WO2009150936A1 - Metal pattern forming method and metal pattern - Google Patents

Metal pattern forming method and metal pattern Download PDF

Info

Publication number
WO2009150936A1
WO2009150936A1 PCT/JP2009/059581 JP2009059581W WO2009150936A1 WO 2009150936 A1 WO2009150936 A1 WO 2009150936A1 JP 2009059581 W JP2009059581 W JP 2009059581W WO 2009150936 A1 WO2009150936 A1 WO 2009150936A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal pattern
metal
ink
catalyst
porous layer
Prior art date
Application number
PCT/JP2009/059581
Other languages
French (fr)
Japanese (ja)
Inventor
眞一 鈴木
智史 森
Original Assignee
コニカミノルタIj株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタIj株式会社 filed Critical コニカミノルタIj株式会社
Priority to JP2010516806A priority Critical patent/JP5418497B2/en
Publication of WO2009150936A1 publication Critical patent/WO2009150936A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
    • H05K3/181Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating
    • H05K3/182Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating characterised by the patterning method
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/386Improvement of the adhesion between the insulating substrate and the metal by the use of an organic polymeric bonding layer, e.g. adhesive
    • H05K3/387Improvement of the adhesion between the insulating substrate and the metal by the use of an organic polymeric bonding layer, e.g. adhesive for electroless plating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/0116Porous, e.g. foam
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/01Tools for processing; Objects used during processing
    • H05K2203/0104Tools for processing; Objects used during processing for patterning or coating
    • H05K2203/013Inkjet printing, e.g. for printing insulating material or resist
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/07Treatments involving liquids, e.g. plating, rinsing
    • H05K2203/0703Plating
    • H05K2203/0709Catalytic ink or adhesive for electroless plating

Definitions

  • the present invention relates to a metal pattern forming method and a metal pattern, and more particularly to a metal pattern forming method and a metal pattern used for circuit formation by an ink jet method.
  • a metal pattern used for a circuit has been performed mainly by a method using a resist material. That is, after applying a resist material on a thin metal layer and exposing the required pattern to light, the unnecessary resist is removed by development, the exposed thin metal is removed by etching, and the remaining resist portion is peeled off. As a result, a metal thin film on which a metal pattern was recorded was formed.
  • This metal pattern forming method is a method of forming a circuit by firing at a temperature of about 200 to 300 ° C. utilizing the fact that the melting point is lowered by minimizing the particle size of the metal nanoparticles.
  • the substrate on which the metal pattern is formed usually uses glass, resin film, etc., and most of these substrates do not have ink absorbability, so that the ink that has landed repels and spreads wet. It was difficult to obtain fine pattern drawing performance.
  • a method of obtaining a conductive pattern by providing a layer (receiving layer) having excellent ink absorption capacity on a substrate and applying a metal nanoparticle (for example, metal colloid) solution thereto by an inkjet method is disclosed.
  • a metal nanoparticle for example, metal colloid
  • the metal particles are fine particles (colloid)
  • most of them remain on the surface of the receiving layer, and a conductive pattern is formed there. Therefore, there is a drawback that only a very thin film pattern can be obtained.
  • the present invention has been made in view of the above problems, and its purpose is to print an ink containing a catalyst on a substrate provided with a porous layer using inorganic fine particles, and to perform good drawing by electroless plating. It is to provide a metal pattern forming method capable of obtaining a thick-film metal pattern having good properties and scratch resistance, and a metal pattern formed using the metal pattern forming method.
  • a method for forming a metal pattern comprising: a porous layer containing the catalyst, wherein the catalyst is present in a dissolved state in the ink.
  • the present invention it was possible to provide a metal pattern forming method capable of obtaining a thick film metal pattern having good drawability and scratch resistance, and a metal pattern formed using the metal pattern forming method.
  • the present inventor printed a pattern portion by ink jet ink containing a catalyst on a substrate, and formed a metal pattern on the pattern portion by electroless plating treatment.
  • the substrate has a porous layer containing inorganic fine particles on the surface, and the catalyst is present in a dissolved state in the ink.
  • the present inventors have found that a metal pattern forming method capable of obtaining a thick metal pattern having good properties and scratch resistance can be realized.
  • the metal pattern forming method of the present invention is characterized in that after the ink containing the catalyst is printed on the substrate having the porous layer containing inorganic fine particles, the metal pattern is formed by electroless plating treatment.
  • This process can be performed under mild conditions of 100 ° C. or lower.
  • a conventionally known method using metal nanoparticles requires a sintering temperature of 150 to 300 ° C. for fusing the nanoparticles and decomposing the organic dispersant.
  • an inert gas (nitrogen) or a reducing gas (hydrogen) is required in the sintering atmosphere. This has the advantage that a pattern can be formed.
  • Examples of the catalyst used in the ink according to the present invention include metals such as palladium, silver, copper, gold, nickel, aluminum, and tin. Of these, palladium, silver, and tin are preferable, and palladium is more preferable because of high catalytic activity.
  • a feature of these catalysts is that they exist in a dissolved state in the ink, not metal fine particles or metal salt colloids (for example, palladium-tin colloid). This is a dissolved homogeneous ink, so that the porous layer on the substrate can be sufficiently penetrated in the thickness direction.
  • the catalyst when the catalyst is a metal fine particle or a metal salt colloid, the catalyst cannot uniformly penetrate into the porous layer, and a part of the catalyst is exposed on the surface of the porous layer. Even if the electroless plating treatment is performed in such a state, uniform and sufficient metal cannot be formed inside, and good conductivity cannot be obtained. In addition, the metal is also exposed outside the porous layer, and the scratch resistance is low.
  • the ink according to the present invention is superior in emission stability because there is no concern about clogging in the ink jet head because the catalyst exists in a dissolved state in the ink as compared with the fine particles of metal fine particles and metal salt colloids.
  • palladium when used as a catalyst, it is not particularly limited as long as it is a divalent ion.
  • examples thereof include palladium fluoride, palladium chloride, palladium bromide, palladium iodide, palladium nitrate, palladium sulfate, palladium acetate, palladium oxide, palladium sulfide and the like.
  • the content of palladium in the ink is preferably 0.0001 to 1% by mass.
  • the palladium concentration is preferably 0.0001% by mass or more from the viewpoint of electroless plating reaction activity, and is preferably 1% by mass or less from the viewpoint of the stability of palladium in the ink.
  • Examples of compounds capable of forming a complex applicable to the present invention include amine compounds such as ethylenediamine, ethanolamine, ethylenediaminetetraacetic acid, and benzylamine, and nitrogen-containing heterocyclic compounds such as pyridine, bipyridyl, and phenanthroline.
  • amine compounds such as ethylenediamine, ethanolamine, ethylenediaminetetraacetic acid, and benzylamine
  • nitrogen-containing heterocyclic compounds such as pyridine, bipyridyl, and phenanthroline.
  • the pH of the ink In order to improve the solubility and storage stability of palladium ions in the ink, it is preferable to adjust the pH of the ink to a range of 8 to 14, more preferably a pH of 9 to 14.
  • an aqueous liquid medium is preferably used from the viewpoint of solubility of the catalyst, and as the aqueous liquid medium, a mixed solvent such as water and a water-soluble organic solvent is more preferably used. .
  • the composition of these solvents is selected in consideration of the dissolved state of the catalyst.
  • water-soluble organic solvents examples include alcohols (eg, methanol, ethanol, propanol, isopropanol, butanol, isobutanol, secondary butanol, tertiary butanol, etc.), polyhydric alcohols (eg, ethylene glycol, diethylene glycol) , Triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycol, butylene glycol, hexanediol, pentanediol, glycerin, hexanetriol, thiodiglycol, etc.), polyhydric alcohol ethers (eg, ethylene glycol monomethyl ether) , Ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol Ether monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl
  • Surfactants applicable to the ink according to the present invention include alkyl sulfates, alkyl ester sulfates, dialkyl sulfosuccinates, alkyl naphthalene sulfonates, alkyl phosphates, polyoxyalkylene alkyl ether phosphates, fatty acids
  • Anionic surfactants such as salts, nonionic surfactants such as polyoxyethylene alkyl ethers, polyoxyalkylene alkyl phenyl ethers, acetylene glycols, polyoxyethylene-polyoxypropylene block copolymers, glycerin esters, sorbitan
  • surfactants such as esters, polyoxyethylene fatty acid amides, and amine oxides, and cationic surfactants such as alkylamine salts and quaternary ammonium salts.
  • the ink according to the present invention may contain other conventionally known additives as required.
  • Tension modifiers, non-resistance modifiers, rust inhibitors, inorganic pigments and the like can be mentioned.
  • Catalyst activation process In the metal pattern formation method of this invention, it is preferable to have a catalyst activation process between the process of printing the ink containing the said catalyst on the porous layer of a board
  • the catalyst activation step it is necessary to select an appropriate method depending on the type of catalyst, and examples thereof include application of acid, heating, and application of a reducing agent.
  • a palladium-tin colloidal catalyst by adding sulfuric acid or the like, an oxidation-reduction reaction between tin and palladium proceeds to produce zero-valent palladium metal.
  • zero-valent palladium metal is generated by the reducing agent.
  • a preferable reducing agent for palladium ions is a boron-based compound. Specifically, sodium borohydride, trimethylamine borane, dimethylamine borane (DMAB), and the like are preferable.
  • the substrate applicable in the present invention is not particularly limited as long as it has insulating properties.
  • the substrate is made of a material having high rigidity such as glass or ceramics, or a resin such as PET (polyethylene terephthalate) or polyimide. The film-like thing to mention is mentioned.
  • the substrate used in the present invention may be subjected to so-called primer treatment or plasma treatment from the viewpoint of improving adhesion.
  • an undercoat layer may be provided on the substrate.
  • the material for the undercoat layer include thermoplastic resins such as acrylic resins and coupling agents such as silane coupling agents.
  • the substrate according to the present invention has a porous layer containing inorganic fine particles on the surface.
  • a porous layer having ink absorbing ability is provided on the substrate, and the porous layer is preferably formed by forming a porous layer from inorganic fine particles and an organic binder.
  • Examples of the inorganic fine particles that can be used in the porous layer according to the present invention include light calcium carbonate, heavy calcium carbonate, magnesium carbonate, kaolin, clay, talc, calcium sulfate, barium sulfate, titanium dioxide, zinc oxide, and hydroxide.
  • Mention may be made of white inorganic pigments such as magnesium. From the viewpoint of ink absorbability and low-cost production, inorganic fine particles selected from silica-based fine particles and alumina-based fine particles are preferable.
  • the shape of the inorganic fine particles is not particularly limited, and may be any shape such as a spherical shape, a rod shape, a needle shape, a flat plate shape, and a bead shape.
  • the inorganic fine particles may be used in a state of being uniformly dispersed in the organic binder as primary particles, or may be used in a state of being dispersed in the organic binder by forming secondary agglomerated particles. From the viewpoint of achieving fast ink absorption, the latter is more preferable. From the same viewpoint, it is preferable to use inorganic fine particles having an average particle diameter of 3 to 200 nm in the film. Further, from the viewpoint of production of inorganic fine particles, the average particle diameter is more preferably 10 to 100 nm.
  • the average particle size of the inorganic fine particles can be obtained as a simple average value (number average) by observing the cross-section or surface of the fine particles themselves or the porous layer with an electron microscope, measuring the particle size of a large number of arbitrary fine particles.
  • the individual particle diameter referred to in the present invention is represented by a diameter assuming a circle equal to the projected area.
  • silica or colloidal silica synthesized by a gas phase method is preferable as the inorganic fine particles having anionic surfaces because of low cost.
  • the inorganic fine particles having a cationic surface vapor phase silica having a cationic surface treatment, colloidal silica having a cationic surface treatment, alumina, colloidal alumina, pseudoboehmite, or the like can be used.
  • the film thickness of the porous layer is preferably 0.5 ⁇ m or more and 30 ⁇ m or less from the viewpoint of ink absorbency for pattern formation with catalyst ink and metal film thickness formed by electroless plating.
  • the amount of inorganic fine particles used in the porous layer depends largely on the required ink absorption capacity, the porosity of the porous layer, the type of inorganic fine particles, and the type of organic binder, but is generally 1 per 1 m 2 of the porous layer. -30 g, preferably 3-25 g.
  • the ratio (F: B) between the inorganic fine particles F and the organic binder B is preferably 2: 1 to 20: 1, and more preferably 3: 1 to 10: 1.
  • the ratio (F: B) between the inorganic fine particles F and the organic binder B is preferably 2: 1 to 20: 1, and more preferably 3: 1 to 10: 1.
  • the preferable porosity is 40 to 75%.
  • the porosity can be set to a desired value depending on the type of inorganic fine particles and hydrophilic binder to be selected, or the mixing ratio thereof, or by appropriately adjusting the amount of other additives.
  • the porosity here is the ratio of the total volume of the voids to the volume of the porous layer, and can be calculated from the total volume of the constituents of the layer and the thickness of the layer. Further, the total volume of the voids can be easily determined by measuring the amount of saturation transition and water absorption by Bristow measurement.
  • hydrophilic polymers such as polystyrene sulfonic acid, cellulose, hydroxyl ethyl cellulose, carboxyl methyl cellulose, hydroxyl ethyl cellulose, dextran, dextrin, pullulan, and water-soluble polyvinyl butyral. Two or more of these organic binders can be used in combination.
  • the method for producing the porous layer it can be suitably selected from known coating methods and coated on the substrate and dried.
  • the coating method include a roll coating method, a rod bar coating method, an air knife coating method, a spray coating method, a curtain coating method, or US Pat. Nos. 2,761,419 and 2,761,791.
  • a slide bead coating method using an hopper, an extrusion coating method, or the like is preferably used.
  • the ink droplet is preferably as small as possible, and is 10 pl or less, preferably 4 pl or less. With such a fine droplet size, a thin line pattern with a line width of about 50 ⁇ m can be drawn. In order to draw such fine lines, high resolution is required for printing. A resolution of 360 dpi or more and 720 dpi or more is more preferable. In addition, dpi as used in the field of this invention represents the number of dots per 2.54 cm.
  • the porous layer has a film thickness of 0.5 ⁇ m or more, preferably 5 ⁇ m, and a porosity of 40% or more, preferably 60% or more, so that the ink absorption and absorption speed can be sufficiently obtained.
  • electroless plating treatment is performed to obtain a metal pattern in which a metal is formed on the pattern portion.
  • the step of immersing the substrate printed with the above pattern in an electroless plating solution is a common method.
  • the electroless plating solution mainly contains 1) metal ions, 2) complexing agents, and 3) reducing agents.
  • the metal formed by electroless plating include gold, silver, copper, palladium, nickel, and alloys thereof. From the viewpoint of conductivity and safety, silver or copper is preferable, and copper is more preferable. Therefore, metal ions corresponding to the above metals are contained as metal ions used in the electroless plating bath. Accordingly, copper ions are preferable, and examples thereof include copper sulfate.
  • Complexing agents and reducing agents are also selected that are suitable for metal ions.
  • EDTA ethylenediaminetetraacetic acid
  • Rochelle salt D-mannitol, D-sorbitol, dulcitol, iminodiacetic acid, trans-1,2-cyclohexanediaminetetraacetic acid, and the like.
  • EDTA is preferred.
  • the reducing agent include formaldehyde, potassium tetrahydroborate, dimethylamine borane, glyoxylic acid and sodium hypophosphite, and formaldehyde is preferred.
  • the metal formation speed and film thickness can be controlled by controlling the temperature, pH, immersion time, and metal ion concentration of the plating bath.
  • the metal film thickness thus formed is related to the film thickness of the porous layer, but is preferably 0.1 ⁇ m or more and 30 ⁇ m or less.
  • the ink containing the catalyst is ejected from the ink jet head to the substrate provided with the porous layer to form a pattern.
  • the size of the droplets to be ejected is not particularly limited, but in the case of circuit wiring or the like, it is necessary to form fine lines, so the amount of droplets is 50 pl or less, preferably 20 pl or less.
  • the ink jet head is not particularly limited, and either a piezo type or a thermal type head can be used.
  • Ink 1 was prepared using 0.02% by mass of palladium acetate as a catalyst, 50% by mass of ethylene glycol, 20% by mass of glycerin as a water-soluble organic solvent, and pure water as a residue. The pH of the ink was adjusted to 12.0 with sodium hydroxide, and it was confirmed that palladium acetate was dissolved.
  • ink 2 [Preparation of ink 2: the present invention] 0.04% by mass of palladium chloride as a catalyst, 0.2% by mass of 2-aminopyridine complexed therewith, 50% by mass of ethylene glycol as a water-soluble organic solvent, 20% by mass of glycerin, pure water remaining Ink-2 was prepared as follows. The pH of the ink was adjusted to 13.0 with sodium hydroxide, and it was confirmed that palladium chloride was dissolved.
  • the substrate 2 was a polyethylene terephthalate (PET) sheet having a thickness of 100 ⁇ m.
  • PET polyethylene terephthalate
  • the inkjet head evaluation device EB100 (manufactured by Konica Minolta IJ Co., Ltd.) mounted on the transport system option XY100 has a piezoelectric nozzle having an nozzle diameter of 20 ⁇ m, a suitable liquid amount of 2 pl, a maximum drive frequency of 25 kHz, a nozzle count of 1024, and a nozzle density of 360 dpi.
  • a type inkjet head is mounted, and an input image can be recorded by an 8-pass interleaving method. Both the main scanning and sub-scanning recording resolutions are 1440 dpi, and the prepared ink 1 can be ejected.
  • the prepared substrate 1 was attached to the stage, and the ink 1 containing the catalyst was discharged to form 100 fine line patterns with a wiring width of 50 ⁇ m, a wiring distance of 50 ⁇ m, and a wiring length of 30 mm.
  • activation step 1 The substrate 1 after pattern formation by the above method was dried at 50 ° C. for 5 minutes, and then immersed in the following activation liquid containing a boron-based reducing agent for 15 minutes at room temperature. In this step, the Pd complex was reduced to form Pd metal. The substrate 1 after immersion was washed with pure water.
  • Alcup MDR2-A (Uemura Kogyo Co., Ltd.) 1.8% by mass Alcup MDR2-C (manufactured by Uemura Kogyo Co., Ltd.) 6% by mass Pure water remaining (electroless plating process)
  • the following electroless copper plating solution was prepared.
  • the finished plating solution has a copper concentration of 2.5 mass%, a formalin concentration of 1 mass%, and an ethylenediaminetetraacetic acid (EDTA) concentration of 2.5 mass%. Further, the pH of the plating solution was adjusted to 13.0 with sodium hydroxide.
  • the metal wiring pattern 5 was formed in the same manner except that the substrate 2 was a polyethylene terephthalate (PET) sheet alone instead of the substrate 1 provided with the porous layer.
  • PET polyethylene terephthalate
  • the metal wiring pattern 6 was formed in the same manner except that the substrate 2 was a polyethylene terephthalate (PET) sheet alone instead of the substrate 1 provided with the porous layer.
  • PET polyethylene terephthalate
  • Fine line breakage (disconnection), no contact between thin lines, and line shape disorder (thinning or thickening) is less than 10%.
  • Fine line breakage (breakage), no contact between thin lines, and line. Disturbance of shape (thinning or thickening) is 10% or more and less than 30%
  • Fine line chipping (disconnection), contact between thin lines is recognized, and line shape disorder (thinning or thickening) is 30% or more Yes [Evaluation of abrasion resistance of fine wires]
  • the surface of each copper wiring pattern thus formed was rubbed 20 times back and forth using a cloth (BEMCOT; manufactured by Asahi Kasei Kogyo Co., Ltd.) wetted with water. About the thin wire
  • The number of fine lines in which metal film is missing or peeled off is less than 10%.
  • The number of thin lines in which metal film is missing or peeled off is 10% or more and less than 50%.
  • X The number of thin lines in which the metal film is missing or peeled off is 50% or more [Measurement of film thickness of metal pattern]
  • a metal pattern having a size of 10 mm ⁇ 10 mm was formed by the method for forming each metal pattern. Next, the metal pattern was cut with a microtome, the cross section was observed with an optical microscope, the film thickness at 50 points was measured, and the average value was obtained. When the film thickness was less than 1 ⁇ m, the film thickness was measured using a scanning electron microscope.
  • The number of missing nozzles is less than 2% with respect to the total number of nozzles.
  • The number of missing nozzles is 2% or more and less than 10% with respect to the total number of nozzles. Table 1 shows each evaluation result obtained as described above.
  • the metal wiring produced by the metal pattern forming method of the present invention in which the ink containing the catalyst of the present invention was discharged onto a substrate having a porous layer and electroless plating was performed.
  • the pattern showed a metal pattern with good drawability, a sufficient metal film thickness was obtained, and a metal pattern excellent in scratch resistance could be formed.

Abstract

Provided are a metal pattern forming method for obtaining a thick metal pattern having excellent drawing characteristics and scratch resistance, and a metal pattern formed by using such metal pattern forming method.  A pattern section is printed on a substrate by employing an inkjet system using an ink containing a catalyst, and the metal pattern is formed on the pattern section by nonelectrolytic plating.  The substrate has a porous layer containing inorganic fine particles on the surface, and has the catalyst being dissolved in the ink.

Description

金属パターン形成方法及び金属パターンMetal pattern forming method and metal pattern
 本発明は、金属パターン形成方法及び金属パターンに関し、さらに詳しくは、インクジェット法による回路形成に用いる金属パターン形成方法及び金属パターンに関するものである。 The present invention relates to a metal pattern forming method and a metal pattern, and more particularly to a metal pattern forming method and a metal pattern used for circuit formation by an ink jet method.
 回路に用いる金属パターンの形成は、従来は、主にレジスト材料を用いた方法により行われてきた。すなわち、金属薄層上にレジスト材料を塗布し、必要なパターンを光露光した後、現像により不要なレジストを除去し、むき出しとなった金属薄をエッチングにより除去し、さらに残存するレジスト部分を剥離することで金属パターンを記録した金属薄を形成していた。 Conventionally, formation of a metal pattern used for a circuit has been performed mainly by a method using a resist material. That is, after applying a resist material on a thin metal layer and exposing the required pattern to light, the unnecessary resist is removed by development, the exposed thin metal is removed by etching, and the remaining resist portion is peeled off. As a result, a metal thin film on which a metal pattern was recorded was formed.
 しかしながら、この方法では工程が多岐にわたり時間がかかること、また不要なレジスト、金属薄を除去することなど、生産時間、およびエネルギーや原材料使用効率の点から無駄が多く、改善が要求されていた。 However, in this method, the process is diverse and time-consuming, and unnecessary resist and removal of thin metal are wasteful in terms of production time, energy and raw material use efficiency, and improvement is required.
 近年、粒径が100nm以下の、いわゆる金属ナノ粒子を含有するインクを用い、スクリーン印刷やインクジェット印刷などで金属パターンを直接描画する金属パターン形成方法に注目が集まっている(例えば、特許文献1参照。)。 In recent years, attention has been focused on a metal pattern forming method in which a metal pattern is directly drawn by screen printing, ink jet printing or the like using an ink containing so-called metal nanoparticles having a particle size of 100 nm or less (see, for example, Patent Document 1). .)
 この金属パターン形成方法は、金属ナノ粒子の粒径を極小にすることで融点が低下することを活用し、200~300℃程度の温度で焼成することにより、回路を形成する方法である。本技術は、確かに工数の低減、原材料の利用効率向上などの利点はあるものの、金属粒子同士を完全に融合させることが難しく、焼成後の金属パターンにおいて電気抵抗を下げるための後処理における温度や条件に厳しい制約がある、という課題が残っていた。 This metal pattern forming method is a method of forming a circuit by firing at a temperature of about 200 to 300 ° C. utilizing the fact that the melting point is lowered by minimizing the particle size of the metal nanoparticles. Although this technology certainly has the advantages of reducing man-hours and improving the utilization efficiency of raw materials, it is difficult to completely fuse metal particles together, and the temperature in post-processing to lower the electrical resistance in the fired metal pattern The problem remains that there are severe restrictions on the conditions.
 金属ナノ粒子を用いず、金属塩を使用してインク中で金属イオンの形態にし、加熱下で還元性を有する還元剤を含有する溶液から導電パターンを形成する方法がある。しかしながら、金属塩に配位して安定化させる錯化剤が十分な性能を有していないため、金属塩の還元反応が進行しやすくなり、液保存性に乏しいものになっていた。 There is a method of forming a conductive pattern from a solution containing a reducing agent having a reducing property under heating by using a metal salt in the form of metal ions without using metal nanoparticles and heating. However, since the complexing agent that coordinates and stabilizes the metal salt does not have sufficient performance, the reduction reaction of the metal salt easily proceeds and the liquid storage stability is poor.
 一方、金属を穏和な条件で生成析出させる手段として、無電解めっき技術を活用して金属パターンを形成する方法も提案されている。例えば、無電解めっきが形成可能となる触媒を含有したインクで回路パターンを形成させた後、無電解めっき処理で金属を形成させる方法が開示されている(例えば、特許文献2参照。)。 On the other hand, as a means for forming and depositing metal under mild conditions, a method of forming a metal pattern using electroless plating technology has also been proposed. For example, after forming a circuit pattern with the ink containing the catalyst which can form electroless plating, the method of forming a metal by an electroless-plating process is disclosed (for example, refer patent document 2).
 上記いずれの場合においても、金属パターンを形成する基板は、通常、ガラスや樹脂フィルム等を用い、これらの基板はほとんどがインク吸収性を有していないため、着弾したインクのはじきや濡れ広がりが発生し、精細なパターンの描画性を得ることが困難であった。 In any of the above cases, the substrate on which the metal pattern is formed usually uses glass, resin film, etc., and most of these substrates do not have ink absorbability, so that the ink that has landed repels and spreads wet. It was difficult to obtain fine pattern drawing performance.
 上記課題に対し、基板上にインク吸収能に優れた層(受理層)を設け、そこにインクジェット方式で金属ナノ粒子(例えば、金属コロイド)溶液を付与して、導電性パターンを得る方法が開示されている(例えば、特許文献3参照。)。しかしながら、金属粒子が微粒子(コロイド)であるため、その大部分は受理層表面に留まり、そこで導電パターンを形成することになるため、非常に薄膜のパターンしか得ることができないという欠点があった。 In response to the above problems, a method of obtaining a conductive pattern by providing a layer (receiving layer) having excellent ink absorption capacity on a substrate and applying a metal nanoparticle (for example, metal colloid) solution thereto by an inkjet method is disclosed. (For example, see Patent Document 3). However, since the metal particles are fine particles (colloid), most of them remain on the surface of the receiving layer, and a conductive pattern is formed there. Therefore, there is a drawback that only a very thin film pattern can be obtained.
特開2002-299833号公報JP 2002-299833 A 特開平10-65314号公報JP 10-65314 A 特開2004-207558号公報JP 2004-207558 A
 本発明は、上記課題に鑑みなされたものであり、その目的は、無機微粒子を用いた多孔層を設けた基板上に触媒を含有したインクを印字して、無電解めっき処理で、良好な描画性、耐擦過性を備えた厚膜の金属パターンが得られる金属パターン形成方法及びそれを用いて形成した金属パターンを提供することにある。 The present invention has been made in view of the above problems, and its purpose is to print an ink containing a catalyst on a substrate provided with a porous layer using inorganic fine particles, and to perform good drawing by electroless plating. It is to provide a metal pattern forming method capable of obtaining a thick-film metal pattern having good properties and scratch resistance, and a metal pattern formed using the metal pattern forming method.
 本発明の上記目的は、以下の構成により達成される。 The above object of the present invention is achieved by the following configuration.
 1.基板上に触媒を含有するインクをインクジェット方式でパターン部を印字し、該パターン部の上に無電解めっき処理によって金属パターンを形成する金属パターン形成方法において、該基板は、表面に無機微粒子Fを含む多孔層を有し、かつ触媒がインク中で溶解した状態で存在していることを特徴とする金属パターン形成方法。 1. In a metal pattern forming method in which a pattern portion is printed by ink jet ink containing a catalyst on a substrate and a metal pattern is formed on the pattern portion by electroless plating, the substrate has inorganic fine particles F on the surface. A method for forming a metal pattern, comprising: a porous layer containing the catalyst, wherein the catalyst is present in a dissolved state in the ink.
 2.前記触媒が、パラジウム化合物であることを特徴とする前記1に記載の金属パターン形成方法。 2. 2. The method for forming a metal pattern according to 1 above, wherein the catalyst is a palladium compound.
 3.前記インクが、前記パラジウム化合物と錯体形成可能な化合物を含有することを特徴とする前記2に記載の金属パターン形成方法。 3. 3. The method for forming a metal pattern according to 2, wherein the ink contains a compound capable of forming a complex with the palladium compound.
 4.前記無機微粒子Fが、シリカ微粒子またはアルミナ微粒子であることを特徴とする前記1~3のいずれか1項に記載の金属パターン形成方法。 4. 4. The method for forming a metal pattern according to any one of 1 to 3, wherein the inorganic fine particles F are silica fine particles or alumina fine particles.
 5.前記多孔層が、有機バインダーBを含有することを特徴とする前記1~4のいずれか1項に記載の金属パターン形成方法。 5. 5. The method for forming a metal pattern according to any one of 1 to 4, wherein the porous layer contains an organic binder B.
 6.前記無機微粒子Fと前記有機バインダーBとの質量比(F:B)が、2:1~20:1であることを特徴とする前記5に記載の金属パターン形成方法。 6. 6. The metal pattern forming method as described in 5 above, wherein a mass ratio (F: B) between the inorganic fine particles F and the organic binder B is 2: 1 to 20: 1.
 7.前記触媒を含有するインクを前記基板の多孔層上に印字する工程と、前記無電解めっき処理を行う工程の間に、触媒活性化工程を有することを特徴とする前記1~6のいずれか1項に記載の金属パターン形成方法。 7. Any one of the above 1 to 6, further comprising a catalyst activation step between the step of printing the ink containing the catalyst on the porous layer of the substrate and the step of performing the electroless plating treatment. The method for forming a metal pattern according to Item.
 8.前記1~7のいずれか1項に記載の金属パターン形成方法によって形成されたことを特徴とする金属パターン。 8. 8. A metal pattern formed by the metal pattern forming method according to any one of 1 to 7.
 本発明により、良好な描画性、耐擦過性を備えた厚膜の金属パターンが得られる金属パターン形成方法及びそれを用いて形成した金属パターンを提供することができた。 According to the present invention, it was possible to provide a metal pattern forming method capable of obtaining a thick film metal pattern having good drawability and scratch resistance, and a metal pattern formed using the metal pattern forming method.
 以下、本発明を実施するための最良の形態について詳細に説明する。 Hereinafter, the best mode for carrying out the present invention will be described in detail.
 本発明者は、上記課題に鑑み鋭意検討を行った結果、基板上に触媒を含有するインクをインクジェット方式でパターン部を印字し、該パターン部の上に無電解めっき処理によって金属パターンを形成する金属パターン形成方法において、該基板は、表面に無機微粒子を含む多孔層を有し、かつ触媒がインク中で溶解した状態で存在していることを特徴とする金属パターン形成方法により、良好な描画性、耐擦過性を備えた厚膜の金属パターンが得られる金属パターン形成方法を実現できることを見出し、本発明に至った次第である。 As a result of intensive studies in view of the above problems, the present inventor printed a pattern portion by ink jet ink containing a catalyst on a substrate, and formed a metal pattern on the pattern portion by electroless plating treatment. In the metal pattern forming method, the substrate has a porous layer containing inorganic fine particles on the surface, and the catalyst is present in a dissolved state in the ink. As a result, the present inventors have found that a metal pattern forming method capable of obtaining a thick metal pattern having good properties and scratch resistance can be realized.
 本発明の金属パターン形成方法は、触媒を含有したインクを、無機微粒子を含む多孔層を有する基板上に印字したのち、無電解めっき処理にて金属パターンを形成することを特徴としているため、すべての工程を100℃以下の穏和な条件行うことができる。これに対し、従来から知られている、例えば、金属ナノ粒子を用いた方法ではナノ粒子の融着や有機分散剤の分解には、150~300℃の焼結温度が必要である。また、銅のような酸化性のある金属では、焼結雰囲気下に不活性気体(窒素)や還元性気体(水素)が必要となったりするが、本発明では、通常、大気雰囲気下で金属パターンの形成を行うことができる利点を備えている。 The metal pattern forming method of the present invention is characterized in that after the ink containing the catalyst is printed on the substrate having the porous layer containing inorganic fine particles, the metal pattern is formed by electroless plating treatment. This process can be performed under mild conditions of 100 ° C. or lower. On the other hand, for example, a conventionally known method using metal nanoparticles requires a sintering temperature of 150 to 300 ° C. for fusing the nanoparticles and decomposing the organic dispersant. In addition, in the case of an oxidizing metal such as copper, an inert gas (nitrogen) or a reducing gas (hydrogen) is required in the sintering atmosphere. This has the advantage that a pattern can be formed.
 また、本発明の特徴の一つとして、無機微粒子を含有する多孔層を設けた基板を用いることにより、インク吸収能を備えていない基板で発生するはじきやインクの濡れ広がりがなくなり、高精細なパターン描画性を得ることができる。また、インクが含有する触媒が溶解状態で存在するため、多孔層の表面にのみ留まることなく、多孔層内部へも十分に浸透することにより、触媒を全体に均一に存在させることができる。その結果、その後の無電解めっき工程にて、多孔層内に金属を形成させることが可能となる。また、多孔層の膜厚に応じて、所望な金属膜厚を得ることができるようなった。 In addition, as one of the features of the present invention, by using a substrate provided with a porous layer containing inorganic fine particles, there is no repellency or ink wetting and spreading that occurs on a substrate that does not have ink absorption capability, and high definition. Pattern drawability can be obtained. Further, since the catalyst contained in the ink exists in a dissolved state, the catalyst can be present uniformly throughout the porous layer by sufficiently permeating the porous layer without staying only on the surface of the porous layer. As a result, a metal can be formed in the porous layer in the subsequent electroless plating process. Further, a desired metal film thickness can be obtained according to the film thickness of the porous layer.
 加えて、多孔層内に金属パターンが形成されことにより、外部応力に対する耐擦過性などにも優れた特性を付与することができた。さらに、触媒がインクに溶解状態で存在するため、インクジェットヘッドにおける目詰まりの懸念がなく、出射安定性が高くなり、微細なパターン形成するのに優れたものとなる。 In addition, by forming a metal pattern in the porous layer, it was possible to impart excellent properties such as scratch resistance against external stress. Further, since the catalyst is present in a dissolved state in the ink, there is no fear of clogging in the ink jet head, the emission stability is improved, and it is excellent for forming a fine pattern.
 以下、本発明の金属パターン形成方法及びそれを用いて形成する金属パターンの詳細について説明する。 Hereinafter, the metal pattern forming method of the present invention and details of the metal pattern formed using the method will be described.
 《インク》
 〔触媒〕
 本発明に係るインクで用いられる触媒としては、パラジウム、銀、銅、金、ニッケル、アルミニウム、スズなどの金属が挙げられる。そのなかでも、触媒活性の高さから、パラジウム、銀、スズが好ましく、さらに好ましくはパラジウムである。これらの触媒の形態としては、金属微粒子や金属塩コロイド(例えば、パラジウム-スズコロイドなど)ではなく、インク中において溶解状態で存在していることが特徴である。これは、溶解均一系のインクであることにより、基板上にある多孔層の厚み方向への浸透を十分に行うことができる。
"ink"
〔catalyst〕
Examples of the catalyst used in the ink according to the present invention include metals such as palladium, silver, copper, gold, nickel, aluminum, and tin. Of these, palladium, silver, and tin are preferable, and palladium is more preferable because of high catalytic activity. A feature of these catalysts is that they exist in a dissolved state in the ink, not metal fine particles or metal salt colloids (for example, palladium-tin colloid). This is a dissolved homogeneous ink, so that the porous layer on the substrate can be sufficiently penetrated in the thickness direction.
 従来のように、触媒が金属微粒子や金属塩コロイドの場合には、多孔層内部に均一に浸透できず、一部の触媒が多孔層表面に露出した状態になってしまう。このような状態で無電解めっき処理を行っても、内部に均一かつ十分な金属形成ができずに、良好な導電性を得ることができない。また、多孔層の外部にも金属が露出した形で生成し、耐擦過性も低いものとなってしまう。 Conventionally, when the catalyst is a metal fine particle or a metal salt colloid, the catalyst cannot uniformly penetrate into the porous layer, and a part of the catalyst is exposed on the surface of the porous layer. Even if the electroless plating treatment is performed in such a state, uniform and sufficient metal cannot be formed inside, and good conductivity cannot be obtained. In addition, the metal is also exposed outside the porous layer, and the scratch resistance is low.
 さらに、本発明に係るインクは、金属微粒子や金属塩コロイドの微粒子タイプに比べ、触媒がインク中において溶解状態で存在することで、インクジェットヘッドにおける目詰まりの心配がなく、出射安定性に優れる。 Furthermore, the ink according to the present invention is superior in emission stability because there is no concern about clogging in the ink jet head because the catalyst exists in a dissolved state in the ink as compared with the fine particles of metal fine particles and metal salt colloids.
 本発明に係るインクにおいて、触媒としてパラジウムを用いる場合、2価イオンのものであれば特に限定されない。例えば、フッ化パラジウム、塩化パラジウム、臭化パラジウム、ヨウ化パラジウム、硝酸パラジウム、硫酸パラジウム、酢酸パラジウム、酸化パラジウム、硫化パラジウム等が挙げられる。 In the ink according to the present invention, when palladium is used as a catalyst, it is not particularly limited as long as it is a divalent ion. Examples thereof include palladium fluoride, palladium chloride, palladium bromide, palladium iodide, palladium nitrate, palladium sulfate, palladium acetate, palladium oxide, palladium sulfide and the like.
 インク中のパラジウムの含有量としては、0.0001~1質量%が好ましい。パラジウムの濃度が0.0001質量%以上であると無電解めっき反応の活性の観点から好ましく、1質量%以下であることがインク中のパラジウムの安定性の観点から好ましい。 The content of palladium in the ink is preferably 0.0001 to 1% by mass. The palladium concentration is preferably 0.0001% by mass or more from the viewpoint of electroless plating reaction activity, and is preferably 1% by mass or less from the viewpoint of the stability of palladium in the ink.
 パラジウムのインク中での溶解性と安定性およびヘッドからの出射性を高める目的で、パラジウム化合物と錯体形成可能な化合物を添加することが好ましい。 It is preferable to add a compound capable of forming a complex with a palladium compound for the purpose of improving the solubility and stability in palladium ink and the emission from the head.
 本発明に適用可能な錯体形成可能な化合物としては、エチレンジアミン、エタノールアミン、エチレンジアミン四酢酸、ベンジルアミンなどのアミン系化合物、ピリジン、ビピリジル、フェナントロリンなどの含窒素複素環式化合物などが挙げられる。 Examples of compounds capable of forming a complex applicable to the present invention include amine compounds such as ethylenediamine, ethanolamine, ethylenediaminetetraacetic acid, and benzylamine, and nitrogen-containing heterocyclic compounds such as pyridine, bipyridyl, and phenanthroline.
 また、インク中でのパラジウムイオンの溶解性と保存性を高める目的で、インクのpHを8~14の範囲に調整することが好ましく、さらに好ましくはpH9~14である。 In order to improve the solubility and storage stability of palladium ions in the ink, it is preferable to adjust the pH of the ink to a range of 8 to 14, more preferably a pH of 9 to 14.
 〔インク溶媒〕
 本発明に係るインクに適用可能な溶媒としては、上記触媒の溶解性の観点から水性液媒体が好ましく用いられ、水性液媒体としては、水及び水溶性有機溶剤等の混合溶媒が更に好ましく用いられる。これらの溶媒の組成については、上記触媒の溶解状態に留意して選択する。
[Ink solvent]
As the solvent applicable to the ink according to the present invention, an aqueous liquid medium is preferably used from the viewpoint of solubility of the catalyst, and as the aqueous liquid medium, a mixed solvent such as water and a water-soluble organic solvent is more preferably used. . The composition of these solvents is selected in consideration of the dissolved state of the catalyst.
 好ましく用いられる水溶性有機溶剤の例としては、アルコール類(例えば、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、セカンダリーブタノール、ターシャリーブタノール等)、多価アルコール類(例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、ポリプロピレングリコール、ブチレングリコール、ヘキサンジオール、ペンタンジオール、グリセリン、ヘキサントリオール、チオジグリコール等)、多価アルコールエーテル類(例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、エチレングリコールモノメチルエーテルアセテート、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、トリエチレングリコールモノブチルエーテル、エチレングリコールモノフェニルエーテル、プロピレングリコールモノフェニルエーテル等)、アミン類(例えば、エタノールアミン、ジエタノールアミン、トリエタノールアミン、N-メチルジエタノールアミン、N-エチルジエタノールアミン、モルホリン、N-エチルモルホリン、エチレンジアミン、ジエチレンジアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ポリエチレンイミン、ペンタメチルジエチレントリアミン、テトラメチルプロピレンジアミン等)、アミド類(例えば、ホルムアミド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等)、複素環類(例えば、2-ピロリドン、N-メチル-2-ピロリドン、シクロヘキシルピロリドン、2-オキサゾリドン、1,3-ジメチル-2-イミダゾリジノン等)、スルホキシド類(例えば、ジメチルスルホキシド等)等が挙げられる。 Examples of water-soluble organic solvents preferably used include alcohols (eg, methanol, ethanol, propanol, isopropanol, butanol, isobutanol, secondary butanol, tertiary butanol, etc.), polyhydric alcohols (eg, ethylene glycol, diethylene glycol) , Triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycol, butylene glycol, hexanediol, pentanediol, glycerin, hexanetriol, thiodiglycol, etc.), polyhydric alcohol ethers (eg, ethylene glycol monomethyl ether) , Ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol Ether monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monobutyl ether, ethylene glycol monomethyl ether acetate, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, triethylene glycol monobutyl ether, ethylene Glycol monophenyl ether, propylene glycol monophenyl ether, etc.), amines (eg ethanolamine, diethanolamine, triethanolamine, N-methyldiethanolamine, N-ethyldiethanolamine, morpholine, N-ethylmorpholine, ethylenediamine, diethylenediamine, triethylene) Tetramine, tetraethylenepentamine, polyethyleneimine, pentamethyldiethylenetriamine, tetramethylpropylenediamine, etc.), amides (eg, formamide, N, N-dimethylformamide, N, N-dimethylacetamide, etc.), heterocyclics (eg, 2-pyrrolidone, N-methyl-2-pyrrolidone, cyclohexyl pyrrolidone, 2-oxazolidone, 1,3-dimethyl-2-imidazolidinone, etc.), sulfoxides (eg dimethyl sulfoxide, etc.) and the like.
 〔界面活性剤〕
 本発明に係るインクに適用可能な界面活性剤としては、アルキル硫酸塩、アルキルエステル硫酸塩、ジアルキルスルホコハク酸塩類、アルキルナフタレンスルホン酸塩類、アルキルリン酸塩、ポリオキシアルキレンアルキルエーテルリン酸塩、脂肪酸塩類等のアニオン性界面活性剤、ポリオキシエチレンアルキルエーテル類、ポリオキシアルキレンアルキルフェニルエーテル類、アセチレングリコール類、ポリオキシエチレン-ポリオキシプロピレンブロックコポリマー類等のノニオン性界面活性剤、グリセリンエステル、ソルビタンエステル、ポリオキシエチレン脂肪酸アミド、アミンオキシド等の界面活性剤、アルキルアミン塩類、第四級アンモニウム塩類等のカチオン性界面活性剤が挙げられる。
[Surfactant]
Surfactants applicable to the ink according to the present invention include alkyl sulfates, alkyl ester sulfates, dialkyl sulfosuccinates, alkyl naphthalene sulfonates, alkyl phosphates, polyoxyalkylene alkyl ether phosphates, fatty acids Anionic surfactants such as salts, nonionic surfactants such as polyoxyethylene alkyl ethers, polyoxyalkylene alkyl phenyl ethers, acetylene glycols, polyoxyethylene-polyoxypropylene block copolymers, glycerin esters, sorbitan Examples include surfactants such as esters, polyoxyethylene fatty acid amides, and amine oxides, and cationic surfactants such as alkylamine salts and quaternary ammonium salts.
 〔その他の各種添加剤〕
 本発明に係るインクにおいては、に必要に応じて、その他の従来公知の添加剤を含有することができる。例えば、蛍光増白剤、消泡剤、潤滑剤、防腐剤、増粘剤、帯電防止剤、マット剤、水溶性多価金属塩、酸塩基、緩衝液等pH調整剤、酸化防止剤、表面張力調整剤、非抵抗調整剤、防錆剤、無機顔料等を挙げることができる。
[Other various additives]
The ink according to the present invention may contain other conventionally known additives as required. For example, fluorescent brighteners, antifoaming agents, lubricants, preservatives, thickeners, antistatic agents, matting agents, water-soluble polyvalent metal salts, acid bases, pH adjusters such as buffers, antioxidants, surfaces Tension modifiers, non-resistance modifiers, rust inhibitors, inorganic pigments and the like can be mentioned.
 《触媒活性化工程》
 本発明の金属パターン形成方法においては、上記触媒を含有するインクを基板の多孔層上に印字する工程と、後述する無電解めっき処理を行う工程の間に、触媒活性化工程を有することが好ましい。
《Catalyst activation process》
In the metal pattern formation method of this invention, it is preferable to have a catalyst activation process between the process of printing the ink containing the said catalyst on the porous layer of a board | substrate, and the process of performing the electroless-plating process mentioned later. .
 すなわち、無電解めっき処理を行う工程の前に、触媒活性化処理を施すことにより、上記触媒を溶解状態で含有するインクを、基板の多孔層に印字したあと、多孔層に存在する触媒金属を0価金属にすることで、無電解めっき反応がより活性化される。本発明では、触媒金属を0価にする工程を触媒活性化工程という。触媒活性化工程は、触媒の種類によって適正な方法を選択する必要があり、酸の付与、加熱、還元剤の付与等が挙げられる。例えば、パラジウム-スズコロイド触媒の場合は、硫酸等を付与することにより、スズとパラジウム間での酸化還元反応が進行し、0価パラジウム金属が生成する。また、パラジウムイオンの場合は、還元剤により0価パラジウム金属が生成する。パラジウムイオンに好ましい還元剤としては、ホウ素系化合物が好ましく、具体的には、水素化ホウ素ナトリウム、トリメチルアミンボラン、ジメチルアミンボラン(DMAB)などが好ましい。 That is, by performing a catalyst activation treatment before the step of performing the electroless plating treatment, after the ink containing the catalyst in a dissolved state is printed on the porous layer of the substrate, the catalyst metal present in the porous layer is removed. By making it a zero-valent metal, the electroless plating reaction is more activated. In the present invention, the step of making the catalyst metal zero is referred to as the catalyst activation step. In the catalyst activation step, it is necessary to select an appropriate method depending on the type of catalyst, and examples thereof include application of acid, heating, and application of a reducing agent. For example, in the case of a palladium-tin colloidal catalyst, by adding sulfuric acid or the like, an oxidation-reduction reaction between tin and palladium proceeds to produce zero-valent palladium metal. In the case of palladium ions, zero-valent palladium metal is generated by the reducing agent. A preferable reducing agent for palladium ions is a boron-based compound. Specifically, sodium borohydride, trimethylamine borane, dimethylamine borane (DMAB), and the like are preferable.
 《基板》
 本発明において適用可能な基板としては、絶縁性を備えたものであれば特に制限はなく、例えば、ガラスやセラミックス等の剛性の強いものから、PET(ポリエチレンテレフタレート)やポリイミドなどの樹脂から構成されるフィルム状のものが挙げられる。
"substrate"
The substrate applicable in the present invention is not particularly limited as long as it has insulating properties. For example, the substrate is made of a material having high rigidity such as glass or ceramics, or a resin such as PET (polyethylene terephthalate) or polyimide. The film-like thing to mention is mentioned.
 本発明において用いられる基板において、密着性改良の観点から、いわゆるプライマー処理やプラズマ処理を行っていても良い。同様にして、基板上に下引き層を設けてもよい。下引き層の材料としては、アクリル樹脂などの熱可塑性樹脂やシランカップリング剤などのカップリング剤などが挙げられる。 The substrate used in the present invention may be subjected to so-called primer treatment or plasma treatment from the viewpoint of improving adhesion. Similarly, an undercoat layer may be provided on the substrate. Examples of the material for the undercoat layer include thermoplastic resins such as acrylic resins and coupling agents such as silane coupling agents.
 〔多孔層〕
 本発明に係る基板においては、表面に無機微粒子を含む多孔層を有することを特徴とする。
(Porous layer)
The substrate according to the present invention has a porous layer containing inorganic fine particles on the surface.
 すなわち、基板上にインク吸収能を有した多孔層を設けられたものであり、この多孔層の形成方法としては、無機微粒子と有機バインダーから多孔層が形成されているものが好ましい。 That is, a porous layer having ink absorbing ability is provided on the substrate, and the porous layer is preferably formed by forming a porous layer from inorganic fine particles and an organic binder.
 本発明に係る多孔層で用いることのできる無機微粒子としては、例えば、軽質炭酸カルシウム、重質炭酸カルシウム、炭酸マグネシウム、カオリン、クレー、タルク、硫酸カルシウム、硫酸バリウム、二酸化チタン、酸化亜鉛、水酸化亜鉛、硫化亜鉛、炭酸亜鉛、ハイドロタルサイト、珪酸アルミニウム、珪藻土、珪酸カルシウム、珪酸マグネシウム、合成非晶質シリカ、コロイダルシリカ、アルミナ、コロイダルアルミナ、擬ベーマイト、水酸化アルミニウム、リトポン、ゼオライト、水酸化マグネシウム等の白色無機顔料を挙げることができる。インク吸収性や低コストでの製造等の観点から、シリカ系微粒子及びアルミナ系微粒子から選ばれた無機微粒子が好ましい。 Examples of the inorganic fine particles that can be used in the porous layer according to the present invention include light calcium carbonate, heavy calcium carbonate, magnesium carbonate, kaolin, clay, talc, calcium sulfate, barium sulfate, titanium dioxide, zinc oxide, and hydroxide. Zinc, zinc sulfide, zinc carbonate, hydrotalcite, aluminum silicate, diatomaceous earth, calcium silicate, magnesium silicate, synthetic amorphous silica, colloidal silica, alumina, colloidal alumina, pseudoboehmite, aluminum hydroxide, lithopone, zeolite, hydroxylation Mention may be made of white inorganic pigments such as magnesium. From the viewpoint of ink absorbability and low-cost production, inorganic fine particles selected from silica-based fine particles and alumina-based fine particles are preferable.
 上記無機微粒子の形状は、特に制約は受けず、球状、棒状、針状、平板状、数珠状のいずれの形状であってもよい。 The shape of the inorganic fine particles is not particularly limited, and may be any shape such as a spherical shape, a rod shape, a needle shape, a flat plate shape, and a bead shape.
 無機微粒子は、一次粒子のままで有機バインダー中に均一に分散された状態で用いられることも、あるいは、二次凝集粒子を形成して有機バインダー中に分散された状態で用いられても良いが、速いインク吸収性を達成するという観点からは、後者がより好ましい。また、同様の観点から、皮膜中で、平均粒径が3~200nmとなる無機微粒子を使用することが好ましい。また無機微粒子の製造上の観点から、その平均粒径は10~100nmであることがさらに好ましい。 The inorganic fine particles may be used in a state of being uniformly dispersed in the organic binder as primary particles, or may be used in a state of being dispersed in the organic binder by forming secondary agglomerated particles. From the viewpoint of achieving fast ink absorption, the latter is more preferable. From the same viewpoint, it is preferable to use inorganic fine particles having an average particle diameter of 3 to 200 nm in the film. Further, from the viewpoint of production of inorganic fine particles, the average particle diameter is more preferably 10 to 100 nm.
 無機微粒子の平均粒径は、微粒子自身や、あるいは多孔層の断面や表面を電子顕微鏡で観察し、多数個の任意の微粒子の粒径を測定し、その単純平均値(個数平均)として求められる。本発明で云う個々の粒径は、その投影面積に等しい円を仮定したときの直径で表したものである。 The average particle size of the inorganic fine particles can be obtained as a simple average value (number average) by observing the cross-section or surface of the fine particles themselves or the porous layer with an electron microscope, measuring the particle size of a large number of arbitrary fine particles. . The individual particle diameter referred to in the present invention is represented by a diameter assuming a circle equal to the projected area.
 本発明においては、低コストであることなどから、表面がアニオン性の無機微粒子としては、気相法で合成されたシリカ又はコロイダルシリカが好ましい。又、表面がカチオン性である無機微粒子としては、カチオン表面処理された気相法シリカ、カチオン表面処理されたコロイダルシリカ、アルミナ、コロイダルアルミナ、擬ベーマイト等も用いることが出来る。 In the present invention, silica or colloidal silica synthesized by a gas phase method is preferable as the inorganic fine particles having anionic surfaces because of low cost. In addition, as the inorganic fine particles having a cationic surface, vapor phase silica having a cationic surface treatment, colloidal silica having a cationic surface treatment, alumina, colloidal alumina, pseudoboehmite, or the like can be used.
 多孔層の膜厚としては、触媒インクにてパターン形成させるためのインク吸収性および無電解めっきで形成させる金属膜厚の観点から、0.5μm以上、30μm以下であることが好ましい。 The film thickness of the porous layer is preferably 0.5 μm or more and 30 μm or less from the viewpoint of ink absorbency for pattern formation with catalyst ink and metal film thickness formed by electroless plating.
 多孔層に用いられる無機微粒子の添加量は、要求されるインク吸収容量、多孔層の空隙率、無機微粒子の種類、有機バインダーの種類に大きく依存するが、一般には多孔層1m当たり、通常1~30g、好ましくは3~25gである。 The amount of inorganic fine particles used in the porous layer depends largely on the required ink absorption capacity, the porosity of the porous layer, the type of inorganic fine particles, and the type of organic binder, but is generally 1 per 1 m 2 of the porous layer. -30 g, preferably 3-25 g.
 無機微粒子Fと有機バインダーBとの比率(F:B)は、質量比で2:1~20:1であることが好ましく、更には、3:1~10:1であることが好ましい。無機微粒子の添加量の増加に従いインク吸収容量も高くなるが、反面、カールやひび割れ等が悪化しやすいため、空隙率のコントロールによりインク吸収容量を増加させる方法が好ましい。 The ratio (F: B) between the inorganic fine particles F and the organic binder B is preferably 2: 1 to 20: 1, and more preferably 3: 1 to 10: 1. As the amount of inorganic fine particles added increases, the ink absorption capacity increases. On the other hand, curling, cracking, and the like are liable to deteriorate. Therefore, a method of increasing the ink absorption capacity by controlling the porosity is preferable.
 多孔層に無電解めっきで形成した金属パターンの抵抗率、ひび割れ等の観点から、好ましい空隙率は40~75%である。空隙率は、選択する無機微粒子、親水性バインダーの種類によって、あるいはそれらの混合比によって、またはその他の添加剤の量を適宜調整することにより、所望の値に設定することができる。ここでいう空隙率とは、多孔層の体積における空隙の総体積の比率であり、その層の構成物の総体積と層の厚さから計算で求めることができる。また、空隙の総体積は、ブリストー測定による飽和転移量、吸水量測定などによっても簡易に求めることができる。 From the viewpoint of resistivity, cracks, etc. of the metal pattern formed by electroless plating on the porous layer, the preferable porosity is 40 to 75%. The porosity can be set to a desired value depending on the type of inorganic fine particles and hydrophilic binder to be selected, or the mixing ratio thereof, or by appropriately adjusting the amount of other additives. The porosity here is the ratio of the total volume of the voids to the volume of the porous layer, and can be calculated from the total volume of the constituents of the layer and the thickness of the layer. Further, the total volume of the voids can be easily determined by measuring the amount of saturation transition and water absorption by Bristow measurement.
 本発明に係る多孔層で適用可能な有機バインダーとしては、例えば、ポリビニルアルコール、ゼラチン、ポリエチレンオキサイド、ポリビニルピロリドン、カゼイン、澱粉、寒天、カラギーナン、ポリアクリル酸、ポリメタクリル酸、ポリアクリルアミド、ポリメタクリルアミド、ポリスチレンスルホン酸、セルロース、ヒドロキシルエチルセルロース、カルボキシルメチルセルロース、ヒドロキシルエチルセルロース、デキストラン、デキストリン、プルラン、水溶性ポリビニルブチラール等の親水性ポリマーが挙げられる。これらの有機バインダーは、2種以上併用することも可能である。 Examples of the organic binder applicable in the porous layer according to the present invention include polyvinyl alcohol, gelatin, polyethylene oxide, polyvinyl pyrrolidone, casein, starch, agar, carrageenan, polyacrylic acid, polymethacrylic acid, polyacrylamide, and polymethacrylamide. And hydrophilic polymers such as polystyrene sulfonic acid, cellulose, hydroxyl ethyl cellulose, carboxyl methyl cellulose, hydroxyl ethyl cellulose, dextran, dextrin, pullulan, and water-soluble polyvinyl butyral. Two or more of these organic binders can be used in combination.
 次に、本発明に係る多孔層の製造方法について説明する。 Next, a method for producing a porous layer according to the present invention will be described.
 多孔層の製造方法としては、公知の塗布方式から適宜選択して、基板上に塗布、乾燥して製造することができる。塗布方式としては、例えば、ロールコーティング法、ロッドバーコーティング法、エアナイフコーティング法、スプレーコーティング法、カーテン塗布方法、あるいは米国特許第2,761,419号、同第2,761,791号公報に記載のホッパーを使用するスライドビード塗布方法、エクストルージョンコート法等が好ましく用いられる。 As the method for producing the porous layer, it can be suitably selected from known coating methods and coated on the substrate and dried. Examples of the coating method include a roll coating method, a rod bar coating method, an air knife coating method, a spray coating method, a curtain coating method, or US Pat. Nos. 2,761,419 and 2,761,791. A slide bead coating method using an hopper, an extrusion coating method, or the like is preferably used.
 《インクと多孔層》
 高解像度な細線を良好かつ迅速に描画するには、インク液滴と多孔層の条件を適正に選択することが必要となる。これらの条件としては、インク液滴ができるだけ小さいほど好ましく、10pl以下、好ましくは4pl以下である。このような微細な液滴の大きさであれば、線幅50μm程度の細線パターンの描画が可能となる。こうした細線を描画するには、印字する際に高解像度が必要となる。360dpi以上、720dpi以上の解像度がさらに好ましい。なお、本発明でいうdpiとは、2.54cmあたりのドット数を表す。こうした微小液滴を高解像度で迅速に印字するには、多孔層がもつインク性能のうち、吸収量および吸収速度が十分でないといけない。吸収量や吸収速度が足りないと、インク溢れや滲みが発生し、細線の描画性を落としてしまう。こうした観点から多孔層が、インク吸収量と吸収速度が十分得られる構成として、膜厚が0.5μm以上、好ましくは5μmで、かつ空隙率が40%以上、好ましくは60%以上である。
《Ink and porous layer》
In order to draw a high-resolution fine line well and quickly, it is necessary to appropriately select the conditions of the ink droplet and the porous layer. As these conditions, the ink droplet is preferably as small as possible, and is 10 pl or less, preferably 4 pl or less. With such a fine droplet size, a thin line pattern with a line width of about 50 μm can be drawn. In order to draw such fine lines, high resolution is required for printing. A resolution of 360 dpi or more and 720 dpi or more is more preferable. In addition, dpi as used in the field of this invention represents the number of dots per 2.54 cm. In order to print such fine droplets quickly with high resolution, the amount of absorption and the absorption speed must be sufficient in the ink performance of the porous layer. If the amount of absorption or the absorption speed is insufficient, ink overflow or bleeding occurs, and the drawing performance of thin lines is deteriorated. From this point of view, the porous layer has a film thickness of 0.5 μm or more, preferably 5 μm, and a porosity of 40% or more, preferably 60% or more, so that the ink absorption and absorption speed can be sufficiently obtained.
 《無電解めっき処理》
 本発明に係る無電解めっき処理について説明する。
《Electroless plating treatment》
The electroless plating process according to the present invention will be described.
 多孔層を設けた基板に触媒インクをインクジェット法にてパターン印字したあと、無電解めっき処理を行い、パターン部に金属を形成させた金属パターンを得る。 After pattern printing of the catalyst ink on the substrate provided with the porous layer by the inkjet method, electroless plating treatment is performed to obtain a metal pattern in which a metal is formed on the pattern portion.
 通常、上記パターン印字した基板を、無電解めっき液(浴)に浸漬する工程が一般的な方法である。 Usually, the step of immersing the substrate printed with the above pattern in an electroless plating solution (bath) is a common method.
 無電解めっき液としては、1)金属イオン、2)錯化剤、3)還元剤が主に含有される。無電解めっきで形成される金属としては、金、銀、銅、パラジウム、ニッケルおよびそれらの合金などが挙げられるが、導電性や安全性の観点から銀または銅が好ましく、さらに銅が好ましい。よって、無電解めっき浴に使用される金属イオンとしても、上記金属に対応した金属イオンを含有させる。よって銅イオンが好ましく、例えば、硫酸銅などが挙げられる。錯化剤および還元剤も金属イオンに適したものが選択される。錯化剤としては、エチレンジアミンテトラ酢酸(以下、EDTAと略記する)、ロシェル塩、D-マンニトール、D-ソルビトール、ズルシトール、イミノ二酢酸、trans-1,2-シクロヘキサンジアミン四酢酸、などが挙げられ、EDTAが好ましい。還元剤としては、ホルムアルデヒド、テトラヒドロホウ酸カリウム、ジメチルアミンボラン、グリオキシル酸、次亜リン酸ナトリウムなどが挙げられ、ホルムアルデヒドが好ましい。 The electroless plating solution mainly contains 1) metal ions, 2) complexing agents, and 3) reducing agents. Examples of the metal formed by electroless plating include gold, silver, copper, palladium, nickel, and alloys thereof. From the viewpoint of conductivity and safety, silver or copper is preferable, and copper is more preferable. Therefore, metal ions corresponding to the above metals are contained as metal ions used in the electroless plating bath. Accordingly, copper ions are preferable, and examples thereof include copper sulfate. Complexing agents and reducing agents are also selected that are suitable for metal ions. Examples of the complexing agent include ethylenediaminetetraacetic acid (hereinafter abbreviated as EDTA), Rochelle salt, D-mannitol, D-sorbitol, dulcitol, iminodiacetic acid, trans-1,2-cyclohexanediaminetetraacetic acid, and the like. EDTA is preferred. Examples of the reducing agent include formaldehyde, potassium tetrahydroborate, dimethylamine borane, glyoxylic acid and sodium hypophosphite, and formaldehyde is preferred.
 上記無電解めっき工程は、めっき浴の温度、pH、浸漬時間、金属イオン濃度を制御することで、金属形成の速度や膜厚を制御することができる。 In the electroless plating step, the metal formation speed and film thickness can be controlled by controlling the temperature, pH, immersion time, and metal ion concentration of the plating bath.
 本発明においては、多孔層内に触媒を存在させているので、無電解めっき浴に浸漬させると、多孔層中に金属が形成されていくことを断面写真にて確認した。このようにして形成される金属膜厚は、多孔層の膜厚とも関係するが、0.1μm以上、30μm以下が好ましい。 In the present invention, since a catalyst is present in the porous layer, it was confirmed by a cross-sectional photograph that a metal was formed in the porous layer when immersed in an electroless plating bath. The metal film thickness thus formed is related to the film thickness of the porous layer, but is preferably 0.1 μm or more and 30 μm or less.
 《金属パターンの形成方法》
 本発明の金属パターン形成方法においては、触媒を含有したインクはインクジェットヘッドから多孔層を設けた基板へ吐出させ、パターン形成させる。吐出させる液滴の大きさとしては、特に制限はないが、回路配線等の場合は微細線の形成が必要となるので50pl以下、好ましくは20pl以下の液滴量にする。
<Method for forming metal pattern>
In the metal pattern forming method of the present invention, the ink containing the catalyst is ejected from the ink jet head to the substrate provided with the porous layer to form a pattern. The size of the droplets to be ejected is not particularly limited, but in the case of circuit wiring or the like, it is necessary to form fine lines, so the amount of droplets is 50 pl or less, preferably 20 pl or less.
 インクジェットヘッドとしては、特に制限はなく、ピエゾ型、サーマル型いずれのヘッドを用いることが可能である。 The ink jet head is not particularly limited, and either a piezo type or a thermal type head can be used.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」あるいは「%」の表示を用いるが、特に断りがない限り「質量部」あるいは「質量%」を表す。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "part" or "%" is used in an Example, unless otherwise indicated, "part by mass" or "mass%" is represented.
 《インクの調製》
 〔インク1の調製:本発明〕
 触媒として酢酸パラジウムを0.02質量%、水溶性有機溶媒として、エチレングリコールを50質量%、グリセリン20質量%、純水を残分としてインク1を調製した。水酸化ナトリウムにてインクのpHを12.0に調整し、酢酸パラジウムが溶解していることを確認した。
<Preparation of ink>
[Preparation of Ink 1: Present Invention]
Ink 1 was prepared using 0.02% by mass of palladium acetate as a catalyst, 50% by mass of ethylene glycol, 20% by mass of glycerin as a water-soluble organic solvent, and pure water as a residue. The pH of the ink was adjusted to 12.0 with sodium hydroxide, and it was confirmed that palladium acetate was dissolved.
 〔インク2の調製:本発明〕
 触媒として塩化パラジウムを0.04質量%、これと錯体形成する2-アミノピリジンを0.2質量%、水溶性有機溶媒としてエチレングリコールを50質量%、グリセリンを20質量%、純水を残分としてインク-2を調製した。水酸化ナトリウムにてインクのpHを13.0に調整し、塩化パラジウムが溶解していることを確認した。
[Preparation of ink 2: the present invention]
0.04% by mass of palladium chloride as a catalyst, 0.2% by mass of 2-aminopyridine complexed therewith, 50% by mass of ethylene glycol as a water-soluble organic solvent, 20% by mass of glycerin, pure water remaining Ink-2 was prepared as follows. The pH of the ink was adjusted to 13.0 with sodium hydroxide, and it was confirmed that palladium chloride was dissolved.
 〔インク3の調製:比較例〕
 パラジウム/スズのコロイド液としてプレデップPN-104(ワールドメタル社製)3.0質量%と、キャタリストPN105(ワールドメタル社製)27.0質量%に、水溶性溶媒エチレングリコール30質量%、グリセリン20質量%を添加し、純水を残分として、比較のインク3を調製した。
[Preparation of Ink 3: Comparative Example]
As a colloidal solution of palladium / tin, 3.0% by mass of Predep PN-104 (manufactured by World Metal), 27.0% by mass of catalyst PN105 (manufactured by World Metal), 30% by mass of water-soluble solvent ethylene glycol, glycerin Comparative ink 3 was prepared by adding 20% by mass and using pure water as a residue.
 《基板の作製》
 〔基板1の作製〕
 (シリカ分散液の調製)
 気相法シリカ(QS-20、平均粒径12nm、トクヤマ社製)                                 15質量%
 ポリビニルアルコール(PVA235、けん化度88%、重合度3500 クラレ社製)の10%水溶液               25質量%
 n-プロパノール                     5質量%
 純水                             残量
 上記混合液を、高速分散機用いて分散してシリカ分散液を調製した。
<Production of substrate>
[Preparation of substrate 1]
(Preparation of silica dispersion)
Gas phase method silica (QS-20, average particle size 12 nm, manufactured by Tokuyama Corporation) 15% by mass
25% by mass of 10% aqueous solution of polyvinyl alcohol (PVA235, saponification degree 88%, polymerization degree 3500, manufactured by Kuraray Co., Ltd.)
n-propanol 5% by mass
Pure water remaining amount The above-mentioned mixed solution was dispersed using a high-speed disperser to prepare a silica dispersion.
 (多孔層の形成)
 厚さ100μmのポリエチレンテレフタレート(PET)シート上に、ロッドバーコーティング法にて、上記シリカ分散液を乾燥膜厚が20μmになる条件で塗布、乾燥して多孔層を有する基板1を作製した。形成した多孔層の空隙率をブリストー法による吸水量から測定した結果、65%であった。
(Formation of porous layer)
On a polyethylene terephthalate (PET) sheet having a thickness of 100 μm, the silica dispersion was applied by a rod bar coating method under the condition that the dry film thickness was 20 μm, and dried to prepare a substrate 1 having a porous layer. As a result of measuring the porosity of the formed porous layer from the amount of water absorbed by the Bristow method, it was 65%.
 〔基板2〕
 厚さ100μmのポリエチレンテレフタレート(PET)シートを、基板2とした。
[Substrate 2]
The substrate 2 was a polyethylene terephthalate (PET) sheet having a thickness of 100 μm.
 《金属配線パターンの形成》
 〔金属配線パターン1の形成〕
 (配線パターン形成)
 搬送系オプションXY100に装着したインクジェットヘッド評価装置EB100(コニカミノルタIJ(株)製)に、インクジェットヘッドとして、ノズル口径20μm、液適量2pl、最大駆動周波数25kHz、ノズル数1024、ノズル密度360dpiであるピエゾ型のインクジェットヘッドを搭載し、入力する画像を8パスのインターリーブ方式で記録可能であり、主走査、副走査方向の記録解像度がともに1440dpiであり、上記調製したインク1が吐出できるようにした。ステージに、上記作製した基板1を取り付け、触媒を含むインク1を吐出して、配線幅50μm、配線間距離50μm、配線長30mmで100本の細線パターンを形成した。
<Formation of metal wiring pattern>
[Formation of metal wiring pattern 1]
(Wiring pattern formation)
The inkjet head evaluation device EB100 (manufactured by Konica Minolta IJ Co., Ltd.) mounted on the transport system option XY100 has a piezoelectric nozzle having an nozzle diameter of 20 μm, a suitable liquid amount of 2 pl, a maximum drive frequency of 25 kHz, a nozzle count of 1024, and a nozzle density of 360 dpi. A type inkjet head is mounted, and an input image can be recorded by an 8-pass interleaving method. Both the main scanning and sub-scanning recording resolutions are 1440 dpi, and the prepared ink 1 can be ejected. The prepared substrate 1 was attached to the stage, and the ink 1 containing the catalyst was discharged to form 100 fine line patterns with a wiring width of 50 μm, a wiring distance of 50 μm, and a wiring length of 30 mm.
 (活性化工程1)
 上記方法でパターン形成した後の基板1を50℃で5分乾燥したのち、ホウ素系の還元剤を含有した下記活性化液に、室温で15分浸漬した。この工程で、Pd錯体を還元してPd金属を形成した。浸漬後の基板1は純水にて洗浄した。
(Activation step 1)
The substrate 1 after pattern formation by the above method was dried at 50 ° C. for 5 minutes, and then immersed in the following activation liquid containing a boron-based reducing agent for 15 minutes at room temperature. In this step, the Pd complex was reduced to form Pd metal. The substrate 1 after immersion was washed with pure water.
 アルカップMDR2-A(上村工業社製)        1.8質量%
 アルカップMDR2-C(上村工業社製)          6質量%
 純水                             残量
 (無電解めっき工程)
 下記の無電解銅めっき溶液を調製した。仕上がりのめっき液は、銅濃度として2.5質量%、ホルマリン濃度が1質量%、エチレンジアミンテトラ酢酸(EDTA)濃度が2.5質量%である。また、水酸化ナトリウムでめっき液のpHを13.0に調整した。
Alcup MDR2-A (Uemura Kogyo Co., Ltd.) 1.8% by mass
Alcup MDR2-C (manufactured by Uemura Kogyo Co., Ltd.) 6% by mass
Pure water remaining (electroless plating process)
The following electroless copper plating solution was prepared. The finished plating solution has a copper concentration of 2.5 mass%, a formalin concentration of 1 mass%, and an ethylenediaminetetraacetic acid (EDTA) concentration of 2.5 mass%. Further, the pH of the plating solution was adjusted to 13.0 with sodium hydroxide.
 メルプレートCU-5100A(メルテックス社製)   6.0質量%
 メルプレートCU-5100B(メルテックス社製)   5.5質量%
 メルプレートCU-5100C(メルテックス社製)   2.0質量%
 メルプレートCU-5100M(メルテックス社製)   4.0質量%
 純水                             残量
 50℃に保温した上記無電解銅めっき溶液に、活性化処理を施した基板1を90分間浸漬し、Pd金属パターン部に銅金属にめっき化された配線幅50μm、配線間距離50μm、配線長30mmで100本の金属配線パターン1を形成した。
Melplate CU-5100A (Meltex) 6.0% by mass
Melplate CU-5100B (Meltex) 5.5% by mass
Melplate CU-5100C (Meltex) 2.0% by mass
Melplate CU-5100M (Meltex) 4.0% by mass
Pure water Remaining amount The activated substrate 1 is immersed in the electroless copper plating solution kept at 50 ° C. for 90 minutes, and the Pd metal pattern portion is plated on the copper metal with a wiring width of 50 μm and the distance between the wirings. 100 metal wiring patterns 1 were formed with a thickness of 50 μm and a wiring length of 30 mm.
 〔金属配線パターン2の形成〕
 上記金属配線パターン1の形成において、インク1に代えてインク2を用い、更に活性化工程1による活性化処理を行わなかった以外は同様にして、金属配線パターン2を形成した。
[Formation of metal wiring pattern 2]
In the formation of the metal wiring pattern 1, the metal wiring pattern 2 was formed in the same manner except that the ink 2 was used instead of the ink 1 and the activation process in the activation step 1 was not performed.
 〔金属配線パターン3の形成〕
 上記金属配線パターン1の形成において、インク1に代えてインク2を用いた以外は同様にして、金属配線パターン3を形成した。
[Formation of metal wiring pattern 3]
In the formation of the metal wiring pattern 1, the metal wiring pattern 3 was formed in the same manner except that the ink 2 was used instead of the ink 1.
 〔金属配線パターン4の形成〕
 上記金属配線パターン1の形成において、インク1に代えて比較のインク3を用い、更に活性化工程1による活性化処理に代えて、下記活性化工程2を用いた以外は同様にして、金属配線パターン4を形成した。
[Formation of metal wiring pattern 4]
In the formation of the metal wiring pattern 1, the metal wiring pattern 1 is similarly used except that the comparative ink 3 is used instead of the ink 1, and the activation process 2 described below is used instead of the activation process of the activation process 1. Pattern 4 was formed.
 (活性化工程2)
 パラジウム/スズコロイドのインク3を、下記溶液に室温にて2分間浸漬させて、スズの除去を行い、パラジウム金属を残した。この工程により、インク3のパラジウム金属の配線パターンが形成された。
(Activation step 2)
Palladium / tin colloidal ink 3 was immersed in the following solution at room temperature for 2 minutes to remove tin, leaving palladium metal. By this step, a wiring pattern of palladium metal of ink 3 was formed.
 アクセレーターAC-250(ワールドメタル社製)    25質量%
 純水                             残量
 〔金属配線パターン5の形成〕
 上記金属配線パターン3の形成において、多孔層を備えた基板1に代えて、ポリエチレンテレフタレート(PET)シート単体である基板2に変更した以外は同様にして、金属配線パターン5を形成した。
Accelerator AC-250 (World Metal) 25% by mass
Pure water remaining amount [Formation of metal wiring pattern 5]
In the formation of the metal wiring pattern 3, the metal wiring pattern 5 was formed in the same manner except that the substrate 2 was a polyethylene terephthalate (PET) sheet alone instead of the substrate 1 provided with the porous layer.
 〔金属配線パターン6の形成〕
 上記金属配線パターン4の形成において、多孔層を備えた基板1に代えて、ポリエチレンテレフタレート(PET)シート単体である基板2に変更した以外は同様にして、金属配線パターン6を形成した。
[Formation of metal wiring pattern 6]
In the formation of the metal wiring pattern 4, the metal wiring pattern 6 was formed in the same manner except that the substrate 2 was a polyethylene terephthalate (PET) sheet alone instead of the substrate 1 provided with the porous layer.
 《金属配線パターンの評価》
 上記作製した各金属配線パターン及びその作製に用いたインクについて、下記の各評価を行った。
<< Evaluation of metal wiring pattern >>
Each evaluation below was performed about each produced metal wiring pattern and the ink used for the production.
 〔細線の描画性の評価〕
 上記形成した各銅配線パターンを光学顕微鏡にて観察し、下記の基準に従って細線の描写性を評価した。
[Evaluation of drawability of fine lines]
Each copper wiring pattern formed above was observed with an optical microscope, and fine line descriptiveness was evaluated according to the following criteria.
 ○:細線の欠け(断線)、細線同士の接触がなく、かつ線形状の乱れ(細りや太り)も10%未満である
 △:細線の欠け(断線)、細線同士の接触がなく、かつ線形状の乱れ(細りや太り)が10%以上、30%未満である
 ×:細線の欠け(断線)、細線同士の接触が認められ、かつ線形状の乱れ(細りや太り)が30%以上である
 〔細線の耐擦過性の評価〕
 上記形成した各銅配線パターン表面を、水で濡らした布(BEMCOT;旭化成工業社製)を用いて、往復20回摺擦した。摺擦後の細線部について、金属膜の欠落や金属膜の剥がれを目視観察し、下記の基準に従って細線の耐擦過性を評価した。
○: Fine line breakage (disconnection), no contact between thin lines, and line shape disorder (thinning or thickening) is less than 10%. Δ: Fine line breakage (breakage), no contact between thin lines, and line. Disturbance of shape (thinning or thickening) is 10% or more and less than 30% ×: Fine line chipping (disconnection), contact between thin lines is recognized, and line shape disorder (thinning or thickening) is 30% or more Yes [Evaluation of abrasion resistance of fine wires]
The surface of each copper wiring pattern thus formed was rubbed 20 times back and forth using a cloth (BEMCOT; manufactured by Asahi Kasei Kogyo Co., Ltd.) wetted with water. About the thin wire | line part after rubbing, lack of a metal film and peeling of a metal film were observed visually, and the abrasion resistance of the thin wire was evaluated according to the following reference | standard.
 ○:金属膜の欠落や金属膜の剥がれが発生した細線の数が、10%未満である
 △:金属膜の欠落や金属膜の剥がれが発生した細線の数が、10%以上、50%未満である
 ×:金属膜の欠落や金属膜の剥がれが発生した細線の数が、50%以上である
 〔金属パターンの膜厚測定〕
 上記各金属パターンの形成方法で、10mm×10mmの大きさの金属パターン形成させた。次いで、金属パターンをミクロトームで切断してその断面を光学顕微鏡にて観察し、50点の膜厚を測定し、その平均値を求めた。なお、膜厚が1μm未満の場合には、走査型電子顕微鏡を用いて膜厚を測定した。
○: The number of fine lines in which metal film is missing or peeled off is less than 10%. Δ: The number of thin lines in which metal film is missing or peeled off is 10% or more and less than 50%. X: The number of thin lines in which the metal film is missing or peeled off is 50% or more [Measurement of film thickness of metal pattern]
A metal pattern having a size of 10 mm × 10 mm was formed by the method for forming each metal pattern. Next, the metal pattern was cut with a microtome, the cross section was observed with an optical microscope, the film thickness at 50 points was measured, and the average value was obtained. When the film thickness was less than 1 μm, the film thickness was measured using a scanning electron microscope.
 〔インクの出射安定性の評価〕
 上記配線パターンの形成で用いたインクおよびインクジェット出射装置を、低温低湿(10℃、20%rh)環境下で、全ノズルにより1時間の連続出射を行い、1時間後のノズル欠の発生状態を拡大鏡にて観察し、下記の基準に従ってインクの出射安定性を評価した。
[Evaluation of ink ejection stability]
The ink used in forming the wiring pattern and the ink jet ejection device are continuously ejected for 1 hour with all the nozzles in a low temperature and low humidity (10 ° C., 20% rh) environment, and the occurrence of missing nozzles after 1 hour. The ink was observed with a magnifying glass, and the ink ejection stability was evaluated according to the following criteria.
 ○:欠ノズルの数が、全ノズル数に対して2%未満である
 △:欠ノズルの数が、全ノズル数に対して2%以上、10%未満である
 ×:欠ノズルの数が、全ノズル数に対して10%以上である
 以上により得られた各評価結果を、表1に示す。
○: The number of missing nozzles is less than 2% with respect to the total number of nozzles. Δ: The number of missing nozzles is 2% or more and less than 10% with respect to the total number of nozzles. Table 1 shows each evaluation result obtained as described above.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に記載の結果より明らかなように、本発明の触媒を含むインクを、多孔層を有する基板上に吐出して、無電解めっきを行った本発明の金属パターン形成方法により作製した金属配線パターンは、比較例に対し、良好な描画性の金属パターンを示し、十分な金属膜厚が得られ、また耐擦過性に優れた金属パターンを形成することができた。 As is clear from the results shown in Table 1, the metal wiring produced by the metal pattern forming method of the present invention in which the ink containing the catalyst of the present invention was discharged onto a substrate having a porous layer and electroless plating was performed. As compared with the comparative example, the pattern showed a metal pattern with good drawability, a sufficient metal film thickness was obtained, and a metal pattern excellent in scratch resistance could be formed.

Claims (8)

  1. 基板上に触媒を含有するインクをインクジェット方式でパターン部を印字し、該パターン部の上に無電解めっき処理によって金属パターンを形成する金属パターン形成方法において、該基板は、表面に無機微粒子Fを含む多孔層を有し、かつ触媒がインク中で溶解した状態で存在していることを特徴とする金属パターン形成方法。 In a metal pattern forming method in which a pattern portion is printed by ink jet ink containing a catalyst on a substrate and a metal pattern is formed on the pattern portion by electroless plating, the substrate has inorganic fine particles F on the surface. A method for forming a metal pattern, comprising: a porous layer containing the catalyst, wherein the catalyst is present in a dissolved state in the ink.
  2. 前記触媒が、パラジウム化合物であることを特徴とする請求項1に記載の金属パターン形成方法。 The metal pattern forming method according to claim 1, wherein the catalyst is a palladium compound.
  3. 前記インクが、前記パラジウム化合物と錯体形成可能な化合物を含有することを特徴とする請求項2に記載の金属パターン形成方法。 The metal pattern forming method according to claim 2, wherein the ink contains a compound capable of forming a complex with the palladium compound.
  4. 前記無機微粒子Fが、シリカ微粒子またはアルミナ微粒子であることを特徴とする請求項1~3のいずれか1項に記載の金属パターン形成方法。 The method for forming a metal pattern according to any one of claims 1 to 3, wherein the inorganic fine particles F are silica fine particles or alumina fine particles.
  5. 前記多孔層が、有機バインダーBを含有することを特徴とする請求項1~4のいずれか1項に記載の金属パターン形成方法。 The metal pattern forming method according to any one of claims 1 to 4, wherein the porous layer contains an organic binder B.
  6. 前記無機微粒子Fと前記有機バインダーBとの質量比(F:B)が、2:1~20:1であることを特徴とする請求項5に記載の金属パターン形成方法。 6. The metal pattern forming method according to claim 5, wherein a mass ratio (F: B) of the inorganic fine particles F to the organic binder B is 2: 1 to 20: 1.
  7. 前記触媒を含有するインクを前記基板の多孔層上に印字する工程と、前記無電解めっき処理を行う工程の間に、触媒活性化工程を有することを特徴とする請求項1~6のいずれか1項に記載の金属パターン形成方法。 The catalyst activation step is provided between the step of printing the ink containing the catalyst on the porous layer of the substrate and the step of performing the electroless plating treatment. 2. The metal pattern forming method according to item 1.
  8. 請求項1~7のいずれか1項に記載の金属パターン形成方法によって形成されたことを特徴とする金属パターン。 A metal pattern formed by the metal pattern forming method according to any one of claims 1 to 7.
PCT/JP2009/059581 2008-06-11 2009-05-26 Metal pattern forming method and metal pattern WO2009150936A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010516806A JP5418497B2 (en) 2008-06-11 2009-05-26 Metal pattern forming method and metal pattern

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-152669 2008-06-11
JP2008152669 2008-06-11

Publications (1)

Publication Number Publication Date
WO2009150936A1 true WO2009150936A1 (en) 2009-12-17

Family

ID=41416647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/059581 WO2009150936A1 (en) 2008-06-11 2009-05-26 Metal pattern forming method and metal pattern

Country Status (2)

Country Link
JP (1) JP5418497B2 (en)
WO (1) WO2009150936A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010168413A (en) * 2009-01-20 2010-08-05 Konica Minolta Ij Technologies Inc Inkjet ink and method for forming metal pattern
EP2227075A1 (en) * 2009-03-03 2010-09-08 Konica Minolta IJ Technologies, Inc. Forming method of metallic pattern and metallic pattern

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004006578A (en) * 2002-04-15 2004-01-08 Seiko Epson Corp Conductive film pattern, and method of forming the same, wiring board, electronic device, electronic apparatus, and contactless card medium
JP2005203484A (en) * 2004-01-14 2005-07-28 Morimura Chemicals Ltd Conductive circuit device and its manufacturing method
JP2007233418A (en) * 2007-06-04 2007-09-13 Toshiba Corp Three-dimensional structure body and method of manufacturing same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6269696A (en) * 1985-09-24 1987-03-30 太田 敏行 Electrolessly plating method for printed circuit board
JPH05106056A (en) * 1991-10-11 1993-04-27 Okuno Seiyaku Kogyo Kk Partial plating method
JP2000280603A (en) * 1999-03-30 2000-10-10 Mitsubishi Paper Mills Ltd Ink jet recording sheet and method for forming record using it
JP2001001630A (en) * 1999-06-18 2001-01-09 Mitsubishi Paper Mills Ltd Sheet for ink jet recording
JP2002225423A (en) * 2001-01-31 2002-08-14 Mitsubishi Paper Mills Ltd Ink jet recording material
US20050241951A1 (en) * 2004-04-30 2005-11-03 Kenneth Crouse Selective catalytic activation of non-conductive substrates

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004006578A (en) * 2002-04-15 2004-01-08 Seiko Epson Corp Conductive film pattern, and method of forming the same, wiring board, electronic device, electronic apparatus, and contactless card medium
JP2005203484A (en) * 2004-01-14 2005-07-28 Morimura Chemicals Ltd Conductive circuit device and its manufacturing method
JP2007233418A (en) * 2007-06-04 2007-09-13 Toshiba Corp Three-dimensional structure body and method of manufacturing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010168413A (en) * 2009-01-20 2010-08-05 Konica Minolta Ij Technologies Inc Inkjet ink and method for forming metal pattern
EP2227075A1 (en) * 2009-03-03 2010-09-08 Konica Minolta IJ Technologies, Inc. Forming method of metallic pattern and metallic pattern
US8440263B2 (en) 2009-03-03 2013-05-14 Konica Minolta Ij Technologies, Inc. Forming method of metallic pattern and metallic pattern

Also Published As

Publication number Publication date
JP5418497B2 (en) 2014-02-19
JPWO2009150936A1 (en) 2011-11-10

Similar Documents

Publication Publication Date Title
CN100594262C (en) Electroless deposition methods and systems
US8475867B2 (en) Method for forming electrical traces on substrate
JP2006287217A (en) Substrate surface treatment method, wiring forming method, wiring forming apparatus, and wiring board
JP5791146B2 (en) Colloidal dispersion
CN101640979A (en) Manufacturing method of conducting circuit
US20100239749A1 (en) Electronic circuit board manufacturing method
JP5418497B2 (en) Metal pattern forming method and metal pattern
CN101600301A (en) Circuit board and preparation method thereof
JP5298670B2 (en) Metal pattern forming method and metal pattern
JP2010272402A (en) Conductive film pattern and method of forming conductive film pattern
KR100911439B1 (en) Aqueous conductive ink composition for inkjet printer using nano-silver colloidal solution and method forming electrode pattern by inkjet printing
JP5396871B2 (en) Ink jet ink and metal pattern forming method
EP2227075B1 (en) Forming method of metallic pattern
CN101597440B (en) Printing ink, method using printing ink to manufacture electric conduction line and circuit board therewith
JP5163513B2 (en) Ink jet ink and metal pattern forming method
JP5418336B2 (en) Metal pattern forming method and metal pattern formed using the same
JP5434222B2 (en) Metal pattern forming method and metal pattern
KR100856100B1 (en) Method for surface treatment of substrate and method for wiring pattern formation using the same
WO2010134536A1 (en) Electroconductive film pattern and method for forming an electroconductive film pattern
JP5445474B2 (en) Metal pattern manufacturing method
JP2012182445A (en) Ink absorbing layer, ink absorbing layer forming application liquid, method of forming ink absorbing layer, and method for forming conductive pattern
WO2010067696A1 (en) Ink for metal pattern formation and metal pattern
JP2009114340A (en) Inkjet ink for metal pattern formation and method for forming metal pattern
JP2010251594A (en) Inkjet ink and method of manufacturing the same, and metal pattern forming method
WO2012014658A1 (en) Method for producing metal pattern

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09762366

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010516806

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09762366

Country of ref document: EP

Kind code of ref document: A1