WO2009154130A1 - Method for manufacturing plasma display panel and film forming apparatus - Google Patents

Method for manufacturing plasma display panel and film forming apparatus Download PDF

Info

Publication number
WO2009154130A1
WO2009154130A1 PCT/JP2009/060680 JP2009060680W WO2009154130A1 WO 2009154130 A1 WO2009154130 A1 WO 2009154130A1 JP 2009060680 W JP2009060680 W JP 2009060680W WO 2009154130 A1 WO2009154130 A1 WO 2009154130A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
metal oxide
vacuum chamber
display panel
evaporation source
Prior art date
Application number
PCT/JP2009/060680
Other languages
French (fr)
Japanese (ja)
Inventor
栄一 飯島
宗人 箱守
利春 倉内
礼寛 横山
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Priority to JP2010517878A priority Critical patent/JP5235214B2/en
Priority to CN200980122380.3A priority patent/CN102067266B/en
Priority to KR1020107028164A priority patent/KR101128744B1/en
Publication of WO2009154130A1 publication Critical patent/WO2009154130A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/20Manufacture of screens on or from which an image or pattern is formed, picked up, converted or stored; Applying coatings to the vessel

Abstract

The properties of a protective film can be stabilized.  In evaporating a metal oxide while transferring an object to be film-formed, while introducing oxygen and water in a larger amount than the amount of oxygen into a vacuum chamber, a metal oxide is evaporated so that the static film formation rate is not less than 40 nm/sec.  The luminescence intensity is measured at the time of evaporating the metal oxide and the measured result is feed backed to the output of a heating device (an electron gun 41).  The luminescence intensity is involved directly in film properties such as (111) intensity, and, thus protective films having good film properties such as crystal alignment, film density and optical properties can be stably formed.

Description

プラズマディスプレイパネルの製造方法、成膜装置Plasma display panel manufacturing method and film forming apparatus
 本発明はプラズマディスプレイパネルに関し、特に、PDP表示装置に用いられるパネルの保護膜に適したMgO膜を形成する技術に関する。 The present invention relates to a plasma display panel, and more particularly to a technique for forming an MgO film suitable as a protective film for a panel used in a PDP display device.
 従来から、プラズマディスプレイパネル(PDP)は表示装置の分野で広く用いられており、最近では、大画面で高品質かつ低価格のPDPが要求されている。
 現在、PDPはガラス基板上に維持電極及び走査電極を形成した前面板と、ガラス基板上にアドレス電極を形成した背面板が貼り合わされている三電極面放電型が主流となっている。
Conventionally, a plasma display panel (PDP) has been widely used in the field of display devices, and recently, a high-quality and low-cost PDP with a large screen is required.
Currently, the PDP is mainly a three-electrode surface discharge type in which a front plate having a sustain electrode and a scan electrode formed on a glass substrate and a back plate having an address electrode formed on the glass substrate are bonded together.
 前面板と背面板の間には放電ガスが封入されており、走査電極とアドレス電極との間に電圧を印加して放電を発生させると、封入された放電ガスがプラズマ化し、紫外線が放出される。放射された紫外線が照射される位置に蛍光体を配置しておけば、紫外線によって蛍光体が励起され、可視光が放出される。
 一般に、維持電極及び走査電極上には、誘電体膜を形成し、さらにその上に誘電体の保護と二次電子を放出させることを目的としてMgO、SrO等の金属酸化膜が形成されている。
A discharge gas is enclosed between the front plate and the back plate. When a voltage is applied between the scan electrode and the address electrode to generate a discharge, the enclosed discharge gas is turned into plasma and ultraviolet rays are emitted. If the phosphor is arranged at a position where the emitted ultraviolet rays are irradiated, the phosphor is excited by the ultraviolet rays and visible light is emitted.
In general, a dielectric film is formed on the sustain electrode and the scan electrode, and a metal oxide film such as MgO or SrO is formed thereon for the purpose of protecting the dielectric and emitting secondary electrons. .
 放電維持のために走査電極と維持電極に交流電圧を印加すると、放電ガスのプラズマ化により発生した陽イオンが走査電極側及び維持電極側に入射するが、維持電極及び走査電極とそれら電極上の誘電体膜は保護膜によって陽イオンから保護されている。 When an AC voltage is applied to the scan electrode and the sustain electrode to maintain the discharge, cations generated by the plasma of the discharge gas enter the scan electrode side and the sustain electrode side. The dielectric film is protected from cations by a protective film.
 また、発光効率の改善、放電遅れの改善、γ(二次電子収率)の改善のためMgOベースの保護膜に対してCa、Al、Si、Mn、Eu、Ti、水及び水素などを添加する試みがなされている。(例えば非特許文献1)
第43回PDP技術討論会予稿集、2006年7月5日、p32~p52 特開2007-107092号公報 特開2007-119831号公報 特開2006-149833号公報
Also, Ca, Al, Si, Mn, Eu, Ti, water, hydrogen, etc. are added to the MgO-based protective film in order to improve luminous efficiency, discharge delay, and γ (secondary electron yield). Attempts have been made. (For example, Non-Patent Document 1)
Proc. 43rd PDP Technical Discussion Meeting, July 5, 2006, p32-p52 JP 2007-107092 A JP 2007-119831 A JP 2006-149833 A
 MgOを含有する保護膜は(111)配向のピーク強度が高い程二次電子を放出しやすく、屈折率が高い程緻密で耐スパッタ性が高いと言われており、PDP用保護膜には、一般に次の特性が要求される。
(1)結晶配向性が(111)であり、XRD(X Ray Diffraction、X線回折)でのピーク強度が1500cps(counts per second)以上であること。
(2)充填率(膜密度)が82%以上であること(屈折率が約1.6以上であること)。
It is said that the protective film containing MgO is more likely to emit secondary electrons as the peak intensity of (111) orientation is higher, and that the higher the refractive index, the denser and the higher the sputtering resistance. In general, the following characteristics are required.
(1) The crystal orientation is (111), and the peak intensity in XRD (X Ray Diffraction, X-ray diffraction) is 1500 cps (counts per second) or more.
(2) The filling rate (film density) is 82% or more (the refractive index is about 1.6 or more).
 上記(1)、(2)の特性を全て満たし、さらにピーク強度が高く、充填率が高いことが望ましいが、結晶配向性を向上させるための成膜条件では、膜密度が低下する傾向にあり、膜密度を高くする成膜条件では、結晶配向性が低下する傾向にある。
 つまり、上記の特性を向上させるための成膜条件は相反する。従って、現状より更に特性の優れたPDP用保護膜を作成する際には、何れかの特性を重視した成膜条件にするか、ないしは双方の特性の中間的な保護膜を作成せざるを得ない。
It is desirable that all of the above characteristics (1) and (2) are satisfied, the peak intensity is high, and the filling rate is high. However, the film density tends to decrease under the film forming conditions for improving the crystal orientation. Under the film forming conditions for increasing the film density, the crystal orientation tends to decrease.
That is, the film forming conditions for improving the above characteristics are contradictory. Therefore, when creating a protective film for PDP having more excellent characteristics than the current situation, it is necessary to make a film forming condition that emphasizes one of the characteristics, or to create an intermediate protective film having both characteristics. Absent.
 成膜条件は、一般に、成膜中の基板温度、圧力、酸素、Ar、水素、水などのプロセスガス導入量、ガス分圧等である。これらの成膜条件はモニタリングし、制御することができるが、いずれの成膜条件を変えても、MgOの結晶性を制御及び必要な膜特性の制御には不充分であった。 The film formation conditions generally include the substrate temperature, pressure, oxygen, Ar, hydrogen, water and other process gas introduction amounts, gas partial pressure, and the like during film formation. These film formation conditions can be monitored and controlled. However, changing any film formation condition is insufficient for controlling the crystallinity of MgO and controlling necessary film characteristics.
 MgO、SrO、CaO等の金属酸化物に電子ビームを照射して高温加熱すると、金属酸化物の蒸気が発生すると共に、金属酸化物の一部が還元され、金属が解離する。例えば、酸化マグネシウム(MgO)の場合、電子ビームを照射するとMgが解離する反応(2MgO→2Mg+O2)が起こる。 When a metal oxide such as MgO, SrO, or CaO is irradiated with an electron beam and heated at a high temperature, a vapor of the metal oxide is generated, a part of the metal oxide is reduced, and the metal is dissociated. For example, in the case of magnesium oxide (MgO), a reaction (2MgO → 2Mg + O 2 ) occurs when Mg is dissociated when irradiated with an electron beam.
 金属酸化物を蒸発させる際に水を導入すれば、電子ビームにより水が分解され、還元剤である水素が発生するから、金属酸化物の還元反応(MgO+H2→Mg+H2O)がより低温で進行し、電子ビームパワーが同じでも還元量が多くなる。
 電子ビームを照射する際に酸素又は水が存在すると、解離金属は酸素及び水と反応して再び金属酸化物となる(Mg+O2→2MgO、Mg+H2O→MgO+H2)。
If water is introduced when evaporating the metal oxide, water is decomposed by the electron beam and hydrogen as a reducing agent is generated. Therefore, the reduction reaction of the metal oxide (MgO + H 2 → Mg + H 2 O) is performed at a lower temperature. The amount of reduction increases even if the electron beam power is the same.
If oxygen or water is present when the electron beam is irradiated, the dissociated metal reacts with oxygen and water to become a metal oxide again (Mg + O 2 → 2MgO, Mg + H 2 O → MgO + H 2 ).
 本発明者等は、解離せずに蒸発した金属酸化物の蒸気で保護膜が形成されるよりも、金属酸化物の少なくとも一部が一旦解離してから酸化された酸化物が保護膜に混入した方が、保護膜の(111)結晶配向性と、膜密度が高くなることを見出した。
 本発明者等が更に検討を行った結果、金属酸化物を解離させるためには、真空槽内に水を導入し、かつ、成膜速度が40nm/秒以上になるように、電子ビームを照射すればよいことが分かった。
Rather than forming a protective film with vapor of metal oxide that has evaporated without dissociating, the present inventors have mixed oxide into the protective film once the metal oxide has been dissociated and then oxidized. It has been found that the (111) crystal orientation of the protective film and the film density are higher when the film is formed.
As a result of further studies by the present inventors, in order to dissociate the metal oxide, water was introduced into the vacuum chamber and the electron beam was irradiated so that the film formation rate was 40 nm / second or more. I knew that I should do it.
 金属が酸化し、低エネルギー状態(酸化物)になる際には、特定波長の光が放出される。例えばMgが酸化される時の放出光は、波長285.2nmと、280.2nmに特徴的なピークがあり、Srが酸化される時の放出光は、波長242.8nmと、256.9nmに特徴的なピークがある。 When the metal is oxidized to a low energy state (oxide), light of a specific wavelength is emitted. For example, emission light when Mg is oxidized has characteristic peaks at wavelengths of 285.2 nm and 280.2 nm, and emission light when Sr is oxidized at wavelengths of 242.8 nm and 256.9 nm. There is a characteristic peak.
 それら特定波長のピークの大きさ(強度)は、金属が酸化される量が多い程強くなるから、特定波長の発光強度を測定すれば、金属酸化物がどの程度解離し、再度酸化されたのかが推測され、成膜速度、電子ビームを含めた雰囲気が金属酸化物を解離させ再度酸化させるのに十分か否かが分かる。 The peak size (intensity) of these specific wavelengths increases as the amount of oxidized metal increases, so if the emission intensity at a specific wavelength is measured, how much the metal oxide is dissociated and re-oxidized? Thus, it can be seen whether the film formation speed and the atmosphere including the electron beam are sufficient to dissociate the metal oxide and oxidize it again.
 係る知見に基づいて成された本発明は、真空槽内に酸素を導入しながら、蒸発源に配置された金属酸化物を加熱して、前記金属酸化物の蒸気を発生させ、表面に電極が配置された第一のパネルを、前記真空槽内の搬送経路を搬送して、前記蒸発源と対面する成膜位置を通過させ、前記電極上に金属酸化物の薄膜からなる保護膜を形成した後、前記第一のパネルを第二のパネルと貼り合せ、前記保護膜がプラズマに曝されるプラズマディスプレイパネルを製造するプラズマディスプレイパネルの製造方法であって、前記真空槽内に、単位時間当たりの導入体積が、前記酸素の単位時間当たりの導入体積と同じかそれよりも多くなるように、水を導入しながら、前記第一のパネルが当該成膜位置で静止した場合の前記保護膜の成膜速度が、40nm/秒以上になるように前記金属酸化物を蒸発させながら、前記第一のパネルを搬送するプラズマディスプレイパネルの製造方法である。
 本発明は、表面に電極が配置された第一のパネルを、真空槽内部の蒸発源と対面する成膜位置に配置し、前記真空槽内に酸素を導入しながら、前記蒸発源に配置された金属酸化物を加熱して、前記金属酸化物の蒸気を発生させ、前記第一のパネルの前記電極上に金属酸化物の薄膜からなる保護膜を形成した後、前記第一のパネルを第二のパネルとを貼り合せ、前記保護膜がプラズマに曝されるプラズマディスプレイパネルを製造するプラズマディスプレイパネルの製造方法であって、前記真空槽内に、単位時間当たりの導入体積が、前記酸素の単位時間当たりの導入体積と同じか、それよりも多くなるように、水を導入しながら、前記保護膜の成膜速度が40nm/秒以上になるように、前記金属酸化物を蒸発させるプラズマディスプレイパネルの製造方法である。
 本発明はプラズマディスプレイパネルの製造方法であって、前記金属酸化物に電子線を照射して蒸発させるプラズマディスプレイパネルの製造方法である。
 本発明はプラズマディスプレイパネルの製造方法であって、前記真空槽の全圧を、1×10-1Paを超える圧力にして、前記金属酸化物の蒸気を発生させるプラズマディスプレイパネルの製造方法である。
 本発明はプラズマディスプレイパネルの製造方法であって、前記金属酸化物はMgOであるプラズマディスプレイパネルの製造方法である。
 本発明はプラズマディスプレイパネルの製造方法であって、前記金属酸化物はMgOを含有し、SrOとCaOのいずれか一方又は両方が添加されたプラズマディスプレイパネルの製造方法である。
 本発明はプラズマディスプレイパネルの製造方法であって、前記金属酸化物を蒸発させる際、前記真空槽内に放出される光の発光強度を測定し、前記発光強度の測定値が、予め設定された値になるように、前記金属酸化物を蒸発させる加熱装置の出力を変えるプラズマディスプレイパネルの製造方法である。
 本発明はプラズマディスプレイパネルの製造方法であって、前記金属酸化物を蒸発させる際、前記真空槽内に放出される光の発光強度を測定し、前記発光強度の測定値が、予め設定された値になるように、前記電子線の照射面積を変えるプラズマディスプレイパネルの製造方法である。
 本発明は、真空槽と、前記真空槽内に配置された蒸発源と、前記蒸発源に配置された蒸着材料を加熱する加熱装置と、前記真空槽内に水を導入する水導入口と、前記真空槽内に酸素を導入する酸素導入口とを有する保護膜の成膜装置であって、前記真空槽内部に発生する光の発光強度を測定する測定装置と、前記測定装置と前記加熱装置に接続された制御装置とを有し、前記制御装置は、前記測定装置から伝達される発光強度に基づき、前記加熱装置の出力を変更可能に構成された成膜装置である。
 本発明は成膜装置であって、前記加熱装置は電子銃であり、前記制御装置は前記電子銃から放出される電子線の照射面積を変える成膜装置である。
 本発明は成膜装置であって、前記真空槽内部の搬送経路に沿って成膜対象物を搬送する搬送装置を有し、前記成膜対象物は前記搬送経路を移動する間に前記蒸発源と対面するようにされ、前記水導入口は、前記酸素導入口よりも前記蒸発源に近く、かつ、前記搬送経路よりも遠い位置にある成膜装置である。
 本発明は成膜装置であって、前記真空槽内部の前記蒸発源と対面する位置で基板を保持する基板ホルダを有し、前記水導入口は、前記酸素導入口よりも前記蒸発源に近く、かつ、前記基板ホルダに保持された前記基板に遠い位置にある成膜装置である。
The present invention based on such knowledge, while introducing oxygen into the vacuum chamber, heats the metal oxide disposed in the evaporation source to generate the vapor of the metal oxide, the electrode on the surface The arranged first panel was transported through a transport path in the vacuum chamber, passed through a film forming position facing the evaporation source, and a protective film made of a metal oxide thin film was formed on the electrode. Thereafter, the first panel is bonded to the second panel, and the plasma display panel is manufactured by manufacturing the plasma display panel in which the protective film is exposed to plasma. Of the protective film when the first panel is stationary at the deposition position while introducing water so that the introduction volume of oxygen is equal to or greater than the introduction volume of oxygen per unit time. Deposition rate is 40n / While evaporating the metal oxide so that the second or higher, a method of manufacturing a plasma display panel for carrying the said first panel.
According to the present invention, a first panel having an electrode disposed on a surface thereof is disposed at a film forming position facing an evaporation source inside a vacuum chamber, and oxygen is introduced into the vacuum chamber while being disposed at the evaporation source. The metal oxide is heated to generate a vapor of the metal oxide, and a protective film made of a thin film of metal oxide is formed on the electrode of the first panel. A plasma display panel manufacturing method for manufacturing a plasma display panel in which a protective panel is exposed to plasma, wherein the volume of introduction per unit time of the oxygen is A plasma display that evaporates the metal oxide while introducing water so that the deposition rate of the protective film is 40 nm / second or more while introducing water so as to be equal to or larger than the introduced volume per unit time. Pa It is a manufacturing method of Le.
The present invention relates to a method for manufacturing a plasma display panel, wherein the metal oxide is irradiated with an electron beam to evaporate.
The present invention is a method for manufacturing a plasma display panel, wherein the total pressure of the vacuum chamber is set to a pressure exceeding 1 × 10 −1 Pa to generate the vapor of the metal oxide. .
The present invention is a method for manufacturing a plasma display panel, wherein the metal oxide is MgO.
The present invention is a method for manufacturing a plasma display panel, wherein the metal oxide contains MgO, and one or both of SrO and CaO are added.
The present invention is a method for manufacturing a plasma display panel, wherein when the metal oxide is evaporated, the emission intensity of light emitted into the vacuum chamber is measured, and the measured value of the emission intensity is preset. This is a method for manufacturing a plasma display panel in which the output of the heating device for evaporating the metal oxide is changed so as to have a value.
The present invention is a method for manufacturing a plasma display panel, wherein when the metal oxide is evaporated, the emission intensity of light emitted into the vacuum chamber is measured, and the measured value of the emission intensity is preset. This is a method of manufacturing a plasma display panel in which the irradiation area of the electron beam is changed so as to have a value.
The present invention includes a vacuum chamber, an evaporation source disposed in the vacuum chamber, a heating device for heating a vapor deposition material disposed in the evaporation source, a water inlet for introducing water into the vacuum chamber, An apparatus for forming a protective film having an oxygen inlet for introducing oxygen into the vacuum chamber, the measuring device for measuring the emission intensity of light generated inside the vacuum chamber, the measuring device, and the heating device The control device is a film forming device configured to change the output of the heating device based on the emission intensity transmitted from the measurement device.
The present invention is a film forming apparatus, wherein the heating device is an electron gun, and the control device is a film forming apparatus that changes an irradiation area of an electron beam emitted from the electron gun.
The present invention is a film forming apparatus, and includes a transfer device that transfers a film formation target along a transfer path inside the vacuum chamber, and the evaporation source is moved while moving along the transfer path. The water introduction port is a film forming apparatus that is closer to the evaporation source than the oxygen introduction port and farther from the transfer path.
The present invention is a film forming apparatus, comprising a substrate holder that holds a substrate at a position facing the evaporation source inside the vacuum chamber, wherein the water introduction port is closer to the evaporation source than the oxygen introduction port In addition, the film forming apparatus is located far from the substrate held by the substrate holder.
 本発明は上記のように構成されており、成膜される保護膜は結晶配向性が良く、しかも、膜密度が高い。結晶配向性がよいと保護膜の(111)ピーク強度が高くなり、また膜密度が高いと耐スパッタ性が向上し、保護膜の膜厚を削減できる。例えば、(111)ピーク強度が40%高く、かつ膜密度が高いと、必要膜厚は20%~50%削減可能である。 The present invention is configured as described above, and the protective film to be formed has good crystal orientation and high film density. When the crystal orientation is good, the (111) peak intensity of the protective film becomes high, and when the film density is high, the sputtering resistance is improved and the film thickness of the protective film can be reduced. For example, if the (111) peak intensity is 40% higher and the film density is high, the required film thickness can be reduced by 20% to 50%.
 解離した金属を確実に酸化させるために、水の導入量は酸素と同じかそれよりも多量に導入する。
 水と酸素の導入量は、真空槽内の分圧で規定してもよいが、水は電子線で分解されるから、水の分圧を正確に測定することは困難である。従って、本発明では、分圧の代わりに、水と酸素の導入量を、単位時間当たりの導入体積(sccm)で規定する。
In order to reliably oxidize the dissociated metal, the amount of water introduced is the same as or larger than that of oxygen.
The amount of water and oxygen introduced may be defined by the partial pressure in the vacuum chamber, but since water is decomposed by an electron beam, it is difficult to accurately measure the partial pressure of water. Therefore, in the present invention, instead of the partial pressure, the introduction amount of water and oxygen is defined by the introduction volume (sccm) per unit time.
 結晶配向性がよいから保護膜の二次電子放出性が高い。充填率(膜密度)が高いから保護膜の耐スパッタ性が良い、二次電子放出性が高く、保護膜の耐スパッタ性が良いからPDPの寿命が長いだけでなく、膜厚削減が可能であり、PDPを薄膜化できる。薄膜化により、蒸着材料が節減され、パネルコストも削減される。成膜速度が従来より速いから、PDPの製造時間が短縮されるだけでなく、CO、CO2等の不純物が混入する虞が少なくなる。発光波長をモニタし、電子銃のパワーにフィードバックすることにより、MgO膜質の安定化が可能になる。 Since the crystal orientation is good, the secondary electron emission property of the protective film is high. Spatter resistance of the protective film is good due to high filling rate (film density), secondary electron emission is high, and sputter resistance of the protective film is good, so not only the life of the PDP is long, but also the film thickness can be reduced. Yes, PDP can be made thin. Thinning saves vapor deposition materials and reduces panel costs. Since the film formation rate is faster than the conventional one, not only the manufacturing time of the PDP is shortened, but also the possibility that impurities such as CO and CO 2 are mixed is reduced. By monitoring the emission wavelength and feeding back to the power of the electron gun, the MgO film quality can be stabilized.
PDPの一例を説明するための模式的な斜視図Schematic perspective view for explaining an example of a PDP 本発明の成膜装置の一例を示す断面図Sectional drawing which shows an example of the film-forming apparatus of this invention (111)強度 と充填率の関係を示すグラフ(111) Graph showing the relationship between strength and filling rate 水導入量と(111)半値幅の関係を示すグラフGraph showing the relationship between the amount of water introduced and the (111) half width 発光強度と(111)ピーク強度の関係を示すグラフGraph showing relationship between emission intensity and (111) peak intensity 放出光の波長と発光強度の関係を示すグラフ(実施例)Graph showing relationship between emitted light wavelength and emission intensity (Example) 放出光の波長と発光強度の関係を示すグラフ(比較例)Graph showing the relationship between wavelength of emitted light and emission intensity (comparative example) EB電流と発光強度の関係を示すグラフ(比較例)Graph showing the relationship between EB current and emission intensity (comparative example) 水を導入して成膜した保護膜の電子顕微鏡写真Electron micrograph of a protective film formed by introducing water 水を導入せずに成膜した保護膜の電子顕微鏡写真Electron micrograph of a protective film formed without introducing water
 1……プラズマディスプレイパネル  3……成膜装置  10…第一のパネル  14……保護膜  15、16……電極(維持電極、走査電極)  32……真空槽  36……蒸発源  41……電子銃  51……搬送経路  55……水導入口  56……酸素導入口 DESCRIPTION OF SYMBOLS 1 ... Plasma display panel 3 ... Film-forming apparatus 10 ... First panel 14 ... Protective film 15, 16 ... Electrode (sustain electrode, scanning electrode) 32 ... Vacuum chamber 36 ... Evaporation source 41 ... Electron Gun 51 ... Transport route 55 ... Water inlet 56 ... Oxygen inlet
 図1の符号1はプラズマディスプレイパネルの一例を示している。
 このプラズマディスプレイパネル1は、第一、第二のパネル10、20を有している。
 第一のパネル10は第一のガラス基板11を有しており、第一のガラス基板11の表面には、維持電極15と走査電極16がそれぞれ配置されている(図1では1本ずつ図示)。
Reference numeral 1 in FIG. 1 shows an example of a plasma display panel.
The plasma display panel 1 includes first and second panels 10 and 20.
The first panel 10 has a first glass substrate 11, and a sustain electrode 15 and a scan electrode 16 are arranged on the surface of the first glass substrate 11 (one in FIG. 1 is illustrated). ).
 維持電極15と走査電極16は所定間隔を空けて交互に並べられている。維持電極15と走査電極16は互いに離間し、その表面と、維持電極15と走査電極16の間には誘電体膜12が形成されている。従って、維持電極15と走査電極16は互いに絶縁されている。
 誘電体膜12の表面には保護膜14が全面にわたって配置されている。従って、各維持電極15上と各走査電極16上には保護膜14が位置する。
The sustain electrodes 15 and the scan electrodes 16 are alternately arranged at a predetermined interval. Sustain electrode 15 and scan electrode 16 are separated from each other, and dielectric film 12 is formed between the surface and sustain electrode 15 and scan electrode 16. Therefore, the sustain electrode 15 and the scan electrode 16 are insulated from each other.
A protective film 14 is disposed on the entire surface of the dielectric film 12. Accordingly, the protective film 14 is located on each sustain electrode 15 and each scan electrode 16.
 第二のパネル20は第二のガラス基板21を有している。第二のガラス基板21表面上にはアドレス電極25が互いに平行に配置されており、アドレス電極25は互いに離間している。アドレス電極25表面と、アドレス電極25間には誘電体層24(絶縁層)が配置され、アドレス電極25同士は絶縁されている。 The second panel 20 has a second glass substrate 21. On the surface of the second glass substrate 21, address electrodes 25 are arranged in parallel to each other, and the address electrodes 25 are separated from each other. A dielectric layer 24 (insulating layer) is disposed between the surface of the address electrode 25 and the address electrode 25, and the address electrodes 25 are insulated from each other.
 アドレス電極25間には、隔壁23がアドレス電極25の長手方向に沿って配置されている。互いに隣接する隔壁23間には、異なる色の蛍光色素を含有する蛍光体膜(赤色の蛍光体膜22Rと、緑色の蛍光体膜22Gと、青色の蛍光体膜22B)のいずれか1つが配置され、各アドレス電極25は誘電体層24を介し、いずれか1色の蛍光体膜22R、22G、22Bで覆われている。 Between the address electrodes 25, a partition wall 23 is disposed along the longitudinal direction of the address electrodes 25. Any one of the phosphor films (red phosphor film 22R, green phosphor film 22G, and blue phosphor film 22B) containing fluorescent dyes of different colors is disposed between the adjacent barrier ribs 23. Each address electrode 25 is covered with a phosphor film 22R, 22G, or 22B of any one color through the dielectric layer 24.
 第一、第二のパネル10、20は、保護膜14が形成された面と、隔壁23が形成された側の面とが互いに対向し、アドレス電極25に対し、維持電極15と走査電極16が直交するように位置合わせされた状態で貼り合わされ、第一、第二のパネル10、20間の空間が封止されている。 In the first and second panels 10 and 20, the surface on which the protective film 14 is formed and the surface on the side on which the partition wall 23 is formed face each other, and the sustain electrode 15 and the scan electrode 16 are opposed to the address electrode 25. Are stuck together so that they are orthogonal to each other, and the space between the first and second panels 10 and 20 is sealed.
 隔壁23は第二のパネル20の表面から高く突き出され、その先端が第一のパネル10の表面に当接している。従って、第一、第二のパネル10、20間の空間は隔壁23によって区分けされており、区分けされた各空間(発光空間29)に、封入ガス(例えばNeとXeの混合ガス)が充満している。 The partition wall 23 protrudes high from the surface of the second panel 20, and the tip thereof is in contact with the surface of the first panel 10. Accordingly, the space between the first and second panels 10 and 20 is divided by the partition wall 23, and each of the divided spaces (light emitting space 29) is filled with a sealed gas (for example, a mixed gas of Ne and Xe). ing.
 次に、このプラズマディスプレイパネル1を点灯させる工程について説明する。
 選択した走査電極16とアドレス電極25の間に電圧を印加すると、それらの電極が交差する発光セルで書き込み放電(アドレス放電)が起こり、その発光セルに壁電荷が蓄積する。
Next, a process for lighting the plasma display panel 1 will be described.
When a voltage is applied between the selected scan electrode 16 and the address electrode 25, a write discharge (address discharge) occurs in the light emitting cell where these electrodes intersect, and wall charges accumulate in the light emitting cell.
 次いで、選択した走査電極16と、該走査電極16に隣接する維持電極15との間に交流電圧を印加する。保護膜14は、MgOからなる保護材料を主成分とするMgO膜、SrOとCaOとからなる保護材料を主成分とするSrO-CaO膜、又はMgOとSrOとからなる保護材料を主成分とするMgO-SrO膜などで構成されている。このような保護膜14は電子放出特性が高く、アドレス放電で壁電荷が蓄積された発光セルで保護膜14から電子が放電されて維持放電が起こり、封入ガスがプラズマ化し、紫外線が発生する。 Next, an AC voltage is applied between the selected scan electrode 16 and the sustain electrode 15 adjacent to the scan electrode 16. The protective film 14 is mainly composed of an MgO film mainly composed of a protective material composed of MgO, an SrO—CaO film composed mainly of a protective material composed of SrO and CaO, or a protective material composed of MgO and SrO. It is composed of an MgO—SrO film or the like. Such a protective film 14 has a high electron emission characteristic, and in the light emitting cell in which wall charges are accumulated by address discharge, electrons are discharged from the protective film 14 to cause a sustain discharge, the sealed gas is turned into plasma, and ultraviolet rays are generated.
 選択した走査電極16と、アドレス電極25とが交差する発光セルで紫外線の発光が起こるから、その発光セルに位置する蛍光体膜22R、22G、22Bに紫外線が入射すると、蛍光体膜22R、22G、22Bが励起され、赤、緑、青のいずれかの色の可視光が放出される。 Since ultraviolet light is emitted from the light emitting cell where the selected scanning electrode 16 and the address electrode 25 intersect, when the ultraviolet light is incident on the phosphor films 22R, 22G, and 22B located in the light emitting cell, the phosphor films 22R and 22G. , 22B are excited, and visible light of any one of red, green, and blue is emitted.
 第一のガラス基板11と、誘電体膜12はそれぞれ透明である。保護膜14もMgOやSrO等透明な金属酸化物で構成され、その膜厚分布も±5%~±10%と、透明性を損なわないようになっているから、第一のパネル10全体が透明になっている。従って、発光セルで放出された光(可視光)は、第一のパネル10を透過して外部に放出される。 The first glass substrate 11 and the dielectric film 12 are each transparent. The protective film 14 is also made of a transparent metal oxide such as MgO or SrO, and its film thickness distribution is ± 5% to ± 10% so that the transparency is not impaired. It is transparent. Therefore, light (visible light) emitted from the light emitting cell is transmitted through the first panel 10 and emitted to the outside.
 選択された走査電極16と、該走査電極16に隣接する維持電極15の間に、維持放電の時よりも弱い電圧を印加し、維持放電よりも弱い放電(消去放電)を起こすと、発光空間29内の壁電荷が中和され、発光セルが消灯する。 When a weaker voltage than that in the sustain discharge is applied between the selected scan electrode 16 and the sustain electrode 15 adjacent to the scan electrode 16 to cause a weaker discharge (erase discharge) than the sustain discharge, the light emission space The wall charge in 29 is neutralized, and the light emitting cell is turned off.
 保護膜14は、第一、第二のパネル10、20間の空間に露出しており、発光セルが発光する時には、保護膜14がプラズマに曝される。
 保護膜14はMgOやSrO等、プラズマでエッチングされ難い材料で構成されている。しかも、本発明により成膜された保護膜14は、後述するように充填率が高いから、よりエッチングされ難く、誘電体膜12、維持電極15、走査電極16は保護膜14により保護され、プラズマディスプレイパネル1は従来に比べて寿命が長い。
The protective film 14 is exposed in the space between the first and second panels 10 and 20, and when the light emitting cell emits light, the protective film 14 is exposed to plasma.
The protective film 14 is made of a material that is difficult to be etched by plasma, such as MgO or SrO. In addition, since the protective film 14 formed according to the present invention has a high filling rate as will be described later, it is more difficult to etch, and the dielectric film 12, the sustain electrode 15, and the scanning electrode 16 are protected by the protective film 14. The display panel 1 has a longer life than conventional ones.
 次に、プラズマディスプレイパネル1の製造に用いる本発明の成膜装置について説明する。
 図2の符号3は成膜装置の一例であり真空槽32を有している。真空槽32は成膜室34と材料室35とを有しており、材料室35は成膜室34の下方に配置され、成膜室34に接続されている。成膜室34には仕込室31と、取出室33がゲートバルブ39を介して接続されている。
Next, the film forming apparatus of the present invention used for manufacturing the plasma display panel 1 will be described.
Reference numeral 3 in FIG. 2 is an example of a film forming apparatus and has a vacuum chamber 32. The vacuum chamber 32 has a film forming chamber 34 and a material chamber 35, and the material chamber 35 is disposed below the film forming chamber 34 and connected to the film forming chamber 34. A preparation chamber 31 and an extraction chamber 33 are connected to the film formation chamber 34 via a gate valve 39.
 成膜室34には搬送装置50が設けられており、成膜対象物は保持手段47(キャリア)に保持された状態で、仕込室31から成膜室34に搬入され、搬送装置50により、成膜室34内の決められた搬送経路51を通って、取出室33へ搬出される。 The film forming chamber 34 is provided with a transfer device 50, and an object to be formed is carried into the film forming chamber 34 from the preparation chamber 31 while being held by the holding means 47 (carrier). The film is carried out to the take-out chamber 33 through a predetermined transfer path 51 in the film formation chamber 34.
 材料室35は搬送経路51の真下位置で成膜室34に接続されている。材料室35の内部には、材料室35と成膜室34との接続箇所の真下に蒸発源36が配置されている。従って、蒸発源36は搬送経路51の真下に位置し、成膜対象物は、搬送経路51を移動する間に、蒸発源36と対面する。
 蒸発源36は坩堝(容器)を有しており、坩堝内には蒸着材料が配置される。ここでは蒸着材料は金属酸化物である。
The material chamber 35 is connected to the film forming chamber 34 at a position directly below the transfer path 51. Inside the material chamber 35, an evaporation source 36 is disposed immediately below a connection portion between the material chamber 35 and the film forming chamber 34. Therefore, the evaporation source 36 is positioned directly below the transport path 51, and the film formation target faces the evaporation source 36 while moving along the transport path 51.
The evaporation source 36 has a crucible (container), and a vapor deposition material is disposed in the crucible. Here, the vapor deposition material is a metal oxide.
 材料室35には電子銃(電子線発生装置)41が設けられている。真空槽32には真空排気系52bが接続されており、真空槽32内部を真空雰囲気にし、電子銃41を動作させると電子線(電子ビーム)42が、蒸発源36の金属酸化物に照射され、金属酸化物の蒸気が材料室35に放出される。 The material chamber 35 is provided with an electron gun (electron beam generator) 41. An evacuation system 52 b is connected to the vacuum chamber 32, and when the inside of the vacuum chamber 32 is put into a vacuum atmosphere and the electron gun 41 is operated, an electron beam (electron beam) 42 is irradiated to the metal oxide of the evaporation source 36. The metal oxide vapor is released into the material chamber 35.
 真空槽32内の材料室35と成膜室34とが接続された部分には制限板38が配置されている。
 制限板38の、蒸発源36の真上位置には開口(放出口)37が形成されており、放出口37を通った蒸気が成膜室34内に放出される。
A restriction plate 38 is disposed in a portion of the vacuum chamber 32 where the material chamber 35 and the film forming chamber 34 are connected.
An opening (discharge port) 37 is formed at a position of the restriction plate 38 directly above the evaporation source 36, and the vapor passing through the discharge port 37 is discharged into the film forming chamber 34.
 成膜対象物は搬送経路51を移動する途中で、放出口37を介して蒸発源36と対面する成膜位置49を通過する。制限板38により、成膜室34に放出される蒸気の広がり角度が制限されるから、成膜位置49を通過する成膜対象物には、所定範囲の入射角度で蒸気が入射する。 The film formation target passes through the film formation position 49 facing the evaporation source 36 through the discharge port 37 while moving along the transport path 51. The limiting plate 38 restricts the spread angle of the vapor discharged into the film forming chamber 34, so that the vapor enters the film forming object passing through the film forming position 49 with an incident angle within a predetermined range.
 真空槽32の内部の制限板38と蒸発源36の間の位置(即ち材料室35の内部)には、水導入口55と、酸素導入口56が設けられている。
 水導入口55と酸素導入口56は不図示のガス供給系に接続されており、水導入口55と酸素導入口56からは、H2Oガス(水蒸気、気体の水)と、酸素ガスとが材料室35内に導入される。
A water inlet 55 and an oxygen inlet 56 are provided at a position between the limiting plate 38 and the evaporation source 36 inside the vacuum chamber 32 (that is, inside the material chamber 35).
The water inlet 55 and the oxygen inlet 56 are connected to a gas supply system (not shown). From the water inlet 55 and the oxygen inlet 56, H 2 O gas (water vapor, gaseous water), oxygen gas, Is introduced into the material chamber 35.
 水導入口55は酸素導入口56よりも蒸発源36に近く、H2Oガスは電子線42に曝されて水素が発生し、金属酸化物の蒸気は、水素を含むH2Oガスに曝され、蒸気の一部が還元されて金属が解離する。
 水導入口55は酸素導入口56よりも搬送経路51から遠い。即ち、成膜対象物が最も水導入口55に接近した時の、成膜対象物と水導入口55との間の距離は、成膜対象物が最も酸素導入口56に接近した時の、成膜対象物と酸素導入口56との間の距離よりも長い。
The water inlet 55 is closer to the evaporation source 36 than the oxygen inlet 56, the H 2 O gas is exposed to the electron beam 42 to generate hydrogen, and the vapor of the metal oxide is exposed to the H 2 O gas containing hydrogen. Then, a part of the vapor is reduced and the metal is dissociated.
The water inlet 55 is farther from the transport path 51 than the oxygen inlet 56. That is, the distance between the film formation target and the water introduction port 55 when the film formation target is closest to the water introduction port 55 is the distance when the film formation target is closest to the oxygen introduction port 56. It is longer than the distance between the film formation target and the oxygen inlet 56.
 従って、H2Oガスに曝された蒸気は、成膜対象物に到達する前に酸素ガスにも曝され、解離金属は酸化されて金属酸化物となってから成膜対象物に到達する。
 解離金属が酸化する時には光(紫外線)を放出する。材料室35の側壁には、その光を透過する窓部44(例えば石英窓)が設けられている。材料室35の外部には分光モニタ43が配置されている。窓部44を透過した光は、分光モニタ43の受光部に入射し、分光モニタ43は入射光の発光強度を測定する。
Therefore, the vapor exposed to the H 2 O gas is also exposed to oxygen gas before reaching the film formation target, and the dissociated metal is oxidized to become a metal oxide before reaching the film formation target.
When the dissociated metal oxidizes, it emits light (ultraviolet rays). On the side wall of the material chamber 35, a window portion 44 (for example, a quartz window) that transmits the light is provided. A spectroscopic monitor 43 is disposed outside the material chamber 35. The light transmitted through the window 44 enters the light receiving unit of the spectroscopic monitor 43, and the spectroscopic monitor 43 measures the emission intensity of the incident light.
 加熱装置(電子銃41)からの出力、または、金属酸化物への単位面積当たりの投入パワーを一定として電子線42の照射面積を増やせば、単位時間当たりの金属酸化物の蒸発量が増え、成膜速度が上がり、発光強度も高くなる。電子銃41と分光モニタ43は制御装置45に接続されている。発光強度の測定値は制御装置45に伝達される。 If the irradiation area of the electron beam 42 is increased with the output from the heating device (electron gun 41) or the power applied to the metal oxide per unit area being constant, the amount of evaporation of the metal oxide per unit time increases. The film formation rate is increased and the emission intensity is increased. The electron gun 41 and the spectral monitor 43 are connected to the control device 45. The measured value of the emission intensity is transmitted to the control device 45.
 発光強度と成膜速度の関係を調べておき、その関係を制御装置45に設定しておく。制御装置45に所望の成膜速度を設定しておけば、制御装置45は、発光強度の測定値を設定された関係に照らし合わせ、成膜速度が設定値になるよう電子銃41の照射面積を変える。 Investigating the relationship between the emission intensity and the deposition rate, and setting the relationship in the control device 45. If a desired film formation rate is set in the control device 45, the control device 45 compares the measured value of the emission intensity with the set relationship, and the irradiation area of the electron gun 41 so that the film formation rate becomes the set value. change.
 この成膜装置3を用い保護膜を成膜する工程について説明する。
 先ず、予備試験により、実際に保護膜を成膜する時と同じ条件(金属酸化物の種類、成膜圧力、加熱温度、搬送速度等)で保護膜を成膜し、成膜位置で成膜対象物が静止した場合の単位時間当たりの膜厚成長量(静的成膜速度)と、金属酸化物が蒸発する時の特定波長の発光強度との関係を求める。
A process of forming a protective film using the film forming apparatus 3 will be described.
First, in the preliminary test, the protective film is formed under the same conditions (metal oxide type, film forming pressure, heating temperature, transport speed, etc.) as when the protective film was actually formed, and formed at the film forming position. The relationship between the film thickness growth amount per unit time (static deposition rate) when the object is stationary and the emission intensity of a specific wavelength when the metal oxide evaporates is obtained.
 40nm/秒以上の範囲で静的成膜速度を決定し、決定した静的成膜速度と、予備試験で求めた関係を制御装置45に設定しておく。
 仕込室31と取出室33と真空槽32を真空排気系52a~52cで真空排気し、所定圧力の真空雰囲気を形成する。第一のガラス基板11に電極(維持電極15と走査電極16)と、誘電体膜12とが形成された状態の第一のパネル10を成膜対象物とし、保持手段47に保持させ、仕込室31に搬入する。
The static film formation rate is determined in the range of 40 nm / second or more, and the determined static film formation rate and the relationship obtained in the preliminary test are set in the controller 45.
The preparation chamber 31, the extraction chamber 33, and the vacuum chamber 32 are evacuated by the evacuation systems 52a to 52c to form a vacuum atmosphere at a predetermined pressure. The first panel 10 in which the electrodes (sustain electrodes 15 and scanning electrodes 16) and the dielectric film 12 are formed on the first glass substrate 11 is used as a film formation target, and is held by the holding means 47 and charged. Carry it into the chamber 31.
 仕込室31と成膜室34の内部には加熱手段59が配置されており、第一のパネル10を所定温度に加熱してから成膜室34に搬入する。
 蒸発源36に粒状の金属酸化物を配置しておく。水(水蒸気)と酸素の導入量は不図示の流量制御装置(マスフローコントローラ)により制御可能であり、水の単位時間当たりの導入体積が、酸素の単位時間当たりの導入体積よりも多くなるように、水と酸素を導入しながら電子線42を照射して、金属酸化物の蒸気を発生させる。
Heating means 59 is disposed inside the preparation chamber 31 and the film forming chamber 34, and the first panel 10 is heated to a predetermined temperature and then carried into the film forming chamber 34.
A granular metal oxide is disposed in the evaporation source 36. The amount of water (steam) and oxygen introduced can be controlled by a flow controller (mass flow controller) (not shown) so that the introduced volume per unit time of water is larger than the introduced volume per unit time of oxygen. The metal oxide vapor is generated by irradiating the electron beam 42 while introducing water and oxygen.
 第一のパネル10は維持電極15及び走査電極16が形成された側の面が下向きにされて搬送経路51を搬送され、蒸発源36と対面する位置を通過する際に、維持電極15及び走査電極16上(ここでは誘電体膜12表面)に、金属酸化物の蒸気が到達し、金属酸化物の薄膜(保護膜14)が形成される。 When the first panel 10 is transported through the transport path 51 with the surface on which the sustain electrode 15 and the scan electrode 16 are formed facing downward, and passes through the position facing the evaporation source 36, the first panel 10 and the scan electrode 15 are scanned. The metal oxide vapor reaches the electrode 16 (here, the surface of the dielectric film 12) to form a metal oxide thin film (protective film 14).
 制御装置45は、所定時間毎に発光強度を測定するか、発光強度を連続して測定しながら、発光強度の測定値が設定値になるように、電子線42の照射面積を変え、保護膜14の静的成膜速度を40nm/秒以上の所定速度にする。静的成膜速度が40nm/秒以上であり、かつ、水が酸素よりも大量に導入されるから、保護膜14は(111)に配向し、しかも、充填率が82%を超える。 The controller 45 measures the emission intensity every predetermined time or continuously measures the emission intensity, changes the irradiation area of the electron beam 42 so that the measured value of the emission intensity becomes a set value, and the protective film The static deposition rate of 14 is set to a predetermined rate of 40 nm / second or more. Since the static film formation rate is 40 nm / second or more and water is introduced in a larger amount than oxygen, the protective film 14 is oriented to (111), and the filling rate exceeds 82%.
 第一のパネル10の搬送方向の一端が成膜位置49に到達し、該一端が成膜位置49を通過し終わるのに要する滞在時間に、静的成膜速度を乗じれば、おおよそ保護膜14の膜厚になる。即ち、保護膜14の膜厚が決まっている場合は、膜厚から静的成膜速度を除した値が滞在時間となる。 If one end of the transport direction of the first panel 10 reaches the film forming position 49 and the staying time required for the one end to pass through the film forming position 49 is multiplied by the static film forming speed, the protective film is roughly obtained. The film thickness is 14. That is, when the film thickness of the protective film 14 is determined, the value obtained by dividing the film thickness by the static film formation rate is the residence time.
 保護膜14が形成された状態の第一のパネル10は搬送経路51を移動した後、取出室33に搬出され、冷却後、成膜装置3外部に搬出される。
 搬出された第一のパネル10と、上述した第二のパネル20とを貼り合せ、第一、第二のパネル10、20の間に封入ガスを配置すれば、図1のプラズマディスプレイパネル1が得られる。
The first panel 10 in a state where the protective film 14 is formed moves on the transport path 51, then is carried out to the take-out chamber 33, cooled, and then carried out of the film forming apparatus 3.
If the carried out first panel 10 and the above-described second panel 20 are bonded together, and the sealed gas is disposed between the first and second panels 10 and 20, the plasma display panel 1 of FIG. can get.
 以上は、3電極AC型PDPの第一のパネル10に保護膜14を形成する場合について説明したが、本発明はこれに限定されず、保護膜14は第二のパネル20だけに成膜してもよいし、第一、第二のパネル10、20の両方に成膜してもよい。第二のパネル20に保護膜14を成膜する場合は、少なくとも各アドレス電極25上に保護膜14を配置する。 The case where the protective film 14 is formed on the first panel 10 of the three-electrode AC type PDP has been described above. However, the present invention is not limited to this, and the protective film 14 is formed only on the second panel 20. Alternatively, the film may be formed on both the first and second panels 10 and 20. When the protective film 14 is formed on the second panel 20, the protective film 14 is disposed on at least each address electrode 25.
 本発明に用いる金属酸化物は、MgO単独、又はMgOと他の金属酸化物(SrOとCaOのいずれか一方又は両方)の混合物である。
 金属酸化物の混合物を用いる場合、混合物のうち、いずれか1種以上の金属酸化物について、解離金属の酸化時の発光強度を測定することで、電子銃を制御して膜特性の安定化をはかることが可能である。
The metal oxide used in the present invention is MgO alone or a mixture of MgO and another metal oxide (either SrO or CaO or both).
When a mixture of metal oxides is used, the electron gun is controlled to stabilize film characteristics by measuring the emission intensity during oxidation of the dissociated metal for any one or more metal oxides in the mixture. It is possible to measure.
 金属酸化物の混合物を用いる場合、従来の方法(例えば水晶発振式成膜コントローラ、CRTM)では、複数の物質をモニタリングすることは非常に困難であるが、特定波長の強度をモニタリングすることにより、混合物を用いて複数種類の金属酸化物からなる保護膜の特性を制御することが可能である。
 蒸着材料は金属酸化物に限定されず、上述した金属酸化物を主成分とし、Caと、Alと、Siと、Mnと、Euと、Tiとからなる群より選択される少なくとも1種類の添加剤を添加することもできる。
In the case of using a mixture of metal oxides, it is very difficult to monitor a plurality of substances by a conventional method (for example, a crystal oscillation type film formation controller, CRTM), but by monitoring the intensity of a specific wavelength, It is possible to control the characteristics of the protective film made of a plurality of types of metal oxides using the mixture.
The vapor deposition material is not limited to the metal oxide, but includes at least one kind selected from the group consisting of the above-described metal oxide, Ca, Al, Si, Mn, Eu, and Ti. An agent can also be added.
 プラズマガンを用いて金属酸化物を蒸発させると、金属酸化物が過剰に解離し、保護膜中に未酸化の金属が混入する虞がある。未酸化の金属、特にMgは発火性が高いので、本発明では電子銃41を用い、電子線42で金属酸化物を蒸発させる。電子銃41は特に限定されないが、蒸発速度の制御性と安定性の点を考慮すると、ピアス式電子銃が適している。 If the metal oxide is evaporated using a plasma gun, the metal oxide may be excessively dissociated and unoxidized metal may be mixed in the protective film. Since an unoxidized metal, particularly Mg, has high ignitability, in the present invention, the electron gun 41 is used and the metal oxide is evaporated by the electron beam 42. The electron gun 41 is not particularly limited, but a piercing electron gun is suitable in consideration of controllability and stability of the evaporation rate.
 保護膜14の膜厚分布が不均一になると、光学特性が落ち、第一のパネル10には適さないので、膜厚分布が目標膜厚(例えば800nm)の±5%~±10%になるように、電子線42の揺動波形を決定する。
 以上は、制御装置45が電子線42の照射面積を変えて発光強度を設定値にする場合について説明したが、本発明はこれに限定されず、電子銃41のパワー密度(W/cm2)を変えて発光強度を設定値にしてもよい。
If the film thickness distribution of the protective film 14 becomes non-uniform, the optical characteristics deteriorate and it is not suitable for the first panel 10, so the film thickness distribution is ± 5% to ± 10% of the target film thickness (for example, 800 nm). Thus, the oscillation waveform of the electron beam 42 is determined.
The above has described the case where the control device 45 changes the irradiation area of the electron beam 42 to set the light emission intensity to the set value. However, the present invention is not limited to this, and the power density (W / cm 2 ) of the electron gun 41 Alternatively, the emission intensity may be set to a set value.
 しかし、パワー密度が高くなるとスプラッシュと呼ばれる金属酸化物の突沸が起こり、成膜対象物が汚染される原因となるので、本発明では、パワー密度を一定にしておき、照射面積を変えることで発光強度を設定値にすることが望ましい。 However, when the power density is increased, bumping of metal oxide called splash occurs, causing the film formation target to be contaminated. Therefore, in the present invention, light emission is obtained by changing the irradiation area while keeping the power density constant. It is desirable to set the strength to a set value.
 図2では、成膜室34に仕込室31と取出室33を接続したが、タクトタイムが早い(短い)時、成膜前の成膜対象物を十分に加熱する時間が確保できない場合には、仕込室31と成膜室34の間に加熱室を設置する。また、成膜後の成膜対象物を十分に冷却する時間が確保できない場合には、成膜室34と取出室33の間に冷却室を設置する。
 蒸発源36は静止させてもよいが、蒸発源36を搬送経路51の真下位置で、搬送経路51と平行な平面内で回転させてもよい。
In FIG. 2, the preparation chamber 31 and the take-out chamber 33 are connected to the film formation chamber 34. However, when the tact time is early (short), it is not possible to secure a time for sufficiently heating the film formation target before film formation. A heating chamber is installed between the preparation chamber 31 and the film formation chamber 34. In addition, when it is not possible to secure a time for sufficiently cooling the film formation target after film formation, a cooling chamber is provided between the film formation chamber 34 and the take-out chamber 33.
Although the evaporation source 36 may be stationary, the evaporation source 36 may be rotated at a position directly below the conveyance path 51 in a plane parallel to the conveyance path 51.
 以上は、成膜対象物(第一のパネル10)を搬送しながら保護膜14を成膜する場合について説明したが、本発明はこれに限定されない。例えば、材料室35内部の蒸発源36真上位置に基板ホルダを配置し、成膜対象物が蒸発源36と対面するように基板ホルダに保持させて、保護膜14を成膜してもよい。この場合、蒸発源36と成膜対象物との間の距離は、少なくとも保護膜14を成膜している間変らない。 Although the above has described the case where the protective film 14 is formed while the film formation target (first panel 10) is being conveyed, the present invention is not limited to this. For example, the protective film 14 may be formed by placing a substrate holder directly above the evaporation source 36 inside the material chamber 35 and holding the substrate holder so that the film formation target faces the evaporation source 36. . In this case, the distance between the evaporation source 36 and the film formation target does not change at least during the formation of the protective film 14.
 蒸発源36と成膜対象物との間の距離を変えずに、保護膜14を成膜する場合は、(111)結晶配向で、かつ、充填率82%以上の膜を得るためには、基板ホルダに保持された成膜対象物の、単位時間当たりの膜厚成長量(即ち成膜速度)を40nm/秒以上とし、それ以外の条件(水と酸素の導入量等)は、成膜対象物を搬送しながら成膜を行う場合と同じにする。 When forming the protective film 14 without changing the distance between the evaporation source 36 and the film formation target, in order to obtain a film having a (111) crystal orientation and a filling rate of 82% or more, The film formation target held on the substrate holder has a film thickness growth amount per unit time (that is, film formation speed) of 40 nm / second or more, and other conditions (such as the amount of water and oxygen introduced) are film formation. This is the same as when film formation is performed while the object is being conveyed.
 蒸発源36と成膜対象物との間の距離を変えない場合、水導入口55よりも酸素導入口56を、基板ホルダの成膜対象物の近くに配置し、水導入口55を酸素導入口56よりも蒸発源36の近くに配置する。
 基板ホルダを回転させ、成膜対象物を蒸発源36と対面する平面内で回転させれば、保護膜14の膜厚分布が均一になる。
When the distance between the evaporation source 36 and the film formation target is not changed, the oxygen introduction port 56 is disposed closer to the film formation target of the substrate holder than the water introduction port 55, and the water introduction port 55 is introduced with oxygen. It is arranged near the evaporation source 36 rather than the mouth 56.
When the substrate holder is rotated and the film formation target is rotated in a plane facing the evaporation source 36, the film thickness distribution of the protective film 14 becomes uniform.
 真空槽に導入する水の純度が悪いと膜質が悪くなるので、水は純水(波長210nm~400nmの吸光度0.01以下、不揮発物5ppm以下)が望ましい。特に、水に有機物が含まれると放電特性が悪くなる原因となるので、全有機炭素量は4ppb以下が望ましい。 If the purity of the water introduced into the vacuum chamber is poor, the film quality deteriorates. Therefore, the water is preferably pure water (absorbance 0.01 or less at a wavelength of 210 nm to 400 nm, nonvolatile 5 ppm or less). In particular, when organic substances are contained in water, the discharge characteristics deteriorate, so the total organic carbon content is preferably 4 ppb or less.
 水導入口55の設置場所は特に限定されないが、蒸発源36の蒸気放出口(例えば坩堝の開口)と直接対面させると、金属酸化物が析出し、水導入口55が詰る虞がある。従って、水導入口55は蒸気放出口と対面させないか、水導入口55と蒸発源36との間にシールドを配置することが望ましい。 The installation location of the water introduction port 55 is not particularly limited, but if it directly faces the vapor discharge port of the evaporation source 36 (for example, the opening of the crucible), the metal oxide may be deposited and the water introduction port 55 may be clogged. Therefore, it is desirable that the water inlet 55 does not face the vapor outlet or a shield is disposed between the water inlet 55 and the evaporation source 36.
 また、真空槽に水を多量に導入しても、成膜速度が従来と同じ(40nm/秒未満)であると、(111)結晶配向のピーク強度が小さく、実用レベルに達しなかったので、本発明は、真空槽に水を導入し、かつ、成膜速度を40nm/秒以上(より望ましくは140nm/秒以上)にすることが必須である。
 水の導入量は酸素の導入量よりも多量であれば特に限定されないが、200sccm以上が望ましい。
Moreover, even if a large amount of water was introduced into the vacuum chamber, if the film formation rate was the same as before (less than 40 nm / second), the peak intensity of the (111) crystal orientation was small and did not reach the practical level. In the present invention, it is essential to introduce water into the vacuum chamber and to set the film formation rate to 40 nm / second or more (more desirably 140 nm / second or more).
The amount of water introduced is not particularly limited as long as it is larger than the amount of oxygen introduced, but it is preferably 200 sccm or more.
 保護膜14を成膜する際の真空槽32の内部圧力(成膜圧力)は特に限定されない。H2Oガスと、それよりも少量の酸素を導入する場合、成膜圧力が5×10-2Pa以上(例えば0.2Pa、0.3Pa等)と高くても、保護膜の不純物濃度(特にCを含有する不純物)、膜密度、(111)結晶配向等は劣化せず、しかも、結晶配向性の強度分布は従来よりも改善された。 The internal pressure (film formation pressure) of the vacuum chamber 32 when forming the protective film 14 is not particularly limited. When H 2 O gas and a smaller amount of oxygen are introduced, the impurity concentration of the protective film (even if the film forming pressure is as high as 5 × 10 −2 Pa or higher (for example, 0.2 Pa, 0.3 Pa, etc.)) In particular, impurities containing C), film density, (111) crystal orientation, and the like were not deteriorated, and the intensity distribution of crystal orientation was improved as compared with the prior art.
 成膜を続けると、真空槽32の内壁面に金属酸化物が付着し、発塵の原因となるため、真空槽32は定期的に清掃する必要がある。成膜圧力が5×10-2Pa未満と低い場合、清掃後に真空槽32内部を長時間(5~6時間)真空排気する必要があった。成膜圧力が5×10-2Pa以上、より望ましくは1×10-1Pa以上であれば、清掃後に真空槽32内部を長時間真空排気する必要が無いから、メンテナンス後の復帰が早い。 If film formation continues, metal oxides adhere to the inner wall surface of the vacuum chamber 32 and cause dust generation. Therefore, the vacuum chamber 32 needs to be periodically cleaned. When the film forming pressure was as low as less than 5 × 10 −2 Pa, the inside of the vacuum chamber 32 had to be evacuated for a long time (5 to 6 hours) after cleaning. If the film forming pressure is 5 × 10 −2 Pa or more, more desirably 1 × 10 −1 Pa or more, it is not necessary to evacuate the inside of the vacuum chamber 32 for a long time after cleaning.
<結晶配向性と膜密度>
 上記成膜装置3を用い、材料室35に酸素の導入量より多くなるよう水を導入しながら形成した保護膜の(111)強度と充填率の関係を図3のE1~E4に示す。代表的な成膜条件を下記表1に示し、材料室35に導入した水(H2Oガス)の分析結果を下記表2に示す。
<Crystal orientation and film density>
E1 to E4 in FIG. 3 show the relationship between the (111) strength and the filling rate of the protective film formed by introducing water so that the amount of oxygen introduced into the material chamber 35 is larger than the amount of oxygen introduced into the material chamber 35. Typical film forming conditions are shown in Table 1 below, and analysis results of water (H 2 O gas) introduced into the material chamber 35 are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 H2Oを導入しないで酸素のみを導入して形成した保護膜の(111)強度と充填率の関係を図3のC1~C3に示す。
 実施例と比較例の保護膜について、(111)配向の回折強度と、屈折率を測定し、屈折率から充填率(膜密度)を求めた。屈折率はエリプソメータで測定した。屈折率をn、充填率(膜密度)をp、空間の屈折率をnv、バルクの屈折率をnsとすると、屈折率nは下記数式(1)で表される。
C1 to C3 in FIG. 3 show the relationship between the (111) strength and the filling rate of the protective film formed by introducing only oxygen without introducing H 2 O.
About the protective film of an Example and a comparative example, the diffraction intensity and refractive index of (111) orientation were measured, and the filling factor (film | membrane density) was calculated | required from the refractive index. The refractive index was measured with an ellipsometer. When the refractive index is n, the filling rate (film density) is p, the spatial refractive index is nv, and the bulk refractive index is ns, the refractive index n is expressed by the following formula (1).
 数式(1)…n=(1-p)nv+pns
 空間の屈折率nvは通常は空気で1であり、バルクの屈折率はMgO単結晶の場合は1.73であるから、MgOの充填率pは、屈折率から下記数式(2)で求められる。
 数式(2)…p=(n-1)/0.73
 図3から分かるように、(111)ピーク強度3000CPSのMgO膜の充填率は、比較例では88.7%であったのに対し、実施例のMgO膜では90.7%になり約2ポイント改善された。
Formula (1) ... n = (1-p) nv + pns
Since the refractive index nv of the space is usually 1 in air and the refractive index of the bulk is 1.73 in the case of MgO single crystal, the filling rate p of MgO can be obtained from the refractive index by the following formula (2). .
Formula (2) ... p = (n-1) /0.73
As can be seen from FIG. 3, the filling rate of the MgO film having the (111) peak intensity of 3000 CPS was 88.7% in the comparative example, whereas it was 90.7% in the MgO film of the example, which was about 2 points. Improved.
 また、充填率90%を得るためのMgO膜の(111)強度は、比較例が2450CPSだったのに対し、実施例は3500CPSであり、約40%以上向上した。以上の結果から、本発明により形成された保護膜は、高膜密度(充填率)と、高い(111)配向性の両方を兼ね備えることが分かる。 Further, the (111) strength of the MgO film for obtaining a filling rate of 90% was 2450 CPS in the comparative example, but 3500 CPS in the example, which was improved by about 40% or more. From the above results, it can be seen that the protective film formed according to the present invention has both high film density (filling rate) and high (111) orientation.
<水導入量と(111)半値幅の関係>
 水の導入量を変え、(111)配向ピークの半値幅を測定した。半値幅と水導入量との関係を図4に示す。図4の横軸は水導入量(sccm)、縦軸は半値幅を示しており、半値幅が小さい程結晶性が良いことを示す。本発明によれば、従来よりも、半値幅が40%位改善されており、本発明により成膜された保護膜は結晶性が良いことが確認された。
 以上のことから、MgOの蒸発速度を増加させて静的成膜速度を速くし、水を導入しながら成膜を行えば、従来に比べて保護膜の結晶性が大幅に改善されることが分かる。
<Relationship between water introduction amount and (111) half width>
The half-width of the (111) orientation peak was measured by changing the amount of water introduced. The relationship between the full width at half maximum and the amount of water introduced is shown in FIG. The horizontal axis in FIG. 4 indicates the amount of water introduced (sccm), and the vertical axis indicates the half width. The smaller the half width, the better the crystallinity. According to the present invention, the full width at half maximum was improved by about 40% as compared with the prior art, and it was confirmed that the protective film formed by the present invention has good crystallinity.
From the above, increasing the evaporation rate of MgO to increase the static film formation rate, and performing film formation while introducing water can significantly improve the crystallinity of the protective film compared to the conventional case. I understand.
<発光強度と(111)ピーク強度の関係>
 電子銃のパワー密度を変えずに、照射面積を広くしてMgOを蒸発させて保護膜を成膜した。MgOを蒸発させる時の波長285.2nmの発光強度を大塚電子(株)社製の分光モニターで測定した。成膜された保護膜の(111)ピーク強度を求めた。発光強度とピーク強度の関係を図5に示す。
 図5から分かるように、発光強度が大きくなる程、(111)ピーク強度が高くなり、保護膜の膜質が改善されたことが分かる。
<Relationship between emission intensity and (111) peak intensity>
Without changing the power density of the electron gun, the irradiation area was widened to evaporate MgO to form a protective film. The emission intensity at a wavelength of 285.2 nm when MgO was evaporated was measured with a spectroscopic monitor manufactured by Otsuka Electronics Co., Ltd. The (111) peak intensity of the formed protective film was determined. FIG. 5 shows the relationship between the emission intensity and the peak intensity.
As can be seen from FIG. 5, as the emission intensity increases, the (111) peak intensity increases and the film quality of the protective film is improved.
<発光スペクトル>
 上記表1の成膜条件で保護膜を成膜した時の、放出光の波長と発光強度とを測定した。その測定結果を図6に示す。比較例として、水の導入量をゼロとした以外は、上記表1の成膜条件で保護膜を成膜した時の放出光の波長と発光強度を測定した。その結果を図7に示す。
<Emission spectrum>
The wavelength and emission intensity of the emitted light when the protective film was formed under the film forming conditions shown in Table 1 above were measured. The measurement results are shown in FIG. As a comparative example, the wavelength and emission intensity of emitted light were measured when a protective film was formed under the film forming conditions shown in Table 1 except that the amount of water introduced was zero. The result is shown in FIG.
 図6、7を比較すると明らかなように、水を導入した図6では、Mgの酸化反応に由来する2つのピーク(波長285.2nm、280.2nm)が確認できたが、水を導入しなかった図7では、2つのピークが確認できなかった。 As is clear from comparison between FIGS. 6 and 7, in FIG. 6 where water was introduced, two peaks (wavelengths 285.2 nm and 280.2 nm) derived from the oxidation reaction of Mg could be confirmed, but water was introduced. In FIG. 7 where there was no two peaks could be confirmed.
 水を導入せずに、電子銃への投入パワーを増大させて、波長285.2nmの発光強度を測定した結果を図8に示す。図8から、投入パワーを増大させれば、発光強度が高くなることが分かるが、その発光強度は水を導入した場合に比べて極端に低く、水を導入すれば低い投入パワーで金属酸化物が解離し、再結合することが分かる。 FIG. 8 shows the result of measuring the emission intensity at a wavelength of 285.2 nm by increasing the power applied to the electron gun without introducing water. From FIG. 8, it can be seen that if the input power is increased, the emission intensity increases, but the emission intensity is extremely lower than when water is introduced. Is dissociated and recombined.
<水導入の有無による保護膜の特性比較>
 水を導入した場合の保護膜と、水を導入しなかった場合の保護膜の電子顕微鏡写真を図9、10に示す。図9、10の黒く見える部分はMgO柱状結晶とMgO柱状結晶の間の隙間である。この柱状結晶の隙間が小さい程、不純ガスの吸着量が減り、またエッチングされ難いことを示す。
 図9、10を比較すると、図9の方が柱状結晶の隙間が少なく、水を導入した方が不純ガスを吸着し難く、かつ、エッチングされ難い保護膜が形成されることが分かる。
<Comparison of protective film characteristics with and without water introduction>
FIGS. 9 and 10 show electron micrographs of the protective film when water is introduced and the protective film when water is not introduced. The portions that appear black in FIGS. 9 and 10 are gaps between the MgO columnar crystals and the MgO columnar crystals. As the gap between the columnar crystals is smaller, the amount of impure gas adsorbed is reduced and etching is difficult.
9 and 10, it can be seen that FIG. 9 has fewer gaps between the columnar crystals, and that a protective film that is less likely to adsorb impure gas and less etched is formed when water is introduced.
 尚、上記表1に記載した動的成膜速度と静的成膜速度の関係について説明すると、動的成膜速度とは、基板を搬送しながら成膜する時の成膜速度を表す単位であり、基板が1分間に1m移動する間に成膜される膜厚のことである。動的成膜速度に所定の係数を乗じて換算すれば、基板を蒸発源に対して固定した時の静的成膜速度が得られる。 The relationship between the dynamic film formation speed and the static film formation speed described in Table 1 will be described. The dynamic film formation speed is a unit representing the film formation speed when forming a film while transporting the substrate. It is the film thickness that is formed while the substrate moves 1 m per minute. If the dynamic film formation rate is converted by multiplying by a predetermined coefficient, the static film formation rate when the substrate is fixed to the evaporation source can be obtained.
 静的成膜速度を換算する時の係数は、使用する成膜装置により異なるがこの場合は2.12であり、静的成膜速度をRs、動的成膜速度をRdとすると、静的成膜速度Rsは下記数式(3)で表される。
 数式(3)…Rs(Å/秒)=Rd(Å・m/秒)×2.12
The coefficient for converting the static deposition rate varies depending on the deposition apparatus to be used, but in this case, it is 2.12. If the static deposition rate is Rs and the dynamic deposition rate is Rd, the static deposition rate is static. The film formation rate Rs is expressed by the following mathematical formula (3).
Formula (3): Rs (s / sec) = Rd (Å · m / sec) × 2.12

Claims (12)

  1.  真空槽内に酸素を導入しながら、蒸発源に配置された金属酸化物を加熱して、前記金属酸化物の蒸気を発生させ、
     表面に電極が配置された第一のパネルを、前記真空槽内の搬送経路を搬送して、前記蒸発源と対面する成膜位置を通過させ、前記電極上に金属酸化物の薄膜からなる保護膜を形成した後、
     前記第一のパネルを第二のパネルと貼り合せ、前記保護膜がプラズマに曝されるプラズマディスプレイパネルを製造するプラズマディスプレイパネルの製造方法であって、
     前記真空槽内に、単位時間当たりの導入体積が、前記酸素の単位時間当たりの導入体積と同じかそれよりも多くなるように、水を導入しながら、
     前記第一のパネルが当該成膜位置で静止した場合の前記保護膜の成膜速度が、40nm/秒以上になるように前記金属酸化物を蒸発させながら、前記第一のパネルを搬送するプラズマディスプレイパネルの製造方法。
    While introducing oxygen into the vacuum chamber, the metal oxide disposed in the evaporation source is heated to generate the vapor of the metal oxide,
    A first panel having an electrode disposed on its surface is transported through a transport path in the vacuum chamber, passed through a film formation position facing the evaporation source, and protected from a metal oxide thin film on the electrode. After forming the film
    A method for manufacturing a plasma display panel, wherein the first panel is bonded to a second panel, and the protective film is manufactured to be exposed to plasma.
    While introducing water into the vacuum chamber so that the introduction volume per unit time is equal to or more than the introduction volume per unit time of the oxygen,
    Plasma transporting the first panel while evaporating the metal oxide so that the deposition rate of the protective film is 40 nm / second or more when the first panel is stationary at the deposition position. Display panel manufacturing method.
  2.  表面に電極が配置された第一のパネルを、真空槽内部の蒸発源と対面する成膜位置に配置し、
     前記真空槽内に酸素を導入しながら、前記蒸発源に配置された金属酸化物を加熱して、前記金属酸化物の蒸気を発生させ、前記第一のパネルの前記電極上に金属酸化物の薄膜からなる保護膜を形成した後、
     前記第一のパネルを第二のパネルとを貼り合せ、前記保護膜がプラズマに曝されるプラズマディスプレイパネルを製造するプラズマディスプレイパネルの製造方法であって、
     前記真空槽内に、単位時間当たりの導入体積が、前記酸素の単位時間当たりの導入体積と同じか、それよりも多くなるように、水を導入しながら、
     前記保護膜の成膜速度が40nm/秒以上になるように、前記金属酸化物を蒸発させるプラズマディスプレイパネルの製造方法。
    The first panel with electrodes on the surface is placed at the deposition position facing the evaporation source inside the vacuum chamber,
    While introducing oxygen into the vacuum chamber, the metal oxide disposed in the evaporation source is heated to generate the vapor of the metal oxide, and the metal oxide is deposited on the electrode of the first panel. After forming a protective film consisting of a thin film,
    A method of manufacturing a plasma display panel for manufacturing a plasma display panel in which the first panel is bonded to a second panel, and the protective film is exposed to plasma,
    While introducing water into the vacuum chamber so that the introduction volume per unit time is the same as or larger than the introduction volume per unit time of the oxygen,
    A method of manufacturing a plasma display panel, wherein the metal oxide is evaporated so that a film forming rate of the protective film is 40 nm / second or more.
  3.  前記金属酸化物に電子線を照射して蒸発させる請求項1又は請求項2のいずれか1項記載のプラズマディスプレイパネルの製造方法。 The method for manufacturing a plasma display panel according to claim 1, wherein the metal oxide is evaporated by irradiating the metal oxide with an electron beam.
  4.  前記真空槽の全圧を、1×10-1Paを超える圧力にして、前記金属酸化物の蒸気を発生させる請求項1乃至請求項3のいずれか1項記載のプラズマディスプレイパネルの製造方法。 4. The method for manufacturing a plasma display panel according to claim 1, wherein the vapor pressure of the metal oxide is generated at a total pressure of the vacuum chamber exceeding 1 × 10 −1 Pa. 5.
  5.  前記金属酸化物はMgOである請求項1乃至請求項4のいずれか1項記載のプラズマディスプレイパネルの製造方法。 The method for manufacturing a plasma display panel according to any one of claims 1 to 4, wherein the metal oxide is MgO.
  6.  前記金属酸化物はMgOを含有し、SrOとCaOのいずれか一方又は両方が添加された請求項1乃至請求項4のいずれか1項記載のプラズマディスプレイパネルの製造方法。 The method for manufacturing a plasma display panel according to any one of claims 1 to 4, wherein the metal oxide contains MgO, and one or both of SrO and CaO are added.
  7.  前記金属酸化物を蒸発させる際、前記真空槽内に放出される光の発光強度を測定し、
     前記発光強度の測定値が、予め設定された値になるように、前記金属酸化物を蒸発させる加熱装置の出力を変える請求項1乃至請求項6のいずれか1項記載のプラズマディスプレイパネルの製造方法。
    When evaporating the metal oxide, measure the emission intensity of light emitted into the vacuum chamber,
    The plasma display panel manufacturing method according to any one of claims 1 to 6, wherein an output of a heating device for evaporating the metal oxide is changed so that a measured value of the light emission intensity becomes a preset value. Method.
  8.  前記金属酸化物を蒸発させる際、前記真空槽内に放出される光の発光強度を測定し、
     前記発光強度の測定値が、予め設定された値になるように、前記電子線の照射面積を変える請求項3乃至請求項7のいずれか1項記載のプラズマディスプレイパネルの製造方法。
    When evaporating the metal oxide, measure the emission intensity of light emitted into the vacuum chamber,
    The method for manufacturing a plasma display panel according to claim 3, wherein the irradiation area of the electron beam is changed so that the measured value of the emission intensity becomes a preset value.
  9.  真空槽と、前記真空槽内に配置された蒸発源と、前記蒸発源に配置された蒸着材料を加熱する加熱装置と、前記真空槽内に水を導入する水導入口と、前記真空槽内に酸素を導入する酸素導入口とを有する保護膜の成膜装置であって、
     前記真空槽内部に発生する光の発光強度を測定する測定装置と、
     前記測定装置と前記加熱装置に接続された制御装置とを有し、
     前記制御装置は、前記測定装置から伝達される発光強度に基づき、前記加熱装置の出力を変更可能に構成された成膜装置。
    A vacuum chamber; an evaporation source disposed in the vacuum chamber; a heating device for heating the vapor deposition material disposed in the evaporation source; a water inlet for introducing water into the vacuum chamber; A protective film forming apparatus having an oxygen inlet for introducing oxygen into
    A measuring device for measuring the emission intensity of light generated inside the vacuum chamber;
    Having a measuring device and a control device connected to the heating device;
    The control device is a film forming device configured to change an output of the heating device based on a light emission intensity transmitted from the measuring device.
  10.  前記加熱装置は電子銃であり、前記制御装置は前記電子銃から放出される電子線の照射面積を変える請求項9記載の成膜装置。 10. The film forming apparatus according to claim 9, wherein the heating device is an electron gun, and the control device changes an irradiation area of an electron beam emitted from the electron gun.
  11.  前記真空槽内部の搬送経路に沿って成膜対象物を搬送する搬送装置を有し、
     前記成膜対象物は前記搬送経路を移動する間に前記蒸発源と対面するようにされ、
     前記水導入口は、前記酸素導入口よりも前記蒸発源に近く、かつ、前記搬送経路よりも遠い位置にある請求項9又は請求項10のいずれか1項記載の成膜装置。
    A transport device that transports a film formation target along a transport path inside the vacuum chamber;
    The film-forming object is made to face the evaporation source while moving along the transfer path,
    11. The film forming apparatus according to claim 9, wherein the water inlet is closer to the evaporation source than the oxygen inlet and is further away from the transfer path.
  12.  前記真空槽内部の前記蒸発源と対面する位置で基板を保持する基板ホルダを有し、
     前記水導入口は、前記酸素導入口よりも前記蒸発源に近く、かつ、前記基板ホルダに保持された前記基板に遠い位置にある請求項9又は請求項10のいずれか1項記載の成膜装置。
    A substrate holder for holding the substrate at a position facing the evaporation source inside the vacuum chamber;
    11. The film formation according to claim 9, wherein the water inlet is closer to the evaporation source than the oxygen inlet and is farther from the substrate held by the substrate holder. apparatus.
PCT/JP2009/060680 2008-06-16 2009-06-11 Method for manufacturing plasma display panel and film forming apparatus WO2009154130A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010517878A JP5235214B2 (en) 2008-06-16 2009-06-11 Plasma display panel manufacturing method and film forming apparatus
CN200980122380.3A CN102067266B (en) 2008-06-16 2009-06-11 Method for manufacturing plasma display panel and film forming apparatus
KR1020107028164A KR101128744B1 (en) 2008-06-16 2009-06-11 Method for manufacturing plasma display panel and film forming apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-157119 2008-06-16
JP2008157119 2008-06-16

Publications (1)

Publication Number Publication Date
WO2009154130A1 true WO2009154130A1 (en) 2009-12-23

Family

ID=41434045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/060680 WO2009154130A1 (en) 2008-06-16 2009-06-11 Method for manufacturing plasma display panel and film forming apparatus

Country Status (4)

Country Link
JP (1) JP5235214B2 (en)
KR (1) KR101128744B1 (en)
CN (1) CN102067266B (en)
WO (1) WO2009154130A1 (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62107060A (en) * 1985-10-31 1987-05-18 Shimadzu Corp Vapor deposition apparatus by electron beam
JPH08287833A (en) * 1995-04-11 1996-11-01 Nec Corp Manufacture of plasma display panel
JPH09295894A (en) * 1996-05-01 1997-11-18 Chugai Ro Co Ltd Production of magnesium oxide film
JPH10106441A (en) * 1996-10-02 1998-04-24 Fujitsu Ltd Plasma display panel
JP2000260750A (en) * 1999-03-08 2000-09-22 Denshi Kagaku Kk Gas analyzer for heated and separated gas
JP2000290062A (en) * 1999-04-05 2000-10-17 Mitsubishi Materials Corp MgO VAPOR-DEPOSITED MATERIAL AND ITS PRODUCTION
JP2000297367A (en) * 1999-04-12 2000-10-24 Canon Inc Formation of metallic oxide thin film
JP2001026867A (en) * 1999-07-16 2001-01-30 Teijin Ltd Production of transparent conductive laminate
JP2002194539A (en) * 2000-12-26 2002-07-10 Matsushita Electric Ind Co Ltd Method and apparatus for forming thin film
JP2006172859A (en) * 2004-12-15 2006-06-29 Matsushita Electric Ind Co Ltd Plasma display panel, and manufacturing method therefor
JP2007051326A (en) * 2005-08-17 2007-03-01 Ulvac Japan Ltd Electron beam vapor deposition system, method for depositing vapor deposited film on the surface of substrate using the system, pierce type electron gun, and method for monitoring beam state of pierce type electron gun
JP2007107092A (en) * 2005-09-13 2007-04-26 Matsushita Electric Ind Co Ltd Protective film-forming method and protective film-forming apparatus
JP2007119831A (en) * 2005-10-27 2007-05-17 Ulvac Japan Ltd Film deposition apparatus, and panel manufacturing method

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62107060A (en) * 1985-10-31 1987-05-18 Shimadzu Corp Vapor deposition apparatus by electron beam
JPH08287833A (en) * 1995-04-11 1996-11-01 Nec Corp Manufacture of plasma display panel
JPH09295894A (en) * 1996-05-01 1997-11-18 Chugai Ro Co Ltd Production of magnesium oxide film
JPH10106441A (en) * 1996-10-02 1998-04-24 Fujitsu Ltd Plasma display panel
JP2000260750A (en) * 1999-03-08 2000-09-22 Denshi Kagaku Kk Gas analyzer for heated and separated gas
JP2000290062A (en) * 1999-04-05 2000-10-17 Mitsubishi Materials Corp MgO VAPOR-DEPOSITED MATERIAL AND ITS PRODUCTION
JP2000297367A (en) * 1999-04-12 2000-10-24 Canon Inc Formation of metallic oxide thin film
JP2001026867A (en) * 1999-07-16 2001-01-30 Teijin Ltd Production of transparent conductive laminate
JP2002194539A (en) * 2000-12-26 2002-07-10 Matsushita Electric Ind Co Ltd Method and apparatus for forming thin film
JP2006172859A (en) * 2004-12-15 2006-06-29 Matsushita Electric Ind Co Ltd Plasma display panel, and manufacturing method therefor
JP2007051326A (en) * 2005-08-17 2007-03-01 Ulvac Japan Ltd Electron beam vapor deposition system, method for depositing vapor deposited film on the surface of substrate using the system, pierce type electron gun, and method for monitoring beam state of pierce type electron gun
JP2007107092A (en) * 2005-09-13 2007-04-26 Matsushita Electric Ind Co Ltd Protective film-forming method and protective film-forming apparatus
JP2007119831A (en) * 2005-10-27 2007-05-17 Ulvac Japan Ltd Film deposition apparatus, and panel manufacturing method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SUNG HEE HONG ET AL.: "Characteristics of MgO Protective Layer with Deposition Rate in AC-PDPs", PROCEEDINGS OF THE 14TH INTERNATIONAL DISPLAY WORKSHOPS, vol. 1, 5 December 2007 (2007-12-05), pages 195 - 198 *

Also Published As

Publication number Publication date
CN102067266B (en) 2013-02-06
KR101128744B1 (en) 2012-03-27
CN102067266A (en) 2011-05-18
JP5235214B2 (en) 2013-07-10
KR20110009240A (en) 2011-01-27
JPWO2009154130A1 (en) 2011-12-01

Similar Documents

Publication Publication Date Title
JP4569933B2 (en) Plasma display panel
JP4153983B2 (en) Protective film, film forming method thereof, plasma display panel and manufacturing method thereof
US7713639B2 (en) Protective layer, composite for forming the protective layer, method of forming the protective layer, and plasma display panel including the protective layer
JP4824339B2 (en) Plasma display panel and manufacturing method thereof
JP4596005B2 (en) Method for manufacturing plasma display panel
JP2005050804A (en) Manufacturing method of plasma display panel and its manufacturing device
US7795811B2 (en) Plasma display panel
KR20000068762A (en) Gas discharge panel and gas light-emitting device
JP5235214B2 (en) Plasma display panel manufacturing method and film forming apparatus
JPH03281594A (en) Luminescent material and display device
US20060003087A1 (en) Process for producing plasma display panel and apparatus therefor
JP5114310B2 (en) Film forming method and film forming apparatus
KR20010104232A (en) Plasma picture screen with protective layer
JPH11135023A (en) Plasma display panel and its manufacture
JP3775851B2 (en) Vapor deposition apparatus and protective film manufacturing method
JP2011198733A (en) Ac type plasma display element
Takeda et al. Shrinkage and expansion of discharge areas in plasma discharge devices having complex oxide protective layers
JP2009146803A (en) Plasma display panel
KR101176602B1 (en) Protective materials of low firing voltage and their method of manufacturing for pdp
Xing et al. 13.3: CaMgO (CMO) Film Properties Study
WO2010084968A1 (en) Plasma display panel and process for producing same, and plasma display device and process for producing same
WO2013018355A1 (en) Plasma display panel and method for producing same
WO2013018335A1 (en) Plasma display panel and manufacturing method thereof
JP2007257987A (en) Gas discharge display device
JP2012248448A (en) Plasma display panel manufacturing method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980122380.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09766578

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010517878

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20107028164

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09766578

Country of ref document: EP

Kind code of ref document: A1