WO2009150907A1 - Plasma processing apparatus and high frequency power supplying mechanism - Google Patents

Plasma processing apparatus and high frequency power supplying mechanism Download PDF

Info

Publication number
WO2009150907A1
WO2009150907A1 PCT/JP2009/058377 JP2009058377W WO2009150907A1 WO 2009150907 A1 WO2009150907 A1 WO 2009150907A1 JP 2009058377 W JP2009058377 W JP 2009058377W WO 2009150907 A1 WO2009150907 A1 WO 2009150907A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
frequency power
high frequency
oscillator
plasma
Prior art date
Application number
PCT/JP2009/058377
Other languages
French (fr)
Japanese (ja)
Inventor
繁 河西
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2009150907A1 publication Critical patent/WO2009150907A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32137Radio frequency generated discharge controlling of the discharge by modulation of energy
    • H01J37/32155Frequency modulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32091Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching

Definitions

  • the present invention relates to a plasma processing apparatus for performing plasma processing such as plasma etching on a substrate such as a semiconductor wafer and a high-frequency power supply mechanism used therefor.
  • plasma etching is often used in which a predetermined layer formed on a substrate such as a semiconductor wafer is processed to form a predetermined pattern.
  • a pair of parallel plate electrodes (upper and lower electrodes) are disposed in a chamber, and a high frequency electric field is formed between these electrodes while introducing a processing gas into the chamber. Is plasmatized and etched.
  • a parallel plate plasma etching apparatus a relatively high-frequency first high-frequency power for plasma generation (ionization) and a relatively low-frequency first high-frequency power for accelerating ions in the plasma and drawing them into the substrate.
  • a high frequency power of 2 is applied to a lower electrode on which a substrate is placed to control a plasma density and an electron temperature (for example, JP-A-2005-56997).
  • a stage 103 on which a semiconductor wafer W functioning as a lower electrode is placed on the bottom of a chamber 101 via a dielectric plate 102 made of ceramics or the like.
  • a grounded shower head 105 that functions as an upper electrode is provided oppositely, and a processing gas for etching is introduced from the processing gas supply system 106 into the chamber 101 via the shower head 105, and a high-frequency power supply mechanism High frequency power is supplied from 110 to the stage 103 which is the lower electrode.
  • An exhaust pipe 116 is connected to the bottom of the chamber 101, and the inside of the chamber 101 can be evacuated by the exhaust mechanism 117 via the exhaust pipe 116.
  • the high-frequency power supply mechanism 110 synthesizes high-frequency power from a plasma-generating high-frequency power source 111, ion acceleration high-frequency power source 112, matchers 113 and 114 for matching each high-frequency power source with plasma impedance, and these two high-frequency power sources.
  • the high frequency power synthesized by the synthesizer 115 is supplied to the stage 103 which is the lower electrode.
  • a processing gas for etching is introduced into the chamber 101 and evacuated to maintain the inside of the chamber 107 at a predetermined degree of vacuum.
  • Plasma etching is performed by supplying high-frequency power having a frequency of about 100 MHz and supplying high-frequency power having a frequency of about 1 to 6 MHz from the ion acceleration high-frequency power source 112.
  • An object of the present invention is to provide a plasma processing apparatus capable of reducing the size and cost of the apparatus, and a high-frequency power supply mechanism used therefor.
  • another object of the present invention is to provide a plasma processing apparatus capable of independently controlling ion energy and ion density and a high-frequency power supply mechanism used therefor.
  • a processing container in which a substrate to be processed is accommodated and evacuated, a first electrode disposed opposite to the processing container, and a second electrode that supports the substrate to be processed are provided.
  • the first high frequency of the first frequency for plasma generation is modulated by the second high frequency of the second frequency for ion acceleration, the synthesized wave formed by the modulation is amplified, and the high frequency obtained thereby
  • a high-frequency power supply mechanism that applies power to the second electrode, the high-frequency power supply mechanism including a first oscillator that oscillates the first high frequency, and a second oscillator that oscillates the second high frequency.
  • a modulator that modulates the first high frequency with the second high frequency a modulation degree adjusting unit that adjusts a modulation degree when modulating the first high frequency, and amplifying a composite wave formed by being modulated with a predetermined modulation degree
  • a high frequency power source that generates predetermined high frequency power The plasma processing apparatus is provided with a matcher for matching the high-frequency power source and the plasma impedance.
  • the first electrode having the first frequency and the second electrode that supports the substrate to be processed are disposed opposite to each other in a processing chamber capable of being evacuated,
  • a modulation degree adjustment unit for adjusting, a high frequency power source for amplifying a composite wave formed by being modulated with a predetermined modulation degree to generate a predetermined high frequency power, and a matcher for matching the high frequency power source with plasma impedance Yes
  • the first high frequency of the first frequency for plasma generation is modulated by the second high frequency of the second frequency for ion acceleration, the synthesized wave formed by the modulation
  • the second oscillator is preferably variable in frequency. It is preferable that the modulator modulates the first high frequency with the second high frequency.
  • the first frequency is preferably 10 to 100 MHz, and the second frequency is preferably 0.1 to 10 MHz.
  • the modulation degree adjustment unit adjusts the amplitude of the first high-frequency wave oscillated by the first oscillator and the amplitude of the second high-frequency wave emitted by the second oscillator. And a second amplitude adjuster.
  • the high frequency power source preferably has a Q value of 20 or less, for example, a Q value of about 10.
  • the first high frequency is modulated by the second high frequency
  • the combined wave formed by the modulation is amplified
  • the high frequency power obtained thereby is supplied to the second electrode.
  • the high frequency power obtained by amplifying the synthesized wave is demodulated in the formed processing container, and the first high frequency power for plasma generation and the second high frequency power for ion acceleration are respectively applied. For this reason, it is only necessary to provide one high frequency power supply and one matcher for the synthesized wave, and it is possible to reduce the size and cost of the apparatus as compared with the conventional case where two of these are required.
  • the first high-frequency power (amplitude) and the second high-frequency power (amplitude) can be adjusted separately, and the plasma density and ion density are adjusted to desired values. be able to. Since the frequency of the second oscillator that oscillates the second high frequency is variable, the ion energy can be controlled independently of the ion density by adjusting the frequency. For this reason, etching of different materials such as polysilicon and silicon oxide film, which had to be performed with different apparatuses in the past, can be realized with one apparatus.
  • Sectional drawing which shows an example of the conventional parallel plate plasma processing apparatus.
  • 1 is a cross-sectional view showing a schematic configuration of a plasma processing apparatus according to an embodiment of the present invention.
  • the figure which shows the frequency dependence of ion energy.
  • the figure which shows the waveform of a 1st high frequency (carrier wave).
  • the figure which shows the waveform of a 2nd high frequency (modulation wave).
  • the figure which shows the waveform of the synthetic wave (AM modulation wave) at the time of AM-modulating the 1st high frequency as a carrier wave and the 2nd high frequency as a modulation signal.
  • FIG. 2 is a cross-sectional view showing a schematic configuration of a plasma processing apparatus according to an embodiment of the present invention.
  • This plasma processing apparatus is configured as a plasma etching apparatus that performs plasma etching on a predetermined film of a semiconductor wafer (hereinafter simply referred to as a wafer) that is a substrate to be processed.
  • a wafer a semiconductor wafer
  • This plasma processing apparatus is configured to be airtight and has a substantially cylindrical chamber 1 into which a wafer W is loaded. At the bottom of the chamber 1 is provided a stage 3 on which a wafer W that functions as a lower electrode is placed via a dielectric plate 2 made of ceramics or the like.
  • the stage 3 is made of metal such as aluminum, and an electrostatic chuck (not shown) for electrostatically attracting the wafer W is provided on the upper surface, and the wafer W is cooled by passing a cooling medium inside.
  • a cooling medium flow path (not shown) is provided.
  • a grounded shower head 5 that functions as an upper electrode is provided in the upper part of the chamber 1 so as to face the stage 3. That is, the parallel plate electrode is comprised by the stage 3 which functions as a lower electrode, and the shower head 5 which functions as an upper electrode.
  • the shower head 5 has a gas inlet 6 at the top, a gas diffusion space 7 inside, and a plurality of gas discharge holes 8 at the bottom.
  • a gas supply pipe 9 is connected to the gas inlet 6, and a processing gas supply system 10 for supplying a processing gas for etching is connected to the other end of the gas supply pipe 9. Then, a processing gas for etching is supplied into the chamber 1 from the processing gas supply system 10 through the gas supply pipe 9 and the shower head 5.
  • a processing gas for etching for example, a fluorocarbon gas (C x F y ) such as C 4 F 8 gas is used.
  • An exhaust pipe 11 is connected to the bottom of the chamber 1, and an exhaust mechanism 12 including a vacuum pump and a pressure adjustment valve is connected to the exhaust pipe 11, and the inside of the chamber 1 is exhausted by the exhaust mechanism 12.
  • an exhaust mechanism 12 including a vacuum pump and a pressure adjustment valve is connected to the exhaust pipe 11, and the inside of the chamber 1 is exhausted by the exhaust mechanism 12.
  • the inside of the chamber 1 is maintained at a predetermined degree of vacuum.
  • a high frequency power supply mechanism 20 is connected to the susceptor 3 that functions as a lower electrode.
  • the high frequency power supply mechanism 20 uses a first high frequency of a first frequency that is a relatively high frequency for plasma generation, and a second high frequency of a second frequency that is a relatively low frequency for ion acceleration.
  • Amplitude modulation is performed, and the high frequency power formed by amplifying the AM modulated high frequency is applied to the stage 3 functioning as the lower electrode.
  • AM modulation the first high frequency that is a relatively high frequency becomes a carrier wave
  • the second high frequency that is a relatively low frequency becomes a modulation signal.
  • the first high-frequency frequency (first frequency) for plasma generation is preferably a high frequency that ions cannot follow from the viewpoint of obtaining a high-density plasma, and the sheath thickness does not change much. It is preferable that it is 10 MHz or more. However, if the frequency is increased too much, the size of the electrode cannot be ignored with respect to the wavelength, and a standing wave due to a high frequency is generated, which may deteriorate the plasma distribution.
  • the plasma sheath thickness Sm is generally expressed by the following equation (1).
  • S m S abs 1/8 / ⁇ 1/4 ⁇ T e 5/16 ⁇ ⁇ c 3/8
  • S abs is the sheath absorption energy
  • is the angular frequency
  • Te is the electron temperature
  • ⁇ c is the collision energy.
  • the sheath thickness S m since the inversely proportional to 1/4 square of the angular frequency omega, but as made sheath thickness is thin frequency increases, not so much changed in a certain frequency or more. Since this frequency is normally 20 to 30 MHz, 10 MHz or more is set as a preferable range. More preferably, it is 40 to 100 MHz, for example, 60 MHz is used.
  • the second high-frequency frequency (second frequency) for ion acceleration is preferably in the range of 0.1 to 10 MHz, more preferably about 1 to 10 MHz from the viewpoint of forming a plasma sheath appropriate for ion acceleration. .
  • the second high-frequency frequency (second frequency) for ion acceleration is preferably in the range of 0.1 to 10 MHz, more preferably about 1 to 10 MHz from the viewpoint of forming a plasma sheath appropriate for ion acceleration. .
  • V rf the amplitude of the applied high-frequency voltage
  • the applied excitation frequency is f
  • the value of Eion / Vrf changes greatly when the frequency f is between 1 MHz and 10 MHz.
  • the ion energy E ion can be accurately controlled by keeping V rf constant and changing the frequency from 1 MHz to 10 MHz.
  • the high-frequency power supply mechanism 20 includes an AM modulation unit 21, a high-frequency power source 22, and a matcher 23.
  • the AM modulator 21 includes a first oscillator 31 that oscillates the first high frequency, a second oscillator 32 that oscillates the second high frequency, and a modulator 33 that modulates the first high frequency with the second high frequency.
  • Two amplitude adjusters 34 and 35 for adjusting the degree of modulation and a BP (band pass) filter 36 that transmits a specific wavelength.
  • the first oscillator 31 and the second oscillator 32 are merely small-signal oscillators, a large-scale device configuration such as a high-frequency power supply is not necessary.
  • a variable frequency oscillator such as a PLL oscillator is used, and the frequency is variable between 1 and 6 MHz, for example.
  • the amplitude adjuster 34 is provided between the first oscillator 31 and the modulator 33 and adjusts the amplitude of the first high-frequency wave oscillated by the first oscillator 31.
  • the amplitude adjuster 35 It is provided between the oscillator 32 and the modulator 33, and adjusts the amplitude of the second high frequency oscillated by the second oscillator 32.
  • the degree of modulation can be adjusted by adjusting the amplitude with the amplitude adjusters 34 and 35.
  • the amplitude adjusters 34 and 35 for example, attenuators (attenuators) are used.
  • the second high-frequency wave is sent to the modulator 33, where the first high-frequency wave is modulated with the second high-frequency wave with a predetermined modulation degree, and a synthesized wave (AM modulated wave) formed by the modulation is
  • the BP filter 36 is sent to the high frequency power supply 22.
  • the high frequency power supply 22 is a power supply of the first frequency, and thereby amplifies a synthesized wave (AM modulated wave) formed by AM modulation to obtain predetermined high frequency power.
  • the high-frequency power source 22 appropriately sets the Q value represented by the following expression (2), thereby combining the first high-frequency wave and the second high-frequency wave (AM modulation wave). ) Can be amplified.
  • Q (energy stored) / (energy consumed) (2)
  • the Q value of the high frequency power supply 22 is preferably 1 or more and 20 or less. For example, when the Q value is 10, when the frequency of the first high frequency is 60 MHz, the frequency of the second high frequency is 1.
  • a synthesized wave formed by AM modulation at about ⁇ 6 MHz can be amplified.
  • the matcher 23 is also set to the same Q value as the high frequency power supply 22. That is, the matcher 23 preferably has a Q value of 1 or more and 20 or less, and when the high frequency power supply 22 has a Q value of 10, it is preferable that the matcher 23 also has a Q value of 10. .
  • the AM modulated wave is demodulated by plasma as will be described later, and the high frequency power based on the first high frequency and the first The high frequency power based on the high frequency of 2 is applied to the plasma.
  • Each component of the plasma processing apparatus is connected to and controlled by a process controller 50 having a microprocessor (computer), as shown in FIG.
  • a user interface 51 including a keyboard for an operator to input commands and the like for managing the plasma processing apparatus, and a display for visualizing and displaying the operating status of the plasma processing apparatus.
  • the process controller 50 executes processing on each component of the plasma processing apparatus 50 in accordance with a control program for realizing various processes executed by the plasma processing apparatus under the control of the process controller 50 and processing conditions.
  • a storage unit 52 that can store a program for processing, that is, a processing recipe, is connected.
  • the processing recipe may be stored in a fixed storage medium such as a hard disk, or is set at a predetermined position in the storage unit 52 while being stored in a portable storage medium such as a CDROM or DVD. May be. Furthermore, you may make it transmit a recipe suitably from another apparatus via a dedicated line, for example. Then, if necessary, an arbitrary processing recipe is called from the storage unit 52 by the instruction from the user interface 51 and is executed by the process controller 50, so that the desired processing in the plasma processing apparatus is performed under the control of the process controller 50. Is performed.
  • the wafer W is loaded into the chamber 1 from a loading / unloading port (not shown) and placed on the stage 3. Then, while exhausting the inside of the chamber 1 by the exhaust mechanism 12, a processing gas for etching is introduced into the chamber 1 through the shower head 5 from the processing gas supply system 10, and the first high frequency is generated by the high frequency power supply mechanism 20. A high frequency power that is AM-modulated by the second high frequency is applied to the stage 3 to generate plasma. At this time, the wafer W is electrostatically attracted by an electrostatic chuck (not shown) provided on the upper surface of the stage 3.
  • the first high frequency oscillated by the first oscillator 31 and the second high frequency oscillated by the second oscillator 32 are amplitude-reduced by amplitude adjusters 34 and 35, respectively.
  • the first high frequency is AM-modulated by the second high frequency by combining with the modulator 33 while adjusting. Then, only the necessary frequency band is passed by the BP filter 36, and the passed AM modulated wave is input to the high frequency power supply 22.
  • v c A c cos ( ⁇ t + ⁇ 0 ) (3)
  • Ac the amplitude of the carrier wave
  • the angular frequency of the carrier wave
  • ⁇ 0 the phase of the carrier wave.
  • the second high-frequency v m is the modulation signal is as shown in FIG. 5, can be represented by the following equation (4).
  • v m A m cost (4)
  • Am is the amplitude of the modulation signal
  • p is the angular frequency of the modulation signal.
  • k A m / A c is a modulation degree (attenuation ratio).
  • v AM (t) A c cos ( ⁇ t + ⁇ 0 ) + kA c cospt ⁇ cos ( ⁇ t + ⁇ 0 ) (6)
  • v AM (t) A c cos ( ⁇ t + ⁇ 0 ) + (1/2) kA c cos [( ⁇ + p) t + ⁇ 0 ] + (1/2) kA c cos [( ⁇ p) t + ⁇ 0 ] (7)
  • the AM modulated wave v AM (t) includes a carrier wave: A c cos ( ⁇ t + ⁇ 0 ), an upper wave: (1/2) kA c cos [( ⁇ + p) t + ⁇ 0 ], and a lower side wave. : (1/2) kA c cos [( ⁇ p) t + ⁇ 0 ].
  • the spectrum of the AM modulated wave v AM (t) at this time is as shown in FIG.
  • the half-value width B may be represented by the following equation (8).
  • f BW is an occupied frequency band.
  • the frequency f 0 of the carrier wave is 40 MHz and f BW is 2 MHz
  • the Q values of the high-frequency power source 22 and the matcher 23 should be 20 or less.
  • the high-frequency power supply and matcher are more accurate as the Q value is higher, but normally, Q is about 10 in consideration of stability. Therefore, by using a general high frequency power supply 22 without being caught by an amplification operation (Class A, Class B, etc.), and by using a general purpose L and C as the matcher 23, The AM modulated wave intended in the embodiment can be amplified.
  • the high-frequency power amplified by the high-frequency power source 22 is changed in the electric field of both ions and electrons in the first high-frequency (carrier wave) component ( ⁇ ) of about 60 MHz in the chamber 1.
  • the second high frequency (modulation signal) component (p) having a relatively low frequency of about 1 to 10 MHz cannot follow the change of the electric field, but the electron follows. Can do.
  • a plasma potential is generated and an electric field is applied to the sheath to accelerate ions.
  • the equivalent circuit of the plasma at this time has a sheath part composed of a diode and a capacitor.
  • Non-linear demodulation diode demodulation
  • AM modulated wave is generated in the chamber 1. It can be demodulated.
  • the cost and DC portions which are the second high-frequency components, remain in the sheath portion of the plasma, and as a result, ions excited to the p angular velocity are accelerated in the sheath portion, and physical etching is performed using them. Can do.
  • the plasma etching mechanism of the present embodiment will be described with reference to FIG. 9 in the case where the material to be etched is a thermal oxide film (SiO 2 ).
  • the plasma is generated by a mixed gas of C x F y based gas and Ar inert gas such as, C, F, active particles of CF or the like is adsorbed on SiO 2 surfaces.
  • Ar ions having kinetic energy collide with the SiO 2 surface and the temperature of this portion rises, whereby the SiO 2 and these active particles cause a chemical reaction, SF 4 , CO, CO 2 and the like are formed.
  • reaction by-products become gas in an environment of several mTorr and are exhausted through the exhaust pipe 11, and the SiO 2 film is etched as shown in FIG.
  • the reaction speed varies depending on the temperature.
  • the temperature of the Si substrate is maintained at a temperature at which the SiO 2 film is easily etched and the Low-k film is difficult to etch. Although it is necessary, this temperature is determined by the energy of Ar ions.
  • ion energy is controlled to increase the selection ratio, that is, the frequency is controlled while, for example, the second high-frequency amplitude Am is constant, and the first high-frequency amplitude A is used to increase the etching rate.
  • the modulation degree k is increased while keeping c constant.
  • the AM modulation unit 21 AM modulates the first high frequency with the second high frequency, and the high frequency power obtained by amplifying the AM modulated wave is demodulated in the chamber 1.
  • the power supply and the matcher need only be provided one by one for the AM modulated wave, and it is possible to reduce the size and cost of the apparatus as compared with the conventional case where two of them are required.
  • the first high frequency is modulated by the second high frequency while adjusting the modulation degree by the AM modulation unit 21, the first high frequency power (amplitude) when amplified by the high frequency power supply 22 and demodulated in the chamber 1 is used.
  • the second high frequency power (amplitude) can be adjusted separately, and the plasma density and ion density can be adjusted to desired values.
  • the second oscillator 32 that oscillates the second high frequency has a variable frequency, the ion energy can be controlled independently of the ion density by adjusting the frequency. For this reason, etching of different materials such as polysilicon and silicon oxide film, which had to be performed with different apparatuses in the past, can be realized with one apparatus.
  • AM modulation amplitude modulation
  • FM modulation frequency modulation
  • PM modulation phase modulation
  • plasma etching is described as an example of plasma processing, but other plasma processing may be used.
  • the object to be processed is not limited to the semiconductor wafer, and other objects such as a glass substrate for FPD can be targeted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

A plasma processing apparatus comprises a chamber (1); a lower electrode (3) that is located in the chamber (1) and that supports a wafer (W); an upper electrode (5) that is also located in the chamber (1) and opposed to the lower electrode (3); and a high frequency power supplying mechanism (20) that modulates a first high frequency, which is to be used for plasma generation, with a second high frequency that is to be used for ion acceleration, then amplifies the composite wave as formed by that modulation and then applies a high frequency power as obtained by that amplification to the lower electrode (3).  The high frequency power supplying mechanism (20) comprises a first oscillator (31) for oscillating the first high frequency; a second oscillator (32) for oscillating the second high frequency; a modulator (33) for modulating the first high frequency with the second high frequency; modulation factor adjusting parts (34, 35) each for adjusting the modulation factor; a high frequency power supply (22) for amplifying the obtained composite wave to generate the predetermined high frequency power; and a matcher (23).

Description

プラズマ処理装置および高周波電力供給機構Plasma processing apparatus and high-frequency power supply mechanism
 本発明は、半導体ウエハ等の基板に対してプラズマエッチング等のプラズマ処理を行うプラズマ処理装置およびそれに用いる高周波電力供給機構に関する。 The present invention relates to a plasma processing apparatus for performing plasma processing such as plasma etching on a substrate such as a semiconductor wafer and a high-frequency power supply mechanism used therefor.
 半導体デバイスの製造プロセスおいて、プラズマの応用は低温化、ドライプロセス化等のための必須技術である。プラズマを用いた処理としては、半導体ウエハ等の基板に形成された所定の層を加工して所定のパターンを形成するプラズマエッチングが多用されている。 In the manufacturing process of semiconductor devices, the application of plasma is an indispensable technology for low temperature and dry process. As processing using plasma, plasma etching is often used in which a predetermined layer formed on a substrate such as a semiconductor wafer is processed to form a predetermined pattern.
 このようなプラズマエッチングを行うためのプラズマエッチング装置としては、種々のものが用いられているが、その中でも容量結合型平行平板プラズマ処理装置が主流である。 Various plasma etching apparatuses for performing such plasma etching are used, and among them, a capacitively coupled parallel plate plasma processing apparatus is the mainstream.
 容量結合型平行平板プラズマエッチング装置は、チャンバ内に一対の平行平板電極(上部および下部電極)を配置し、処理ガスをチャンバ内に導入しつつこれら電極の間に高周波電界を形成して処理ガスをプラズマ化してエッチングするものである。このような平行平板プラズマエッチング装置として、プラズマ生成(電離)のための相対的に高周波の第1の高周波電力と、プラズマ中のイオンを加速して基板に引き込むための相対的に低周波の第2の高周波電力とを基板を載置する下部電極に印加して、プラズマの密度と電子温度とを制御するものが知られている(例えば特開2005-56997号公報)。 In the capacitively coupled parallel plate plasma etching apparatus, a pair of parallel plate electrodes (upper and lower electrodes) are disposed in a chamber, and a high frequency electric field is formed between these electrodes while introducing a processing gas into the chamber. Is plasmatized and etched. As such a parallel plate plasma etching apparatus, a relatively high-frequency first high-frequency power for plasma generation (ionization) and a relatively low-frequency first high-frequency power for accelerating ions in the plasma and drawing them into the substrate. There is known a technique in which a high frequency power of 2 is applied to a lower electrode on which a substrate is placed to control a plasma density and an electron temperature (for example, JP-A-2005-56997).
 具体的には、図1に示すように、チャンバ101内の底部に、セラミックス等からなる誘電体板102を介して下部電極として機能する半導体ウエハWを載置するステージ103を設け、ステージ103に対向して上部電極として機能する接地されたシャワーヘッド105を設け、処理ガス供給系106からエッチングのための処理ガスを、シャワーヘッド105を介してチャンバ101内に導入するようにし、高周波電力供給機構110から下部電極であるステージ103に高周波電力を供給する。また、チャンバ101の底部には排気管116が接続されており、排気機構117により排気管116を介してチャンバ101内を真空排気可能となっている。 Specifically, as shown in FIG. 1, a stage 103 on which a semiconductor wafer W functioning as a lower electrode is placed on the bottom of a chamber 101 via a dielectric plate 102 made of ceramics or the like. A grounded shower head 105 that functions as an upper electrode is provided oppositely, and a processing gas for etching is introduced from the processing gas supply system 106 into the chamber 101 via the shower head 105, and a high-frequency power supply mechanism High frequency power is supplied from 110 to the stage 103 which is the lower electrode. An exhaust pipe 116 is connected to the bottom of the chamber 101, and the inside of the chamber 101 can be evacuated by the exhaust mechanism 117 via the exhaust pipe 116.
 高周波電力供給機構110は、プラズマ生成用高周波電源111と、イオン加速用高周波電源112と各高周波電源とプラズマインピーダンスを整合するためのマッチャー113,114と、これら2つの高周波電源からの高周波を合成する合成器115とを有しており、合成器115で合成された高周波電力を下部電極であるステージ103に供給する。 The high-frequency power supply mechanism 110 synthesizes high-frequency power from a plasma-generating high-frequency power source 111, ion acceleration high-frequency power source 112, matchers 113 and 114 for matching each high-frequency power source with plasma impedance, and these two high-frequency power sources. The high frequency power synthesized by the synthesizer 115 is supplied to the stage 103 which is the lower electrode.
 このような平行平板プラズマエッチング装置においては、チャンバ101内にエッチングのための処理ガスを導入しつつ真空排気してチャンバ107内を所定の真空度に維持し、プラズマ生成用高周波電源111から60~100MHz程度の周波数の高周波電力を供給し、イオン加速用高周波電源112から1~6MHz程度の周波数の高周波電力を供給して、プラズマエッチングを行う。 In such a parallel plate plasma etching apparatus, a processing gas for etching is introduced into the chamber 101 and evacuated to maintain the inside of the chamber 107 at a predetermined degree of vacuum. Plasma etching is performed by supplying high-frequency power having a frequency of about 100 MHz and supplying high-frequency power having a frequency of about 1 to 6 MHz from the ion acceleration high-frequency power source 112.
 しかしながら、このような従来の平行平板プラズマエッチング装置においては、大型機器である高周波電源およびマッチャーが2つずつ必要であり、装置が大がかりなものとなりまた装置コストも高いものとなる。また、被エッチング膜に対して適切なイオンエネルギーを与えるためには、相対的に低周波数のイオン加速用高周波電源112のパワーを調整すればよいが、そのパワーを調整すると、イオン密度も変化してしまう。このような不都合を生じさせないためには、イオン加速用電源の周波数を変更する必要がある。このため、被エッチング材料毎に別々の電源が必要になる。イオン加速用高周波電源112として広帯域のものを用いて周波数を可変とすることができるが、このような電源は高価で低効率であり、現実的ではない。 However, in such a conventional parallel plate plasma etching apparatus, two high-frequency power supplies and two matchers, which are large-sized devices, are required, and the apparatus becomes large and the apparatus cost is high. In order to give appropriate ion energy to the film to be etched, the power of the relatively low frequency ion acceleration high-frequency power source 112 may be adjusted. However, when the power is adjusted, the ion density also changes. End up. In order not to cause such inconvenience, it is necessary to change the frequency of the power source for ion acceleration. For this reason, a separate power source is required for each material to be etched. Although the frequency can be made variable by using a broadband power source 112 for ion acceleration, such a power source is expensive and low in efficiency and is not practical.
 本発明の目的は、装置の小型化および低コスト化が可能であるプラズマ処理装置およびそれに用いる高周波電力供給機構を提供することにある。
 本発明の他の目的は、このようなことに加え、イオンエネルギーとイオン密度を独立して制御可能なプラズマ処理装置およびそれに用いる高周波電力供給機構を提供することにある。
An object of the present invention is to provide a plasma processing apparatus capable of reducing the size and cost of the apparatus, and a high-frequency power supply mechanism used therefor.
In addition to the above, another object of the present invention is to provide a plasma processing apparatus capable of independently controlling ion energy and ion density and a high-frequency power supply mechanism used therefor.
 本発明の第1の観点によれば、被処理基板が収容され、真空排気可能な処理容器と、処理容器内に対向して配置された第1電極および被処理基板を支持する第2電極と、プラズマ生成用の第1の周波数の第1の高周波をイオン加速用の第2の周波数の第2の高周波で変調し、変調されて形成された合成波を増幅し、それにより得られた高周波電力を前記第2電極に印加する高周波電力供給機構とを具備し、前記高周波電力供給機構は、前記第1の高周波を発振する第1発振器と、前記第2の高周波を発振する第2発振器と、前記第1の高周波を前記第2の高周波で変調させる変調器と、変調させる際の変調度を調整する変調度調整部と、所定の変調度で変調されて形成された合成波を増幅して所定の高周波電力を生成する高周波電源と、前記高周波電源とプラズマインピーダンスを整合するためのマッチャーとを有するプラズマ処理装置が提供される。 According to the first aspect of the present invention, a processing container in which a substrate to be processed is accommodated and evacuated, a first electrode disposed opposite to the processing container, and a second electrode that supports the substrate to be processed are provided. The first high frequency of the first frequency for plasma generation is modulated by the second high frequency of the second frequency for ion acceleration, the synthesized wave formed by the modulation is amplified, and the high frequency obtained thereby A high-frequency power supply mechanism that applies power to the second electrode, the high-frequency power supply mechanism including a first oscillator that oscillates the first high frequency, and a second oscillator that oscillates the second high frequency. A modulator that modulates the first high frequency with the second high frequency, a modulation degree adjusting unit that adjusts a modulation degree when modulating the first high frequency, and amplifying a composite wave formed by being modulated with a predetermined modulation degree A high frequency power source that generates predetermined high frequency power The plasma processing apparatus is provided with a matcher for matching the high-frequency power source and the plasma impedance.
 本発明の第2の観点によれば、真空排気可能な処理容器内に対向して配置される第1電極および被処理基板を支持する第2電極とを有し、第1の周波数の第1の高周波電力によりプラズマを生成し、第2の周波数の第2の高周波電力によりイオンを加速して被処理基板に対してプラズマ処理を行うプラズマ処理装置に用いられる高周波電力供給機構であって、前記第1の高周波を発振する第1発振器と、前記第2の高周波を発振する第2発振器と、前記第1の高周波を前記第2の高周波で変調させる変調器と、変調させる際の変調度を調整する変調度調整部と、所定の変調度で変調されて形成された合成波を増幅して所定の高周波電力を生成する高周波電源と、前記高周波電源とプラズマインピーダンスを整合するためのマッチャーとを有し、プラズマ生成用の第1の周波数の第1の高周波をイオン加速用の第2の周波数の第2の高周波で変調し、変調されて形成された合成波を増幅し、それにより得られた高周波電力を前記第2電極に印加する高周波電力供給機構が提供される。 According to the second aspect of the present invention, the first electrode having the first frequency and the second electrode that supports the substrate to be processed are disposed opposite to each other in a processing chamber capable of being evacuated, A high-frequency power supply mechanism used in a plasma processing apparatus for generating plasma with a high-frequency power of the first and accelerating ions with a second high-frequency power of a second frequency to perform plasma processing on a substrate to be processed, A first oscillator that oscillates a first high frequency; a second oscillator that oscillates the second high frequency; a modulator that modulates the first high frequency with the second high frequency; A modulation degree adjustment unit for adjusting, a high frequency power source for amplifying a composite wave formed by being modulated with a predetermined modulation degree to generate a predetermined high frequency power, and a matcher for matching the high frequency power source with plasma impedance Yes The first high frequency of the first frequency for plasma generation is modulated by the second high frequency of the second frequency for ion acceleration, the synthesized wave formed by the modulation is amplified, and the high frequency obtained thereby A high-frequency power supply mechanism that applies power to the second electrode is provided.
 上記第1および第2の観点において、前記第2発振器は周波数可変であることが好ましい。前記変調器は、前記第1の高周波を前記第2の高周波で振幅変調させるものであることが好ましい。 In the first and second aspects, the second oscillator is preferably variable in frequency. It is preferable that the modulator modulates the first high frequency with the second high frequency.
 前記第1の周波数は、10~100MHzであり、前記第2の周波数は、0.1~10MHzであることが好ましい。 The first frequency is preferably 10 to 100 MHz, and the second frequency is preferably 0.1 to 10 MHz.
 前記変調度調整部は、前記第1発振器で発振された前記第1の高周波の振幅を調整する第1の振幅調整器と、前記第2発振器で発信された前記第2の高周波の振幅を調整する第2の振幅調整器とを有する構成とすることができる。 The modulation degree adjustment unit adjusts the amplitude of the first high-frequency wave oscillated by the first oscillator and the amplitude of the second high-frequency wave emitted by the second oscillator. And a second amplitude adjuster.
 前記高周波電源は、20以下のQ値、例えば10程度のQ値を有することが好ましい。 The high frequency power source preferably has a Q value of 20 or less, for example, a Q value of about 10.
 本発明によれば、第1の高周波を第2の高周波により変調し、その変調して形成された合成波を増幅し、それにより得られた高周波電力を第2電極に供給するので、プラズマが形成されている処理容器内で合成波が増幅された高周波電力が復調されプラズマ生成用の第1の高周波電力とイオン加速用の第2の高周波電力がそれぞれ印加された状態となる。このため、高周波電源およびマッチャーは、合成波に対するものを1個ずつ設ければよく、これらが2つずつ必要であった従来よりも装置の小型化および低コストかが可能となる。 According to the present invention, the first high frequency is modulated by the second high frequency, the combined wave formed by the modulation is amplified, and the high frequency power obtained thereby is supplied to the second electrode. The high frequency power obtained by amplifying the synthesized wave is demodulated in the formed processing container, and the first high frequency power for plasma generation and the second high frequency power for ion acceleration are respectively applied. For this reason, it is only necessary to provide one high frequency power supply and one matcher for the synthesized wave, and it is possible to reduce the size and cost of the apparatus as compared with the conventional case where two of these are required.
 また、変調度を調整することにより第1の高周波のパワー(振幅)および第2の高周波のパワー(振幅)をそれぞれ別個に調整することができ、プラズマ密度およびイオン密度を所望の値に調整することができる。そして、第2の高周波を発振する第2発振器は周波数が可変であるため、この周波数を調整することにより、イオンエネルギーをイオン密度と独立して制御することができる。このため、従来異なる装置で行わざるを得なかった、ポリシリコンとシリコン酸化膜等の異なる材料のエッチングを一つの装置で実現することができる。 Further, by adjusting the modulation degree, the first high-frequency power (amplitude) and the second high-frequency power (amplitude) can be adjusted separately, and the plasma density and ion density are adjusted to desired values. be able to. Since the frequency of the second oscillator that oscillates the second high frequency is variable, the ion energy can be controlled independently of the ion density by adjusting the frequency. For this reason, etching of different materials such as polysilicon and silicon oxide film, which had to be performed with different apparatuses in the past, can be realized with one apparatus.
従来の平行平板プラズマ処理装置の一例を示す断面図。Sectional drawing which shows an example of the conventional parallel plate plasma processing apparatus. 本発明の一実施形態に係るプラズマ処理装置の概略構成を示す断面図。1 is a cross-sectional view showing a schematic configuration of a plasma processing apparatus according to an embodiment of the present invention. イオンエネルギーの周波数依存性を示す図。The figure which shows the frequency dependence of ion energy. 第1の高周波(搬送波)の波形を示す図。The figure which shows the waveform of a 1st high frequency (carrier wave). 第2の高周波(変調波)の波形を示す図。The figure which shows the waveform of a 2nd high frequency (modulation wave). 第1の高周波を搬送波とし、第2の高周波を変調信号としてAM変調した場合の合成波(AM変調波)の波形を示す図。The figure which shows the waveform of the synthetic wave (AM modulation wave) at the time of AM-modulating the 1st high frequency as a carrier wave and the 2nd high frequency as a modulation signal. 図5のAM変調波のスペクトルを示す図。The figure which shows the spectrum of the AM modulation wave of FIG. プラズマの等価回路を示す図。The figure which shows the equivalent circuit of plasma. エッチングのメカニズムを示す図。The figure which shows the mechanism of an etching.
 以下、添付図面を参照しながら本発明の実施形態について説明する。
 図2は本発明の一実施形態に係るプラズマ処理装置の概略構成を示す断面図である。このプラズマ処理装置は、被処理基板である半導体ウエハ(以下、単にウエハと記す)の所定の膜をプラズマエッチングするプラズマエッチング装置として構成されている。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 2 is a cross-sectional view showing a schematic configuration of a plasma processing apparatus according to an embodiment of the present invention. This plasma processing apparatus is configured as a plasma etching apparatus that performs plasma etching on a predetermined film of a semiconductor wafer (hereinafter simply referred to as a wafer) that is a substrate to be processed.
 このプラズマ処理装置は、気密に構成され、ウエハWが搬入される略円筒状のチャンバ1を有している。チャンバ1内の底部には、セラミックス等からなる誘電体板2を介して下部電極として機能するウエハWを載置するためのステージ3が設けられている。ステージ3は、アルミニウム等の金属製であり、上面にウエハWを静電吸着するための静電チャック(図示せず)が設けられており、また内部に冷却媒体を通流してウエハWを冷却するための冷却媒体流路(図示せず)が設けられている。 This plasma processing apparatus is configured to be airtight and has a substantially cylindrical chamber 1 into which a wafer W is loaded. At the bottom of the chamber 1 is provided a stage 3 on which a wafer W that functions as a lower electrode is placed via a dielectric plate 2 made of ceramics or the like. The stage 3 is made of metal such as aluminum, and an electrostatic chuck (not shown) for electrostatically attracting the wafer W is provided on the upper surface, and the wafer W is cooled by passing a cooling medium inside. A cooling medium flow path (not shown) is provided.
 チャンバ1内の上部には、ステージ3に対向して上部電極として機能する接地されたシャワーヘッド5が設けられている。すなわち、下部電極として機能するステージ3と上部電極として機能するシャワーヘッド5とで平行平板電極を構成している。シャワーヘッド5は、上部にガス導入口6を有し、内部にガス拡散空間7を有し、底部に複数のガス吐出孔8を有している。ガス導入口6にはガス供給配管9が接続されており、このガス供給配管9の他端にはエッチングのための処理ガスを供給する処理ガス供給系10が接続されている。そして、処理ガス供給系10からガス供給配管9およびシャワーヘッド5を介してエッチングのための処理ガスがチャンバ1内に供給される。エッチングのための処理ガスとしては、例えばCガスのようなフロロカーボンガス(C)が用いられる。 A grounded shower head 5 that functions as an upper electrode is provided in the upper part of the chamber 1 so as to face the stage 3. That is, the parallel plate electrode is comprised by the stage 3 which functions as a lower electrode, and the shower head 5 which functions as an upper electrode. The shower head 5 has a gas inlet 6 at the top, a gas diffusion space 7 inside, and a plurality of gas discharge holes 8 at the bottom. A gas supply pipe 9 is connected to the gas inlet 6, and a processing gas supply system 10 for supplying a processing gas for etching is connected to the other end of the gas supply pipe 9. Then, a processing gas for etching is supplied into the chamber 1 from the processing gas supply system 10 through the gas supply pipe 9 and the shower head 5. As a processing gas for etching, for example, a fluorocarbon gas (C x F y ) such as C 4 F 8 gas is used.
 チャンバ1の底部には排気管11が接続されており、排気管11には、真空ポンプや圧力調整バルブ等を含む排気機構12が接続されており、この排気機構12によりチャンバ1内が排気されてチャンバ1内が所定の真空度に維持されるようになっている。 An exhaust pipe 11 is connected to the bottom of the chamber 1, and an exhaust mechanism 12 including a vacuum pump and a pressure adjustment valve is connected to the exhaust pipe 11, and the inside of the chamber 1 is exhausted by the exhaust mechanism 12. Thus, the inside of the chamber 1 is maintained at a predetermined degree of vacuum.
 下部電極として機能するサセプタ3には、高周波電力供給機構20が接続されている。この高周波電力供給機構20は、プラズマ生成用の相対的に高い周波数である第1の周波数の第1の高周波を、イオン加速用の相対的に低い周波数である第2の周波数の第2の高周波で振幅変調(AM変調)し、AM変調された高周波を増幅して形成された高周波電力を下部電極として機能するステージ3に印加するものである。AM変調に際しては、相対的に高い周波数である第1の高周波が搬送波となり、相対的に低い周波数である第2の高周波が変調信号となる。 A high frequency power supply mechanism 20 is connected to the susceptor 3 that functions as a lower electrode. The high frequency power supply mechanism 20 uses a first high frequency of a first frequency that is a relatively high frequency for plasma generation, and a second high frequency of a second frequency that is a relatively low frequency for ion acceleration. Amplitude modulation (AM modulation) is performed, and the high frequency power formed by amplifying the AM modulated high frequency is applied to the stage 3 functioning as the lower electrode. In AM modulation, the first high frequency that is a relatively high frequency becomes a carrier wave, and the second high frequency that is a relatively low frequency becomes a modulation signal.
 ここで、プラズマ生成用の第1の高周波の周波数(第1の周波数)としては、高密度のプラズマを得る観点から、イオンが追従できない高い周波数であることが好ましく、シース厚がさほど変化しなくなる10MHz以上であることが好ましい。しかし、周波数を上げすぎると、電極の大きさが波長に対して無視できなくなり、高周波による定在波が発生し、プラズマ分布を悪化させるおそれがあることから、100MHz以下が好ましい。 Here, the first high-frequency frequency (first frequency) for plasma generation is preferably a high frequency that ions cannot follow from the viewpoint of obtaining a high-density plasma, and the sheath thickness does not change much. It is preferable that it is 10 MHz or more. However, if the frequency is increased too much, the size of the electrode cannot be ignored with respect to the wavelength, and a standing wave due to a high frequency is generated, which may deteriorate the plasma distribution.
 プラズマのシース厚Sは一般に以下の(1)式で表される。
 S∝Sabs 1/8/ω1/4・T 5/16・ε 3/8  …(1)
 ただし、Sabsはシース吸収エネルギー、ωは角周波数、Tは電子温度、εは衝突エネルギーである。
 (1)式から明らかなように、シース厚Sは、角周波数ωの1/4乗に反比例することから、周波数が大きくなるほどシース厚は薄くなるが、ある周波数以上ではそれほど変化しなくなる。この周波数は通常20~30MHzとされていることから、10MHz以上を好ましい範囲とした。より好ましくは40~100MHzであり、例えば60MHzが用いられる。
The plasma sheath thickness Sm is generally expressed by the following equation (1).
S m ∝ S abs 1/8 / ω 1/4 · T e 5/16 · ε c 3/8 (1)
Where S abs is the sheath absorption energy, ω is the angular frequency, Te is the electron temperature, and ε c is the collision energy.
(1) As apparent from the equation, the sheath thickness S m, since the inversely proportional to 1/4 square of the angular frequency omega, but as made sheath thickness is thin frequency increases, not so much changed in a certain frequency or more. Since this frequency is normally 20 to 30 MHz, 10 MHz or more is set as a preferable range. More preferably, it is 40 to 100 MHz, for example, 60 MHz is used.
 イオン加速用の第2の高周波の周波数(第2の周波数)としては、イオン加速のために適切なプラズマシースを形成する観点から0.1~10MHzの範囲が好ましく、1~10MHz程度がより好ましい。例えば1~6MHz程度が用いられる。ここでイオンエネルギーをEion、印加高周波電圧の振幅をVrf、印加励起周波数をfとすると、一般に図3のような傾向がある。つまり周波数fが1MHzから10MHzの間においてEion/Vrfの値が大きく変化する。このため、Vrfを一定に保ち周波数を1MHzから10MHzまで変えるとイオンエネルギーEionを正確に制御することができる。 The second high-frequency frequency (second frequency) for ion acceleration is preferably in the range of 0.1 to 10 MHz, more preferably about 1 to 10 MHz from the viewpoint of forming a plasma sheath appropriate for ion acceleration. . For example, about 1 to 6 MHz is used. Here, when ion energy is E ion , the amplitude of the applied high-frequency voltage is V rf , and the applied excitation frequency is f, there is a general tendency as shown in FIG. That is, the value of Eion / Vrf changes greatly when the frequency f is between 1 MHz and 10 MHz. For this reason, the ion energy E ion can be accurately controlled by keeping V rf constant and changing the frequency from 1 MHz to 10 MHz.
 高周波電力供給機構20は、AM変調部21と、高周波電源22と、マッチャー23とを有している。AM変調部21は、上記第1の高周波を発振する第1発振器31と、上記第2の高周波を発振する第2発振器32と、第1の高周波を第2の高周波で変調させる変調器33と、変調度を調整するための2つの振幅調整器34,35と、特定波長を透過させるBP(バンドパス)フィルタ36とを有している。 The high-frequency power supply mechanism 20 includes an AM modulation unit 21, a high-frequency power source 22, and a matcher 23. The AM modulator 21 includes a first oscillator 31 that oscillates the first high frequency, a second oscillator 32 that oscillates the second high frequency, and a modulator 33 that modulates the first high frequency with the second high frequency. , Two amplitude adjusters 34 and 35 for adjusting the degree of modulation, and a BP (band pass) filter 36 that transmits a specific wavelength.
 第1発振器31と第2発振器32は、単なる小信号用の発振器であるため、高周波電源のような大がかりな装置構成は不要である。第2発振器32としては周波数可変の発振器、例えばPLL発振器を用い、周波数を例えば1~6MHzの間で可変とする。 Since the first oscillator 31 and the second oscillator 32 are merely small-signal oscillators, a large-scale device configuration such as a high-frequency power supply is not necessary. As the second oscillator 32, a variable frequency oscillator such as a PLL oscillator is used, and the frequency is variable between 1 and 6 MHz, for example.
 振幅調整器34は、第1発振器31と変調器33との間に設けられ、第1発振器31で発振された第1の高周波の振幅を調整するものであり、振幅調整器35は、第2発振器32と変調器33との間に設けられ、第2発振器32で発振された第2の高周波の振幅を調整するものである。変調度(減衰比)kは、搬送波である第1の高周波の振幅をA、変調波である第2の高周波の振幅をAとするとk=A/Aで表すことができるから、振幅調整器34,35により振幅を調整することにより変調度を調整することができる。振幅調整器34,35としては、例えばアッテネータ(減衰器)が用いられる。 The amplitude adjuster 34 is provided between the first oscillator 31 and the modulator 33 and adjusts the amplitude of the first high-frequency wave oscillated by the first oscillator 31. The amplitude adjuster 35 It is provided between the oscillator 32 and the modulator 33, and adjusts the amplitude of the second high frequency oscillated by the second oscillator 32. Modulation factor (damping ratio) k, since the amplitude of the first high-frequency is the carrier A c, the amplitude of the second high-frequency is a modulated wave can be expressed by When A m k = A m / A c The degree of modulation can be adjusted by adjusting the amplitude with the amplitude adjusters 34 and 35. As the amplitude adjusters 34 and 35, for example, attenuators (attenuators) are used.
 AM変調部21においては、第1発振器31で発振され振幅調整器34で所定の振幅に調整された第1の高周波と、第2発振器32で発振され振幅調整器35で所定の振幅に調整された第2の高周波が変調器33に送られ、変調器33において、第1の高周波が第2の高周波により所定の変調度で変調され、変調されて形成された合成波(AM変調波)は、BPフィルタ36を経て高周波電源22に送られる。 In the AM modulation unit 21, the first high-frequency wave oscillated by the first oscillator 31 and adjusted to a predetermined amplitude by the amplitude adjuster 34 and the second high-frequency oscillator 32 oscillated by the second oscillator 32 and adjusted to the predetermined amplitude by the amplitude adjuster 35. The second high-frequency wave is sent to the modulator 33, where the first high-frequency wave is modulated with the second high-frequency wave with a predetermined modulation degree, and a synthesized wave (AM modulated wave) formed by the modulation is The BP filter 36 is sent to the high frequency power supply 22.
 高周波電源22は、上記第1の周波数の電源であり、これによりAM変調によって形成された合成波(AM変調波)を増幅して所定の高周波電力を得る。この場合に、後述するように、高周波電源22において、以下の(2)式で表されるQ値を適切に設定することにより、第1の高周波と第2の高周波の合成波(AM変調波)を増幅することができる。
  Q=(蓄えられるエネルギー)/(消費されるエネルギー)…(2)
 この場合に高周波電源22のQ値は1以上で20以下であることが好ましく、例えばQ値が10の場合には、第1の高周波の周波数が60MHzのとき、第2の高周波の周波数が1~6MHz程度でAM変調によって形成された合成波を増幅することができる。
The high frequency power supply 22 is a power supply of the first frequency, and thereby amplifies a synthesized wave (AM modulated wave) formed by AM modulation to obtain predetermined high frequency power. In this case, as will be described later, the high-frequency power source 22 appropriately sets the Q value represented by the following expression (2), thereby combining the first high-frequency wave and the second high-frequency wave (AM modulation wave). ) Can be amplified.
Q = (energy stored) / (energy consumed) (2)
In this case, the Q value of the high frequency power supply 22 is preferably 1 or more and 20 or less. For example, when the Q value is 10, when the frequency of the first high frequency is 60 MHz, the frequency of the second high frequency is 1. A synthesized wave formed by AM modulation at about ˜6 MHz can be amplified.
 マッチャー23も高周波電源22と同様のQ値に設定される。すなわち、マッチャー23もQ値が1以上で20以下であることが好ましく、高周波電源22としてQ値が10のものを用いた場合には、マッチャー23もQ値が10のものを用いることが好ましい。 The matcher 23 is also set to the same Q value as the high frequency power supply 22. That is, the matcher 23 preferably has a Q value of 1 or more and 20 or less, and when the high frequency power supply 22 has a Q value of 10, it is preferable that the matcher 23 also has a Q value of 10. .
 このようにしてAM変調により形成された合成波(AM変調波)をステージ3に印加することにより、このAM変調波は後述するようにプラズマによって復調され、第1の高周波に基づく高周波電力と第2の高周波に基づく高周波電力がプラズマに印加されることとなる。 By applying the composite wave (AM modulated wave) formed by AM modulation in this way to the stage 3, the AM modulated wave is demodulated by plasma as will be described later, and the high frequency power based on the first high frequency and the first The high frequency power based on the high frequency of 2 is applied to the plasma.
 プラズマ処理装置の各構成部は、図2に示すように、マイクロプロセッサ(コンピュータ)を備えたプロセスコントローラ50に接続されて制御される構成となっている。プロセスコントローラ50には、オペレータがプラズマ処理装置を管理するためにコマンドの入力操作等を行うキーボードや、プラズマ処理装置の稼働状況を可視化して表示するディスプレイ等からなるユーザーインターフェース51が接続されている。さらに、プロセスコントローラ50には、プラズマ処理装置で実行される各種処理をプロセスコントローラ50の制御にて実現するための制御プログラムや、処理条件に応じてプラズマ処理装置50の各構成部に処理を実行させるためのプログラムすなわち処理レシピを格納することが可能な記憶部52が接続されている。処理レシピはハードディスクのような固定的な記憶媒体に記憶されていてもよいし、CDROM、DVD等の可搬性の記憶媒体に収容された状態で記憶部52の所定位置にセットするようになっていてもよい。さらに、他の装置から、例えば専用回線を介してレシピを適宜伝送させるようにしてもよい。そして、必要に応じて、ユーザーインターフェース51からの指示等にて任意の処理レシピを記憶部52から呼び出してプロセスコントローラ50に実行させることで、プロセスコントローラ50の制御下で、プラズマ処理装置での所望の処理が行われる。 Each component of the plasma processing apparatus is connected to and controlled by a process controller 50 having a microprocessor (computer), as shown in FIG. Connected to the process controller 50 is a user interface 51 including a keyboard for an operator to input commands and the like for managing the plasma processing apparatus, and a display for visualizing and displaying the operating status of the plasma processing apparatus. . Further, the process controller 50 executes processing on each component of the plasma processing apparatus 50 in accordance with a control program for realizing various processes executed by the plasma processing apparatus under the control of the process controller 50 and processing conditions. A storage unit 52 that can store a program for processing, that is, a processing recipe, is connected. The processing recipe may be stored in a fixed storage medium such as a hard disk, or is set at a predetermined position in the storage unit 52 while being stored in a portable storage medium such as a CDROM or DVD. May be. Furthermore, you may make it transmit a recipe suitably from another apparatus via a dedicated line, for example. Then, if necessary, an arbitrary processing recipe is called from the storage unit 52 by the instruction from the user interface 51 and is executed by the process controller 50, so that the desired processing in the plasma processing apparatus is performed under the control of the process controller 50. Is performed.
 次に、このように構成されるプラズマ処理装置の処理動作について説明する。
 まず、図示しない搬入出口からチャンバ1内にウエハWを搬入し、ステージ3の上に載置する。そして、排気機構12によりチャンバ1内を排気しつつ処理ガス供給系10からエッチングのための処理ガスをシャワーヘッド5を介してチャンバ1内に導入し、高周波電力供給機構20により第1の高周波が第2の高周波によりAM変調された高周波電力をステージ3に印加し、プラズマを生成する。この際に、ステージ3の上面に設けられた静電チャック(図示せず)によりウエハWを静電吸着する。
Next, the processing operation of the plasma processing apparatus configured as described above will be described.
First, the wafer W is loaded into the chamber 1 from a loading / unloading port (not shown) and placed on the stage 3. Then, while exhausting the inside of the chamber 1 by the exhaust mechanism 12, a processing gas for etching is introduced into the chamber 1 through the shower head 5 from the processing gas supply system 10, and the first high frequency is generated by the high frequency power supply mechanism 20. A high frequency power that is AM-modulated by the second high frequency is applied to the stage 3 to generate plasma. At this time, the wafer W is electrostatically attracted by an electrostatic chuck (not shown) provided on the upper surface of the stage 3.
 高周波電力供給機構20のAM変調部21においては、第1発振器31で発振された第1の高周波と第2発振器32で発振された第2の高周波とを、それぞれ振幅調整器34,35により振幅調整しつつ変調器33で合成して、第1の高周波を第2の高周波によりAM変調する。そして、BPフィルタ36により必要な帯域の周波数のみを通過させ、通過したAM変調波を高周波電源22に入力する。 In the AM modulation unit 21 of the high frequency power supply mechanism 20, the first high frequency oscillated by the first oscillator 31 and the second high frequency oscillated by the second oscillator 32 are amplitude-reduced by amplitude adjusters 34 and 35, respectively. The first high frequency is AM-modulated by the second high frequency by combining with the modulator 33 while adjusting. Then, only the necessary frequency band is passed by the BP filter 36, and the passed AM modulated wave is input to the high frequency power supply 22.
 ここで搬送波である第1の高周波vは、図4に示すようになり、以下の(3)式で表すことができる。
 v=Acos(ωt+φ) ……(3)
 ただし、Aは搬送波の振幅、ωは搬送波の角周波数、φは搬送波の位相である。
Wherein the first high-frequency v c is the carrier are as shown in FIG. 4 can be expressed by the following equation (3).
v c = A c cos (ωt + φ 0 ) (3)
Where Ac is the amplitude of the carrier wave, ω is the angular frequency of the carrier wave, and φ 0 is the phase of the carrier wave.
 また、変調信号である第2の高周波vは、図5に示すようになり、以下の(4)式で表すことができる。
 v=Acospt ……(4)
 ただし、Aは変調信号の振幅、pは変調信号の角周波数である。
The second high-frequency v m is the modulation signal is as shown in FIG. 5, can be represented by the following equation (4).
v m = A m cost (4)
Here, Am is the amplitude of the modulation signal, and p is the angular frequency of the modulation signal.
 さらに、AM変調した場合の合成波(AM変調波)vAM(t)は、図6に示すようになり、以下の(5)式に示すようになる。
 vAM(t)=(A+Acospt)cos(ωt+φ
      =A(1+kcospt)cos(ωt+φ)…(5)
 ただし、k=A/Aは変調度(減衰比)である。
Further, the synthesized wave (AM modulated wave) v AM (t) in the case of AM modulation is as shown in FIG. 6, and is as shown in the following equation (5).
v AM (t) = (A c + A m cost) cos (ωt + φ 0 )
= A c (1 + kcospt) cos (ωt + φ 0 ) (5)
However, k = A m / A c is a modulation degree (attenuation ratio).
 上記(5)式を展開すると以下の(6)式となり、さらに展開すると(7)式になる。
  vAM(t)=Acos(ωt+φ)+kAcospt・cos(ωt+φ) …(6)
  vAM(t)=Acos(ωt+φ)+
        (1/2)kAcos[(ω+p)t+φ]+
        (1/2)kAcos[(ω-p)t+φ] …(7)
When the above expression (5) is expanded, the following expression (6) is obtained, and when further expanded, the expression (7) is obtained.
v AM (t) = A c cos (ωt + φ 0 ) + kA c cospt · cos (ωt + φ 0 ) (6)
v AM (t) = A c cos (ωt + φ 0 ) +
(1/2) kA c cos [(ω + p) t + φ 0 ] +
(1/2) kA c cos [(ω−p) t + φ 0 ] (7)
 (7)式に示すようにAM変調波vAM(t)は、搬送波:Acos(ωt+φ)、上側波:(1/2)kAcos[(ω+p)t+φ]、下側波:(1/2)kAcos[(ω-p)t+φ]の3つの成分になる。このときのAM変調波vAM(t)のスペクトルは、図7に示すようになる。 As shown in the equation (7), the AM modulated wave v AM (t) includes a carrier wave: A c cos (ωt + φ 0 ), an upper wave: (1/2) kA c cos [(ω + p) t + φ 0 ], and a lower side wave. : (1/2) kA c cos [(ω−p) t + φ 0 ]. The spectrum of the AM modulated wave v AM (t) at this time is as shown in FIG.
 図7から明らかなように、AM変調することにより(ω+p)-(ω-p)=2pの帯域を確保すれば増幅およびマッチングすることができる。ここで、変調信号の周波数をfとするとp=2πfとなるから、半値幅Bは、以下の(8)式で表すことができる。
  B=2f=fBW  ……(8)
 ただし、fBWは、占有周波数帯域である。
As is apparent from FIG. 7, amplification and matching can be performed if a band of (ω + p) − (ω−p) = 2p is secured by AM modulation. Here, since the frequency of the modulation signal and f m becomes p = 2 [pi] f m, the half-value width B may be represented by the following equation (8).
B = 2f m = f BW (8)
However, f BW is an occupied frequency band.
 搬送波の周波数をfとすると、Q値は以下の(9)式で表すことができる。
   Q=f/fBW  ……(9)
If the frequency of the carrier wave is f 0 , the Q value can be expressed by the following equation (9).
Q = f 0 / f BW (9)
 ここで搬送波の周波数fを40MHz、fBWを2MHzとすると、Q=40/2=20となり高周波電源22およびマッチャー23のQ値を20以下にすればよいこととなる。 Here, assuming that the frequency f 0 of the carrier wave is 40 MHz and f BW is 2 MHz, Q = 40/2 = 20, and the Q values of the high-frequency power source 22 and the matcher 23 should be 20 or less.
 高周波電源およびマッチャーは、Q値が高いほど高精度であるが、通常、安定性を考慮してQ=10程度とする。このため、高周波電源22として増幅動作(A級、B級等)に捉われることなく一般的なものを用いることにより、またマッチャー23としてLとCからなる汎用的なものを用いることにより、本実施形態で意図するAM変調波を増幅することができる。 The high-frequency power supply and matcher are more accurate as the Q value is higher, but normally, Q is about 10 in consideration of stability. Therefore, by using a general high frequency power supply 22 without being caught by an amplification operation (Class A, Class B, etc.), and by using a general purpose L and C as the matcher 23, The AM modulated wave intended in the embodiment can be amplified.
 高周波電源22で増幅されて形成された高周波電力は、チャンバ1の中において、60MHz程度の相対的に高い周波数の第1の高周波(搬送波)の成分(ω)では、イオンおよび電子とも電界の変化に追従することができないのに対し、1~10MHz程度の相対的に低い周波数の第2の高周波(変調信号)の成分(p)では、イオンは電界の変化に追従できないが電子は追従することができる。このためプラズマ電位が発生し、シースに電界がかかりイオンを加速することができる。この時のプラズマの等価回路は、図8に示すように、シース部分がダイオードとコンデンサからなるものとなり、ダイオードによる非線形成分により非線形復調(ダイオード復調)が達成され、チャンバ1内でAM変調波を復調することができる。 The high-frequency power amplified by the high-frequency power source 22 is changed in the electric field of both ions and electrons in the first high-frequency (carrier wave) component (ω) of about 60 MHz in the chamber 1. In contrast, the second high frequency (modulation signal) component (p) having a relatively low frequency of about 1 to 10 MHz cannot follow the change of the electric field, but the electron follows. Can do. As a result, a plasma potential is generated and an electric field is applied to the sheath to accelerate ions. As shown in FIG. 8, the equivalent circuit of the plasma at this time has a sheath part composed of a diode and a capacitor. Non-linear demodulation (diode demodulation) is achieved by a non-linear component of the diode, and an AM modulated wave is generated in the chamber 1. It can be demodulated.
 したがって、プラズマのシース部分には、第2の高周波成分であるcosptとDC部分が残り、その結果、p角速度に励起されたイオンがシース部分で加速され、それを使用して物理エッチングを行うことができる。 Therefore, the cost and DC portions, which are the second high-frequency components, remain in the sheath portion of the plasma, and as a result, ions excited to the p angular velocity are accelerated in the sheath portion, and physical etching is performed using them. Can do.
ここで図9を参照して本実施形態のプラズマエッチングのメカニズムを、被エッチング材料を熱酸化膜(SiO)とした場合について説明する。まず、(a)に示すように、C系のガスとArなど不活性ガスの混合ガスによりプラズマが生成され、C、F、CF等の活性粒子がSiO面に吸着される。その後、(b)に示すように、運動エネルギーをもったArイオンがSiO面に衝突してこの部分の温度が上昇し、これによりSiOとこれら活性粒子が化学反応を起こし、SF、CO、およびCO等が形成される。これらの反応副生成物は数mTorrの環境下ではガスとなり排気管11を通して排気され、(c)に示すように、SiO膜はエッチングされる。ここで活性粒子とSiOとの化学反応において、その反応スピードは温度によって変化する。図9におけるプラズマエッチングにおいて、SiO膜とLow-k膜のエッチング選択比を上げるためには、SiO膜がエッチングされ易く、Low-k膜がエッチングされ難い温度にSi基板の温度を維持する必要があるが、この温度はArイオンのエネルギーによって定まる。本実施形態においては、選択比を上げるためにイオンエネルギーを制御し、すなわち例えば第2の高周波の振幅Aを一定としつつ周波数を制御し、エッチングレートを上げるために第1の高周波の振幅Aを一定としたまま変調度kを大きくする。 Here, the plasma etching mechanism of the present embodiment will be described with reference to FIG. 9 in the case where the material to be etched is a thermal oxide film (SiO 2 ). First, (a), the plasma is generated by a mixed gas of C x F y based gas and Ar inert gas such as, C, F, active particles of CF or the like is adsorbed on SiO 2 surfaces. Thereafter, as shown in (b), Ar ions having kinetic energy collide with the SiO 2 surface and the temperature of this portion rises, whereby the SiO 2 and these active particles cause a chemical reaction, SF 4 , CO, CO 2 and the like are formed. These reaction by-products become gas in an environment of several mTorr and are exhausted through the exhaust pipe 11, and the SiO 2 film is etched as shown in FIG. Here, in the chemical reaction between the active particles and SiO 2 , the reaction speed varies depending on the temperature. In the plasma etching in FIG. 9, in order to increase the etching selectivity between the SiO 2 film and the Low-k film, the temperature of the Si substrate is maintained at a temperature at which the SiO 2 film is easily etched and the Low-k film is difficult to etch. Although it is necessary, this temperature is determined by the energy of Ar ions. In this embodiment, ion energy is controlled to increase the selection ratio, that is, the frequency is controlled while, for example, the second high-frequency amplitude Am is constant, and the first high-frequency amplitude A is used to increase the etching rate. The modulation degree k is increased while keeping c constant.
 以上のように、本実施形態によれば、AM変調部21で第1の高周波を第2の高周波でAM変調し、そのAM変調波を増幅した高周波電力をチャンバ1内で復調するので、高周波電源およびマッチャーは、AM変調波に対するものを1個ずつ設ければよく、これらが2つずつ必要であった従来よりも装置の小型化および低コストかが可能となる。 As described above, according to the present embodiment, the AM modulation unit 21 AM modulates the first high frequency with the second high frequency, and the high frequency power obtained by amplifying the AM modulated wave is demodulated in the chamber 1. The power supply and the matcher need only be provided one by one for the AM modulated wave, and it is possible to reduce the size and cost of the apparatus as compared with the conventional case where two of them are required.
 また、AM変調部21で変調度を調整しつつ第1の高周波を第2の高周波で変調するので、高周波電源22で増幅し、チャンバ1内で復調した際における第1の高周波のパワー(振幅)および第2の高周波のパワー(振幅)をそれぞれ別個に調整することができ、プラズマ密度およびイオン密度を所望の値に調整することができる。そして、第2の高周波を発振する第2発振器32は周波数が可変であるため、この周波数を調整することにより、イオンエネルギーをイオン密度と独立して制御することができる。このため、従来異なる装置で行わざるを得なかった、ポリシリコンとシリコン酸化膜等の異なる材料のエッチングを一つの装置で実現することができる。 In addition, since the first high frequency is modulated by the second high frequency while adjusting the modulation degree by the AM modulation unit 21, the first high frequency power (amplitude) when amplified by the high frequency power supply 22 and demodulated in the chamber 1 is used. ) And the second high frequency power (amplitude) can be adjusted separately, and the plasma density and ion density can be adjusted to desired values. Since the second oscillator 32 that oscillates the second high frequency has a variable frequency, the ion energy can be controlled independently of the ion density by adjusting the frequency. For this reason, etching of different materials such as polysilicon and silicon oxide film, which had to be performed with different apparatuses in the past, can be realized with one apparatus.
 なお、本発明は上記実施形態に限定されることなく、種々の変形が可能である。例えば、上記実施形態では、第1の高周波を第2の高周波で変調させる際に振幅変調(AM変調)を用いたが、周波数変調(FM変調)や位相変調(PM変調)等、他の変調を用いることもできる。 Note that the present invention is not limited to the above-described embodiment, and various modifications can be made. For example, in the above embodiment, amplitude modulation (AM modulation) is used when modulating the first high frequency with the second high frequency, but other modulations such as frequency modulation (FM modulation) and phase modulation (PM modulation) are used. Can also be used.
 また、上記実施形態では、プラズマ処理としてプラズマエッチングを例にとって説明したが、他のプラズマ処理であってもよい。さらに、被処理体についても、半導体ウエハに限らず、FPD用ガラス基板などの他のものを対象にすることができる。 In the above embodiment, plasma etching is described as an example of plasma processing, but other plasma processing may be used. Furthermore, the object to be processed is not limited to the semiconductor wafer, and other objects such as a glass substrate for FPD can be targeted.

Claims (12)

  1.  被処理基板が収容され、真空排気可能な処理容器と、
     処理容器内に対向して配置された第1電極および被処理基板を支持する第2電極と、
     プラズマ生成用の第1の周波数の第1の高周波をイオン加速用の第2の周波数の第2の高周波で変調し、変調されて形成された合成波を増幅し、それにより得られた高周波電力を前記第2電極に印加する高周波電力供給機構と
    を具備し、
     前記高周波電力供給機構は、
     前記第1の高周波を発振する第1発振器と、
     前記第2の高周波を発振する第2発振器と、
     前記第1の高周波を前記第2の高周波で変調させる変調器と、
     変調させる際の変調度を調整する変調度調整部と、
     所定の変調度で変調されて形成された合成波を増幅して所定の高周波電力を生成する高周波電源と、
     前記高周波電源とプラズマインピーダンスを整合するためのマッチャーと
    を有するプラズマ処理装置。
    A processing container in which a substrate to be processed is accommodated and evacuated;
    A first electrode disposed opposite to the processing container and a second electrode for supporting the substrate to be processed;
    The first high frequency of the first frequency for plasma generation is modulated by the second high frequency of the second frequency for ion acceleration, the synthesized wave formed by the modulation is amplified, and the high frequency power obtained thereby And a high-frequency power supply mechanism for applying to the second electrode,
    The high-frequency power supply mechanism is
    A first oscillator for oscillating the first high frequency;
    A second oscillator for oscillating the second high frequency;
    A modulator that modulates the first high frequency with the second high frequency;
    A modulation degree adjustment unit for adjusting a modulation degree when modulating,
    A high-frequency power source that amplifies a composite wave formed by being modulated at a predetermined modulation degree to generate a predetermined high-frequency power;
    A plasma processing apparatus comprising the high-frequency power source and a matcher for matching plasma impedance.
  2.  前記第2発振器は、周波数可変である、請求項1に記載のプラズマ処理装置。 The plasma processing apparatus according to claim 1, wherein the second oscillator is variable in frequency.
  3.  前記変調器は、前記第1の高周波を前記第2の高周波で振幅変調させる、請求項1に記載のプラズマ処理装置。 The plasma processing apparatus according to claim 1, wherein the modulator modulates the amplitude of the first high frequency with the second high frequency.
  4.  前記第1の周波数は、10~100MHzであり、前記第2の周波数は、0.1~10MHzである、請求項1に記載のプラズマ処理装置。 2. The plasma processing apparatus according to claim 1, wherein the first frequency is 10 to 100 MHz, and the second frequency is 0.1 to 10 MHz.
  5.  前記変調度調整部は、前記第1発振器で発振された前記第1の高周波の振幅を調整する第1の振幅調整器と、前記第2発振器で発信された前記第2の高周波の振幅を調整する第2の振幅調整器とを有する、請求項1に記載のプラズマ処理装置。 The modulation degree adjustment unit adjusts the amplitude of the first high-frequency wave oscillated by the first oscillator and the amplitude of the second high-frequency wave emitted by the second oscillator. The plasma processing apparatus according to claim 1, further comprising a second amplitude adjuster.
  6.  前記高周波電源は、20以下のQ値を有する、請求項1に記載のプラズマ処理装置。 The plasma processing apparatus according to claim 1, wherein the high-frequency power source has a Q value of 20 or less.
  7.  真空排気可能な処理容器内に対向して配置される第1電極および被処理基板を支持する第2電極とを有し、第1の周波数の第1の高周波電力によりプラズマを生成し、第2の周波数の第2の高周波電力によりイオンを加速して被処理基板に対してプラズマ処理を行うプラズマ処理装置に用いられる高周波電力供給機構であって、
     前記第1の高周波を発振する第1発振器と、
     前記第2の高周波を発振する第2発振器と、
     前記第1の高周波を前記第2の高周波で変調させる変調器と、
     変調させる際の変調度を調整する変調度調整部と、
     所定の変調度で変調されて形成された合成波を増幅して所定の高周波電力を生成する高周波電源と、
     前記高周波電源とプラズマインピーダンスを整合するためのマッチャーと
    を有し、
     プラズマ生成用の第1の周波数の第1の高周波をイオン加速用の第2の周波数の第2の高周波で変調し、変調されて形成された合成波を増幅し、それにより得られた高周波電力を前記第2電極に印加する高周波電力供給機構。
    A first electrode disposed opposite to the evacuable processing container and a second electrode for supporting the substrate to be processed, generating plasma with a first high-frequency power having a first frequency; A high-frequency power supply mechanism used in a plasma processing apparatus for performing plasma processing on a substrate to be processed by accelerating ions with a second high-frequency power having a frequency of
    A first oscillator for oscillating the first high frequency;
    A second oscillator for oscillating the second high frequency;
    A modulator that modulates the first high frequency with the second high frequency;
    A modulation degree adjustment unit for adjusting a modulation degree when modulating,
    A high-frequency power source that amplifies a composite wave formed by being modulated at a predetermined modulation degree to generate a predetermined high-frequency power;
    Having a matcher for matching the high frequency power source and plasma impedance;
    The first high frequency of the first frequency for plasma generation is modulated by the second high frequency of the second frequency for ion acceleration, the synthesized wave formed by the modulation is amplified, and the high frequency power obtained thereby A high-frequency power supply mechanism for applying a voltage to the second electrode.
  8.  前記第2発振器は、周波数可変である、請求項7に記載の高周波電力供給機構。 The high-frequency power supply mechanism according to claim 7, wherein the second oscillator is variable in frequency.
  9.  前記変調器は、前記第1の高周波を前記第2の高周波で振幅変調させる、請求項7に記載の高周波電力供給機構。 The high-frequency power supply mechanism according to claim 7, wherein the modulator modulates the amplitude of the first high frequency with the second high frequency.
  10.  前記第1の周波数は、10~100MHzであり、前記第2の周波数は、0.1~10MHzである、請求項7に記載の高周波電力供給機構。 The high-frequency power supply mechanism according to claim 7, wherein the first frequency is 10 to 100 MHz, and the second frequency is 0.1 to 10 MHz.
  11.  前記変調度調整部は、前記第1発振器で発振された前記第1の高周波の振幅を調整する第1の振幅調整器と、前記第2発振器で発信された前記第2の高周波の振幅を調整する第2の振幅調整器とを有する、請求項7に記載の高周波電力供給機構。 The modulation degree adjustment unit adjusts the amplitude of the first high-frequency wave oscillated by the first oscillator and the amplitude of the second high-frequency wave emitted by the second oscillator. The high-frequency power supply mechanism according to claim 7, further comprising a second amplitude adjuster.
  12.  前記高周波電源は、20以下のQ値を有する、請求項7に記載の高周波電力供給機構。 The high-frequency power supply mechanism according to claim 7, wherein the high-frequency power source has a Q value of 20 or less.
PCT/JP2009/058377 2008-06-10 2009-04-28 Plasma processing apparatus and high frequency power supplying mechanism WO2009150907A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-151758 2008-06-10
JP2008151758A JP2009302124A (en) 2008-06-10 2008-06-10 Plasma processing apparatus and high frequency power supplying mechanism

Publications (1)

Publication Number Publication Date
WO2009150907A1 true WO2009150907A1 (en) 2009-12-17

Family

ID=41416618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/058377 WO2009150907A1 (en) 2008-06-10 2009-04-28 Plasma processing apparatus and high frequency power supplying mechanism

Country Status (2)

Country Link
JP (1) JP2009302124A (en)
WO (1) WO2009150907A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012109080A (en) * 2010-11-16 2012-06-07 Tokyo Electron Ltd Plasma processing apparatus and plasma processing method
JP6148090B2 (en) * 2013-07-09 2017-06-14 株式会社日立国際電気 High frequency power supply
KR101924689B1 (en) * 2016-07-15 2019-02-28 연세대학교 산학협력단 Apparatus and method of processing two-dimensional nano materials

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07297175A (en) * 1994-04-20 1995-11-10 Tokyo Electron Ltd Method and apparatus for plasma treatment
JP2000269198A (en) * 1999-03-19 2000-09-29 Toshiba Corp Method and apparatus for plasma treatment
JP2003092200A (en) * 2000-12-12 2003-03-28 Canon Inc Method and apparatus for vacuum treatment, semiconductor apparatus and production method for semiconductor apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07297175A (en) * 1994-04-20 1995-11-10 Tokyo Electron Ltd Method and apparatus for plasma treatment
JP2000269198A (en) * 1999-03-19 2000-09-29 Toshiba Corp Method and apparatus for plasma treatment
JP2003092200A (en) * 2000-12-12 2003-03-28 Canon Inc Method and apparatus for vacuum treatment, semiconductor apparatus and production method for semiconductor apparatus

Also Published As

Publication number Publication date
JP2009302124A (en) 2009-12-24

Similar Documents

Publication Publication Date Title
JP3220383B2 (en) Plasma processing apparatus and method
JP5205378B2 (en) Method and system for controlling the uniformity of a ballistic electron beam by RF modulation
JP5867701B2 (en) Plasma processing equipment
US5753066A (en) Plasma source for etching
JP3776856B2 (en) Plasma processing apparatus and plasma processing method
KR102038617B1 (en) Plasma treatment method and plasma treatment device
JP6169701B2 (en) Plasma processing apparatus and plasma processing method
JP5086192B2 (en) Plasma processing equipment
US4521286A (en) Hollow cathode sputter etcher
JP3726477B2 (en) Plasma processing apparatus and plasma processing method
JP5702968B2 (en) Plasma processing apparatus and plasma control method
US20120145186A1 (en) Plasma processing apparatus
JP2701775B2 (en) Plasma processing equipment
JP3066007B2 (en) Plasma processing apparatus and plasma processing method
JPH1167737A (en) Plasma processing system
JP2000156370A (en) Method of plasma processing
JP6055537B2 (en) Plasma processing method
KR102341913B1 (en) Plasma processing apparatus and plasma processing method
WO2009150907A1 (en) Plasma processing apparatus and high frequency power supplying mechanism
JP6410592B2 (en) Plasma etching method
JPH07249614A (en) Plasma etching method and its equipment
US20170330730A1 (en) Plasma processing apparatus and plasma processing method
JPH097960A (en) Method and apparatus for plasma cvd processing
JP4246591B2 (en) Dry etching equipment
JP2003100710A (en) Method and apparatus for dry etching

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09762337

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09762337

Country of ref document: EP

Kind code of ref document: A1