WO2009147816A1 - Heteropoly acid decomposition catalyst and method for manufacturing diesel fuel oil using said catalyst - Google Patents

Heteropoly acid decomposition catalyst and method for manufacturing diesel fuel oil using said catalyst Download PDF

Info

Publication number
WO2009147816A1
WO2009147816A1 PCT/JP2009/002422 JP2009002422W WO2009147816A1 WO 2009147816 A1 WO2009147816 A1 WO 2009147816A1 JP 2009002422 W JP2009002422 W JP 2009002422W WO 2009147816 A1 WO2009147816 A1 WO 2009147816A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
fatty acid
reaction
heteropolyacid
heteropolyacid catalyst
Prior art date
Application number
PCT/JP2009/002422
Other languages
French (fr)
Japanese (ja)
Inventor
片田直伸
畑中翼
太田充生
山田和宏
奥村和
丹羽幹
Original Assignee
国立大学法人鳥取大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人鳥取大学 filed Critical 国立大学法人鳥取大学
Priority to JP2010515758A priority Critical patent/JPWO2009147816A1/en
Publication of WO2009147816A1 publication Critical patent/WO2009147816A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/03Preparation of carboxylic acid esters by reacting an ester group with a hydroxy group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/195Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with vanadium, niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/003Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fatty acids with alcohols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Definitions

  • the present invention relates to a heteropolyacid decomposition catalyst for converting fatty acid glycerides (mainly fatty acid triglycerides) into fatty acid monoesters by transesterification and a method for producing biodiesel fuel using the same.
  • fatty acid glycerides mainly fatty acid triglycerides
  • Non-patent document 1 a method for obtaining fatty acid monoesters (so-called biodiesel) from plant-derived fats and oils (fatty acid triglycerides) by transesterification (1) is promising ( Non-patent document 1, Non-patent document 2).
  • the small-molecule alcohol as a secondary raw material may be natural gas-derived methanol, petroleum-derived ethanol, bioethanol, or the like.
  • CO 2 generated by combustion
  • the amount of CO 2 absorbed by the plant by photosynthesis is zero, which is the most efficient.
  • Even if natural gas or petroleum-derived alcohol is used, since most of the energy is generated from fats and oils, the amount of increase in CO 2 is very small compared to current diesel fuel (light oil).
  • biodiesel requires a special engine or engine modification, whereas biodiesel can be used directly with current diesel engines, per biodiesel weight and cultivated land
  • the energy density per area is large, and it takes a long time to obtain ethanol from a plant using an enzyme, whereas reaction (1) can be carried out at a practical speed if a good catalyst is used. It is.
  • Biodiesel not only has the same performance as the current diesel fuel (diesel oil) but also is superior to diesel oil in that it does not contain sulfur.
  • Reaction (1) proceeds without catalyst under supercritical (very high pressure, high temperature) conditions (Patent Document 1, Non-Patent Document 3), but is not practical because it requires equipment and energy to maintain high pressure and high temperature. . Therefore, conventionally, a homogeneous base catalyst such as KOH has been used in the reaction (1) (Non-patent Document 4).
  • a homogeneous base catalyst such as KOH has been used in the reaction (1) (Non-patent Document 4).
  • the catalyst is dissolved in the raw material solution, and the lower layer containing a large amount of glycerin is removed from the solution obtained after the reaction (containing the product and catalyst) to obtain biodiesel fuel oil.
  • the lower layer contains a catalyst and is a base solution that is harmful to the environment, so it consumes energy and resources such as adding acid to desalinate and incinerate for detoxification.
  • a catalyst and is a base solution that is harmful to the environment, so it consumes energy and resources such as adding acid to desalinate and incinerate for detoxification.
  • Fluthermore local governments use biodiesel from waste tempura oil, for example. When making it outside the chemical factory, measures to use dangerous acids and bases are necessary. That is, since the environmental load of the homogeneous catalyst is high, this causes a drawback.
  • Examples of the solid base include calcium oxide (Non-Patent Document 5, Non-Patent Document 6), alkali-type zeolite (Non-Patent Document 7), alkali-modified alumina (Non-Patent Document 8, Non-Patent Document 9), and the like.
  • the reaction proceeds at the reaction rate, if water or carboxylic acid is mixed in the raw material, dissolution into the solution occurs, and the solid catalyst loses the active component and becomes irreversibly deactivated. Further, when the obtained biodiesel fuel is used as it is for an internal combustion engine, precipitation of inorganic components becomes a problem.
  • Natural vegetable fats and oils and waste tempura oil are used as raw materials for biodiesel fuel production, but water and carboxylic acid are inevitably mixed in both. In order to avoid this, some pretreatment for removing water and carboxylic acid from the raw material of reaction (1) is required. Further, since the solid base catalyst is deactivated by carbon dioxide when exposed to air, a pretreatment of the catalyst is necessary immediately before the reaction. Improvements in solid base catalysts have also been made, but it is difficult to essentially solve these problems.
  • Non-patent Document 10 Since the solid acid catalyst does not have the above problem (Non-patent Document 10), it is considered that practical use is easy if a sufficient reaction rate can be realized. In addition, unlike a homogeneous catalyst, an apparatus for continuously producing biodiesel fuel by a fixed bed tube type flow reaction or a tank type flow reaction is considered to be easily possible. For this purpose, a solid acid catalyst that reaches a sufficient conversion rate within a contact time of about 10 hours is practically required. If this is achieved, it will be easy to place small plants not only in chemical factories but also in local government waste oil collection sites, etc. For the above reasons, a search for a solid acid catalyst that promotes the reaction (1) has been conducted.
  • Non-Patent Document 2 Non-Patent Document 11
  • WO 3 ZrO 2 Non-Patent Document 12
  • sulfated zirconia and acid-type zeolite
  • Patent Document 2 describes that a solid acid catalyst can be used as a catalyst for the ester reaction, but the examples only include acidic ion exchange resins and clays, There is no feasible description for other solid acid catalysts.
  • the present invention converts a fatty acid triglyceride into a fatty acid monoester by a transesterification reaction using a heterogeneous solid acid catalyst, and has a low environmental burden and excellent stability, and has a high conversion or yield.
  • An object of the present invention is to find a method for producing biodiesel fuel using the solid acid catalyst.
  • fatty acid triglycerides contained in plant-derived oils and fats are converted to fatty acid monoesters by transesterification with alcohol at a temperature of 723 K to 823 K. It has been found that by using a complex containing a Keggin-type heteropolyacid decomposition catalyst containing niobium that has been subjected to a calcination treatment and an inorganic support, a good effect can be obtained for the transesterification reaction of the above-mentioned problem. As a result, the inventors have found a method for producing a good biodiesel fuel by using the present invention, and have made the present invention.
  • a catalyst having high catalytic activity and not dissolved during the target transesterification can be obtained by calcining the Keggin type heteropolyacid catalyst at a temperature of 723 K to 823 K. it can.
  • HPNbW / NbW (H 4 PNbW 11 O 40 40wt% / WO 3 36wt% -Nb 2 O 5 24wt%, 773K fired) in a batch reaction with, is a graph showing the relationship between the reaction time and the ethyl oleate yield . It is a diagram showing a relationship between firing temperature and ethyl yield oleate HPNbW / NbW in a batch-type reaction (H 4 PNbW 11 O 40 40wt % / WO 3 36wt% -Nb 2 O 5 24wt%).
  • HPNbW / NbW in a batch-type reaction (H 4 PNbW 11 O 40 40wt % / WO 3 36wt% -Nb 2 O 5 24wt%, 773K firing) is a diagram showing the relationship between pre-treatment temperature and ethyl yield oleate.
  • the relationship between ethanol / triolein mol ratio and ethyl oleate yield in batch reaction using HPNbW / NbW (H 4 PNbW 11 O 40 40 wt% / WO 3 36 wt% -Nb 2 O 5 24 wt%, 773K calcined)
  • Keggin-type heteropolyacid catalyst and heteropolyacid catalyst / support complex The first embodiment of the present application has the chemical formula:
  • X is a single or plural kinds of atoms selected from a hydrogen atom or an alkali metal atom, P is phosphorus, Nb is niobium, W is tungsten, and O is an oxygen atom.
  • the present invention relates to a heteropolyacid catalyst / support complex calcined at a temperature of 723 K to 823 K for conversion to a fatty acid monoester by an ester exchange reaction.
  • the Keggin heteropolyacid catalyst according to this embodiment is modified to a heteropolyacid decomposition catalyst by baking the Keggin heteropolyacid catalyst at a temperature of 723K to 823K.
  • Heteropolyacid is a polymer polyoxoacid (Y 1 M m O n ) x- type polyacid in which a heteroelement is inserted into a metal oxoacid skeleton.
  • Y represents a hetero element
  • M represents a poly element
  • O represents oxygen.
  • Keggin type is one of the crystal structures of heteropolyacids and is distinguished from other “Dawson type” crystal structures.
  • Heteropolyacid decomposition catalyst is a heteropolyacid-decomposed post-calcination heteropolyacid in which a part or the whole of the crystal structure is changed from an original structure to an amorphous structure by thermal decomposition. It refers to an acid catalyst (K. Okumura, et al., J. Catal., 245, 75 (2007)).
  • the catalyst used in the transesterification reaction is more preferably in the form of a “heteropolyacid catalyst / support complex” in which a Keggin type heteropolyacid is supported on a support. This is because the separation of the catalyst is facilitated in the reaction by the tank reactor, and in the tubular reactor, the catalyst is filled in the reactor and is easily fixed.
  • the heteropolyacid that is a raw material of the heteropolyacid catalyst according to the present embodiment is a Keggin type heteropolyacid containing niobium as a poly element,
  • X represents a single atom or plural kinds of atoms selected from a hydrogen atom or an alkali metal atom, and preferably a hydrogen atom.
  • P represents phosphorus
  • Nb represents niobium
  • W represents tungsten
  • O represents an oxygen atom.
  • the alkali metal atom lithium, sodium, potassium, rubidium, cesium, and francium of Group 1A of the periodic table are selected.
  • the heteropolyacids selected in the present embodiment are not limited to those having substantially the same composition ratio, and similar Keggin-type heteropolyacids may have the same or higher effects. It does not exclude acid catalysts.
  • the heteropolyacid catalyst / support complex according to the present embodiment is a complex comprising the above heteropolyacid catalyst and an inorganic carrier supporting the heteropolyacid catalyst.
  • the inorganic carrier supporting the heteropolyacid may be any inorganic carrier as long as it does not inhibit the transesterification reaction, is stable to the reaction, and functions as a carrier. , Nb 2 O 5 and WO 3 (hereinafter referred to as “Nb 2 O 5 —WO 3 ” or “NbW”). This is because dissolution or decomposition of the catalyst after the catalytic reaction can be prevented (see Example Table 3).
  • the heteropolyacid catalyst / support complex is most preferably an “HPNbW / NbW” type complex using a combination of “HPNbW” type heteropolyacid and “NbW” inorganic carrier as raw materials.
  • the preferred heteropolyacid catalyst / support complex (HPNbW / NbW) described above is
  • a Keggin type heteropolyacid catalyst for example, H 4 PNbW 11 O 40
  • an inorganic carrier raw material for example, WO 3 , Nb 2 O 5 , niobium oxalate and ammonium tungstate
  • a heteropolyacid catalyst / support complex comprising a heteropolyacid decomposition catalyst prepared by a preparation method comprising:
  • the heteropolyacid decomposition catalyst has a structure supported not only on the surface of the inorganic carrier but also inside the carrier.
  • This preparation method is preferable in that the bond between the supported heteropolyacid and the carrier becomes strong and the durability is excellent.
  • (I) a step of impregnating an inorganic carrier with a Keggin-type heteropolyacid in the solution ii) a step of drying the solution; (Iii) a step of firing at a specific temperature;
  • heteropolyacid catalyst / support complex including a heteropolyacid decomposition catalyst prepared by a preparation method comprising:
  • the heteropolyacid decomposition catalyst has a structure supported on the surface of the inorganic carrier.
  • a preparation method other than the above may be used as long as the desired heteropolyacid catalyst / support complex is obtained.
  • the specific firing temperature in the firing step is a temperature around 723K to 823K, preferably 760K to 790K, and most preferably around 773K.
  • the composition ratio of HPNbW / NbW is such that the raw material before the preparation is a Keggin heteropolyacid (H 3 + n PNb n W 12-n O 40 ) is 30% to 50% by weight, WO 3 of the inorganic carrier raw material is 25% to 45% by weight, and Nb 2 O 5 of the inorganic carrier raw material is 15% to 35% by weight. % Range is preferred.
  • H 3 + n PNb n W 12-n O 40 is in the range of 35 wt% to 45 wt%
  • WO 3 is 32 wt% to 40 wt%
  • Nb 2 O 5 is in the range of 20 wt% to 28 wt%.
  • the weight ratio of the heteropolyacid catalyst is an amount in the vicinity of 40% by weight with respect to the whole heteropolyacid catalyst / support complex showing the highest catalytic activity.
  • FIG. 6 of an example described later describes comparative experimental data that is the basis for the numerical range (see the example).
  • Raw material alcohol As the alcohol used in the present invention, an alcohol having 1 to 4 carbon atoms, for example, methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, t-butyl alcohol or the like is preferably used. In particular, it is preferable to use methanol or ethanol in terms of reactivity and economy.
  • the raw material alcohol may be of mineral origin or biological origin.
  • the raw material used for this embodiment is fats and oils and contains fatty acid glyceride.
  • the fatty acid glyceride is a glyceride of a saturated or unsaturated aliphatic carboxylic acid, and the carbon chain of the carboxylic acid moiety may have any length, but preferably has a carboxylic acid moiety having C14 to C24 carbons.
  • Fatty acid triglyceride In general, fatty acid diglycerides and fatty acid monoglycerides mixed in fats and oils together with fatty acid triglycerides as main components can also be used as raw materials for the transesterification reaction of the present application in the same manner as fatty acid triglycerides.
  • oils and fats used in the present invention include soybean oil, corn oil, coconut oil, olive oil, peanut oil, sesame oil, sunflower oil, linseed oil, palm oil, rapeseed oil, castor oil, coconut oil, and other plant-derived oils and fats, Animal fats and oils such as beef tallow, pork tallow, whale oil and fish oil, synthetic fats and oils, and mixtures thereof.
  • the content ratio of the fatty acid triglyceride contained in the oil and fat may be any ratio.
  • the used waste oil of these fats and oils can be selected as an effective raw material especially as an environmental measure. If the fats and oils are plant or animal-derived fats and oils, the consumption of fossil fuels can be reduced by the biodiesel fuel oil of the product oil.
  • a method for producing a fatty acid monoester and a method for producing a biodiesel fuel oil The second embodiment of the present invention is a method for producing a fatty acid monoester from a fatty acid glyceride and an alcohol in the presence of the above heteropolyacid catalyst / support complex. About.
  • a heatable reactor containing the above heteropolyacid catalyst / support complex, an oil and fat containing fatty acid glycerides, and a raw alcohol are introduced into the reactor.
  • a transesterification apparatus for converting fatty acid glycerides into fatty acid monoesters can be used.
  • the reactor may be a batch tank reactor, a fixed bed flow tube reactor, or a tank flow reactor, but in consideration of industrial practicality, the fixed bed may be used.
  • a continuous flow tubular reactor or a tank flow reactor is preferred.
  • the raw alcohol and the raw fat / oil are preferably introduced into the reactor so that the molar ratio of raw alcohol / fatty acid glyceride is in the range of 6 to 50 (in the alcohol / fatty acid group molar ratio is in the range of 2 to 17). More preferably, it is in the range of 9-30 (in the alcohol / fatty acid group mol ratio, in the range of 3-10), and most preferably in the range of 12-15 (in the alcohol / fatty acid group mol ratio, in the range of 4-5. ).
  • FIG. 7 shows a reference diagram of the transesterification reactor (10) in the case of a fixed bed flow type tubular reactor.
  • the transesterification reactor (10) has a pump (13) capable of introducing each raw material into a reaction tube (15) from a tank (11) containing raw oil and fat and a tank (12) containing raw material alcohol. ), A pressure gauge (14), and a device including a pressure valve.
  • the raw material tank and the raw material introduction device may have any structure.
  • the transesterification reaction is monitored by a pressure gauge (14), a flow meter attached to the reactor, a thermometer, etc., so that the introduction of each raw material can be operated by a pressure valve, a back pressure valve (18), etc.
  • An apparatus is preferred.
  • reaction tube (15) of the reactor (10) is equipped with an electric furnace (17).
  • the electric furnace and the heating method using the electric furnace may be any structure and method as long as the entire reaction tube (reactor) or a specific part can be kept at a high temperature safely and stably.
  • the transesterification reactor (10) is a reaction tube (15) of a tubular reactor as shown in FIG. 7, the heteropolyacid catalyst (16) filled in the reaction tube is supported on an inorganic carrier.
  • a heteropolyacid catalyst / support complex is particularly preferred. This is to prevent the catalyst from dissolving in the liquid phase during the reaction, and to facilitate handling by filling and fixing the catalyst in the reaction tube.
  • the heating temperature of the reactor in the transesterification reaction apparatus is appropriately selected according to the relationship between the catalyst, the raw material fat and the raw material alcohol, and is an HPNbW / NbW type heteropolyacid catalyst / support complex, where the raw fat and oil is a fatty acid triglyceride
  • the temperature is preferably 350 K to 580 K (see Example, FIG. 8).
  • the third embodiment of the present application relates to a method for producing diesel fuel oil including a step of converting fatty acid glycerides contained in fats and oils into fatty acid monoesters using the above heteropolyacid catalyst / carrier complex.
  • the raw material fats and oils may be any fats and oils as long as they contain fatty acid glycerides such as fatty acid triglycerides.
  • Biodiesel fuel oil can be produced by selecting oils derived from plants or animals.
  • used waste oil can be used as raw material fats and oils in the range in which the contaminants and moisture contained in the fats and oils do not hinder the operation in terms of the catalytic activity and flow rate of the transesterification reaction apparatus.
  • the purpose is mainly to obtain a fatty acid monoester corresponding to a fraction of diesel fuel oil.
  • production of kerosene containing abundant oxygen atoms Can also be used.
  • the structure of the heteropolyacid catalyst is changed by calcining the Keggin type heteropolyacid catalyst at a temperature of 723 K to 823 K, and the transesterification reaction between the fatty acid glyceride and the alcohol is performed.
  • a catalyst having high catalytic activity can be obtained.
  • by supporting a heteropolyacid catalyst on an inorganic carrier to form a heteropolyacid catalyst / carrier complex it is possible to obtain a catalyst that has high catalytic activity and does not dissolve during the intended transesterification reaction.
  • the catalyst can be easily separated from the produced oil by the transesterification reaction apparatus provided with the heteropolyacid catalyst or the heteropolyacid catalyst / support complex, and for ethanol distillation and circulation.
  • the energy required can be greatly reduced. Therefore, a practical catalytic reaction can be performed by the transesterification reaction apparatus.
  • the process of converting the fatty acid glyceride contained in fats and oils (especially biologically derived fats and oils) into fatty acid monoester by using said heteropolyacid catalyst or heteropolyacid catalyst / carrier complex is included. It is a method for producing diesel fuel oil, and a method for producing an environmental load can be provided.
  • Batch type reaction (batch type tank type reaction) (1) Catalyst The catalyst used is as described in Table 1.
  • Triolein (Tokyo Kasei) with relatively few impurities was used as the raw material fat.
  • Table 2 The composition of each component contained in Triolein is as shown in Table 2.
  • triolein contained in the raw material will be expressed as “OOO”, dioleo-renolinoin as “OOL”, diolein as “OO”, and oleorelinoline as “OL”.
  • ethyl decanoate (internal standard substance) was added to the product solution, diluted with an analysis solvent (2-propanol + hexane, volume ratio 5: 4), and solid components were separated by filtration. The filtrate was analyzed by liquid chromatography.
  • the catalyst is treated for 1 hour at a predetermined temperature in a nitrogen stream in the glass tube, then the cock at the inlet and outlet of the glass tube is closed and allowed to cool, and ethanol is trioated as described above in a nitrogen atmosphere. Sealed together with rain in an autoclave and reacted in the same manner.
  • the reaction operation which changed only the quantity of ethanol suitably was performed similarly.
  • HPNbW / NbW (catalyst number 1), Nb 2 O 5 —WO 3 (catalyst number 4), zeolite ⁇ (catalyst number 12), silica alumina (catalyst number 15), sulfated zirconia (catalyst number 16), silica-supported doson
  • the type heteropolyacid (Catalyst Nos. 9 to 11) and the Keggin type heteropolyacid Cs salt (Catalyst No. 8) were not dissolved as far as they were visually recognized, but the uncalcined heteropolyacid (Catalyst No. 2) was dissolved.
  • HPNbW / NbW (Catalyst No. 1)
  • Keggin-type heteropolyacid Cs salt (Catalyst No. 8)
  • sulfated zirconia (Catalyst No. 16)
  • the other solid catalysts showed little activity.
  • the activities of HPNbW / NbW and Keggin type heteropolyacid Cs salt were the highest.
  • Keggin heteropolyacid Cs salt could be filtered in the examples described in Table 3, this material usually consists of particles smaller than 1 ⁇ m in diameter, suspended in many solutions without precipitation, and industrial It is known that it is difficult to filter using a filter cloth (N. Horita, M. Yoshimune, Y. Kamiya and T. Okuhara, Chem. Lett., 34, 1376 (2005). ). For this reason, there is no advantage as a solid acid catalyst in a fine particle state, and it is not suitable as a catalyst of the present invention. Accordingly, HPNbW / NbW (Catalyst No.
  • HPNbW (catalyst number 2), which is a raw material of the heteropolyacid catalyst / support complex HPNbW / NbW, showed high activity, but was completely dissolved after the reaction was completed. It is not suitable as a catalyst for the transesterification reaction to be converted into Various heteropolyacids, which are similar compounds, also showed activity but were completely dissolved.
  • HPNbW (Catalyst No. 3) calcined without an inorganic carrier is inferior to HPNbW / NbW (Catalyst No. 1) in that it is partially dissolved during the reaction, but has high activity. It can be used for exchange reactions.
  • Nb 2 O 5 —WO 3 (catalyst number 4), which is an HPNbW / NbW carrier, was inactive as a catalyst.
  • FIG. 1 shows the relationship between the reaction time and the ethyl oleate yield in a batch reaction using HPNbW / NbW (H 4 PNbW 11 O 40 40 wt% / WO 3 36 wt% -Nb 2 O 5 24 wt%, 773 K calcination).
  • HPNbW / NbW H 4 PNbW 11 O 40 40 wt% / WO 3 36 wt% -Nb 2 O 5 24 wt%, 773 K calcination.
  • the ethyl oleate yield increased slowly to about 65%.
  • the catalytic activity of HPNbW / NbW strongly depended on the calcination temperature, and the activity was low regardless of whether the calcination temperature was low or high with 773K as the maximum (FIG. 2).
  • the measurement was carried out by changing the pretreatment temperature while keeping the firing temperature constant at 773K. The activity was shown when the pretreatment temperature was lower than 773K, but the activity decreased at 823K (FIG. 3).
  • the activity of the present catalyst is sensitive to the calcination temperature (thermal history), and the catalyst activity largely changes with the peak at around 773K. When pretreatment is performed at a temperature higher than this temperature, the thermal change proceeds and the activity is lost.
  • HPNbW had a high activity in the range of 30 to 50% by weight of the total weight, and the composition ratio showing the highest activity was around 40% by weight (Fig. 6).
  • HPNbW was 100% (catalyst number 3)
  • the catalyst activity was high, but a part of the catalyst was dissolved in the liquid phase.
  • the optimal composition ratio of HPNbW is around 40% by weight with respect to the total weight of the heteropolyacid catalyst / support complex.
  • the reaction tube was kept at a predetermined reaction temperature with an electric furnace, and the pressure in the system was kept at 0.4 MPa (gauge pressure 0.3 MPa) at the start of circulation by a back pressure valve at the outlet. Shortly after the start of distribution, the pressure rose to about 0.6 MPa due to the pressure loss of the catalyst and the filter.
  • a filter paper (5C, retention particle size 1 ⁇ m) is set at the catalyst outlet, and an empty reaction tube (inner diameter 4 mm, length 14 cm, front and rear column filter 2 ⁇ m)
  • a 5C filter paper having a retention particle diameter of 1 ⁇ m was disposed to separate the solid and the liquid. The exit liquid was sampled and analyzed by liquid chromatography.
  • FIG. 8 shows the results of a fixed bed flow-type reaction using HPNbW / NbW of the heteropolyacid catalyst / support complex.
  • (A) shows the time-dependent change results of the conversion rate, yield, and mass balance at 373 K, and (b) at 393 K at a slightly elevated reaction temperature.
  • the yield of ethyl oleate was about 80% in the initial stage, but it rapidly decreased gradually and gradually reached about 20% after 150 hours.
  • the ethyl oleate yield was slightly higher. Thus, although the reaction rate was reduced, the activity was observed even after one week.
  • a catalyst having high catalytic activity and not dissolved during the target transesterification by calcining the Keggin type heteropolyacid catalyst at a temperature of 723 K to 823 K, and its solid acid catalyst It is possible to provide a method for producing biodiesel fuel with a low environmental load using

Abstract

Disclosed is a heteropoly acid catalyst/carrier composite prepared by sintering a carrier composed of Nb2O5 and WO3 at a temperature in the range of 723‑823 K, and a Keggin type of heteropoly acid catalyst with which it is possible to lower the environmental load and easily separate the solid acid catalyst during manufacture, and that can be achieved at an economic reaction rate without wasting resources or energy when manufacturing diesel fuel oil by using a solid acid catalyst of a heterogeneous system to convert fatty acid triglycerides in oil and grease into fatty acid monoesters with an ester exchange reaction. Also disclosed is a fatty acid monoester manufacturing method using said composite.

Description

ヘテロポリ酸分解触媒及びそれを用いるディーゼル燃料油の製造方法Heteropoly acid decomposition catalyst and method for producing diesel fuel oil using the same
 本発明は脂肪酸グリセリド(主に、脂肪酸トリグリセリド)をエステル交換反応により脂肪酸モノエステルに転化するためのヘテロポリ酸分解触媒及びそれを用いるバイオディーゼル燃料の製造方法に関する。 The present invention relates to a heteropolyacid decomposition catalyst for converting fatty acid glycerides (mainly fatty acid triglycerides) into fatty acid monoesters by transesterification and a method for producing biodiesel fuel using the same.
 COの増加抑制のためにバイオ燃料の実用化が求められ、中でも植物由来の油脂(脂肪酸トリグセリド)からエステル交換反応(1)によって脂肪酸モノエステル(いわゆるバイオディーゼル)を得る方法が有望である(非特許文献1、非特許文献2)。副原料の小分子アルコールとしては天然ガス由来のメタノール、石油由来のエタノール、バイオエタノールなどが考えられ、バイオエタノールを用いた場合には理論的にはCO増加量(=燃焼によるCO生成量-光合成による植物体へのCO吸収量)がゼロであり最も効率的である。天然ガスあるいは石油由来のアルコールを用いたとしても、エネルギーの大半は油脂から発生するので、現行のディーゼル燃料(軽油)に比べてCO増加量は非常に小さい。  In order to suppress the increase in CO 2 , biofuels are required to be put to practical use. In particular, a method for obtaining fatty acid monoesters (so-called biodiesel) from plant-derived fats and oils (fatty acid triglycerides) by transesterification (1) is promising ( Non-patent document 1, Non-patent document 2). The small-molecule alcohol as a secondary raw material may be natural gas-derived methanol, petroleum-derived ethanol, bioethanol, or the like. In the case of using bioethanol, theoretically, an increase in CO 2 (= CO 2 generated by combustion) -The amount of CO 2 absorbed by the plant by photosynthesis is zero, which is the most efficient. Even if natural gas or petroleum-derived alcohol is used, since most of the energy is generated from fats and oils, the amount of increase in CO 2 is very small compared to current diesel fuel (light oil).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 化1は、脂肪酸トリグリセリド+小分子アルコール→脂肪酸モノエステル+グリセリン、の反応を示す。例えば、x=17、y=33、m=2、n=5ならトリオレイン(パーム油などの主成分)とエタノールからオレイン酸エチルを作る反応となる。 Chemical formula 1 shows the reaction of fatty acid triglyceride + small molecule alcohol → fatty acid monoester + glycerin. For example, if x = 17, y = 33, m = 2, and n = 5, the reaction is to make ethyl oleate from triolein (main component such as palm oil) and ethanol.
 バイオエタノールと比較してバイオディーゼルの利点を挙げると、バイオエタノールが専用のエンジンないしエンジンの改造を要するのに対して、バイオディーゼルは現行のディーゼルエンジンでそのまま使えること、バイオディーゼルの重量当たりおよび耕地面積あたりのエネルギー密度が多いこと、植物体からエタノールを得るためには酵素を用いて長時間を要するのに対し、反応(1)はよい触媒を用いれば実用的な速度で実施可能であることである。バイオディーゼルは現行のディーゼル燃料(軽油)と同等の性能を持つばかりか、硫黄を含まない点で軽油よりも優れた燃料である。 The advantages of biodiesel over bioethanol are that bioethanol requires a special engine or engine modification, whereas biodiesel can be used directly with current diesel engines, per biodiesel weight and cultivated land The energy density per area is large, and it takes a long time to obtain ethanol from a plant using an enzyme, whereas reaction (1) can be carried out at a practical speed if a good catalyst is used. It is. Biodiesel not only has the same performance as the current diesel fuel (diesel oil) but also is superior to diesel oil in that it does not contain sulfur.
 反応(1)は超臨界(非常に高圧、高温)条件では無触媒で進行するが(特許文献1、非特許文献3)、高圧・高温を保つための装置やエネルギーが必要となり実用的ではない。そこで従来、反応(1)にはKOHのような均一系塩基触媒が用いられてきた(非特許文献4)。均一系塩基触媒を用いる場合、原料溶液に触媒を溶解させ、反応後に得られた溶液(生成物、触媒が含まれる)のうちグリセリンが多く含まれる下層を取り除いてバイオディーゼル燃料油を得る。下層は触媒を含み、環境に有害な塩基溶液なので、無害化のために酸を加えて脱塩して焼却するなどエネルギーや資源を消費し、さらには、例えば自治体などが廃天ぷら油からバイオディーゼルを化学工場の外で作る際には危険な酸や塩基を使うための対策が必要となる。つまり、均一系触媒の環境負荷が高いのでこれによる欠点が生じる。 Reaction (1) proceeds without catalyst under supercritical (very high pressure, high temperature) conditions (Patent Document 1, Non-Patent Document 3), but is not practical because it requires equipment and energy to maintain high pressure and high temperature. . Therefore, conventionally, a homogeneous base catalyst such as KOH has been used in the reaction (1) (Non-patent Document 4). When a homogeneous base catalyst is used, the catalyst is dissolved in the raw material solution, and the lower layer containing a large amount of glycerin is removed from the solution obtained after the reaction (containing the product and catalyst) to obtain biodiesel fuel oil. The lower layer contains a catalyst and is a base solution that is harmful to the environment, so it consumes energy and resources such as adding acid to desalinate and incinerate for detoxification.Furthermore, local governments use biodiesel from waste tempura oil, for example. When making it outside the chemical factory, measures to use dangerous acids and bases are necessary. That is, since the environmental load of the homogeneous catalyst is high, this causes a drawback.
 そこで溶液からの分離が容易な固体触媒の利用が試みられている。固体触媒として従来提案されているのは、大別して固体塩基と固体酸の2つのグループである。 Therefore, an attempt has been made to use a solid catalyst that can be easily separated from the solution. Conventionally proposed as solid catalysts are roughly divided into two groups, solid bases and solid acids.
 固体塩基としては、酸化カルシウム(非特許文献5、非特許文献6)、アルカリ型ゼオライト(非特許文献7)、アルカリ修飾アルミナ(非特許文献8、非特許文献9)等が挙げられ、良好な反応速度で反応が進むが、原料中に水やカルボン酸が混入していると溶液への溶解が起き、固体触媒としては活性成分を失って不可逆的に失活する。また、得られたバイオディーゼル燃料をそのまま内燃機関に使用したときには無機成分の析出が問題となる。バイオディーゼル燃料製造の原料としては天然の植物油脂や廃天ぷら油などが用いられるが、どちらにも水やカルボン酸の混入は避けられない。これを避けるためには、反応(1)の原料から水やカルボン酸を除去するための何らかの前処理が必要となる。また固体塩基触媒は空気に触れると二酸化炭素によって失活するので、反応の直前に触媒の前処理が必要である。固体塩基触媒の改良も行われてきているが、これらの問題点を本質的に解決するのは困難である。 Examples of the solid base include calcium oxide (Non-Patent Document 5, Non-Patent Document 6), alkali-type zeolite (Non-Patent Document 7), alkali-modified alumina (Non-Patent Document 8, Non-Patent Document 9), and the like. Although the reaction proceeds at the reaction rate, if water or carboxylic acid is mixed in the raw material, dissolution into the solution occurs, and the solid catalyst loses the active component and becomes irreversibly deactivated. Further, when the obtained biodiesel fuel is used as it is for an internal combustion engine, precipitation of inorganic components becomes a problem. Natural vegetable fats and oils and waste tempura oil are used as raw materials for biodiesel fuel production, but water and carboxylic acid are inevitably mixed in both. In order to avoid this, some pretreatment for removing water and carboxylic acid from the raw material of reaction (1) is required. Further, since the solid base catalyst is deactivated by carbon dioxide when exposed to air, a pretreatment of the catalyst is necessary immediately before the reaction. Improvements in solid base catalysts have also been made, but it is difficult to essentially solve these problems.
 固体酸触媒には上のような問題はないので(非特許文献10)、充分な反応速度を実現できれば実用化は容易と考えられる。また均一系触媒とは異なり、固定床管型流通反応あるいは槽型流通反応で連続的にバイオディーゼル燃料を製造する装置も容易に可能となると考えられる。そのためには、実用的には接触時間10時間程度以内で充分な転化率に達する固体酸触媒が必要である。これが達成されれば、化学工場の中だけでなく、自治体の廃油回収現場などに小さなプラントを置くことも容易となり、極めて汎用性が広いと考えられる。以上の理由で、反応(1)を促進する固体酸触媒の探索が行われている。固体酸としては種々の物質が知られているが、反応(1)の反応で報告されている例は酸性イオン交換樹脂(特許文献2、非特許文献11)、WOZrO(非特許文献12)、硫酸化ジルコニア、酸型ゼオライト(非特許文献13、非特許文献14)である。いずれも活性が低く、実用的ではない。 Since the solid acid catalyst does not have the above problem (Non-patent Document 10), it is considered that practical use is easy if a sufficient reaction rate can be realized. In addition, unlike a homogeneous catalyst, an apparatus for continuously producing biodiesel fuel by a fixed bed tube type flow reaction or a tank type flow reaction is considered to be easily possible. For this purpose, a solid acid catalyst that reaches a sufficient conversion rate within a contact time of about 10 hours is practically required. If this is achieved, it will be easy to place small plants not only in chemical factories but also in local government waste oil collection sites, etc. For the above reasons, a search for a solid acid catalyst that promotes the reaction (1) has been conducted. Various substances are known as solid acids, but examples reported in the reaction (1) include acidic ion exchange resins (Patent Document 2, Non-Patent Document 11), WO 3 ZrO 2 (Non-Patent Document). 12), sulfated zirconia, and acid-type zeolite (Non-Patent Document 13, Non-Patent Document 14). Both have low activity and are not practical.
 先行特許文献(特許文献2)はエステル反応の触媒として固体酸触媒を用いることができることが記載されているが、実施例には、酸性イオン交換樹脂と粘土が挙げられているのみであって、その他の固体酸触媒については実施可能な記載はなされていない。 The prior patent document (Patent Document 2) describes that a solid acid catalyst can be used as a catalyst for the ester reaction, but the examples only include acidic ion exchange resins and clays, There is no feasible description for other solid acid catalysts.
 このように、反応(1)の反応を生成物からの分離が容易な固体酸触媒を用いて実用的な速度で行った例はなく(非特許文献15、非特許文献16)、バイオディーゼルを製造するに当たり、資源やエネルギーを無駄に費やさず、環境負荷が低く、かつ実用的な速度で行う方法は知られていない。 Thus, there is no example which performed reaction (1) reaction at a practical speed using the solid acid catalyst with which separation from a product is easy (nonpatent literature 15, nonpatent literature 16). In manufacturing, there is no known method that does not waste resources and energy, has a low environmental impact, and performs at a practical speed.
特開2008-7658号公報JP 2008-7658 A 特開平6-313188号公報JP-A-6-313188
 本願発明は、不均一系の固体酸触媒を用いて脂肪酸トリグリセリドをエステル交換反応によって脂肪酸モノエステルに変換し、環境負荷が低く、安定性に優れる、高い転化率或いは収率を有する固体酸触媒と、その固体酸触媒を用いるバイオディーゼル燃料の製造方法を見出すことを目的としている。 The present invention converts a fatty acid triglyceride into a fatty acid monoester by a transesterification reaction using a heterogeneous solid acid catalyst, and has a low environmental burden and excellent stability, and has a high conversion or yield. An object of the present invention is to find a method for producing biodiesel fuel using the solid acid catalyst.
 本願発明者らは、上記課題を解決するために鋭意研究した結果、植物由来の油脂に含まれる脂肪酸トリグリセリドをアルコールとのエステル交換反応によって脂肪酸モノエステルに変換するために、723K~823Kの温度で焼成処理されたニオブを含むケギン型ヘテロポリ酸分解触媒と無機担体を含む複合体を用いることによって、上記課題のエステル交換反応に対して良好な効果を得ることができることを見出し、さらに、当該複合体を使用することによる良好なバイオディーゼル燃料の製造方法を見出し、本発明をなすに至った。 As a result of diligent research to solve the above-mentioned problems, the present inventors have found that fatty acid triglycerides contained in plant-derived oils and fats are converted to fatty acid monoesters by transesterification with alcohol at a temperature of 723 K to 823 K. It has been found that by using a complex containing a Keggin-type heteropolyacid decomposition catalyst containing niobium that has been subjected to a calcination treatment and an inorganic support, a good effect can be obtained for the transesterification reaction of the above-mentioned problem. As a result, the inventors have found a method for producing a good biodiesel fuel by using the present invention, and have made the present invention.
 すなわち、本発明によれば、ケギン型ヘテロポリ酸触媒を723K~823Kの温度で焼成処理することにより、高い触媒活性を有し、かつ目的のエステル交換反応を行う際に溶解しない触媒を得ることができる。 That is, according to the present invention, a catalyst having high catalytic activity and not dissolved during the target transesterification can be obtained by calcining the Keggin type heteropolyacid catalyst at a temperature of 723 K to 823 K. it can.
HPNbW/NbW(HPNbW1140 40wt%/WO 36wt%-Nb 24wt%、773K焼成)を用いたバッチ反応における、反応時間とオレイン酸エチル収率の関係を示す図である。 HPNbW / NbW (H 4 PNbW 11 O 40 40wt% / WO 3 36wt% -Nb 2 O 5 24wt%, 773K fired) in a batch reaction with, is a graph showing the relationship between the reaction time and the ethyl oleate yield . バッチ式反応におけるHPNbW/NbW(HPNbW1140 40wt%/WO 36wt%-Nb 24wt%)の焼成温度とオレイン酸エチル収率の関係を示す図である。It is a diagram showing a relationship between firing temperature and ethyl yield oleate HPNbW / NbW in a batch-type reaction (H 4 PNbW 11 O 40 40wt % / WO 3 36wt% -Nb 2 O 5 24wt%). バッチ式反応におけるHPNbW/NbW(HPNbW1140 40wt%/WO 36wt%-Nb 24wt%、773K焼成)の前処理温度とオレイン酸エチル収率の関係を示す図である。HPNbW / NbW in a batch-type reaction (H 4 PNbW 11 O 40 40wt % / WO 3 36wt% -Nb 2 O 5 24wt%, 773K firing) is a diagram showing the relationship between pre-treatment temperature and ethyl yield oleate. HPNbW/NbW(HPNbW1140 40wt%/WO 36wt%-Nb 24wt%、773K焼成)を用いたバッチ反応における、エタノール/トリオレインmol比とオレイン酸エチル収率の関係を示す図である。The relationship between ethanol / triolein mol ratio and ethyl oleate yield in batch reaction using HPNbW / NbW (H 4 PNbW 11 O 40 40 wt% / WO 3 36 wt% -Nb 2 O 5 24 wt%, 773K calcined) FIG. 触媒なし(無触媒)の場合と、HPNbW/NbW(HPNbW1140 40wt%/WO 36wt%-Nb 24wt%、773K焼成)を触媒とする場合のバッチ式反応(反応時間8h)におけるエタノール/トリオレインmol比15,50でのオレイン酸エチル収率の比較を示す図である。Batch reaction (reaction time) in the case of using no catalyst (no catalyst) and HPNbW / NbW (H 4 PNbW 11 O 40 40 wt% / WO 3 36 wt% -Nb 2 O 5 24 wt%, 773 K calcined) It is a figure which shows the comparison of the ethyl oleate yield in ethanol / triolein molar ratio 15,50 in 8h). バッチ式反応において、HPNbW/NbWに占めるHPNbW1140の重量比率とオレイン酸エチル収率の関係(NbとWOの重量比は4:6、焼成温度は773Kで一定)を示す図である。In batch reaction, the relationship between the weight ratio of H 4 PNbW 11 O 40 in HPNbW / NbW and the yield of ethyl oleate (weight ratio of Nb 2 O 5 and WO 3 is 4: 6, firing temperature is constant at 773K) FIG. 固定床流通式反応に用いたエステル交換反応装置を示す参考図である。It is a reference figure which shows the transesterification reaction apparatus used for the fixed bed flow-type reaction. HPNbW/NbWを触媒とする固定床流通反応におけるトリオレイン転化率、収率、物質収支の経時変化を示す図である。(a)反応温度377K、(b)反応温度394Kである。It is a figure which shows the time-dependent change of the triolein conversion, yield, and mass balance in the fixed bed flow reaction which uses HPNbW / NbW as a catalyst. (A) Reaction temperature is 377K, (b) Reaction temperature is 394K.
 ・ケギン型ヘテロポリ酸触媒及びヘテロポリ酸触媒/担体複合体
 本願の第1の実施態様は、化学式:
Keggin-type heteropolyacid catalyst and heteropolyacid catalyst / support complex The first embodiment of the present application has the chemical formula:
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
[上式中、Xは、水素原子又はアルカリ金属原子から選択される単一又は複数種の原子であり、Pはリン、Nbはニオブ、Wはタングステン、Oは酸素原子である。] [In the above formula, X is a single or plural kinds of atoms selected from a hydrogen atom or an alkali metal atom, P is phosphorus, Nb is niobium, W is tungsten, and O is an oxygen atom. ]
で表される組成であって、nが0.8から2.2の範囲であるケギン型ヘテロポリ酸触媒と、Nb及びWOからなる担体の、油脂に含まれる脂肪酸グリセリドをアルコールとのエステル交換反応によって脂肪酸モノエステルに転化するための、723K~823Kの温度で焼成処理されたヘテロポリ酸触媒/担体複合体に関する。 And a fatty acid glyceride contained in fats and oils of a Keggin-type heteropolyacid catalyst having n in the range of 0.8 to 2.2 and a carrier consisting of Nb 2 O 5 and WO 3 The present invention relates to a heteropolyacid catalyst / support complex calcined at a temperature of 723 K to 823 K for conversion to a fatty acid monoester by an ester exchange reaction.
 本実施態様に係るケギン型ヘテロポリ酸触媒は、723K~823Kの温度でケギン型ヘテロポリ酸触媒を焼成処理されることによって、ヘテロポリ酸分解触媒に変性する。 The Keggin heteropolyacid catalyst according to this embodiment is modified to a heteropolyacid decomposition catalyst by baking the Keggin heteropolyacid catalyst at a temperature of 723K to 823K.
 「ヘテロポリ酸」とは、ヘテロ元素が金属オキソ酸骨格に挿入された高分子のポリオキソ酸(Y型のポリ酸である。ここで、Yはヘテロ元素を、Mはポリ元素を、Oは酸素を示している。
 「ケギン型」とは、ヘテロポリ酸の結晶構造の一つでありその他の「ドーソン型」などの結晶構造と区別している。
“Heteropolyacid” is a polymer polyoxoacid (Y 1 M m O n ) x- type polyacid in which a heteroelement is inserted into a metal oxoacid skeleton. Here, Y represents a hetero element, M represents a poly element, and O represents oxygen.
“Keggin type” is one of the crystal structures of heteropolyacids and is distinguished from other “Dawson type” crystal structures.
 「ヘテロポリ酸分解触媒」とは、ヘテロポリ酸を高温で焼成処理することにより、結晶構造の一部或いは全体が熱分解によって元の構造からアモルファス性を有する構造に変化している焼成処理後のヘテロポリ酸触媒のことをいう(K. Okumura, et al., J.Catal., 245, 75 (2007))。 “Heteropolyacid decomposition catalyst” is a heteropolyacid-decomposed post-calcination heteropolyacid in which a part or the whole of the crystal structure is changed from an original structure to an amorphous structure by thermal decomposition. It refers to an acid catalyst (K. Okumura, et al., J. Catal., 245, 75 (2007)).
エステル交換反応に用いられる触媒は、ケギン型ヘテロポリ酸が担体に担持されている「ヘテロポリ酸触媒/担体複合体」の形態であることがより好ましい。槽型反応器による反応において、触媒の分離が容易となり、管型反応器においては、反応器内に触媒を反応器内に充填し、固定することを容易にするためである。 本実施形態に係るヘテロポリ酸触媒の原料となるヘテロポリ酸は、ポリ元素としてニオブを含むケギン型ヘテロポリ酸であり、好ましくは、 The catalyst used in the transesterification reaction is more preferably in the form of a “heteropolyacid catalyst / support complex” in which a Keggin type heteropolyacid is supported on a support. This is because the separation of the catalyst is facilitated in the reaction by the tank reactor, and in the tubular reactor, the catalyst is filled in the reactor and is easily fixed. The heteropolyacid that is a raw material of the heteropolyacid catalyst according to the present embodiment is a Keggin type heteropolyacid containing niobium as a poly element,
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
[上式中、Xは、水素原子又はアルカリ金属原子から選択される単一又は複数種の原子であり、好ましくは水素原子である。Pはリン、Nbはニオブ、Wはタングステン、Oは酸素原子を表す。nは0.8から2.2の数値範囲、好ましくはn=1である。] [In the above formula, X represents a single atom or plural kinds of atoms selected from a hydrogen atom or an alkali metal atom, and preferably a hydrogen atom. P represents phosphorus, Nb represents niobium, W represents tungsten, and O represents an oxygen atom. n is a numerical range of 0.8 to 2.2, preferably n = 1. ]
で表される組成のヘテロポリ酸(以下、「HPNbW」という。)であることが、触媒活性の高さ、反応時の溶解性の低さの点より好ましい(実施例表3参照)。ここで、組成中のnの数値範囲は、ヘテロポリ酸の調製上、生じ得る誤差の幅を意味しており、好ましくはn=1であることを示している。アルカリ金属原子としては、周期表1A族のリチウム、ナトリウム、カリウム、ルビジウム、セシウム、フランシウムが選択される。なお、本実施形態で選択されるヘテロポリ酸は、組成比率がほぼ同じもののみならず、同様のケギン型構造のヘテロポリ酸でも同等あるいはそれ以上の効果を有する可能性があり、本願はそれらのヘテロポリ酸触媒を排除するものではない。 本実施形態に係るヘテロポリ酸触媒/担体複合体は、上記のヘテロポリ酸触媒とそれを担持する無機担体とを含む複合体である。 (Hereinafter referred to as “HPNbW”) is preferable from the viewpoint of high catalytic activity and low solubility during reaction (see Example Table 3). Here, the numerical range of n in the composition means a range of errors that can occur in the preparation of the heteropolyacid, and preferably indicates that n = 1. As the alkali metal atom, lithium, sodium, potassium, rubidium, cesium, and francium of Group 1A of the periodic table are selected. The heteropolyacids selected in the present embodiment are not limited to those having substantially the same composition ratio, and similar Keggin-type heteropolyacids may have the same or higher effects. It does not exclude acid catalysts. The heteropolyacid catalyst / support complex according to the present embodiment is a complex comprising the above heteropolyacid catalyst and an inorganic carrier supporting the heteropolyacid catalyst.
 ヘテロポリ酸を担持する無機担体は、エステル交換反応を阻害するものでなく、反応に対して安定であり、担体としての機能を果たすものであれば、いかなる無機担体であってもよいが、好ましくは、Nb及びWOからなる材料の担体(以下、「Nb-WO」又は「NbW」という。)である。触媒反応後の触媒の溶解又は分解を防止することが出来るからである(実施例表3参照)。 The inorganic carrier supporting the heteropolyacid may be any inorganic carrier as long as it does not inhibit the transesterification reaction, is stable to the reaction, and functions as a carrier. , Nb 2 O 5 and WO 3 (hereinafter referred to as “Nb 2 O 5 —WO 3 ” or “NbW”). This is because dissolution or decomposition of the catalyst after the catalytic reaction can be prevented (see Example Table 3).
 従って、ヘテロポリ酸触媒/担体複合体としては、「HPNbW」型のヘテロポリ酸と「NbW」の無機担体の組み合わせを原料にする「HPNbW/NbW」型の複合体が、最も好ましい。
 上述の好ましいヘテロポリ酸触媒/担体複合体(HPNbW/NbW)は、
Therefore, the heteropolyacid catalyst / support complex is most preferably an “HPNbW / NbW” type complex using a combination of “HPNbW” type heteropolyacid and “NbW” inorganic carrier as raw materials.
The preferred heteropolyacid catalyst / support complex (HPNbW / NbW) described above is
(i)ケギン型ヘテロポリ酸触媒(例えば、HPNbW1140)と、無機担体原料(例えば、WO、Nb、シュウ酸ニオブ及びタングステン酸アンモニウム)を水中で混合し水溶液にする工程、
(ii)水溶液を乾燥する工程、
(iii)特定温度で焼成する工程、
(I) A Keggin type heteropolyacid catalyst (for example, H 4 PNbW 11 O 40 ) and an inorganic carrier raw material (for example, WO 3 , Nb 2 O 5 , niobium oxalate and ammonium tungstate) are mixed in water to form an aqueous solution. Process,
(Ii) drying the aqueous solution;
(Iii) a step of firing at a specific temperature;
を有する調製方法により調製されるヘテロポリ酸分解触媒を含むヘテロポリ酸触媒/担体複合体である。この調製方法によると、ヘテロポリ酸分解触媒は、無機担体の表面のみならず、担体内部にも担持された構造となる。担持されるヘテロポリ酸と担体との結合が強力となり、耐久性に優れる点で、この調製方法は好ましい。
 一方、その他の調製方法として、
(i)無機担体に、溶液中でケギン型ヘテロポリ酸を含浸させる工程
(ii)溶液を乾燥する工程、
(iii)特定温度で焼成する工程、
A heteropolyacid catalyst / support complex comprising a heteropolyacid decomposition catalyst prepared by a preparation method comprising: According to this preparation method, the heteropolyacid decomposition catalyst has a structure supported not only on the surface of the inorganic carrier but also inside the carrier. This preparation method is preferable in that the bond between the supported heteropolyacid and the carrier becomes strong and the durability is excellent.
On the other hand, as other preparation methods,
(I) a step of impregnating an inorganic carrier with a Keggin-type heteropolyacid in the solution (ii) a step of drying the solution;
(Iii) a step of firing at a specific temperature;
を有する調製方法により調製されるヘテロポリ酸分解触媒を含むヘテロポリ酸触媒/担体複合体であってもよい。この場合には、ヘテロポリ酸分解触媒は無機担体の表面に担持される構造となる。また、目的のヘテロポリ酸触媒/担体複合体が得られれば、上記以外の調製方法をいてもよい。 It may be a heteropolyacid catalyst / support complex including a heteropolyacid decomposition catalyst prepared by a preparation method comprising: In this case, the heteropolyacid decomposition catalyst has a structure supported on the surface of the inorganic carrier. Moreover, a preparation method other than the above may be used as long as the desired heteropolyacid catalyst / support complex is obtained.
 焼成工程の特定の焼成温度は723K~823K、好ましくは760K~790K、最も好ましくは773K付近の温度である。この特定の条件で焼成処理することによって、高い触媒活性を維持しつつ、エステル交換反応時における触媒の溶解を抑え、焼成前に比べて非常に高い触媒の耐久性を得ることができる。後述する実施例の図2には触媒活性について、表3には触媒の溶解性について、当該数値範囲の根拠となる比較実験データを記載する(実施例参照)。未焼成のヘテロポリ酸(触媒番号2)は、エステル交換反応時に触媒が完全に溶解することから、上記の特定の温度による焼成工程の効果は明らかである。 The specific firing temperature in the firing step is a temperature around 723K to 823K, preferably 760K to 790K, and most preferably around 773K. By carrying out the calcination treatment under these specific conditions, it is possible to suppress the dissolution of the catalyst during the transesterification reaction while maintaining high catalyst activity, and to obtain a much higher durability of the catalyst than before calcination. FIG. 2 of an example described later describes comparative experimental data on the basis of the numerical range for catalyst activity and Table 3 for the solubility of the catalyst (see Examples). The unburned heteropolyacid (catalyst number 2) is completely dissolved in the catalyst during the transesterification reaction, so the effect of the baking step at the specific temperature is clear.
ヘテロポリ酸触媒/担体複合体によってエステル交換反応を行う場合には、HPNbW/NbWの組成の比率は、上記調製前の原料が、触媒及び担体の全体の重量に対してそれぞれケギン型ヘテロポリ酸(H3+nPNb12-n40)が30重量%~50重量%、無機担体原料のWOが25重量%~45重量%、同じく無機担体原料のNbが15重量%~35重量%の範囲が好ましい。より好ましくは、H3+nPNb12-n40が35重量%~45重量%、WOが32重量%~40重量%、Nbが20重量%~28重量%の範囲である。最も好ましくは、ヘテロポリ酸触媒(H3+nPNb12-n40)の重量比が、最も高い触媒活性を示す、ヘテロポリ酸触媒/担体複合体全体に対して40重量%付近の量である。後述する実施例の図6には、当該数値範囲の根拠となる比較実験データを記載する(実施例参照)。 When the transesterification is carried out with the heteropolyacid catalyst / support complex, the composition ratio of HPNbW / NbW is such that the raw material before the preparation is a Keggin heteropolyacid (H 3 + n PNb n W 12-n O 40 ) is 30% to 50% by weight, WO 3 of the inorganic carrier raw material is 25% to 45% by weight, and Nb 2 O 5 of the inorganic carrier raw material is 15% to 35% by weight. % Range is preferred. More preferably, H 3 + n PNb n W 12-n O 40 is in the range of 35 wt% to 45 wt%, WO 3 is 32 wt% to 40 wt%, and Nb 2 O 5 is in the range of 20 wt% to 28 wt%. . Most preferably, the weight ratio of the heteropolyacid catalyst (H 3 + n PNb n W 12-n O 40 ) is an amount in the vicinity of 40% by weight with respect to the whole heteropolyacid catalyst / support complex showing the highest catalytic activity. . FIG. 6 of an example described later describes comparative experimental data that is the basis for the numerical range (see the example).
・原料アルコール
 本願発明に用いられるアルコールとしては、好ましくは、炭素数が1から4のアルコール、例えば、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、イソブタノール、t-ブチルアルコール等を用いることができ、特に、反応性、経済性の点でメタノール又はエタノールを用いることが好ましい。原料アルコールは、鉱物由来であっても、生物由来のものであってもよい。
Raw material alcohol As the alcohol used in the present invention, an alcohol having 1 to 4 carbon atoms, for example, methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, t-butyl alcohol or the like is preferably used. In particular, it is preferable to use methanol or ethanol in terms of reactivity and economy. The raw material alcohol may be of mineral origin or biological origin.
・原料油脂
 本実施態様に用いられる原料は油脂であって脂肪酸グリセリドを含むものである。脂肪酸グリセリドは、飽和又は不飽和の脂肪族カルボン酸のグリセリドであって、カルボン酸部位の炭素鎖はいかなる長さであってもよいが、好ましくはC14~C24の炭素を有するカルボン酸部位を有する脂肪酸トリグリセリドである。ただし、一般的に、主要成分の脂肪酸トリグリセリドと共に油脂に混在している脂肪酸ジグリセリド及び脂肪酸モノグリセリドについても、脂肪酸トリグリセリドと同様に本願のエステル交換反応の原料となり得る。本願発明で用いられる油脂類の例としては、大豆油、トウモロコシ油、ヤシ油、オリーブ油、ラッカセイ油、ゴマ油、ひまわり油、アマニ油、パーム油、菜種油、ひまし油、椿油等の植物由来の油脂や、牛脂、豚脂、鯨油、魚油等の動物性油脂、合成油脂あるいは、これらの混合物である。油脂に含まれる脂肪酸トリグリセリドの含有比率はいかなる比率であっても良い。また、これらの油脂の使用済み廃油は、特に環境対策として有効な原料として選択され得る。油脂が植物又は動物由来の油脂であれば、生成油のバイオディーゼル燃料油によって化石燃料の消費を低減することができるので好ましい。
-Raw material fats and oils The raw material used for this embodiment is fats and oils and contains fatty acid glyceride. The fatty acid glyceride is a glyceride of a saturated or unsaturated aliphatic carboxylic acid, and the carbon chain of the carboxylic acid moiety may have any length, but preferably has a carboxylic acid moiety having C14 to C24 carbons. Fatty acid triglyceride. However, in general, fatty acid diglycerides and fatty acid monoglycerides mixed in fats and oils together with fatty acid triglycerides as main components can also be used as raw materials for the transesterification reaction of the present application in the same manner as fatty acid triglycerides. Examples of oils and fats used in the present invention include soybean oil, corn oil, coconut oil, olive oil, peanut oil, sesame oil, sunflower oil, linseed oil, palm oil, rapeseed oil, castor oil, coconut oil, and other plant-derived oils and fats, Animal fats and oils such as beef tallow, pork tallow, whale oil and fish oil, synthetic fats and oils, and mixtures thereof. The content ratio of the fatty acid triglyceride contained in the oil and fat may be any ratio. Moreover, the used waste oil of these fats and oils can be selected as an effective raw material especially as an environmental measure. If the fats and oils are plant or animal-derived fats and oils, the consumption of fossil fuels can be reduced by the biodiesel fuel oil of the product oil.
・脂肪酸モノエステルの製造方法及びバイオディーゼル燃料油の製造方法
 本願の第2の実施態様は、上記のヘテロポリ酸触媒/担体複合体の存在下での、脂肪酸グリセリドとアルコールからの脂肪酸モノエステル製造方法に関する。
A method for producing a fatty acid monoester and a method for producing a biodiesel fuel oil The second embodiment of the present invention is a method for producing a fatty acid monoester from a fatty acid glyceride and an alcohol in the presence of the above heteropolyacid catalyst / support complex. About.
 脂肪酸モノエステルの製造には、例えば、上記のヘテロポリ酸触媒/担体複合体を内容する加熱可能な反応器(反応管)と、脂肪酸グリセリドが含まれる油脂と原料アルコールとを反応器内に導入するための装置を具備する、脂肪酸グリセリドを脂肪酸モノエステルに転化処理するためのエステル交換反応装置を用いることができる。 In the production of the fatty acid monoester, for example, a heatable reactor (reaction tube) containing the above heteropolyacid catalyst / support complex, an oil and fat containing fatty acid glycerides, and a raw alcohol are introduced into the reactor. A transesterification apparatus for converting fatty acid glycerides into fatty acid monoesters can be used.
 反応器は、回分式槽型反応器であっても、固定床流通式管型反応器であっても、槽型流通式反応器であってもよいが、工業的実用性を考慮すると固定床連続流通式管型反応器又は槽型流通式反応器が好ましい。 The reactor may be a batch tank reactor, a fixed bed flow tube reactor, or a tank flow reactor, but in consideration of industrial practicality, the fixed bed may be used. A continuous flow tubular reactor or a tank flow reactor is preferred.
 エステル交換反応装置による脂肪酸モノエステルの製造においては、反応器に導入する脂肪酸グリセリドとHPNbW/NbWの量を固定した場合、一般的に、アルコールの量が多いほど、脂肪酸モノエステルの収率が高くなり、反応速度が速くなるとされる。しかしながら、アルコールを過剰に増加すると、未反応の余剰アルコールの蒸留や循環のために多くのエネルギーが必要となり、コストも嵩むので、地球環境の観点および経済的な観点から好ましくない。したがって、原料アルコールの量を脂肪酸グリセリドとの関係において最適な条件に設定する必要がある。例えば、原料アルコールと原料油脂は、原料アルコール/脂肪酸グリセリドmol比が6~50の範囲(アルコール/脂肪酸基mol比では、2~17の範囲)となるように反応器に導入するのが好ましい。より好ましくは、9~30の範囲(アルコール/脂肪酸基mol比では、3~10の範囲)であり、最も好ましくは、12~15の範囲(アルコール/脂肪酸基mol比では、4~5の範囲)である。 固定床流通式管型反応器の場合のエステル交換反応装置(10)の参考図を図7に示す。 In the production of fatty acid monoesters using a transesterification reactor, when the amount of fatty acid glycerides and HPNbW / NbW introduced into the reactor is fixed, generally, the higher the amount of alcohol, the higher the yield of fatty acid monoesters. It is said that the reaction rate becomes faster. However, an excessive increase in alcohol requires a large amount of energy for distillation and circulation of the unreacted surplus alcohol and increases costs, which is not preferable from the viewpoints of the global environment and economics. Therefore, it is necessary to set the amount of the raw material alcohol to an optimum condition in relation to the fatty acid glyceride. For example, the raw alcohol and the raw fat / oil are preferably introduced into the reactor so that the molar ratio of raw alcohol / fatty acid glyceride is in the range of 6 to 50 (in the alcohol / fatty acid group molar ratio is in the range of 2 to 17). More preferably, it is in the range of 9-30 (in the alcohol / fatty acid group mol ratio, in the range of 3-10), and most preferably in the range of 12-15 (in the alcohol / fatty acid group mol ratio, in the range of 4-5. ). FIG. 7 shows a reference diagram of the transesterification reactor (10) in the case of a fixed bed flow type tubular reactor.
 エステル交換反応装置(10)には、原料油脂が入れられたタンク(11)と原料アルコールが入れられたタンク(12)からそれぞれの原料を反応管(15)に導入することができるポンプ(13)、圧力計(14)、圧力弁などからなる装置を有している。ここで、反応管の入口部分において、安定的に原料の導入を保つことができれば、原料タンク及び原料の導入装置はいかなる構造であってもよい。 The transesterification reactor (10) has a pump (13) capable of introducing each raw material into a reaction tube (15) from a tank (11) containing raw oil and fat and a tank (12) containing raw material alcohol. ), A pressure gauge (14), and a device including a pressure valve. Here, as long as the introduction of the raw material can be stably maintained at the inlet portion of the reaction tube, the raw material tank and the raw material introduction device may have any structure.
 また、エステル交換反応を圧力計(14)、反応器に付した流量計や温度計等によってモニターすることにより、それぞれの原料の導入を圧力弁や背圧弁(18)等で操作できる構造を有する装置であることが好ましい。 The transesterification reaction is monitored by a pressure gauge (14), a flow meter attached to the reactor, a thermometer, etc., so that the introduction of each raw material can be operated by a pressure valve, a back pressure valve (18), etc. An apparatus is preferred.
 さらに、反応装置(10)の反応管(15)には電気炉(17)が備えられている。当該電気炉及びそれによる加熱方法は、安全かつ安定的に反応管(反応器)全体又は特定部分を高温に保つことができれば、いかなる構造及び方法であっても良い。 Furthermore, the reaction tube (15) of the reactor (10) is equipped with an electric furnace (17). The electric furnace and the heating method using the electric furnace may be any structure and method as long as the entire reaction tube (reactor) or a specific part can be kept at a high temperature safely and stably.
 図7のようにエステル交換反応装置(10)が、管型反応器の反応管(15)である場合には、反応管に充填されるヘテロポリ酸触媒(16)は、無機担体に担持されているヘテロポリ酸触媒/担体複合体であることが特に好ましい。反応時の触媒の液相への溶解を防ぎ、反応管内に触媒を充填、固定することにより、取り扱いを容易にするためである。 When the transesterification reactor (10) is a reaction tube (15) of a tubular reactor as shown in FIG. 7, the heteropolyacid catalyst (16) filled in the reaction tube is supported on an inorganic carrier. Particularly preferred is a heteropolyacid catalyst / support complex. This is to prevent the catalyst from dissolving in the liquid phase during the reaction, and to facilitate handling by filling and fixing the catalyst in the reaction tube.
 エステル交換反応装置における反応器の加熱温度は、触媒と原料油脂及び原料アルコールとの関係により適宜選択されるが、HPNbW/NbW型のヘテロポリ酸触媒/担体複合体であって、原料油脂が脂肪酸トリグリセリド、原料アルコールがエタノールの場合には、350K~580Kの温度範囲であることが好ましい(実施例、図8参照)。 The heating temperature of the reactor in the transesterification reaction apparatus is appropriately selected according to the relationship between the catalyst, the raw material fat and the raw material alcohol, and is an HPNbW / NbW type heteropolyacid catalyst / support complex, where the raw fat and oil is a fatty acid triglyceride When the raw alcohol is ethanol, the temperature is preferably 350 K to 580 K (see Example, FIG. 8).
 本願の第3の実施態様は、上記のヘテロポリ酸触媒/担体複合体を用いて、油脂に含まれる脂肪酸グリセリドを脂肪酸モノエステルに転化処理する工程を含むディーゼル燃料油の製造方法に関する。 The third embodiment of the present application relates to a method for producing diesel fuel oil including a step of converting fatty acid glycerides contained in fats and oils into fatty acid monoesters using the above heteropolyacid catalyst / carrier complex.
 原料の油脂は、脂肪酸トリグリセリド等の脂肪酸グリセリドを含むものであればいかなる油脂でもよい。植物又は動物由来の油脂を選択することによりバイオディーゼル燃料油を製造することができる。また、油脂に含まれる混雑物や水分が上記エステル交換反応装置の触媒活性や流通速度の点で運転に支障をきたさない範囲で、使用済み廃油を原料油脂として使用することができる。本実施態様では、主にディーゼル燃料油の留分に相当する脂肪酸モノエステルを得ることを目的としているが、軽質成分を多く含む原料油脂の場合には、酸素原子を豊富に含有する灯油の製造にも用いることができる。 The raw material fats and oils may be any fats and oils as long as they contain fatty acid glycerides such as fatty acid triglycerides. Biodiesel fuel oil can be produced by selecting oils derived from plants or animals. Moreover, used waste oil can be used as raw material fats and oils in the range in which the contaminants and moisture contained in the fats and oils do not hinder the operation in terms of the catalytic activity and flow rate of the transesterification reaction apparatus. In this embodiment, the purpose is mainly to obtain a fatty acid monoester corresponding to a fraction of diesel fuel oil. However, in the case of raw oils and fats containing a large amount of light components, production of kerosene containing abundant oxygen atoms Can also be used.
 上記の燃料油の製造方法によれば、強塩基や強酸等の使用による環境及び設備への負荷を低減することにより資源やエネルギーを無駄に費やさず、従来のバイオディーゼル燃料の製造プロセスと異なり、生成油(反応液層)から触媒を分離するための特別のプロセスを必要としないために、強塩基触媒の中和反応による廃棄物発生等の環境負荷が無く、ディーゼル燃料油の製造時に固体酸触媒が水分や液相に溶解することなく容易に分離ができるので、実用的な反応速度で燃料油の製造を行うことができる点で有利である。さらに、植物又は動物由来の油脂を原料としてバイオディーゼル燃料を製造するに際し、原料がカルボン酸や水を少量含んでいても触媒反応に致命的な問題がない点で有利である。 According to the fuel oil production method described above, resources and energy are not wasted by reducing the load on the environment and facilities due to the use of strong bases, strong acids, etc., unlike conventional biodiesel fuel production processes, Since no special process is required to separate the catalyst from the product oil (reaction liquid layer), there is no environmental impact such as waste generation due to the neutralization reaction of the strong base catalyst. Since the catalyst can be easily separated without dissolving in water or liquid phase, it is advantageous in that fuel oil can be produced at a practical reaction rate. Further, when producing biodiesel fuel using plant or animal-derived fats and oils as raw materials, it is advantageous in that there are no fatal problems in the catalytic reaction even if the raw materials contain a small amount of carboxylic acid or water.
 以上のように、本発明によれば、ケギン型ヘテロポリ酸触媒を723K~823Kの温度で焼成処理することにより、ヘテロポリ酸触媒の構造が変化し、脂肪酸グリセリドとアルコールとのエステル交換反応に対して高い触媒活性を有する触媒を得ることができる。また、ヘテロポリ酸触媒を無機担体に担持させてヘテロポリ酸触媒/担体複合体とすることにより、高い触媒活性を有し、かつ目的のエステル交換反応を行う際に溶解しない触媒を得ることができる。 As described above, according to the present invention, the structure of the heteropolyacid catalyst is changed by calcining the Keggin type heteropolyacid catalyst at a temperature of 723 K to 823 K, and the transesterification reaction between the fatty acid glyceride and the alcohol is performed. A catalyst having high catalytic activity can be obtained. In addition, by supporting a heteropolyacid catalyst on an inorganic carrier to form a heteropolyacid catalyst / carrier complex, it is possible to obtain a catalyst that has high catalytic activity and does not dissolve during the intended transesterification reaction.
 また、本発明によれば、上記のヘテロポリ酸触媒又はヘテロポリ酸触媒/担体複合体を備えたエステル交換反応装置によって、触媒を容易に生成油から分離でき、また、エタノールの蒸留や循環のために要するエネルギーを大幅に軽減することができる。したがって、前記エステル交換反応装置により、実用的な触媒反応を行うことができる。 Further, according to the present invention, the catalyst can be easily separated from the produced oil by the transesterification reaction apparatus provided with the heteropolyacid catalyst or the heteropolyacid catalyst / support complex, and for ethanol distillation and circulation. The energy required can be greatly reduced. Therefore, a practical catalytic reaction can be performed by the transesterification reaction apparatus.
さらに、本発明によれば、上記のヘテロポリ酸触媒又はヘテロポリ酸触媒/担体複合体を用いることにより、油脂(特に生物由来の油脂)に含まれる脂肪酸グリセリドを脂肪酸モノエステルに転化処理する工程を含むディーゼル燃料油の製造方法であって、環境負荷の少ない製造方法を提供することができる。 Furthermore, according to this invention, the process of converting the fatty acid glyceride contained in fats and oils (especially biologically derived fats and oils) into fatty acid monoester by using said heteropolyacid catalyst or heteropolyacid catalyst / carrier complex is included. It is a method for producing diesel fuel oil, and a method for producing an environmental load can be provided.
 以下に、本願発明を更に詳細に例証するが、本願発明は実施例によって限定されるものではない。 Hereinafter, the present invention will be illustrated in more detail, but the present invention is not limited to the examples.
 バッチ式反応(回分式槽型反応)(1)触媒 用いた触媒は表1に記載したとおりである。 Batch type reaction (batch type tank type reaction) (1) Catalyst The catalyst used is as described in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-I000001
 なお、表1中の未焼成HPNbW1140(触媒番号2、触媒番号1及び2の原料ヘテロポリ酸)は以下の方法により合成した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-I000001
Incidentally, unfired H in Table 1 4 PNbW 11 O 40 (Catalyst No. 2, the feed heteropolyacid catalyst No. 1 and 2) were synthesized by the following method.
 NaWO・2HO(100g)、NaHPO・12HO(50g)及びシュウ酸ニオブの水溶液(160ml)を353Kで4時間、24%塩酸水溶液(150ml)を加えながら攪拌した。反応生成物溶液に、ジエチルエーテルと少量の濃塩酸を加え、濾過沈澱物として生成物を得た。誘導結合プラズマ(ICP)分析及び熱重量(TG)分析により、HPNbW1140・13HOの組成であることを確認した。 An aqueous solution of Na 2 WO 4 · 2H 2 O (100 g), Na 2 HPO 4 · 12H 2 O (50 g) and niobium oxalate (160 ml) was stirred at 353 K for 4 hours while adding a 24% aqueous hydrochloric acid solution (150 ml). . Diethyl ether and a small amount of concentrated hydrochloric acid were added to the reaction product solution to obtain the product as a filtered precipitate. The composition of H 4 PNbW 11 O 40 · 13H 2 O was confirmed by inductively coupled plasma (ICP) analysis and thermogravimetric (TG) analysis.
(2)原料
 本実施例ではアルコールとしてエタノール(和光純薬特級)を使用し、脱水することなく用いた。
 原料油脂としては比較的不純物の少ないトリオレイン(東京化成)を用いた。トリオレインに含まれる各成分の組成は表2に記載のとおりである。
(2) Raw material In the present Example, ethanol (Wako Pure Chemicals special grade) was used as alcohol, and it was used without dehydrating.
Triolein (Tokyo Kasei) with relatively few impurities was used as the raw material fat. The composition of each component contained in Triolein is as shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に記載のとおり、以下、原料に含まれるトリオレインを「OOO」と、ジオレオルリノレインを「OOL」と、ジオレインを「OO」と、オレオルリノレインを「OL」と表記する。  As shown in Table 2, hereinafter, triolein contained in the raw material will be expressed as “OOO”, dioleo-renolinoin as “OOL”, diolein as “OO”, and oleorelinoline as “OL”. *
(3)反応操作(バッチ式反応) 触媒0.2g、エタノール4.7g(0.10mmol)、トリオレイン1.76g(「OOO」1.5mmol+「OOL」0.32mmol+「OO」0.28mmol+「OL」0.03mmol)(すなわち、エタノール/トリオレインmol比=50,アルコール/脂肪酸基mol比=17)をそれぞれ小さな容器に入れ、窒素雰囲気下で容量100cmのオートクレーブに密封し、373Kの温度に保ち、8h攪拌した。オートクレーブの内圧はエタノールの気化によって高くなり、いずれの場合でも約0.3MPaとなった。冷却後に生成物溶液に既知量のデカン酸エチル(内部標準物質)を加え、分析溶媒(2-プロパノール+ヘキサン、体積比5:4)で希釈し、さらに固体成分を濾別し、得られた濾液を液体クロマトグラフィーで分析した。 (3) Reaction operation (batch-type reaction) 0.2 g of catalyst, 4.7 g (0.10 mmol) of ethanol, 1.76 g of triolein (“OOO” 1.5 mmol + “OOL” 0.32 mmol + “OO” 0.28 mmol + “ OL "(0.03 mmol) (that is, ethanol / triolein mol ratio = 50, alcohol / fatty acid group mol ratio = 17), each in a small container, sealed in an autoclave with a capacity of 100 cm 3 under a nitrogen atmosphere, and a temperature of 373 K And stirred for 8 h. The internal pressure of the autoclave increased with the vaporization of ethanol, and in all cases was about 0.3 MPa. After cooling, a known amount of ethyl decanoate (internal standard substance) was added to the product solution, diluted with an analysis solvent (2-propanol + hexane, volume ratio 5: 4), and solid components were separated by filtration. The filtrate was analyzed by liquid chromatography.
 前処理をする場合には、触媒をガラス管内窒素気流中で所定温度で1h処理した後、ガラス管の入口・出口のコックを閉じて放冷し、窒素雰囲気下で前述のようにエタノールをトリオレインとともにオートクレーブに密封し、同様に反応を行った。 なお、エタノール/トリオレインmol比による影響を評価するため、エタノールの量のみを適宜変更した反応操作も同様に行った。 In the case of pretreatment, the catalyst is treated for 1 hour at a predetermined temperature in a nitrogen stream in the glass tube, then the cock at the inlet and outlet of the glass tube is closed and allowed to cool, and ethanol is trioated as described above in a nitrogen atmosphere. Sealed together with rain in an autoclave and reacted in the same manner. In addition, in order to evaluate the influence by ethanol / triolein mol ratio, the reaction operation which changed only the quantity of ethanol suitably was performed similarly.
(4)分析
 文献(M. Holczapek, P. Jandera, J. Fischer and B. Prokesz, J. Chromatogr., A, 858, 13 (1999))に記載の方法に従って、デカン酸エチルを内部標準物質として高速液体クロマトグラフィーを用いて分析した。
(4) Analysis According to the method described in the literature (M. Holczapek, P. Jandera, J. Fischer and B. Prokesz, J. Chromatogr., A, 858, 13 (1999)), ethyl decanoate was used as an internal standard substance. Analysis was performed using high performance liquid chromatography.
(5)実験結果[触媒による比較]
 反応温度373K、反応時間8hで各種触媒の活性を比較した。エステル交換反応では「OOO」+エタノール→オレイン酸エチル+「OO」、「OO」+エタノール→オレイン酸エチル+モノオレイン(C1733COOC(OH)、以下「O」)、「O」+エタノール→オレイン酸エチル+グリセリンのように逐次的にオレイン酸エチル(目的生成物)が生成し、また「OOL」や「OL」も反応するが、表3には比較しやすいように「OOO」の転化率、オレイン酸エチルの収率、C1733CO基の物質収支(「OO」、「OL」に含まれる基も合計した。ただし、「O」は定量できなかったので考慮していない)を記す。
(5) Experimental results [comparison with catalyst]
The activities of various catalysts were compared at a reaction temperature of 373 K and a reaction time of 8 h. In the transesterification reaction, “OOO” + ethanol → ethyl oleate + “OO”, “OO” + ethanol → ethyl oleate + monoolein (C 17 H 33 COOC 3 H 5 (OH) 2 , hereinafter “O”), “O” + ethanol → ethyl oleate + glycerin sequentially produces ethyl oleate (target product), and “OOL” and “OL” also react, but Table 3 is easy to compare In addition, the conversion rate of “OOO”, the yield of ethyl oleate, and the mass balance of C 17 H 33 CO groups (groups contained in “OO” and “OL” were also added. However, “O” could not be quantified. (Not considered).
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、「触媒なし(触媒番号0)」の条件でも少量のオレイン酸エチルが生成した。
Figure JPOXMLDOC01-appb-T000003
As shown in Table 3, a small amount of ethyl oleate was produced even under the condition of “no catalyst (catalyst number 0)”.
 HPNbW/NbW(触媒番号1)、Nb-WO(触媒番号4)、ゼオライトβ(触媒番号12)、シリカアルミナ(触媒番号15)、硫酸化ジルコニア(触媒番号16)、シリカ担持ドーソン型ヘテロポリ酸(触媒番号9~11)、ケギン型ヘテロポリ酸Cs塩(触媒番号8)は視認した限り溶解しなかったが、未焼成のヘテロポリ酸(触媒番号2)は溶解した。 HPNbW / NbW (catalyst number 1), Nb 2 O 5 —WO 3 (catalyst number 4), zeolite β (catalyst number 12), silica alumina (catalyst number 15), sulfated zirconia (catalyst number 16), silica-supported doson The type heteropolyacid (Catalyst Nos. 9 to 11) and the Keggin type heteropolyacid Cs salt (Catalyst No. 8) were not dissolved as far as they were visually recognized, but the uncalcined heteropolyacid (Catalyst No. 2) was dissolved.
 溶解しなかった固体触媒の中では、HPNbW/NbW(触媒番号1)、ケギン型ヘテロポリ酸Cs塩(触媒番号8)、硫酸化ジルコニア(触媒番号16)が高い活性(オレイン酸エチル収率)を示し、他の固体触媒はほとんど活性を示さなかった。中でもHPNbW/NbWとケギン型ヘテロポリ酸Cs塩の活性が最も高かった。しかしながら、ケギン型ヘテロポリ酸Cs塩は表3に記載の実施例においては濾過できたが、通常、この物質は直径1μmより小さい粒子からなり、多くの溶液中で沈澱することなく懸濁し、工業的な濾布などを用いては濾過することが困難であることが知られている(N. Horita, M. Yoshimune, Y. Kamiya and T. Okuhara, Chem. Lett., 34, 1376 (2005).)。このため、微粒子状態では固体酸触媒としての利点はなく、本願発明の触媒としては適さない。従って、生成物から分離が容易な固体酸触媒の中で最も高い活性を示したのは、本願発明のヘテロポリ酸触媒/担体複合体であるHPNbW/NbW(触媒番号1)である。HPNbW/NbWは、先行文献(段落[0008]参照)に記載されている酸性イオン交換樹脂、WO/ZrO、硫酸化ジルコニア、ゼオライトなどと比較して明らかに高活性を示した。 Among the solid catalysts that did not dissolve, HPNbW / NbW (Catalyst No. 1), Keggin-type heteropolyacid Cs salt (Catalyst No. 8), and sulfated zirconia (Catalyst No. 16) exhibited high activity (ethyl oleate yield). The other solid catalysts showed little activity. Among them, the activities of HPNbW / NbW and Keggin type heteropolyacid Cs salt were the highest. However, although the Keggin heteropolyacid Cs salt could be filtered in the examples described in Table 3, this material usually consists of particles smaller than 1 μm in diameter, suspended in many solutions without precipitation, and industrial It is known that it is difficult to filter using a filter cloth (N. Horita, M. Yoshimune, Y. Kamiya and T. Okuhara, Chem. Lett., 34, 1376 (2005). ). For this reason, there is no advantage as a solid acid catalyst in a fine particle state, and it is not suitable as a catalyst of the present invention. Accordingly, HPNbW / NbW (Catalyst No. 1), which is the heteropolyacid catalyst / support complex of the present invention, showed the highest activity among the solid acid catalysts that can be easily separated from the product. HPNbW / NbW clearly showed high activity as compared with acidic ion exchange resins, WO 3 / ZrO 2 , sulfated zirconia, zeolite and the like described in the prior literature (see paragraph [0008]).
 ヘテロポリ酸触媒/担体複合体HPNbW/NbWの原料である「未焼成の」HPNbW(触媒番号2)は高い活性を示したが、反応終了後には完全に溶解していたので、脂肪酸トリグリセリドを脂肪酸モノグリセリドに転化するエステル交換反応の触媒としては適さない。類縁化合物である各種ヘテロポリ酸も、活性は示したものの完全に溶解していた。一方、無機担体無しで焼成されたHPNbW(触媒番号3)は、反応時に一部溶解した点でHPNbW/NbW(触媒番号1)に劣るが、高い活性を有しており、条件によっては、エステル交換反応に用いることができる可能性がある。HPNbW/NbWの担体であるNb-WO(触媒番号4)は触媒としては不活性であった。 “Uncalcined” HPNbW (catalyst number 2), which is a raw material of the heteropolyacid catalyst / support complex HPNbW / NbW, showed high activity, but was completely dissolved after the reaction was completed. It is not suitable as a catalyst for the transesterification reaction to be converted into Various heteropolyacids, which are similar compounds, also showed activity but were completely dissolved. On the other hand, HPNbW (Catalyst No. 3) calcined without an inorganic carrier is inferior to HPNbW / NbW (Catalyst No. 1) in that it is partially dissolved during the reaction, but has high activity. It can be used for exchange reactions. Nb 2 O 5 —WO 3 (catalyst number 4), which is an HPNbW / NbW carrier, was inactive as a catalyst.
[HPNbW/NbWの触媒活性]
 HPNbW/NbW(HPNbW1140 40wt%/WO 36wt%-Nb 24wt%、773K焼成)を用いたバッチ反応における反応時間とオレイン酸エチル収率の関係を図1に示す。反応時間約20hまで、オレイン酸エチル収率は65%程度までゆるやかに増加した。また、エタノール/トリオレインmol比が15の場合であっても、反応時間約12hまで、オレイン酸エチル収率は、mol比50の場合と同様の傾向を示した。
[Catalytic activity of HPNbW / NbW]
FIG. 1 shows the relationship between the reaction time and the ethyl oleate yield in a batch reaction using HPNbW / NbW (H 4 PNbW 11 O 40 40 wt% / WO 3 36 wt% -Nb 2 O 5 24 wt%, 773 K calcination). Up to about 20 h of reaction time, the ethyl oleate yield increased slowly to about 65%. Even when the ethanol / triolein molar ratio was 15, the ethyl oleate yield showed the same tendency as in the case of the molar ratio of 50 until the reaction time was about 12 h.
 HPNbW/NbWの触媒活性は焼成温度に強く依存し、773Kを最大として焼成温度が低くても高くても活性は低かった(図2)。焼成温度を773Kで一定とし、前処理温度を変えて測定したところ、前処理温度が773Kより低いときに活性を示すが、823Kでは活性が低下した(図3)。前述のように本触媒の活性は焼成温度(熱履歴)に敏感であり、773K付近を頂点として大きく触媒活性が変化する。この温度より高い温度で前処理を行うと、熱的な変化が進んで活性が失われる。 The catalytic activity of HPNbW / NbW strongly depended on the calcination temperature, and the activity was low regardless of whether the calcination temperature was low or high with 773K as the maximum (FIG. 2). The measurement was carried out by changing the pretreatment temperature while keeping the firing temperature constant at 773K. The activity was shown when the pretreatment temperature was lower than 773K, but the activity decreased at 823K (FIG. 3). As described above, the activity of the present catalyst is sensitive to the calcination temperature (thermal history), and the catalyst activity largely changes with the peak at around 773K. When pretreatment is performed at a temperature higher than this temperature, the thermal change proceeds and the activity is lost.
 また、エタノール/トリオレインmol比を変えてオレイン酸エチル収率の影響を調べたところ、エタノール/トリオレインmol比が約9~約30の範囲において高い活性を維持していた(図4)。かかる傾向は、反応時間が6hの場合であっても同様であった。なお、「触媒なし」(触媒番号0)の条件であっても、エタノール/トリオレインmol比を15としてバッチ式反応を行ったところ、mol比50の場合よりもトリオレイン転化率は高くなるが(mol比50では20%、mol比15では58%)、オレイン酸エチル収率は、mol比50では6.4%、mol比15では9.7%であり、いずれも低かった(図5)。これは、「触媒なし」の条件によるバッチ式反応において、高速液体クロマトグラフィーによる分析で帰属不明のピークが多数観察されたことから、エステル交換反応でエタノールと反応しなかった余剰のトリオレインが未知の物質に変化したためと推測された。これに対して、HPNbW/NbWは、エタノール/トリオレインmol比を低くしても、エステル交換反応における触媒活性が高いので(図5)、上記のような問題を生じず、ほぼ選択的に目的生成物を製造することが可能である。したがって、HPNbW/NbWにより効率的な脂肪酸モノエステルの製造が可能となる。 Further, when the influence of ethyl oleate yield was investigated by changing the ethanol / triolein mol ratio, high activity was maintained in the range of ethanol / triolein mol ratio of about 9 to about 30 (FIG. 4). This tendency was the same even when the reaction time was 6 hours. Even under the condition of “no catalyst” (catalyst number 0), when the batch reaction was carried out with an ethanol / triolein mol ratio of 15, the triolein conversion was higher than in the case of a mol ratio of 50. The yield of ethyl oleate was 6.4% at a mol ratio of 50 and 9.7% at a mol ratio of 15 and was low (FIG. 5). ). This is because in the batch reaction under the condition of “no catalyst”, many unidentified peaks were observed in the analysis by high performance liquid chromatography, so the excess triolein that did not react with ethanol in the transesterification reaction is unknown. It was speculated that it was changed to a substance. On the other hand, HPNbW / NbW has high catalytic activity in the transesterification reaction even when the ethanol / triolein molar ratio is lowered (FIG. 5). It is possible to produce a product. Therefore, efficient production of fatty acid monoesters becomes possible with HPNbW / NbW.
  一方、HPNbWと担体の組成比を変えたところ、HPNbWが全体の重量の30~50重量%の範囲で高い活性を有し、40重量%付近が最も高活性を示す組成比であった(図6)。HPNbWを100%とした場合(触媒番号3)、触媒活性は高かったが触媒の一部が液相に溶解した。 On the other hand, when the composition ratio of HPNbW and the carrier was changed, HPNbW had a high activity in the range of 30 to 50% by weight of the total weight, and the composition ratio showing the highest activity was around 40% by weight (Fig. 6). When HPNbW was 100% (catalyst number 3), the catalyst activity was high, but a part of the catalyst was dissolved in the liquid phase.
 よって、最適なHPNbWの組成比は、ヘテロポリ酸触媒/担体複合体全体の重量に対して40重量%付近である。 Therefore, the optimal composition ratio of HPNbW is around 40% by weight with respect to the total weight of the heteropolyacid catalyst / support complex.
 固定床流通式反応
(1)触媒
 用いた触媒は実施例1(表1)に記載と同様である。
Fixed bed flow reaction (1) Catalyst The catalyst used is the same as described in Example 1 (Table 1).
(2)原料
 本実施例でも実施例1と同様に、アルコールとしてエタノール(和光純薬社特級)を、油脂としてはトリオレイン(東京化成)を用いた。
(2) Raw materials In this example, as in Example 1, ethanol (Wako Pure Chemicals special grade) was used as the alcohol, and triolein (Tokyo Kasei) was used as the fat.
(3)反応操作(固定床流通式反応)
 図7の装置の反応管(内径7.6mm、長さ150mm)に、7.4gのHPNbW/NbWのヘテロポリ酸分解触媒をセットし、エタノールを0.60gh-1(13mmol・h-1)、トリオレインを0.23gh-1(「OOO」0.19mmol・h-1+「OOL」0.042mmol・h-1+「OO」0.037mmol・h-1+「OL」0.0042mmol・h-1)の流速で供給した(すなわち、エタノール/トリオレインmol比=50,アルコール/脂肪酸基mol比=17)。反応管を電気炉によって所定の反応温度に保ち、出口の背圧弁で流通開始時に系内の圧力を0.4MPa(ゲージ圧0.3MPa)に保った。流通開始後まもなく、触媒とフィルターの圧損により、圧力が0.6MPa程度まで上昇した。触媒出口にはカラムフィルター(孔径2μm)に加えて濾紙(5C、保留粒子径1μm)をセットし、さらにその後ろに空の反応管(内径4mm、長さ14cm、前後に孔径2μmのカラムフィルターと保留粒子径1μmの5C濾紙を備えた)を配置して固体と液体を分離した。出口液体をサンプリングして液体クロマトグラフィーで分析した。
(3) Reaction operation (fixed bed flow reaction)
7.4 g of HPNbW / NbW heteropolyacid decomposition catalyst was set in the reaction tube (inner diameter 7.6 mm, length 150 mm) of the apparatus of FIG. 7, ethanol was 0.60 gh −1 (13 mmol · h −1 ), Triolein 0.23gh −1 (“OOO” 0.19 mmol · h −1 + “OOL” 0.042 mmol · h −1 + “OO” 0.037 mmol · h −1 + “OL” 0.0042 mmol · h -1 ) (ie, ethanol / triolein molar ratio = 50, alcohol / fatty acid group molar ratio = 17). The reaction tube was kept at a predetermined reaction temperature with an electric furnace, and the pressure in the system was kept at 0.4 MPa (gauge pressure 0.3 MPa) at the start of circulation by a back pressure valve at the outlet. Shortly after the start of distribution, the pressure rose to about 0.6 MPa due to the pressure loss of the catalyst and the filter. In addition to a column filter (pore size 2 μm), a filter paper (5C, retention particle size 1 μm) is set at the catalyst outlet, and an empty reaction tube (inner diameter 4 mm, length 14 cm, front and rear column filter 2 μm) A 5C filter paper having a retention particle diameter of 1 μm was disposed to separate the solid and the liquid. The exit liquid was sampled and analyzed by liquid chromatography.
(4)分析
 実施例1と同様の方法により分析した。
(4) Analysis The analysis was performed in the same manner as in Example 1.
(5)実験結果
  触媒活性の持続性、触媒分離容易性]
(5) Experimental results Persistence of catalytic activity, ease of catalyst separation]
 図8にヘテロポリ酸触媒/担体複合体のHPNbW/NbWを用いた固定床流通式反応の結果を示す。(a)には373K、(b)にはやや反応温度を上げた393Kにおける転化率、収率、物質収支の経時変化結果を示す。377Kではオレイン酸エチル収率は初期に80%程度だったが、はじめ急速に、やがてゆるやかに低下して150h後に20%程度となった。394Kではややオレイン酸エチル収率が高かった。このように反応速度の低下は見られたものの、1週間後にも活性が見られた。 FIG. 8 shows the results of a fixed bed flow-type reaction using HPNbW / NbW of the heteropolyacid catalyst / support complex. (A) shows the time-dependent change results of the conversion rate, yield, and mass balance at 373 K, and (b) at 393 K at a slightly elevated reaction temperature. At 377 K, the yield of ethyl oleate was about 80% in the initial stage, but it rapidly decreased gradually and gradually reached about 20% after 150 hours. At 394K, the ethyl oleate yield was slightly higher. Thus, although the reaction rate was reduced, the activity was observed even after one week.
 反応速度の低下は触媒の劣化によると考えられる。しかし、固定床流通式反応において本条件で1週間後にも活性が見られたことは、HPNbW/NbWの実用的な適用可能性を示している。 The decrease in reaction rate is thought to be due to catalyst deterioration. However, the fact that activity was observed even after one week in this condition in the fixed bed flow-type reaction indicates the practical applicability of HPNbW / NbW.
 以上より、本願発明の触媒活性の実用的な持続性を確認し、実装置への適用が可能であることが明らかとなった。また、触媒を容易に生成油から分離できることを明らかにした。 From the above, the practical sustainability of the catalytic activity of the present invention was confirmed, and it was revealed that it can be applied to an actual apparatus. It was also clarified that the catalyst can be easily separated from the product oil.
 本発明によれば、ケギン型ヘテロポリ酸触媒を723K~823Kの温度で焼成処理することにより、高い触媒活性を有し、かつ目的のエステル交換反応を行う際に溶解しない触媒と、その固体酸触媒を用いた環境負荷の少ないバイオディーゼル燃料の製造方法を提供することができる。 According to the present invention, a catalyst having high catalytic activity and not dissolved during the target transesterification by calcining the Keggin type heteropolyacid catalyst at a temperature of 723 K to 823 K, and its solid acid catalyst It is possible to provide a method for producing biodiesel fuel with a low environmental load using
10 固定床流通式反応装置
11 油脂(トリオレイン)用タンク
12 アルコール(エタノール)用タンク
13 ポンプ
14 圧力計
15 反応管
16 触媒固定層
17 電気炉
18 背圧弁
DESCRIPTION OF SYMBOLS 10 Fixed bed flow type reaction apparatus 11 Oil and fat (triolein) tank 12 Alcohol (ethanol) tank 13 Pump 14 Pressure gauge 15 Reaction tube 16 Catalyst fixed layer 17 Electric furnace 18 Back pressure valve

Claims (6)

  1.  化学式:
    Figure JPOXMLDOC01-appb-C000004
    [上式中、Xは、水素原子又はアルカリ金属原子から選択される単一又は複数種の原子であり、Pはリン、Nbはニオブ、Wはタングステン、Oは酸素原子である。]で表される組成であって、nが0.8から2.2の範囲であるケギン型ヘテロポリ酸触媒と、Nb及びWOからなる担体の、油脂に含まれる脂肪酸グリセリドをアルコールとのエステル交換反応によって脂肪酸モノエステルに転化するための、723K~823Kの温度で焼成処理されたヘテロポリ酸触媒/担体複合体。
    Chemical formula:
    Figure JPOXMLDOC01-appb-C000004
    [In the above formula, X is a single or plural kinds of atoms selected from a hydrogen atom or an alkali metal atom, P is phosphorus, Nb is niobium, W is tungsten, and O is an oxygen atom. The fatty acid glycerides contained in the fats and oils of a Keggin type heteropolyacid catalyst having a composition represented by the formula (1), wherein n is in the range of 0.8 to 2.2, and Nb 2 O 5 and WO 3 A heteropolyacid catalyst / support complex calcined at a temperature of 723 K to 823 K for conversion to a fatty acid monoester by transesterification with.
  2.  前記ヘテロポリ酸触媒が、担体を含む複合体全体の総重量に対して30~50重量%の量で担体に担持されていることを特徴とする請求項1に記載のヘテロポリ酸触媒/担体複合体。 The heteropolyacid catalyst / support composite according to claim 1, wherein the heteropolyacid catalyst is supported on the support in an amount of 30 to 50% by weight based on the total weight of the entire composite including the support. .
  3.  前記脂肪酸グリセリドが、C14~C24の炭素を有する飽和又は不飽和脂肪酸からなる脂肪酸トリグリセリド、脂肪酸ジグリセリド及び/又は脂肪酸モノグリセリドであり、前記アルコールがメタノール又はエタノールである、請求項1又は2に記載のヘテロポリ酸触媒/担体複合体。 The fatty acid glyceride is a fatty acid triglyceride, fatty acid diglyceride and / or fatty acid monoglyceride composed of saturated or unsaturated fatty acid having C 14 to C 24 carbon, and the alcohol is methanol or ethanol. Heteropolyacid catalyst / support complex.
  4.  請求項1ないし3のいずれか1項に記載のヘテロポリ酸触媒/担体複合体の存在下で、脂肪酸グリセリドおよびアルコールから脂肪酸モノエステルを生成する工程を含む、脂肪酸モノエステルの製造方法。 A method for producing a fatty acid monoester, comprising a step of producing a fatty acid monoester from a fatty acid glyceride and an alcohol in the presence of the heteropolyacid catalyst / carrier complex according to any one of claims 1 to 3.
  5.  アルコール/脂肪酸グリセリドmol比が6~50の範囲である、請求項4に記載の脂肪酸モノエステルの製造方法。 The method for producing a fatty acid monoester according to claim 4, wherein the molar ratio of alcohol / fatty acid glyceride is in the range of 6-50.
  6.  請求項1ないし3のいずれか1項に記載のヘテロポリ酸触媒/担体複合体を用いて、油脂に含まれる脂肪酸グリセリドを脂肪酸モノエステルに転化処理する工程を含むディーゼル燃料油の製造方法。 A method for producing diesel fuel oil, comprising the step of converting fatty acid glycerides contained in fats and oils into fatty acid monoesters using the heteropolyacid catalyst / carrier complex according to any one of claims 1 to 3.
PCT/JP2009/002422 2008-06-02 2009-06-01 Heteropoly acid decomposition catalyst and method for manufacturing diesel fuel oil using said catalyst WO2009147816A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010515758A JPWO2009147816A1 (en) 2008-06-02 2009-06-01 Heteropoly acid decomposition catalyst and method for producing diesel fuel oil using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-144220 2008-06-02
JP2008144220 2008-06-02
JP2009000471 2009-01-06
JP2009-000471 2009-02-03

Publications (1)

Publication Number Publication Date
WO2009147816A1 true WO2009147816A1 (en) 2009-12-10

Family

ID=41397899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/002422 WO2009147816A1 (en) 2008-06-02 2009-06-01 Heteropoly acid decomposition catalyst and method for manufacturing diesel fuel oil using said catalyst

Country Status (2)

Country Link
JP (1) JPWO2009147816A1 (en)
WO (1) WO2009147816A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104194947A (en) * 2014-07-15 2014-12-10 青岛福瑞斯生物能源科技开发有限公司 Method for synthesizing biodiesel via catalytic transesterification of solid-phase catalyst
KR101922164B1 (en) 2011-12-29 2019-02-13 노보 노르디스크 에이/에스 Dipeptide comprising a non-proteogenic amino acid

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06313188A (en) * 1993-04-28 1994-11-08 Kao Corp Production of fatty acid ester
JP2002294277A (en) * 2001-03-30 2002-10-09 Rebo International:Kk Method for producing lower alkyl ester

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06313188A (en) * 1993-04-28 1994-11-08 Kao Corp Production of fatty acid ester
JP2002294277A (en) * 2001-03-30 2002-10-09 Rebo International:Kk Method for producing lower alkyl ester

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
OKUMURA K. ET AL.: "Studies on the identification of the heteropoly acid generated in the H3P04-W03-Nb205 catalyst and its thermal transformation process", JOURNAL OF CATALYSIS, vol. 245, no. 1, 1 January 2007 (2007-01-01), pages 75 - 83 *
YAMADA K. ET AL.: "Heteropoly-san Fragment Shokubai (H4PNbW11O40-WO3-Nb2O5) no Sanseishitsu no Kaiseki", DAI 99 KAI SHOKUBAI TORONKAI TORONKAI A YOKOSHU, CATALYSIS SOCIETY OF JAPAN, 28 March 2007 (2007-03-28), pages 114 *
YAMASHITA K. ET AL.: "H4PNbW11O40 o Zenkutai to shita Shinki San Shokubai no Chosei to Friedel Crafts Hanno eno Riyo", CATALYSTS & CATALYSIS, vol. 48, no. 6, 10 September 2006 (2006-09-10), pages 409 - 411 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101922164B1 (en) 2011-12-29 2019-02-13 노보 노르디스크 에이/에스 Dipeptide comprising a non-proteogenic amino acid
CN104194947A (en) * 2014-07-15 2014-12-10 青岛福瑞斯生物能源科技开发有限公司 Method for synthesizing biodiesel via catalytic transesterification of solid-phase catalyst

Also Published As

Publication number Publication date
JPWO2009147816A1 (en) 2011-10-20

Similar Documents

Publication Publication Date Title
Narowska et al. Use of activated carbons as catalyst supports for biodiesel production
Mansir et al. Modified waste egg shell derived bifunctional catalyst for biodiesel production from high FFA waste cooking oil. A review
Endalew et al. Inorganic heterogeneous catalysts for biodiesel production from vegetable oils
Wen et al. Preparation of KF/CaO nanocatalyst and its application in biodiesel production from Chinese tallow seed oil
Qiu et al. Heterogeneous solid base nanocatalyst: preparation, characterization and application in biodiesel production
ES2331754T3 (en) PROCEDURE FOR THE MANUFACTURE OF ETHICAL ESTERS OF FATTY ACIDS FROM TRIGLICERIDS AND ALCOHOLS.
Jothiramalingam et al. Review of recent developments in solid acid, base, and enzyme catalysts (heterogeneous) for biodiesel production via transesterification
Boz et al. Transesterification of canola oil to biodiesel using calcium bentonite functionalized with K compounds
JP5234736B2 (en) Fatty acid methyl ester production method and fatty acid methyl ester production apparatus
JP5964327B2 (en) Improved process for producing fatty acid alkyl esters (biodiesel) from triglyceride oils by using environmentally friendly solid base catalysts
JP2008274030A (en) Method for producing biodiesel fuel
Coman et al. Heterogeneous catalysis for biodiesel production
JP3995429B2 (en) Method for producing lower alkyl ester
Reddy et al. Polymer-supported azidoproazaphosphatrane: a recyclable catalyst for the room-temperature transformation of triglycerides to biodiesel
Hou et al. Fabrication of H 3 PW 12 O 40/agarose membrane for catalytic production of biodiesel through esterification and transesterification
WO2009147816A1 (en) Heteropoly acid decomposition catalyst and method for manufacturing diesel fuel oil using said catalyst
JP5454836B2 (en) Method for producing fatty acid monoester product using regenerated solid acid catalyst
Baskar et al. Recent advances in heterogeneous catalysts for biodiesel production
Ruatpuia et al. Biodiesel production through heterogeneous catalysis route: A review
JP5454835B2 (en) Method for producing fatty acid monoester by solid acid catalyst
Shin et al. Effects of ultrasonification and mechanical stirring methods for the production of biodiesel from rapeseed oil
Brito et al. Reuse of fried oil to obtain biodiesel: Zeolites Y as a catalyst
Ingle et al. Application of metal oxide nanostructures as heterogeneous catalysts for biodiesel production
Rashid et al. Bio‐Based Catalysts in Biodiesel Production
Borges et al. Improvement of biodiesel production through microstructural engineering of a heterogeneous catalyst

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09758083

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010515758

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09758083

Country of ref document: EP

Kind code of ref document: A1