WO2009150865A1 - Method for production of modified protein and modified protein produced by the method, and protein modification kit - Google Patents

Method for production of modified protein and modified protein produced by the method, and protein modification kit Download PDF

Info

Publication number
WO2009150865A1
WO2009150865A1 PCT/JP2009/052339 JP2009052339W WO2009150865A1 WO 2009150865 A1 WO2009150865 A1 WO 2009150865A1 JP 2009052339 W JP2009052339 W JP 2009052339W WO 2009150865 A1 WO2009150865 A1 WO 2009150865A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
protein
modified
ethylamine
hydrogen atom
Prior art date
Application number
PCT/JP2009/052339
Other languages
French (fr)
Japanese (ja)
Inventor
翼 佐々木
公一郎 児玉
世傑 福沢
和夫 橘
Original Assignee
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学 filed Critical 国立大学法人東京大学
Publication of WO2009150865A1 publication Critical patent/WO2009150865A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/795Porphyrin- or corrin-ring-containing peptides
    • C07K14/805Haemoglobins; Myoglobins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/107General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides
    • C07K1/1072General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides by covalent attachment of residues or functional groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/13Labelling of peptides

Definitions

  • the present invention relates to a method for producing a modified protein. More specifically, the present invention relates to a method for producing a modified protein capable of modifying a protein in a position-specific manner while suppressing the risk of protein degradation and denaturation, and the production method. And a kit for obtaining the modified protein.
  • This application claims priority based on Japanese Patent Application No. 2008-155994 filed in Japan on June 13, 2008, the contents of which are incorporated herein by reference.
  • a modified protein in which a desired modified molecule is artificially introduced into the protein is attracting attention.
  • Examples of a method for introducing the desired modified molecule into a protein include introduction of an unnatural amino acid using a protein translation system and de novo chemical synthesis.
  • each of these methods has the following limitations.
  • Non-natural amino acids can be introduced in protein biosynthesis by a mutant aminoacyl tRNA synthetase; a suppressor tRNA capable of binding to the non-natural amino acid in the presence of the mutant aminoacyl tRNA synthetase; and nonsense at a desired position.
  • a method of expressing a protein containing an unnatural amino acid using a mutated gene; and the like see, for example, Non-Patent Documents 1 to 11). This method is an excellent method in that the specificity of the introduction position of the unnatural amino acid is high. However, this method depends on the modification of the substrate specificity of biomolecules involved in protein synthesis or the diversity of chemical structures of amino acids.
  • Another example is de novo chemical synthesis, but in this method, it is difficult to synthesize a protein having 100 or more amino acids, and there is no guarantee that the protein will be folded correctly.
  • a method of modifying a protein by chemical modification is also known.
  • the position at which the chemical functional group is introduced cannot be specified depending on the chemical reaction used when modifying the protein. For example, when an amino group in a protein is modified by a chemical modification method, the N-terminus and all lysine residues are modified.
  • Non-Patent Document 12 describes a method of reacting using a protein containing azidohomoalanine, a phosphine reagent, and Staudinger ligation. However, nitrene produced by the decomposition of azide reacts with the amino group of protein lysine. Similarly, a method of introducing a keto group on the protein side and reacting this keto group with a functional molecule containing an amine or hydrazide is also known (see Non-Patent Documents 13 and 14). However, although hydrazone formation and oximation are somewhat stable, hydrolysis proceeds little by little.
  • Non-Patent Document 15 a method has been reported in which a diene group is introduced on the protein side and an olefin reagent is introduced by a Diels-Alder reaction.
  • this method it is difficult to introduce site-specific dienes into proteins, and side reactions with cysteine thiols proceed.
  • Non-Patent Documents 16 to 18 a method of chemically modifying a protein by a chemical reaction using a transition metal catalyst has been reported (Non-Patent Documents 16 to 18).
  • this method requires complicated experimental operations and requires detailed examination of conditions.
  • the Pictet-Spengler reaction is a reaction in which ethylamine having an aromatic ring or heteroaromatic ring at the ⁇ -position and an aldehyde are subjected to ring-closing condensation, and is widely used for the synthesis of heterocyclic compounds.
  • This reaction is usually carried out under organic solvent conditions (see Non-Patent Document 19), and the reaction proceeds even in an aqueous solvent. In that case, 10% TFA aqueous solution is used as a catalyst (refer nonpatent literature 20).
  • Non-Patent Document 22 A ligation reaction of oligopeptides using this Pictet-Spengler reaction has been reported (see Non-Patent Document 22). This method does not prevent protein denaturation because ligation is performed using a strong acid of 1% aqueous solution of TFA. In addition, since monoaldehyde having low reactivity is used, the modification reaction does not proceed in a 50% acetic acid aqueous solution, and the protein modification reaction cannot be performed under mild conditions.
  • Non-Patent Documents 23 and 24 methods for site-specific aldehyde formation of proteins have been reported (see Non-Patent Documents 23 and 24).
  • a protein containing a specific primary sequence is expressed, and an aldehyde is prepared by enzymatic oxidation of the side chain of the cysteine residue.
  • a highly reactive activated aldehyde cannot be prepared, and only hydrazone formation and oxime formation which are unstable in an aqueous solvent are performed.
  • the latter can prepare activated ⁇ -ketoaldehyde by oxidative deamination reaction using pyridoxal-5-phosphate.
  • the present invention has been made in view of the above circumstances, and introduces a desired modified molecule in a position-specific manner within a protein under milder conditions rather than reaction conditions that cause degradation or denaturation of a protein by a strong acid.
  • An object of the present invention is to provide a method for producing a modified protein.
  • the present invention employs the following means in order to solve the above problems and achieve the object.
  • the method for producing a modified protein of the present invention comprises a protein containing an ethylamine group having an aromatic ring or a heteroaromatic ring at the ⁇ -position, and a modified molecule having an aldehyde group at the end of the modifying unit.
  • the aromatic ring or heteroaromatic ring preferably has an electron donating functional group.
  • the electron-donating functional group is one or more selected from the group consisting of an alkyl group, an alkoxy group, an amino group, and a hydroxy group.
  • the carbon atom adjacent to the amine group of the ethylamine group has an electron-withdrawing functional group.
  • the carbon atom adjacent to the aldehyde group has an electron-withdrawing functional group.
  • the electron-withdrawing functional group is one or more selected from the group consisting of an imino group, a carbonyl group and a carboxyl group.
  • the ethylamine group having an aromatic ring or a heteroaromatic ring preferably has a tryptamine skeleton or a dopamine skeleton, and the aldehyde group preferably has an ⁇ -ketoaldehyde.
  • the protein containing an aldehyde group can be introduced with an aldehyde group by oxidative deamination reaction in the presence of pyridoxal-5-phosphate.
  • the protein has a nonsense mutation so that it has a suppressor tRNA bound to an amino acid containing an ethylamine group or an aldehyde group having an aromatic ring or a heteroaromatic ring at the ⁇ -position, and a codon corresponding to the codon of the suppressor tRNA. It is preferably a protein synthesized by a synthesis system using the applied gene.
  • the protein containing an ethylamine group having an aromatic ring or heteroaromatic ring at the ⁇ -position is preferably a protein having tryptophan at the N-terminus.
  • the modified protein of the present invention can be obtained by the method for producing a modified protein described in (1) above.
  • the protein is preferably represented by any one of the following general formulas (1) to (6).
  • R 1 is a protein
  • R 5 is a hydrogen atom, an alkyl group, an alkoxy group, an amino group, or a hydroxy group
  • R 2 , R 3 , and R 4 One is the modification unit
  • the rest are
  • R 2 is an imino group, a carbonyl group, and a carboxyl group
  • R 3 and R 4 are each independently a hydrogen atom, an alkyl group, a hydroxy group, an alkoxy group, or an amino group. is there.
  • R 1 is a protein
  • R 5 is a hydrogen atom, an alkyl group, an alkoxy group, an amino group, or a hydroxy group
  • R 2 , R 3 , and R 4 One is the modification unit
  • the rest are
  • R 2 is an imino group, a carbonyl group, and a carboxyl group
  • R 3 and R 4 are each independently a hydrogen atom, an alkyl group, a hydroxy group, an alkoxy group, or an amino group. is there.
  • R 1 is a protein
  • R 4 and R 6 are each independently a hydrogen atom, an alkyl group, an alkoxy group, an amino group, or a hydroxy group
  • R 2 , R 3 , R 5 and R 7 are at least one of the modification units, the remaining R 2 is an imino group, a carbonyl group, or a carboxyl group
  • R 3 , R 5 , and R 7 are each independently a hydrogen atom.
  • R 1 is a protein
  • R 4 and R 6 are each independently a hydrogen atom, an alkyl group, an alkoxy group, an amino group, or a hydroxy group
  • R 2 , R 3 , R 5 and R 7 are at least one of the modification units, the remaining R 2 is an imino group, a carbonyl group, or a carboxyl group
  • R 3 , R 5 , and R 7 are each independently a hydrogen atom.
  • R 1 is a protein
  • R 5 and R 6 are each independently a hydrogen atom, an alkyl group, an alkoxy group, an amino group, or a hydroxy group
  • R 2 , R 3 , R 4 and R 6 are at least one of the modification units, the remaining R 2 is an imino group, a carbonyl group, or a carboxyl group
  • R 3 , R 4 , and R 6 are each independently a hydrogen atom.
  • R 1 is a protein
  • R 5 and R 6 are each independently a hydrogen atom, an alkyl group, an alkoxy group, an amino group, or a hydroxy group
  • R 2 , R 3 , R 4 and R 6 are at least one of the modification units, the remaining R 2 is an imino group, a carbonyl group, or a carboxyl group
  • R 3 , R 4 , and R 6 are each independently a hydrogen atom.
  • the protein modification kit of the present invention is a protein modification kit for producing a modified protein, comprising pyridoxal-5-phosphate and a modified molecule containing an ethylamine group having an aromatic ring or a heteroaromatic ring at the ⁇ -position.
  • a modified protein comprising pyridoxal-5-phosphate and a modified molecule containing an ethylamine group having an aromatic ring or a heteroaromatic ring at the ⁇ -position.
  • the method for producing a modified protein described in (1) above site-specific control in post-translational modification of a protein becomes possible. Since this method can introduce various modified molecules into proteins, the modified proteins can have diversity. In addition, this method produces little by-products, can be modified even at low concentrations of the substrate, and boasts high modification efficiency. In addition, since no catalyst is required, in vivo experiments are possible. Furthermore, the protein modification operation is simple, the modification is possible with an inexpensive reagent, and no large-scale equipment is required. Therefore, it is possible to construct a mass production system or a high-throughput system for the modified protein. Extending the functional properties of proteins through new modification methods will contribute to many areas in the future, including functional proteomics and nanotechnology. The method also enables the production of designed modified proteins.
  • FIG. 1 is a diagram schematically showing an example of a method for producing a modified protein of the present invention.
  • FIG. 2 is a diagram schematically showing an example of a modified protein into which a fluorescent molecule has been introduced.
  • FIG. 3 is a diagram schematically showing an example of a modified protein into which a fluorescent group has been introduced.
  • FIG. 4 is a diagram schematically showing an example of a modified protein into which liquid crystal molecules are introduced.
  • FIG. 5 is a diagram schematically showing an example of a modified protein having a heavy atom introduced therein.
  • FIG. 6 is a diagram schematically showing the production process of the modifying molecule used in Example 1.
  • FIG. 7 is a diagram schematically showing the production process of the modified protein in Example 1.
  • FIG. 1 is a diagram schematically showing an example of a method for producing a modified protein of the present invention.
  • FIG. 2 is a diagram schematically showing an example of a modified protein into which a fluorescent molecule has been introduced.
  • FIG. 3 is
  • FIG. 8 is a diagram showing the results of cyprotangerin staining and Western blotting in the modified proteins of Example 1 and Comparative Example.
  • FIG. 9 is a diagram showing measurement results using mass spectrometry for the modified protein of Example 2.
  • FIG. 10A is a diagram showing the modified protein produced in Example 2.
  • FIG. 10B is a diagram showing the modified protein produced in Example 2.
  • FIG. 11 is a diagram showing the results of MS / MS analysis in the modified protein of Example 2.
  • FIG. 12 shows the results of UV measurement for the modified protein of Example 2.
  • FIG. 13 is a diagram showing the results of CD measurement for the modified protein of Example 2.
  • protein refers to a compound in which amino acids are peptide-bonded, and may be a natural protein or an artificially synthesized non-natural protein.
  • the protein may include a natural modification.
  • This protein may be, for example, an oligopeptide consisting of 10 or more amino acids, or a polypeptide having a higher order structure having a molecular weight of 5000 or more.
  • a protein may refer to a protein that has a unique structure due to its post-translational folding, and that can exhibit some function / activity mainly in vivo.
  • the present invention is a method for obtaining a modified protein by binding a molecule having a desired chemical functional group to a protein by Pictet-Spengler reaction.
  • a coupling partner the part contributing to the Pictet-Spengler reaction at the end of a modified molecule to be introduced into a protein
  • a chemical handle the part introduced into the protein and specifically reacting with the coupling partner.
  • a protein containing a chemical handle and a modified molecule containing a coupling partner are subjected to a Pictet-Spengler reaction under a weakly acidic to weakly basic condition, and the protein is converted into the modified molecule. It is a method to modify with.
  • the Pictet-Spengler reaction refers to the following case.
  • a protein in which an ethylamine group having an aromatic ring or heteroaromatic ring at the ⁇ -position as a chemical handle is introduced with a modified molecule having an aldehyde group as a coupling partner at the end of the modifying unit.
  • a protein having an aldehyde group introduced as a chemical handle is reacted with a modified molecule having an ethylamine group having an aromatic ring or a heteroaromatic ring at the ⁇ -position as a coupling partner at the end of the modification unit.
  • a protein having an aldehyde group introduced as a chemical handle is reacted with a modified molecule composed of ethylamine having an aromatic or heteroaromatic ring at the ⁇ -position.
  • a protein having an ethylamine group having an aromatic ring or a heteroaromatic ring at the ⁇ -position a protein having a tryptophan residue at the N-terminus or C-terminus can also be used.
  • the Pictet-Spengler reaction is a reaction in which a reaction between a chemical handle-containing protein and a modifying molecule having a coupling partner forms a carbon-carbon bond with ring-closing condensation after the reaction.
  • the Pictet-Spengler reaction uses a stable chemical handle and coupling partner, has a stable carbon-carbon bond generated by ring-closing condensation, has a high functional group specificity in the modification reaction, and reacts near room temperature. It is preferable at the point which progresses.
  • the ring-closing condensation means that a heterocyclic skeleton is formed by the condensation of ethylamine having an aromatic ring or a heteroaromatic ring at the ⁇ -position with an aldehyde.
  • heterocyclic skeleton examples include a tetrahydrocarboline skeleton.
  • a reaction that forms a heterocyclic skeleton is used, a chemically stable carbon-carbon bond is formed as described above. Therefore, the modified product is difficult to be chemically decomposed.
  • a function such as a fluorescent group can be added by further oxidizing the formed heterocyclic skeleton.
  • a typical Pictet-Spengler reaction is a chemical reaction in which a heterocyclic compound is formed as shown by the following general formula (7) in the presence of an acid catalyst such as HCl or TFA.
  • the Pictet-Spengler reaction generates an iminium cation by dehydration of an amino group of an ethylamine group having an aromatic ring or a heteroaromatic ring at the ⁇ -position, represented by an indole-3-ethylamine skeleton, and the like, and an aldehyde group.
  • This is the Mannich reaction type reaction in which the aromatic ring in the molecule causes Friedel-Crafts type nucleophilic addition. Therefore, depending on the protein or molecule to be used, it is necessary to advance the reaction by heating in an organic solvent under strongly acidic conditions. However, proteins are easily denatured under these conditions.
  • the present inventors have found that in the Pictet-Spengler reaction, this reactivity is improved by optimizing the skeleton of an ethylamine group having an aromatic ring or a heteroaromatic ring at the ⁇ -position. That is, it is preferable that an electron donating functional group is arranged on the aromatic ring or heteroaromatic ring of an ethylamine group having an aromatic ring or heteroaromatic ring at the ⁇ -position. Reactivity of Pictet-Spengler reaction under mild conditions that can suppress protein degradation or denaturation, such as pH 4-9, reaction temperature 0 ° C to 37 ° C Can be improved.
  • Examples of the electron-donating functional group include an alkyl group, an alkoxy group, an amino group, and a hydroxy group.
  • Examples of an ethylamine group having an aromatic ring or heteroaromatic ring at the ⁇ -position, and the above-mentioned electron-donating functional group arranged on the aromatic ring or heteroaromatic ring include, for example, 5 A pyrrole-3-ethylamine compound having an electron donating functional group at the 4-position or 6-position, and an electron-donating functional group at the 3-position or 5 And indole-3-ethylamine compound at the position.
  • the carbon atom adjacent to the amine group of the ethylamine group having an aromatic ring or a heteroaromatic ring at the ⁇ -position has an electron-withdrawing functional group.
  • the electron withdrawing property of the iminium cation is improved, and nucleophilic addition is facilitated. Therefore, the reactivity of the Pictet-Spengler reaction can be improved.
  • the electron-withdrawing functional group include an imino group, a carbonyl group, and a carboxyl group.
  • Examples of such compounds having an ethylamine group having an aromatic ring or a heteroaromatic ring at the ⁇ -position include the following.
  • examples of the compound having a ⁇ -arylethylamine group include L-dopa (DOPA).
  • Examples of the compound having an indole-3-ethylamine group include 6-hydroxytryptamine, tryptophan methyl ester, N-terminal tryptophan derivative and the like.
  • Typical skeletons of ethylamine groups having an aromatic ring or heteroaromatic ring at the ⁇ -position that are preferable for this method are listed in the following general formulas (8) to (10).
  • the general formula (8) is a pyrrole-3-ethylamine compound
  • the general formula (9) is an indole-3-ethylamine compound
  • the general formula (10) is a ⁇ -arylethylamine compound.
  • R 1 is preferably an electron-withdrawing functional group.
  • R 4 is preferably an electron donating functional group.
  • R 2 and R 3 are not particularly limited, and examples thereof include an alkyl group, a hydroxy group, an alkoxy group, and an amino group. In the compound represented by the general formula (8), it is preferable that R 1 to R 3 are bound to a modification unit or a protein.
  • R 1 is preferably an electron-withdrawing functional group.
  • R 3 and R 5 are preferably electron donating functional groups.
  • R 2 , R 4 , and R 6 are not particularly limited, and examples thereof include an alkyl group, a hydroxy group, an alkoxy group, and an amino group. In the compound represented by the general formula (9), it is preferable that R 1 , R 2 , R 4 , and R 6 are bonded to the modification unit or the protein.
  • R 1 is preferably an electron-withdrawing functional group.
  • R 4 and R 6 are preferably electron donating functional groups.
  • R 2 , R 3 , and R 5 are not particularly limited, and examples thereof include an alkyl group, a hydroxy group, an alkoxy group, and an amino group. In the compound represented by the general formula (10), it is preferable that R 1 , R 2 , R 3 and R 5 are bound to the modification unit or the protein.
  • the present inventors have found that the reactivity is improved by optimizing the aldehyde group in the Pict-Pengler reaction. That is, when the carbon atom adjacent to the aldehyde group has an electron-withdrawing group, nucleophilic addition is likely to proceed in the Pict-Pengler reaction.
  • the electron-withdrawing functional group include an imino group, a carbonyl group, and a carboxyl group.
  • any aldehyde group can be used, but it is preferable to use an activated aldehyde.
  • an activated aldehyde Specifically, for example, ⁇ -ketoaldehyde and the like can be mentioned.
  • the weakly acidic to weakly basic conditions for carrying out the Pictet-Spengler reaction are specifically pH 4.5 or more and pH 8.5 or less, preferably pH 5.0 or more and pH 6.5 or less.
  • phosphoric acid, acetic acid, etc. can be used as an acid catalyst.
  • a solvent for carrying out the Pictet-Spengler reaction in addition to an aqueous solvent, a solvent commonly used in organic reactions and complex synthesis, such as n-pentane, i-pentane, n-hexane, n-decane, benzene, toluene, acetone, Diethyl ether, diisopropyl ether, n-butyl methyl ether, t-butyl methyl ether, di-n-butyl ether, tetrahydrofuran, dioxane, N-methylpyrrolidone, N, N-dimethylformamide, dimethyl sulfoxide, triethylamine, hexamethylphosphoric acid
  • a solvent such as triamide or a mixture thereof may be mentioned.
  • the reaction temperature is 4 ° C or higher and 80 ° C or lower, preferably 20 ° C or higher and 37 ° C or lower.
  • an example of the modification reaction system in the present invention using the Pictet-Spengler reaction is as follows.
  • the pH is mixed in a buffer (sodium phosphate) at pH 4.5 to 8.5, preferably pH 5.5, the reaction temperature is 4 ° C. to 37 ° C., preferably 37 ° C., and the reaction time is 30 minutes to overnight. And incubate. This reaction yields a modified protein.
  • an ⁇ -ketoaldehyde group which is an active aldehyde with increased electrophilicity of an aldehyde
  • a tryptamine methyl ester skeleton which is an aromatic with increased nucleophilicity of indole-3-ethylamine, or indole-
  • an electron-withdrawing functional group such as a carbonyl group is inserted at the ⁇ -position of the amino group.
  • the reactivity of the Pictet-Spengler reaction is improved, and the protein modification reaction can proceed under mild conditions that can suppress degradation or denaturation of the protein.
  • protein modification can be performed under weakly acidic to weakly basic conditions regardless of the three-dimensional structure of the protein and the modifying molecule used.
  • the protein is not particularly limited as long as it has a chemical handle, and a natural protein can be used, or a synthetic protein into which a chemical handle has been introduced by a conventionally known method can also be used.
  • the chemical handle is not particularly limited as long as it undergoes Picté-Spengler reaction with the coupling partner of the modifying molecule.
  • the coupling partner is an ethylamine group having an aromatic ring or a heteroaromatic ring at the ⁇ -position
  • the chemical handle is an aldehyde group.
  • the chemical handle is an ethylamine group having an aromatic ring or a heteroaromatic ring at the ⁇ -position.
  • a protein having an N-terminal tryptophan can also be used by a known method.
  • the method for producing the chemical handle-containing protein is not particularly limited. For example, post-translational modification by oxidative deamination using pyridoxal-5-phosphate, a system for synthesizing a protein in an eubacteria or eukaryotic cell, Cell protein synthesis systems, post-translational modifications in vivo, and the like are all applicable.
  • the N-terminus of the protein may be digested with any protease to obtain glycine, and then aldehyded by a known method.
  • the amino acid introduction position of an unnatural amino acid is strictly controlled, or the position selectivity is high.
  • the chemical handle is made using an organic chemical reaction.
  • the aldehyde group When an aldehyde group is introduced into a protein as a chemical handle, the aldehyde group can be introduced into an amino acid residue such as glycine or ⁇ -N- (2-aminoacetyl) lysine by an oxidative deamination reaction.
  • an amino acid residue such as glycine or ⁇ -N- (2-aminoacetyl) lysine by an oxidative deamination reaction.
  • the non-natural amino acid to be introduced into the protein is not particularly limited as long as it has the above chemical handle or can be used as a substrate for the Picter-Spengler reaction by functional group conversion.
  • Examples of such a compound include p-aminoethylphenylalanine and ⁇ -ketridine.
  • the chemical handle-containing protein can be easily produced at low cost, it is preferably produced by oxidative deamination using pyridoxal-5-phosphate.
  • the N-terminus of the protein can be conveniently aldehyded by oxidative deamination.
  • a chemical handle-containing protein by a synthesis system using a gene and; Unnatural amino acids can be introduced in a site-specific manner in the protein.
  • mutant aminoacyl tRNA synthetase an aminoacyl tRNA synthetase having substrate specificity for a non-natural amino acid containing a functional group capable of Pictet-Spengler reaction is used.
  • a mutant aminoacyl-tRNA synthetase having enhanced substrate specificity for a non-natural amino acid containing a functional group capable of Pictet-Spengler reaction compared to the original substrate specificity for an amino acid can also be used.
  • Such a mutant aminoacyl tRNA synthetase can be appropriately selected according to the unnatural amino acid to be used, and examples thereof include tyrosyl-tRNA synthetase, tryptophanyl-tRNA synthetase, and pyrrolidyl-tRNA synthetase.
  • a suppressor tRNA is a tRNA that is aminoacylated with an aminoacyl-tRNA synthetase or a mutant thereof with an unnatural amino acid containing a functional group capable of Pictet-Spengler reaction, and whose anticodon corresponds to a stop codon.
  • the suppressor tRNA can be prepared by preparing a template DNA having a sequence to serve as a template for transcription by a known method and performing the transcription reaction.
  • the method of providing a nonsense mutation at a desired position of a gene is not particularly limited, and can be performed by the methods described in Non-Patent Documents 1 to 11, for example.
  • a protein having an aldehyde group can be produced by digesting a natural protein or a synthesized protein with a protease in which the N-terminus is a glycine residue.
  • a protease in which the N-terminus is a glycine residue For example, an expression vector incorporating a GST (glutathione-S-transferase) tag and a gene modified so that the downstream of the recognition site of Factor Xa is a glycine residue is transfected into E. coli or cultured cells. And recover proteins expressed in cultured cells. And the protein which has a glycine residue in N terminal can be obtained by digesting this collect
  • the modified molecule refers to a molecule in which a coupling partner is bound to the end of the modification unit.
  • the modifying unit is, for example, R 1 , R 2 of the ⁇ -arylethylamine group represented by the general formula (4) described above, R 3 and R 5 are preferably bonded.
  • the coupling partner is an aldehyde group
  • the modification unit is preferably bonded to a carbon atom of the aldehyde group.
  • the modification unit is not particularly limited, and examples thereof include amines (first, second, third, and fourth), alcohols (first, second, and third), carbonyl groups, carboxyl groups, thiol groups, and sulfoxide groups.
  • a functional group containing a functional group such as a sulfone group, a sulfonic acid, an aryl group, an allyl group, a sulfur-containing heterocycle, a nitrogen-containing heterocycle, or a condensate thereof.
  • known coenzymes, sugar chains, fatty chains, DNA, RNA, nucleosides, nucleotides, proteins, peptides, lipids, carbohydrates and derivatives thereof, or non-natural molecules can be used.
  • a fluorescent molecule a well-known molecule (liquid crystal molecule) showing liquid crystal, a substrate, fullerene, or the like
  • a molecule that can bind to a glass substrate or a resin substrate as a modification unit, and to bind a protein to these substrates via this modification unit and a coupling partner.
  • the protein can be bound to the substrate by binding the modifying molecule comprising the modifying unit and the coupling partner to the substrate first, and then binding the protein to the modifying molecule by Pictet-Spengler reaction.
  • an ethylamine group having an aromatic ring or a heteroaromatic ring at the ⁇ -position can be added as a coupling partner to the terminal of a modification unit to be introduced into a protein.
  • Examples of a method for adding an ethylamine group having an aromatic ring or heteroaromatic ring at the ⁇ -position as a coupling partner to the modification unit include tryptophan represented by the following general formula (11) or L-DOPA represented by the general formula (12). Are covalently bonded to the modifying unit by a condensation reaction. These tryptophan, L-DOPA, etc. can use a commercial item.
  • R is a modification unit.
  • R is a modification unit.
  • an aldehyde group can be added as a coupling partner to the end of the modification unit.
  • a method for introducing an aldehyde group as a coupling partner for example, 2-aminoacetamide is converted to an aldehyde group by oxidative deamination reaction or a hydroxy group is converted by oxidation reaction.
  • a modified molecule having a coupling partner at the terminal is obtained.
  • a modification unit having a coupling partner in advance can be used as a modification molecule, or the coupling partner itself can be used as a modification molecule.
  • FIG. 1 An example of the aspect of the present invention is as shown in FIG.
  • horse heart myoglobin hereinafter sometimes referred to as myoglobin
  • myoglobin horse heart myoglobin
  • the aldehyde group arranged at the N-terminus of myoglobin as a chemical handle and a tryptamine derivative (for example, tryptophan methyl ester) having indole-3-ethylamine as a coupling partner were subjected to Pictet-Spengler reaction. The case is illustrated.
  • proteins, chemical handles, and coupling partners are not limited to this combination.
  • FIG. 1 shows that myoglobin 1 having an aldehyde group at the N-terminus (formylated myoglobin 1) and tryptamine 2 having indole-3-ethylamine are converted to tryptamine-modified myoglobin 3 by the Pictet-Spengler reaction. Thereafter, oxidation may result in ⁇ -carboline-modified myoglobin 4.
  • a function as a fluorescent group can be added.
  • the fact that the modified protein is not cleaved / degraded can be confirmed by SDS-PAGE separation and subsequent detection with an antibody specific to the modified protein.
  • the activity of the modified protein can be confirmed by a well-known method for the modified protein (for example, if the activity is retained, it is understood that the modified protein has the correct three-dimensional structure). Moreover, it can confirm that the activity of the introduce
  • modified protein obtained by the method for producing a modified protein of the present invention examples include those represented by the following general formula (13).
  • R 1 is a protein
  • R 5 is a hydrogen atom, an alkyl group, an alkoxy group, an amino group, or a hydroxy group
  • R 2 , R 3 , and R 4 One is the modification unit
  • the rest are R 2 is an imino group, a carbonyl group, and a carboxyl group
  • R 3 and R 4 are each independently a hydrogen atom, an alkyl group, a hydroxy group, an alkoxy group, or an amino group. is there.
  • R 1 is a protein
  • R 2 is a modification unit
  • R 3 , R 4 , and R 5 are hydrogen atoms, and are modified proteins represented by the following general formula (14).
  • the modification unit uses biotin with amide as a linker.
  • the resulting modified protein is modified with biotin.
  • R 1 is a protein
  • R 5 is a hydrogen atom, an alkyl group, an alkoxy group, an amino group, or a hydroxy group
  • R 2 , R 3 , and R 4 One is the modification unit
  • the rest are R 2 is an imino group, a carbonyl group, and a carboxyl group
  • R 3 and R 4 are each independently a hydrogen atom, an alkyl group, a hydroxy group, an alkoxy group, or an amino group. is there.
  • R 1 is a protein and R 2 to R 5 are hydrogen atoms, and is a modified protein represented by the following general formula (16).
  • the modified molecule consists of ethylamine having an aromatic ring at the ⁇ -position, and the resulting protein is modified with 6-azaindole (fluorescent group).
  • R 1 is a protein
  • R 4 and R 6 are each independently a hydrogen atom, an alkyl group, an alkoxy group, an amino group, or a hydroxy group
  • R 2 , R 3 , R 5 and R 7 are at least one of the modification units, the remaining R 2 is an imino group, a carbonyl group, or a carboxyl group
  • R 3 , R 5 , and R 7 are each independently a hydrogen atom.
  • R 1 is a protein
  • R 2 is a modification unit
  • R 3 to R 7 are hydrogen atoms, and are modified proteins represented by the following general formula (18).
  • the modification unit uses biotin with amide as a linker.
  • the resulting modified protein is modified with biotin.
  • R 1 is a protein
  • R 4 and R 6 are each independently a hydrogen atom, an alkyl group, an alkoxy group, an amino group, or a hydroxy group
  • R 2 , R 3 , R 5 and R 7 are at least one of the modification units, the remaining R 2 is an imino group, a carbonyl group, or a carboxyl group
  • R 3 , R 5 , and R 7 are each independently a hydrogen atom.
  • R 1 is a protein
  • R 2 to R 7 are hydrogen atoms, and are modified proteins represented by the following general formula (20).
  • the modifying molecule is composed of ethylamine having a heteroaromatic ring at the ⁇ -position, and the resulting protein is modified with norharman (fluorescent group).
  • R 1 is a protein
  • R 5 and R 6 are each independently a hydrogen atom, an alkyl group, an alkoxy group, an amino group, or a hydroxy group
  • R 2 , R 3 , R 4 and R 6 are at least one of the modification units, the remaining R 2 is an imino group, a carbonyl group, or a carboxyl group
  • R 3 , R 4 , and R 6 are each independently a hydrogen atom.
  • R 1 is a protein
  • R 2 is a modification unit
  • R 5 is a hydroxy group
  • R 3 , R 4 , R 6 , and R 7 are hydrogen atoms.
  • (22) is a modified protein.
  • the modification unit uses biotin with amide as a linker.
  • the resulting modified protein is modified with biotin.
  • R 1 is a protein
  • R 5 and R 6 are each independently a hydrogen atom, an alkyl group, an alkoxy group, an amino group, or a hydroxy group
  • R 2 , R 3 , R 4 and R 6 are at least one of the modification units, the remaining R 2 is an imino group, a carbonyl group, or a carboxyl group
  • R 3 , R 4 , and R 6 are each independently a hydrogen atom.
  • R 1 is a protein
  • R 2 to R 7 are hydrogen atoms, and are modified proteins represented by the following general formula (24).
  • the modified molecule is composed of ethylamine having an aromatic ring at the ⁇ -position, and the resulting modified protein is modified with isoquinoline (fluorescence quenching group).
  • modified proteins In addition to the modified proteins exemplified above, various types as shown below can be used as modified molecules, and application examples as shown below can be considered.
  • a modified protein obtained by binding a fluorescent molecule such as fluorescein, Alexa Fluor, or Bodypi (BODIPY) via a coupling partner is preferably used for analyzing the behavior of the protein.
  • fluorescent molecules such as fluorescein, Alexa Fluor, or Bodypi (BODIPY)
  • BODIPY Bodypi
  • the method of the present invention can introduce fluorescent molecules in a position-specific manner for proteins. Therefore, it can be selectively introduced at a location that does not affect the activity of the protein. In addition, steric hindrance that inhibits protein function hardly occurs. Therefore, more accurate analysis of protein behavior is possible.
  • FIG. 2 is a diagram showing an example of a protein into which a fluorescent molecule is introduced.
  • Fluorescein-modified myoglobin 6 into which fluorescein has been introduced is obtained by carrying out a Pictet-Spengler reaction between formylated myoglobin 1 and modified molecule 5 containing fluorescein.
  • a fluorescent group is introduced into the unknown function protein to obtain a labeled protein. This is made to exist in a cell with a cDNA library, and FRET (fluorescence resonance energy transfer) is measured.
  • FRET fluorescence resonance energy transfer
  • the protein expressed from the library or its effector protein may interact with the labeled protein in the cells in which the change in the fluorescence property is detected.
  • the fluorescent group fluorescein, alexafluoro, body pie, rhodamine, harmine and the like can be used.
  • FIG. 3 is a diagram showing an example of a protein into which a fluorescent group has been introduced.
  • FIG. 4 is a diagram showing an example of a protein into which liquid crystal molecules are introduced.
  • MBBA-modified myoglobin 10 into which MBBA 9 has been introduced is obtained by performing a Pictet-Spengler reaction between formylated myoglobin 1 and a modified molecule 9 containing methoxybenzylidene p-butyl aniline (MBBA) as a liquid crystal molecule. Is obtained.
  • FIG. 5 is a diagram showing an example of a protein having a bromine atom introduced as a heavy atom.
  • the in-vivo system can be reconfigured on the chip.
  • the site of protein fixation to a chip can be performed site-specifically, and protein orientation can be controlled.
  • Such a protein chip is useful for searching for a ligand.
  • Drug delivery system A drug that binds to a substance that is localized at a pathogenic site and a drug are bound by the method of the present invention, and the drug can be administered to localize the drug at a desired pathogenic site. . Therefore, the medication effect can be improved.
  • the photoaffinity labeled probe is a technique widely used for identification of a target protein which is a physiologically active substance. By introducing ⁇ -ketoaldehyde into the probe, photolabeling, and then using the present invention, it becomes possible to isolate or detect only the labeled protein.
  • a modified protein By using a protein modification kit to which the method for producing a modified protein of the present invention is applied, a modified protein can be obtained more easily.
  • a protein modification kit is roughly composed of pyridoxal-5-phosphate and a ⁇ -arylethylamine group-containing modified molecule.
  • a modified protein is obtained by mixing pyridoxal-5-phosphate and a ⁇ -arylethylamine group-containing modified molecule with the protein to be modified and reacting at 24 ° C. or higher and 37 ° C. or lower, for example, overnight.
  • Example 1 (1) Preparation of ⁇ -ketoaldehyde-ized myoglobin According to Non-Patent Document 24, myoglobin was dissolved in a phosphate buffer (25 mM, pH 6.5) to give a 100 ⁇ M solution. An equal amount of pyridoxal-5-phosphate / phosphate buffer solution was added to this solution and incubated at 37 ° C. for 24 hours. The myoglobin solution in which the N-terminal was aldehyded by the reaction was purified by buffer exchange using ultrafiltration by centrifugation at 12,000 rpm.
  • a phosphate buffer 25 mM, pH 6.5
  • reaction solution was distilled off under reduced pressure using an evaporator.
  • the residue was dissolved in 2.0 ml DMF, 55 mg (Boc) 2 Tryptophan 14, 5.5 mg HOBt, 77 mg EDC and 200 ⁇ l DIEA were added to the solution and stirred at room temperature for 18 hours.
  • the reaction solution was azeotroped with toluene, and the solvent was distilled off under reduced pressure.
  • the two layers were partitioned between dichloromethane and water, and the organic layer was dried over magnesium sulfate and then distilled off under reduced pressure.
  • composition of the reaction system is as follows. 2.0 mg / ml protein ( ⁇ -ketoaldehyde horse horse myoglobin 1), 10 mM modified molecule 16 prepared above and 100OmM buffer (sodium phosphate, pH 6.5). These reagents were mixed and then incubated at 37 degrees for 18 hours to obtain the product. As shown in FIG. 7, the obtained product is considered to be biotin-modified myoglobin 17 modified with biotin.
  • Example 1 and the comparative example were immediately desalted by gel filtration, separated by SDS-PAGE, and detected by cyprotangerin staining and Western blotting.
  • the result is shown in FIG.
  • lane 1 is the protein migrated in Comparative Example 1
  • lane 2 is the protein migrated in Example 1
  • lane 3 is the one that migrates only myoglobin
  • lane 4 is biotinylated Only the detection marker unit 2 is electrophoresed.
  • the image shown in the upper part of FIG. 8 is the result of cyprotangerin staining
  • the image shown in the lower part is the result of Western blotting using an anti-biotin antibody. From the results in the upper part of FIG.
  • Example 8 it was found that the product of Example 1 produced a single 17 kDa band on the SDS polyacrylamide gel, and thus was not subjected to oxidative degradation. Furthermore, from the results shown in the upper and lower parts of FIG. 8, it was concluded that this band is a modified protein 3 in which biotin is coupled to myoglobin since it gives a positive signal even if it is detected by a well-known detection method for biotin. . From FIG. 8, in the product of the comparative example, the band detected by cyprotangerin staining did not give a positive signal even when detected by the detection method for biotin. Therefore, it was considered that the modification was inhibited.
  • ⁇ -ketoaldehyde-ized myoglobin (1)
  • horse heart myoglobin was dissolved in 25 mM phosphate buffer (pH 6.5) to give a 100 ⁇ M solution. Then, an equal amount of pyridoxal-5-phosphate / phosphate buffer solution was added to this solution and incubated at 37 ° C. for 24 hours.
  • the myoglobin solution in which the N terminus was aldehyded by the reaction was purified by buffer exchange using ultrafiltration by centrifugation at 12,000 rpm.
  • the product obtained above was subjected to a desalting operation and then measured using mass spectrometry (MALDI-TOF MS, ESI-TOF MS). The result is shown in FIG. From FIG. 9, since full-length ion peaks corresponding to tryptamine-modified myoglobin and tryptophan methyl ester-modified myoglobin were detected, the above products were tryptamine-modified myoglobin shown in FIG. 10A and tryptophan methyl ester-modified myoglobin shown in FIG. 10B. It was confirmed that the modification of myoglobin was performed. Further, from the relative intensity shown in FIG. 9, it is estimated that about 1/3 of myoglobin was labeled.
  • FIGS. FIG. 12 shows the UV measurement results
  • FIG. 13 shows the CD measurement results. From FIG. 12, since the absorption peak intensity around 280 nm derived from the indole skeleton was increased, it was confirmed that the indole skeleton was imparted by the modification. Further, no change was observed in the absorption peak derived from hemin near 400 nm even after modification. From FIG. 13, no difference was observed in the absorption peak derived from ⁇ -helix between wild-type myoglobin and modified myoglobin. From the above, it was suggested that the modified myoglobin was not denatured.
  • the present invention can be applied to adding various modifying molecules to proteins.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

Disclosed is a method for producing a modified protein. In the method, a Pictet-Spengler reaction is carried out between a protein containing an ethylamine group having an aromatic ring or a heteroaromatic ring at β-position and a modification molecule having an aldehyde group at the terminal of a modification unit therein, between a protein having an aldehyde group and a modification molecule containing, at the terminal of a modification unit therein, an ethylamine group having an aromatic ring or a heteroaromatic ring at β-position, or between a protein having an aldehyde group and a modification molecule comprising ethylamine having an aromatic ring or a heteroaromatic ring at β-position under weakly acidic to weakly basic conditions, thereby modifying the protein with the modification molecule which has been ring-opened.

Description

修飾タンパク質の製造方法とこの製造方法で得られる修飾タンパク質及びタンパク質修飾キットMethod for producing modified protein, modified protein obtained by this production method, and protein modification kit
 本発明は、修飾タンパク質の製造法に係り、より詳しくは、タンパク質の分解や変性の虞を抑えつつ、位置特異的にタンパク質を修飾することが可能な修飾タンパク質の製造方法とこの製造方法で得られた修飾タンパク質、及びこの修飾タンパク質を得るためのキットに関する。
 本願は、2008年6月13日に、日本国に出願された特願2008-155994号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a method for producing a modified protein. More specifically, the present invention relates to a method for producing a modified protein capable of modifying a protein in a position-specific manner while suppressing the risk of protein degradation and denaturation, and the production method. And a kit for obtaining the modified protein.
This application claims priority based on Japanese Patent Application No. 2008-155994 filed in Japan on June 13, 2008, the contents of which are incorporated herein by reference.
 現在、今までにない有用な性質をもつタンパク質をデザインし作製するうえで、人為的に所望の修飾分子をタンパク質に導入した修飾タンパク質が注目されている。この所望の修飾分子をタンパク質に導入する方法としては、タンパク質翻訳系を利用した非天然型アミノ酸の導入やde novo(デノボ)化学合成等が挙げられる。しかしながら、これらの方法ではそれぞれに以下に挙げる限界を有する。 Currently, in designing and producing a protein having an unprecedented useful property, a modified protein in which a desired modified molecule is artificially introduced into the protein is attracting attention. Examples of a method for introducing the desired modified molecule into a protein include introduction of an unnatural amino acid using a protein translation system and de novo chemical synthesis. However, each of these methods has the following limitations.
 タンパク質生合成で非天然型アミノ酸を導入する方法としては、変異アミノアシルtRNA合成酵素と;前記変異アミノアシルtRNA合成酵素の存在下で、非天然型アミノ酸と結合可能なサプレッサーtRNAと;所望の位置にナンセンス変異を受けた遺伝子と;を用いて、非天然型アミノ酸を含んだタンパク質を発現させる方法が知られている(例えば、非特許文献1~11参照)。この方法は、非天然型アミノ酸の導入位置の特異性が高いという点で優れた方法である。
 ところがこの方法では、タンパク質合成に関わる生体分子の基質特異性の改変又はアミノ酸の化学構造の多様性に依存する。そのため、導入できる非天然型アミノ酸の種類は、自ら制約を受ける。つまり、この方法では、多様性の限界を超えた構造を有する非天然型アミノ酸は、導入できない。また、仮に、本来のアミノ酸と比べて、性質・大きさが著しく異なった非天然型アミノ酸が導入できたとしても、この非天然型アミノ酸が存在することにより、翻訳段階におけるタンパク質の正常なフォールディングを阻害する可能性も否定できない。
Non-natural amino acids can be introduced in protein biosynthesis by a mutant aminoacyl tRNA synthetase; a suppressor tRNA capable of binding to the non-natural amino acid in the presence of the mutant aminoacyl tRNA synthetase; and nonsense at a desired position. There is known a method of expressing a protein containing an unnatural amino acid using a mutated gene; and the like (see, for example, Non-Patent Documents 1 to 11). This method is an excellent method in that the specificity of the introduction position of the unnatural amino acid is high.
However, this method depends on the modification of the substrate specificity of biomolecules involved in protein synthesis or the diversity of chemical structures of amino acids. Therefore, the types of unnatural amino acids that can be introduced are restricted by themselves. That is, this method cannot introduce non-natural amino acids having a structure exceeding the limit of diversity. In addition, even if an unnatural amino acid with significantly different properties and sizes compared to the original amino acid can be introduced, the presence of this unnatural amino acid prevents normal folding of the protein at the translation stage. The possibility of obstructing cannot be denied.
 他の一例としてde novo化学合成が挙げられるが、この方法ではアミノ酸100残基以上のタンパク質の合成は難しく、また、タンパク質が正しくフォールディングされるという保証はない。 Another example is de novo chemical synthesis, but in this method, it is difficult to synthesize a protein having 100 or more amino acids, and there is no guarantee that the protein will be folded correctly.
 他の一例として、タンパク質を化学的修飾により修飾する方法も知られている。しかしながら、タンパク質を修飾する際に用いる化学反応によっては、化学的官能基を導入する位置を特定できないという問題がある。例えば、タンパク質中のアミノ基の修飾を化学的修飾法で行なうと、N末端とすべてのリジン残基が修飾を受けることになる。 As another example, a method of modifying a protein by chemical modification is also known. However, there is a problem that the position at which the chemical functional group is introduced cannot be specified depending on the chemical reaction used when modifying the protein. For example, when an amino group in a protein is modified by a chemical modification method, the N-terminus and all lysine residues are modified.
 更に、タンパク質に非天然型アミノ酸を導入した後、化学的修飾を行なう方法(翻訳後修飾法)も試みられている。非特許文献12には、アジドホモアラニンを含有するタンパク質と、ホスフィン試薬とスタウジンガーライゲーション(Staudinger ligation)とを用いて反応させる方法が記載されている。しかしながら、アジドが分解して生じたニトレンが、タンパク質のリジンのアミノ基と反応してしまう。同様に、タンパク質側にケト基を導入し、このケト基とアミン又はヒドラジッドを含む機能性分子とを反応させる方法も知られている(非特許文献13及び14参照)。しかし、ヒドラゾン化やオキシム化は多少の安定性はあるものの、少しずつ加水分解が進行してしまう。また、タンパク質側にジエン基を導入し、ディールスアルダー(Diels-Alder)反応によりオレフィン試薬を導入する方法も報告されている(非特許文献15参照)。しかし、この方法ではタンパク質への部位特異的なジエンの導入が難しい上、システインのチオールと副反応が進行してしまう。 Furthermore, a method of performing chemical modification after introducing an unnatural amino acid into a protein (post-translational modification method) has also been attempted. Non-Patent Document 12 describes a method of reacting using a protein containing azidohomoalanine, a phosphine reagent, and Staudinger ligation. However, nitrene produced by the decomposition of azide reacts with the amino group of protein lysine. Similarly, a method of introducing a keto group on the protein side and reacting this keto group with a functional molecule containing an amine or hydrazide is also known (see Non-Patent Documents 13 and 14). However, although hydrazone formation and oximation are somewhat stable, hydrolysis proceeds little by little. In addition, a method has been reported in which a diene group is introduced on the protein side and an olefin reagent is introduced by a Diels-Alder reaction (see Non-Patent Document 15). However, in this method, it is difficult to introduce site-specific dienes into proteins, and side reactions with cysteine thiols proceed.
 また、遷移金属触媒を用いた化学反応により、タンパク質を化学修飾する方法も報告されている(非特許文献16~18)。しかし、この方法は実験操作が煩雑である上、詳細な条件検討が必要となる。さらに金属イオンによるタンパク質の変性等のリスクが考えられる。 In addition, a method of chemically modifying a protein by a chemical reaction using a transition metal catalyst has been reported (Non-Patent Documents 16 to 18). However, this method requires complicated experimental operations and requires detailed examination of conditions. Furthermore, there is a risk of protein denaturation due to metal ions.
 一方、特異性の高い炭素-炭素結合形成反応として、ピクテ・スペングラー(Pictet-Spengler)反応が広く知られている(非特許文献19~21参照)。ピクテ・スペングラー反応は、β位に芳香環もしくはヘテロ芳香環をもつエチルアミンとアルデヒドを閉環縮合させる反応であり、複素環化合物の合成に広く用いられている。本反応は、通常有機溶媒条件で行われることが多く(非特許文献19参照)、水溶媒中でも反応が進行する。その場合、触媒として10%TFA水溶液が用いられる(非特許文献20参照)。しかし、こうした条件ではタンパク質の変性を防ぐことができない。またトリプタミン等の求核性のあるインドール-3-エチルアミンは生理的条件下でも反応が進行することが記載されている(非特許文献21参照)。この場合、立体障害の低いアルデヒドを反応に用いる必要があり、タンパク質、またはタンパク質への応用は記載されていない。 On the other hand, as a carbon-carbon bond forming reaction with high specificity, the Pictet-Spengler reaction is widely known (see Non-Patent Documents 19 to 21). The Pictet-Spengler reaction is a reaction in which ethylamine having an aromatic ring or heteroaromatic ring at the β-position and an aldehyde are subjected to ring-closing condensation, and is widely used for the synthesis of heterocyclic compounds. This reaction is usually carried out under organic solvent conditions (see Non-Patent Document 19), and the reaction proceeds even in an aqueous solvent. In that case, 10% TFA aqueous solution is used as a catalyst (refer nonpatent literature 20). However, protein denaturation cannot be prevented under these conditions. It is also described that indole-3-ethylamine having a nucleophilic property such as tryptamine proceeds even under physiological conditions (see Non-Patent Document 21). In this case, it is necessary to use an aldehyde with low steric hindrance for the reaction, and no protein or protein application is described.
 このピクテ・スペングラー反応を用いたオリゴペプチドのライゲーション反応が報告されている(非特許文献22参照)。この方法は、TFA1%水溶液という強酸を用いてライゲーションを行っているため、タンパク質の変性を防ぐことができない。また、反応性の低いモノアルデヒドを利用しているため、酢酸50%水溶液では修飾反応が進行せず、温和な条件でタンパク質の修飾反応を行なえない。 A ligation reaction of oligopeptides using this Pictet-Spengler reaction has been reported (see Non-Patent Document 22). This method does not prevent protein denaturation because ligation is performed using a strong acid of 1% aqueous solution of TFA. In addition, since monoaldehyde having low reactivity is used, the modification reaction does not proceed in a 50% acetic acid aqueous solution, and the protein modification reaction cannot be performed under mild conditions.
 一方、タンパク質を部位特異的にアルデヒド化する方法が報告されている(非特許文献23、24参照)。前者(非特許文献23)の方法では特定の一次配列を含んだタンパク質を発現させ、そのシステイン残基の側鎖を酵素酸化することでアルデヒドを調製する。しかし、反応性の高い活性化アルデヒドは調製できず、また水溶媒中で不安定なヒドラゾン化、オキシム化しか行っていない。一方、後者(非特許文献24)はピリドキサール-5-リン酸を用いた酸化的脱アミノ化反応により、活性化されたα-ケトアルデヒドを調製できる。しかし、水溶媒中で不安定なオキシム化を行っているのみであり、ピクテ・スペングラー反応型の修飾反応への応用は記載されていない。
Koideら、プロシーディングス・オブ・ザ・ナショナル・アカデミー・オブ・サイエンス(Proceedings of the National Academy of Sciences)、 USA、第85巻、1988年、p.6237-6241 Norenら、サイエンス(Science)、 第244巻、1989年、p.182-8 Wangら、サイエンス(Science)、第292巻、2001年、p.498-500 Chinら、ジャーナル・オブ・アメリカン・ケミカル・ソサエティ(Journal of American Chemical Society)、第124巻、2002年、p.9026-9027 Chinら、プロシーディングス・オブ・ザ・ナショナル・アカデミー・オブ・サイエンス(Proceedings of the National Academy of Sciences)、 USA、第99巻、2002年、p.11020-11024 Furter、プロテイン・サイエンス(Protein Sci.)、第7巻、1998年、p.419-426 Wangら、ジャーナル・オブ・アメリカン・ケミカル・ソサエティ(Journal of American Chemical Society)、第124巻、2002年、p.1836-1837 Santoroら、ネイチャー・バイオテクノロジー(Nature Biotechnology)、第20巻、2002年、p.1044-1048 Kigaら、プロシーディングス・オブ・ザ・ナショナル・アカデミー・オブ・サイエンス(Proceedings of the National Academy of Sciences)、 USA、第99巻、2002年、p.9715-9723 Sakamotoら、ヌクレイック・アシッズ・リサーチ(Nucleic Acids Res.)、第30巻、2002年、p.4692-4699 Kirschenbaumら、ケムバイオケム(ChemBioChem) 2002、No.02-03、235-237 Kiickら、プロシーディングス・オブ・ザ・ナショナル・アカデミー・オブ・サイエンス(Proceedings of the National Academy of Sciences)、 USA、第99巻、2002年、p.19-24 Dattaら、ジャーナル・オブ・アメリカン・ケミカル・ソサエティ(Journal of American Chemical Society)、第124巻、2002年、p.5652-5653 Liuら、ジャーナル・オブ・アメリカン・ケミカル・ソサエティ(Journal of American Chemical Society)、第125巻、2003年、p.1702-1703 Araujoら、アンゲワンテ・ケミー・インターナショナル・エディション(Angewandte Chemie International Edition)、第45巻、2006年、p.296-301 Kodamaら、ケムバイオケム(ChemBioChem)、 第7巻、2006年、p.134-139 Kodamaら、ケムバイオケム(ChemBioChem)、 第8巻、2007年、p.232-238 McFarlandら、ジャーナル・オブ・アメリカン・ケミカル・ソサエティ(Journal of American Chemical Society)、第127巻、2005年、p.13490-13491 Eric ら、ケミカル・レビュー(Chem. Rev.) 第95巻、1995年、p.1797-1842 Biswajitら、テトラヒドロン・レターズ( Tetrahedron Letters)第48巻、2007年、p.1379-1383 Whaleyら、オーガニック・リアクション(Organic Reaction)、第6巻、1951年、p.151-190 Liら、テトラヒドロン・レターズ(Tetrahedron Letters)、第41巻、2000年、p.4069-4073 Carricoら、ネイチャー・ケミカル・バイオロジー(Nat. Chem.Biol.)、第3巻、2007年p.321-322 Gilmoreら、アンゲバンテ・ケミー・インターナショナル・エディション(Angew. Chem. Int. Ed.)、第45巻、2006年 p.5307-5311
On the other hand, methods for site-specific aldehyde formation of proteins have been reported (see Non-Patent Documents 23 and 24). In the former method (Non-Patent Document 23), a protein containing a specific primary sequence is expressed, and an aldehyde is prepared by enzymatic oxidation of the side chain of the cysteine residue. However, a highly reactive activated aldehyde cannot be prepared, and only hydrazone formation and oxime formation which are unstable in an aqueous solvent are performed. On the other hand, the latter (Non-patent Document 24) can prepare activated α-ketoaldehyde by oxidative deamination reaction using pyridoxal-5-phosphate. However, only unstable oximation is carried out in an aqueous solvent, and no application to the Picte-Spengler reaction type modification reaction is described.
Koide et al., Proceedings of the National Academy of Sciences, USA, 85, 1988, p. 6237-6241 Noren et al., Science, 244, 1989, p. 182-8 Wang et al., Science, 292, 2001, p. 498-500 Chin et al., Journal of American Chemical Society, vol. 124, 2002, p. 9026-9027 Chin et al., Proceedings of the National Academy of Sciences, USA, Vol. 99, 2002, p. 11020-11024 Furter, Protein Sci., Wang et al., Journal of American Chemical Society, vol. 124, 2002, p. 1836-1837 Santoro et al., Nature Biotechnology, Kiga et al., Proceedings of the National Academy of Sciences, USA, Vol. 99, 2002, p. 9715-9723 Sakamoto et al., Nucleic Acids Res., Volume 30, 2002, p. 4692-4699 Kirschenbaum et al., ChemBioChem 2002, No. 02-03, 235-237 Kiick et al., Proceedings of the National Academy of Sciences, USA, Vol. 99, 2002, p. 19-24 Datta et al., Journal of American Chemical Society, vol. 124, 2002, p. 5652-5653 Liu et al., Journal of American Chemical Society, Vol. 125, 2003, p. 1702-1703 Araujo et al., Angewandte Chemie International Edition, Volume 45, 2006, p. 296-301 Kodama et al., ChemBioChem, Kodama et al., ChemBioChem, Vol. 8, 2007, p. 232-238 McFarland et al., Journal of American Chemical Society, Vol. 127, 2005, p. 13490-13491 Eric et al., Chemical Review (Chem. Rev.), 95, 1995, p. 1797-1842 Biswajit et al., Tetrahedron Letters, 48, 2007, p. 1379-1383 Whaley et al., Organic Reaction, Vol. 6, 1951, p. 151-190 Li et al., Tetrahedron Letters, 41, 2000, p. 4069-4073 Carrico et al., Nature Chemical Biology, Gilmore et al., Angewante Chemie International Edition (Angew. Chem. Int. Ed.), 45, 2006 p. 5307-5311
 本発明は上記事情に鑑みてなされたものであって、強酸によるタンパク質の分解や変性が生じる反応条件ではなく、より温和な条件で、タンパク質内の位置特異的に、所望の修飾分子を導入することが可能な修飾タンパク質の製造方法の提供を目的とする。 The present invention has been made in view of the above circumstances, and introduces a desired modified molecule in a position-specific manner within a protein under milder conditions rather than reaction conditions that cause degradation or denaturation of a protein by a strong acid. An object of the present invention is to provide a method for producing a modified protein.
 本発明は、上記課題を解決して係る目的を達成するために以下の手段を採用した。
 (1)本発明の修飾タンパク質の製造方法は、β位に芳香環もしくはヘテロ芳香環をもつエチルアミン基を含有したタンパク質と、アルデヒド基を修飾ユニットの末端に有した修飾分子とを、アルデヒド基を含有したタンパク質と、β位に芳香環もしくはヘテロ芳香環をもつエチルアミン基を修飾ユニットの末端に有した修飾分子とを、あるいは、アルデヒド基を含有したタンパク質と、β位に芳香環もしくはヘテロ芳香環をもつエチルアミンからなる修飾分子とを、弱酸性~弱塩基性条件下でピクテ・スペングラー反応させ、前記タンパク質を閉環された前記修飾分子で修飾する。
 (2)前記芳香環もしくはヘテロ芳香環が、電子供与性の官能基を有するのが好ましい。
 (3)前記電子供与性の官能基が、アルキル基、アルコキシ基、アミノ基及びヒドロキシ基からなる群から選ばれる1以上であるのが好ましい。
 (4)前記エチルアミン基のアミン基に隣接する炭素原子が、電子吸引性の官能基を有しているのが好ましい。
 (5)前記アルデヒド基に隣接する炭素原子が、電子吸引性の官能基を有しているのが好ましい。
 (6)前記電子吸引性の官能基がイミノ基、カルボニル基及びカルボキシル基からなる群から選ばれる1以上であるのが好ましい。
 (7)前記芳香環もしくはヘテロ芳香環をもつエチルアミン基は、トリプタミン骨格又はドーパミン骨格をなし、前記アルデヒド基は、αーケトアルデヒドをなしているのが好ましい。
 (8)前記アルデヒド基を含有したタンパク質は、ピリドキサール-5-リン酸存在下で、酸化的脱アミノ化反応によりアルデヒド基が導入され得られるのが好ましい。
 (9)前記タンパク質は、β位に芳香環もしくはヘテロ芳香環をもつエチルアミン基またはアルデヒド基を含有したアミノ酸と結合したサプレッサーtRNAと、このサプレッサーtRNAのコドンに対応するコドンを有するようにナンセンス変異を施した遺伝子とを用いた合成系により合成されたタンパク質であるのが好ましい。
 (10)前記β位に芳香環もしくはヘテロ芳香環をもつエチルアミン基を含有したタンパク質が、N末端にトリプトファンを有したタンパク質であるのが好ましい。
The present invention employs the following means in order to solve the above problems and achieve the object.
(1) The method for producing a modified protein of the present invention comprises a protein containing an ethylamine group having an aromatic ring or a heteroaromatic ring at the β-position, and a modified molecule having an aldehyde group at the end of the modifying unit. Containing protein and a modified molecule having an ethylamine group having an aromatic ring or heteroaromatic ring at the β-position at the end of the modifying unit, or a protein containing an aldehyde group and an aromatic ring or heteroaromatic ring at the β-position A modified molecule composed of ethylamine having a Pichite-Spengler reaction under a weakly acidic to weakly basic condition to modify the protein with the modified molecule closed.
(2) The aromatic ring or heteroaromatic ring preferably has an electron donating functional group.
(3) It is preferable that the electron-donating functional group is one or more selected from the group consisting of an alkyl group, an alkoxy group, an amino group, and a hydroxy group.
(4) It is preferable that the carbon atom adjacent to the amine group of the ethylamine group has an electron-withdrawing functional group.
(5) It is preferable that the carbon atom adjacent to the aldehyde group has an electron-withdrawing functional group.
(6) It is preferable that the electron-withdrawing functional group is one or more selected from the group consisting of an imino group, a carbonyl group and a carboxyl group.
(7) The ethylamine group having an aromatic ring or a heteroaromatic ring preferably has a tryptamine skeleton or a dopamine skeleton, and the aldehyde group preferably has an α-ketoaldehyde.
(8) Preferably, the protein containing an aldehyde group can be introduced with an aldehyde group by oxidative deamination reaction in the presence of pyridoxal-5-phosphate.
(9) The protein has a nonsense mutation so that it has a suppressor tRNA bound to an amino acid containing an ethylamine group or an aldehyde group having an aromatic ring or a heteroaromatic ring at the β-position, and a codon corresponding to the codon of the suppressor tRNA. It is preferably a protein synthesized by a synthesis system using the applied gene.
(10) The protein containing an ethylamine group having an aromatic ring or heteroaromatic ring at the β-position is preferably a protein having tryptophan at the N-terminus.
 (11)本発明の修飾タンパク質は、上記(1)に記載の修飾タンパク質の製造方法で得られる。
 (12)前記タンパク質は、下記一般式(1)~(6)のいずれかで示されるのが好ましい。
(11) The modified protein of the present invention can be obtained by the method for producing a modified protein described in (1) above.
(12) The protein is preferably represented by any one of the following general formulas (1) to (6).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 上記一般式(1)において、Rはタンパク質であり、Rは水素原子、アルキル基、アルコキシ基、アミノ基、又はヒドロキシ基であり、R、R、Rのうち、少なくともいずれか1つは前記修飾ユニットであり、残りはRがイミノ基、カルボニル基、カルボキシル基であり、R、Rがそれぞれ独立に、水素原子、アルキル基、ヒドロキシ基、アルコキシ基、アミノ基である。 In the general formula (1), R 1 is a protein, R 5 is a hydrogen atom, an alkyl group, an alkoxy group, an amino group, or a hydroxy group, and at least one of R 2 , R 3 , and R 4 One is the modification unit, the rest are R 2 is an imino group, a carbonyl group, and a carboxyl group, and R 3 and R 4 are each independently a hydrogen atom, an alkyl group, a hydroxy group, an alkoxy group, or an amino group. is there.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 上記一般式(2)において、Rはタンパク質であり、Rは水素原子、アルキル基、アルコキシ基、アミノ基、又はヒドロキシ基であり、R、R、Rのうち、少なくともいずれか1つは前記修飾ユニットであり、残りはRがイミノ基、カルボニル基、カルボキシル基であり、R、Rがそれぞれ独立に、水素原子、アルキル基、ヒドロキシ基、アルコキシ基、アミノ基である。 In the general formula (2), R 1 is a protein, R 5 is a hydrogen atom, an alkyl group, an alkoxy group, an amino group, or a hydroxy group, and at least one of R 2 , R 3 , and R 4 One is the modification unit, the rest are R 2 is an imino group, a carbonyl group, and a carboxyl group, and R 3 and R 4 are each independently a hydrogen atom, an alkyl group, a hydroxy group, an alkoxy group, or an amino group. is there.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 上記一般式(3)において、Rはタンパク質であり、R、Rがそれぞれ独立には水素原子、アルキル基、アルコキシ基、アミノ基、又はヒドロキシ基であり、R、R、R、Rのうち、少なくともいずれか1つは前記修飾ユニットであり、残りはRがイミノ基、カルボニル基、カルボキシル基であり、R、R、Rがそれぞれ独立に、水素原子、アルキル基、ヒドロキシ基、アルコキシ基、アミノ基である。 In the general formula (3), R 1 is a protein, R 4 and R 6 are each independently a hydrogen atom, an alkyl group, an alkoxy group, an amino group, or a hydroxy group, and R 2 , R 3 , R 5 and R 7 are at least one of the modification units, the remaining R 2 is an imino group, a carbonyl group, or a carboxyl group, and R 3 , R 5 , and R 7 are each independently a hydrogen atom. An alkyl group, a hydroxy group, an alkoxy group, and an amino group.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 上記一般式(4)において、Rはタンパク質であり、R、Rがそれぞれ独立には水素原子、アルキル基、アルコキシ基、アミノ基、又はヒドロキシ基であり、R、R、R、Rのうち、少なくともいずれか1つは前記修飾ユニットであり、残りはRがイミノ基、カルボニル基、カルボキシル基であり、R、R、Rがそれぞれ独立に、水素原子、アルキル基、ヒドロキシ基、アルコキシ基、アミノ基である。 In the general formula (4), R 1 is a protein, R 4 and R 6 are each independently a hydrogen atom, an alkyl group, an alkoxy group, an amino group, or a hydroxy group, and R 2 , R 3 , R 5 and R 7 are at least one of the modification units, the remaining R 2 is an imino group, a carbonyl group, or a carboxyl group, and R 3 , R 5 , and R 7 are each independently a hydrogen atom. An alkyl group, a hydroxy group, an alkoxy group, and an amino group.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 上記一般式(5)において、Rはタンパク質であり、R、Rがそれぞれ独立には水素原子、アルキル基、アルコキシ基、アミノ基、又はヒドロキシ基であり、R、R、R、Rのうち、少なくともいずれか1つは前記修飾ユニットであり、残りはRがイミノ基、カルボニル基、カルボキシル基であり、R、R、Rがそれぞれ独立に、水素原子、アルキル基、ヒドロキシ基、アルコキシ基、アミノ基である。 In the general formula (5), R 1 is a protein, R 5 and R 6 are each independently a hydrogen atom, an alkyl group, an alkoxy group, an amino group, or a hydroxy group, and R 2 , R 3 , R 4 and R 6 are at least one of the modification units, the remaining R 2 is an imino group, a carbonyl group, or a carboxyl group, and R 3 , R 4 , and R 6 are each independently a hydrogen atom. An alkyl group, a hydroxy group, an alkoxy group, and an amino group.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 上記一般式(6)において、Rはタンパク質であり、R、Rがそれぞれ独立には水素原子、アルキル基、アルコキシ基、アミノ基、又はヒドロキシ基であり、R、R、R、Rのうち、少なくともいずれか1つは前記修飾ユニットであり、残りはRがイミノ基、カルボニル基、カルボキシル基であり、R、R、Rがそれぞれ独立に、水素原子、アルキル基、ヒドロキシ基、アルコキシ基、アミノ基である。 In the general formula (6), R 1 is a protein, R 5 and R 6 are each independently a hydrogen atom, an alkyl group, an alkoxy group, an amino group, or a hydroxy group, and R 2 , R 3 , R 4 and R 6 are at least one of the modification units, the remaining R 2 is an imino group, a carbonyl group, or a carboxyl group, and R 3 , R 4 , and R 6 are each independently a hydrogen atom. An alkyl group, a hydroxy group, an alkoxy group, and an amino group.
 本発明のタンパク質修飾キットは、修飾タンパク質を製造するためのタンパク質修飾キットであって、ピリドキサール-5-リン酸と、β位に芳香環もしくはヘテロ芳香環をもつエチルアミン基を含有した修飾分子とを有する。 The protein modification kit of the present invention is a protein modification kit for producing a modified protein, comprising pyridoxal-5-phosphate and a modified molecule containing an ethylamine group having an aromatic ring or a heteroaromatic ring at the β-position. Have.
 上記(1)に記載の修飾タンパク質の製造方法によれば、タンパク質の翻訳後修飾における部位特異的な制御が可能となる。本方法は様々な修飾分子をタンパク質に導入可能であることから、修飾タンパク質に多様性を持たすことができる。また、本方法は、副生成物がほとんど生成せず、基質が低濃度でも修飾可能であり、高い修飾効率を誇る。また、触媒が必要ないことから、in vivoでの実験も可能である。更に、タンパク質の修飾操作が簡便であり、安価な試薬で修飾が可能である上、大掛かりな設備を必要としない。そのため、修飾タンパク質の大量生産系やハイスループット系の構築を可能にする。
 新しい修飾法によりタンパク質の機能的特性を広げることは、将来、機能的プロテオミクス及びナノテクノロジーを初めとする多くの分野に寄与するものである。また、本方法は、デザイン化された修飾タンパク質の生産を可能とする。
According to the method for producing a modified protein described in (1) above, site-specific control in post-translational modification of a protein becomes possible. Since this method can introduce various modified molecules into proteins, the modified proteins can have diversity. In addition, this method produces little by-products, can be modified even at low concentrations of the substrate, and boasts high modification efficiency. In addition, since no catalyst is required, in vivo experiments are possible. Furthermore, the protein modification operation is simple, the modification is possible with an inexpensive reagent, and no large-scale equipment is required. Therefore, it is possible to construct a mass production system or a high-throughput system for the modified protein.
Extending the functional properties of proteins through new modification methods will contribute to many areas in the future, including functional proteomics and nanotechnology. The method also enables the production of designed modified proteins.
図1は、本発明の修飾タンパク質の製造方法の一例を模式的に示した図である。FIG. 1 is a diagram schematically showing an example of a method for producing a modified protein of the present invention. 図2は、蛍光分子が導入された修飾タンパク質の一例を模式的に示した図である。FIG. 2 is a diagram schematically showing an example of a modified protein into which a fluorescent molecule has been introduced. 図3は、蛍光基が導入された修飾タンパク質の一例を模式的に示した図である。FIG. 3 is a diagram schematically showing an example of a modified protein into which a fluorescent group has been introduced. 図4は、液晶分子が導入された修飾タンパク質の一例を模式的に示した図である。FIG. 4 is a diagram schematically showing an example of a modified protein into which liquid crystal molecules are introduced. 図5は、重原子が導入された修飾タンパク質の一例を模式的に示した図である。FIG. 5 is a diagram schematically showing an example of a modified protein having a heavy atom introduced therein. 図6は、実施例1に用いた修飾分子の製造工程を模式的に示した図である。FIG. 6 is a diagram schematically showing the production process of the modifying molecule used in Example 1. 図7は、実施例1における修飾タンパク質の製造工程を模式的に示した図である。FIG. 7 is a diagram schematically showing the production process of the modified protein in Example 1. 図8は、実施例1及び比較例の修飾タンパク質において、シプロタンジェリン染色及びウェスタンブロッティングの結果を示す図である。FIG. 8 is a diagram showing the results of cyprotangerin staining and Western blotting in the modified proteins of Example 1 and Comparative Example. 図9は、実施例2の修飾タンパク質において、質量分析法を用いた測定結果を示す図である。FIG. 9 is a diagram showing measurement results using mass spectrometry for the modified protein of Example 2. 図10Aは、実施例2で生成された修飾タンパク質を示した図である。FIG. 10A is a diagram showing the modified protein produced in Example 2. 図10Bは、実施例2で生成された修飾タンパク質を示した図である。FIG. 10B is a diagram showing the modified protein produced in Example 2. 図11は、実施例2の修飾タンパク質において、MS/MS解析の結果を示す図である。FIG. 11 is a diagram showing the results of MS / MS analysis in the modified protein of Example 2. 図12は、実施例2の修飾タンパク質において、UV測定の結果を示す図である。FIG. 12 shows the results of UV measurement for the modified protein of Example 2. 図13は、実施例2の修飾タンパク質において、CD測定の結果を示す図である。FIG. 13 is a diagram showing the results of CD measurement for the modified protein of Example 2.
符号の説明Explanation of symbols
 1 ホルミル化ミオグロビン
 2 トリプタミン
 3 トリプタミン修飾ミオグロビン
 4 β-カルボリン修飾ミオグロビン
 5 フルオレセインを含んだ修飾分子
 6 フルオレセイン修飾ミオグロビン
 7 アレクサフルオロ488を含んだ修飾分子
 8 アレクサフルオロ488修飾ミオグロビン
 9 MBBAを含んだ修飾分子
10 MBBA修飾ミオグロビン
11 臭素原子を含む修飾分子
12 重元素修飾ミオグロビン
13 ビオチン
14 トリプトファン
15 修飾分子保護体
16 修飾分子
17 ビオチン修飾ミオグロビン
DESCRIPTION OF SYMBOLS 1 Formylated myoglobin 2 Tryptamine 3 Tryptamine modified myoglobin 4 β-carboline modified myoglobin 5 Modified molecule containing fluorescein 6 Fluorescein modified myoglobin 7 Modified molecule containing Alexafluoro488 8 Modified molecule 10 containing Alexafluoro488 modified myoglobin 9 MBBA MBBA modified myoglobin 11 modified molecule 12 containing bromine atom heavy element modified myoglobin 13 biotin 14 tryptophan 15 modified molecule protector 16 modified molecule 17 biotin modified myoglobin
 本明細書において、タンパク質とは、アミノ酸がペプチド結合してなる化合物を言い、天然のタンパク質であってもよいし、人工的に合成された非天然のタンパク質であってもよい。また、タンパク質は天然の修飾体などを含むものであってもよい。このタンパク質としては、例えば、10以上のアミノ酸からなるオリゴペプチドであってもよいし、分子量が5000以上の高次構造を有するポリペプチドであってもよい。特に本明細書において、タンパク質とは、その翻訳後のフォールディングによって、独自の構造を有し、その構造により主に生体内で何らかの機能・活性を示し得るタンパク質をさすこともある。 In the present specification, protein refers to a compound in which amino acids are peptide-bonded, and may be a natural protein or an artificially synthesized non-natural protein. In addition, the protein may include a natural modification. This protein may be, for example, an oligopeptide consisting of 10 or more amino acids, or a polypeptide having a higher order structure having a molecular weight of 5000 or more. In particular, in the present specification, a protein may refer to a protein that has a unique structure due to its post-translational folding, and that can exhibit some function / activity mainly in vivo.
 本発明は、所望の化学的官能基を持つ分子をピクテ・スペングラー反応によりタンパク質に結合させ、修飾タンパク質を得る方法である。
 以下、本発明をさらに詳細に説明する。以下の説明において、タンパク質に導入しようとしている修飾分子の末端の、ピクテ・スペングラー反応に寄与する部分をカップリングパートナーと称する。また、タンパク質に導入されていて、このカップリングパートナーと特異的に反応する部分をケミカルハンドルと称する。
The present invention is a method for obtaining a modified protein by binding a molecule having a desired chemical functional group to a protein by Pictet-Spengler reaction.
Hereinafter, the present invention will be described in more detail. In the following description, the part contributing to the Pictet-Spengler reaction at the end of a modified molecule to be introduced into a protein is referred to as a coupling partner. Moreover, the part introduced into the protein and specifically reacting with the coupling partner is referred to as a chemical handle.
 本発明における修飾タンパク質の製造方法は、ケミカルハンドルを含有するタンパク質と、カップリングパートナーを含有する修飾分子とを、弱酸性~弱塩基性条件下でピクテ・スペングラー反応させ、前記タンパク質を前記修飾分子で修飾する方法である。 According to the method for producing a modified protein in the present invention, a protein containing a chemical handle and a modified molecule containing a coupling partner are subjected to a Pictet-Spengler reaction under a weakly acidic to weakly basic condition, and the protein is converted into the modified molecule. It is a method to modify with.
<ピクテ・スペングラー反応>
 本発明において、ピクテ・スペングラー反応させるとは以下の場合をいう。
 ケミカルハンドルとしてβ位に芳香環もしくはヘテロ芳香環をもつエチルアミン基が導入されたタンパク質と、修飾ユニットの末端にカップリングパートナーとしてアルデヒド基を有する修飾分子とを反応させる場合。
 ケミカルハンドルとしてアルデヒド基が導入されたタンパク質と、修飾ユニットの末端にカップリングパートナーとしてβ位に芳香環もしくはヘテロ芳香環をもつエチルアミン基を有する修飾分子とを反応させる場合。
 あるいは、ケミカルハンドルとしてアルデヒド基が導入されたタンパク質と、β位に芳香環もしくはヘテロ芳香環をもつエチルアミンからなる修飾分子とを反応させる場合。
 β位に芳香環もしくはヘテロ芳香環をもつエチルアミン基を有するタンパク質として、N末端あるいはC末端にトリプトファン残基を有するタンパク質を用いることも可能である。
<Picte Spengler reaction>
In the present invention, the Pictet-Spengler reaction refers to the following case.
When reacting a protein in which an ethylamine group having an aromatic ring or heteroaromatic ring at the β-position as a chemical handle is introduced with a modified molecule having an aldehyde group as a coupling partner at the end of the modifying unit.
When a protein having an aldehyde group introduced as a chemical handle is reacted with a modified molecule having an ethylamine group having an aromatic ring or a heteroaromatic ring at the β-position as a coupling partner at the end of the modification unit.
Alternatively, when a protein having an aldehyde group introduced as a chemical handle is reacted with a modified molecule composed of ethylamine having an aromatic or heteroaromatic ring at the β-position.
As a protein having an ethylamine group having an aromatic ring or a heteroaromatic ring at the β-position, a protein having a tryptophan residue at the N-terminus or C-terminus can also be used.
 ここで、ピクテ・スペングラー反応とは、ケミカルハンドル含有タンパク質と、カップリングパートナーを有する修飾分子との反応とが、反応後に閉環縮合を伴った炭素-炭素結合を形成する反応である。
 ピクテ・スペングラー反応は、安定なケミカルハンドルとカップリングパートナーを利用する点、閉環縮合により生じた炭素-炭素結合が安定である点、修飾反応の官能基特異性が高い点、及び室温付近で反応が進行する点で好ましい。
 ここで、閉環縮合とは、β位に芳香環もしくはヘテロ芳香環をもつエチルアミンとアルデヒドが縮合することで複素環骨格が形成されることである。この複素環骨格としては、例えば、テトラヒドロカルボリン骨格などが挙げられる。複素環骨格を形成する反応を用いると、上述したように化学的に安定な炭素-炭素結合が形成される。そのため、修飾物が化学分解されにくい。反応後、形成された複素環骨格にさらに酸化反応を行うことで、蛍光基等の機能を付加できる、という利点も有する。
Here, the Pictet-Spengler reaction is a reaction in which a reaction between a chemical handle-containing protein and a modifying molecule having a coupling partner forms a carbon-carbon bond with ring-closing condensation after the reaction.
The Pictet-Spengler reaction uses a stable chemical handle and coupling partner, has a stable carbon-carbon bond generated by ring-closing condensation, has a high functional group specificity in the modification reaction, and reacts near room temperature. It is preferable at the point which progresses.
Here, the ring-closing condensation means that a heterocyclic skeleton is formed by the condensation of ethylamine having an aromatic ring or a heteroaromatic ring at the β-position with an aldehyde. Examples of the heterocyclic skeleton include a tetrahydrocarboline skeleton. When a reaction that forms a heterocyclic skeleton is used, a chemically stable carbon-carbon bond is formed as described above. Therefore, the modified product is difficult to be chemically decomposed. After the reaction, there is also an advantage that a function such as a fluorescent group can be added by further oxidizing the formed heterocyclic skeleton.
 代表的なピクテ・スペングラー反応としては、HClやTFAなどの酸触媒存在下で、下記の一般式(7)で示すように複素環化合物が形成される化学反応である。 A typical Pictet-Spengler reaction is a chemical reaction in which a heterocyclic compound is formed as shown by the following general formula (7) in the presence of an acid catalyst such as HCl or TFA.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 一般に、ピクテ・スペングラー反応は、インドール-3-エチルアミン骨格等に代表される、β位に芳香環もしくはヘテロ芳香環をもつエチルアミン基のアミノ基と、アルデヒド基とが脱水してイミニウムカチオンが生じ、ここに分子内で芳香環がフリーデル・クラフツ型の求核付加を起こすマンニッヒ反応型の反応である。そのため、用いるタンパク質や分子によっては、有機溶媒中、強酸性条件にて加熱することによって、反応を進行させる必要がある。しかし、この条件下では、タンパク質が変性しやすい。
 そこで、タンパク質が変性しない温和な条件下でピクテ・スペングラー反応を行うと、インドール-3-エチルアミン及びモノアルデヒド基の反応性が低いため、また、タンパク質上での立体障害由来と考えられる反応性の低下から、用いるタンパク質や修飾分子によっては、タンパク質の修飾がほとんど進行しないという問題があった。
In general, the Pictet-Spengler reaction generates an iminium cation by dehydration of an amino group of an ethylamine group having an aromatic ring or a heteroaromatic ring at the β-position, represented by an indole-3-ethylamine skeleton, and the like, and an aldehyde group. This is the Mannich reaction type reaction in which the aromatic ring in the molecule causes Friedel-Crafts type nucleophilic addition. Therefore, depending on the protein or molecule to be used, it is necessary to advance the reaction by heating in an organic solvent under strongly acidic conditions. However, proteins are easily denatured under these conditions.
Therefore, when the Pictet-Spengler reaction is performed under mild conditions in which the protein is not denatured, the reactivity of indole-3-ethylamine and monoaldehyde groups is low, and the reactivity considered to be derived from steric hindrance on the protein. Due to the decrease, there is a problem that the modification of the protein hardly proceeds depending on the protein or the modifying molecule used.
 本発明者らはピクテ・スペングラー反応において、β位に芳香環もしくはヘテロ芳香環をもつエチルアミン基の骨格を最適化することで、この反応性が向上することを見出した。
 すなわち、β位に芳香環もしくはヘテロ芳香環をもつエチルアミン基の、芳香環もしくはヘテロ芳香環上に電子供与性の官能基が配されていることが好ましい。分子内求核的付加が進行しやすくなるため、タンパク質の分解又は変性を抑制できる温和な条件、例えばpH4~9、反応温度が0℃以上37℃以下といった条件で、ピクテ・スペングラー反応の反応性を向上できる。
The present inventors have found that in the Pictet-Spengler reaction, this reactivity is improved by optimizing the skeleton of an ethylamine group having an aromatic ring or a heteroaromatic ring at the β-position.
That is, it is preferable that an electron donating functional group is arranged on the aromatic ring or heteroaromatic ring of an ethylamine group having an aromatic ring or heteroaromatic ring at the β-position. Reactivity of Pictet-Spengler reaction under mild conditions that can suppress protein degradation or denaturation, such as pH 4-9, reaction temperature 0 ° C to 37 ° C Can be improved.
 電子供与性の官能基としては、アルキル基、アルコキシ基、アミノ基またはヒドロキシ基などが挙げられる。
 β位に芳香環もしくはヘテロ芳香環をもつエチルアミン基の、芳香環もしくはヘテロ芳香環上に上記の電子供与性の官能基が配されているものとしては、例えばこれら電子供与性の官能基を5位に有しているピロール-3-エチルアミン化合物、これら電子供与性の官能基を4位又は6位に有しているインドール-3-エチルアミン化合物、これら電子供与性の官能基を3位又は5位に有しているインドール-3-エチルアミン化合物などが挙げられる。
Examples of the electron-donating functional group include an alkyl group, an alkoxy group, an amino group, and a hydroxy group.
Examples of an ethylamine group having an aromatic ring or heteroaromatic ring at the β-position, and the above-mentioned electron-donating functional group arranged on the aromatic ring or heteroaromatic ring include, for example, 5 A pyrrole-3-ethylamine compound having an electron donating functional group at the 4-position or 6-position, and an electron-donating functional group at the 3-position or 5 And indole-3-ethylamine compound at the position.
 また、β位に芳香環もしくはヘテロ芳香環をもつエチルアミン基のアミン基に隣接する炭素原子が、電子吸引性の官能基を有していることが好ましい。イミニウムカチオンの電子吸引性が向上し、求核的付加が進行しやすくなる。そのため、よりピクテ・スペングラー反応の反応性を向上できる。
 電子吸引性の官能基としては、例えば、イミノ基、カルボニル基、カルボキシル基等が挙げられる。
Moreover, it is preferable that the carbon atom adjacent to the amine group of the ethylamine group having an aromatic ring or a heteroaromatic ring at the β-position has an electron-withdrawing functional group. The electron withdrawing property of the iminium cation is improved, and nucleophilic addition is facilitated. Therefore, the reactivity of the Pictet-Spengler reaction can be improved.
Examples of the electron-withdrawing functional group include an imino group, a carbonyl group, and a carboxyl group.
 この様なβ位に芳香環もしくはヘテロ芳香環をもつエチルアミン基を有した化合物の例としては、以下のものが挙げられる。例えばβ-アリールエチルアミン基を有した化合物としては、L-ドーパ(DOPA)などが挙げられる。インドール-3-エチルアミン基を有した化合物の例としては、6-ヒドロキシトリプタミン、トリプトファンメチルエステル、N末端トリプトファン誘導体などが挙げられる。 Examples of such compounds having an ethylamine group having an aromatic ring or a heteroaromatic ring at the β-position include the following. For example, examples of the compound having a β-arylethylamine group include L-dopa (DOPA). Examples of the compound having an indole-3-ethylamine group include 6-hydroxytryptamine, tryptophan methyl ester, N-terminal tryptophan derivative and the like.
 本方法に好ましい代表的なβ位に芳香環もしくはヘテロ芳香環をもつエチルアミン基の骨格を以下の一般式(8)~(10)に挙げていく。一般式(8)は、ピロール-3-エチルアミン化合物であり、一般式(9)は、インドール-3-エチルアミン化合物であり、一般式(10)は、βーアリールエチルアミン化合物である。 Typical skeletons of ethylamine groups having an aromatic ring or heteroaromatic ring at the β-position that are preferable for this method are listed in the following general formulas (8) to (10). The general formula (8) is a pyrrole-3-ethylamine compound, the general formula (9) is an indole-3-ethylamine compound, and the general formula (10) is a β-arylethylamine compound.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 一般式(8)中、Rは電子吸引性の官能基であることが好ましい。また、Rは電子供与性の官能基であることが好ましい。R、Rとしては、特に限定されるものではないが、例えばアルキル基、ヒドロキシ基、アルコキシ基、アミノ基等が挙げられる。一般式(8)に示す化合物において、R~Rにて修飾ユニットあるいはタンパク質と結合していることが好ましい。 In general formula (8), R 1 is preferably an electron-withdrawing functional group. R 4 is preferably an electron donating functional group. R 2 and R 3 are not particularly limited, and examples thereof include an alkyl group, a hydroxy group, an alkoxy group, and an amino group. In the compound represented by the general formula (8), it is preferable that R 1 to R 3 are bound to a modification unit or a protein.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 一般式(9)中、Rは電子吸引性の官能基であることが好ましい。また、R、Rは電子供与性の官能基であることが好ましい。R、R、Rとしては、特に限定されるものではないが、例えばアルキル基、ヒドロキシ基、アルコキシ基、アミノ基等が挙げられる。一般式(9)に示す化合物において、R、R、R、Rにて修飾ユニットあるいはタンパク質と結合していることが好ましい。 In general formula (9), R 1 is preferably an electron-withdrawing functional group. R 3 and R 5 are preferably electron donating functional groups. R 2 , R 4 , and R 6 are not particularly limited, and examples thereof include an alkyl group, a hydroxy group, an alkoxy group, and an amino group. In the compound represented by the general formula (9), it is preferable that R 1 , R 2 , R 4 , and R 6 are bonded to the modification unit or the protein.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 一般式(10)中、Rは電子吸引性の官能基であることが好ましい。また、R、Rは電子供与性の官能基であることが好ましい。R、R、Rとしては、特に限定されるものではないが、例えばアルキル基、ヒドロキシ基、アルコキシ基、アミノ基等が挙げられる。一般式(10)に示す化合物において、R、R、R、Rにて修飾ユニットあるいはタンパク質と結合していることが好ましい。 In general formula (10), R 1 is preferably an electron-withdrawing functional group. R 4 and R 6 are preferably electron donating functional groups. R 2 , R 3 , and R 5 are not particularly limited, and examples thereof include an alkyl group, a hydroxy group, an alkoxy group, and an amino group. In the compound represented by the general formula (10), it is preferable that R 1 , R 2 , R 3 and R 5 are bound to the modification unit or the protein.
 また、本発明者らはピクテ・ペングラー反応において、アルデヒド基を最適化することで反応性が向上することを見出した。すなわち、アルデヒド基に隣接する炭素原子が電子吸引基を有していると、ピクテ・ペングラー反応において求核的付加が進行しやすくなる。電子吸引性の官能基としては、例えば、イミノ基、カルボニル基、カルボキシル基等が挙げられる。 In addition, the present inventors have found that the reactivity is improved by optimizing the aldehyde group in the Pict-Pengler reaction. That is, when the carbon atom adjacent to the aldehyde group has an electron-withdrawing group, nucleophilic addition is likely to proceed in the Pict-Pengler reaction. Examples of the electron-withdrawing functional group include an imino group, a carbonyl group, and a carboxyl group.
 本発明においてアルデヒド基としてはいずれも使用することが可能であるが、活性化されたアルデヒドを使用することが好ましい。具体的には、例えばαーケトアルデヒド等が挙げられる。 In the present invention, any aldehyde group can be used, but it is preferable to use an activated aldehyde. Specifically, for example, α-ketoaldehyde and the like can be mentioned.
 本発明において、ピクテ・スペングラー反応を行う弱酸性から弱塩基性条件とは、具体的にはpH4.5以上pH8.5以下であり、好ましくはpH5.0以上pH6.5以下である。また、酸触媒としては、リン酸、酢酸等を用いることができる。 In the present invention, the weakly acidic to weakly basic conditions for carrying out the Pictet-Spengler reaction are specifically pH 4.5 or more and pH 8.5 or less, preferably pH 5.0 or more and pH 6.5 or less. Moreover, phosphoric acid, acetic acid, etc. can be used as an acid catalyst.
 ピクテ・スペングラー反応を行う溶媒としては、水溶媒に加え、有機反応及び錯体合成で一般的な溶媒、例えば、n-ペンタン、i-ペンタン、n-ヘキサン、n-デカン、ベンゼン、トルエン、アセトン、ジエチルエーテル、ジイソプロピルエーテル、n-ブチルメチルエーテル、t-ブチルメチルエーテル、ジ-n-ブチルエーテル、テトラヒドロフラン、ジオキサン、N-メチルピロリドン、N,N-ジメチルホルムアミド、シメチルスルホキシド、トリエチルアミン、ヘキサメチルリン酸トリアミド等の溶媒、またはこれらの混合物が挙げられる。 As a solvent for carrying out the Pictet-Spengler reaction, in addition to an aqueous solvent, a solvent commonly used in organic reactions and complex synthesis, such as n-pentane, i-pentane, n-hexane, n-decane, benzene, toluene, acetone, Diethyl ether, diisopropyl ether, n-butyl methyl ether, t-butyl methyl ether, di-n-butyl ether, tetrahydrofuran, dioxane, N-methylpyrrolidone, N, N-dimethylformamide, dimethyl sulfoxide, triethylamine, hexamethylphosphoric acid A solvent such as triamide or a mixture thereof may be mentioned.
 反応温度としては、4℃以上80℃以下、好ましくは20℃以上37℃以下の室温で行なう。 The reaction temperature is 4 ° C or higher and 80 ° C or lower, preferably 20 ° C or higher and 37 ° C or lower.
 例えば、ピクテ・スペングラー反応を用いた本発明における修飾反応系の一例を挙げると、下記の通りである。1μg/ml~2000μg/ml、好ましくは約1000μg/mlのケミカルハンドルを持つタンパク質と、25μM~100mM、好ましくは約100mMのカップリングパートナーを末端に有する分子とを、25mM~400mM、好ましくは約100mM、pHは、pH4.5~8.5好ましくはpH5.5のバッファー(リン酸ナトリウム)中で混合し、反応温度は4℃~37℃、好ましくは37℃、反応時間は30分~終夜にてインキュベートする。この反応により、修飾タンパク質が得られる。 For example, an example of the modification reaction system in the present invention using the Pictet-Spengler reaction is as follows. A protein having a chemical handle of 1 μg / ml to 2000 μg / ml, preferably about 1000 μg / ml, and a molecule terminated with a coupling partner of 25 μM to 100 mM, preferably about 100 mM, 25 mM to 400 mM, preferably about 100 mM The pH is mixed in a buffer (sodium phosphate) at pH 4.5 to 8.5, preferably pH 5.5, the reaction temperature is 4 ° C. to 37 ° C., preferably 37 ° C., and the reaction time is 30 minutes to overnight. And incubate. This reaction yields a modified protein.
 以上説明したように、反応性の高い求核的芳香環および活性化アルデヒドを組み合わせて用いることで、弱酸性から弱塩基性条件下において良好にタンパク質の修飾を効率よく行うことができる。
 具体的には、アルデヒドの求電子性を高めた活性アルデヒドであるαーケトアルデヒド基、及び、インドール-3-エチルアミンの求核性を高めた芳香族であるトリプタミンメチルエステル骨格を用いる、あるいは、インドール-3-エチルアミンの求核性を高めるため、アミノ基のα位にカルボニル基のような電子吸引性の官能基を入れる。これらにより、ピクテ・スペングラー反応の反応性が向上し、タンパク質の分解又は変性を抑制できる温和な条件にて、タンパク質の修飾反応を進行することが可能となる。その結果、タンパク質の立体構造や用いる修飾分子によらず、タンパク質の修飾を弱酸性から弱塩基性条件下で行うことができる。
As described above, by using a combination of a highly reactive nucleophilic aromatic ring and an activated aldehyde, protein modification can be efficiently performed efficiently under weakly acidic to weakly basic conditions.
Specifically, an α-ketoaldehyde group, which is an active aldehyde with increased electrophilicity of an aldehyde, and a tryptamine methyl ester skeleton, which is an aromatic with increased nucleophilicity of indole-3-ethylamine, or indole- In order to enhance the nucleophilicity of 3-ethylamine, an electron-withdrawing functional group such as a carbonyl group is inserted at the α-position of the amino group. Accordingly, the reactivity of the Pictet-Spengler reaction is improved, and the protein modification reaction can proceed under mild conditions that can suppress degradation or denaturation of the protein. As a result, protein modification can be performed under weakly acidic to weakly basic conditions regardless of the three-dimensional structure of the protein and the modifying molecule used.
<ケミカルハンドル含有タンパク質>
 タンパク質としては、ケミカルハンドルを有したものであれば特に限定されるものではなく、天然のタンパク質を用いることも出来るし、従来公知の方法でケミカルハンドルが導入された合成タンパク質を用いることもできる。
<Chemical handle-containing protein>
The protein is not particularly limited as long as it has a chemical handle, and a natural protein can be used, or a synthetic protein into which a chemical handle has been introduced by a conventionally known method can also be used.
 ケミカルハンドルとしては、修飾分子のカップリングパートナーとピクテ・スペングラー反応するものであれば特に限定されるものではなく、カップリングパートナーがβ位に芳香環もしくはヘテロ芳香環をもつエチルアミン基であった場合は、ケミカルハンドルはアルデヒド基である。カップリングパートナーがアルデヒド基であった場合は、ケミカルハンドルはβ位に芳香環もしくはヘテロ芳香環をもつエチルアミン基である。ケミカルハンドルとしてβ位に芳香環もしくはヘテロ芳香環をもつエチルアミン基を用いる際は、公知の方法でN末端をトリプトファンとしたタンパク質を用いることもできる。 The chemical handle is not particularly limited as long as it undergoes Picté-Spengler reaction with the coupling partner of the modifying molecule. When the coupling partner is an ethylamine group having an aromatic ring or a heteroaromatic ring at the β-position The chemical handle is an aldehyde group. When the coupling partner is an aldehyde group, the chemical handle is an ethylamine group having an aromatic ring or a heteroaromatic ring at the β-position. When using an ethylamine group having an aromatic ring or a heteroaromatic ring at the β-position as a chemical handle, a protein having an N-terminal tryptophan can also be used by a known method.
<ケミカルハンドル含有タンパク質の調製>
 次に、タンパク質にケミカルハンドルを導入する方法について説明する。
 ケミカルハンドル含有タンパク質の製造方法は、特に限定されず、例えばピリドキサール-5-リン酸を用いた酸化的脱アミノ化による翻訳後修飾、真性細菌または真核細胞内でタンパク質を合成する系や、無細胞タンパク質合成系、生体内での翻訳後修飾などがいずれも適用可能である。また、タンパク質のN末端を任意のプロテアーゼで消化してグリシンとし、その後公知の方法でアルデヒド化してもよい。
 これらケミカルハンドル含有タンパク質の合成法において、位置特異的に分子を結合させるためには、非天然型アミノ酸(ケミカルハンドルを有したアミノ酸)のアミノ酸導入位置を厳密に制御するか、位置選択性の高い有機化学反応を用いてケミカルハンドルを作ることが好ましい。
<Preparation of protein containing chemical handle>
Next, a method for introducing a chemical handle into a protein will be described.
The method for producing the chemical handle-containing protein is not particularly limited. For example, post-translational modification by oxidative deamination using pyridoxal-5-phosphate, a system for synthesizing a protein in an eubacteria or eukaryotic cell, Cell protein synthesis systems, post-translational modifications in vivo, and the like are all applicable. Alternatively, the N-terminus of the protein may be digested with any protease to obtain glycine, and then aldehyded by a known method.
In these chemical handle-containing protein synthesis methods, in order to bind molecules in a position-specific manner, the amino acid introduction position of an unnatural amino acid (amino acid having a chemical handle) is strictly controlled, or the position selectivity is high. Preferably, the chemical handle is made using an organic chemical reaction.
 ケミカルハンドルとしてアルデヒド基をタンパク質に導入する場合、アルデヒド基は、例えばグリシン、ε-N-(2-アミノアセチル)リジン等のアミノ酸残基に酸化的脱アミノ化反応により導入できる。 When an aldehyde group is introduced into a protein as a chemical handle, the aldehyde group can be introduced into an amino acid residue such as glycine or ε-N- (2-aminoacetyl) lysine by an oxidative deamination reaction.
 タンパク質に導入する非天然型アミノ酸としては、前記ケミカルハンドルを有している、もしくは官能基変換によりピクテ-スペングラー反応の基質となり得るものであれば特に限定されるものではない。その様な化合物の例としては、例えばp-アミノエチルフェニルアラニン、δ-ケトリジンなどが挙げられる。 The non-natural amino acid to be introduced into the protein is not particularly limited as long as it has the above chemical handle or can be used as a substrate for the Picter-Spengler reaction by functional group conversion. Examples of such a compound include p-aminoethylphenylalanine and δ-ketridine.
 ケミカルハンドル含有タンパク質は、簡便に低コストで作製できることから、ピリドキサール-5-リン酸を用いた酸化的脱アミノ化により作製することが好ましい。タンパク質をこのピリドキサール-5-リン酸で処理することで、酸化的脱アミノ化によりこのタンパク質のN末端を簡便にアルデヒド化ができる。 Since the chemical handle-containing protein can be easily produced at low cost, it is preferably produced by oxidative deamination using pyridoxal-5-phosphate. By treating the protein with the pyridoxal-5-phosphate, the N-terminus of the protein can be conveniently aldehyded by oxidative deamination.
 また、β位に芳香環もしくはヘテロ芳香環をもつエチルアミン基またはアルデヒド基を含有した非天然型アミノ酸と結合したサプレッサーtRNAと;このサプレッサーtRNAのコドンに対応するコドンを有するようにナンセンス変異を施した遺伝子と;を用いた合成系により、ケミカルハンドル含有タンパク質を発現させることが好ましい。タンパク質の部位特異的に、非天然型アミノ酸を導入できる。 In addition, a suppressor tRNA bound to an unnatural amino acid containing an ethylamine group or an aldehyde group having an aromatic ring or a heteroaromatic ring at the β-position; and a nonsense mutation was performed so as to have a codon corresponding to the codon of the suppressor tRNA It is preferable to express a chemical handle-containing protein by a synthesis system using a gene and; Unnatural amino acids can be introduced in a site-specific manner in the protein.
 変異アミノアシルtRNA合成酵素としては、ピクテ・スペングラー反応可能な官能基を含む非天然型アミノ酸に対して、基質特異性を有したアミノアシルtRNA合成酵素を用いる。または、本来のアミノ酸に対する基質特異性に比べて、ピクテ・スペングラー反応可能な官能基を含む非天然型アミノ酸に対する基質特異性が高められた変異型のアミノアシルtRNA合成酵素を用いることもできる。このような変異アミノアシルtRNA合成酵素としては、用いる非天然型アミノ酸に応じて適宜選択できるが、例えばチロシル-tRNA合成酵素、トリプトファニル-tRNA合成酵素、ピロリジル-tRNA合成酵素等が挙げられる。 As the mutant aminoacyl tRNA synthetase, an aminoacyl tRNA synthetase having substrate specificity for a non-natural amino acid containing a functional group capable of Pictet-Spengler reaction is used. Alternatively, a mutant aminoacyl-tRNA synthetase having enhanced substrate specificity for a non-natural amino acid containing a functional group capable of Pictet-Spengler reaction compared to the original substrate specificity for an amino acid can also be used. Such a mutant aminoacyl tRNA synthetase can be appropriately selected according to the unnatural amino acid to be used, and examples thereof include tyrosyl-tRNA synthetase, tryptophanyl-tRNA synthetase, and pyrrolidyl-tRNA synthetase.
 サプレッサーtRNAは、アミノアシルtRNA合成酵素又はその変異体により、ピクテ・スペングラー反応可能な官能基を含む非天然型アミノ酸でアミノアシル化され、アンチコドンがストップコドンに対応するtRNAである。
 サプレッサーtRNAは、その転写の鋳型となる配列を有した鋳型DNAを公知の方法で調製し、その転写反応により作製できる。
A suppressor tRNA is a tRNA that is aminoacylated with an aminoacyl-tRNA synthetase or a mutant thereof with an unnatural amino acid containing a functional group capable of Pictet-Spengler reaction, and whose anticodon corresponds to a stop codon.
The suppressor tRNA can be prepared by preparing a template DNA having a sequence to serve as a template for transcription by a known method and performing the transcription reaction.
 遺伝子の所望の位置にナンセンス変異を設ける方法としては、特に限定されるものではなく、例えば非特許文献1~11に記載の方法で行うことが出来る。 The method of providing a nonsense mutation at a desired position of a gene is not particularly limited, and can be performed by the methods described in Non-Patent Documents 1 to 11, for example.
 これらアミノアシルtRNA合成酵素と、サプレッサーtRNAと、所望の位置にナンセンス変異を受けた遺伝子とを用いることで、例えばp-アミノエチルフェニルアラニンやδ-ケトリジンなどの非天然型アミノ酸をタンパク質に導入できる(例えば非特許文献1~11参照)。 By using these aminoacyl tRNA synthetases, suppressor tRNAs, and genes that have undergone a nonsense mutation at a desired position, for example, unnatural amino acids such as p-aminoethylphenylalanine and δ-ketridine can be introduced into proteins (for example, (See Non-Patent Documents 1 to 11).
 また、天然のタンパク質や合成したタンパク質を、N末端がグリシン残基となるようなプロテアーゼで消化することで、アルデヒド基を有したタンパク質を作製することができる。例えば、GST(glutathione-S-transferase)タグと、Factor Xaの認識部位の下流がグリシン残基となるように改変した遺伝子とを組み込んだ発現ベクターを大腸菌や培養細胞等へトランスフェクションし、この大腸菌や培養細胞で発現させたタンパク質を回収する。そして、この回収したタンパク質を、Factor Xaで消化することで、N末端にグリシン残基を有したタンパク質を得ることができる。 In addition, a protein having an aldehyde group can be produced by digesting a natural protein or a synthesized protein with a protease in which the N-terminus is a glycine residue. For example, an expression vector incorporating a GST (glutathione-S-transferase) tag and a gene modified so that the downstream of the recognition site of Factor Xa is a glycine residue is transfected into E. coli or cultured cells. And recover proteins expressed in cultured cells. And the protein which has a glycine residue in N terminal can be obtained by digesting this collect | recovered protein with Factor Xa.
<カップリングパートナー含有修飾分子>
 修飾分子とは、修飾ユニットの末端に、カップリングパートナーが結合している分子をいう。カップリングパートナーがβ位に芳香環もしくはヘテロ芳香環をもつエチルアミン基であった場合、修飾ユニットは、例えば上述した一般式(4)で表されるβ-アリールエチルアミン基のR、R、R、Rに結合していることが好ましい。また、カップリングパートナーがアルデヒド基であった場合、修飾ユニットはこのアルデヒド基の炭素原子に結合していることが好ましい。
<Coupling partner-containing modified molecule>
The modified molecule refers to a molecule in which a coupling partner is bound to the end of the modification unit. When the coupling partner is an ethylamine group having an aromatic ring or a heteroaromatic ring at the β-position, the modifying unit is, for example, R 1 , R 2 of the β-arylethylamine group represented by the general formula (4) described above, R 3 and R 5 are preferably bonded. When the coupling partner is an aldehyde group, the modification unit is preferably bonded to a carbon atom of the aldehyde group.
 修飾ユニットとしては、特に限定されず、例えば、アミン(第1、第2、第3、第4)、アルコール(第1、第2、第3)、カルボニル基、カルボキシル基、チオール基、スルホキシド基、スルホン基、スルホン酸、アリール基、アリル基、含硫黄ヘテロ環、含窒素ヘテロ環、などの官能基又はその縮合物を含む機能性分子等が挙げられる。また、周知の補酵素、糖鎖、脂肪鎖、DNA、RNA、ヌクレオシド、ヌクレオチド、タンパク質、ペプチド、脂質、糖質およびそれらの誘導体、あるいは非天然分子等を用いることができる。さらには、修飾ユニットとしては蛍光分子、液晶を示す周知の分子(液晶分子)、基板又はフラーレン等を用いることができる。
 修飾ユニットとしてガラス基板や樹脂基板と結合できる分子を用い、この修飾ユニットとカップリングパートナーとを介して、タンパク質をこれらの基板と結合させることも可能である。この際、修飾ユニットとカップリングパートナーとからなる修飾分子を先に基板に結合させ、その後ピクテ・スペングラー反応によりタンパク質をこの修飾分子と結合させることで、基板にタンパク質を結合できる。
The modification unit is not particularly limited, and examples thereof include amines (first, second, third, and fourth), alcohols (first, second, and third), carbonyl groups, carboxyl groups, thiol groups, and sulfoxide groups. , A functional group containing a functional group such as a sulfone group, a sulfonic acid, an aryl group, an allyl group, a sulfur-containing heterocycle, a nitrogen-containing heterocycle, or a condensate thereof. In addition, known coenzymes, sugar chains, fatty chains, DNA, RNA, nucleosides, nucleotides, proteins, peptides, lipids, carbohydrates and derivatives thereof, or non-natural molecules can be used. Furthermore, as the modification unit, a fluorescent molecule, a well-known molecule (liquid crystal molecule) showing liquid crystal, a substrate, fullerene, or the like can be used.
It is also possible to use a molecule that can bind to a glass substrate or a resin substrate as a modification unit, and to bind a protein to these substrates via this modification unit and a coupling partner. In this case, the protein can be bound to the substrate by binding the modifying molecule comprising the modifying unit and the coupling partner to the substrate first, and then binding the protein to the modifying molecule by Pictet-Spengler reaction.
<カップリングパートナー含有修飾分子の調製>
 例えばタンパク質に導入する修飾ユニットの末端に、β位に芳香環もしくはヘテロ芳香環をもつエチルアミン基をカップリングパートナーとして付加できる。カップリングパートナーとしてβ位に芳香環もしくはヘテロ芳香環をもつエチルアミン基を修飾ユニットに付加する方法としては、例えば、下記一般式(11)に示すトリプトファン、または一般式(12)に示すL-DOPAなどを縮合反応により修飾ユニットと共有結合させる。これらトリプトファン、L-DOPA等は、市販品を用いることができる。
<Preparation of modified molecules containing coupling partners>
For example, an ethylamine group having an aromatic ring or a heteroaromatic ring at the β-position can be added as a coupling partner to the terminal of a modification unit to be introduced into a protein. Examples of a method for adding an ethylamine group having an aromatic ring or heteroaromatic ring at the β-position as a coupling partner to the modification unit include tryptophan represented by the following general formula (11) or L-DOPA represented by the general formula (12). Are covalently bonded to the modifying unit by a condensation reaction. These tryptophan, L-DOPA, etc. can use a commercial item.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 上記一般式(11)中、Rは修飾ユニットである。 In the general formula (11), R is a modification unit.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 上記一般式(12)中、Rは修飾ユニットである。 In the general formula (12), R is a modification unit.
 あるいは、修飾ユニットの末端に、アルデヒド基をカップリングパートナーとして付加することができる。カップリングパートナーとしてアルデヒド基を導入する方法としては、例えば、2-アミノアセトアミドを酸化的脱アミノ化反応により、あるいはヒドロキシ基を酸化反応によりアルデヒド基に変換する。 Alternatively, an aldehyde group can be added as a coupling partner to the end of the modification unit. As a method for introducing an aldehyde group as a coupling partner, for example, 2-aminoacetamide is converted to an aldehyde group by oxidative deamination reaction or a hydroxy group is converted by oxidation reaction.
 以上で、末端にカップリングパートナーを有した修飾分子が得られる。カップリングパートナーを予め有する修飾ユニットを修飾分子として用いることもでき、カップリングパートナー自身を修飾分子とすることもできる。 Thus, a modified molecule having a coupling partner at the terminal is obtained. A modification unit having a coupling partner in advance can be used as a modification molecule, or the coupling partner itself can be used as a modification molecule.
 本発明の態様の一例を示すと、図1に示す通りである。図1では、タンパク質として馬心臓ミオグロビン(以下、ミオグロビン称することがある)を用いている。また、図1では、ケミカルハンドルとしてミオグロビンのN末端に配されたアルデヒド基と、カップリングパートナーとしてインドール-3-エチルアミンを有したトリプタミン誘導体(例えば、トリプトファンメチルエステル)とをピクテ・スペングラー反応させた場合を例示している。しかしながら、タンパク質、ケミカルハンドル、カップリングパートナーは、この組み合わせに限定されるものではない。 An example of the aspect of the present invention is as shown in FIG. In FIG. 1, horse heart myoglobin (hereinafter sometimes referred to as myoglobin) is used as a protein. In FIG. 1, the aldehyde group arranged at the N-terminus of myoglobin as a chemical handle and a tryptamine derivative (for example, tryptophan methyl ester) having indole-3-ethylamine as a coupling partner were subjected to Pictet-Spengler reaction. The case is illustrated. However, proteins, chemical handles, and coupling partners are not limited to this combination.
 図1より、アルデヒド基をN末端に有したミオグロビン1(ホルミル化ミオグロビン1)と、インドール-3-エチルアミンを有したトリプタミン2とがピクテ・スペングラー反応により、トリプタミン修飾ミオグロビン3となる。その後酸化により、β-カルボリン修飾ミオグロビン4となることもある。このように複素環骨格を酸化することで、蛍光基としての機能を付加することも出来る。 FIG. 1 shows that myoglobin 1 having an aldehyde group at the N-terminus (formylated myoglobin 1) and tryptamine 2 having indole-3-ethylamine are converted to tryptamine-modified myoglobin 3 by the Pictet-Spengler reaction. Thereafter, oxidation may result in β-carboline-modified myoglobin 4. Thus, by oxidizing the heterocyclic skeleton, a function as a fluorescent group can be added.
<修飾タンパク質の精製>
 生成物(修飾タンパク質)の確認は、SDS-PAGE、質量分析などで検出できる。
 修飾タンパク質の単離・精製としては、生産した修飾タンパク質特有の性質に基づき、例えば溶媒抽出、有機溶媒による分別沈澱、塩析、透析、遠心分離、限外ろ過、イオン交換クロマトグラフィー、ゲルろ過クロマトグラフィー、疎水性クロマトグラフィー、アフィニティークロマトグラフィー、逆相クロマトグラフィー、結晶化、電気泳動などの分離操作を単独あるいは組み合わせて行なうことができる。
 修飾タンパク質が切断・分解されていないことは、SDS-PAGEによる分離と、その後の修飾タンパク質に特異的な抗体とによる検出によって確認できる。
 また、修飾タンパク質の活性は、修飾タンパク質について周知の方法によって確認できる(例えば活性が保持されていれば,正しい立体構造を保持しているとわかる)。
 また導入した分子の活性が保持されていることは、この分子の活性を調べることで確認できる。例えば、ビオチンを結合した場合は、アビジンとの結合能、蛍光物質を結合した場合は、蛍光観測などで確認できる。
<Purification of modified protein>
Confirmation of the product (modified protein) can be detected by SDS-PAGE, mass spectrometry or the like.
For the isolation and purification of the modified protein, for example, solvent extraction, fractional precipitation with an organic solvent, salting out, dialysis, centrifugation, ultrafiltration, ion exchange chromatography, gel filtration chromatography. Separation operations such as chromatography, hydrophobic chromatography, affinity chromatography, reverse phase chromatography, crystallization, and electrophoresis can be performed alone or in combination.
The fact that the modified protein is not cleaved / degraded can be confirmed by SDS-PAGE separation and subsequent detection with an antibody specific to the modified protein.
Further, the activity of the modified protein can be confirmed by a well-known method for the modified protein (for example, if the activity is retained, it is understood that the modified protein has the correct three-dimensional structure).
Moreover, it can confirm that the activity of the introduce | transduced molecule | numerator is hold | maintained by investigating the activity of this molecule | numerator. For example, when biotin is bound, the binding ability to avidin can be confirmed, and when a fluorescent substance is bound, it can be confirmed by fluorescence observation.
 このように、本発明は、周知の方法との組み合わせにより、多様な反応が可能となる。 Thus, in the present invention, various reactions are possible by combination with known methods.
 本発明の修飾タンパク質の製造方法で得られる修飾タンパク質は、例えば下記のような一般式(13)に示すものが挙げられる。 Examples of the modified protein obtained by the method for producing a modified protein of the present invention include those represented by the following general formula (13).
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 上記一般式(13)において、Rはタンパク質であり、Rは水素原子、アルキル基、アルコキシ基、アミノ基、又はヒドロキシ基であり、R、R、Rのうち、少なくともいずれか1つは前記修飾ユニットであり、残りはRがイミノ基、カルボニル基、カルボキシル基であり、R、Rがそれぞれ独立に、水素原子、アルキル基、ヒドロキシ基、アルコキシ基、アミノ基である。より具体的には、例えばRはタンパク質であり、Rは修飾ユニットであり、R、R、Rは水素原子である下記の一般式(14)で示す修飾タンパク質である。修飾ユニットにはアミドをリンカーとしたビオチンを用いている。得られる修飾タンパク質は、ビオチンで修飾されている。 In the general formula (13), R 1 is a protein, R 5 is a hydrogen atom, an alkyl group, an alkoxy group, an amino group, or a hydroxy group, and at least one of R 2 , R 3 , and R 4 One is the modification unit, the rest are R 2 is an imino group, a carbonyl group, and a carboxyl group, and R 3 and R 4 are each independently a hydrogen atom, an alkyl group, a hydroxy group, an alkoxy group, or an amino group. is there. More specifically, for example, R 1 is a protein, R 2 is a modification unit, and R 3 , R 4 , and R 5 are hydrogen atoms, and are modified proteins represented by the following general formula (14). The modification unit uses biotin with amide as a linker. The resulting modified protein is modified with biotin.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 また、修飾タンパク質として下記のものを挙げることができる。 Moreover, the following can be mentioned as a modified protein.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 上記一般式(15)において、Rはタンパク質であり、Rは水素原子、アルキル基、アルコキシ基、アミノ基、又はヒドロキシ基であり、R、R、Rのうち、少なくともいずれか1つは前記修飾ユニットであり、残りはRがイミノ基、カルボニル基、カルボキシル基であり、R、Rがそれぞれ独立に、水素原子、アルキル基、ヒドロキシ基、アルコキシ基、アミノ基である。より具体的には、例えばRはタンパク質であり、R~Rは水素原子である下記の一般式(16)で示す修飾タンパク質である。修飾分子は、β位に芳香環をもつエチルアミンからなり、得られるタンパク質は、6-azaindole(蛍光基)で修飾されている。 In the general formula (15), R 1 is a protein, R 5 is a hydrogen atom, an alkyl group, an alkoxy group, an amino group, or a hydroxy group, and at least one of R 2 , R 3 , and R 4 One is the modification unit, the rest are R 2 is an imino group, a carbonyl group, and a carboxyl group, and R 3 and R 4 are each independently a hydrogen atom, an alkyl group, a hydroxy group, an alkoxy group, or an amino group. is there. More specifically, for example, R 1 is a protein and R 2 to R 5 are hydrogen atoms, and is a modified protein represented by the following general formula (16). The modified molecule consists of ethylamine having an aromatic ring at the β-position, and the resulting protein is modified with 6-azaindole (fluorescent group).
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 また、修飾タンパク質として下記のものを挙げることができる。 Moreover, the following can be mentioned as a modified protein.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 上記一般式(17)において、Rはタンパク質であり、R、Rがそれぞれ独立には水素原子、アルキル基、アルコキシ基、アミノ基、又はヒドロキシ基であり、R、R、R、Rのうち、少なくともいずれか1つは前記修飾ユニットであり、残りはRがイミノ基、カルボニル基、カルボキシル基であり、R、R、Rがそれぞれ独立に、水素原子、アルキル基、ヒドロキシ基、アルコキシ基、アミノ基である。より具体的には、例えばRはタンパク質であり、Rは修飾ユニットであり、R、~Rは水素原子である下記の一般式(18)で示す修飾タンパク質である。修飾ユニットにはアミドをリンカーとしたビオチンを用いている。得られる修飾タンパク質は、ビオチンで修飾されている。 In the general formula (17), R 1 is a protein, R 4 and R 6 are each independently a hydrogen atom, an alkyl group, an alkoxy group, an amino group, or a hydroxy group, and R 2 , R 3 , R 5 and R 7 are at least one of the modification units, the remaining R 2 is an imino group, a carbonyl group, or a carboxyl group, and R 3 , R 5 , and R 7 are each independently a hydrogen atom. An alkyl group, a hydroxy group, an alkoxy group, and an amino group. More specifically, for example, R 1 is a protein, R 2 is a modification unit, and R 3 to R 7 are hydrogen atoms, and are modified proteins represented by the following general formula (18). The modification unit uses biotin with amide as a linker. The resulting modified protein is modified with biotin.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 また、修飾タンパク質として下記のものを挙げることができる。
Figure JPOXMLDOC01-appb-C000025
Moreover, the following can be mentioned as a modified protein.
Figure JPOXMLDOC01-appb-C000025
 上記一般式(19)において、Rはタンパク質であり、R、Rがそれぞれ独立には水素原子、アルキル基、アルコキシ基、アミノ基、又はヒドロキシ基であり、R、R、R、Rのうち、少なくともいずれか1つは前記修飾ユニットであり、残りはRがイミノ基、カルボニル基、カルボキシル基であり、R、R、Rがそれぞれ独立に、水素原子、アルキル基、ヒドロキシ基、アルコキシ基、アミノ基である。より具体的には、例えばRはタンパク質であり、R~Rは水素原子である下記の一般式(20)で示す修飾タンパク質である。修飾分子は、β位にヘテロ芳香環をもつエチルアミンからなり、得られるタンパク質は、ノルハルマン(蛍光基)で修飾されている。 In the general formula (19), R 1 is a protein, R 4 and R 6 are each independently a hydrogen atom, an alkyl group, an alkoxy group, an amino group, or a hydroxy group, and R 2 , R 3 , R 5 and R 7 are at least one of the modification units, the remaining R 2 is an imino group, a carbonyl group, or a carboxyl group, and R 3 , R 5 , and R 7 are each independently a hydrogen atom. An alkyl group, a hydroxy group, an alkoxy group, and an amino group. More specifically, for example, R 1 is a protein, and R 2 to R 7 are hydrogen atoms, and are modified proteins represented by the following general formula (20). The modifying molecule is composed of ethylamine having a heteroaromatic ring at the β-position, and the resulting protein is modified with norharman (fluorescent group).
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 また、修飾タンパク質として下記のものを挙げることができる。 Moreover, the following can be mentioned as a modified protein.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 上記一般式(21)において、Rはタンパク質であり、R、Rがそれぞれ独立には水素原子、アルキル基、アルコキシ基、アミノ基、又はヒドロキシ基であり、R、R、R、Rのうち、少なくともいずれか1つは前記修飾ユニットであり、残りはRがイミノ基、カルボニル基、カルボキシル基であり、R、R、Rがそれぞれ独立に、水素原子、アルキル基、ヒドロキシ基、アルコキシ基、アミノ基である。より具体的には、例えばRはタンパク質であり、Rは修飾ユニットであり、Rはヒドロキシ基であり、R、R、R、Rは水素原子である下記の一般式(22)で示す修飾タンパク質である。修飾ユニットにはアミドをリンカーとしたビオチンを用いている。得られる修飾タンパク質は、ビオチンで修飾されている。 In the general formula (21), R 1 is a protein, R 5 and R 6 are each independently a hydrogen atom, an alkyl group, an alkoxy group, an amino group, or a hydroxy group, and R 2 , R 3 , R 4 and R 6 are at least one of the modification units, the remaining R 2 is an imino group, a carbonyl group, or a carboxyl group, and R 3 , R 4 , and R 6 are each independently a hydrogen atom. An alkyl group, a hydroxy group, an alkoxy group, and an amino group. More specifically, for example, R 1 is a protein, R 2 is a modification unit, R 5 is a hydroxy group, and R 3 , R 4 , R 6 , and R 7 are hydrogen atoms. (22) is a modified protein. The modification unit uses biotin with amide as a linker. The resulting modified protein is modified with biotin.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 また、修飾タンパク質として下記のものを挙げることができる。 Moreover, the following can be mentioned as a modified protein.
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 上記一般式(23)において、Rはタンパク質であり、R、Rがそれぞれ独立には水素原子、アルキル基、アルコキシ基、アミノ基、又はヒドロキシ基であり、R、R、R、Rのうち、少なくともいずれか1つは前記修飾ユニットであり、残りはRがイミノ基、カルボニル基、カルボキシル基であり、R、R、Rがそれぞれ独立に、水素原子、アルキル基、ヒドロキシ基、アルコキシ基、アミノ基である。より具体的には、例えばRはタンパク質であり、R~Rは水素原子である下記の一般式(24)で示す修飾タンパク質である。修飾分子は、β位に芳香環をもつエチルアミンからなり、得られる修飾タンパク質は、イソキノリン(蛍光消光基)で修飾されている。 In the general formula (23), R 1 is a protein, R 5 and R 6 are each independently a hydrogen atom, an alkyl group, an alkoxy group, an amino group, or a hydroxy group, and R 2 , R 3 , R 4 and R 6 are at least one of the modification units, the remaining R 2 is an imino group, a carbonyl group, or a carboxyl group, and R 3 , R 4 , and R 6 are each independently a hydrogen atom. An alkyl group, a hydroxy group, an alkoxy group, and an amino group. More specifically, for example, R 1 is a protein, and R 2 to R 7 are hydrogen atoms, and are modified proteins represented by the following general formula (24). The modified molecule is composed of ethylamine having an aromatic ring at the β-position, and the resulting modified protein is modified with isoquinoline (fluorescence quenching group).
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
 上記で例示した修飾タンパク質以外に、下記に示すような様々なものを修飾分子として用いることができ、以下に示すような応用例が考えられる。
(1)標識タンパク質
 例えばフルオレセイン、アレクサフルオロ(Alexa Fluor)、ボディピィ(BODIPY)等の蛍光分子を、カップリングパートナーを介して結合することにより得られる修飾タンパク質は、タンパク質の挙動の解析に好ましく用いられる。これまでにも、このような蛍光分子を標識とするタンパク質、例えはGFPなどが知られていたが、本発明の方法は、タンパク質の位置特異的に蛍光分子を導入できる。そのため、タンパク質の活性に影響を与えない箇所に選択的に導入ができる。また、タンパク質の機能を阻害するような立体障害はほとんど起こらない。したがって、より正確なタンパク質の挙動の解析が可能となる。ビオチンなどの分子を導入したタンパク質も、タンパク質の挙動の解析に好ましく用いることができる。
 図2は、蛍光分子が導入されたタンパク質の一例を示す図である。ホルミル化ミオグロビン1とフルオレセインを含んだ修飾分子5とをピクテ・スペングラー反応を行うことで、フルオレセインが導入されたフルオレセイン修飾ミオグロビン6が得られる。
In addition to the modified proteins exemplified above, various types as shown below can be used as modified molecules, and application examples as shown below can be considered.
(1) Labeled protein For example, a modified protein obtained by binding a fluorescent molecule such as fluorescein, Alexa Fluor, or Bodypi (BODIPY) via a coupling partner is preferably used for analyzing the behavior of the protein. . In the past, proteins with such fluorescent molecules as labels, such as GFP, have been known. However, the method of the present invention can introduce fluorescent molecules in a position-specific manner for proteins. Therefore, it can be selectively introduced at a location that does not affect the activity of the protein. In addition, steric hindrance that inhibits protein function hardly occurs. Therefore, more accurate analysis of protein behavior is possible. A protein into which a molecule such as biotin is introduced can also be preferably used for analyzing the behavior of the protein.
FIG. 2 is a diagram showing an example of a protein into which a fluorescent molecule is introduced. Fluorescein-modified myoglobin 6 into which fluorescein has been introduced is obtained by carrying out a Pictet-Spengler reaction between formylated myoglobin 1 and modified molecule 5 containing fluorescein.
(2) 機能未知タンパク質の相互作用の対象を検出
 本発明の方法によって、機能未知タンパク質に蛍光基を導入し標識タンパク質とする。これをcDNAライブラリーと共に、細胞に存在させ、FRET(蛍光共鳴エネルギー転移)を測定する。ここで、蛍光特性の変化が検出された細胞では、ライブラリーから発現したタンパク質又はそのエフェクタータンパク質が標識タンパク質と相互作用している可能性が示唆される。蛍光基としては、フルオレセイン、アレクサフルオロ、ボディピィ、ローダミン、ハルミン等を用いることができる。図3は、蛍光基が導入されたタンパク質の一例を示す図である。ホルミル化ミオグロビン1とアレクサフルオロ488を含んだ修飾分子7とをピクテ・スペングラー反応を行うことで、アレクサフルオロ488を含んだ修飾分子7が導入されたアレクサフルオロ488修飾ミオグロビン8が得られる。
(2) Detection of interaction target of unknown function protein By the method of the present invention, a fluorescent group is introduced into the unknown function protein to obtain a labeled protein. This is made to exist in a cell with a cDNA library, and FRET (fluorescence resonance energy transfer) is measured. Here, it is suggested that the protein expressed from the library or its effector protein may interact with the labeled protein in the cells in which the change in the fluorescence property is detected. As the fluorescent group, fluorescein, alexafluoro, body pie, rhodamine, harmine and the like can be used. FIG. 3 is a diagram showing an example of a protein into which a fluorescent group has been introduced. By performing the Pictet-Spengler reaction between the formylated myoglobin 1 and the modified molecule 7 containing Alexafluoro488, Alexafluoro488-modified myoglobin 8 into which the modified molecule 7 containing Alexafluoro488 has been introduced is obtained.
(3)液晶分子を結合させる
 液晶分子を導入したタンパク質は、その液晶分子の作用により高磁場で配向する。これを利用して、NMRでの構造解析が容易となり、構造解析のハイスループット化が可能となる。図4は、液晶分子が導入されたタンパク質の一例を示す図である。ホルミル化ミオグロビン1と、液晶分子としてメトキシベンジリデンパラブチルアラニン(MBBA、methoxy benziliden p-butyl aniline)を含んだ修飾分子9とをピクテ・スペングラー反応を行うことで、MBBA9が導入されたMBBA修飾ミオグロビン10が得られる。
(3) Binding liquid crystal molecules Proteins introduced with liquid crystal molecules are aligned in a high magnetic field by the action of the liquid crystal molecules. By utilizing this, structural analysis by NMR becomes easy, and high throughput of structural analysis can be achieved. FIG. 4 is a diagram showing an example of a protein into which liquid crystal molecules are introduced. MBBA-modified myoglobin 10 into which MBBA 9 has been introduced is obtained by performing a Pictet-Spengler reaction between formylated myoglobin 1 and a modified molecule 9 containing methoxybenzylidene p-butyl aniline (MBBA) as a liquid crystal molecule. Is obtained.
(4)タンパク質へ重原子の導入
 タンパク質に重原子を導入してから結晶化することで、位相決定が可能になる。重原子同型置換体を調製する手間が省けるため、構造解析が容易となる。図5は、重原子として臭素原子が導入されたタンパク質の一例を示す図である。ホルミル化ミオグロビン1と臭素原子を含む修飾分子11とをピクテ・スペングラー反応を行うことで、重元素として臭素原子が導入された重元素修飾ミオグロビン12が得られる。
(4) Introduction of heavy atoms into protein Crystallization after introducing heavy atoms into protein enables phase determination. Structural analysis is facilitated because the labor for preparing heavy atom isomorphous substituents can be saved. FIG. 5 is a diagram showing an example of a protein having a bromine atom introduced as a heavy atom. By performing the Pictet-Spengler reaction between the formylated myoglobin 1 and the modified molecule 11 containing a bromine atom, a heavy element modified myoglobin 12 in which a bromine atom is introduced as a heavy element is obtained.
(5)チップ上へのタンパク質の固定
 タンパク質をチップ上に固定すると、生体内の系をチップ上に再構成できる。本発明の方法によれば、タンパク質のチップへの固定の箇所を部位特異的に行なうことができ、タンパク質の配向を制御できる。このようなタンパク質チップは、リガンドの探索に有用である。
(5) Immobilization of protein on the chip When the protein is immobilized on the chip, the in-vivo system can be reconfigured on the chip. According to the method of the present invention, the site of protein fixation to a chip can be performed site-specifically, and protein orientation can be controlled. Such a protein chip is useful for searching for a ligand.
(6)薬剤送達システム
 病原部位に局在している物質に結合するタンパク質と、薬剤とを本発明の方法により結合させ、これを投薬することにより、所望の病原部位に薬剤を局在化できる。ゆえに、投薬効果の改善が図れる。
(6) Drug delivery system A drug that binds to a substance that is localized at a pathogenic site and a drug are bound by the method of the present invention, and the drug can be administered to localize the drug at a desired pathogenic site. . Therefore, the medication effect can be improved.
(7)ポリエチレングリコール(PEG)修飾による酵素の安定化
 タンパク質をPEG化することで、プロテアーゼによる分解が受け難くなる。またタンパク質の高次構造が安定化し、その酵素機能の向上が期待される。そこで、本発明法により、部位特異的にPEGを導入することで、タンパク質の活性を損なうことなく、タンパク質をより安定化できる。
(7) Enzyme stabilization by modification with polyethylene glycol (PEG) By PEGylating a protein, it becomes difficult to be degraded by protease. In addition, the higher-order structure of the protein is stabilized, and the improvement of the enzyme function is expected. Therefore, by the method of the present invention, by introducing site-specific PEG, the protein can be more stabilized without impairing the activity of the protein.
(8)光親和性標識プローブへの導入
 光親和性標識プローブは生理活性物質である標的タンパク質の同定に広く用いられている手法である。プローブにα-ケトアルデヒドを導入し、光標識後、本発明を用いることで、標識されたタンパク質のみを単離もしくは検出が可能になる。
(8) Introduction into photoaffinity labeled probe The photoaffinity labeled probe is a technique widely used for identification of a target protein which is a physiologically active substance. By introducing α-ketoaldehyde into the probe, photolabeling, and then using the present invention, it becomes possible to isolate or detect only the labeled protein.
<タンパク質修飾キット>
 本発明の修飾タンパク質の製造方法を適用したタンパク質修飾キットを用いることで、より簡便に修飾タンパク質が得られる。例えばタンパク質修飾キットは、ピリドキサール-5-リン酸と、β-アリールエチルアミン基含有修飾分子とから概略構成されている。
 ピリドキサール-5-リン酸と、β-アリールエチルアミン基含有修飾分子とを、修飾したいタンパク質と混合させ、24℃以上37℃以下で例えば一晩反応させることで、修飾タンパク質が得られる。
<Protein modification kit>
By using a protein modification kit to which the method for producing a modified protein of the present invention is applied, a modified protein can be obtained more easily. For example, a protein modification kit is roughly composed of pyridoxal-5-phosphate and a β-arylethylamine group-containing modified molecule.
A modified protein is obtained by mixing pyridoxal-5-phosphate and a β-arylethylamine group-containing modified molecule with the protein to be modified and reacting at 24 ° C. or higher and 37 ° C. or lower, for example, overnight.
 以下の実施例は、本発明をより具体的に説明するためのものであり、本発明の範囲がこれらの実施例により制限されるものではない。
 タンパク質を扱う際は、記載の無い限り、全て氷冷下にて操作を行った。バッファー等におけるpHの調製は、pHメーター及び、文献に記されている条件に基づき行った。水は超純水(Milli-Q製のもの)を用いた。
The following examples are for explaining the present invention more specifically, and the scope of the present invention is not limited by these examples.
When handling proteins, all operations were performed under ice cooling unless otherwise noted. The pH in the buffer or the like was adjusted based on the pH meter and the conditions described in the literature. As the water, ultrapure water (made by Milli-Q) was used.
<実施例1>
(1)α-ケトアルデヒド化ミオグロビンの調製
 非特許文献24に従い、ミオグロビンをリン酸バッファー(25mM、pH6.5)に溶かし、100μM溶液とした。この溶液に等量のピリドキサール-5-リン酸・リン酸バッファー溶液を加え、37℃にて24時間インキュベートした。反応によりN末端がアルデヒド化されたミオグロビン溶液は、12,000rpmの遠心分離による限外ろ過をもちいたバッファー交換によって、精製をおこなった。
<Example 1>
(1) Preparation of α-ketoaldehyde-ized myoglobin According to Non-Patent Document 24, myoglobin was dissolved in a phosphate buffer (25 mM, pH 6.5) to give a 100 μM solution. An equal amount of pyridoxal-5-phosphate / phosphate buffer solution was added to this solution and incubated at 37 ° C. for 24 hours. The myoglobin solution in which the N-terminal was aldehyded by the reaction was purified by buffer exchange using ultrafiltration by centrifugation at 12,000 rpm.
(2)ビオチン化検出マーカーユニットの合成
 ビオチン13をタンパク質へ導入するため、下記の方法で、トリプトファン14をカップリングパートナーとして、ビオチン13と結合させた修飾分子16を合成した。この工程を図6に示す。
(a)トリプトファン14とビオチン13の脱水縮合による修飾分子保護体15の合成
 文献(Wilburら、 Bioconj. Chem. 第7巻、1996年、p.689-702)に従い、合成された31.2mgのビオチン13を1mlのジクロロメタンに溶かし、0℃に冷却した。この溶液に1mlのTFAを溶かし、0℃にて3時間攪拌した。その後、反応溶液をエバポレーターで減圧留去した。残渣を2.0mlのDMFに溶かし、55mgの(Boc)2Tryptophan14、5.5mgのHOBt、77mgのEDC及び200μlのDIEAを溶液に加え、室温にて18時間攪拌した。反応溶液をトルエンにて共沸することによって溶媒を減圧留去し、ジクロロメタンと水で二層分配し、有機層を硫酸化マグネシウムで乾燥した後に、減圧留去した。シリカゲルクロマトグラフィー(酢酸エチル→酢酸エチル:メタノール=10:1)にて精製することで、下記一般式(25)に示す目的のBoc保護トリプトファンを導入した45.0mgの修飾分子保護体15を、収率93%で得た。
(2) Synthesis of Biotinylated Detection Marker Unit In order to introduce biotin 13 into a protein, modified molecule 16 bound to biotin 13 was synthesized using tryptophan 14 as a coupling partner by the following method. This process is shown in FIG.
(A) Synthesis of modified molecular protector 15 by dehydration condensation of tryptophan 14 and biotin 13 31.2 mg synthesized according to the literature (Wilbur et al., Bioconj. Chem. Vol. 7, 1996, p. 689-702) Biotin 13 was dissolved in 1 ml of dichloromethane and cooled to 0 ° C. 1 ml of TFA was dissolved in this solution and stirred at 0 ° C. for 3 hours. Thereafter, the reaction solution was distilled off under reduced pressure using an evaporator. The residue was dissolved in 2.0 ml DMF, 55 mg (Boc) 2 Tryptophan 14, 5.5 mg HOBt, 77 mg EDC and 200 μl DIEA were added to the solution and stirred at room temperature for 18 hours. The reaction solution was azeotroped with toluene, and the solvent was distilled off under reduced pressure. The two layers were partitioned between dichloromethane and water, and the organic layer was dried over magnesium sulfate and then distilled off under reduced pressure. By purifying by silica gel chromatography (ethyl acetate → ethyl acetate: methanol = 10: 1), 45.0 mg of the modified molecular protector 15 into which the target Boc-protected tryptophan represented by the following general formula (25) was introduced, The yield was 93%.
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
(b)Boc基の脱保護による修飾分子16の合成
 上記で得られた10mgの修飾分子保護体15を1mlのジクロロメタンに溶かし、0℃に冷却した。この溶液に1mlのTFAを溶かし、0℃にて3時間攪拌した。その後、反応溶液をエバポレーターで減圧留去した。残渣をジクロロメタンに溶かし、風乾を2度繰り返すことでTFAを留去した。その後、ODSを用いた逆層クロマトグラフィーにて精製することで、6.6mgの下記一般式(26)に示す目的の修飾分子16を収率90%で得た。
(B) Synthesis of Modified Molecule 16 by Deprotection of Boc Group 10 mg of the modified molecular protector 15 obtained above was dissolved in 1 ml of dichloromethane and cooled to 0 ° C. 1 ml of TFA was dissolved in this solution and stirred at 0 ° C. for 3 hours. Thereafter, the reaction solution was distilled off under reduced pressure using an evaporator. The residue was dissolved in dichloromethane, and TFA was distilled off by repeating air drying twice. Thereafter, purification by reverse layer chromatography using ODS yielded 6.6 mg of the target modified molecule 16 represented by the following general formula (26) in a yield of 90%.
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
(3)タンパク質の修飾
 反応系の各組成は、下記のとおりである。2.0mg/mlのタンパク質(α-ケトアルデヒド化馬心臓ミオグロビン1)、10mMの上記で作製した修飾分子16及び100mMのバッファー(リン酸ナトリウム、pH6.5)。これらの試薬を混合した後、37度で18時間インキュベートし、生成物を得た。得られた生成物は、図7に示すように、ビオチンで修飾されたビオチン修飾ミオグロビン17であると考えられる。
(3) Modification of protein Each composition of the reaction system is as follows. 2.0 mg / ml protein (α-ketoaldehyde horse horse myoglobin 1), 10 mM modified molecule 16 prepared above and 100OmM buffer (sodium phosphate, pH 6.5). These reagents were mixed and then incubated at 37 degrees for 18 hours to obtain the product. As shown in FIG. 7, the obtained product is considered to be biotin-modified myoglobin 17 modified with biotin.
<比較例>
(1)メトキシアミンを用いた競争阻害
 上記した反応溶液中に160mMのメトキシアミンを加え、競争阻害をかける条件で修飾反応を行った。
<Comparative example>
(1) Competitive inhibition using methoxyamine 160 mM methoxyamine was added to the above-described reaction solution, and a modification reaction was performed under the condition of competitive inhibition.
<生成物の検出>
 上記の実施例1及び比較例で得られた生成物は、直ちにゲルろ過で脱塩し、SDS-PAGEで分離をし、シプロタンジェリン染色及びウェスタンブロッティングで検出した。
その結果を図8に示す。
 図8において、レーン1は比較例1で得られたタンパク質を泳動したもの、レーン2は実施例1で得られたタンパク質を泳動したもの、レーン3はミオグロビンのみ泳動したもの、レーン4はビオチン化検出マーカーユニット2のみ泳動したものである。なお、図8上段に示す画像がシプロタンジェリン染色による結果で、下段に示す画像が抗ビオチン抗体を用いたウェスタンブロッティングによる結果である。
 図8上段の結果より、実施例1の生成物がSDSポリアクリルアミドゲル上で単一の17kDaのバンドを生成することから、酸化的分解を受けていないことがわかった。さらに、図8上段及び下段の結果より、このバンドはビオチンに対する周知の検出法で検出しても、ポジティブなシグナルを与えることから、ミオグロビンにビオチンがカップリングした修飾タンパク質3であると結論された。
 図8から、比較例の生成物では、シプロタンジェリン染色で検出されたバンドは、ビオチンに対する検出法で検出しても、ポジティブなシグナルを与えなかったことから、修飾が阻害されたと考えられた。
<Detection of product>
The products obtained in Example 1 and the comparative example were immediately desalted by gel filtration, separated by SDS-PAGE, and detected by cyprotangerin staining and Western blotting.
The result is shown in FIG.
In FIG. 8, lane 1 is the protein migrated in Comparative Example 1, lane 2 is the protein migrated in Example 1, lane 3 is the one that migrates only myoglobin, lane 4 is biotinylated Only the detection marker unit 2 is electrophoresed. The image shown in the upper part of FIG. 8 is the result of cyprotangerin staining, and the image shown in the lower part is the result of Western blotting using an anti-biotin antibody.
From the results in the upper part of FIG. 8, it was found that the product of Example 1 produced a single 17 kDa band on the SDS polyacrylamide gel, and thus was not subjected to oxidative degradation. Furthermore, from the results shown in the upper and lower parts of FIG. 8, it was concluded that this band is a modified protein 3 in which biotin is coupled to myoglobin since it gives a positive signal even if it is detected by a well-known detection method for biotin. .
From FIG. 8, in the product of the comparative example, the band detected by cyprotangerin staining did not give a positive signal even when detected by the detection method for biotin. Therefore, it was considered that the modification was inhibited.
<実施例2>
(1)α-ケトアルデヒド化ミオグロビン(1)の調製
 [非特許文献24]に従い、馬心臓ミオグロビンを25mMのリン酸バッファー(pH6.5)に溶かし、100μM溶液とした。そして、この溶液に等量のピリドキサール-5-ホスフェート・リン酸バッファー溶液を加え、37℃にて24時間インキュベートした。反応によりN末端がアルデヒド化されたミオグロビン溶液は、12,000rpmの遠心分離による限外ろ過をもちいたバッファー交換によって精製をおこなった。
<Example 2>
(1) Preparation of α-ketoaldehyde-ized myoglobin (1) According to [Non-patent Document 24], horse heart myoglobin was dissolved in 25 mM phosphate buffer (pH 6.5) to give a 100 μM solution. Then, an equal amount of pyridoxal-5-phosphate / phosphate buffer solution was added to this solution and incubated at 37 ° C. for 24 hours. The myoglobin solution in which the N terminus was aldehyded by the reaction was purified by buffer exchange using ultrafiltration by centrifugation at 12,000 rpm.
(2)タンパク質修飾反応
 反応系としては、下記の組成を用いた。2.0mg/mlのタンパク質(α-ケトアルデヒド化ミオグロビン)、100 mMのトリプタミン、もしくはトリプトファンメチルエステル、100mMのバッファー(リン酸ナトリウム、pH6.5)。これらの試薬を混合した後、37℃にて18時間インキュベートし、生成物を得た。
(2) Protein modification reaction The following composition was used as a reaction system. 2.0 mg / ml protein (α-ketoaldehyde myoglobin), 100 mM tryptamine, or tryptophan methyl ester, 100 mM buffer (sodium phosphate, pH 6.5). These reagents were mixed and then incubated at 37 ° C. for 18 hours to obtain the product.
 上記で得られた生成物は、脱塩操作を行った後に、質量分析法(MALDI-TOF MS、ESI-TOF MS)を用いて測定を行った。その結果を図9に示す。
 図9より、トリプタミン修飾ミオグロビン及びトリプトファンメチルエステル修飾ミオグロビンに対応する全長イオンピークが検出されたことから、上記生成物は図10Aに示すトリプタミン修飾ミオグロビン及び図10Bに示すトリプトファンメチルエステル修飾ミオグロビンであり、ミオグロビンの修飾が行われたことが確認された。また、図9に示される相対強度から、1/3程度のミオグロビンが標識されたと推定される。
The product obtained above was subjected to a desalting operation and then measured using mass spectrometry (MALDI-TOF MS, ESI-TOF MS). The result is shown in FIG.
From FIG. 9, since full-length ion peaks corresponding to tryptamine-modified myoglobin and tryptophan methyl ester-modified myoglobin were detected, the above products were tryptamine-modified myoglobin shown in FIG. 10A and tryptophan methyl ester-modified myoglobin shown in FIG. 10B. It was confirmed that the modification of myoglobin was performed. Further, from the relative intensity shown in FIG. 9, it is estimated that about 1/3 of myoglobin was labeled.
 また、MS/MS解析により部位特異的修飾の確認を行った。その結果を、図11に示す。
 図11より、N末端のグリシンが化学選択的に修飾されたことが確認された。前駆イオンは質量分析中にて酸化され、ハルミン骨格を形成したものと推定される。
In addition, site-specific modification was confirmed by MS / MS analysis. The result is shown in FIG.
FIG. 11 confirmed that the N-terminal glycine was chemoselectively modified. Precursor ions are presumed to be oxidized during mass spectrometry to form a harmine skeleton.
 さらに、修飾ミオグロビンのUV測定及びCD測定により、変性の有無を確認した。その結果を、図12及び図13に示す。図12はUV測定結果であり、図13はCD測定結果である。
 図12より、インドール骨格由来の280nm近辺の吸収ピーク強度が増大していることから、修飾によりインドール骨格が付与されていることが確認できた。また、400nm近辺のヘミン由来の吸収ピークは、修飾後も変化は観察されなかった。
 また、図13より、野生型ミオグロビンと修飾ミオグロビンとでαへリックス由来の吸収ピークに違いが観察されなかった。
 以上より、修飾ミオグロビンが変性していないことが示唆された。
Furthermore, the presence or absence of denaturation was confirmed by UV measurement and CD measurement of the modified myoglobin. The results are shown in FIGS. FIG. 12 shows the UV measurement results, and FIG. 13 shows the CD measurement results.
From FIG. 12, since the absorption peak intensity around 280 nm derived from the indole skeleton was increased, it was confirmed that the indole skeleton was imparted by the modification. Further, no change was observed in the absorption peak derived from hemin near 400 nm even after modification.
From FIG. 13, no difference was observed in the absorption peak derived from α-helix between wild-type myoglobin and modified myoglobin.
From the above, it was suggested that the modified myoglobin was not denatured.
 本発明は、タンパク質に様々な修飾分子を付加することに適用できる。 The present invention can be applied to adding various modifying molecules to proteins.

Claims (13)

  1.  β位に芳香環もしくはヘテロ芳香環をもつエチルアミン基を含有したタンパク質と、アルデヒド基を修飾ユニットの末端に有した修飾分子とを、
     アルデヒド基を含有したタンパク質と、β位に芳香環もしくはヘテロ芳香環をもつエチルアミン基を修飾ユニットの末端に有した修飾分子とを、あるいは、
     アルデヒド基を含有したタンパク質と、β位に芳香環もしくはヘテロ芳香環をもつエチルアミンからなる修飾分子とを、
    弱酸性~弱塩基性条件下でピクテ・スペングラー反応させ、前記タンパク質を閉環された前記修飾分子で修飾することを特徴とする修飾タンパク質の製造方法。
    A protein containing an ethylamine group having an aromatic ring or a heteroaromatic ring at the β-position, and a modified molecule having an aldehyde group at the end of the modifying unit,
    A protein containing an aldehyde group and a modified molecule having an ethylamine group having an aromatic ring or a heteroaromatic ring at the β-position at the end of the modifying unit, or
    A protein containing an aldehyde group and a modified molecule composed of ethylamine having an aromatic ring or a heteroaromatic ring at the β-position,
    A method for producing a modified protein, characterized in that a Pictet-Spengler reaction is performed under mildly acidic to weakly basic conditions, and the protein is modified with the modified molecule closed.
  2.  前記芳香環もしくはヘテロ芳香環が、電子供与性の官能基を有することを特徴とする請求項1に記載の修飾タンパク質の製造方法。 The method for producing a modified protein according to claim 1, wherein the aromatic ring or heteroaromatic ring has an electron-donating functional group.
  3.  前記電子供与性の官能基が、アルキル基、アルコキシ基、アミノ基及びヒドロキシ基からなる群から選ばれる1以上であることを特徴とする請求項2に記載の修飾タンパク質の製造方法。 The method for producing a modified protein according to claim 2, wherein the electron-donating functional group is one or more selected from the group consisting of an alkyl group, an alkoxy group, an amino group, and a hydroxy group.
  4.  前記エチルアミン基のアミン基に隣接する炭素原子が、電子吸引性の官能基を有していることを特徴とする請求項1に記載の修飾タンパク質の製造方法。 The method for producing a modified protein according to claim 1, wherein the carbon atom adjacent to the amine group of the ethylamine group has an electron-withdrawing functional group.
  5.  前記アルデヒド基に隣接する炭素原子が、電子吸引性の官能基を有していることを特徴とする請求項1に記載の修飾タンパク質の製造方法。 The method for producing a modified protein according to claim 1, wherein a carbon atom adjacent to the aldehyde group has an electron-withdrawing functional group.
  6.  前記電子吸引性の官能基がイミノ基、カルボニル基及びカルボキシル基からなる群から選ばれる1以上であることを特徴とする請求項4または5に記載の修飾タンパク質の製造方法。 6. The method for producing a modified protein according to claim 4, wherein the electron-withdrawing functional group is at least one selected from the group consisting of an imino group, a carbonyl group and a carboxyl group.
  7.  前記芳香環もしくはヘテロ芳香環をもつエチルアミン基は、トリプタミン骨格又はドーパミン骨格をなし、前記アルデヒド基は、αーケトアルデヒドをなしていることを特徴とする請求項1に記載の修飾タンパク質の製造方法。 The method for producing a modified protein according to claim 1, wherein the ethylamine group having an aromatic ring or a heteroaromatic ring forms a tryptamine skeleton or a dopamine skeleton, and the aldehyde group forms an α-ketoaldehyde.
  8.  前記アルデヒド基を含有したタンパク質は、ピリドキサール-5-リン酸存在下で、酸化的脱アミノ化反応によりアルデヒド基が導入され得られることを特徴とする請求項1に記載の修飾タンパク質の製造方法。 The method for producing a modified protein according to claim 1, wherein the aldehyde group-containing protein can be introduced with an aldehyde group by oxidative deamination reaction in the presence of pyridoxal-5-phosphate.
  9.  前記タンパク質は、β位に芳香環もしくはヘテロ芳香環をもつエチルアミン基またはアルデヒド基を含有したアミノ酸と結合したサプレッサーtRNAと;このサプレッサーtRNAのコドンに対応するコドンを有するようにナンセンス変異を施した遺伝子と;を用いた合成系により合成されたタンパク質であることを特徴とする請求項1に記載の修飾タンパク質の製造方法。 The protein comprises a suppressor tRNA bonded to an amino acid containing an ethylamine group or an aldehyde group having an aromatic ring or heteroaromatic ring at the β-position; and a gene that has been subjected to nonsense mutation so as to have a codon corresponding to the codon of the suppressor tRNA The method for producing a modified protein according to claim 1, wherein the protein is synthesized by a synthesis system using
  10.  前記β位に芳香環もしくはヘテロ芳香環をもつエチルアミン基を含有したタンパク質が、N末端にトリプトファン残基を有したタンパク質であることを特徴とする請求項1に記載の修飾タンパク質の製造方法。 The method for producing a modified protein according to claim 1, wherein the protein containing an ethylamine group having an aromatic ring or a heteroaromatic ring at the β-position is a protein having a tryptophan residue at the N-terminus.
  11.  請求項1に記載の修飾タンパク質の製造方法で得られたことを特徴とする修飾タンパク質。 A modified protein obtained by the method for producing a modified protein according to claim 1.
  12.  下記一般式(1)~(6)のいずれかで示されることを特徴とする請求項11に記載の修飾タンパク質。
    Figure JPOXMLDOC01-appb-C000001
    (上記一般式において、Rはタンパク質であり、Rは水素原子、アルキル基、アルコキシ基、アミノ基、又はヒドロキシ基であり、R、R、Rのうち、少なくともいずれか1つは前記修飾ユニットであり、残りはRがイミノ基、カルボニル基、カルボキシル基であり、R、Rがそれぞれ独立に、水素原子、アルキル基、ヒドロキシ基、アルコキシ基、アミノ基である。)
    Figure JPOXMLDOC01-appb-C000002
    (上記一般式において、Rはタンパク質であり、Rは水素原子、アルキル基、アルコキシ基、アミノ基、又はヒドロキシ基であり、R、R、Rのうち、少なくともいずれか1つは前記修飾ユニットであり、残りはRがイミノ基、カルボニル基、カルボキシル基であり、R、Rがそれぞれ独立に、水素原子、アルキル基、ヒドロキシ基、アルコキシ基、アミノ基である。)
    Figure JPOXMLDOC01-appb-C000003
    (上記一般式において、Rはタンパク質であり、R、Rがそれぞれ独立には水素原子、アルキル基、アルコキシ基、アミノ基、又はヒドロキシ基であり、R、R、R、Rのうち、少なくともいずれか1つは前記修飾ユニットであり、残りはRがイミノ基、カルボニル基、カルボキシル基であり、R、R、Rがそれぞれ独立に、水素原子、アルキル基、ヒドロキシ基、アルコキシ基、アミノ基である。)
    Figure JPOXMLDOC01-appb-C000004
    (上記一般式において、Rはタンパク質であり、R、Rがそれぞれ独立には水素原子、アルキル基、アルコキシ基、アミノ基、又はヒドロキシ基であり、R、R、R、Rのうち、少なくともいずれか1つは前記修飾ユニットであり、残りはRがイミノ基、カルボニル基、カルボキシル基であり、R、R、Rがそれぞれ独立に、水素原子、アルキル基、ヒドロキシ基、アルコキシ基、アミノ基である。)
    Figure JPOXMLDOC01-appb-C000005
    (上記一般式において、Rはタンパク質であり、R、Rがそれぞれ独立には水素原子、アルキル基、アルコキシ基、アミノ基、又はヒドロキシ基であり、R、R、R、Rのうち、少なくともいずれか1つは前記修飾ユニットであり、残りはRがイミノ基、カルボニル基、カルボキシル基であり、R、R、Rがそれぞれ独立に、水素原子、アルキル基、ヒドロキシ基、アルコキシ基、アミノ基である。)
    Figure JPOXMLDOC01-appb-C000006
    (上記一般式において、Rはタンパク質であり、R、Rがそれぞれ独立には水素原子、アルキル基、アルコキシ基、アミノ基、又はヒドロキシ基であり、R、R、R、Rのうち、少なくともいずれか1つは前記修飾ユニットであり、残りはRがイミノ基、カルボニル基、カルボキシル基であり、R、R、Rがそれぞれ独立に、水素原子、アルキル基、ヒドロキシ基、アルコキシ基、アミノ基である。)
    The modified protein according to claim 11, which is represented by any one of the following general formulas (1) to (6).
    Figure JPOXMLDOC01-appb-C000001
    (In the above general formula, R 1 is a protein, R 5 is a hydrogen atom, an alkyl group, an alkoxy group, an amino group, or a hydroxy group, and at least one of R 2 , R 3 , and R 4. Is the above-mentioned modification unit, and the remaining R 2 is an imino group, a carbonyl group or a carboxyl group, and R 3 and R 4 are each independently a hydrogen atom, an alkyl group, a hydroxy group, an alkoxy group or an amino group. )
    Figure JPOXMLDOC01-appb-C000002
    (In the above general formula, R 1 is a protein, R 5 is a hydrogen atom, an alkyl group, an alkoxy group, an amino group, or a hydroxy group, and at least one of R 2 , R 3 , and R 4. Is the above-mentioned modification unit, and the remaining R 2 is an imino group, a carbonyl group or a carboxyl group, and R 3 and R 4 are each independently a hydrogen atom, an alkyl group, a hydroxy group, an alkoxy group or an amino group. )
    Figure JPOXMLDOC01-appb-C000003
    (In the above general formula, R 1 is a protein, R 4 and R 6 are each independently a hydrogen atom, an alkyl group, an alkoxy group, an amino group, or a hydroxy group, and R 2 , R 3 , R 5 , At least one of R 7 is the modification unit, the remaining R 2 is an imino group, a carbonyl group, or a carboxyl group, and R 3 , R 5 , and R 7 are each independently a hydrogen atom, alkyl Group, hydroxy group, alkoxy group and amino group.)
    Figure JPOXMLDOC01-appb-C000004
    (In the above general formula, R 1 is a protein, R 4 and R 6 are each independently a hydrogen atom, an alkyl group, an alkoxy group, an amino group, or a hydroxy group, and R 2 , R 3 , R 5 , At least one of R 7 is the modification unit, the remaining R 2 is an imino group, a carbonyl group, or a carboxyl group, and R 3 , R 5 , and R 7 are each independently a hydrogen atom, alkyl Group, hydroxy group, alkoxy group and amino group.)
    Figure JPOXMLDOC01-appb-C000005
    (In the above general formula, R 1 is a protein, R 5 and R 6 are each independently a hydrogen atom, an alkyl group, an alkoxy group, an amino group, or a hydroxy group, and R 2 , R 3 , R 4 , At least one of R 6 is the modification unit, the remaining R 2 is an imino group, a carbonyl group, or a carboxyl group, and R 3 , R 4 , and R 6 are each independently a hydrogen atom, alkyl Group, hydroxy group, alkoxy group and amino group.)
    Figure JPOXMLDOC01-appb-C000006
    (In the above general formula, R 1 is a protein, R 5 and R 6 are each independently a hydrogen atom, an alkyl group, an alkoxy group, an amino group, or a hydroxy group, and R 2 , R 3 , R 4 , At least one of R 6 is the modification unit, the remaining R 2 is an imino group, a carbonyl group, or a carboxyl group, and R 3 , R 4 , and R 6 are each independently a hydrogen atom, alkyl Group, hydroxy group, alkoxy group and amino group.)
  13.  修飾タンパク質を製造するためのタンパク質修飾キットであって、ピリドキサール-5-リン酸と、β位に芳香環もしくはヘテロ芳香環をもつエチルアミン基を含有した修飾分子とを有することを特徴とするタンパク質修飾キット。 A protein modification kit for producing a modified protein, characterized by having pyridoxal-5-phosphate and a modified molecule containing an ethylamine group having an aromatic ring or a heteroaromatic ring at the β-position kit.
PCT/JP2009/052339 2008-06-13 2009-02-12 Method for production of modified protein and modified protein produced by the method, and protein modification kit WO2009150865A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008155994A JP2009298735A (en) 2008-06-13 2008-06-13 Method for producing modified protein, modified protein obtained by the production method and protein modification kit
JP2008-155994 2008-06-13

Publications (1)

Publication Number Publication Date
WO2009150865A1 true WO2009150865A1 (en) 2009-12-17

Family

ID=41416576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/052339 WO2009150865A1 (en) 2008-06-13 2009-02-12 Method for production of modified protein and modified protein produced by the method, and protein modification kit

Country Status (2)

Country Link
JP (1) JP2009298735A (en)
WO (1) WO2009150865A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014078733A1 (en) 2012-11-16 2014-05-22 The Regents Of The University Of California Pictet-spengler ligation for protein chemical modification
WO2014194551A1 (en) * 2013-06-06 2014-12-11 中国科学院南海海洋研究所 Biosynthesis gene cluster of marinacarbolines and use thereof
WO2018047197A1 (en) * 2016-09-07 2018-03-15 Indian Institute Of Science Education And Research Bhopal Site-selective peptides and protein labelling and synthesis of homogenous protein conjugates
WO2018189214A1 (en) 2017-04-12 2018-10-18 F. Hoffmann-La Roche Ag A method for labeling of aldehyde containing target molecules

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9310374B2 (en) * 2012-11-16 2016-04-12 Redwood Bioscience, Inc. Hydrazinyl-indole compounds and methods for producing a conjugate
WO2015081282A1 (en) * 2013-11-27 2015-06-04 Redwood Bioscience, Inc. Hydrazinyl-pyrrolo compounds and methods for producing a conjugate

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
"88th Annual Meeting on Chemical Society of Japan in Spring -Koen Yokoshu II", 12 March 2008, article TSUBASA SASAKI ET AL.: "Pictet Spengler Reaction o Mochiita Tanpakushitsu no Bui Tokuiteki Shushokuho no Kaihatsu", pages: 870 *
CALLAWAY J.C. ET AL.: "The Pictet-Spengler Reaction and Biogenic Tryptamine: Formation of Tetrahydro-p-carbolines at Physiological pH", JOURNAL OF HETEROCYCLIC CHEMISTRY, vol. 31, 1994, pages 431 - 435 *
GILMORE J.M. ET AL.: "N-Terminal Protein Modification through a Biomimetic Transamination Reaction", ANGEWANDTE CHEMIE. INTERNATIONAL EDITION, vol. 45, no. 32, 11 August 2006 (2006-08-11), pages 5307 - 5311 *
GRIMES J.H. ET AL.: "Solid-phase synthesis of a type II' P-turn peptido-mimetic library", TETRAHEDRON LETTERS, vol. 44, no. 19, 5 May 2003 (2003-05-05), pages 3835 - 3838 *
GROTH T. ET AL.: "N-Terminal Peptide Aldehydes as Electrophiles in Combinatorial Solid Phase Synthesis of Novel Peptide Isosteres", J. COMB. CHEM., vol. 3, no. 1, 2001, pages 45 - 63 *
LI X. ET AL.: "A new ligation method for N- terminal tryptophan-containing peptides using the Pictet-Spengler reaction", TETRAHEDRON LETTERS, vol. 41, no. 21, 29 May 2000 (2000-05-29), pages 4069 - 4073 *
SASAKI T. ET AL.: "N-terminal labeling of proteins by the Pictet-Spengler reaction", BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 18, no. 16, 15 August 2008 (2008-08-15), pages 4550 - 4553 *
TSUBASA SASAKI: "Hemin o Mochiita Hikari Shinwasei Hyoshiki Tanpakushitsu no Tokuiteki Kagaku Hakko Kenshutsu, Oyobi Pictet Spengler Reaction o Mochiita, Kino Tanpakushitsu no Bui Tokuiteki Hyoshiki", HEISEI 19 NENDO SHUSHI RONBUN YOSHI, KOKURITSU DAIGAKU HOJIN TOKYO DAIGAKUIN RIGAKUKEI KENKYUKA KAGAKU SENKO, 12 February 2008 (2008-02-12), pages 71 - 72 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014078733A1 (en) 2012-11-16 2014-05-22 The Regents Of The University Of California Pictet-spengler ligation for protein chemical modification
CN104870423A (en) * 2012-11-16 2015-08-26 加利福尼亚大学董事会 Pictet-spengler ligation for protein chemical modification
EP2920148A1 (en) * 2012-11-16 2015-09-23 The Regents of The University of California Pictet-spengler ligation for protein chemical modification
EP2920148A4 (en) * 2012-11-16 2016-08-10 Univ California Pictet-spengler ligation for protein chemical modification
US9605078B2 (en) 2012-11-16 2017-03-28 The Regents Of The University Of California Pictet-Spengler ligation for protein chemical modification
WO2014194551A1 (en) * 2013-06-06 2014-12-11 中国科学院南海海洋研究所 Biosynthesis gene cluster of marinacarbolines and use thereof
WO2018047197A1 (en) * 2016-09-07 2018-03-15 Indian Institute Of Science Education And Research Bhopal Site-selective peptides and protein labelling and synthesis of homogenous protein conjugates
WO2018189214A1 (en) 2017-04-12 2018-10-18 F. Hoffmann-La Roche Ag A method for labeling of aldehyde containing target molecules
WO2018191389A1 (en) 2017-04-12 2018-10-18 Roche Sequencing Solutions, Inc. A method for sequencing reaction with tagged nucleoside obtained via pictet spengler reaction
US11236386B2 (en) 2017-04-12 2022-02-01 Roche Diagnostics Operations, Inc. Method for labeling of aldehyde containing target molecules
US11293060B2 (en) 2017-04-12 2022-04-05 Roche Sequencing Solutions, Inc. Method for labeling of aldehyde containing target molecules

Also Published As

Publication number Publication date
JP2009298735A (en) 2009-12-24

Similar Documents

Publication Publication Date Title
Ayers et al. Introduction of unnatural amino acids into proteins using expressed protein ligation
WO2009150865A1 (en) Method for production of modified protein and modified protein produced by the method, and protein modification kit
US20150241440A1 (en) Methods and compositions for site-specific labeling of peptides and proteins
EP3212659B1 (en) Means and methods for site-specific functionalization of polypeptides
Sueoka et al. Chemistry‐driven epigenetic investigation of histone and DNA modifications
WO2015107071A1 (en) Genetically encoded spin label
US11890351B2 (en) Chemoselective rapid azo-coupling reaction for bioconjugation
WO2011024887A1 (en) Conjugate containing cyclic peptide and method for producing same
EP2550290A2 (en) Method of modifying a specific lysine
Liang et al. Chemical synthesis of Ub-AMC via ligation of peptide hydrazides
Tolbert et al. Conjugation of glycopeptide thioesters to expressed protein fragments: semisynthesis of glycosylated interleukin-2
US20230295222A1 (en) Conjugation Reagents and Methods Using 1,2-Cyclohexanediones
Yoneda et al. Binding position analysis of target proteins with the use of amidopyrene probes as LA-LDI enhancing tags
Sueoka et al. Personal Account
Plaks et al. Lipoic acid ligase-promoted bioorthogonal protein modification and immobilization
CN109312324B (en) Ribosome display complex and method for producing same
WO2002074950A1 (en) Method of analyzing intermolecular interaction
WO2018104962A1 (en) Hemiaminal-tag for protein labeling and purification
Bastings et al. One-step refolding and purification of disulfide-containing proteins with a C-terminal MESNA thioester
US6897337B2 (en) Site-specific isotopically-labeled proteins, amino acids, and biochemical precursors therefor
WO2002008245A2 (en) Labeled peptides, proteins and antibodies and processes and intermediates useful for their preparation
WO2020067550A1 (en) Compound library and method for producing compound library
US9823254B2 (en) Reversible chemoenzymatic labeling of native and fusion carrier protein motifs
CN117098768A (en) Biologically reactive compounds and methods of use thereof
US20220204554A1 (en) Method for metal-free purification of protein from a protein mixture or a cell lysate with the n-terminus glycine tagging

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09762296

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09762296

Country of ref document: EP

Kind code of ref document: A1