体业务的系统, 其特征在于, 还包括:
所述接收端媒体网关还用于发送网絡统计信息, 所述网絡统计信息包括: 接收字节数、 发送字节数、 接收 RTP包数、 发送 RTP包数、 丟包率、 平均时延 和时延抖动;
所述接收端媒体网关控制器还用于根据所述网絡统计信息, 确定 FEC 算法 的冗余度。
1 3、 一种媒体网关控制器媒体网关控制器, 其特征在于, 包括:
判断单元, 用于判断创建 FEC流的条件是否成立,
请求单元, 用于当所述条件成立时, 请求媒体网关创建 FEC流。
14、 根据权利要求 1 3所述的媒体网关控制器, 其特征在于, 还包括: 第一接收单元, 用于接收接收端媒体网关监测的网絡 QoS质量损失百分比 达到预定门限的报告;
所述判断单元还用于, 当接收到所述报告时, 则判断为创建 FEC 流的条件 成立。
15、 根据权利要求 1 3所述的媒体网关控制器, 其特征在于, 还包括: 查找单元, 用于从应用层查找优先级高的接收端用户;
所述判断单元还用于, 当查找单元查找到优先级高的接收端用户时, 则判 断为创建 FEC流的条件成立;
所述请求单元, 用于请求媒体网关为所述优先级高的接收端用户创建 FEC 流。
16、 根据权利要求 14或 15所述的媒体网关控制器, 其特征在于, 还包括: 第二接收单元, 用于从接收端媒体网关接收网絡统计信息, 所述网絡统计 信息包括: 接收字节数、 发送字节数、 接收 RTP包数、 发送 RTP包数、 丟包率、 平均时延和时延抖动;
确定单元, 用于根据所述网絡统计信息, 确定 FEC算法的冗余度。
17、 一种媒体网关, 其特征在于, 包括:
接收单元, 用于从接收端媒体网关控制器接收创建 FEC流的请求; 创建单元, 用于根据所述接收的请求, 创建 FEC流。
18、 根据权利要求 17所述的媒体网关, 其特征在于, 还包括:
监测单元, 用于监测网絡 QoS的质量损失百分比;
第一发送单元, 用于当网絡 QoS质量损失百分比达到预定门限时, 向接收 端媒体网关控制器报告;
第二发送单元, 向接收端媒体网关控制器发送网絡统计信息, 所述网絡统 计信息包括: 接收字节数、 发送字节数、 接收 RTP包数、 发送 RTP包数、 丟包 率、 平均时延和时延抖动。
PCT/CN2009/000299 2008-06-24 2009-03-19 下一代网络中传输多媒体业务的方法、系统、 及媒体网关、媒体网关控制器 WO2009155773A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810126529.2 2008-06-24
CN 200810126529 CN101616139A (zh) 2008-06-24 2008-06-24 下一代网络中传输多媒体业务的方法、系统、及装置

Publications (1)

Publication Number Publication Date
WO2009155773A1 true WO2009155773A1 (zh) 2009-12-30

Family

ID=41443981

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/000299 WO2009155773A1 (zh) 2008-06-24 2009-03-19 下一代网络中传输多媒体业务的方法、系统、 及媒体网关、媒体网关控制器

Country Status (2)

Country Link
CN (1) CN101616139A (zh)
WO (1) WO2009155773A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104796735B (zh) * 2014-01-17 2018-06-15 中国移动通信集团公司 一种视频数据传输方法及装置
CN110248257B (zh) * 2018-03-07 2021-06-22 华为技术有限公司 数据传输方法、装置、网络接入设备和存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1859580A (zh) * 2005-10-17 2006-11-08 华为技术有限公司 支持错误弹性的多媒体数据网络实时传送方法
US20060291475A1 (en) * 2005-06-28 2006-12-28 Noam Cohen Selective forward error correction
US20070133515A1 (en) * 2005-12-13 2007-06-14 Rajesh Kumar Central entity to adjust redundancy and error correction on RTP sessions
US20070280217A1 (en) * 2006-06-01 2007-12-06 Texas Instruments Incorporated Inter-nodal robust mode for real-time media streams in a network

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060291475A1 (en) * 2005-06-28 2006-12-28 Noam Cohen Selective forward error correction
CN1859580A (zh) * 2005-10-17 2006-11-08 华为技术有限公司 支持错误弹性的多媒体数据网络实时传送方法
US20070133515A1 (en) * 2005-12-13 2007-06-14 Rajesh Kumar Central entity to adjust redundancy and error correction on RTP sessions
US20070280217A1 (en) * 2006-06-01 2007-12-06 Texas Instruments Incorporated Inter-nodal robust mode for real-time media streams in a network

Also Published As

Publication number Publication date
CN101616139A (zh) 2009-12-30

Similar Documents

Publication Publication Date Title
Andreasen et al. Media gateway control protocol (MGCP) version 1.0
JP5312594B2 (ja) Rfc3313に対する帯域内dpiメディア予約修正
US8804575B2 (en) Central entity to adjust redundancy and error correction on RTP sessions
WO2022247550A1 (zh) 数据重传处理方法、装置、计算机设备和存储介质
WO2008125029A1 (fr) Procédé, système et dispositif permettant de contrôler le débit de codage du flux multimédia
WO2007128217A1 (en) Method of internet protocol(ip) message transmission, negotiated bandwidth saving capability and saving network bandwidth
Thomas et al. Enhancing MPEG DASH performance via server and network assistance
CN101364999A (zh) 一种基于流的服务质量处理的方法、设备及系统
WO2007068209A1 (fr) Procede, systeme et dispositif d&#39;envoi de messages instantanes ims
US8812686B2 (en) Communications system and method
US20130246658A1 (en) Method and system for selecting a data compression technique for data transfer through a data network
WO2006045245A1 (fr) Serveur sip, procede de reduction de l&#39;encombrement de celui-ci et reseau large bande multimedia utilisant le protocole sip
WO2009121284A1 (zh) 一种提供智能业务的方法、系统及网关
US9641379B2 (en) Caching of announcements at the edge of a packet switched telecommunication network
GB2533775A (en) In-band quality data
WO2009155773A1 (zh) 下一代网络中传输多媒体业务的方法、系统、 及媒体网关、媒体网关控制器
WO2006136070A1 (fr) Procédé pour basculer le format de codage ou de décodage des flux de médias
WO2009039781A1 (fr) Procédé et système de mise à jour de données vidéo
CN101552771B (zh) 媒体网关、媒体网关控制器、多媒体电话互通方法和系统
Clayman et al. In-network scalable video adaption using big packet protocol
WO2009121272A1 (zh) 媒体网关、媒体网关控制器、多媒体电话互通方法和系统
WO2009129712A1 (zh) 上报会话状态的方法、媒体网关和系统
RU2446605C2 (ru) Способ, система и устройство для согласования службы данных сигнализации протокола инициации сеанса
CN112584204A (zh) 一种弱网环境下播放端动态码率自适应方法
US10171518B2 (en) Performing an action on certain media streams in a multimedia communications network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09768698

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09768698

Country of ref document: EP

Kind code of ref document: A1