JP3995429B2 - Method for producing lower alkyl ester - Google Patents

Method for producing lower alkyl ester Download PDF

Info

Publication number
JP3995429B2
JP3995429B2 JP2001097889A JP2001097889A JP3995429B2 JP 3995429 B2 JP3995429 B2 JP 3995429B2 JP 2001097889 A JP2001097889 A JP 2001097889A JP 2001097889 A JP2001097889 A JP 2001097889A JP 3995429 B2 JP3995429 B2 JP 3995429B2
Authority
JP
Japan
Prior art keywords
catalyst
reaction
lower alkyl
oil
oils
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001097889A
Other languages
Japanese (ja)
Other versions
JP2002294277A (en
Inventor
勝英 中山
竹徳 平野
慶一 傳
敦 阪井
文人 川嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Revo International Inc
Original Assignee
Revo International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2001097889A priority Critical patent/JP3995429B2/en
Application filed by Revo International Inc filed Critical Revo International Inc
Priority to AT02713220T priority patent/ATE480326T1/en
Priority to AT07018866T priority patent/ATE481166T1/en
Priority to EP07018866A priority patent/EP1876164B1/en
Priority to DE60237592T priority patent/DE60237592D1/en
Priority to US10/473,252 priority patent/US6960672B2/en
Priority to DK07018866.9T priority patent/DK1876164T3/en
Priority to DK02713220.8T priority patent/DK1380637T3/en
Priority to PCT/JP2002/003039 priority patent/WO2002081607A1/en
Priority to EP02713220A priority patent/EP1380637B1/en
Priority to DE60237727T priority patent/DE60237727D1/en
Publication of JP2002294277A publication Critical patent/JP2002294277A/en
Priority to HK04105157.4A priority patent/HK1063061A1/en
Application granted granted Critical
Publication of JP3995429B2 publication Critical patent/JP3995429B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/74Recovery of fats, fatty oils, fatty acids or other fatty substances, e.g. lanolin or waxes

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Fats And Perfumes (AREA)
  • Compounds Of Iron (AREA)
  • Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、低級アルキルエステルの製造方法に関する。
【0002】
【従来の技術】
現在、わが国では各種食用油が多量に使用されており、その使用済油(廃食油)の一部は石鹸などの原料として再利用されているが、その大部分は回収されずにごみ処理場に運ばれ、可燃物ごみと一緒に焼却されるか、あるいは不燃物ごみと一緒に埋め立てて処理されているのが実情である。
【0003】
一方、植物油の主成分であるモノグリセリド、ジグリセリド、トリグリセリドをアルキルアルコールとエステル交換反応させることによって、脂肪酸アルキルエステルが得られることは以前から知られている(例えば、「有機化学ハンドブック」技報堂出版、1988、p1407 〜p1409)。またこの反応を利用して、植物油脂や廃食油等からディーゼル燃料油として使用できるアルキルエステルを製造する技術についてもこれまで様々検討されてきたが(例えば、特開平7−197047号公報、同7−310090号公報等)、これらの技術では現行の軽油に関する品質確保法を満足できる様なアルキルエステルは得られていない。
【0004】
ところで、エステル交換反応は平衡反応であることから、一方の原料であるアルキルアルコールを多量に用いるか、副反応物として生成するグリセリンを除去することによって、平衡を生成系にずらして収率を上げる様にしている。また、この反応は、液相反応よりも気相反応の方が、平衡的には有利であると言われている。更に、反応速度を速めるためには、触媒が利用されるのが一般的である。
【0005】
一般的に、エステル交換反応の代表的な工業プロセスである酢酸、高級脂肪酸、不飽和カルボン酸等の製造方法においては、酸性触媒が多く使用されている。例えば硫酸やリン酸等のプロトン酸は、非芳香族カルボン酸のエステル化触媒として使用され、フェノール酸のエステル化にはホウ酸や硫酸が使用されている。しかしながら、これらの反応は基本的に反応溶液中に触媒が溶解した状態で存在する均一反応系であるので、生成液から触媒の分離・回収が困難であるという問題がある。
【0006】
固体酸性触媒も良く使用され、テレフタル酸やメタクリル酸のエステル交換反応には、SO4 2- −TiO2 、TiO2 −SiO2 、Al2 (SO4 3 /SiO2 ・Al2 3 、スルホン酸系イオン交換樹脂等が用いられている。また、ヘテロポリ酸も良好なエステル化触媒と言われており、SiO2 や活性炭に担持して、気相触媒としてSiO2 −Al2 3 や固体リン酸よりも高い活性を示すことが知られている。更に、粘土鉱物も触媒として用いられている。これらの固体酸性触媒、鉱物触媒は生成液から分離する必要がないので、反応装置の簡易化という面で優れたものとなる。しかしながら、これらの工業触媒は、油脂類のエステル交換反応に対する活性は低いという決定的な欠点があり、上記プロセスを工業的規模で実用化するには至っていない。
【0007】
固体酸性触媒を油脂類のエステル交換反応に適用した技術として、例えば特開平6−313188号公報の様な技術も提案されている。そしてこの技術において用いる触媒としては、単一または複合金属酸化物、金属硫酸塩、金属リン酸塩、担体上に担持または固定化した固定化酸、天然鉱物および層状化合物、固体のヘテロポリ酸、超強酸、合成ゼオライト、イオン交換樹脂等が挙げられている。しかしながら、この技術においても上記した従来の方法と同様に、油脂類のエステル交換反応に対する触媒活性が低く、高い収率を達成するためには、反応系内における固体酸性触媒の割合を高めてやるか、反応時間を長くする必要があった。
【0008】
エステル交換反応には塩基性触媒も用いられており、この塩基性触媒としては、金属アルコラートが有効であることが知られている。そして、こうした金属アルコラートとしてはナトリウムアルコラートやカリウムアルコラートが一般的に使用されている。また塩基性触媒として、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム等も用いられ、これらは油脂類のエステル交換反応に高い活性を示している。しかしながらこれまでの塩基性触媒は、前記した酸性触媒と同様に反応液に溶解した状態で作用するものであるので、生成液中に溶解することになり、その分離・回収が困難であるという問題は解消されていない。
【0009】
また、エステル交換反応に固体塩基性触媒を使用する試みもなされており、こうした固体塩基性触媒としてアミン系の塩基を有するイオン交換樹脂が提案されている(例えば、特開昭62−218495号公報)。こうした技術では、触媒の分離・回収という問題は基本的に生じない。しかしながらこの技術は、アルコールを過剰に用いて、トリグリセライドの濃度として0.1〜3重量%程度の反応系で行なわれるものであり、活性が著しく低く、また反応温度もイオン交換樹脂の耐久性の点から60℃以下に限定されている等、実用的とはいえない。
【0010】
また、最近、カルボン酸化合物と酸化鉄、またはカリウム化合物と酸化ジルコニウムとからなる塩基性固体触媒の利用が開示されているが(特開2000−44984号公報)、その触媒活性は充分とは言えず、実用的でない。
【0011】
【発明が解決しようとする課題】
本発明は、油脂類、特に廃食油に含まれる主としてトリグリセリドから、ディーゼル燃料油等として有効利用できる低級アルキルエステルを高い反応効率で製造でき、しかも触媒の分離・回収工程を簡略化もしくは省略することのできる、工業規模で利用可能な低級アルキルエステルの製造方法を提供することを目的とする。
【0012】
【課題を解決するための手段】
すなわち、本発明は、
〔1〕 油脂類と低級アルコールとの間で触媒の存在下にエステル交換反応を行って低級アルキルエステルを製造するに際し、ペロブスカイト型構造を有する複合金属酸化物を含んでなる触媒を使用することを特徴とする低級アルキルエステルの製造方法、
〔2〕 複合金属酸化物がCa、SrおよびBaからなる群より選ばれる少なくとも1種を含んでなるものである前記〔1〕記載の方法、
〔3〕 触媒が、さらにセシウム化合物をセシウムの質量換算で1〜10質量%含有してなるものである前記〔1〕または〔2〕記載の方法、ならびに
〔4〕 触媒を成形してなる固体触媒を充填し、固定した固定床流通型反応器を用いてエステル交換反応を行う前記〔1〕〜〔3〕いずれか記載の方法、
に関する。
【0013】
【発明の実施の形態】
本発明の低級アルキルエステルの製造方法は、触媒としてペロブスカイト(perovskite)型構造を有する複合金属酸化物からなる触媒を使用することを1つの大きな特徴とする。かかる触媒を使用するので、穏やかな条件下においても油脂類に含まれるエステル(主としてトリグリセライド)と低級アルコールとの間でエステル交換反応を高効率で行うことができ、従来、困難であったディーゼル燃料油等として有効利用できる、軽油に関する品質確保法を満足する低級アルキルエステルの工業規模での製造が可能となる。また、該触媒は固体であり、エステル交換反応を行う、たとえば反応溶液中に溶解することはなく、反応終了後に濾過等の簡単な操作で反応系外へ容易に分離除去できることから、触媒の分離・回収工程を簡略化もしくは省略することができる。従って、容易に低級アルキルエステルを精製でき、しかも相分離するグリセリン中での触媒の残存の問題もなく、得られたグリセリンは直ちに再利用が可能となる。
【0014】
なお、「軽油に関する品質確保法を満足する低級アルキルエステル」とは、具体的には、硫黄分0.2%以下、セタン指数45以上、90%留出温度360℃以下の低級アルキルエステルをいう。
【0015】
本発明において原料として使用する油脂類は特に限定されるものではない。例えば、ナタネ油、ゴマ油、ダイズ油、トウモロコシ油、ヒマワリ油、パーム油、パーム核油、ヤシ油、ベニバナ油、アマニ油、綿実油、キリ油、ヒマシ油、牛脂等の一般油脂、レストラン、食品工場、一般家庭等から廃棄される廃食油等を挙げることができる。また、これらの油脂類を単独であるいは2種以上混合して使用することもでき、前記油脂を主成分とする油脂加工品も原料とすることができる。本発明においては、資源の再利用を図る観点から、廃食油を使用することが好ましい。
【0016】
使用する油脂類の品質については特に限定するものではないが、高効率のエステル交換反応を達成する観点から、水分と固形分の含有量が少ない油脂類を使用するのが好ましい。それゆえ、廃食油を原料として使用する際には、含まれている水分や固形分を除去する為の前処理を施すことが好ましい。また、使用する廃食油中には酸性物質が多量に含まれることがあるが、当該酸性物質による触媒活性の阻害を防止する観点から、前処理として脱酸を行うことが好ましい。なお、前記前処理はいずれも公知の方法に従って行うことができる。
【0017】
本発明に使用する低級アルコールとは、炭素数1〜8、好ましくは1〜5の、飽和の直鎖または分岐鎖の炭化水素骨格を有するアルコールであり、たとえば、メチルアルコール、エチルアルコール、プロピルアルコール、イソプロピルアルコール、ブチルアルコール、t−ブチルアルコール等を挙げることができる。中でも、ディーゼル燃料油として良質な低級アルキルエステルを製造する観点から、メチルアルコール、エチルアルコール、プロピルアルコールおよびイソプロピルアルコールからなる群より選ばれる少なくとも1種を使用するのが好ましい。
【0018】
本発明において使用する触媒はペロブスカイト型構造を有する複合金属酸化物を含む触媒であり、当該複合金属酸化物は、一般式 ABOn (式中、Aはアルカリ土類金属原子であり、Bは遷移金属原子であり、nは3以上の整数である)で表わされる組成を有する。本発明の所望の効果の発現の観点から、AとしてはCa、SrおよびBaからなる群より選ばれる少なくとも1種が好ましく、BとしてはTi、Mn、V、Fe、Cu、Yおよびランタノイド金属原子であるLaからなる群より選ばれる少なくとも1種が好ましい。さらに、前記触媒としては、AがCa、SrおよびBaからなる群より選ばれる少なくとも1種であり、BがTi、Mn、YおよびLaからなる群より選ばれる少なくとも1種である複合金属酸化物を含むものがより好ましい。なお、ペロブスカイト型構造とは、一般にABO3 という組成でAイオンがかなり大きい場合に生ずる構造であり、酸化物ではA+1+53 、A+2+43 、A+3+33 等のものがあり、複数のAあるいはBイオンを含む複合ペロブスカイト型化合物の構造をいい、その構造はX線回折によって決定される。
【0019】
また、前記触媒としては、さらにセシウム(Cs)化合物を含有してなるものが好ましい。当該Cs化合物としては、たとえば、Cs2 O、CsCl、CsF、Cs2 CO3 、CsNO3 、Cs2 SO4 等を挙げることができる。当該化合物の含有量は本発明の所望の効果が得られる限り特に限定されるものではないが、Csの質量換算で好ましくは1〜10質量%、より好ましくは3〜8質量%である。Cs化合物を含有してなる触媒としては、中でも、Cs化合物と共に、AがCa、SrおよびBaからなる群より選ばれる少なくとも1種であり、BがTi、Mn、YおよびLaからなる群より選ばれる少なくとも1種である複合金属酸化物を含むものが好ましい。
【0020】
本発明において使用するペロブスカイト型構造を有する複合金属酸化物を含む触媒は、当該複合金属酸化物がアルカリ土類金属原子やランタノイド金属原子等の比較的イオン半径の大きい塩基性金属原子の酸化物からなる安定な構造体を形成していると推定される、固体の強い塩基性触媒であり、当該複合金属酸化物が特にペロブスカイト型構造を有するものであることから、イオン半径の大きい塩基性金属酸化物が構造的に安定化され、触媒として反応に用いたときに構造変化が生じにくくなるものと考えられる。また、ペロブスカイト型構造を有する化合物自体、強い塩基性を有するが、さらに、イオン半径の大きいCsを含む化合物を加えても、ペロブスカイト型構造は安定に維持され、両方の塩基性の加成性が成立するということから、触媒にさらにCs化合物を含有させることで、塩基性がより強くなるものと推定され、それゆえ、複合金属酸化物として期待され得る塩基性としては著しく塩基強度の大きい材料系となるものであり、より優れた活性を有する触媒とすることができる。従って、本発明に係る触媒によれば、エステル交換反応において高い触媒活性が発揮され、従来、困難であったディーゼル燃料油等として有効利用できる所望の低級アルキルエステルを高効率に得ることができる。また、固体であることから、反応終了後における触媒の分離・回収が容易となり、しかも、アミン系の塩基を有するイオン交換樹脂からなる公知の前記固体塩基性触媒とは異なり、通常のエステル交換反応条件下においては反応温度に対する制約はない。
【0021】
本発明に係る触媒の製造は、原料となる各金属を共沈澱法、含浸法、混練法等により互いに混合担持させ、焼成することにより行う。具体的には、たとえば、原料となる各金属を含む水溶液を混合攪拌し、熟成の後、沈殿物を得、当該沈殿物を水洗・濾過・乾燥し、焼成することにより行うことができる。さらに粉末として得られる触媒を成形し、いわゆる固体触媒とすることも可能である。固体触媒とすれば、反応液中への触媒の混入の可能性を大幅に低減することができ、反応終了後における触媒の分離・回収工程を実質的に行わなくともよいので、好ましい。
【0022】
原料となる各金属を含む水溶液の調製には、前記一般式に示すAを含む炭酸塩、硝酸塩、硫酸塩、ギ酸塩、酢酸塩等、ならびに前記一般式に示すBを含む炭酸塩、硝酸塩、硫酸塩、ギ酸塩、酢酸塩等を用いることができる。水溶液中における金属の濃度は、当該金属の水溶液が得られれば特に限定されるものではない。次いで、各金属を含む水溶液を、好ましくは30〜60℃にて混合、攪拌する。混合は、各金属塩から均一な組成の水酸化物の沈澱を生成させるという観点から、アルカリ金属の存在下に行う(当該アルカリ金属は沈殿剤として水溶液のpHを高めるものとして働くものであり、触媒中に含有されることはない)。たとえば、Na塩の水溶液を調製し、前記原料となる各金属を含む水溶液と混合すればよい。混合は、得られた各水溶液を、たとえば1つの容器に全て一度に入れることにより行ってもよいが、触媒の形成を効率的に進行させる観点から、アルカリ金属を含む水溶液に対し、原料となる各金属を含む水溶液を滴下して行うのが好ましい。混合に際しては、A成分の金属とB成分の金属とをモル比で、好ましくは1:1の割合とするのが望ましい。また、アルカリ金属は、アルカリ金属とA成分およびB成分の金属の合計量とのモル比で、好ましくは1:1〜1.5:1の割合とするのが望ましい。攪拌の方法は特に限定されるものではない。
【0023】
熟成とは、沈澱時に形成された核の成長を行う工程であり、好ましくは前記水溶液の混合、攪拌時と同じ温度範囲にて、1〜4時間行う。この工程により、形成された触媒の固体粒子は沈澱物として得られるので、当該沈澱物を水洗・濾過により洗浄する。洗浄後、好ましくは30〜80℃にて風乾等により適宜乾燥し、さらに、好ましくは500℃以上、より好ましくは800〜1000℃にて1〜4時間、マッフル炉により焼成を行う。
【0024】
Cs化合物を触媒中に含有せしめる場合は、たとえば、乾燥後に得られる触媒の粉末と、Cs化合物、たとえば、Cs2 3 、Cs2 CO3 、CsNO3 、Cs2 SO4 、CsCl、CsCOOCH3 、Cs2 O等の粉末とを適宜混合し、次いで、前記同様に焼成することにより行うことができる。
【0025】
触媒の成形は公知の方法により行うことができる。なお、本明細書において「成形」には、触媒の粉末をプレス機等を用いて一定形状に整える態様と共に、特定の担体に対し触媒の粉末を担持させる態様を含むものとする。
【0026】
本発明に係る触媒を成形して得られる固体触媒の形状としては特に限定されるものではなく、用途に応じ適宜選択すればよい。たとえば、タブレット状、リング状、ペレット状、ハニカム状、コルゲート状のいずれでもよく、また、セラミックやメタルハニカムのような担体上に、触媒の粉末を含むスラリーをウォッシュコートしたものであってもよい。
【0027】
本発明の低級アルキルエステルの製造方法としては、原料を連続的に供給してエステル交換反応を行う連続式であっても、原料を1バッチ当たりに要する量だけ供給し、単回でエステル交換反応を行うバッチ式であってもよい。連続式とする場合は、たとえば、本発明に係る触媒(粉末)を成形してなる固体触媒を充填し、固定した、エステル交換反応を行うための固定床流通型反応器を用い、当該反応器に原料の油脂類、低級アルコールを連続的に供給し、反応生成物である低級アルキルエステル、グリセリン、および未反応物である残存する油脂類、アルコールを排出することにより行うことができる。一方、バッチ式とする場合は、たとえば、エステル交換反応を行うための反応器を用い、当該反応器に原料の油脂類、アルコール、触媒を各々1バッチ当たりに要する量を投入後、反応を行い、反応生成物である低級アルキルエステル、グリセリン、および未反応物である残存する油脂類、アルコール、触媒を含む反応混合物を抜き出すことにより行うことができる。中でも、本発明に係る触媒(粉末)を成形してなる固体触媒を充填し、固定した固定床流通型反応器を用いてエステル交換反応を行い、低級アルキルエステルの製造を行う態様は、反応を高効率に進行させ得ると共に、反応終了後における触媒の分離・回収工程を省くことができ好ましい。なお、バッチ式の場合も、濾過等により容易に触媒を除去でき、触媒の分離・回収工程を簡略化できる。
【0028】
以下においては、本発明の低級アルキルエステルの製造方法として好ましい態様である前記固定床流通型反応器を用いる場合について詳細に説明する。なお、「部」は特段の事情がないかぎり「重量部」を表わす。
【0029】
低級アルコールの油脂類に対する仕込み量は、油脂類100部に対して、好ましくは10〜100部、より好ましくは10〜40部である。しかしながら、原料となる油脂類100部に対する低級アルコールの仕込み量は油脂類の平均分子量で変化するため、その場合、当該仕込み量は概ね以下の(1)式により計算される化学当量の倍数として表すことができる。すなわち、油脂類の平均分子量をMo、低級アルコールの平均分子量をMaとした場合、低級アルコールの当量仕込み量Wa(部)は、以下の式:
Wa=100/Mo×3×Ma (1)
により計算される。低級アルコールは(1)式で計算された当量仕込み量Waに対し、好ましくは1.2倍〜10倍、より好ましくは1.5倍〜5倍の比率で仕込まれる。アルコールの仕込み比率がかかる範囲内であれば、エステル交換反応が充分に進行し、経済的な観点からも好ましい。なお、平均分子量は原料としての油脂類および低級アルコールの成分組成に基づいて各々計算する。
【0030】
例えば、油脂類の平均分子量が880、低級アルコールがメチルアルコール(平均分子量32)の場合は、油脂類100部に対して、メチルアルコールを好ましくは、12部〜100部、より好ましくは、15部〜50部仕込む。
【0031】
反応器に仕込む固体触媒の量は、所望のエステル交換反応効率が得られれば特に限定されるものではないが、概ね油脂類100部に対して、0.5部〜100部が好ましく、1部〜30部がより好ましい。固体触媒の仕込み量がかかる範囲内であれば、エステル交換反応が充分に進行し、経済的な観点からも好ましい。
【0032】
なお、反応器、すなわち、エステル交換反応の反応場を提供する容器としては、フラスコ、鋼製容器、鋼製パイプ、スタティックミキサー、攪拌槽等を挙げることができる。反応器の材質は特に限定されず、ガラス、鉄鋼、ステンレス鋼、Ni合金、Ti合金、グラスライニング鋼、ポリマーライニング鋼、セラミックライニング鋼等を使用できる。
【0033】
反応器への油脂類および低級アルコールの供給は、たとえば、各々の原料槽から、当該原料槽と反応器との間を繋ぐ原料供給ラインを介して別々に供給してもよく(態様1)、あるいは1つの原料槽において油脂類および低級アルコールを予め混合しておき、両成分を同時に1つの原料供給ラインを介して供給してもよい(態様2)。なお、各原料の仕込み順序は特に限定されるものではない。また、態様2は、両成分が混合されて同時に反応器へ供給される態様の全てを意図するものであり、たとえば、原料槽は各原料ごと設けられているが、各々の原料槽から伸びる原料供給ラインが途中で結合して1つになっており、いわゆるライン混合されて両成分が反応器に同時に供給される態様も含む。
【0034】
態様1の場合、反応器内の固体触媒に対する油脂類の供給量としては、液空間速度(LHSV)で、好ましくは0.1〜10/hrである。また、低級アルコールの供給量としては、低級アルコールの油脂類に対する仕込み量が前記好ましい範囲内となるような量であるのが好ましく、液空間速度(LHSV)で0.01〜6/hrが好ましい。
【0035】
態様2の場合、油脂類と低級アルコールを、好ましくは低級アルコールの油脂類に対する仕込み量が前記好ましい範囲内となるように予め混合しておき、反応器内の固体触媒に対し、得られた混合物を液空間速度(LHSV)で、好ましくは0.7〜8/hrで供給する。
【0036】
エステル交換反応は、反応器内において、供給された各原料を所定の反応温度まで加熱して行う。なお、加熱の方法は、仕込みの際に熱交換器にて各原料を加熱しつつ仕込むことにより行っても良く、また仕込み開始と共に反応リアクターを外部から加熱することにより行ってもよい。反応温度としては、好ましくは25℃〜300℃、より好ましくは40℃〜200℃、さらに好ましくは55〜60℃である。反応圧力は反応器に仕込まれた揮発性物質が示す、反応温度での蒸気圧に相当するが、好ましくは0.1MPa〜10MPa、より好ましくは0.1MPa〜6MPa、さらに好ましくは0.1MPa〜1MPaである。かかる反応温度および反応圧力の範囲内であれば、エステル交換の反応速度が充分であり、反応を良好かつ迅速に進めることができ好ましい。反応時間は、反応温度や用いる原料の種類などにより異なり一概には決められないが、概ね1分〜24時間の範囲で選択される。
【0037】
反応器におけるエステル交換反応によって得られる反応生成物は、原料である油脂類に主成分として含まれるトリグリセリドと低級アルコールとのエステル交換反応によって生成する脂肪酸の低級アルキルエステルとグリセリンが主成分となる混合物である。この混合物から低級アルキルエステルとグリセリンを分離するには、反応終了後、得られた反応混合物を所望の温度まで冷却し、当該温度下もしくは室温下にて静置し、または、そのまま室温下にて静置し、それらの比重差を利用して低級アルキルエステルとグリセリンとを相分離させる静置層分離法も適用できるが、生産性の観点から、後述の遠心分離法が好ましい。
【0038】
遠心分離法は、反応終了後、所望の温度まで冷却した反応混合物を遠心分離器に供し、低級アルキルエステルとグリセリンとが分離し得る程度の遠心力を与えることにより行う。遠心分離後に得られる上層には、主成分となる低級アルキルエステルの他、未反応のアルコール分、臭気成分、有色成分等の混入物が含まれるので、次いで、たとえば、蒸留や吸着剤を用いる公知の精製工程により当該混入物を除去すれば、純度の高い低級アルキルエステルを得ることができる。なお、当該精製工程で用い得る吸着剤としては、たとえば、活性炭、活性炭素繊維、活性白土、酸性白土、ベントナイト、ケイソウ土、活性アルミナ等が挙げられる。
【0039】
以上のようにして得られた低級アルキルエステルは充分に純度が高く、軽油代替燃料などに直接使用することができる。また、グリセリンも触媒を含まないため直ちに再利用可能である。
【0040】
【実施例】
以下、実施例を挙げて本発明の構成および作用効果をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することはいずれも本発明の技術的範囲に含まれる。
【0041】
実施例1
Na2 CO3 46gを水540mlに溶解させた水溶液を攪拌しながら60℃に保ち、これにCa(NO3 2 ・4H2 O 22.4gとTiOSO4 ・nH2 O 28.3gを水586mlに溶解させた水溶液を滴下した後、1時間熟成することにより、沈澱物を得た。これを濾過、水洗、濾過した後、乾燥し、800℃で2時間焼成を行った。得られた粉末のX線回折像はペロブスカイト型構造となっていた。なお、X線回折は、理学電機製RAD−IIBにより行った。このようにした得られた焼成物を油圧のプレス成形機で錠剤状(タブレット状)に成形した後、2〜3mmに切断したものを触媒として反応器に充填し、固定した。次いで、原料を供給して反応を開始した。なお、エステル交換反応は下記の反応条件で行った。
【0042】
(反応条件)
原料油脂:食用菜種油+食用大豆油(日清製油株式会社製)
原料低級アルコール:メチルアルコール
触媒量:10ml(油脂100重量部に対し概ね20部)
油脂供給量(LHSV):2/h
アルコール供給量(LHSV):0.26/h
アルコール仕込み量:油脂100重量部に対し13重量部
反応温度:60℃
反応圧力:常圧(0.1MPa)
【0043】
反応開始後1時間経過してから、1時間ごとに生成液をサンプリングし、サンプルのメチルエステル相からエバポレーターでメチルアルコールを除去した後、メチルエステルの溶液の粘度を測定しメチルエステルの生成率を求めた。尚、メチルエステル生成率とは、生成液中のメチルアルコールを除去したメチルエステル相(トリグリセリドを含む)におけるメチルエステルの占める質量割合(%)を意味する。なお、粘度の測定は粘度分析装置〔BL型粘度計(トキメック社製)〕により行った。メチルエステル相中のメチルエステル量は、予め既知濃度のメチルエステル溶液の粘度を求めて検量線を作成し、当該検量線により求めた。
【0044】
反応開始後、3時間目の分析により得られたメチルエステル生成率(%)を表1に示す。
【0045】
実施例2
Na2 CO3 28.6gを水337mlに溶解させ、Ca(NO3 2 ・4H2 O 17.7gとMn(NO3 2 ・6H2 O 21.5gを水273mlに溶解させた以外は実施例1と同様にして触媒を調製した。X線回折によりペロブスカイト型構造が認められた。実施例1と同様にしてエステル交換反応を行い、このときのメチルエステル生成率を測定した。表1に結果を示す。
【0046】
比較例1および2
CaOおよびTiO2 を各々800℃で焼成したものを触媒とした以外は実施例1と同様にしてエステル交換反応を行い、このときのメチルエステル生成率を測定した。なお、X線回折の結果、触媒はペロブスカイト型構造でないことを確認した。表1に結果を示す。
【0047】
実施例3
Na2 CO3 33.3gを水405mlに溶解させ、Sr(NO3 2 19.0gとTiOSO4 ・nH2 O 16.8gを水415mlに溶解させた後、実施例1と同様な方法で沈澱物を得、これを乾燥させたもの18.2gとCs2 3 1.82gを混合した後、800℃で2時間焼成した後、実施例1と同様に触媒調製した。X線回折によりペロブスカイト型構造が認められた。実施例1と同様にエステル交換反応を行い、このときのメチルエステル生成率を測定した。表1に結果を示す。
【0048】
実施例4
Na2 CO3 49.8gを水588mlに溶解し、La(NO3 3 ・6H2 O 28.15g、Ca(NO3 2 ・4H2 O 15.4gおよびCu(NO3 2 ・3H2 O 31.4gを水474mlに溶解させた以外は実施例3と同様に触媒調製を行った。X線回折によりペロブスカイト型構造が認められた。実施例1と同様にしてエステル交換反応を行い、このときのメチルエステル生成率を測定した。表1に結果を示す。
【0049】
実施例5
Na2 CO3 25.4gを水300mlに溶解し、Y(NO3 2 ・6H2 O 9.6g、Ba(NO3 2 13.1gおよびCo(NO3 2 ・3H2 O 24.2gを水318mlに溶解させた以外は実施例3と同様に触媒調製を行った。X線回折によりペロブスカイト型構造が認められた。実施例1と同様にしてエステル交換反応を行い、このときのメチルエステル生成率を測定した。表1に結果を示す。
【0050】
実施例6
Na2 CO3 38.2gを水450mlに溶解し、La(NO3 3 ・6H2 O 43.3g、Sr(NO3 2 21.2gおよびCo(NO3 2 ・6H2 O 29.1gを水545mlに溶解させた以外は実施例3と同様に触媒調製を行った。X線回折によりペロブスカイト型構造が認められた。実施例1と同様にしてエステル交換反応を行い、このときのメチルエステル生成率を測定した。表1に結果を示す。
【0051】
実施例7
Na2 CO3 38.2gを水450mlに溶解し、La(NO3 3 ・6H2 O 43.3g、Sr(NO3 2 21.2gおよびFe(NO3 3 ・9H2 O 40.4gを水545mlに溶解させた以外は実施例3と同様に触媒調製を行った。X線回折によりペロブスカイト型構造が認められた。実施例1と同様にしてエステル交換反応を行い、このときのメチルエステル生成率を測定した。表1に結果を示す。
【0052】
比較例3および4
BaOおよびSrOを各々800℃で焼成したものを触媒とした以外は実施例1と同様にしてエステル交換反応を行い、このときのメチルエステル生成率を測定した。なお、X線回折の結果、触媒はペロブスカイト型構造でないことを確認した。表1に結果を示す。
【0053】
比較例5
TiO2 20gとCs2 CO3 2gを混合して800℃で焼成したものを触媒とした以外は実施例1と同様にしてエステル交換反応を行い、このときのメチルエステル生成率を測定した。なお、X線回折の結果、触媒はペロブスカイト型構造でないことを確認した。表1に結果を示す。
【0054】
【表1】

Figure 0003995429
【0055】
実施例1〜7と比較例1〜5との比較より、ペロブスカイト型構造を有する複合金属酸化物からなる触媒を使用してメチルエステルを製造することで、当該触媒を使用しない場合と比較して、格段にメチルエステルの生成率が向上することが分かる。
【0056】
【発明の効果】
本発明によれば、油脂類、特に廃食油に含まれる主としてトリグリセリドから、ディーゼル燃料油等として有効利用できる低級アルキルエステルを高効率に、しかも工業規模で製造することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a lower alkyl ester.
[0002]
[Prior art]
Currently, a large amount of various edible oils are used in Japan, and some of the used oil (waste edible oil) is reused as raw materials for soap, etc., but most of it is not recovered and is disposed of as a waste treatment plant. The actual situation is that it is transported to the city and incinerated with combustible waste or landfilled with noncombustible waste.
[0003]
On the other hand, it has long been known that fatty acid alkyl esters can be obtained by transesterifying monoglycerides, diglycerides, and triglycerides, which are the main components of vegetable oils, with alkyl alcohols (for example, “Organic Chemistry Handbook”, Gihodo Publishing, 1988). , P1407-p1409). In addition, various techniques for producing alkyl esters that can be used as diesel fuel oil from vegetable fats and oils, waste cooking oils, and the like by using this reaction have been studied so far (for example, JP-A-7-197047 and 7). No. 310090, etc.), these techniques do not provide an alkyl ester that can satisfy the current quality assurance method for light oil.
[0004]
By the way, since the transesterification reaction is an equilibrium reaction, the yield is increased by shifting the equilibrium to the production system by using a large amount of one of the raw material alkyl alcohols or by removing glycerin produced as a side reaction product. Like. In addition, it is said that the gas phase reaction is more advantageous in equilibrium than the liquid phase reaction. Furthermore, in order to increase the reaction rate, a catalyst is generally used.
[0005]
In general, acid catalysts are often used in production methods for acetic acid, higher fatty acids, unsaturated carboxylic acids, and the like, which are typical industrial processes for transesterification. For example, protic acids such as sulfuric acid and phosphoric acid are used as esterification catalysts for non-aromatic carboxylic acids, and boric acid and sulfuric acid are used for esterification of phenolic acids. However, since these reactions are basically a homogeneous reaction system in which the catalyst is dissolved in the reaction solution, there is a problem that it is difficult to separate and recover the catalyst from the product solution.
[0006]
Solid acidic catalysts are also often used. For transesterification of terephthalic acid and methacrylic acid, SOFour 2--TiO2TiO2-SiO2, Al2(SOFour)Three/ SiO2・ Al2OThreeIn addition, sulfonic acid ion exchange resins and the like are used. Heteropoly acids are also said to be good esterification catalysts, and SiO2And supported on activated carbon, SiO as a gas phase catalyst2-Al2OThreeIt is known to exhibit higher activity than solid phosphoric acid. Furthermore, clay minerals are also used as catalysts. Since these solid acidic catalyst and mineral catalyst do not need to be separated from the product solution, they are excellent in terms of simplification of the reaction apparatus. However, these industrial catalysts have a decisive disadvantage that the activity of fats and oils for transesterification is low, and the above process has not been put to practical use on an industrial scale.
[0007]
As a technique in which a solid acidic catalyst is applied to a transesterification reaction of fats and oils, for example, a technique as disclosed in JP-A-6-313188 has been proposed. Catalysts used in this technology include single or mixed metal oxides, metal sulfates, metal phosphates, immobilized acids supported or immobilized on a support, natural minerals and layered compounds, solid heteropolyacids, Strong acids, synthetic zeolites, ion exchange resins and the like are mentioned. However, in this technique as well as the conventional method described above, the catalytic activity for the transesterification reaction of fats and oils is low, and in order to achieve a high yield, the ratio of the solid acidic catalyst in the reaction system is increased. Or it was necessary to lengthen the reaction time.
[0008]
A basic catalyst is also used in the transesterification reaction, and it is known that a metal alcoholate is effective as the basic catalyst. As such metal alcoholates, sodium alcoholates and potassium alcoholates are generally used. Moreover, sodium hydroxide, potassium hydroxide, sodium carbonate, etc. are also used as a basic catalyst, These have shown high activity to transesterification of fats and oils. However, since the conventional basic catalyst acts in the state of being dissolved in the reaction solution in the same manner as the acidic catalyst described above, it is dissolved in the product solution, and its separation and recovery are difficult. Has not been resolved.
[0009]
In addition, attempts have been made to use a solid basic catalyst for transesterification, and an ion exchange resin having an amine base as such a solid basic catalyst has been proposed (for example, JP-A-62-218495). ). With such technology, the problem of separation and recovery of the catalyst basically does not occur. However, this technique is carried out in a reaction system in which the alcohol is used in excess and the triglyceride concentration is about 0.1 to 3% by weight, the activity is extremely low, and the reaction temperature is the durability of the ion exchange resin. From the point, it is not practical because it is limited to 60 ° C. or less.
[0010]
Recently, the use of a basic solid catalyst comprising a carboxylic acid compound and iron oxide, or a potassium compound and zirconium oxide has been disclosed (Japanese Patent Laid-Open No. 2000-44984), but the catalytic activity is sufficient. Not practical.
[0011]
[Problems to be solved by the invention]
The present invention can produce a lower alkyl ester that can be effectively used as a diesel fuel oil, etc., mainly from triglycerides contained in fats and oils, particularly waste edible oil, with high reaction efficiency, and simplifies or omits the catalyst separation and recovery process. An object of the present invention is to provide a process for producing a lower alkyl ester that can be used on an industrial scale.
[0012]
[Means for Solving the Problems]
That is, the present invention
[1] When a lower alkyl ester is produced by performing a transesterification reaction between an oil and fat and a lower alcohol in the presence of a catalyst, a catalyst comprising a composite metal oxide having a perovskite structure is used. A method for producing a lower alkyl ester,
[2] The method according to [1] above, wherein the composite metal oxide comprises at least one selected from the group consisting of Ca, Sr and Ba,
[3] The method according to [1] or [2], wherein the catalyst further contains 1 to 10% by mass of a cesium compound in terms of cesium, and
[4] The method according to any one of [1] to [3] above, wherein a solid catalyst formed by forming a catalyst is charged, and a transesterification reaction is performed using a fixed fixed bed flow reactor.
About.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The method for producing a lower alkyl ester of the present invention is characterized by using a catalyst comprising a composite metal oxide having a perovskite structure as a catalyst. Since such a catalyst is used, it is possible to carry out a transesterification reaction between an ester (mainly triglyceride) contained in oils and fats and a lower alcohol with high efficiency even under mild conditions. It becomes possible to produce a lower alkyl ester that can be effectively used as an oil or the like and satisfies the quality assurance method for light oil on an industrial scale. In addition, the catalyst is a solid and does transesterification. For example, it does not dissolve in the reaction solution, and can be easily separated and removed from the reaction system by a simple operation such as filtration after the reaction is completed. -The recovery process can be simplified or omitted. Therefore, the lower alkyl ester can be easily purified, and the obtained glycerin can be reused immediately without any problem of remaining catalyst in the phase-separated glycerin.
[0014]
The “lower alkyl ester satisfying the quality assurance method for light oil” specifically refers to a lower alkyl ester having a sulfur content of 0.2% or less, a cetane index of 45 or more, and a 90% distillation temperature of 360 ° C. or less. .
[0015]
The fats and oils used as raw materials in the present invention are not particularly limited. For example, rapeseed oil, sesame oil, soybean oil, corn oil, sunflower oil, palm oil, palm kernel oil, coconut oil, safflower oil, linseed oil, cottonseed oil, tung oil, castor oil, beef tallow, general oils and fats, restaurants, food factories And waste cooking oil discarded from ordinary households. Moreover, these fats and oils can also be used individually or in mixture of 2 or more types, The fats and oils processed product which has the said fats and oils as a main component can also be used as a raw material. In the present invention, it is preferable to use waste cooking oil from the viewpoint of reusing resources.
[0016]
Although the quality of the fats and oils to be used is not particularly limited, it is preferable to use fats and oils having a low moisture and solid content from the viewpoint of achieving a highly efficient transesterification reaction. Therefore, when using waste cooking oil as a raw material, it is preferable to perform a pretreatment for removing the contained moisture and solid content. In addition, the waste edible oil to be used may contain a large amount of an acidic substance. From the viewpoint of preventing the catalytic activity from being inhibited by the acidic substance, it is preferable to perform deoxidation as a pretreatment. In addition, all the said pre-processing can be performed in accordance with a well-known method.
[0017]
The lower alcohol used in the present invention is an alcohol having a saturated linear or branched hydrocarbon skeleton having 1 to 8, preferably 1 to 5 carbon atoms, such as methyl alcohol, ethyl alcohol, propyl alcohol. , Isopropyl alcohol, butyl alcohol, t-butyl alcohol and the like. Especially, it is preferable to use at least 1 sort (s) chosen from the group which consists of methyl alcohol, ethyl alcohol, propyl alcohol, and isopropyl alcohol from a viewpoint of manufacturing a good quality lower alkyl ester as diesel fuel oil.
[0018]
The catalyst used in the present invention is a catalyst containing a composite metal oxide having a perovskite structure, and the composite metal oxide has the general formula ABO.n(Wherein A is an alkaline earth metal atom, B is a transition metal atom, and n is an integer of 3 or more). From the viewpoint of expression of the desired effect of the present invention, A is preferably at least one selected from the group consisting of Ca, Sr and Ba, and B is Ti, Mn, V, Fe, Cu, Y and a lanthanoid metal atom. And at least one selected from the group consisting of La. Furthermore, the catalyst is a composite metal oxide in which A is at least one selected from the group consisting of Ca, Sr and Ba, and B is at least one selected from the group consisting of Ti, Mn, Y and La More preferably, it contains The perovskite structure is generally ABO.ThreeThis is the structure that occurs when the A ion is quite large with the composition+1B+5OThree, A+2B+4OThree, A+3B+3OThreeThe structure of a compound perovskite compound containing a plurality of A or B ions is determined by X-ray diffraction.
[0019]
Further, the catalyst preferably further contains a cesium (Cs) compound. Examples of the Cs compound include Cs.2O, CsCl, CsF, Cs2COThree, CsNOThree, Cs2SOFourEtc. Although content of the said compound is not specifically limited as long as the desired effect of this invention is acquired, Preferably it is 1-10 mass% in conversion of the mass of Cs, More preferably, it is 3-8 mass%. As a catalyst containing a Cs compound, among them, together with the Cs compound, A is at least one selected from the group consisting of Ca, Sr and Ba, and B is selected from the group consisting of Ti, Mn, Y and La. It is preferable to contain at least one mixed metal oxide.
[0020]
The catalyst containing a composite metal oxide having a perovskite structure used in the present invention is composed of an oxide of a basic metal atom having a relatively large ionic radius, such as an alkaline earth metal atom or a lanthanoid metal atom. Is a solid strong basic catalyst that is presumed to form a stable structure, and since the composite metal oxide has a perovskite structure, the basic metal oxidation with a large ionic radius It is considered that the product is structurally stabilized and hardly changes in structure when used as a catalyst in the reaction. Further, the compound itself having a perovskite structure has a strong basicity, but even if a compound containing Cs having a large ionic radius is added, the perovskite structure is stably maintained, and both basic additivity is high. Therefore, it is presumed that the basicity becomes stronger by further adding a Cs compound to the catalyst. Therefore, a material system having a remarkably high basic strength as a basicity that can be expected as a composite metal oxide. Thus, a catalyst having more excellent activity can be obtained. Therefore, according to the catalyst of the present invention, high catalytic activity is exhibited in the transesterification reaction, and a desired lower alkyl ester that can be effectively used as a diesel fuel oil or the like, which has been difficult in the past, can be obtained with high efficiency. In addition, since it is solid, separation and recovery of the catalyst after the completion of the reaction is facilitated, and unlike the known solid basic catalyst comprising an ion-exchange resin having an amine base, a normal transesterification reaction is performed. There are no restrictions on the reaction temperature under the conditions.
[0021]
The production of the catalyst according to the present invention is carried out by mixing and supporting each metal as a raw material by a coprecipitation method, an impregnation method, a kneading method, and the like, followed by firing. Specifically, for example, an aqueous solution containing each metal as a raw material is mixed and stirred, and after aging, a precipitate is obtained, and the precipitate is washed, filtered, dried, and fired. Further, it is possible to form a catalyst obtained as a powder to obtain a so-called solid catalyst. The solid catalyst is preferable because the possibility of the catalyst being mixed into the reaction solution can be greatly reduced, and the catalyst separation / recovery step after the completion of the reaction does not need to be substantially performed.
[0022]
For the preparation of an aqueous solution containing each metal as a raw material, carbonates, nitrates, sulfates, formates, acetates and the like containing A shown in the above general formula, and carbonates, nitrates containing B shown in the above general formula, Sulfates, formates, acetates and the like can be used. The concentration of the metal in the aqueous solution is not particularly limited as long as an aqueous solution of the metal is obtained. Subsequently, the aqueous solution containing each metal is preferably mixed and stirred at 30 to 60 ° C. The mixing is performed in the presence of an alkali metal from the viewpoint of producing a precipitate of a hydroxide of a uniform composition from each metal salt (the alkali metal serves as a precipitating agent to increase the pH of the aqueous solution, It is not contained in the catalyst). For example, an aqueous solution of Na salt may be prepared and mixed with an aqueous solution containing each metal as the raw material. Mixing may be performed by putting each obtained aqueous solution into, for example, one container all at once. However, from the viewpoint of efficiently promoting the formation of the catalyst, it becomes a raw material for the aqueous solution containing an alkali metal. It is preferable to carry out by dripping the aqueous solution containing each metal. In mixing, it is desirable that the A component metal and the B component metal are in a molar ratio, preferably 1: 1. Further, the alkali metal is preferably a molar ratio of the alkali metal to the total amount of the A component and B component metals, preferably 1: 1 to 1.5: 1. The stirring method is not particularly limited.
[0023]
Aging is a step of growing nuclei formed during precipitation, and is preferably carried out for 1 to 4 hours in the same temperature range as during mixing and stirring of the aqueous solution. By this step, the formed solid particles of the catalyst are obtained as a precipitate, and the precipitate is washed with water and filtered. After washing, it is suitably dried by air drying or the like preferably at 30 to 80 ° C., and further preferably calcined in a muffle furnace at 500 ° C. or higher, more preferably 800 to 1000 ° C. for 1 to 4 hours.
[0024]
When the Cs compound is contained in the catalyst, for example, the catalyst powder obtained after drying and the Cs compound, for example, Cs2OThree, Cs2COThree, CsNOThree, Cs2SOFour, CsCl, CsCOOCHThree, Cs2It can be carried out by appropriately mixing a powder such as O and then firing in the same manner as described above.
[0025]
The catalyst can be formed by a known method. In the present specification, “molding” includes a mode in which the catalyst powder is supported on a specific carrier as well as a mode in which the catalyst powder is adjusted to a certain shape using a press or the like.
[0026]
The shape of the solid catalyst obtained by molding the catalyst according to the present invention is not particularly limited, and may be appropriately selected depending on the application. For example, it may be tablet-shaped, ring-shaped, pellet-shaped, honeycomb-shaped, corrugated-shaped, or may be a carrier such as a ceramic or metal honeycomb coated with a slurry containing catalyst powder. .
[0027]
As a method for producing the lower alkyl ester of the present invention, even if it is a continuous type in which the raw material is continuously supplied to carry out the transesterification reaction, the raw material is supplied in an amount required for one batch, and the transesterification reaction is performed once A batch type may be used. In the case of a continuous type, for example, a fixed bed flow type reactor for performing a transesterification reaction, which is filled and fixed with a solid catalyst formed by molding the catalyst (powder) according to the present invention, is used. The raw oils and fats and the lower alcohol are continuously supplied to the product, and the lower alkyl ester and glycerin as reaction products, and the remaining fats and alcohols and unreacted substances are discharged. On the other hand, in the case of a batch type, for example, a reactor for performing a transesterification reaction is used, and after the required amounts of raw oils, alcohols, and catalysts per batch are charged into the reactor, the reaction is performed. The reaction product can be extracted by extracting a reaction mixture containing a lower alkyl ester, glycerin, which is a reaction product, and residual oils, alcohols, and catalysts, which are unreacted. Among these, the embodiment in which the solid catalyst formed by molding the catalyst (powder) according to the present invention is filled, the transesterification reaction is carried out using a fixed fixed bed flow reactor, and the production of the lower alkyl ester is carried out is the reaction. It is preferable because the process can proceed with high efficiency and the step of separating and recovering the catalyst after completion of the reaction can be omitted. In the case of the batch type, the catalyst can be easily removed by filtration or the like, and the catalyst separation / recovery process can be simplified.
[0028]
Below, the case where the said fixed bed flow-type reactor which is a preferable aspect as a manufacturing method of the lower alkyl ester of this invention is used is demonstrated in detail. “Parts” represents “parts by weight” unless otherwise specified.
[0029]
The amount of lower alcohol to be added to the fats and oils is preferably 10 to 100 parts, more preferably 10 to 40 parts with respect to 100 parts of the fats and oils. However, since the amount of lower alcohol charged relative to 100 parts of the raw oil and fat varies depending on the average molecular weight of the oil and fat, in that case, the amount is generally expressed as a multiple of the chemical equivalent calculated by the following equation (1). be able to. That is, when the average molecular weight of fats and oils is Mo and the average molecular weight of the lower alcohol is Ma, the equivalent charge amount Wa (parts) of the lower alcohol is represented by the following formula:
Wa = 100 / Mo × 3 × Ma (1)
Is calculated by The lower alcohol is preferably charged in a ratio of 1.2 times to 10 times, more preferably 1.5 times to 5 times the equivalent charge amount Wa calculated by the formula (1). If the charging ratio of alcohol is within such a range, the transesterification reaction proceeds sufficiently, which is preferable from an economical viewpoint. The average molecular weight is calculated based on the component composition of fats and oils and lower alcohols as raw materials.
[0030]
For example, when the average molecular weight of fats and oils is 880 and the lower alcohol is methyl alcohol (average molecular weight 32), methyl alcohol is preferably 12 to 100 parts, more preferably 15 parts, per 100 parts of fats and oils. Prepare 50 parts.
[0031]
The amount of the solid catalyst charged in the reactor is not particularly limited as long as the desired transesterification efficiency can be obtained, but is generally preferably 0.5 to 100 parts with respect to 100 parts of fats and oils. ~ 30 parts are more preferred. If the amount of the solid catalyst charged is within such a range, the transesterification reaction proceeds sufficiently, which is preferable from an economical viewpoint.
[0032]
Examples of the reactor, that is, a container that provides a reaction field for the transesterification reaction, include a flask, a steel container, a steel pipe, a static mixer, and a stirring tank. The material of the reactor is not particularly limited, and glass, steel, stainless steel, Ni alloy, Ti alloy, glass lining steel, polymer lining steel, ceramic lining steel and the like can be used.
[0033]
The fats and oils and lower alcohol may be supplied to the reactor, for example, from each raw material tank separately via a raw material supply line connecting the raw material tank and the reactor (Aspect 1), Or fats and oils and a lower alcohol may be mixed beforehand in one raw material tank, and both components may be simultaneously supplied through one raw material supply line (mode 2). In addition, the preparation order of each raw material is not specifically limited. Moreover, the aspect 2 intends all the aspects in which both components are mixed and supplied to the reactor at the same time. For example, although the raw material tank is provided for each raw material, the raw material extending from each raw material tank It also includes an embodiment in which the supply lines are combined in the middle to form one, and so-called line mixing is performed and both components are supplied to the reactor simultaneously.
[0034]
In the case of the aspect 1, the supply amount of fats and oils with respect to the solid catalyst in the reactor is liquid space velocity (LHSV), preferably 0.1 to 10 / hr. Further, the supply amount of the lower alcohol is preferably such an amount that the amount of the lower alcohol charged to the fats and oils falls within the above preferable range, and preferably 0.01 to 6 / hr in terms of liquid space velocity (LHSV). .
[0035]
In the case of the embodiment 2, the fats and oils and the lower alcohol are preferably mixed in advance so that the charge amount of the lower alcohols to the fats and oils is within the above preferred range, and the resulting mixture is obtained with respect to the solid catalyst in the reactor. At a liquid hourly space velocity (LHSV), preferably 0.7-8 / hr.
[0036]
The transesterification reaction is performed by heating the supplied raw materials to a predetermined reaction temperature in the reactor. The heating method may be performed by charging each raw material while heating in a heat exchanger at the time of charging, or may be performed by heating the reaction reactor from the outside at the start of charging. As reaction temperature, Preferably it is 25 to 300 degreeC, More preferably, it is 40 to 200 degreeC, More preferably, it is 55 to 60 degreeC. The reaction pressure corresponds to the vapor pressure at the reaction temperature indicated by the volatile substance charged in the reactor, preferably 0.1 MPa to 10 MPa, more preferably 0.1 MPa to 6 MPa, and still more preferably 0.1 MPa to 1 MPa. If it is in the range of this reaction temperature and reaction pressure, the reaction rate of transesterification is sufficient, and reaction can be advanced favorable and rapidly, and is preferable. The reaction time varies depending on the reaction temperature, the type of raw material used, etc., and cannot be determined unconditionally, but is generally selected in the range of 1 minute to 24 hours.
[0037]
The reaction product obtained by the transesterification reaction in the reactor is a mixture composed mainly of lower alkyl ester of fatty acid and glycerin produced by transesterification of triglyceride and lower alcohol contained as main components in the raw oils and fats. It is. In order to separate the lower alkyl ester and glycerin from this mixture, after completion of the reaction, the obtained reaction mixture is cooled to a desired temperature and allowed to stand at that temperature or room temperature, or as it is at room temperature. Although a stationary layer separation method in which the lower alkyl ester and glycerin are phase-separated by utilizing the difference in specific gravity between them can be applied, the centrifugal separation method described later is preferable from the viewpoint of productivity.
[0038]
Centrifugation is performed by applying the reaction mixture cooled to a desired temperature to the desired temperature after completion of the reaction, and applying a centrifugal force sufficient to separate the lower alkyl ester and glycerin. The upper layer obtained after centrifugation contains contaminants such as unreacted alcohol, odor components, and colored components in addition to the lower alkyl ester as the main component. If the contaminant is removed by the purification step, a highly pure lower alkyl ester can be obtained. Examples of the adsorbent that can be used in the purification step include activated carbon, activated carbon fiber, activated clay, acidic clay, bentonite, diatomaceous earth, and activated alumina.
[0039]
The lower alkyl ester obtained as described above has a sufficiently high purity and can be used directly as a light oil alternative fuel. Further, since glycerin does not contain a catalyst, it can be reused immediately.
[0040]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited by the following examples, and is suitable as long as it can meet the purpose described above and below. Any changes made to the above are included in the technical scope of the present invention.
[0041]
Example 1
Na2COThree  An aqueous solution prepared by dissolving 46 g in 540 ml of water was kept at 60 ° C. while stirring, and Ca (NOThree)2・ 4H222.4g of O and TiOSOFour・ NH2An aqueous solution in which 28.3 g of O was dissolved in 586 ml of water was added dropwise, and then aged for 1 hour to obtain a precipitate. This was filtered, washed with water, filtered, dried, and calcined at 800 ° C. for 2 hours. The X-ray diffraction image of the obtained powder had a perovskite structure. X-ray diffraction was performed by RAD-IIB manufactured by Rigaku Corporation. The fired product thus obtained was molded into a tablet (tablet) with a hydraulic press molding machine, and then cut into 2 to 3 mm as a catalyst and charged into a reactor. Subsequently, the raw material was supplied to start the reaction. The transesterification reaction was performed under the following reaction conditions.
[0042]
(Reaction conditions)
Raw oil: Edible rapeseed oil + edible soybean oil (Nisshin Oil Co., Ltd.)
Raw material lower alcohol: methyl alcohol
Amount of catalyst: 10 ml (approximately 20 parts per 100 parts by weight of fats and oils)
Oil supply (LHSV): 2 / h
Alcohol supply rate (LHSV): 0.26 / h
Alcohol charge: 13 parts by weight per 100 parts by weight of fat
Reaction temperature: 60 ° C
Reaction pressure: normal pressure (0.1 MPa)
[0043]
One hour after the start of the reaction, the product solution is sampled every hour, and after removing methyl alcohol from the methyl ester phase of the sample by an evaporator, the viscosity of the methyl ester solution is measured to determine the methyl ester production rate. Asked. The methyl ester production rate means the mass ratio (%) of the methyl ester in the methyl ester phase (including triglyceride) from which the methyl alcohol in the product liquid has been removed. The viscosity was measured with a viscosity analyzer [BL viscometer (manufactured by Tokimec)]. The amount of methyl ester in the methyl ester phase was determined in advance by preparing a calibration curve by obtaining the viscosity of a methyl ester solution having a known concentration.
[0044]
Table 1 shows the methyl ester production rate (%) obtained by analysis at 3 hours after the start of the reaction.
[0045]
Example 2
Na2COThree  28.6 g is dissolved in 337 ml of water and Ca (NOThree)2・ 4H217.7 g of O and Mn (NOThree)2・ 6H2A catalyst was prepared in the same manner as in Example 1 except that 21.5 g of O was dissolved in 273 ml of water. A perovskite structure was observed by X-ray diffraction. A transesterification reaction was carried out in the same manner as in Example 1, and the methyl ester production rate at this time was measured. Table 1 shows the results.
[0046]
Comparative Examples 1 and 2
CaO and TiO2A transesterification reaction was carried out in the same manner as in Example 1 except that each was calcined at 800 ° C. as a catalyst, and the methyl ester production rate at this time was measured. As a result of X-ray diffraction, it was confirmed that the catalyst was not a perovskite structure. Table 1 shows the results.
[0047]
Example 3
Na2COThree  33.3 g is dissolved in 405 ml of water and Sr (NOThree)2  19.0g and TiOSOFour・ NH216.8 g of O was dissolved in 415 ml of water, a precipitate was obtained in the same manner as in Example 1, and dried to obtain 18.2 g and Cs.2OThree  After mixing 1.82 g and calcining at 800 ° C. for 2 hours, a catalyst was prepared in the same manner as in Example 1. A perovskite structure was observed by X-ray diffraction. A transesterification reaction was carried out in the same manner as in Example 1, and the methyl ester production rate at this time was measured. Table 1 shows the results.
[0048]
Example 4
Na2COThree  49.8 g is dissolved in 588 ml of water and La (NOThree)Three・ 6H2O 28.15 g, Ca (NOThree)2・ 4H215.4 g of O and Cu (NOThree)2・ 3H2A catalyst was prepared in the same manner as in Example 3 except that 31.4 g of O was dissolved in 474 ml of water. A perovskite structure was observed by X-ray diffraction. A transesterification reaction was carried out in the same manner as in Example 1, and the methyl ester production rate at this time was measured. Table 1 shows the results.
[0049]
Example 5
Na2COThree  25.4 g is dissolved in 300 ml of water and Y (NOThree)2・ 6H29.6 g of O, Ba (NOThree)2  13.1 g and Co (NOThree)2・ 3H2A catalyst was prepared in the same manner as in Example 3 except that 24.2 g of O was dissolved in 318 ml of water. A perovskite structure was observed by X-ray diffraction. A transesterification reaction was carried out in the same manner as in Example 1, and the methyl ester production rate at this time was measured. Table 1 shows the results.
[0050]
Example 6
Na2COThree  38.2 g is dissolved in 450 ml of water and La (NOThree)Three・ 6H243.3 g of O, Sr (NOThree)2  21.2 g and Co (NOThree)2・ 6H2A catalyst was prepared in the same manner as in Example 3 except that 29.1 g of O was dissolved in 545 ml of water. A perovskite structure was observed by X-ray diffraction. A transesterification reaction was carried out in the same manner as in Example 1, and the methyl ester production rate at this time was measured. Table 1 shows the results.
[0051]
Example 7
Na2COThree  38.2 g is dissolved in 450 ml of water and La (NOThree)Three・ 6H243.3 g of O, Sr (NOThree)2  21.2 g and Fe (NOThree)Three・ 9H2A catalyst was prepared in the same manner as in Example 3 except that 40.4 g of O was dissolved in 545 ml of water. A perovskite structure was observed by X-ray diffraction. A transesterification reaction was carried out in the same manner as in Example 1, and the methyl ester production rate at this time was measured. Table 1 shows the results.
[0052]
Comparative Examples 3 and 4
A transesterification reaction was carried out in the same manner as in Example 1 except that BaO and SrO each calcined at 800 ° C. were used as catalysts, and the methyl ester production rate at this time was measured. As a result of X-ray diffraction, it was confirmed that the catalyst was not a perovskite structure. Table 1 shows the results.
[0053]
Comparative Example 5
TiO2  20g and Cs2COThree  A transesterification reaction was carried out in the same manner as in Example 1 except that 2 g was mixed and baked at 800 ° C. to measure the methyl ester production rate. As a result of X-ray diffraction, it was confirmed that the catalyst was not a perovskite structure. Table 1 shows the results.
[0054]
[Table 1]
Figure 0003995429
[0055]
Compared with the case where the said catalyst is not used by producing a methyl ester using the catalyst which consists of a composite metal oxide which has a perovskite type structure from the comparison with Examples 1-7 and Comparative Examples 1-5. It can be seen that the production rate of methyl ester is significantly improved.
[0056]
【The invention's effect】
According to the present invention, a lower alkyl ester that can be effectively used as a diesel fuel oil or the like can be produced with high efficiency and on an industrial scale from mainly fats and oils, particularly triglycerides contained in waste cooking oil.

Claims (4)

油脂類と低級アルコールとの間で触媒の存在下にエステル交換反応を行って低級アルキルエステルを製造するに際し、ペロブスカイト型構造を有する複合金属酸化物を含んでなる触媒を使用することを特徴とする低級アルキルエステルの製造方法。  When a lower alkyl ester is produced by performing a transesterification reaction between an oil and fat and a lower alcohol in the presence of a catalyst, a catalyst containing a composite metal oxide having a perovskite structure is used. A method for producing a lower alkyl ester. 複合金属酸化物がCa、SrおよびBaからなる群より選ばれる少なくとも1種を含んでなるものである請求項1記載の方法。  The method according to claim 1, wherein the composite metal oxide comprises at least one selected from the group consisting of Ca, Sr and Ba. 触媒が、さらにセシウム化合物をセシウムの質量換算で1〜10質量%含有してなるものである請求項1または2記載の方法。  The method according to claim 1 or 2, wherein the catalyst further comprises 1 to 10% by mass of a cesium compound in terms of mass of cesium. 触媒を成形してなる固体触媒を充填し、固定した固定床流通型反応器を用いてエステル交換反応を行う請求項1〜3いずれか記載の方法。  The method according to any one of claims 1 to 3, wherein a transesterification reaction is carried out using a fixed bed flow type reactor filled with a solid catalyst formed by shaping the catalyst.
JP2001097889A 2001-03-30 2001-03-30 Method for producing lower alkyl ester Expired - Lifetime JP3995429B2 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP2001097889A JP3995429B2 (en) 2001-03-30 2001-03-30 Method for producing lower alkyl ester
PCT/JP2002/003039 WO2002081607A1 (en) 2001-03-30 2002-03-28 Processes for producing alkyl ester of fatty acid
EP07018866A EP1876164B1 (en) 2001-03-30 2002-03-28 Process for producing alkyl ester of fatty acid using composite metal oxide catalyst
DE60237592T DE60237592D1 (en) 2001-03-30 2002-03-28 PROCESS FOR PREPARING FATTY ACIDAL CYLINDERS
US10/473,252 US6960672B2 (en) 2001-03-30 2002-03-28 Processes for producing alkyl ester of fatty acid
DK07018866.9T DK1876164T3 (en) 2001-03-30 2002-03-28 Process for the preparation of fatty acid alkyl ester using a composite metal oxide catalyst
AT02713220T ATE480326T1 (en) 2001-03-30 2002-03-28 METHOD FOR PRODUCING FATTY ACID ALKYL ESTERS
AT07018866T ATE481166T1 (en) 2001-03-30 2002-03-28 METHOD FOR PRODUCING FATTY ACID ALKYL ESTER USING A COMPOSITE METAL OXIDE CATALYST
EP02713220A EP1380637B1 (en) 2001-03-30 2002-03-28 Processes for producing alkyl ester of fatty acid
DE60237727T DE60237727D1 (en) 2001-03-30 2002-03-28 Process for the preparation of fatty acid alkyl esters using a composite metal oxide catalyst
DK02713220.8T DK1380637T3 (en) 2001-03-30 2002-03-28 Methods for producing fatty acid alkyl ester
HK04105157.4A HK1063061A1 (en) 2001-03-30 2004-07-14 Processes for producing alkyl ester of fatty acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001097889A JP3995429B2 (en) 2001-03-30 2001-03-30 Method for producing lower alkyl ester

Publications (2)

Publication Number Publication Date
JP2002294277A JP2002294277A (en) 2002-10-09
JP3995429B2 true JP3995429B2 (en) 2007-10-24

Family

ID=18951604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001097889A Expired - Lifetime JP3995429B2 (en) 2001-03-30 2001-03-30 Method for producing lower alkyl ester

Country Status (1)

Country Link
JP (1) JP3995429B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2535747A1 (en) 2003-08-29 2005-03-10 Nippon Shokubai Co., Ltd. Method of production of fatty acid alkyl esters and/or glycerine and fatty acid alkyl ester-containing composition
CA2596105A1 (en) * 2005-02-21 2006-08-24 Nippon Shokubai Co., Ltd. Method for producing fatty acid alkyl esters and/or glycerin
JP2007022988A (en) * 2005-07-20 2007-02-01 Rebo International:Kk Method for producing alkyl ester of fatty acid
JP4976016B2 (en) * 2006-01-17 2012-07-18 Jx日鉱日石エネルギー株式会社 Process for producing ester by transesterification
JP2007261960A (en) * 2006-03-01 2007-10-11 Tokyo Electric Power Co Inc:The Method for continuously producing higher fatty acid methyl ester from co2
PL2013319T3 (en) 2006-04-28 2019-07-31 Sk Chemicals Co., Ltd. Method for preparing fatty acid alkyl ester using fatty acid distillate
WO2008001934A1 (en) * 2006-06-30 2008-01-03 Wakamatsu Corporation Process for production of fatty acid alkyl ester, and production system for the process
EP1884559A1 (en) * 2006-07-26 2008-02-06 Vlaamse Instelling Voor Technologisch Onderzoek (Vito) Novel method for producing biodiesel using an immobilised catalyst
JPWO2008133189A1 (en) * 2007-04-19 2010-07-22 株式会社日本触媒 Process for producing fatty acid alkyl ester and / or glycerin from fats and oils
JP2008274030A (en) * 2007-04-26 2008-11-13 Oita Univ Method for producing biodiesel fuel
WO2009066539A1 (en) * 2007-11-22 2009-05-28 Nippon Shokubai Co., Ltd. Method for producing fatty acid alkyl esters and/or glycerin using fat or oil
JPWO2009147816A1 (en) * 2008-06-02 2011-10-20 国立大学法人鳥取大学 Heteropoly acid decomposition catalyst and method for producing diesel fuel oil using the same
JP2010215807A (en) * 2009-03-17 2010-09-30 Rebo International:Kk Method for producing fatty acid alkyl ester and apparatus for producing fatty acid alkyl ester
KR101068112B1 (en) * 2010-02-22 2011-09-27 한국에너지기술연구원 Method for preparing tungsten oxide alumina catalyst, tungsten oxide alumina catalyst and method for removing free fatty acid from waste cooking oil containing free fatty acid using the catalyst
CN104364009B (en) * 2012-05-10 2017-03-08 日清奥利友集团株式会社 The manufacture method of the manufacture method of the Regeneration Bleaching Clay, the Regeneration Bleaching Clay and refined oils and fatss

Also Published As

Publication number Publication date
JP2002294277A (en) 2002-10-09

Similar Documents

Publication Publication Date Title
EP1876164B1 (en) Process for producing alkyl ester of fatty acid using composite metal oxide catalyst
JP4036540B2 (en) Process for producing lower alkyl esters of fatty acids from fats and oils
JP3995429B2 (en) Method for producing lower alkyl ester
Roschat et al. Biodiesel production based on heterogeneous process catalyzed by solid waste coral fragment
JP5234736B2 (en) Fatty acid methyl ester production method and fatty acid methyl ester production apparatus
EP1963471B1 (en) Process for producing fatty acid alkyl esters and glycerin
JP6226861B2 (en) Solid acid catalyst, method for producing the same, and method for producing fatty acid alkyl ester using the same
CN101380570B (en) Load type solid base catalyst for preparing biology diesel fuel and preparation method thereof
CA2729116A1 (en) Process of manufacturing of fatty acid alkyl esters
JP2007190450A (en) Method for producing ester by transesterification
Čapek et al. Aspects of potassium leaching in the heterogeneously catalyzed transesterification of rapeseed oil
JP2005126346A (en) Method for producing fatty acid lower alkyl ester from fats and oils
CN101024173A (en) Load-type solid catalyst for preparing biological diesel
JP4936605B2 (en) Method for producing fatty acid alkyl ester
KR101068112B1 (en) Method for preparing tungsten oxide alumina catalyst, tungsten oxide alumina catalyst and method for removing free fatty acid from waste cooking oil containing free fatty acid using the catalyst
JP5427591B2 (en) Process for preparing alcohol esters from triglycerides and alcohols using at least one ZnxAl2O3 + x type solid solution and a heterogeneous catalyst for binding ZnO
WO2015069129A1 (en) Process and catalyst for obtaining fatty acid methyl esters
WO2009147816A1 (en) Heteropoly acid decomposition catalyst and method for manufacturing diesel fuel oil using said catalyst
US10533145B2 (en) Method for producing fatty acid esters and glycerol at a low temperature
KR100782126B1 (en) Tungsten oxide zirconia catalyst for removing free fatty acid in used soybean oil and application thereof
JP5864724B2 (en) Production method of heterogeneous catalyst for biodiesel production
EP2303827B1 (en) Process of manufacturing of fatty acid alkyl esters
CN103170322A (en) Preparation and application of biodiesel loading solid base catalyst
CN102600825A (en) Strong alkaline bentonite catalyst for preparing biodiesel and preparation method thereof
KR20120031924A (en) Process for the preparation of fatty acid alkylester

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070731

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 3995429

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term