WO2009153828A1 - Plasma display device and manufacturing method therefor - Google Patents

Plasma display device and manufacturing method therefor Download PDF

Info

Publication number
WO2009153828A1
WO2009153828A1 PCT/JP2008/001546 JP2008001546W WO2009153828A1 WO 2009153828 A1 WO2009153828 A1 WO 2009153828A1 JP 2008001546 W JP2008001546 W JP 2008001546W WO 2009153828 A1 WO2009153828 A1 WO 2009153828A1
Authority
WO
WIPO (PCT)
Prior art keywords
flexible cable
plasma display
electrode
substrate
display device
Prior art date
Application number
PCT/JP2008/001546
Other languages
French (fr)
Japanese (ja)
Inventor
金江達利
佐々木孝
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2008/001546 priority Critical patent/WO2009153828A1/en
Publication of WO2009153828A1 publication Critical patent/WO2009153828A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/24Manufacture or joining of vessels, leading-in conductors or bases
    • H01J9/28Manufacture of leading-in conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/10AC-PDPs with at least one main electrode being out of contact with the plasma
    • H01J11/14AC-PDPs with at least one main electrode being out of contact with the plasma with main electrodes provided only on one side of the discharge space
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/34Vessels, containers or parts thereof, e.g. substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/46Connecting or feeding means, e.g. leading-in conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2211/00Plasma display panels with alternate current induction of the discharge, e.g. AC-PDPs
    • H01J2211/20Constructional details
    • H01J2211/46Connecting or feeding means, e.g. leading-in conductors

Definitions

  • the present invention relates to a plasma display device and a method for manufacturing the plasma display device.
  • the plasma display device has a plasma display panel (PDP) and a drive unit for driving the PDP.
  • a PDP is composed of two glass substrates (a front glass substrate and a back glass substrate) bonded together, and displays an image by generating a discharge in a space (discharge space) formed between the glass substrates. To do.
  • the cells corresponding to the pixels in the image are self-luminous, and are coated with phosphors that generate red, green, and blue visible light in response to ultraviolet rays generated by discharge.
  • a three-electrode PDP displays an image by generating a sustain discharge between the X electrode and the Y electrode.
  • a cell that generates a sustain discharge (a cell to be lit) is selected by, for example, selectively generating an address discharge between the Y electrode and the address electrode.
  • the drive unit has a drive circuit that applies voltages to the X electrode, the Y electrode, and the address electrode.
  • the drive circuit is connected to each electrode by a flexible substrate (flexible cable) (see, for example, Patent Document 1).
  • the drive circuit is disposed on the back side of the PDP. For this reason, the flexible cable extending outward from the outer peripheral portion of the PDP is folded back in a U shape and connected to the drive circuit.
  • An object of the present invention is to provide a thin PDP device. Another object of the present invention is to prevent disconnection between the PDP and the drive circuit and improve the reliability of the PDP device.
  • the plasma display device has a plasma display panel (PDP), a first drive circuit, and a first flexible cable.
  • the PDP has a first substrate provided with a plurality of first electrodes extending in a first direction, and a second substrate facing the first substrate through a discharge space.
  • the second substrate has a first chamfered portion at one of the edge portions along the second direction intersecting the first direction among the edge portions of the surface opposite to the surface facing the first substrate. Yes.
  • the 1st drive circuit which applies a voltage to the 1st electrode is electrically connected to the 1st electrode by the 1st flexible cable.
  • one end of the first flexible cable is connected to the first electrode at the outer peripheral portion on the side where the first chamfered portion is provided in the outer peripheral portion of the PDP. Further, the other end of the first flexible cable is connected to the first drive circuit inside the outer periphery of the PDP without folding the first flexible cable and without bringing the first flexible cable into contact with the second substrate. .
  • a thin PDP device can be provided.
  • disconnection between the PDP and the drive circuit can be prevented, and the reliability of the PDP device can be improved.
  • FIG. 5 is a diagram showing an outline of a side surface of a PDP device along a first direction viewed from a direction opposite to a side on which the address driver shown in FIG. It is a figure which shows the outline
  • positioned is shown in FIG. 5
  • FIG. 5 It is a figure which shows an example of the cross section along the 1st direction around the connection part of the flexible cable for Y electrodes shown in FIG. 5, and a Y electrode. It is a figure which shows an example of the manufacturing method of a 1st chamfer part. It is a figure which shows the outline
  • FIG. 1 shows an embodiment of the present invention.
  • a plasma display device (hereinafter also referred to as a PDP device) includes a plasma display panel 10 having a square plate shape (hereinafter also referred to as a PDP), an optical filter 20 provided on the image display surface 16 side (light output side) of the PDP 10, A front housing 30 disposed on the image display surface 16 side of the PDP 10, a rear housing 40 and a base chassis 50 disposed on the back surface 18 side of the PDP 10, and attached to the rear housing 40 side of the base chassis 50 to drive the PDP 10.
  • the circuit unit 60 includes a plurality of components, the circuit unit 60 is indicated by a dashed box in the figure.
  • the circuit unit 60 is electrically connected to the PDP 10 by a flexible cable (not shown) (for example, flexible cables XFC, YFC, AFC shown in FIG. 4 described later).
  • the PDP 10 includes a front substrate portion 12 (first substrate) that forms the image display surface 16 and a rear substrate portion 14 (second substrate) that faces the front substrate portion 12.
  • a discharge space (cell) (not shown) is formed between the front substrate portion 12 and the rear substrate portion 14.
  • the front substrate unit 12 and the back substrate unit 14 are formed of, for example, a glass substrate.
  • the optical filter 20 is affixed to a protective glass (not shown) attached to the opening 32 of the front housing 30.
  • the optical filter 20 may have a function of shielding electromagnetic waves.
  • the optical filter 20 may be directly attached to the image display surface 16 side of the PDP 10 instead of the protective glass.
  • FIG. 2 shows details of the main part of the PDP 10 shown in FIG.
  • An arrow D1 in the drawing indicates the first direction D1
  • an arrow D2 indicates the second direction D2 orthogonal to the first direction D1 in a plane parallel to the image display surface.
  • the discharge space DS is formed between the front substrate portion 12 and the rear substrate portion 14 (more specifically, the concave portion of the rear substrate portion 14).
  • the front substrate portion 12 is provided extending in the first direction D1 on the surface of the glass substrate FS that faces the glass substrate RS (the lower side in the figure), and a plurality of Xs arranged at intervals from each other.
  • a bus electrode Xb and a Y bus electrode Yb are provided.
  • the X bus electrode Xb is connected with an X transparent electrode Xt extending in the second direction D2 from the X bus electrode Xb to the Y bus electrode Yb.
  • a Y transparent electrode Yt extending in the second direction D2 from the Y bus electrode Yb to the X bus electrode Xb is connected to the Y bus electrode Yb.
  • the X transparent electrode Xt and the Y transparent electrode Yt face each other along the second direction D2.
  • the X bus electrode Xb and the Y bus electrode Yb are opaque electrodes formed of a metal material or the like, and the X transparent electrode Xt and the Y transparent electrode Yt are transparent that transmit visible light formed of an ITO film or the like.
  • the X electrode XE (second electrode, sustain electrode) is configured by the X bus electrode Xb and the X transparent electrode Xt
  • the Y electrode YE first electrode, scan electrode
  • a discharge is repeatedly generated between the X electrode XE and the Y electrode YE paired with each other (more specifically, between the X transparent electrode Xt and the Y transparent electrode Yt).
  • the transparent electrodes Xt and Yt may be disposed on the entire surface between the bus electrodes Xb and Yb to which the transparent electrodes Xt and Yt are connected and the glass substrate FS. Further, an electrode integral with the bus electrodes Xb and Yb may be formed in place of the transparent electrodes Xt and Yt by the same material (metal material or the like) as the bus electrodes Xb and Yb.
  • the electrodes Xb, Xt, Yb, Yt are covered with the dielectric layer DL.
  • the dielectric layer DL is an insulating film such as a silicon dioxide film formed by a CVD method.
  • a plurality of address electrodes AE (third electrodes) extending in the orthogonal direction (second direction D2) of the bus electrodes Xb and Yb are provided on the dielectric layer DL (lower side in the drawing).
  • the electrodes XE and YE extending in the first direction D1 and the address electrode AE extending in the second direction D2 are provided on the front substrate portion 12.
  • the address electrode AE and the dielectric layer DL are covered with a protective layer PL.
  • the protective layer PL is formed of an MgO film having high secondary electron emission characteristics due to cation collision in order to easily generate discharge.
  • the back substrate portion 14 facing the front substrate portion 12 through the discharge space DS is formed in parallel with each other on the glass base RS and extends in a direction (second direction D2) orthogonal to the bus electrodes Xb and Yb. It has a partition wall (barrier rib) BR. That is, the barrier ribs BR are provided on the surface of the glass substrate RS that faces the glass substrate FS, extend in the second direction D2 that intersects the first direction D1, and are arranged at intervals.
  • a partition wall BR constitutes a side wall of the cell. Further, visible light of red (R), green (G), and blue (B) is generated on the side surface of the partition wall BR and the glass substrate RS between the adjacent partition walls BR by being excited by ultraviolet rays. Phosphors PHr, PHg, and PHb are respectively applied.
  • One pixel of the PDP 10 is composed of three cells that generate red, green, and blue light.
  • one cell (one color pixel) is formed in a region surrounded by the bus electrodes Xb and Yb and the partition wall BR.
  • the PDP 10 is configured by arranging cells in a matrix to display an image and alternately arranging a plurality of types of cells that generate light of different colors.
  • a display line is constituted by cells formed along the bus electrodes Xb and Yb.
  • the PDP 10 is configured by bonding the front substrate portion 12 and the rear substrate portion 14 so that the protective layer PL and the partition wall BR are in contact with each other, and enclosing a discharge gas such as Ne or Xe in the discharge space DS.
  • FIG. 3 shows an outline of the circuit unit 60 shown in FIG.
  • the circuit unit 60 includes a control unit CNT, an X driver XDRV (second drive circuit), a Y driver YDRV (first drive circuit), an address driver ADRV (third drive circuit), and a power supply unit PWR.
  • the power supply unit PWR generates power supply voltages ⁇ Vsc, Vs / 2, ⁇ Vs / 2, Vsa and the like to be supplied to the drivers YDRV, XDRV, and ADRV.
  • the control unit CNT controls the operation of the drivers XDRV, YDRV, and ADRV.
  • the control unit CNT selects a subfield to be used based on the image data R0-R7, G0-G7, B0-B7, and outputs control signals YCNT, XCNT, and ACNT to the drivers YDRV, XDRV, and ADRV.
  • the subfield is a field obtained by dividing one field for displaying one screen of the PDP 10, and the number of sustain discharges is set for each subfield. Then, by selecting a subfield to be used for each cell constituting the pixel, a multi-gradation image is displayed.
  • the subfield includes an address period for selecting a cell to be lit (a cell for generating a sustain discharge), a sustain period for generating a sustain discharge in the cell selected in the address period, and the like.
  • the drivers XDRV, YDRV, and ADRV are electrically connected to the electrodes XE, YE, and AE, respectively, by flexible cables XFC, YFC, and AFC shown in FIG.
  • the drivers XDRV, YDRV, and ADRV operate as a drive unit that drives the PDP 10.
  • the X driver XDRV alternately applies voltages ⁇ Vs / 2 and Vs / 2 (negative and positive sustain pulses) to the X electrode XE during the sustain period.
  • the Y driver YDRV alternately applies voltages Vs / 2 and ⁇ Vs / 2 (positive and negative sustain pulses) having different polarities from the voltage applied to the X electrode XE to the Y electrode YE during the sustain period,
  • the voltage ⁇ Vsc (scan pulse) is selectively applied to the Y electrode YE.
  • the address driver ADRV selectively applies a voltage Vsa (address pulse) to the address electrode AE during the address period.
  • a discharge (address discharge) is temporarily generated between the Y electrode YE and the address electrode AE.
  • a cell to be lit in the sustain period is selected.
  • the sustain pulses having different polarities are repeatedly applied to the X electrode XE and the Y electrode YE, so that the discharge of the cells lit in the sustain period (sustain discharge) is repeatedly performed.
  • FIG. 4 shows an example of the state of the flexible cables XFC, YFC, and AFC viewed from the side opposite to the image display surface (the lower side in FIG. 1).
  • the meanings of the arrows D1 and D2 in the figure are the same as those in FIG. In FIG. 4, the description of the optical filter 20, the front casing 30, the rear casing 40, and the like shown in FIG. 1 is omitted.
  • the Y electrode flexible cable YFC (first flexible cable), the X electrode flexible cable XFC (second flexible cable)) and the address electrode flexible cable AFC (third flexible cable) are formed on the base film. It is a deformable wiring in which a wiring made of a metal material is formed, and a protective film is covered on a wiring portion other than a connection portion connected to another component or the like.
  • the circuit unit 60 is attached to the back side of the base chassis 50 (on the rear housing 40 side shown in FIG. 1 described above) inside the edge of the back substrate part 14, and the edge of the back substrate part 14 is the front surface. It is located inside the edge of the substrate part 12.
  • the Y electrode YE is pulled out to the vicinity of the edge along the second direction D2 of the front substrate portion 12 (the outer peripheral portion OT on the left side in FIG. 4)
  • the X electrode XE is the Y electrode of the front substrate portion 12.
  • YE is pulled out to the vicinity of the edge opposite to the edge from which the YE was pulled out (in FIG. 4, the right outer peripheral portion OT).
  • the address electrode AE is drawn out to the vicinity of the edge portion along the first direction D1 of the front substrate portion 12 (in FIG. 4, the lower outer peripheral portion OT).
  • chamfered portions CF10, CF20, and CF30 shown in FIG. 5 described later are provided on the edge portion of the back substrate portion 14 on the side where the electrodes YE, XE, and AE are drawn.
  • Y electrode flexible cable YFC electrically connects driver YDRV and electrode YE
  • X electrode flexible cable XFC electrically connects driver XDRV and electrode XE
  • address electrode flexible cable AFC The driver ADRV and the electrode AE are electrically connected.
  • one end of the flexible cables XFC, YFC, and AFC is connected to the electrodes XE, YE, and AE at the outer peripheral portion OT of the PDP 10, and the other ends of the flexible cables XFC, YFC, and AFC are inside the outer periphery of the PDP 10,
  • the drivers are connected to XDRV, YDRV, and ADRV, respectively. That is, as described in FIG. 1 described above, the Y electrode flexible cable YFC, the X electrode flexible cable XFC, and the address electrode flexible cable AFC electrically connect the circuit unit 60 and the PDP 10.
  • FIG. 5 shows an outline of the side surface of the PDP device along the first direction D1 as viewed from the direction opposite to the side where the address driver ADRV shown in FIG. 4 is arranged.
  • the meaning of the arrow D1 in the figure is the same as in FIG. In FIG. 4, the description of the optical filter 20, the front casing 30, the rear casing 40, and the like shown in FIG. 1 is omitted.
  • the back substrate portion 14 is one of the edges along the second direction D2 (the left side in FIG. 5) among the edges of the surface opposite to the surface facing the front substrate portion 12 (the lower side in FIG. 5). ) Has a first chamfered portion CF10. Further, the rear substrate portion 14 is an edge portion on the side opposite to the side on which the first chamfered portion CF10 is provided (on the right side in FIG. 5) of the edge portion on the opposite side of the surface facing the front substrate portion 12. Has a second chamfered portion CF20.
  • the first chamfered portion CF10 is on the side where the Y electrode YE is drawn out of the edge of the surface on the base chassis 50 side of the back substrate portion 14 (the surface opposite to the surface facing the front substrate portion 12). Chamfered at the corners of the edge.
  • the second chamfered portion CF20 the X electrode XE is drawn out from the edge of the surface on the base chassis 50 side of the back substrate portion 14 (the surface opposite to the surface facing the front substrate portion 12). The corners of the side edges are chamfered.
  • the connecting portion YCT2 provided at one end of the Y electrode flexible cable YFC is connected to the Y electrode YE at the outer peripheral portion OT on the side where the first chamfered portion CF10 is provided.
  • the connection portion YCT1 that is the end portion of the Y electrode YE drawn to the vicinity of the edge of the front substrate portion 12 is connected to the connection portion YCT2 of the Y electrode flexible cable YFC.
  • the connecting portion YCT3 provided at the other end of the Y electrode flexible cable YFC does not fold back the Y electrode flexible cable YFC, and without bringing the Y electrode flexible cable YFC into contact with the rear substrate portion 14, It is connected to the Y driver YDRV inside the outer periphery of the PDP 10. That is, the Y electrode flexible cable YFC is arranged with the end portion where the connecting portion YCT2 is provided facing outward, and from the connecting portion YCT2 to the Y driver YDRV provided inside the PDP 10, the outer side (connecting portion) It extends without being folded back into a U-shape at the outer side of the connecting portion between YCT1 and connecting portion YCT2.
  • disconnection of the Y electrode flexible cable YFC caused by folding the Y electrode flexible cable YFC into a U shape can be prevented. Further, in this embodiment, since the Y electrode flexible cable YFC is not folded back in a U shape, the force acting in the direction in which the connecting portion YCT1 and the connecting portion YCT2 are separated from each other can be reduced, and the connecting portion YCT1 and the connecting portion YCT2 Can be prevented from becoming unstable (disconnected state).
  • the back substrate portion 14 has a first chamfered portion CF10 provided by chamfering the corner of the edge adjacent to the Y electrode flexible cable YFC.
  • it can prevent that the Y electrode flexible cable YFC hits the corner
  • connection part XCT1 which is the end part of the X electrode XE drawn to the vicinity of the edge part of the front substrate part 12 is connected to the connection part XCT2 provided at one end of the flexible cable XFC for X electrode. That is, the connection part XCT2 of the X electrode flexible cable XFC is connected to the X electrode XE at the outer peripheral part OT on the side where the second chamfered part CF20 is provided.
  • connection part XCT3 provided at the other end of the X electrode flexible cable XFC does not fold back the X electrode flexible cable XFC, and without bringing the X electrode flexible cable XFC into contact with the rear substrate part 14, It is connected to the X driver XDRV inside the outer periphery of the PDP 10.
  • disconnection of the X electrode flexible cable XFC caused by folding the X electrode flexible cable XFC into a U shape can be prevented.
  • the X electrode flexible cable XFC is not folded back in a U shape, it is possible to prevent the connection between the connection portion XCT1 and the connection portion XCT2 from becoming unstable (non-connected state).
  • the second chamfered portion CF20 can prevent the X electrode flexible cable XFC from hitting the corners of the back substrate portion 14, and thus the disconnection of the X electrode flexible cable XFC can be prevented. That is, in this embodiment, disconnection between the connection part XCT1 of the X electrode XE and the X driver XDRV can be prevented, and the reliability of the PDP device can be improved.
  • the size of the PDP device when paying attention to the size of the PDP device, in this embodiment, it is not necessary to secure a thickness for folding the flexible cables XFC and YFC into a U-shape, so the edge along the second direction D2 of the PDP device. The thickness around the part can be reduced. Furthermore, in this embodiment, since it is not necessary to secure a space for folding the flexible cables XFC, YFC into a U shape outside the PDP 10, the size of the PDP device (for example, the size of the PDP device in the first direction D1) Can be reduced. That is, in this embodiment, since the size of the PDP device can be reduced, the manufacturing cost of the casings 30 and 40 shown in FIG. 1 described above can be reduced.
  • the drivers XDRV and YDRV are attached to the back side (the lower side in FIG. 5) of the base chassis 50 by attachment members FT (for example, screws) inside the edge of the back substrate portion 14. Further, the connection parts XTC3 and YCT3 are connected to the drivers XDRV and YDRV by a connector or the like (not shown).
  • FIG. 6 shows an outline of the side surface of the PDP device along the second direction D2 as viewed from the side where the Y driver YDRV shown in FIG. 4 is arranged.
  • the meaning of the arrow D2 in the figure is the same as in FIG.
  • the description of the optical filter 20, the front housing 30, the rear housing 40, the Y electrode flexible cable YFC shown in FIG. 4 and the like shown in FIG. 1 is omitted.
  • the back substrate portion 14 is one of the edge portions along the first direction D1 (on the left side in FIG. 6) among the edge portions of the surface opposite to the surface facing the front substrate portion 12 (lower side in FIG. 6).
  • the third chamfered portion CF30 is on the side where the address electrode AE is drawn out of the edge portion of the surface on the base chassis 50 side of the back substrate portion 14 (the surface opposite to the surface facing the front substrate portion 12). Chamfered at the corners of the edge.
  • the connection portion ACT2 provided at one end of the address electrode flexible cable AFC is connected to the address electrode AE at the outer peripheral portion OT on the side where the third chamfered portion CF30 is provided.
  • connection portion ACT1 which is the end portion of the address electrode AE drawn to the vicinity of the edge portion of the front substrate portion 12 is connected to the connection portion ACT2 of the address electrode flexible cable AFC.
  • the connection portion ACT3 provided at the other end of the address electrode flexible cable AFC does not fold back the address electrode flexible cable AFC and does not contact the address electrode flexible cable AFC with the rear substrate portion 14. It is connected to the address driver ADRV inside the outer periphery of the PDP 10.
  • the address electrode flexible cable AFC caused by folding the address electrode flexible cable AFC into a U shape can be prevented.
  • the address electrode flexible cable AFC is not folded back in a U-shape, it is possible to prevent the connection between the connection part ACT1 and the connection part ACT2 from becoming unstable (non-connected state).
  • the third chamfered portion CF30 can prevent the address electrode flexible cable AFC from hitting the corners of the back substrate portion 14, and thus the disconnection of the address electrode flexible cable AFC can be prevented. That is, in this embodiment, disconnection between the connection part ACT1 of the address electrode AE and the address driver ADRV can be prevented, and the reliability of the PDP device can be improved.
  • the size of the PDP device when paying attention to the size of the PDP device, in this embodiment, it is not necessary to secure a thickness for folding the address electrode flexible cable AFC into a U-shape, and therefore, it is along the first direction D1 of the PDP device. The thickness around the edge can be reduced. Further, in this embodiment, since it is not necessary to secure a space for folding the address electrode flexible cable AFC in a U shape outside the PDP 10, the size of the PDP device (for example, the size in the second direction D2 of the PDP device). ) Can be reduced. That is, in this embodiment, since the size of the PDP device can be reduced, the manufacturing cost of the casings 30 and 40 shown in FIG. 1 described above can be reduced.
  • the address driver ADRV is attached to the back side (the lower side in FIG. 6) of the base chassis 50 with an attachment member FT (for example, a screw) inside the edge of the back substrate portion 14.
  • the connection unit ACT3 is connected to the address driver ADRV by a connector or the like (not shown).
  • FIG. 7 shows an example of a cross section along the first direction D1 around the connecting portion between the Y electrode flexible cable YFC and the Y electrode YE shown in FIG.
  • FIG. 7 shows a cross section of the position where the bus electrode Yb shown in FIG. 2 is arranged.
  • the meaning of the arrow D1 in the figure is the same as in FIG.
  • the Y electrode flexible cable YFC includes the base film FL1, the wiring ML formed on the base film FL1, the connection portion YCT2 (and the connection portion YCT3 shown in FIG. 5 described above).
  • the protective film FL2 that covers the wiring ML other than the above is provided.
  • the end of the Y electrode flexible cable YFC on the side of the connecting portion YCT2 in the protective film FL2 is located inside the connecting portion YCT2 in order to expose the connecting portion YCT2 to the outside of the Y electrode flexible cable YFC.
  • the Y electrode flexible cable YFC is arranged with the end portion where the connection portion YCT2 is provided facing outward.
  • connection portion YCT1 is connected to the connection portion YCT2 by an anisotropic conductive film ACF or the like.
  • the first chamfered portion CF10 is adjacent to the Y electrode flexible cable YFC in the edge portion of the surface opposite to the surface facing the front substrate portion 12 in the rear substrate portion 14. Chamfered at the corners of the edge.
  • the width W10 (width W10 along the first direction D1) and the depth DP10 of the first chamfered portion CF10 are formed to be larger than half the thickness T10 (thickness T12) of the glass base RS.
  • the Y electrode flexible cable YFC may hit the end portion (first chamfered portion CF10) of the back substrate portion 14.
  • the Y electrode flexible cable YFC may be disconnected at a portion in contact with the end portion of the back substrate portion 14.
  • the end portion of the back substrate portion 14 and the Y electrode flexible cable YFC are in contact with each other for a long time, the end portion of the back substrate portion 14 damages the base film FL1 and the wiring ML sequentially, and the Y electrode flexible cable Cable YFC is disconnected.
  • the width W10 and the depth DP10 of the first chamfered portion CF10 are large, it is possible to reliably prevent the Y electrode flexible cable YFC from hitting the end (corner) of the back substrate portion 14. Thereby, in this embodiment, disconnection of the flexible cable YFC for Y electrodes can be reliably prevented. If the Y electrode flexible cable YFC is not in contact with the back substrate part 14, the width W10 and the depth DP10 of the first chamfered part CF10 may be half or less (thickness T12) of the thickness T10 of the glass base RS. Good.
  • the cross section along the first direction D1 around the connection portion between the X electrode flexible cable XFC and the X electrode XE is the cross section along the first direction D1 around the connection portion between the Y electrode flexible cable YFC and the Y electrode YE. Is almost the same.
  • the cross section along the second direction D2 around the connection portion between the address electrode flexible cable AFC and the address electrode AE is the cross section along the first direction D1 around the connection portion between the Y electrode flexible cable YFC and the Y electrode YE. Is almost the same.
  • the connection part ACT1 of the address electrode AE is formed on the dielectric layer DL, the edge of the protective layer PL and the glass base RS on the connection part ACT1 side is located inside the connection part ACT1.
  • FIG. 8 shows an example of a manufacturing method of the first chamfered portion CF10.
  • FIG. 8 has shown the cross section along the 1st direction D1 of the back substrate part 14 (glass base material RS) until 1st chamfering part CF10 is formed.
  • the meaning of the arrow D1 in the figure is the same as in FIG.
  • a glass substrate RS is prepared (FIG. 8 (a)). Then, the first sandblast is performed (FIG. 8B). In the first sandblast (FIG. 8B), first, a photoresist R10 is formed on the glass substrate RS in a portion excluding a region where the first sandblast is performed (FIG. 8B1).
  • the width W20 along the first direction of the region where the first sandblasting is performed is a quarter of the width W10 of the first chamfered portion CF10. The width W20 may not be a quarter of the width W10 as long as it is smaller than the width W10.
  • the abrasive G10 is sprayed from the nozzle gun N10 of the sandblasting device toward the glass substrate RS. (FIG. 8 (b2)).
  • the glass substrate RS in a portion for example, a portion not covered with the photoresist R10) where the abrasive G10 is sprayed is removed (FIG. 8 (b3)).
  • the photoresist R10 is removed, and the first sandblast is completed (FIG. 8 (b4)).
  • the second sandblasting is performed (FIG. 8C).
  • Each step of the second sandblast is the same as the first sandblast except for the region where the photoresist R10 is formed.
  • the width W22 along the first direction of the region where the second sandblasting is performed (for example, the portion not covered with the photoresist R10) is two-fourths of the width W10.
  • the width W22 may be less than two-fourths of the width W10 as long as it is smaller than the width W10 and larger than the width W20. That is, the second sandblast is performed including the portion where the first sandblast is performed.
  • a third sandblast is performed (FIG. 8 (d)).
  • the width W24 along the first direction of the region where the third sandblasting is performed (for example, the portion not covered with the photoresist R10) is three-fourths of the width W10.
  • the width W24 may not be three-fourths of the width W10 as long as it is smaller than the width W10 and larger than the width W22. That is, the third sandblast is performed including the portion where the first and second sandblasts are performed.
  • the fourth sandblast is performed (FIG. 8 (e)).
  • the width W26 along the first direction of the region where the fourth sandblasting is performed is the width W10. That is, the fourth sandblast is performed on the entire region where the first chamfered portion CF10 is formed.
  • the stepped chamfered portion CF11 having the large width W10 and the depth DP10 is formed on the glass substrate RS by sandblasting a plurality of times (in the example of the figure, four times).
  • count of sandblast may be more than 4 times, and may be less.
  • the conditions for each time of sandblasting (such as the injection time of the abrasive G10) may be the same or different from each other.
  • the stepped chamfered portion CF11 is polished to form the first chamfered portion CF10 (FIG. 8 (f)).
  • the first chamfered portion CF10 is formed by smoothing the surface of the chamfered portion CF11 by chemical mechanical polishing.
  • chemical mechanical polishing is performed by supplying slurry to the surface of the chamfered portion CF11, bringing the surface plate into contact with the surface of the chamfered portion CF11, and rotating the surface plate.
  • the slurry contains cerium oxide abrasive grains having an average particle diameter of about 1 ⁇ m, and a foamed polyurethane polishing pad is attached to the surface plate.
  • connection portions XCT3, YCT3, and ACT3 of the flexible cables XFC, YFC, and AFC are not folded back and are not brought into contact with the back substrate portion 14, respectively. It is connected to drivers XDRV, YDRV, and ADRV. Therefore, in this embodiment, since it is not necessary to secure the thickness and space for folding the flexible cables XFC, YFC, and AFC, the thickness of the PDP device can be reduced, and the size of the PDP device can be reduced. That is, in this embodiment, a thin PDP device can be provided. Furthermore, in this embodiment, since the size of the PDP device with respect to the PDP 10 can be reduced, the manufacturing cost can be reduced.
  • the flexible cables XFC, YFC, AFC can be prevented from hitting the end of the back substrate portion 14, disconnection between each electrode XE, YE, AE and each driver XDRV, YDRV, ADRV is prevented. Can be prevented. Therefore, the reliability of the PDP device can be improved.
  • FIGS. 9 and 10 show an outline of a PDP device in another embodiment.
  • 9 corresponds to the side surface of the PDP device shown in FIG. 5 described above
  • FIG. 10 corresponds to the side surface of the PDP device shown in FIG. 6 described above.
  • the disconnection preventing material DCP is added to the configuration shown in FIGS. 5 and 6 described above.
  • Other configurations are the same as those of the embodiment described with reference to FIGS.
  • the manufacturing method of the first chamfered portion CF10, the second chamfered portion CF20, and the third chamfered portion CF30 is the same as that in FIG. 8 described above.
  • the same elements as those described in FIGS. 1 to 8 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • a disconnection preventing material DCP is provided between the back substrate portion 14 and the Y electrode flexible cable YFC.
  • the intermediate portion of the Y electrode flexible cable YFC may or may not be fixed to the back substrate portion 14 by the disconnection preventing material DCP.
  • the disconnection preventing material DCP is provided on the back substrate portion 14 and is disposed adjacent to the first chamfered portion CF10.
  • the disconnection preventing material DCP may be provided on the entire surface of the first chamfered portion CF10.
  • the disconnection preventing material DCP is formed of an elastic material (silicon resin, epoxy resin, polyimide resin, urethane resin, or the like).
  • a disconnection preventing material DCP is provided between the back substrate portion 14 and the X electrode flexible cable XFC.
  • the structure around the disconnection prevention material DCP provided between the back substrate portion 14 and the X electrode flexible cable XFC is the periphery of the disconnection prevention material DCP provided between the back substrate portion 14 and the Y electrode flexible cable YFC.
  • the configuration is the same. Therefore, in this embodiment, the elastic breakage prevention material DCP can reliably prevent the X electrode flexible cable XFC from hitting the end portion of the back substrate portion 14 and reliably break the X electrode flexible cable XFC. Can be prevented.
  • a disconnection preventing material DCP is provided between the back substrate portion 14 and the address electrode flexible cable AFC.
  • the configuration around the disconnection preventing material DCP provided between the back substrate portion 14 and the address electrode flexible cable AFC is the periphery of the disconnection preventing material DCP provided between the back substrate portion 14 and the Y electrode flexible cable YFC.
  • the configuration is the same. Therefore, in this embodiment, the elastic disconnection-preventing material DCP can reliably prevent the address electrode flexible cable AFC from hitting the end of the back substrate portion 14 and reliably disconnect the address electrode flexible cable AFC. Can be prevented.
  • one pixel includes three cells (red (R), green (G), and blue (B)) has been described.
  • the present invention is not limited to such an embodiment.
  • one pixel may be composed of four or more cells.
  • one pixel may be composed of cells that generate colors other than red (R), green (G), and blue (B), and one pixel may be red (R), green (G), A cell that generates a color other than blue (B) may be included.
  • the second direction D2 may intersect the first direction D1 in a substantially perpendicular direction (for example, 90 ° ⁇ 5 °). Also in this case, the same effect as the above-described embodiment can be obtained.
  • the Y driver YDRV may be provided integrally with the Y electrode flexible cable YFC on the base film FL1 of the Y electrode flexible cable YFC.
  • a part of the Y driver YDRV (such as an output circuit) may be provided integrally with the Y electrode flexible cable YFC on the base film FL1 of the Y electrode flexible cable YFC.
  • at least a part of the drivers XDRV and ADRV may be provided integrally with the flexible cables XFC and AFC on the base film FL1 of the flexible cables XFC and AFC, respectively.
  • the PDP apparatus includes a flexible printed board in which, for example, a Y driver YDRV and a Y electrode flexible cable YFC are integrally provided.
  • the end of the flexible printed circuit board where the Y driver YDRV is not provided is the end (one end of the flexible cable) where the connecting portion YCT2 of the Y electrode flexible cable YFC shown in FIG. 5 described above is provided.
  • the connection portion between the Y driver YDRV of the flexible printed circuit board and the wiring ML of the Y electrode flexible cable YFC corresponds to the connection portion YCT3 of the Y electrode flexible cable YFC shown in FIG. Also in this case, the same effect as the above-described embodiment can be obtained.
  • connection portion ACT1 of the address electrode AE is near one of the two edges along the first direction D1 of the front substrate portion 12 (the left outer peripheral portion OT in FIG. 6 described above).
  • the example provided in is described.
  • the present invention is not limited to such an embodiment.
  • the connection part ACT1 of the address electrode AE may be provided in the vicinity of both edges (the left and right outer peripheral parts OT in FIG. 6) along the first direction D1 of the front substrate part 12.
  • the address electrode AE in which the connection part ACT1 is provided near one edge part and the address electrode AE in which the connection part ACT1 is provided in the vicinity of the other edge part may be mixed.
  • the third chamfered portion CF30 is provided by chamfering the corner of the edge portion on the side where the connection portion ACT1 is provided, of the edge portion of the surface of the back substrate portion 14 on the base chassis 50 side. Also in this case, the same effect as the above-described embodiment can be obtained.
  • the X electrode XE may be maintained at the ground voltage GND.
  • the voltages Vs and ⁇ Vs are alternately applied to the Y electrode YE by the Y driver YDRV during the sustain period.
  • the X driver XDRV and the X electrode flexible cable XFC can be omitted from the configuration shown in FIG. 4 described above.
  • the ground voltage GND is supplied from the ground line of the PDP 10 to the X electrode XE.
  • the same effect as the above-described embodiment can be obtained.
  • the plasma display device is configured by a PDP having a three-electrode (electrode XE, YE, AE) structure.
  • the plasma display device may be configured by a PDP having a two-electrode structure.
  • a PDP having a two-electrode structure is configured by omitting the X electrode XE, the X driver XDRV, and the X electrode flexible cable XFC from the configuration shown in FIGS.
  • a sustain discharge is generated between the electrodes YE and AE.
  • the electrode AE functions as the address electrode AE described with reference to FIG. 3 in the address period, and functions as the X electrode XE (sustain electrode) in the sustain period. Therefore, the drive circuit (for example, driver ADRV) that drives the electrode AE of the two-electrode structure PDP has the functions of the address driver ADRV and the X driver XDRV described with reference to FIG. Also in this case, the same effect as the above-described embodiment can be obtained.
  • driver ADRV driver ADRV
  • the depth DP10 of the first chamfered portion CF10 is different from the thickness T10 of the back substrate portion 14 .
  • the present invention is not limited to such an embodiment.
  • the depth DP10 of the first chamfered portion CF12 may be the same as the thickness T10 of the back substrate portion 14.
  • the depths of the chamfered portions CF20 and CF30 shown in FIGS. 5 and 6 described above may be the same as the thickness T10 of the back substrate portion 14. Also in this case, the same effect as the above-described embodiment can be obtained.
  • the example in which the first chamfered portion CF10 is formed linearly has been described.
  • the present invention is not limited to such an embodiment.
  • the first chamfered portion CF14 may be formed in an arc shape
  • the first chamfered portion CF16 may be formed in a step shape.
  • the chamfered portions CF20 and CF30 shown in FIGS. 5 and 6 described above may be formed in an arc shape or a step shape. Also in this case, the same effect as the above-described embodiment can be obtained.
  • FIGS. 12 and 13 correspond to a cross section along the first direction D1 around the connection portion between the Y electrode flexible cable YFC and the Y electrode YE shown in FIG. 7 described above.
  • the configuration of FIGS. 12 and 13 is the same as that of the embodiment described in FIGS. 1 to 7 except for the shape of the chamfered portion (for example, the chamfered portion CF14 in FIG. 12 and the chamfered portion CF16 in FIG. 13).
  • the manufacturing method of 1st chamfering part CF14 and CF16 is the same as FIG. 8 mentioned above.
  • the same elements as those described in FIGS. 1 to 8 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the first chamfered portion CF14 formed in an arc shape shown in FIG. 12 has the sand blasting conditions (abrasion time of the abrasive G10, widths W20, W22, W24, W26, etc.) shown in FIG. It is formed by adjusting the number of times of performing.
  • the first chamfered portion CF16 formed in a stepped shape shown in FIG. 13 is substantially the same as the stepped chamfered portion CF11 shown in FIG. That is, in the PDP 10 having the first chamfered portion CF16, it is not necessary to polish the stepped chamfered portion CF11 shown in FIG. 8 until the shape of the chamfered portion becomes linear, and the manufacturing cost can be reduced.
  • FIG. 14 shows an example of a modified example of the PDP 10 shown in FIG.
  • the meanings of the arrows D1 and D2 in the figure are the same as those in FIG.
  • the plurality of address electrodes AE extending in the second direction D2 are provided on the surface of the glass substrate RS that faces the glass substrate FS, and are covered with the dielectric layer DL2.
  • a partition wall BR is formed on the dielectric layer DL2.
  • the address electrode flexible cable AFC2 is folded in a U shape outside the outer periphery of the PDP 10 and connected to the address driver ADRV.
  • FIG. 15 shows an outline of a side surface along the second direction D2 in the PDP device using the PDP 10 shown in FIG.
  • the meanings of the arrows D1 and D2 in the figure are the same as those in FIG.
  • the configuration of FIG. 15 is the same as that of FIG. 6 described above except for the configuration around the end of the address electrode AE. That is, the configuration of the periphery of the flexible cables XFC, YFC is the same as that in the above-described embodiment (FIGS. 4, 5, 7, etc.).
  • connection portion ACT4 that is an end portion of the address electrode AE drawn to the vicinity of the edge portion (outer peripheral portion OT) of the rear substrate portion 14 is connected to a connection portion ACT5 provided at one end of the address electrode flexible cable AFC2.
  • the address electrode flexible cable AFC2 since the address electrode AE is provided on the back substrate 14 (more specifically, on the glass base RS), the end connected to the address electrode AE is provided. Is arranged toward the inner peripheral side of the PDP 10. Therefore, the connection portion ACT3 provided at the other end of the address electrode flexible cable AFC2 is connected to the address driver ADRV by folding the address electrode flexible cable AFC2 into a U shape outside the outer periphery of the PDP 10.
  • a silicon resin SR or the like is provided between the address electrode flexible cable AFC2 and the side surface of the rear substrate portion 14. It has been. Further, on the rear substrate portion 14, for example, a silicon resin SR that covers the connection portion ACT4 is provided to prevent the connection portion between the connection portion ACT4 and the address electrode flexible cable AFC2 from absorbing moisture. . In addition, the edge part by the side of the connection part ACT4 in the front substrate part 12 is located inside the connection part ACT4 in order to expose the connection part ACT4 to the exterior of PDP10.
  • the edge part on the connection part ACT4 side in the back substrate part 14 is located outside the edge part of the front substrate part 12.
  • the edge of the rear substrate portion 14 where the connection portion ACT4 is not provided may be at the same position as the edge of the front substrate portion 12.
  • connection portions XCT3 and YCT3 of the flexible cables XFC and YFC do not fold back the flexible cables XFC and YFC and do not contact the back substrate portion 14, respectively. It is connected to XDRV and YDRV. Thereby, disconnection between the connection parts XCT1 and YCT1 of the electrodes XE and YE and the drivers XDRV and YDRV is prevented, and the reliability of the PDP device is improved. Also in this case, the thickness around the edge along the second direction D2 of the PDP device can be reduced, and the size of the PDP device (for example, the size of the PDP device in the first direction D1) can be reduced. That is, also in this case, the same effect as that of the above-described embodiment can be obtained except for the effect of the address electrode flexible cable AFC of the above-described embodiment.
  • the chamfered portions CF10, CF20, and CF30 are formed by sandblasting.
  • the present invention is not limited to such an embodiment.
  • the chamfered portions CF10, CF20, and CF30 may be formed by laser ablation.
  • the chamfered portions CF10, CF20, and CF30 may be formed using a glass beveling technique. Also in this case, the same effect as the above-described embodiment can be obtained.
  • the present invention can be applied to a plasma display device and a method for manufacturing a plasma display device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing & Machinery (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

A plasma display device has a plasma display panel (PDP), a first drive circuit, and a first flexible cable. The PDP has a first substrate with a plurality of first electrodes which is extended in a first direction and a second substrate facing the first substrate through a discharge space. The second substrate has a first chamfered portion at one of marginal portions along a second direction intersecting the first direction. For example, one end of the first flexible cable is connected to the first electrodes on the periphery of the side on which the first chamfered portion is provided out of the periphery of the PDP. Further, the other end of the first flexible cable is connected to the first drive circuit on the inside of the periphery of the PDP without requiring the first flexible cable to be folded back and without requiring the first flexible cable to be in contact with the second substrate. This makes it possible to provide a flat PDP device.

Description

プラズマディスプレイ装置およびプラズマディスプレイ装置の製造方法Plasma display device and method of manufacturing plasma display device
 本発明は、プラズマディスプレイ装置およびプラズマディスプレイ装置の製造方法に関する。 The present invention relates to a plasma display device and a method for manufacturing the plasma display device.
 プラズマディスプレイ装置(PDP装置)は、プラズマディスプレイパネル(PDP)とPDPを駆動する駆動部を有している。PDPは、2枚のガラス基板(前面ガラス基板および背面ガラス基板)を互いに貼り合わせて構成されており、ガラス基板の間に形成される空間(放電空間)に放電を発生させることで画像を表示する。画像における画素に対応するセルは、自発光型であり、放電により発生する紫外線を受けて赤、緑、青の可視光を発生する蛍光体が塗布されている。 The plasma display device (PDP device) has a plasma display panel (PDP) and a drive unit for driving the PDP. A PDP is composed of two glass substrates (a front glass substrate and a back glass substrate) bonded together, and displays an image by generating a discharge in a space (discharge space) formed between the glass substrates. To do. The cells corresponding to the pixels in the image are self-luminous, and are coated with phosphors that generate red, green, and blue visible light in response to ultraviolet rays generated by discharge.
 例えば、3電極構造のPDPは、X電極およびY電極間でサステイン放電を発生させることで、画像を表示する。サステイン放電を発生させるセル(点灯させるセル)は、例えば、Y電極およびアドレス電極間で選択的にアドレス放電を発生させることにより、選択される。 For example, a three-electrode PDP displays an image by generating a sustain discharge between the X electrode and the Y electrode. A cell that generates a sustain discharge (a cell to be lit) is selected by, for example, selectively generating an address discharge between the Y electrode and the address electrode.
 また、駆動部は、X電極、Y電極およびアドレス電極に電圧をそれぞれ印加する駆動回路を有している。この種のPDP装置では、駆動回路は、フレキシブル基板(フレキシブルケーブル)により、各電極に接続されている(例えば、特許文献1参照)。一般的に、駆動回路は、PDPの背面側に配置されている。このため、PDPの外周部から外側に延在するフレキシブルケーブルは、U字状に折り返されて、駆動回路に接続されている。
特開2006-301317号公報
The drive unit has a drive circuit that applies voltages to the X electrode, the Y electrode, and the address electrode. In this type of PDP device, the drive circuit is connected to each electrode by a flexible substrate (flexible cable) (see, for example, Patent Document 1). Generally, the drive circuit is disposed on the back side of the PDP. For this reason, the flexible cable extending outward from the outer peripheral portion of the PDP is folded back in a U shape and connected to the drive circuit.
JP 2006-301317 A
 フレキシブルケーブルが折り返された構成では、フレキシブルケーブル自体が断線することを防止するために、フレキシブルケーブルを緩やかに曲げるためのスペースを確保する必要がある。このため、PDPに対するPDP装置のサイズ(厚さ、幅等)が大きくなり、製造コストが増加する。 In the configuration where the flexible cable is folded, it is necessary to secure a space for gently bending the flexible cable in order to prevent the flexible cable itself from being disconnected. For this reason, the size (thickness, width, etc.) of the PDP device with respect to the PDP increases, and the manufacturing cost increases.
 本発明の目的は、薄型のPDP装置を提供することである。また、本発明の目的は、PDPと駆動回路との間の断線を防止し、PDP装置の信頼性を向上させることである。 An object of the present invention is to provide a thin PDP device. Another object of the present invention is to prevent disconnection between the PDP and the drive circuit and improve the reliability of the PDP device.
 プラズマディスプレイ装置は、プラズマディスプレイパネル(PDP)と、第1駆動回路と、第1フレキシブルケーブルとを有している。PDPは、第1方向に延在する複数の第1電極が設けられた第1基板と、放電空間を介して第1基板に対向する第2基板とを有している。なお、第2基板は、第1基板に対向する面の反対側の面の縁部のうち、第1方向と交差する第2方向に沿う縁部の1つに第1面取り部を有している。そして、第1電極に電圧を印加する第1駆動回路は、第1フレキシブルケーブルにより、第1電極に電気的に接続される。例えば、第1フレキシブルケーブルの一端は、PDPの外周部のうち、第1面取り部が設けられた側の外周部で、第1電極に接続される。また、第1フレキシブルケーブルの他端は、第1フレキシブルケーブルを折り返すことなく、かつ、第1フレキシブルケーブルを第2基板に接触させることなく、PDPの外周より内側で第1駆動回路に接続される。 The plasma display device has a plasma display panel (PDP), a first drive circuit, and a first flexible cable. The PDP has a first substrate provided with a plurality of first electrodes extending in a first direction, and a second substrate facing the first substrate through a discharge space. The second substrate has a first chamfered portion at one of the edge portions along the second direction intersecting the first direction among the edge portions of the surface opposite to the surface facing the first substrate. Yes. And the 1st drive circuit which applies a voltage to the 1st electrode is electrically connected to the 1st electrode by the 1st flexible cable. For example, one end of the first flexible cable is connected to the first electrode at the outer peripheral portion on the side where the first chamfered portion is provided in the outer peripheral portion of the PDP. Further, the other end of the first flexible cable is connected to the first drive circuit inside the outer periphery of the PDP without folding the first flexible cable and without bringing the first flexible cable into contact with the second substrate. .
 本発明では、薄型のPDP装置を提供できる。また、本発明では、PDPと駆動回路との間の断線を防止でき、PDP装置の信頼性を向上できる。 In the present invention, a thin PDP device can be provided. In the present invention, disconnection between the PDP and the drive circuit can be prevented, and the reliability of the PDP device can be improved.
一実施形態におけるPDP装置を示す図である。It is a figure which shows the PDP apparatus in one Embodiment. 図1に示したPDPの要部を示す図である。It is a figure which shows the principal part of PDP shown in FIG. 図1に示した回路部の概要を示す図である。It is a figure which shows the outline | summary of the circuit part shown in FIG. 画像表示面と反対側から見たフレキシブルケーブルの状態の一例を示す図である。It is a figure which shows an example of the state of the flexible cable seen from the image display surface and the other side. 図4に示したアドレスドライバが配置された側と反対側の方向から見た第1方向に沿うPDP装置の側面の概要を示す図である。FIG. 5 is a diagram showing an outline of a side surface of a PDP device along a first direction viewed from a direction opposite to a side on which the address driver shown in FIG. 図4に示したYドライバが配置された側から見た第2方向に沿うPDP装置の側面の概要を示す図である。It is a figure which shows the outline | summary of the side surface of the PDP apparatus in alignment with the 2nd direction seen from the side by which the Y driver shown in FIG. 4 is arrange | positioned. 図5に示したY電極用フレキシブルケーブルとY電極との接続部周辺の第1方向に沿う断面の一例を示す図である。It is a figure which shows an example of the cross section along the 1st direction around the connection part of the flexible cable for Y electrodes shown in FIG. 5, and a Y electrode. 第1面取り部の製造方法の一例を示す図である。It is a figure which shows an example of the manufacturing method of a 1st chamfer part. 別の実施形態における第1方向に沿うPDP装置の側面の概要を示す図である。It is a figure which shows the outline | summary of the side surface of the PDP apparatus in the 1st direction in another embodiment. 図9に示した実施形態における第2方向に沿うPDP装置の側面の概要を示す図である。It is a figure which shows the outline | summary of the side surface of the PDP apparatus in the 2nd direction in embodiment shown in FIG. 図7に示した第1面取り部の変形例の一例を示す図である。It is a figure which shows an example of the modification of the 1st chamfering part shown in FIG. 図7に示した第1面取り部の別の変形例を示す図である。It is a figure which shows another modification of the 1st chamfering part shown in FIG. 図7に示した第1面取り部の別の変形例を示す図である。It is a figure which shows another modification of the 1st chamfering part shown in FIG. 図2に示したPDPの変形例の一例を示す図である。It is a figure which shows an example of the modification of PDP shown in FIG. 図14に示したPDPを用いたPDP装置における第2方向に沿う側面の概要を示す図である。It is a figure which shows the outline | summary of the side surface in a 2nd direction in the PDP apparatus using PDP shown in FIG.
 以下、本発明の実施形態を図面を用いて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、本発明の一実施形態を示している。プラズマディスプレイ装置(以下、PDP装置とも称する)は、四角板形状を有するプラズマディスプレイパネル10(以下、PDPとも称する)、PDP10の画像表示面16側(光の出力側)に設けられる光学フィルタ20、PDP10の画像表示面16側に配置された前筐体30、PDP10の背面18側に配置された後筐体40およびベースシャーシ50、ベースシャーシ50の後筐体40側に取り付けられ、PDP10を駆動するための回路部60、およびPDP10をベースシャーシ50に貼り付けるための両面接着シート70を有している。回路部60は、複数の部品で構成されるため、図では、破線の箱で示している。なお、回路部60は、図示しないフレキシブルケーブル(例えば、後述する図4に示すフレキシブルケーブルXFC、YFC、AFC)により、PDP10に電気的に接続されている。 FIG. 1 shows an embodiment of the present invention. A plasma display device (hereinafter also referred to as a PDP device) includes a plasma display panel 10 having a square plate shape (hereinafter also referred to as a PDP), an optical filter 20 provided on the image display surface 16 side (light output side) of the PDP 10, A front housing 30 disposed on the image display surface 16 side of the PDP 10, a rear housing 40 and a base chassis 50 disposed on the back surface 18 side of the PDP 10, and attached to the rear housing 40 side of the base chassis 50 to drive the PDP 10. A double-sided adhesive sheet 70 for attaching the PDP 10 to the base chassis 50. Since the circuit unit 60 includes a plurality of components, the circuit unit 60 is indicated by a dashed box in the figure. The circuit unit 60 is electrically connected to the PDP 10 by a flexible cable (not shown) (for example, flexible cables XFC, YFC, AFC shown in FIG. 4 described later).
 PDP10は、画像表示面16を構成する前面基板部12(第1基板)と、前面基板部12に対向する背面基板部14(第2基板)とにより構成されている。前面基板部12と背面基板部14の間に図示しない放電空間(セル)が形成されている。前面基板部12および背面基板部14は、例えば、ガラス基板により形成されている。光学フィルタ20は、前筐体30の開口部32に取り付けられる保護ガラス(図示せず)に貼付される。なお、光学フィルタ20は、電磁波を遮蔽する機能を有してもよい。また、光学フィルタ20は、保護ガラスではなく、PDP10の画像表示面16側に直接貼付されてもよい。 The PDP 10 includes a front substrate portion 12 (first substrate) that forms the image display surface 16 and a rear substrate portion 14 (second substrate) that faces the front substrate portion 12. A discharge space (cell) (not shown) is formed between the front substrate portion 12 and the rear substrate portion 14. The front substrate unit 12 and the back substrate unit 14 are formed of, for example, a glass substrate. The optical filter 20 is affixed to a protective glass (not shown) attached to the opening 32 of the front housing 30. The optical filter 20 may have a function of shielding electromagnetic waves. The optical filter 20 may be directly attached to the image display surface 16 side of the PDP 10 instead of the protective glass.
 図2は、図1に示したPDP10の要部の詳細を示している。図中の矢印D1は、第1方向D1を示し、矢印D2は、第1方向D1に画像表示面に平行な面内で直交する第2方向D2を示している。上述したように、前面基板部12と背面基板部14の間(より詳細には、背面基板部14の凹部)に放電空間DSが形成される。 FIG. 2 shows details of the main part of the PDP 10 shown in FIG. An arrow D1 in the drawing indicates the first direction D1, and an arrow D2 indicates the second direction D2 orthogonal to the first direction D1 in a plane parallel to the image display surface. As described above, the discharge space DS is formed between the front substrate portion 12 and the rear substrate portion 14 (more specifically, the concave portion of the rear substrate portion 14).
 前面基板部12は、ガラス基材FSのガラス基材RSに対向する面上(図では下側)に第1方向D1に延在して設けられ、互いに間隔を置いて配置された複数のXバス電極XbおよびYバス電極Ybを有している。また、Xバス電極Xbには、Xバス電極XbからYバス電極Ybに向けて第2方向D2に延在するX透明電極Xtが接続されている。Yバス電極Ybには、Yバス電極YbからXバス電極Xbに向けて第2方向D2に延在するY透明電極Ytが接続されている。図の例では、X透明電極XtおよびY透明電極Ytは、第2方向D2に沿って対向している。 The front substrate portion 12 is provided extending in the first direction D1 on the surface of the glass substrate FS that faces the glass substrate RS (the lower side in the figure), and a plurality of Xs arranged at intervals from each other. A bus electrode Xb and a Y bus electrode Yb are provided. The X bus electrode Xb is connected with an X transparent electrode Xt extending in the second direction D2 from the X bus electrode Xb to the Y bus electrode Yb. A Y transparent electrode Yt extending in the second direction D2 from the Y bus electrode Yb to the X bus electrode Xb is connected to the Y bus electrode Yb. In the illustrated example, the X transparent electrode Xt and the Y transparent electrode Yt face each other along the second direction D2.
 例えば、Xバス電極XbおよびYバス電極Ybは、金属材料等で形成された不透明な電極であり、X透明電極XtおよびY透明電極Ytは、ITO膜等で形成された可視光を透過する透明電極である。そして、X電極XE(第2電極、維持電極)は、Xバス電極XbおよびX透明電極Xtにより構成され、Y電極YE(第1電極、走査電極)は、Yバス電極YbおよびY透明電極Ytにより構成され、X電極XEと対をなしている。そして、互いに対をなすX電極XEおよびY電極YE間(より具体的には、X透明電極XtおよびY透明電極Yt間)で繰り返して放電(サステイン放電)を発生させる。 For example, the X bus electrode Xb and the Y bus electrode Yb are opaque electrodes formed of a metal material or the like, and the X transparent electrode Xt and the Y transparent electrode Yt are transparent that transmit visible light formed of an ITO film or the like. Electrode. The X electrode XE (second electrode, sustain electrode) is configured by the X bus electrode Xb and the X transparent electrode Xt, and the Y electrode YE (first electrode, scan electrode) is configured by the Y bus electrode Yb and the Y transparent electrode Yt. And is paired with the X electrode XE. Then, a discharge (sustain discharge) is repeatedly generated between the X electrode XE and the Y electrode YE paired with each other (more specifically, between the X transparent electrode Xt and the Y transparent electrode Yt).
 なお、透明電極XtおよびYtは、それぞれが接続されるバス電極XbおよびYbとガラス基材FSとの間に全面に配置されてもよい。また、バス電極XbおよびYbと同じ材料(金属材料等)で、バス電極XbおよびYbと一体の電極が透明電極XtおよびYtの代わりに形成されてもよい。 The transparent electrodes Xt and Yt may be disposed on the entire surface between the bus electrodes Xb and Yb to which the transparent electrodes Xt and Yt are connected and the glass substrate FS. Further, an electrode integral with the bus electrodes Xb and Yb may be formed in place of the transparent electrodes Xt and Yt by the same material (metal material or the like) as the bus electrodes Xb and Yb.
 電極Xb、Xt、Yb、Ytは、誘電体層DLに覆われている。例えば、誘電体層DLは、CVD法により形成された二酸化シリコン膜等の絶縁膜である。そして、誘電体層DL上(図では下側)には、バス電極Xb、Ybの直交方向(第2方向D2)に延在する複数のアドレス電極AE(第3電極)が設けられている。このように、この実施形態のPDPは、第1方向D1に延在する電極XE、YEと第2方向D2に延在するアドレス電極AEとが前面基板部12に設けられている。 The electrodes Xb, Xt, Yb, Yt are covered with the dielectric layer DL. For example, the dielectric layer DL is an insulating film such as a silicon dioxide film formed by a CVD method. A plurality of address electrodes AE (third electrodes) extending in the orthogonal direction (second direction D2) of the bus electrodes Xb and Yb are provided on the dielectric layer DL (lower side in the drawing). Thus, in the PDP of this embodiment, the electrodes XE and YE extending in the first direction D1 and the address electrode AE extending in the second direction D2 are provided on the front substrate portion 12.
 アドレス電極AEおよび誘電体層DLは、保護層PLに覆われている。例えば、保護層PLは、放電を容易に発生させるために、陽イオンの衝突による2次電子の放出特性の高いMgO膜で形成される。 The address electrode AE and the dielectric layer DL are covered with a protective layer PL. For example, the protective layer PL is formed of an MgO film having high secondary electron emission characteristics due to cation collision in order to easily generate discharge.
 放電空間DSを介して前面基板部12に対向する背面基板部14は、ガラス基材RS上に互いに平行に形成され、バス電極Xb、Ybに直交する方向(第2方向D2)に延在する隔壁(バリアリブ)BRを有している。すなわち、隔壁BRは、ガラス基材RSのガラス基材FSに対向する面上に設けられ、第1方向D1と交差する第2方向D2に延在し、間隔を置いて配置されている。隔壁BRにより、セルの側壁が構成される。さらに、隔壁BRの側面と、互いに隣接する隔壁BRの間のガラス基材RS上とには、紫外線により励起されて赤(R)、緑(G)、青(B)の可視光を発生する蛍光体PHr、PHg、PHbが、それぞれ塗布されている。 The back substrate portion 14 facing the front substrate portion 12 through the discharge space DS is formed in parallel with each other on the glass base RS and extends in a direction (second direction D2) orthogonal to the bus electrodes Xb and Yb. It has a partition wall (barrier rib) BR. That is, the barrier ribs BR are provided on the surface of the glass substrate RS that faces the glass substrate FS, extend in the second direction D2 that intersects the first direction D1, and are arranged at intervals. A partition wall BR constitutes a side wall of the cell. Further, visible light of red (R), green (G), and blue (B) is generated on the side surface of the partition wall BR and the glass substrate RS between the adjacent partition walls BR by being excited by ultraviolet rays. Phosphors PHr, PHg, and PHb are respectively applied.
 PDP10の1つの画素は、赤、緑および青の光を発生する3つのセルにより構成される。ここで、1つのセル(一色の画素)は、バス電極Xb、Ybと隔壁BRとで囲われる領域に形成される。このように、PDP10は、画像を表示するためにセルをマトリックス状に配置し、かつ互いに異なる色の光を発生する複数種のセルを交互に配列して構成されている。特に図示していないが、バス電極Xb、Ybに沿って形成されたセルにより、表示ラインが構成される。 One pixel of the PDP 10 is composed of three cells that generate red, green, and blue light. Here, one cell (one color pixel) is formed in a region surrounded by the bus electrodes Xb and Yb and the partition wall BR. As described above, the PDP 10 is configured by arranging cells in a matrix to display an image and alternately arranging a plurality of types of cells that generate light of different colors. Although not particularly illustrated, a display line is constituted by cells formed along the bus electrodes Xb and Yb.
 PDP10は、前面基板部12および背面基板部14を、保護層PLと隔壁BRが互いに接するように貼り合わせ、Ne、Xe等の放電ガスを放電空間DSに封入することで構成される。 The PDP 10 is configured by bonding the front substrate portion 12 and the rear substrate portion 14 so that the protective layer PL and the partition wall BR are in contact with each other, and enclosing a discharge gas such as Ne or Xe in the discharge space DS.
 図3は、図1に示した回路部60の概要を示している。回路部60は、制御部CNT、XドライバXDRV(第2駆動回路)、YドライバYDRV(第1駆動回路)、アドレスドライバADRV(第3駆動回路)および電源部PWRを有している。電源部PWRは、ドライバYDRV、XDRV、ADRVに供給する電源電圧-Vsc、Vs/2、-Vs/2、Vsa等を生成する。 FIG. 3 shows an outline of the circuit unit 60 shown in FIG. The circuit unit 60 includes a control unit CNT, an X driver XDRV (second drive circuit), a Y driver YDRV (first drive circuit), an address driver ADRV (third drive circuit), and a power supply unit PWR. The power supply unit PWR generates power supply voltages −Vsc, Vs / 2, −Vs / 2, Vsa and the like to be supplied to the drivers YDRV, XDRV, and ADRV.
 制御部CNTは、ドライバXDRV、YDRV、ADRVの動作を制御する。例えば、制御部CNTは、画像データR0-R7、G0-G7、B0-B7に基づいて使用するサブフィールドを選択し、ドライバYDRV、XDRV、ADRVに制御信号YCNT、XCNT、ACNTを出力する。ここで、サブフィールドは、PDP10の1画面を表示するための1フィールドが分割されたフィールドであり、サブフィールド毎にサステイン放電の回数が設定されている。そして、画素を構成するセル毎に、使用するサブフィールドを選択することにより、多階調の画像が表示される。例えば、サブフィールドは、点灯させるセル(サステイン放電を発生させるセル)を選択するアドレス期間およびアドレス期間に選択されたセルでサステイン放電を発生させるサステイン期間等を含んで構成される。 The control unit CNT controls the operation of the drivers XDRV, YDRV, and ADRV. For example, the control unit CNT selects a subfield to be used based on the image data R0-R7, G0-G7, B0-B7, and outputs control signals YCNT, XCNT, and ACNT to the drivers YDRV, XDRV, and ADRV. Here, the subfield is a field obtained by dividing one field for displaying one screen of the PDP 10, and the number of sustain discharges is set for each subfield. Then, by selecting a subfield to be used for each cell constituting the pixel, a multi-gradation image is displayed. For example, the subfield includes an address period for selecting a cell to be lit (a cell for generating a sustain discharge), a sustain period for generating a sustain discharge in the cell selected in the address period, and the like.
 この実施形態では、ドライバXDRV、YDRV、ADRVは、後述する図4に示すフレキシブルケーブルXFC、YFC、AFCにより、電極XE、YE、AEにそれぞれ電気的に接続されている。そして、ドライバXDRV、YDRV、ADRVは、PDP10を駆動する駆動部として動作する。 In this embodiment, the drivers XDRV, YDRV, and ADRV are electrically connected to the electrodes XE, YE, and AE, respectively, by flexible cables XFC, YFC, and AFC shown in FIG. The drivers XDRV, YDRV, and ADRV operate as a drive unit that drives the PDP 10.
 例えば、XドライバXDRVは、サステイン期間に、電圧-Vs/2、Vs/2(負および正のサステインパルス)をX電極XEに交互に印加する。また、YドライバYDRVは、サステイン期間では、X電極XEに印加される電圧と異なる極性の電圧Vs/2、-Vs/2(正および負のサステインパルス)をY電極YEに交互に印加し、アドレス期間では、電圧-Vsc(スキャンパルス)をY電極YEに選択的に印加する。アドレスドライバADRVは、アドレス期間に、アドレス電極AEに選択的に電圧Vsa(アドレスパルス)を印加する。 For example, the X driver XDRV alternately applies voltages −Vs / 2 and Vs / 2 (negative and positive sustain pulses) to the X electrode XE during the sustain period. The Y driver YDRV alternately applies voltages Vs / 2 and −Vs / 2 (positive and negative sustain pulses) having different polarities from the voltage applied to the X electrode XE to the Y electrode YE during the sustain period, In the address period, the voltage −Vsc (scan pulse) is selectively applied to the Y electrode YE. The address driver ADRV selectively applies a voltage Vsa (address pulse) to the address electrode AE during the address period.
 スキャンパルスとアドレスパルスにより選択されたセルは、Y電極YEとアドレス電極AE間で一時的に放電(アドレス放電)が発生する。これにより、アドレス期間では、サステイン期間に点灯させるセルが選択される。また、サステイン期間では、互いに極性の異なるサステインパルスが、X電極XEおよびY電極YEに繰り返して印加されることにより、サステイン期間に点灯したセルの放電(サステイン放電)が繰り返し行われる。 In the cell selected by the scan pulse and the address pulse, a discharge (address discharge) is temporarily generated between the Y electrode YE and the address electrode AE. Thereby, in the address period, a cell to be lit in the sustain period is selected. In the sustain period, the sustain pulses having different polarities are repeatedly applied to the X electrode XE and the Y electrode YE, so that the discharge of the cells lit in the sustain period (sustain discharge) is repeatedly performed.
 図4は、画像表示面と反対側(図1の下側)から見たフレキシブルケーブルXFC、YFC、AFCの状態の一例を示している。図中の矢印D1、D2の意味は、上述した図2と同じである。なお、図4は、上述した図1に示した光学フィルタ20、前筐体30、後筐体40等の記載を省略している。ここで、例えば、Y電極用フレキシブルケーブルYFC(第1フレキシブルケーブル)、X電極用フレキシブルケーブルXFC(第2フレキシブルケーブル))およびアドレス電極用フレキシブルケーブルAFC(第3フレキシブルケーブル)は、ベースフィルム上に金属材料の配線が形成され、他の部品等に接続される接続部以外の配線部分に保護フィルムが被せられた変形可能な配線である。 FIG. 4 shows an example of the state of the flexible cables XFC, YFC, and AFC viewed from the side opposite to the image display surface (the lower side in FIG. 1). The meanings of the arrows D1 and D2 in the figure are the same as those in FIG. In FIG. 4, the description of the optical filter 20, the front casing 30, the rear casing 40, and the like shown in FIG. 1 is omitted. Here, for example, the Y electrode flexible cable YFC (first flexible cable), the X electrode flexible cable XFC (second flexible cable)) and the address electrode flexible cable AFC (third flexible cable) are formed on the base film. It is a deformable wiring in which a wiring made of a metal material is formed, and a protective film is covered on a wiring portion other than a connection portion connected to another component or the like.
 回路部60は、背面基板部14の縁部より内側で、ベースシャーシ50の背面側(上述した図1に示した後筐体40側)に取り付けられ、背面基板部14の縁部は、前面基板部12の縁部より内側に位置している。そして、例えば、Y電極YEは、前面基板部12の第2方向D2に沿う縁部付近(図4では、左側の外周部OT)まで引き出され、X電極XEは、前面基板部12のY電極YEが引き出された縁部と反対側の縁部付近(図4では、右側の外周部OT)まで引き出されている。また、アドレス電極AEは、前面基板部12の第1方向D1に沿う縁部付近(図4では、下側の外周部OT)まで引き出されている。なお、背面基板部14の縁部のうち、電極YE、XE、AEが引き出された側の縁部には、後述する図5に示す面取り部CF10、CF20、CF30がそれぞれ設けられている。 The circuit unit 60 is attached to the back side of the base chassis 50 (on the rear housing 40 side shown in FIG. 1 described above) inside the edge of the back substrate part 14, and the edge of the back substrate part 14 is the front surface. It is located inside the edge of the substrate part 12. For example, the Y electrode YE is pulled out to the vicinity of the edge along the second direction D2 of the front substrate portion 12 (the outer peripheral portion OT on the left side in FIG. 4), and the X electrode XE is the Y electrode of the front substrate portion 12. YE is pulled out to the vicinity of the edge opposite to the edge from which the YE was pulled out (in FIG. 4, the right outer peripheral portion OT). Further, the address electrode AE is drawn out to the vicinity of the edge portion along the first direction D1 of the front substrate portion 12 (in FIG. 4, the lower outer peripheral portion OT). In addition, chamfered portions CF10, CF20, and CF30 shown in FIG. 5 described later are provided on the edge portion of the back substrate portion 14 on the side where the electrodes YE, XE, and AE are drawn.
 Y電極用フレキシブルケーブルYFCは、ドライバYDRVと電極YEとを電気的に接続し、X電極用フレキシブルケーブルXFCは、ドライバXDRVと電極XEとを電気的に接続し、アドレス電極用フレキシブルケーブルAFCは、ドライバADRVと電極AEとを電気的に接続している。例えば、フレキシブルケーブルXFC、YFC、AFCの一端は、PDP10の外周部OTで、電極XE、YE、AEにそれぞれ接続され、フレキシブルケーブルXFC、YFC、AFCの他端は、PDP10の外周より内側で、ドライバXDRV、YDRV、ADRVにそれぞれ接続されている。すなわち、上述した図1で説明したように、Y電極用フレキシブルケーブルYFC、X電極用フレキシブルケーブルXFCおよびアドレス電極用フレキシブルケーブルAFCは、回路部60とPDP10とを電気的に接続している。 Y electrode flexible cable YFC electrically connects driver YDRV and electrode YE, X electrode flexible cable XFC electrically connects driver XDRV and electrode XE, and address electrode flexible cable AFC The driver ADRV and the electrode AE are electrically connected. For example, one end of the flexible cables XFC, YFC, and AFC is connected to the electrodes XE, YE, and AE at the outer peripheral portion OT of the PDP 10, and the other ends of the flexible cables XFC, YFC, and AFC are inside the outer periphery of the PDP 10, The drivers are connected to XDRV, YDRV, and ADRV, respectively. That is, as described in FIG. 1 described above, the Y electrode flexible cable YFC, the X electrode flexible cable XFC, and the address electrode flexible cable AFC electrically connect the circuit unit 60 and the PDP 10.
 図5は、図4に示したアドレスドライバADRVが配置された側と反対側の方向から見た第1方向D1に沿うPDP装置の側面の概要を示している。図中の矢印D1の意味は、上述した図2と同じである。なお、図4は、上述した図1に示した光学フィルタ20、前筐体30、後筐体40等の記載を省略している。 FIG. 5 shows an outline of the side surface of the PDP device along the first direction D1 as viewed from the direction opposite to the side where the address driver ADRV shown in FIG. 4 is arranged. The meaning of the arrow D1 in the figure is the same as in FIG. In FIG. 4, the description of the optical filter 20, the front casing 30, the rear casing 40, and the like shown in FIG. 1 is omitted.
 背面基板部14は、前面基板部12に対向する面の反対側(図5では、下側)の面の縁部のうち、第2方向D2に沿う縁部の1つ(図5では、左側)に第1面取り部CF10を有している。また、背面基板部14は、前面基板部12に対向する面の反対側の面の縁部のうち、第1面取り部CF10が設けられた側と反対側(図5では、右側)の縁部に第2面取り部CF20を有している。 The back substrate portion 14 is one of the edges along the second direction D2 (the left side in FIG. 5) among the edges of the surface opposite to the surface facing the front substrate portion 12 (the lower side in FIG. 5). ) Has a first chamfered portion CF10. Further, the rear substrate portion 14 is an edge portion on the side opposite to the side on which the first chamfered portion CF10 is provided (on the right side in FIG. 5) of the edge portion on the opposite side of the surface facing the front substrate portion 12. Has a second chamfered portion CF20.
 例えば、第1面取り部CF10は、背面基板部14のベースシャーシ50側の面(前面基板部12に対向する面の反対側の面)の縁部のうち、Y電極YEが引き出された側の縁部の角を面取りして設けられる。また、例えば、第2面取り部CF20は、背面基板部14のベースシャーシ50側の面(前面基板部12に対向する面の反対側の面)の縁部のうち、X電極XEが引き出された側の縁部の角を面取りして設けられる。 For example, the first chamfered portion CF10 is on the side where the Y electrode YE is drawn out of the edge of the surface on the base chassis 50 side of the back substrate portion 14 (the surface opposite to the surface facing the front substrate portion 12). Chamfered at the corners of the edge. Further, for example, in the second chamfered portion CF20, the X electrode XE is drawn out from the edge of the surface on the base chassis 50 side of the back substrate portion 14 (the surface opposite to the surface facing the front substrate portion 12). The corners of the side edges are chamfered.
 そして、Y電極用フレキシブルケーブルYFCの一端に設けられた接続部YCT2は、第1面取り部CF10が設けられた側の外周部OTで、Y電極YEに接続されている。換言すれば、前面基板部12の縁部付近まで引き出されたY電極YEの端部である接続部YCT1は、Y電極用フレキシブルケーブルYFCの接続部YCT2に接続されている。 The connecting portion YCT2 provided at one end of the Y electrode flexible cable YFC is connected to the Y electrode YE at the outer peripheral portion OT on the side where the first chamfered portion CF10 is provided. In other words, the connection portion YCT1 that is the end portion of the Y electrode YE drawn to the vicinity of the edge of the front substrate portion 12 is connected to the connection portion YCT2 of the Y electrode flexible cable YFC.
 また、Y電極用フレキシブルケーブルYFCの他端に設けられた接続部YCT3は、Y電極用フレキシブルケーブルYFCを折り返すことなく、かつ、Y電極用フレキシブルケーブルYFCを背面基板部14に接触させることなく、PDP10の外周より内側でYドライバYDRVに接続されている。すなわち、Y電極用フレキシブルケーブルYFCは、接続部YCT2が設けられる端部を外側に向けて配置され、かつ、接続部YCT2からPDP10の内側に設けられたYドライバYDRVまで、PDP10の外側(接続部YCT1と接続部YCT2との接続部の外側)でU字状に折り返されることなく延在して設けられている。 Further, the connecting portion YCT3 provided at the other end of the Y electrode flexible cable YFC does not fold back the Y electrode flexible cable YFC, and without bringing the Y electrode flexible cable YFC into contact with the rear substrate portion 14, It is connected to the Y driver YDRV inside the outer periphery of the PDP 10. That is, the Y electrode flexible cable YFC is arranged with the end portion where the connecting portion YCT2 is provided facing outward, and from the connecting portion YCT2 to the Y driver YDRV provided inside the PDP 10, the outer side (connecting portion) It extends without being folded back into a U-shape at the outer side of the connecting portion between YCT1 and connecting portion YCT2.
 これにより、この実施形態では、Y電極用フレキシブルケーブルYFCをU字状に折り返すことによるY電極用フレキシブルケーブルYFCの断線を防止できる。さらに、この実施形態では、Y電極用フレキシブルケーブルYFCがU字状に折り返されないため、接続部YCT1と接続部YCT2とが互いに離れる方向に働く力を小さくでき、接続部YCT1と接続部YCT2との接続が不安定(非接続状態)になることを防止できる。 Thus, in this embodiment, disconnection of the Y electrode flexible cable YFC caused by folding the Y electrode flexible cable YFC into a U shape can be prevented. Further, in this embodiment, since the Y electrode flexible cable YFC is not folded back in a U shape, the force acting in the direction in which the connecting portion YCT1 and the connecting portion YCT2 are separated from each other can be reduced, and the connecting portion YCT1 and the connecting portion YCT2 Can be prevented from becoming unstable (disconnected state).
 ここで、第1面取り部CF10を背面基板部14に設けずに、Y電極用フレキシブルケーブルYFCとYドライバYDRVとを接続する構成が、本発明の過程で考えられた。しかし、この構成では、Y電極用フレキシブルケーブルYFCを折り返すことなく、Y電極用フレキシブルケーブルYFCの接続部YCT3をYドライバYDRVに接続したときに、Y電極用フレキシブルケーブルYFCが背面基板部14の角に当たるおそれがある。例えば、背面基板部14の角とY電極用フレキシブルケーブルYFCとが長時間接触している場合、Y電極用フレキシブルケーブルYFCは、背面基板部14の角により、切断されるおそれがある。 Here, a configuration in which the Y electrode flexible cable YFC and the Y driver YDRV are connected without providing the first chamfered portion CF10 on the back substrate portion 14 was considered in the process of the present invention. However, in this configuration, when the connecting portion YCT3 of the Y electrode flexible cable YFC is connected to the Y driver YDRV without turning back the Y electrode flexible cable YFC, the Y electrode flexible cable YFC is connected to the corner of the rear substrate portion 14. There is a risk of hitting. For example, when the corner of the back substrate portion 14 and the Y electrode flexible cable YFC are in contact with each other for a long time, the Y electrode flexible cable YFC may be cut by the corner of the back substrate portion 14.
 これに対し、この実施形態では、背面基板部14は、Y電極用フレキシブルケーブルYFCに隣接する縁部の角を面取りして設けられた第1面取り部CF10を有している。これにより、この実施形態では、Y電極用フレキシブルケーブルYFCが背面基板部14の角に当たることを防止でき、Y電極用フレキシブルケーブルYFCの断線を防止できる。すなわち、この実施形態では、Y電極YEの接続部YCT1とYドライバYDRVとの間の断線を防止でき、PDP装置の信頼性を向上できる。 On the other hand, in this embodiment, the back substrate portion 14 has a first chamfered portion CF10 provided by chamfering the corner of the edge adjacent to the Y electrode flexible cable YFC. Thereby, in this embodiment, it can prevent that the Y electrode flexible cable YFC hits the corner | angular of the back substrate part 14, and can prevent the disconnection of the Y electrode flexible cable YFC. That is, in this embodiment, disconnection between the connection part YCT1 of the Y electrode YE and the Y driver YDRV can be prevented, and the reliability of the PDP device can be improved.
 前面基板部12の縁部付近まで引き出されたX電極XEの端部である接続部XCT1は、X電極用フレキシブルケーブルXFCの一端に設けられた接続部XCT2に接続されている。すなわち、X電極用フレキシブルケーブルXFCの接続部XCT2は、第2面取り部CF20が設けられた側の外周部OTで、X電極XEに接続されている。また、X電極用フレキシブルケーブルXFCの他端に設けられた接続部XCT3は、X電極用フレキシブルケーブルXFCを折り返すことなく、かつ、X電極用フレキシブルケーブルXFCを背面基板部14に接触させることなく、PDP10の外周より内側でXドライバXDRVに接続されている。 The connection part XCT1 which is the end part of the X electrode XE drawn to the vicinity of the edge part of the front substrate part 12 is connected to the connection part XCT2 provided at one end of the flexible cable XFC for X electrode. That is, the connection part XCT2 of the X electrode flexible cable XFC is connected to the X electrode XE at the outer peripheral part OT on the side where the second chamfered part CF20 is provided. Further, the connection part XCT3 provided at the other end of the X electrode flexible cable XFC does not fold back the X electrode flexible cable XFC, and without bringing the X electrode flexible cable XFC into contact with the rear substrate part 14, It is connected to the X driver XDRV inside the outer periphery of the PDP 10.
 これにより、この実施形態では、X電極用フレキシブルケーブルXFCをU字状に折り返すことによるX電極用フレキシブルケーブルXFCの断線を防止できる。また、この実施形態では、X電極用フレキシブルケーブルXFCがU字状に折り返されないため、接続部XCT1と接続部XCT2との接続が不安定(非接続状態)になることを防止できる。さらに、この実施形態では、第2面取り部CF20により、X電極用フレキシブルケーブルXFCが背面基板部14の角に当たることを防止できるため、X電極用フレキシブルケーブルXFCの断線を防止できる。すなわち、この実施形態では、X電極XEの接続部XCT1とXドライバXDRVとの間の断線を防止でき、PDP装置の信頼性を向上できる。 Thus, in this embodiment, disconnection of the X electrode flexible cable XFC caused by folding the X electrode flexible cable XFC into a U shape can be prevented. Further, in this embodiment, since the X electrode flexible cable XFC is not folded back in a U shape, it is possible to prevent the connection between the connection portion XCT1 and the connection portion XCT2 from becoming unstable (non-connected state). Furthermore, in this embodiment, the second chamfered portion CF20 can prevent the X electrode flexible cable XFC from hitting the corners of the back substrate portion 14, and thus the disconnection of the X electrode flexible cable XFC can be prevented. That is, in this embodiment, disconnection between the connection part XCT1 of the X electrode XE and the X driver XDRV can be prevented, and the reliability of the PDP device can be improved.
 また、PDP装置の大きさに着目した場合、この実施形態では、フレキシブルケーブルXFC、YFCをU字状に折り返すための厚さを確保する必要がないため、PDP装置の第2方向D2に沿う縁部周辺の厚さを薄くできる。さらに、この実施形態では、フレキシブルケーブルXFC、YFCをU字状に折り返すためのスペースをPDP10の外側に確保する必要がないため、PDP装置のサイズ(例えば、PDP装置の第1方向D1のサイズ)を小さくできる。すなわち、この実施形態では、PDP装置のサイズを小さくできるため、上述した図1に示した筐体30、40等の製造コストを低減できる。 Further, when paying attention to the size of the PDP device, in this embodiment, it is not necessary to secure a thickness for folding the flexible cables XFC and YFC into a U-shape, so the edge along the second direction D2 of the PDP device. The thickness around the part can be reduced. Furthermore, in this embodiment, since it is not necessary to secure a space for folding the flexible cables XFC, YFC into a U shape outside the PDP 10, the size of the PDP device (for example, the size of the PDP device in the first direction D1) Can be reduced. That is, in this embodiment, since the size of the PDP device can be reduced, the manufacturing cost of the casings 30 and 40 shown in FIG. 1 described above can be reduced.
 なお、ドライバXDRV、YDRVは、背面基板部14の縁部より内側で、ベースシャーシ50の背面側(図5では、下側)に、取り付け部材FT(例えば、ネジ)により取り付けられている。また、接続部XTC3、YCT3は、図示しないコネクタ等によりドライバXDRV、YDRVに接続される。 The drivers XDRV and YDRV are attached to the back side (the lower side in FIG. 5) of the base chassis 50 by attachment members FT (for example, screws) inside the edge of the back substrate portion 14. Further, the connection parts XTC3 and YCT3 are connected to the drivers XDRV and YDRV by a connector or the like (not shown).
 図6は、図4に示したYドライバYDRVが配置された側から見た第2方向D2に沿うPDP装置の側面の概要を示している。図中の矢印D2の意味は、上述した図2と同じである。なお、図6は、上述した図1に示した光学フィルタ20、前筐体30、後筐体40、図4に示したY電極用フレキシブルケーブルYFC等の記載を省略している。 FIG. 6 shows an outline of the side surface of the PDP device along the second direction D2 as viewed from the side where the Y driver YDRV shown in FIG. 4 is arranged. The meaning of the arrow D2 in the figure is the same as in FIG. In FIG. 6, the description of the optical filter 20, the front housing 30, the rear housing 40, the Y electrode flexible cable YFC shown in FIG. 4 and the like shown in FIG. 1 is omitted.
 背面基板部14は、前面基板部12に対向する面の反対側(図6では、下側)の面の縁部のうち、第1方向D1に沿う縁部の1つ(図6では、左側)に第3面取り部CF30を有している。例えば、第3面取り部CF30は、背面基板部14のベースシャーシ50側の面(前面基板部12に対向する面の反対側の面)の縁部のうち、アドレス電極AEが引き出された側の縁部の角を面取りして設けられる。そして、アドレス電極用フレキシブルケーブルAFCの一端に設けられた接続部ACT2は、第3面取り部CF30が設けられた側の外周部OTで、アドレス電極AEに接続されている。 The back substrate portion 14 is one of the edge portions along the first direction D1 (on the left side in FIG. 6) among the edge portions of the surface opposite to the surface facing the front substrate portion 12 (lower side in FIG. 6). ) Has a third chamfered portion CF30. For example, the third chamfered portion CF30 is on the side where the address electrode AE is drawn out of the edge portion of the surface on the base chassis 50 side of the back substrate portion 14 (the surface opposite to the surface facing the front substrate portion 12). Chamfered at the corners of the edge. The connection portion ACT2 provided at one end of the address electrode flexible cable AFC is connected to the address electrode AE at the outer peripheral portion OT on the side where the third chamfered portion CF30 is provided.
 すなわち、前面基板部12の縁部付近まで引き出されたアドレス電極AEの端部である接続部ACT1は、アドレス電極用フレキシブルケーブルAFCの接続部ACT2に接続されている。そして、アドレス電極用フレキシブルケーブルAFCの他端に設けられた接続部ACT3は、アドレス電極用フレキシブルケーブルAFCを折り返すことなく、かつ、アドレス電極用フレキシブルケーブルAFCを背面基板部14に接触させることなく、PDP10の外周より内側でアドレスドライバADRVに接続されている。 That is, the connection portion ACT1 which is the end portion of the address electrode AE drawn to the vicinity of the edge portion of the front substrate portion 12 is connected to the connection portion ACT2 of the address electrode flexible cable AFC. The connection portion ACT3 provided at the other end of the address electrode flexible cable AFC does not fold back the address electrode flexible cable AFC and does not contact the address electrode flexible cable AFC with the rear substrate portion 14. It is connected to the address driver ADRV inside the outer periphery of the PDP 10.
 これにより、この実施形態では、アドレス電極用フレキシブルケーブルAFCをU字状に折り返すことによるアドレス電極用フレキシブルケーブルAFCの断線を防止できる。また、この実施形態では、アドレス電極用フレキシブルケーブルAFCがU字状に折り返されないため、接続部ACT1と接続部ACT2との接続が不安定(非接続状態)になることを防止できる。さらに、この実施形態では、第3面取り部CF30により、アドレス電極用フレキシブルケーブルAFCが背面基板部14の角に当たることを防止できるため、アドレス電極用フレキシブルケーブルAFCの断線を防止できる。すなわち、この実施形態では、アドレス電極AEの接続部ACT1とアドレスドライバADRVとの間の断線を防止でき、PDP装置の信頼性を向上できる。 Thereby, in this embodiment, disconnection of the address electrode flexible cable AFC caused by folding the address electrode flexible cable AFC into a U shape can be prevented. In this embodiment, since the address electrode flexible cable AFC is not folded back in a U-shape, it is possible to prevent the connection between the connection part ACT1 and the connection part ACT2 from becoming unstable (non-connected state). Furthermore, in this embodiment, the third chamfered portion CF30 can prevent the address electrode flexible cable AFC from hitting the corners of the back substrate portion 14, and thus the disconnection of the address electrode flexible cable AFC can be prevented. That is, in this embodiment, disconnection between the connection part ACT1 of the address electrode AE and the address driver ADRV can be prevented, and the reliability of the PDP device can be improved.
 また、PDP装置の大きさに着目した場合、この実施形態では、アドレス電極用フレキシブルケーブルAFCをU字状に折り返すための厚さを確保する必要がないため、PDP装置の第1方向D1に沿う縁部周辺の厚さを薄くできる。さらに、この実施形態では、アドレス電極用フレキシブルケーブルAFCをU字状に折り返すためのスペースをPDP10の外側に確保する必要がないため、PDP装置のサイズ(例えば、PDP装置の第2方向D2のサイズ)を小さくできる。すなわち、この実施形態では、PDP装置のサイズを小さくできるため、上述した図1に示した筐体30、40等の製造コストを低減できる。 Further, when paying attention to the size of the PDP device, in this embodiment, it is not necessary to secure a thickness for folding the address electrode flexible cable AFC into a U-shape, and therefore, it is along the first direction D1 of the PDP device. The thickness around the edge can be reduced. Further, in this embodiment, since it is not necessary to secure a space for folding the address electrode flexible cable AFC in a U shape outside the PDP 10, the size of the PDP device (for example, the size in the second direction D2 of the PDP device). ) Can be reduced. That is, in this embodiment, since the size of the PDP device can be reduced, the manufacturing cost of the casings 30 and 40 shown in FIG. 1 described above can be reduced.
 なお、アドレスドライバADRVは、背面基板部14の縁部より内側で、ベースシャーシ50の背面側(図6では、下側)に、取り付け部材FT(例えば、ネジ)により取り付けられている。また、接続部ACT3は、図示しないコネクタ等によりアドレスドライバADRVに接続される。 The address driver ADRV is attached to the back side (the lower side in FIG. 6) of the base chassis 50 with an attachment member FT (for example, a screw) inside the edge of the back substrate portion 14. The connection unit ACT3 is connected to the address driver ADRV by a connector or the like (not shown).
 図7は、上述した図5に示したY電極用フレキシブルケーブルYFCとY電極YEとの接続部周辺の第1方向D1に沿う断面の一例を示している。なお、図7は、上述した図2に示したバス電極Ybが配置された位置の断面を示している。図中の矢印D1の意味は、上述した図2と同じである。 FIG. 7 shows an example of a cross section along the first direction D1 around the connecting portion between the Y electrode flexible cable YFC and the Y electrode YE shown in FIG. FIG. 7 shows a cross section of the position where the bus electrode Yb shown in FIG. 2 is arranged. The meaning of the arrow D1 in the figure is the same as in FIG.
 Y電極用フレキシブルケーブルYFCは、上述した図4で説明したように、ベースフィルムFL1、ベースフィルムFL1上に形成された配線ML、接続部YCT2(および、上述した図5に示した接続部YCT3)以外の配線MLを覆う保護フィルムFL2を有している。Y電極用フレキシブルケーブルYFCの保護フィルムFL2における接続部YCT2側の端部は、接続部YCT2をY電極用フレキシブルケーブルYFCの外部に露出するために、接続部YCT2より内側に位置している。また、Y電極用フレキシブルケーブルYFCは、上述した図5で説明したように、接続部YCT2が設けられる端部を外側に向けて配置されている。 As described with reference to FIG. 4, the Y electrode flexible cable YFC includes the base film FL1, the wiring ML formed on the base film FL1, the connection portion YCT2 (and the connection portion YCT3 shown in FIG. 5 described above). The protective film FL2 that covers the wiring ML other than the above is provided. The end of the Y electrode flexible cable YFC on the side of the connecting portion YCT2 in the protective film FL2 is located inside the connecting portion YCT2 in order to expose the connecting portion YCT2 to the outside of the Y electrode flexible cable YFC. Further, as described in FIG. 5 described above, the Y electrode flexible cable YFC is arranged with the end portion where the connection portion YCT2 is provided facing outward.
 また、誘電体層DL、保護層PLおよびガラス基材RSにおける接続部YCT1側の縁部は、接続部YCT1をPDP10の外部に露出するために、接続部YCT1より内側に位置している。そして、接続部YCT1は、異方性導電膜ACF等により、接続部YCT2に接続されている。 Further, the edge on the connection portion YCT1 side in the dielectric layer DL, the protective layer PL, and the glass substrate RS is located inside the connection portion YCT1 in order to expose the connection portion YCT1 to the outside of the PDP 10. The connection portion YCT1 is connected to the connection portion YCT2 by an anisotropic conductive film ACF or the like.
 上述した図5で説明したように、第1面取り部CF10は、背面基板部14における前面基板部12に対向する面の反対側の面の縁部のうち、Y電極用フレキシブルケーブルYFCに隣接する縁部の角を面取りして設けられる。例えば、第1面取り部CF10の幅W10(第1方向D1に沿う幅W10)および深さDP10は、ガラス基材RSの厚さT10の半分(厚さT12)より大きく形成される。 As described above with reference to FIG. 5, the first chamfered portion CF10 is adjacent to the Y electrode flexible cable YFC in the edge portion of the surface opposite to the surface facing the front substrate portion 12 in the rear substrate portion 14. Chamfered at the corners of the edge. For example, the width W10 (width W10 along the first direction D1) and the depth DP10 of the first chamfered portion CF10 are formed to be larger than half the thickness T10 (thickness T12) of the glass base RS.
 ここで、例えば、第1面取り部CF10の幅W10および深さDP10が小さい場合、Y電極用フレキシブルケーブルYFCが背面基板部14の端部(第1面取り部CF10)に当たるおそれがある。この場合、上述したように、Y電極用フレキシブルケーブルYFCは、背面基板部14の端部に接触している部分で断線するおそれがある。例えば、背面基板部14の端部とY電極用フレキシブルケーブルYFCとが長時間接触している場合、背面基板部14の端部により、ベースフィルムFL1および配線MLが順次損傷し、Y電極用フレキシブルケーブルYFCが断線する。 Here, for example, when the width W10 and the depth DP10 of the first chamfered portion CF10 are small, the Y electrode flexible cable YFC may hit the end portion (first chamfered portion CF10) of the back substrate portion 14. In this case, as described above, the Y electrode flexible cable YFC may be disconnected at a portion in contact with the end portion of the back substrate portion 14. For example, when the end portion of the back substrate portion 14 and the Y electrode flexible cable YFC are in contact with each other for a long time, the end portion of the back substrate portion 14 damages the base film FL1 and the wiring ML sequentially, and the Y electrode flexible cable Cable YFC is disconnected.
 これに対し、この実施形態では、第1面取り部CF10の幅W10および深さDP10が大きいため、Y電極用フレキシブルケーブルYFCが背面基板部14の端部(角)に当たることを確実に防止できる。これにより、この実施形態では、Y電極用フレキシブルケーブルYFCの断線を確実に防止できる。なお、Y電極用フレキシブルケーブルYFCが背面基板部14に接触しなければ、第1面取り部CF10の幅W10および深さDP10は、ガラス基材RSの厚さT10の半分(厚さT12)以下でもよい。 On the other hand, in this embodiment, since the width W10 and the depth DP10 of the first chamfered portion CF10 are large, it is possible to reliably prevent the Y electrode flexible cable YFC from hitting the end (corner) of the back substrate portion 14. Thereby, in this embodiment, disconnection of the flexible cable YFC for Y electrodes can be reliably prevented. If the Y electrode flexible cable YFC is not in contact with the back substrate part 14, the width W10 and the depth DP10 of the first chamfered part CF10 may be half or less (thickness T12) of the thickness T10 of the glass base RS. Good.
 なお、X電極用フレキシブルケーブルXFCとX電極XEとの接続部周辺の第1方向D1に沿う断面は、Y電極用フレキシブルケーブルYFCとY電極YEとの接続部周辺の第1方向D1に沿う断面とほぼ同じである。また、アドレス電極用フレキシブルケーブルAFCとアドレス電極AEとの接続部周辺の第2方向D2に沿う断面は、Y電極用フレキシブルケーブルYFCとY電極YEとの接続部周辺の第1方向D1に沿う断面とほぼ同じである。なお、アドレス電極AEの接続部ACT1が誘電体層DL上に形成されるため、保護層PLおよびガラス基材RSにおける接続部ACT1側の縁部が、接続部ACT1より内側に位置している。 The cross section along the first direction D1 around the connection portion between the X electrode flexible cable XFC and the X electrode XE is the cross section along the first direction D1 around the connection portion between the Y electrode flexible cable YFC and the Y electrode YE. Is almost the same. The cross section along the second direction D2 around the connection portion between the address electrode flexible cable AFC and the address electrode AE is the cross section along the first direction D1 around the connection portion between the Y electrode flexible cable YFC and the Y electrode YE. Is almost the same. In addition, since the connection part ACT1 of the address electrode AE is formed on the dielectric layer DL, the edge of the protective layer PL and the glass base RS on the connection part ACT1 side is located inside the connection part ACT1.
 図8は、第1面取り部CF10の製造方法の一例を示している。なお、図8は、第1面取り部CF10が形成されるまでの背面基板部14(ガラス基材RS)の第1方向D1に沿う断面を示している。図中の矢印D1の意味は、上述した図1と同じである。 FIG. 8 shows an example of a manufacturing method of the first chamfered portion CF10. In addition, FIG. 8 has shown the cross section along the 1st direction D1 of the back substrate part 14 (glass base material RS) until 1st chamfering part CF10 is formed. The meaning of the arrow D1 in the figure is the same as in FIG.
 先ず、ガラス基材RSを用意する(図8(a))。そして、1回目のサンドブラストが実施される(図8(b))。1回目のサンドブラスト(図8(b))では、先ず、1回目のサンドブラストが実施される領域を除いた部分のガラス基材RS上にフォトレジストR10が形成される(図8(b1))。例えば、1回目のサンドブラストが実施される領域の第1方向に沿う幅W20は、第1面取り部CF10の幅W10の4分の1である。なお、幅W20は、幅W10より小さければ、幅W10の4分の1でなくてもよい。そして、サンドブラスト装置のノズルガンN10からガラス基材RSに向かって研磨材G10が噴射される。(図8(b2))。サンドブラストにより、研磨材G10が吹き付けられた部分(例えば、フォトレジストR10で覆われていない部分)のガラス基材RSが除去される(図8(b3))。そして、フォトレジストR10が除去され、1回目のサンドブラストが終了する(図8(b4))。 First, a glass substrate RS is prepared (FIG. 8 (a)). Then, the first sandblast is performed (FIG. 8B). In the first sandblast (FIG. 8B), first, a photoresist R10 is formed on the glass substrate RS in a portion excluding a region where the first sandblast is performed (FIG. 8B1). For example, the width W20 along the first direction of the region where the first sandblasting is performed is a quarter of the width W10 of the first chamfered portion CF10. The width W20 may not be a quarter of the width W10 as long as it is smaller than the width W10. Then, the abrasive G10 is sprayed from the nozzle gun N10 of the sandblasting device toward the glass substrate RS. (FIG. 8 (b2)). By the sand blasting, the glass substrate RS in a portion (for example, a portion not covered with the photoresist R10) where the abrasive G10 is sprayed is removed (FIG. 8 (b3)). Then, the photoresist R10 is removed, and the first sandblast is completed (FIG. 8 (b4)).
 次に、2回目のサンドブラストが実施される(図8(c))。2回目のサンドブラストの各工程は、フォトレジストR10が形成される領域を除いて、1回目のサンドブラストと同じである。以下、サンドブラストの各工程については、詳細な説明を省略する。例えば、2回目のサンドブラストが実施される領域(例えば、フォトレジストR10で覆われていない部分)の第1方向に沿う幅W22は、幅W10の4分の2である。なお、幅W22は、幅W10より小さく、かつ、幅W20より大きければ、幅W10の4分の2でなくてもよい。すなわち、2回目のサンドブラストは、1回目のサンドブラストが実施された部分を含めて実施される。 Next, the second sandblasting is performed (FIG. 8C). Each step of the second sandblast is the same as the first sandblast except for the region where the photoresist R10 is formed. Hereinafter, detailed description of each step of sandblasting is omitted. For example, the width W22 along the first direction of the region where the second sandblasting is performed (for example, the portion not covered with the photoresist R10) is two-fourths of the width W10. Note that the width W22 may be less than two-fourths of the width W10 as long as it is smaller than the width W10 and larger than the width W20. That is, the second sandblast is performed including the portion where the first sandblast is performed.
 さらに、3回目のサンドブラストが実施される(図8(d))。例えば、3回目のサンドブラストが実施される領域(例えば、フォトレジストR10で覆われていない部分)の第1方向に沿う幅W24は、幅W10の4分の3である。なお、幅W24は、幅W10より小さく、かつ、幅W22より大きければ、幅W10の4分の3でなくてもよい。すなわち、3回目のサンドブラストは、1回目および2回目のサンドブラストが実施された部分を含めて実施される。 Furthermore, a third sandblast is performed (FIG. 8 (d)). For example, the width W24 along the first direction of the region where the third sandblasting is performed (for example, the portion not covered with the photoresist R10) is three-fourths of the width W10. Note that the width W24 may not be three-fourths of the width W10 as long as it is smaller than the width W10 and larger than the width W22. That is, the third sandblast is performed including the portion where the first and second sandblasts are performed.
 そして、4回目のサンドブラストが実施される(図8(e))。例えば、4回目のサンドブラストが実施される領域(例えば、フォトレジストR10で覆われていない部分)の第1方向に沿う幅W26は、幅W10である。すなわち、4回目のサンドブラストは、第1面取り部CF10が形成される領域全体に実施される。 Then, the fourth sandblast is performed (FIG. 8 (e)). For example, the width W26 along the first direction of the region where the fourth sandblasting is performed (for example, the portion not covered with the photoresist R10) is the width W10. That is, the fourth sandblast is performed on the entire region where the first chamfered portion CF10 is formed.
 このように、複数回(図の例では、4回)のサンドブラストにより、大きい幅W10および深さDP10を有する階段状の面取り部CF11が、ガラス基材RSに形成される。なお、サンドブラストの回数は、4回より多くてもよいし、少なくてもよい。また、各回のサンドブラストの条件(研磨材G10の噴射時間等)は、互いに同じでもよいし、互いに異なってもよい。 As described above, the stepped chamfered portion CF11 having the large width W10 and the depth DP10 is formed on the glass substrate RS by sandblasting a plurality of times (in the example of the figure, four times). In addition, the frequency | count of sandblast may be more than 4 times, and may be less. In addition, the conditions for each time of sandblasting (such as the injection time of the abrasive G10) may be the same or different from each other.
 最後に、階段状の面取り部CF11が研磨され、第1面取り部CF10が形成される(図8(f))。例えば、第1面取り部CF10は、化学的機械研磨により、面取り部CF11の表面を滑らかにすることにより形成される。例えば、化学的機械研磨は、面取り部CF11の表面にスラリーを供給するとともに、定盤を面取り部CF11の表面に接触させ、この定盤を回転させることにより実施される。なお、例えば、スラリーには、平均粒径が1μm前後の酸化セリウム砥粒が含まれ、定盤には、発泡ポリウレタン製の研磨パッドが貼り付けられている。 Finally, the stepped chamfered portion CF11 is polished to form the first chamfered portion CF10 (FIG. 8 (f)). For example, the first chamfered portion CF10 is formed by smoothing the surface of the chamfered portion CF11 by chemical mechanical polishing. For example, chemical mechanical polishing is performed by supplying slurry to the surface of the chamfered portion CF11, bringing the surface plate into contact with the surface of the chamfered portion CF11, and rotating the surface plate. For example, the slurry contains cerium oxide abrasive grains having an average particle diameter of about 1 μm, and a foamed polyurethane polishing pad is attached to the surface plate.
 なお、上述した図5に示した第2面取り部CF20および上述した図6に示した第3面取り部CF30の製造方法は、第1面取り部CF10の製造方法と同じである。 In addition, the manufacturing method of 2nd chamfering part CF20 shown in FIG. 5 mentioned above and 3rd chamfering part CF30 shown in FIG. 6 mentioned above is the same as the manufacturing method of 1st chamfering part CF10.
 以上、この実施形態では、各フレキシブルケーブルXFC、YFC、AFCの接続部XCT3、YCT3、ACT3は、フレキシブルケーブルXFC、YFC、AFCを折り返すことなく、かつ、背面基板部14に接触させることなく、各ドライバXDRV、YDRV、ADRVに接続されている。したがって、この実施形態では、フレキシブルケーブルXFC、YFC、AFCを折り返すための厚さやスペースを確保する必要がないため、PDP装置の厚さを薄くでき、かつ、PDP装置のサイズを小さくできる。すなわち、この実施形態では、薄型のPDP装置を提供できる。さらに、この実施形態では、PDP10に対するPDP装置のサイズを小さくできるため、製造コストを低減できる。また、この実施形態では、フレキシブルケーブルXFC、YFC、AFCが背面基板部14の端部に当たることを防止できるため、各電極XE、YE、AEと各ドライバXDRV、YDRV、ADRVとの間の断線を防止できる。したがって、PDP装置の信頼性を向上できる。 As described above, in this embodiment, the connection portions XCT3, YCT3, and ACT3 of the flexible cables XFC, YFC, and AFC are not folded back and are not brought into contact with the back substrate portion 14, respectively. It is connected to drivers XDRV, YDRV, and ADRV. Therefore, in this embodiment, since it is not necessary to secure the thickness and space for folding the flexible cables XFC, YFC, and AFC, the thickness of the PDP device can be reduced, and the size of the PDP device can be reduced. That is, in this embodiment, a thin PDP device can be provided. Furthermore, in this embodiment, since the size of the PDP device with respect to the PDP 10 can be reduced, the manufacturing cost can be reduced. Further, in this embodiment, since the flexible cables XFC, YFC, AFC can be prevented from hitting the end of the back substrate portion 14, disconnection between each electrode XE, YE, AE and each driver XDRV, YDRV, ADRV is prevented. Can be prevented. Therefore, the reliability of the PDP device can be improved.
 図9および図10は、別の実施形態におけるPDP装置の概要を示している。なお、図9は、上述した図5に示したPDP装置の側面に対応し、図10は、上述した図6に示したPDP装置の側面に対応している。この実施形態では、上述した図5および図6に示した構成に、断線防止材DCPが追加されて構成されている。その他の構成は、図1-図7で説明した実施形態と同じである。なお、例えば、第1面取り部CF10、第2面取り部CF20および第3面取り部CF30の製造方法は、上述した図8と同じである。図1-図8で説明した要素と同一の要素については、同一の符号を付し、これ等については、詳細な説明を省略する。 9 and 10 show an outline of a PDP device in another embodiment. 9 corresponds to the side surface of the PDP device shown in FIG. 5 described above, and FIG. 10 corresponds to the side surface of the PDP device shown in FIG. 6 described above. In this embodiment, the disconnection preventing material DCP is added to the configuration shown in FIGS. 5 and 6 described above. Other configurations are the same as those of the embodiment described with reference to FIGS. For example, the manufacturing method of the first chamfered portion CF10, the second chamfered portion CF20, and the third chamfered portion CF30 is the same as that in FIG. 8 described above. The same elements as those described in FIGS. 1 to 8 are denoted by the same reference numerals, and detailed description thereof will be omitted.
 図9に示すように、背面基板部14とY電極用フレキシブルケーブルYFCとの間には、断線防止材DCPが設けられている。なお、Y電極用フレキシブルケーブルYFCの中間部分は、断線防止材DCPにより、背面基板部14に固定されてもよいし、固定されなくてもよい。例えば、断線防止材DCPは、背面基板部14に設けられ、第1面取り部CF10に隣接して配置される。なお、断線防止材DCPは、第1面取り部CF10の表面全体に設けられてもよい。ここで、例えば、断線防止材DCPは、弾力性を有する材料(シリコン樹脂、エポキシ樹脂、ポリイミド樹脂、ウレタン樹脂等)により形成される。 As shown in FIG. 9, a disconnection preventing material DCP is provided between the back substrate portion 14 and the Y electrode flexible cable YFC. The intermediate portion of the Y electrode flexible cable YFC may or may not be fixed to the back substrate portion 14 by the disconnection preventing material DCP. For example, the disconnection preventing material DCP is provided on the back substrate portion 14 and is disposed adjacent to the first chamfered portion CF10. The disconnection preventing material DCP may be provided on the entire surface of the first chamfered portion CF10. Here, for example, the disconnection preventing material DCP is formed of an elastic material (silicon resin, epoxy resin, polyimide resin, urethane resin, or the like).
 この実施形態では、弾力性を有する断線防止材DCPにより、Y電極用フレキシブルケーブルYFCが背面基板部14の端部(角)に当たることを確実に防止できる。なお、Y電極用フレキシブルケーブルYFCが断線防止材DCPに接触しても、断線防止材DCPが弾力性を有しているため、Y電極用フレキシブルケーブルYFCの断線は防止される。したがって、この実施形態では、Y電極用フレキシブルケーブルYFCの断線を確実に防止できる。 In this embodiment, it is possible to reliably prevent the Y electrode flexible cable YFC from hitting the end (corner) of the back substrate portion 14 by the elastic disconnection preventing material DCP. Even if the Y electrode flexible cable YFC contacts the disconnection preventing material DCP, the disconnection preventing material DCP has elasticity, so that the disconnection of the Y electrode flexible cable YFC is prevented. Therefore, in this embodiment, disconnection of the Y electrode flexible cable YFC can be reliably prevented.
 背面基板部14とX電極用フレキシブルケーブルXFCとの間には、断線防止材DCPが設けられている。背面基板部14とX電極用フレキシブルケーブルXFCとの間に設けられた断線防止材DCP周辺の構成は、背面基板部14とY電極用フレキシブルケーブルYFCとの間に設けられた断線防止材DCP周辺の構成と同じである。したがって、この実施形態では、弾力性を有する断線防止材DCPにより、X電極用フレキシブルケーブルXFCが背面基板部14の端部に当たることを確実に防止でき、X電極用フレキシブルケーブルXFCの断線を確実に防止できる。 A disconnection preventing material DCP is provided between the back substrate portion 14 and the X electrode flexible cable XFC. The structure around the disconnection prevention material DCP provided between the back substrate portion 14 and the X electrode flexible cable XFC is the periphery of the disconnection prevention material DCP provided between the back substrate portion 14 and the Y electrode flexible cable YFC. The configuration is the same. Therefore, in this embodiment, the elastic breakage prevention material DCP can reliably prevent the X electrode flexible cable XFC from hitting the end portion of the back substrate portion 14 and reliably break the X electrode flexible cable XFC. Can be prevented.
 図10に示すように、背面基板部14とアドレス電極用フレキシブルケーブルAFCとの間には、断線防止材DCPが設けられている。背面基板部14とアドレス電極用フレキシブルケーブルAFCとの間に設けられた断線防止材DCP周辺の構成は、背面基板部14とY電極用フレキシブルケーブルYFCとの間に設けられた断線防止材DCP周辺の構成と同じである。したがって、この実施形態では、弾力性を有する断線防止材DCPにより、アドレス電極用フレキシブルケーブルAFCが背面基板部14の端部に当たることを確実に防止でき、アドレス電極用フレキシブルケーブルAFCの断線を確実に防止できる。 As shown in FIG. 10, a disconnection preventing material DCP is provided between the back substrate portion 14 and the address electrode flexible cable AFC. The configuration around the disconnection preventing material DCP provided between the back substrate portion 14 and the address electrode flexible cable AFC is the periphery of the disconnection preventing material DCP provided between the back substrate portion 14 and the Y electrode flexible cable YFC. The configuration is the same. Therefore, in this embodiment, the elastic disconnection-preventing material DCP can reliably prevent the address electrode flexible cable AFC from hitting the end of the back substrate portion 14 and reliably disconnect the address electrode flexible cable AFC. Can be prevented.
 以上、この実施形態においても、上述した図1-図8で説明した実施形態と同様の効果を得ることができる。 As described above, also in this embodiment, the same effects as those of the embodiment described with reference to FIGS. 1 to 8 can be obtained.
 なお、上述した実施形態では、1つの画素が、3つのセル(赤(R)、緑(G)、青(B))により構成される例について述べた。本発明はかかる実施形態に限定されるものではない。例えば、1つの画素を4つ以上のセルにより構成してもよい。あるいは、1つの画素が、赤(R)、緑(G)、青(B)以外の色を発生するセルにより構成されてもよく、1つの画素が、赤(R)、緑(G)、青(B)以外の色を発生するセルを含んでもよい。 In the above-described embodiment, an example in which one pixel includes three cells (red (R), green (G), and blue (B)) has been described. The present invention is not limited to such an embodiment. For example, one pixel may be composed of four or more cells. Alternatively, one pixel may be composed of cells that generate colors other than red (R), green (G), and blue (B), and one pixel may be red (R), green (G), A cell that generates a color other than blue (B) may be included.
 上述した実施形態では、第2方向D2が、第1方向D1に直交する例について述べた。本発明はかかる実施形態に限定されるものではない。例えば、第2方向D2は、第1方向D1と、ほぼ直角方向(例えば、90度±5度)に交差してもよい。この場合にも、上述した実施形態と同様の効果を得ることができる。 In the above-described embodiment, the example in which the second direction D2 is orthogonal to the first direction D1 has been described. The present invention is not limited to such an embodiment. For example, the second direction D2 may intersect the first direction D1 in a substantially perpendicular direction (for example, 90 ° ± 5 °). Also in this case, the same effect as the above-described embodiment can be obtained.
 上述した実施形態では、YドライバYDRVがコネクタ等によりY電極用フレキシブルケーブルYFCに接続される例について述べた。本発明はかかる実施形態に限定されるものではない。例えば、YドライバYDRVは、Y電極用フレキシブルケーブルYFCのベースフィルムFL1上に、Y電極用フレキシブルケーブルYFCと一体に設けられてもよい。あるいは、YドライバYDRVの一部(出力回路等)は、Y電極用フレキシブルケーブルYFCのベースフィルムFL1上に、Y電極用フレキシブルケーブルYFCと一体に設けられてもよい。同様に、ドライバXDRV、ADRVの少なくとも一部は、フレキシブルケーブルXFC、AFCのベースフィルムFL1上に、フレキシブルケーブルXFC、AFCと一体にそれぞれ設けられてもよい。 In the embodiment described above, an example in which the Y driver YDRV is connected to the Y electrode flexible cable YFC by a connector or the like has been described. The present invention is not limited to such an embodiment. For example, the Y driver YDRV may be provided integrally with the Y electrode flexible cable YFC on the base film FL1 of the Y electrode flexible cable YFC. Alternatively, a part of the Y driver YDRV (such as an output circuit) may be provided integrally with the Y electrode flexible cable YFC on the base film FL1 of the Y electrode flexible cable YFC. Similarly, at least a part of the drivers XDRV and ADRV may be provided integrally with the flexible cables XFC and AFC on the base film FL1 of the flexible cables XFC and AFC, respectively.
 この場合、PDP装置は、例えば、YドライバYDRVとY電極用フレキシブルケーブルYFCとが一体に設けられたフレキシブルプリント基板を有する。なお、フレキシブルプリント基板のYドライバYDRVが設けられていない方の端部は、上述した図5に示したY電極用フレキシブルケーブルYFCの接続部YCT2が設けられる端部(フレキシブルケーブルの一端)である。そして、フレキシブルプリント基板のYドライバYDRVとY電極用フレキシブルケーブルYFCの配線MLとの接続部は、図5に示したY電極用フレキシブルケーブルYFCの接続部YCT3に対応する。この場合にも、上述した実施形態と同様の効果を得ることができる。 In this case, the PDP apparatus includes a flexible printed board in which, for example, a Y driver YDRV and a Y electrode flexible cable YFC are integrally provided. Note that the end of the flexible printed circuit board where the Y driver YDRV is not provided is the end (one end of the flexible cable) where the connecting portion YCT2 of the Y electrode flexible cable YFC shown in FIG. 5 described above is provided. . The connection portion between the Y driver YDRV of the flexible printed circuit board and the wiring ML of the Y electrode flexible cable YFC corresponds to the connection portion YCT3 of the Y electrode flexible cable YFC shown in FIG. Also in this case, the same effect as the above-described embodiment can be obtained.
 上述した実施形態では、アドレス電極AEの接続部ACT1が前面基板部12の第1方向D1に沿う2つの縁部のうちの一方の縁部付近(上述した図6では、左側の外周部OT)に設けられる例について述べた。本発明はかかる実施形態に限定されるものではない。例えば、アドレス電極AEの接続部ACT1は、前面基板部12の第1方向D1に沿う両方の縁部付近(図6の左右の外周部OT)に設けられてもよい。あるいは、一方の縁部付近に接続部ACT1が設けられるアドレス電極AEと、他方の縁部付近に接続部ACT1が設けられるアドレス電極AEとが混在していてもよい。そして、例えば、第3面取り部CF30は、例えば、背面基板部14のベースシャーシ50側の面の縁部のうち、接続部ACT1が設けられる側の縁部の角を面取りして設けられる。この場合にも、上述した実施形態と同様の効果を得ることができる。 In the above-described embodiment, the connection portion ACT1 of the address electrode AE is near one of the two edges along the first direction D1 of the front substrate portion 12 (the left outer peripheral portion OT in FIG. 6 described above). The example provided in is described. The present invention is not limited to such an embodiment. For example, the connection part ACT1 of the address electrode AE may be provided in the vicinity of both edges (the left and right outer peripheral parts OT in FIG. 6) along the first direction D1 of the front substrate part 12. Alternatively, the address electrode AE in which the connection part ACT1 is provided near one edge part and the address electrode AE in which the connection part ACT1 is provided in the vicinity of the other edge part may be mixed. For example, the third chamfered portion CF30 is provided by chamfering the corner of the edge portion on the side where the connection portion ACT1 is provided, of the edge portion of the surface of the back substrate portion 14 on the base chassis 50 side. Also in this case, the same effect as the above-described embodiment can be obtained.
 上述した実施形態では、XドライバXDRVにより、電圧-Vs/2、Vs/2がX電極XEに交互に印加される例について述べた。本発明はかかる実施形態に限定されるものではない。例えば、X電極XEは、接地電圧GNDに維持されていてもよい。この場合、例えば、Y電極YEには、YドライバYDRVにより、サステイン期間に、電圧Vs、-Vsが交互に印加される。X電極XEが接地電圧GNDに維持されるPDP装置では、上述した図4に示した構成からXドライバXDRVおよびX電極用フレキシブルケーブルXFCを省くことができる。この場合、PDP10の接地線等からX電極XEに接地電圧GNDが供給される。この場合にも、上述した実施形態と同様の効果を得ることができる。 In the above-described embodiment, the example in which the voltages −Vs / 2 and Vs / 2 are alternately applied to the X electrode XE by the X driver XDRV has been described. The present invention is not limited to such an embodiment. For example, the X electrode XE may be maintained at the ground voltage GND. In this case, for example, the voltages Vs and −Vs are alternately applied to the Y electrode YE by the Y driver YDRV during the sustain period. In the PDP device in which the X electrode XE is maintained at the ground voltage GND, the X driver XDRV and the X electrode flexible cable XFC can be omitted from the configuration shown in FIG. 4 described above. In this case, the ground voltage GND is supplied from the ground line of the PDP 10 to the X electrode XE. Also in this case, the same effect as the above-described embodiment can be obtained.
 上述した実施形態では、プラズマディスプレイ装置が3電極(電極XE、YE、AE)構造のPDPにより構成される例について述べた。本発明は、かかる実施形態に限定されるものではない。例えば、プラズマディスプレイ装置は、2電極構造のPDPにより構成されもよい。例えば、2電極構造のPDPは、上述した図1-図7に示した構成から、X電極XE、XドライバXDRVおよびX電極用フレキシブルケーブルXFCが省かれて構成される。そして、2電極構造のPDPでは、電極YE、AE間でサステイン放電を発生させる。すなわち、電極AEは、アドレス期間では、上述した図3で説明したアドレス電極AEとして機能し、サステイン期間では、X電極XE(維持電極)として機能する。したがって、2電極構造のPDPの電極AEを駆動する駆動回路(例えば、ドライバADRV)は、上述した図3で説明したアドレスドライバADRVおよびXドライバXDRVの機能を有している。この場合にも、上述した実施形態と同様の効果を得ることができる。 In the above-described embodiment, the example in which the plasma display device is configured by a PDP having a three-electrode (electrode XE, YE, AE) structure has been described. The present invention is not limited to such an embodiment. For example, the plasma display device may be configured by a PDP having a two-electrode structure. For example, a PDP having a two-electrode structure is configured by omitting the X electrode XE, the X driver XDRV, and the X electrode flexible cable XFC from the configuration shown in FIGS. In the two-electrode PDP, a sustain discharge is generated between the electrodes YE and AE. That is, the electrode AE functions as the address electrode AE described with reference to FIG. 3 in the address period, and functions as the X electrode XE (sustain electrode) in the sustain period. Therefore, the drive circuit (for example, driver ADRV) that drives the electrode AE of the two-electrode structure PDP has the functions of the address driver ADRV and the X driver XDRV described with reference to FIG. Also in this case, the same effect as the above-described embodiment can be obtained.
 上述した実施形態では、第1面取り部CF10の深さDP10が背面基板部14の厚さT10と異なる例について述べた。本発明はかかる実施形態に限定されるものではない。例えば、図11に示すように、第1面取り部CF12の深さDP10は、背面基板部14の厚さT10と同じでもよい。同様に、上述した図5、図6に示した面取り部CF20、CF30の深さは、背面基板部14の厚さT10と同じでもよい。この場合にも、上述した実施形態と同様の効果を得ることができる。 In the above-described embodiment, the example in which the depth DP10 of the first chamfered portion CF10 is different from the thickness T10 of the back substrate portion 14 has been described. The present invention is not limited to such an embodiment. For example, as shown in FIG. 11, the depth DP10 of the first chamfered portion CF12 may be the same as the thickness T10 of the back substrate portion 14. Similarly, the depths of the chamfered portions CF20 and CF30 shown in FIGS. 5 and 6 described above may be the same as the thickness T10 of the back substrate portion 14. Also in this case, the same effect as the above-described embodiment can be obtained.
 上述した実施形態では、第1面取り部CF10が直線的に形成される例について述べた。本発明はかかる実施形態に限定されるものではない。例えば、図12に示すように、第1面取り部CF14は、円弧状に形成されてもよく、図13に示すように、第1面取り部CF16は、階段状に形成されてもよい。同様に、上述した図5、図6に示した面取り部CF20、CF30は、円弧状に形成されてもよく、階段状に形成されてもよい。この場合にも、上述した実施形態と同様の効果を得ることができる。 In the above-described embodiment, the example in which the first chamfered portion CF10 is formed linearly has been described. The present invention is not limited to such an embodiment. For example, as shown in FIG. 12, the first chamfered portion CF14 may be formed in an arc shape, and as shown in FIG. 13, the first chamfered portion CF16 may be formed in a step shape. Similarly, the chamfered portions CF20 and CF30 shown in FIGS. 5 and 6 described above may be formed in an arc shape or a step shape. Also in this case, the same effect as the above-described embodiment can be obtained.
 図12および図13は、上述した図7に示したY電極用フレキシブルケーブルYFCとY電極YEとの接続部周辺の第1方向D1に沿う断面に対応している。図12および図13の構成は、面取り部(例えば、図12では面取り部CF14、図13では面取り部CF16)の形状を除いて、図1-図7で説明した実施形態と同じである。また、第1面取り部CF14、CF16の製造方法は、上述した図8と同じである。図1-図8で説明した要素と同一の要素については、同一の符号を付し、これ等については、詳細な説明を省略する。 12 and 13 correspond to a cross section along the first direction D1 around the connection portion between the Y electrode flexible cable YFC and the Y electrode YE shown in FIG. 7 described above. The configuration of FIGS. 12 and 13 is the same as that of the embodiment described in FIGS. 1 to 7 except for the shape of the chamfered portion (for example, the chamfered portion CF14 in FIG. 12 and the chamfered portion CF16 in FIG. 13). Moreover, the manufacturing method of 1st chamfering part CF14 and CF16 is the same as FIG. 8 mentioned above. The same elements as those described in FIGS. 1 to 8 are denoted by the same reference numerals, and detailed description thereof will be omitted.
 例えば、図12に示した円弧状に形成された第1面取り部CF14は、図8に示した各回のサンドブラストの条件(研磨材G10の噴射時間、幅W20、W22、W24、W26等)やサンドブラストを実施する回数を調整することにより形成される。また、図13に示した階段状に形成された第1面取り部CF16は、図8に示した階段状の面取り部CF11とほぼ同じである。すなわち、第1面取り部CF16を有するPDP10では、面取り部の形状が直線的になるまで図8に示した階段状の面取り部CF11を研磨する必要がなく、製造コストを低減できる。 For example, the first chamfered portion CF14 formed in an arc shape shown in FIG. 12 has the sand blasting conditions (abrasion time of the abrasive G10, widths W20, W22, W24, W26, etc.) shown in FIG. It is formed by adjusting the number of times of performing. Further, the first chamfered portion CF16 formed in a stepped shape shown in FIG. 13 is substantially the same as the stepped chamfered portion CF11 shown in FIG. That is, in the PDP 10 having the first chamfered portion CF16, it is not necessary to polish the stepped chamfered portion CF11 shown in FIG. 8 until the shape of the chamfered portion becomes linear, and the manufacturing cost can be reduced.
 上述した実施形態では、アドレス電極AEが前面基板部12に設けられる例について述べた。本発明はかかる実施形態に限定されるものではない。例えば、図14に示すように、アドレス電極AEは、背面基板部14に設けられてもよい。図14は、上述した図2に示したPDP10の変形例の一例を示している。図中の矢印D1、D2の意味は、上述した図2と同じである。図14の構成では、第2方向D2に延在する複数のアドレス電極AEは、ガラス基材RSのガラス基材FSに対向する面上に設けられ、誘電体層DL2に覆われている。そして、誘電体層DL2上には、隔壁BRが形成されている。この場合、例えば、図15に示すように、アドレス電極用フレキシブルケーブルAFC2は、PDP10の外周より外側でU字状に折り返されて、アドレスドライバADRVに接続される。 In the above-described embodiment, the example in which the address electrode AE is provided on the front substrate portion 12 has been described. The present invention is not limited to such an embodiment. For example, as shown in FIG. 14, the address electrode AE may be provided on the back substrate portion 14. FIG. 14 shows an example of a modified example of the PDP 10 shown in FIG. The meanings of the arrows D1 and D2 in the figure are the same as those in FIG. In the configuration of FIG. 14, the plurality of address electrodes AE extending in the second direction D2 are provided on the surface of the glass substrate RS that faces the glass substrate FS, and are covered with the dielectric layer DL2. A partition wall BR is formed on the dielectric layer DL2. In this case, for example, as shown in FIG. 15, the address electrode flexible cable AFC2 is folded in a U shape outside the outer periphery of the PDP 10 and connected to the address driver ADRV.
 図15は、図14に示したPDP10を用いたPDP装置における第2方向D2に沿う側面の概要を示している。図中の矢印D1、D2の意味は、上述した図2と同じである。なお、図15は、上述した図1に示した光学フィルタ20、前筐体30、後筐体40、上述した図4に示したY電極用フレキシブルケーブルYFC等の記載を省略している。図15の構成は、アドレス電極AEの端部周辺の構成を除いて、上述した図6と同じである。すなわち、フレキシブルケーブルXFC、YFCの周辺部の構成は、上述した実施形態(図4、図5、図7等)と同じである。 FIG. 15 shows an outline of a side surface along the second direction D2 in the PDP device using the PDP 10 shown in FIG. The meanings of the arrows D1 and D2 in the figure are the same as those in FIG. In FIG. 15, the description of the optical filter 20, the front casing 30, the rear casing 40, the Y electrode flexible cable YFC shown in FIG. The configuration of FIG. 15 is the same as that of FIG. 6 described above except for the configuration around the end of the address electrode AE. That is, the configuration of the periphery of the flexible cables XFC, YFC is the same as that in the above-described embodiment (FIGS. 4, 5, 7, etc.).
 背面基板部14の縁部付近(外周部OT)まで引き出されたアドレス電極AEの端部である接続部ACT4は、アドレス電極用フレキシブルケーブルAFC2の一端に設けられた接続部ACT5に接続されている。なお、例えば、アドレス電極用フレキシブルケーブルAFC2は、アドレス電極AEが背面基板部14(より詳細には、ガラス基材RS上)に設けられているため、アドレス電極AEに接続される方の端部をPDP10の内周側に向けて配置されている。このため、アドレス電極用フレキシブルケーブルAFC2の他端に設けられた接続部ACT3は、アドレス電極用フレキシブルケーブルAFC2をPDP10の外周より外側でU字状に折り返して、アドレスドライバADRVに接続される。 A connection portion ACT4 that is an end portion of the address electrode AE drawn to the vicinity of the edge portion (outer peripheral portion OT) of the rear substrate portion 14 is connected to a connection portion ACT5 provided at one end of the address electrode flexible cable AFC2. . For example, in the address electrode flexible cable AFC2, since the address electrode AE is provided on the back substrate 14 (more specifically, on the glass base RS), the end connected to the address electrode AE is provided. Is arranged toward the inner peripheral side of the PDP 10. Therefore, the connection portion ACT3 provided at the other end of the address electrode flexible cable AFC2 is connected to the address driver ADRV by folding the address electrode flexible cable AFC2 into a U shape outside the outer periphery of the PDP 10.
 また、アドレス電極用フレキシブルケーブルAFC2と背面基板部14の側面との間には、背面基板部14の角でアドレス電極用フレキシブルケーブルAFC2が断線することを防止するために、シリコン樹脂SR等が設けられている。さらに、背面基板部14上には、例えば、接続部ACT4とアドレス電極用フレキシブルケーブルAFC2との接続部が吸湿することを防止するために、接続部ACT4を覆うシリコン樹脂SR等が設けられている。なお、前面基板部12における接続部ACT4側の縁部は、接続部ACT4をPDP10の外部に露出するために、接続部ACT4より内側に位置している。換言すれば、背面基板部14における接続部ACT4側の縁部は、前面基板部12の縁部より外側に位置している。なお、背面基板部14における接続部ACT4が設けられない方の縁部は、前面基板部12の縁部と同じ位置でもよい。 Further, between the address electrode flexible cable AFC2 and the side surface of the rear substrate portion 14, a silicon resin SR or the like is provided to prevent the address electrode flexible cable AFC2 from being disconnected at the corner of the rear substrate portion 14. It has been. Further, on the rear substrate portion 14, for example, a silicon resin SR that covers the connection portion ACT4 is provided to prevent the connection portion between the connection portion ACT4 and the address electrode flexible cable AFC2 from absorbing moisture. . In addition, the edge part by the side of the connection part ACT4 in the front substrate part 12 is located inside the connection part ACT4 in order to expose the connection part ACT4 to the exterior of PDP10. In other words, the edge part on the connection part ACT4 side in the back substrate part 14 is located outside the edge part of the front substrate part 12. Note that the edge of the rear substrate portion 14 where the connection portion ACT4 is not provided may be at the same position as the edge of the front substrate portion 12.
 図15(図14)の構成でも、例えば、各フレキシブルケーブルXFC、YFCの接続部XCT3、YCT3は、フレキシブルケーブルXFC、YFCを折り返すことなく、かつ、背面基板部14に接触させることなく、各ドライバXDRV、YDRVに接続されている。これにより、各電極XE、YEの接続部XCT1、YCT1と各ドライバXDRV、YDRVとの間の断線が防止され、PDP装置の信頼性は向上する。また、この場合でも、PDP装置の第2方向D2に沿う縁部周辺の厚さを薄くでき、かつ、PDP装置のサイズ(例えば、PDP装置の第1方向D1のサイズ)を小さくできる。すなわち、この場合にも、上述した実施形態のアドレス電極用フレキシブルケーブルAFCによる効果を除いて、上述した実施形態と同様の効果を得ることができる。 In the configuration of FIG. 15 (FIG. 14), for example, the connection portions XCT3 and YCT3 of the flexible cables XFC and YFC do not fold back the flexible cables XFC and YFC and do not contact the back substrate portion 14, respectively. It is connected to XDRV and YDRV. Thereby, disconnection between the connection parts XCT1 and YCT1 of the electrodes XE and YE and the drivers XDRV and YDRV is prevented, and the reliability of the PDP device is improved. Also in this case, the thickness around the edge along the second direction D2 of the PDP device can be reduced, and the size of the PDP device (for example, the size of the PDP device in the first direction D1) can be reduced. That is, also in this case, the same effect as that of the above-described embodiment can be obtained except for the effect of the address electrode flexible cable AFC of the above-described embodiment.
 上述した実施形態では、面取り部CF10、CF20、CF30がサンドブラストにより形成される例について述べた。本発明はかかる実施形態に限定されるものではない。例えば、面取り部CF10、CF20、CF30は、レーザーアブレーションにより形成されてもよい。あるいは、面取り部CF10、CF20、CF30は、ガラスのベベリング加工技術を用いて形成されてもよい。この場合にも、上述した実施形態と同様の効果を得ることができる。 In the above-described embodiment, the example in which the chamfered portions CF10, CF20, and CF30 are formed by sandblasting has been described. The present invention is not limited to such an embodiment. For example, the chamfered portions CF10, CF20, and CF30 may be formed by laser ablation. Alternatively, the chamfered portions CF10, CF20, and CF30 may be formed using a glass beveling technique. Also in this case, the same effect as the above-described embodiment can be obtained.
 以上、本発明について詳細に説明してきたが、上記の実施形態およびその変形例は発明の一例に過ぎず、本発明はこれに限定されるものではない。本発明を逸脱しない範囲で変形可能であることは明らかである。 As described above, the present invention has been described in detail. However, the above-described embodiment and its modification are merely examples of the present invention, and the present invention is not limited thereto. Obviously, modifications can be made without departing from the scope of the present invention.
 本発明は、プラズマディスプレイ装置およびプラズマディスプレイ装置の製造方法に適用できる。 The present invention can be applied to a plasma display device and a method for manufacturing a plasma display device.

Claims (15)

  1.  第1方向に延在する複数の第1電極が設けられた第1基板と、放電空間を介して前記第1基板に対向する第2基板とを有するプラズマディスプレイパネルと、
     前記第1電極に電圧を印加する第1駆動回路と、
     前記第1電極と前記第1駆動回路とを電気的に接続する第1フレキシブルケーブルとを備え、
     前記第2基板は、前記第1基板に対向する面の反対側の面の縁部のうち、前記第1方向と交差する第2方向に沿う縁部の1つに第1面取り部を備え、
     前記第1フレキシブルケーブルの一端は、前記プラズマディスプレイパネルの外周部のうち、前記第1面取り部が設けられた側の外周部で、前記第1電極に接続され、
     前記第1フレキシブルケーブルの他端は、前記第1フレキシブルケーブルを折り返すことなく、かつ、前記第1フレキシブルケーブルを前記第2基板に接触させることなく、前記プラズマディスプレイの外周より内側で前記第1駆動回路に接続されていることを特徴とするプラズマディスプレイ装置。
    A plasma display panel having a first substrate provided with a plurality of first electrodes extending in a first direction, and a second substrate facing the first substrate through a discharge space;
    A first drive circuit for applying a voltage to the first electrode;
    A first flexible cable for electrically connecting the first electrode and the first drive circuit;
    The second substrate includes a first chamfered portion at one of the edges along the second direction intersecting the first direction among the edges of the surface opposite to the surface facing the first substrate,
    One end of the first flexible cable is connected to the first electrode at the outer peripheral portion of the plasma display panel on the side where the first chamfered portion is provided,
    The other end of the first flexible cable does not fold back the first flexible cable, and does not bring the first flexible cable into contact with the second substrate. A plasma display device connected to a circuit.
  2.  請求項1記載のプラズマディスプレイ装置において、
     前記第1面取り部の幅および深さは、前記第2基板の厚さの半分より大きいことを特徴とするプラズマディスプレイ装置。
    The plasma display device according to claim 1, wherein
    The plasma display apparatus according to claim 1, wherein a width and a depth of the first chamfered portion are larger than half of a thickness of the second substrate.
  3.  請求項1記載のプラズマディスプレイ装置において、
     前記第1面取り部は、円弧状に形成されていることを特徴とするプラズマディスプレイ装置。
    The plasma display device according to claim 1, wherein
    The plasma display apparatus according to claim 1, wherein the first chamfered portion is formed in an arc shape.
  4.  請求項1記載のプラズマディスプレイ装置において、
     前記第1面取り部は、階段状に形成されていることを特徴とするプラズマディスプレイ装置。
    The plasma display device according to claim 1, wherein
    The plasma display apparatus, wherein the first chamfered portion is formed in a step shape.
  5.  請求項1記載のプラズマディスプレイ装置において、
     前記第2基板と前記第1フレキシブルケーブルとの間に設けられ、前記第1面取り部に隣接して配置された断線防止材を備えていることを特徴とするプラズマディスプレイ装置。
    The plasma display device according to claim 1, wherein
    A plasma display device, comprising: a disconnection prevention material provided between the second substrate and the first flexible cable and disposed adjacent to the first chamfered portion.
  6.  請求項1記載のプラズマディスプレイ装置において、
     前記第1駆動回路の少なくとも一部と前記第1フレキシブルケーブルとが一体に設けられたフレキシブルプリント基板を備えていることを特徴とするプラズマディスプレイ装置。
    The plasma display device according to claim 1, wherein
    A plasma display device comprising a flexible printed circuit board in which at least a part of the first drive circuit and the first flexible cable are integrally provided.
  7.  請求項1記載のプラズマディスプレイ装置において、
     前記第1方向に延在して前記第1基板に設けられ、前記第1電極と間隔を置いて配置された複数の第2電極と、
     前記第2電極に電圧を印加する第2駆動回路と、
     前記第2電極と前記第2駆動回路とを電気的に接続する第2フレキシブルケーブルとを備え、
     前記第2基板は、前記第1基板に対向する面の反対側の面の縁部のうち、前記第1面取り部が設けられた側と反対側の縁部に第2面取り部を備え、
     前記第2フレキシブルケーブルの一端は、前記プラズマディスプレイパネルの外周部のうち、前記第2面取り部が設けられた側の外周部で、前記第2電極に接続され、
     前記第2フレキシブルケーブルの他端は、前記第2フレキシブルケーブルを折り返すことなく、かつ、前記第2フレキシブルケーブルを前記第2基板に接触させることなく、前記プラズマディスプレイの外周より内側で前記第2駆動回路に接続されていることを特徴とするプラズマディスプレイ装置。
    The plasma display device according to claim 1, wherein
    A plurality of second electrodes extending in the first direction and provided on the first substrate and spaced from the first electrodes;
    A second drive circuit for applying a voltage to the second electrode;
    A second flexible cable for electrically connecting the second electrode and the second drive circuit;
    The second substrate includes a second chamfered portion on an edge portion on the opposite side to the side on which the first chamfered portion is provided, of the edge portion of the surface opposite to the surface facing the first substrate.
    One end of the second flexible cable is connected to the second electrode at the outer peripheral portion of the plasma display panel on the side where the second chamfered portion is provided,
    The other end of the second flexible cable does not fold back the second flexible cable, and does not contact the second flexible cable with the second substrate. A plasma display device connected to a circuit.
  8.  請求項1記載のプラズマディスプレイ装置において、
     前記第2方向に延在して前記第1基板に設けられた複数の第3電極と、
     前記第3電極に電圧を印加する第3駆動回路と、
     前記第3電極と前記第3駆動回路とを電気的に接続する第3フレキシブルケーブルとを備え、
     前記第2基板は、前記第1基板に対向する面の反対側の面の縁部のうち、前記第1方向に沿う縁部の1つに第3面取り部を備え、
     前記第3フレキシブルケーブルの一端は、前記プラズマディスプレイパネルの外周部のうち、前記第3面取り部が設けられた側の外周部で、前記第3電極に接続され、
     前記第3フレキシブルケーブルの他端は、前記第3フレキシブルケーブルを折り返すことなく、かつ、前記第3フレキシブルケーブルを前記第2基板に接触させることなく、前記プラズマディスプレイの外周より内側で前記第3駆動回路に接続されていることを特徴とするプラズマディスプレイ装置。
    The plasma display device according to claim 1, wherein
    A plurality of third electrodes extending in the second direction and provided on the first substrate;
    A third drive circuit for applying a voltage to the third electrode;
    A third flexible cable for electrically connecting the third electrode and the third drive circuit;
    The second substrate includes a third chamfered portion at one of the edges along the first direction among the edges of the surface opposite to the surface facing the first substrate,
    One end of the third flexible cable is connected to the third electrode at the outer peripheral portion of the plasma display panel on the side where the third chamfered portion is provided,
    The other end of the third flexible cable does not fold the third flexible cable, and does not bring the third flexible cable into contact with the second substrate. A plasma display device connected to a circuit.
  9.  第1方向に延在する複数の第1電極が設けられた第1基板と前記第1基板に放電空間を介して対向する第2基板とを有するプラズマディスプレイパネルと、前記第1電極に電圧を印加する第1駆動回路と、前記第1電極と前記第1駆動回路とを電気的に接続する第1フレキシブルケーブルとを備えたプラズマディスプレイ装置の製造方法であって、
     前記第1フレキシブルケーブルの一端を、前記プラズマディスプレイパネルの外周部のうち、第1面取り部が設けられた側の外周部で、前記第1電極に接続し、前記第1面取り部は、前記第2基板における前記第1基板に対向する面の反対側の面の縁部のうち、前記第1方向と交差する第2方向に沿う縁部の1つに設けられ、
     前記第1フレキシブルケーブルの他端を、前記第1フレキシブルケーブルを折り返すことなく、かつ、前記第1フレキシブルケーブルを前記第2基板に接触させることなく、前記プラズマディスプレイの外周より内側で前記第1駆動回路に接続することを特徴とするプラズマディスプレイ装置の製造方法。
    A plasma display panel having a first substrate provided with a plurality of first electrodes extending in a first direction and a second substrate facing the first substrate through a discharge space; and applying a voltage to the first electrode. A method for manufacturing a plasma display device, comprising: a first drive circuit to be applied; and a first flexible cable for electrically connecting the first electrode and the first drive circuit,
    One end of the first flexible cable is connected to the first electrode at an outer peripheral portion of the outer peripheral portion of the plasma display panel where the first chamfered portion is provided, and the first chamfered portion is connected to the first chamfered portion. Among the edges of the surface of the two substrates opposite to the surface facing the first substrate, provided on one of the edges along the second direction intersecting the first direction,
    The other end of the first flexible cable is connected to the first drive inside the outer periphery of the plasma display without folding the first flexible cable and without bringing the first flexible cable into contact with the second substrate. A method of manufacturing a plasma display device, comprising connecting to a circuit.
  10.  請求項9記載のプラズマディスプレイ装置の製造方法において、
     前記第1面取り部の幅および深さは、前記第2基板の厚さの半分より大きいことを特徴とするプラズマディスプレイ装置の製造方法。
    In the manufacturing method of the plasma display device according to claim 9,
    A method of manufacturing a plasma display device, wherein the width and depth of the first chamfered portion are larger than half of the thickness of the second substrate.
  11.  請求項9記載のプラズマディスプレイ装置の製造方法において、
     前記第1面取り部は、円弧状に形成されていることを特徴とするプラズマディスプレイ装置の製造方法。
    In the manufacturing method of the plasma display device according to claim 9,
    The method for manufacturing a plasma display device, wherein the first chamfered portion is formed in an arc shape.
  12.  請求項9記載のプラズマディスプレイ装置の製造方法において、
     前記第1面取り部は、階段状に形成されていることを特徴とするプラズマディスプレイ装置の製造方法。
    In the manufacturing method of the plasma display device according to claim 9,
    The method of manufacturing a plasma display device, wherein the first chamfered portion is formed in a step shape.
  13.  請求項9記載のプラズマディスプレイ装置の製造方法において、
     断線防止材を、前記第2基板と前記第1フレキシブルケーブルとの間で、前記第1面取り部に隣接する位置に配置することを特徴とするプラズマディスプレイ装置の製造方法。
    In the manufacturing method of the plasma display device according to claim 9,
    A method for manufacturing a plasma display device, wherein a disconnection preventing material is disposed between the second substrate and the first flexible cable at a position adjacent to the first chamfered portion.
  14.  請求項9記載のプラズマディスプレイ装置の製造方法において、
     前記プラズマディスプレイ装置は、
     前記第1方向に延在して前記第1基板に設けられ、前記第1電極と間隔を置いて配置された複数の第2電極と、
     前記第2電極に電圧を印加する第2駆動回路と、
     前記第2電極と前記第2駆動回路とを電気的に接続する第2フレキシブルケーブルとをさらに備え、
     前記第2フレキシブルケーブルの一端を、前記プラズマディスプレイパネルの外周部のうち、第2面取り部が設けられた側の外周部で、前記第2電極に接続し、前記第2面取り部は、前記第2基板における前記第1基板に対向する面の反対側の面の縁部のうち、前記第1面取り部が設けられた側と反対側の縁部に設けられ、
     前記第2フレキシブルケーブルの他端を、前記第2フレキシブルケーブルを折り返すことなく、かつ、前記第2フレキシブルケーブルを前記第2基板に接触させることなく、前記プラズマディスプレイの外周より内側で前記第2駆動回路に接続することを特徴とするプラズマディスプレイ装置の製造方法。
    In the manufacturing method of the plasma display device according to claim 9,
    The plasma display device includes:
    A plurality of second electrodes extending in the first direction and provided on the first substrate and spaced from the first electrodes;
    A second drive circuit for applying a voltage to the second electrode;
    A second flexible cable for electrically connecting the second electrode and the second drive circuit;
    One end of the second flexible cable is connected to the second electrode at the outer peripheral portion of the outer peripheral portion of the plasma display panel where the second chamfered portion is provided, and the second chamfered portion is connected to the second chamfered portion. Among the edges of the surface opposite to the surface facing the first substrate in the two substrates, provided on the edge opposite to the side where the first chamfered portion is provided,
    The second drive of the second flexible cable inside the outer periphery of the plasma display without folding the second flexible cable and without bringing the second flexible cable into contact with the second substrate. A method of manufacturing a plasma display device, comprising connecting to a circuit.
  15.  請求項9記載のプラズマディスプレイ装置の製造方法において、
     前記プラズマディスプレイ装置は、
     前記第2方向に延在して前記第1基板に設けられた複数の第3電極と、
     前記第3電極に電圧を印加する第3駆動回路と、
     前記第3電極と前記第3駆動回路とを電気的に接続する第3フレキシブルケーブルとをさらに備え、
     前記第3フレキシブルケーブルの一端を、前記プラズマディスプレイパネルの外周部のうち、第3面取り部が設けられた側の外周部で、前記第3電極に接続し、前記第3面取り部は、前記第2基板における前記第1基板に対向する面の反対側の面の縁部のうち、前記第1方向に沿う縁部の1つに設けられ、
     前記第3フレキシブルケーブルの他端を、前記第3フレキシブルケーブルを折り返すことなく、かつ、前記第3フレキシブルケーブルを前記第2基板に接触させることなく、前記プラズマディスプレイの外周より内側で前記第3駆動回路に接続することを特徴とするプラズマディスプレイ装置の製造方法。
    In the manufacturing method of the plasma display device according to claim 9,
    The plasma display device includes:
    A plurality of third electrodes extending in the second direction and provided on the first substrate;
    A third drive circuit for applying a voltage to the third electrode;
    A third flexible cable for electrically connecting the third electrode and the third drive circuit;
    One end of the third flexible cable is connected to the third electrode at the outer peripheral portion of the outer peripheral portion of the plasma display panel where the third chamfered portion is provided, and the third chamfered portion is connected to the third chamfered portion. Among the edges of the surface on the opposite side of the surface facing the first substrate in the two substrates, provided on one of the edges along the first direction,
    The third drive of the third flexible cable is carried out inside the outer periphery of the plasma display without folding the third flexible cable and without bringing the third flexible cable into contact with the second substrate. A method of manufacturing a plasma display device, comprising connecting to a circuit.
PCT/JP2008/001546 2008-06-16 2008-06-16 Plasma display device and manufacturing method therefor WO2009153828A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/001546 WO2009153828A1 (en) 2008-06-16 2008-06-16 Plasma display device and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/001546 WO2009153828A1 (en) 2008-06-16 2008-06-16 Plasma display device and manufacturing method therefor

Publications (1)

Publication Number Publication Date
WO2009153828A1 true WO2009153828A1 (en) 2009-12-23

Family

ID=41433760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/001546 WO2009153828A1 (en) 2008-06-16 2008-06-16 Plasma display device and manufacturing method therefor

Country Status (1)

Country Link
WO (1) WO2009153828A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01161597U (en) * 1988-04-30 1989-11-09
JP2001209066A (en) * 2000-01-24 2001-08-03 Alps Electric Co Ltd Liquid crystal display device
JP2008203368A (en) * 2007-02-16 2008-09-04 Pioneer Electronic Corp Wiring connection structure of display panel, display device, and sealing processing method and sealing processing apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01161597U (en) * 1988-04-30 1989-11-09
JP2001209066A (en) * 2000-01-24 2001-08-03 Alps Electric Co Ltd Liquid crystal display device
JP2008203368A (en) * 2007-02-16 2008-09-04 Pioneer Electronic Corp Wiring connection structure of display panel, display device, and sealing processing method and sealing processing apparatus

Similar Documents

Publication Publication Date Title
EP1710826A2 (en) Plasma display panel
US7235923B2 (en) Plasma display apparatus
EP1701374A1 (en) Plasma display panel
WO2009153828A1 (en) Plasma display device and manufacturing method therefor
KR20040085759A (en) Plasma display panel
JP2006156384A (en) Plasma display panel and plasma display device with the same
JP4335240B2 (en) Plasma display panel
WO2009130742A1 (en) Plasma display apparatus
JP4327097B2 (en) Multi-screen type plasma display device
KR100670342B1 (en) Plasma display panel
US6747414B2 (en) AC plasma display panel
JPWO2009034601A1 (en) Plasma display panel
JPWO2008126147A1 (en) Plasma display panel
JP4579331B2 (en) Plasma display panel
WO2009133593A1 (en) Plasma dislay panel and method of manufacturing plasma display panel
KR20040063766A (en) Method for reducing noise of plasma display panel and plasma display panel
JPWO2008120268A1 (en) Plasma display panel
JP4661981B2 (en) Plasma display panel and method for manufacturing plasma display panel
KR100536194B1 (en) Plasma display panel
JPWO2009044430A1 (en) Plasma display panel
WO2009118793A1 (en) Plasma display panel
KR100615335B1 (en) Plasma display panel having double display faces and manufacturing method of the same
JP4914937B2 (en) Plasma display panel, plasma display panel unit, and method for manufacturing plasma display panel
KR100612387B1 (en) Plasma display apparatus
WO2009104220A1 (en) Plasma display unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08764141

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08764141

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP