WO2009145315A1 - Radio communication device and radio communication method - Google Patents

Radio communication device and radio communication method Download PDF

Info

Publication number
WO2009145315A1
WO2009145315A1 PCT/JP2009/059893 JP2009059893W WO2009145315A1 WO 2009145315 A1 WO2009145315 A1 WO 2009145315A1 JP 2009059893 W JP2009059893 W JP 2009059893W WO 2009145315 A1 WO2009145315 A1 WO 2009145315A1
Authority
WO
WIPO (PCT)
Prior art keywords
retransmission
communication
retransmissions
communication quality
frequency
Prior art date
Application number
PCT/JP2009/059893
Other languages
French (fr)
Japanese (ja)
Inventor
英寛 江口
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008140854A external-priority patent/JP2009290544A/en
Priority claimed from JP2008140747A external-priority patent/JP2009290535A/en
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to US12/994,826 priority Critical patent/US20110076938A1/en
Publication of WO2009145315A1 publication Critical patent/WO2009145315A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1825Adaptation of specific ARQ protocol parameters according to transmission conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0042Arrangements for allocating sub-channels of the transmission path intra-user or intra-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Definitions

  • the present invention relates to a wireless communication apparatus and a wireless communication method for performing retransmission using a preset frequency when retransmitting data to a communication partner.
  • LTE Long Term Evolution
  • VoIP Voice Over Internet Protocol
  • FIG. 11 is a diagram for explaining a fixed scheduling example (conventional example 1) in which resources for retransmission are fixedly allocated to a predetermined frequency channel every two unit times.
  • resources with diagonal lines extending from upper right to lower left are fixedly allocated resources.
  • this fixed scheduling example after the initial transmission of data to the communication partner, a resource for retransmission is secured for a total of four times every two unit times in the same frequency channel.
  • One data transmission period is set.
  • data was retransmitted twice with fixed allocation to the communication partner after the first transmission, so that there are 2 empty resources (resources with diagonal lines from the upper left to the lower right in the figure) without retransmission. Has occurred batch.
  • data was retransmitted once by fixed assignment to the communication partner after the first transmission, so there is no retransmission (empty resource with a diagonal line from the upper left to the lower right in the figure) Has occurred three times.
  • an “initial fixed / retransmission dynamic scheduling example (conventional example 2)” has been proposed.
  • the resource is dynamically allocated at the time of retransmission corresponding to the resource with the meshed diagonal line in the figure. To be assigned.
  • An environment with good communication quality includes, for example, a case where the communication partner is not moving or a case where the moving speed of the communication partner is extremely low.
  • the present invention relates to a technique (a wireless communication apparatus and a wireless communication method) that improves both frequency utilization efficiency by optimizing both empty resources at the time of retransmission and overhead due to dynamic allocation in a communication scheme that performs fixed allocation at a preset frequency. ).
  • a wireless communication apparatus When retransmitting data to a communication partner, a wireless communication device that performs the retransmission using a preset frequency, A communication quality acquisition unit for acquiring communication quality of a radio propagation path between the communication partners; In accordance with the communication quality acquired by the communication quality acquisition unit, a retransmission number control unit that controls the number of retransmissions at a preset first frequency; A retransmission control unit that controls to perform retransmission at a second frequency set with the communication partner for retransmission exceeding the number of retransmissions controlled by the retransmission number control unit. To do.
  • the invention according to a second aspect is the wireless communication device according to the first aspect,
  • the retransmission number control unit controls the number of retransmissions to decrease as the communication quality acquired by the communication quality acquisition unit increases.
  • the invention according to a third aspect is the wireless communication device according to the first or second aspect,
  • the retransmission number control unit controls the number of retransmissions so that retransmission at the first frequency is stopped when the communication quality acquired by the communication quality acquisition unit exceeds a predetermined communication quality. It is what.
  • a wireless communication method When retransmitting data to a communication partner, a wireless communication method for performing the retransmission using a preset frequency, A communication quality acquisition step of acquiring communication quality of a radio propagation path between the communication partners; A retransmission count control step for controlling the number of retransmissions at a preset first frequency according to the communication quality acquired in the communication quality acquisition step; For retransmission exceeding the number of retransmissions controlled in the retransmission number control step, a retransmission control step for controlling to perform the retransmission at a second frequency set with the communication partner; It is characterized by performing.
  • a wireless communication apparatus When retransmitting data to a communication partner, a wireless communication apparatus that performs the retransmission using a preset frequency, A moving speed acquisition unit that acquires the moving speed of the communication partner; A retransmission number control unit that controls the number of retransmissions at a preset first frequency according to the moving speed of the communication partner acquired by the moving speed acquisition unit; For retransmission exceeding the number of retransmissions controlled by the retransmission number control unit, a retransmission control unit that controls to perform the retransmission at a second frequency set with the communication partner; It is characterized by providing.
  • An invention according to a sixth aspect is the wireless communication apparatus according to the fifth aspect,
  • the retransmission number control unit controls the number of retransmissions to decrease as the movement speed of the communication partner acquired by the movement speed acquisition unit decreases.
  • the invention according to a seventh aspect is the wireless communication apparatus according to the fifth or sixth aspect,
  • the retransmission number control unit controls the number of retransmissions so that retransmission at the first frequency is stopped when the movement speed of the communication partner acquired by the movement speed acquisition unit is less than a predetermined speed. It is characterized by this.
  • the invention according to an eighth aspect is the wireless communication apparatus according to any one of the fifth to seventh aspects,
  • the moving speed acquisition unit acquires the moving speed of the communication partner by being notified of the moving speed of the communication partner measured by the communication partner.
  • a wireless communication method When retransmitting data to a communication partner, a wireless communication method for performing the retransmission using a preset frequency, A moving speed acquisition step of acquiring the moving speed of the communication partner; A retransmission number control step for controlling the number of retransmissions at a preset first frequency according to the movement speed of the communication partner acquired in the movement speed acquisition step; For retransmission exceeding the number of retransmissions controlled in the retransmission number control step, a retransmission control step for controlling to perform the retransmission at the second frequency set with the communication partner; It is characterized by performing.
  • FIG. 1 It is a figure which shows the operation example of the allocation method determination procedure of FIG. It is a flowchart which illustrates the allocation system change procedure in the radio
  • the fixed scheduling example (conventional example 1) which carries out fixed allocation of the resource for resending to a predetermined frequency channel.
  • an initial fixed and resending dynamic scheduling (conventional example 2) which carries out fixed allocation of the resource for resending to the predetermined frequency channel only for the first time, and
  • FIG. 1 is a block diagram showing a schematic configuration of a wireless communication apparatus according to the first embodiment of the present invention.
  • the wireless communication apparatus (base station) 100 according to the first embodiment is configured to be able to perform data communication corresponding to a predetermined communication method (for example, LTE).
  • a radio communication apparatus (base station) 100 includes an antenna 110, an RF unit 130, an RF control unit 140, a system control unit 150, an input unit 160, a display unit 170, and a system memory. Part 180 and the like.
  • the RF control unit 140 includes a reception unit 140a and a transmission unit 140b.
  • the system control unit 150 includes a communication quality acquisition unit 150a, a retransmission number control unit 150b, and a retransmission control unit 150c.
  • the system storage unit 180 includes a communication quality information storage unit 180a.
  • the RF unit 130 converts data to be transmitted by a predetermined communication method into a high-frequency signal and transmits it from the antenna 110, and converts the high-frequency signal input from the antenna 110 into a data signal.
  • the RF control unit 140 controls communication (transmission / reception) of a predetermined communication method, and measures the strength of an electric field (RSSI or the like) from a wireless communication device (terminal) that is a communication partner received by an antenna.
  • the RF control unit 140 functions as a reception unit 140 a and a transmission unit 140 b corresponding to the data signal input from the RF unit 130 and the data signal output to the RF unit 130.
  • the system control unit 150 is a control unit that controls each unit of the base station 100 in an integrated manner.
  • the communication quality acquisition unit 150a acquires the communication quality of the wireless propagation path with the communication partner (terminal).
  • the communication quality acquired by the communication quality acquisition unit 150a is stored in the communication quality information storage unit 180a of the system storage unit 180 as communication quality information such as uplink or downlink SINR, CINR, and Doppler frequency.
  • the wireless communication device (base station) 100 measures the transmission signal of the communication partner (terminal), and acquires the information.
  • the wireless communication apparatus (base station) 100 receives the feedback signal from the communication partner (terminal) to acquire the information.
  • the communication quality can be expressed in stages, for example, communication quality level 1, communication quality level 2, communication quality level 3,.
  • the communication quality level 1 is the highest communication quality
  • the communication quality level 2 is the next highest communication quality
  • Table 1 shows an example of the definition of the communication quality level.
  • a case where 50% or more transmission succeeds with 0 retransmissions (no retransmission) is defined as communication quality level 1.
  • communication quality level 2 When transmission of 50% or more succeeds after one retransmission, it is defined as communication quality level 2, and when transmission of 50% or more succeeds after two retransmissions, it is defined as communication quality level 3.
  • communication quality level 4 and later are defined in the same manner as described above as necessary.
  • the definition of the communication quality level shown in Table 1 is not limited to this, and can be changed to various modes as necessary. For example, when “reduction of overhead when performing dynamic allocation” is more important than “reduction of empty resources when retransmission does not occur”, “50%” in the definition of the communication quality level is “ Set to a “predetermined value less than 50%”. Further, when “reduction of empty resources when no retransmission occurs” is more important than “reduction of overhead when performing dynamic allocation”, “50%” in the definition of the communication quality level is set to “50%”. Set to a “predetermined value exceeding 50%”.
  • the retransmission number control unit 150b controls the number of retransmissions at a preset first frequency according to the communication quality acquired by the communication quality acquisition unit 150a. Specifically, the fixed number of retransmissions is set based on the relationship between the communication quality level and the number of retransmissions shown in Table 1. At that time, as shown in Table 1, the retransmission number control unit 150b increases the number of retransmissions as the communication quality (communication quality level) acquired by the communication quality acquisition unit 150a decreases, and is acquired by the communication quality acquisition unit 150a. Control is performed so that the number of retransmissions decreases as the communication quality (communication quality level) increases.
  • the communication quality (communication quality level) acquired by the communication quality acquisition unit 150a exceeds a predetermined communication quality (for example, when communication quality level 1 is the highest communication quality) ).
  • the number of retransmissions is controlled to be 0 so that retransmission at the first frequency is stopped.
  • the retransmission control unit 150c performs retransmission at the first frequency for the number of retransmissions controlled by the retransmission number control unit 150b, and for a retransmission exceeding the number of retransmissions controlled by the retransmission number control unit 150b, the communication partner (terminal ) To perform the retransmission at a second frequency arbitrarily set between In this case, the second frequency may be different from the first frequency or may be the same frequency as the first frequency in some cases.
  • the retransmission control unit 150c uses the second frequency. Perform all retransmissions (perform all retransmissions with dynamic allocation).
  • the input unit 160 is used when inputting information or selecting one of the options displayed on the display screen of the display unit 170, and has various keys and various buttons. Note that the input unit 160 and the display unit 170 may be omitted as necessary.
  • the system storage unit 180 is configured by a memory such as a RAM, and stores application programs and temporary data.
  • the communication quality information storage unit 180a stores the communication quality acquired by the communication quality acquisition unit 150a as communication quality information such as uplink SINR, downlink SINR, CINR, and Doppler frequency.
  • FIG. 2 is a flowchart illustrating an allocation method determination procedure in the radio communication method executed by radio communication apparatus (base station) 100 according to the first embodiment.
  • the allocation method determination procedure in FIG. 2 is started at the start of communication (at the start of wireless access).
  • step S11 the communication quality acquisition unit 150a acquires the communication quality (communication quality level) of the wireless propagation path with the communication partner (terminal).
  • step S12 the retransmission number control unit 150b determines whether or not the first transmission of data to the communication partner (terminal) is fixed allocation. If the first transmission is not fixed allocation in step S12, the process proceeds to step S13, and the retransmission number control unit 150b dynamically allocates all transmissions including the first transmission and retransmission. On the other hand, if the first transmission is fixed assignment in step S12, the process proceeds to step S14.
  • step S12 whether or not the initial transmission of data to the communication partner (terminal) is fixed allocation is determined based on, for example, QoS (QualityQof Service).
  • step S14 the retransmission number control unit 150b fixedly assigns the number of retransmissions at the first frequency set in advance according to the communication quality acquired by the communication quality acquisition unit 150a in step S11, and sets the number of retransmissions. Dynamically assign more retransmissions to the second frequency. That is, in step S14, the retransmission number control unit 150b first determines whether the communication quality level acquired in step S11 is the communication quality level 1, the communication quality level 2, the communication quality level 3,. Then, according to the determination result, if the communication quality level is level 1, the process proceeds to step S15, if it is level 2, the process proceeds to step S16, and if it is level 3, the process proceeds to step S17. Perform step processing.
  • step S15 that proceeds to the communication quality level 1 that is the highest communication quality, since the communication quality is very good, the probability of retransmission occurring is reduced, the occurrence of empty resources is reduced, and all retransmissions are performed. Dynamic allocation can perform efficient communication.
  • the retransmission number control unit 150b controls the number of retransmissions to 0 so that retransmission (fixed allocation) at a preset first frequency is stopped, and all retransmissions are second.
  • retransmission number control section 150b controls the number of retransmissions for fixed allocation to 1, performs fixed allocation for one retransmission, and performs the second retransmission. Dynamically allocate the rest.
  • step S17 that proceeds to the case of communication quality level 3, which is an environment in which communication quality has deteriorated, retransmissions occur more frequently, and the fixed assignment up to a certain number of retransmissions reduces the overhead when performing dynamic assignment.
  • the retransmission count control unit 150b controls the fixed allocation retransmission count to 2, performs fixed allocation of 2 retransmissions, and dynamically allocates the 3rd and subsequent retransmissions.
  • FIG. 3 is a diagram illustrating an operation example of the allocation method determination procedure described in FIG. FIG. 3 shows an “operation example in a scheduling example in which fixed retransmission is performed up to two retransmissions and dynamic retransmission is then allocated”.
  • FIG. 3 in the first transmission period corresponding to step S17 of FIG. 2, after the first transmission, data retransmission by fixed allocation to the communication partner is performed twice, and then data retransmission by dynamic allocation is performed once. It has been broken. For this reason, there is no empty resource without retransmission, and data is retransmitted once by dynamic allocation. Therefore, the overhead for performing dynamic allocation is two times in the conventional example 2 shown in FIG. 12, but is reduced to one time in FIG. In FIG.
  • step S17 in FIG. 2 data is retransmitted only once by fixed assignment to the communication partner after the first transmission. For this reason, in FIG. 3, there is one empty resource that does not have retransmission, but the empty resource is significantly reduced as compared to three in the conventional example 1 shown in FIG. 11.
  • the allocation method determination procedure of FIG. 2 is performed. That is, at the start of communication, according to the communication quality level, the number of retransmissions is controlled so that the number of retransmissions increases as the communication quality level is low, and the number of retransmissions decreases as the communication quality level is high. Retransmission is performed using the first frequency set in advance for the number of retransmissions.
  • the number of retransmissions is controlled so that the number of retransmissions of dynamic allocation increases as the communication quality level becomes better, and is arbitrarily set with the communication partner (terminal) by the number of retransmissions Control is performed so that retransmission is performed at the second frequency.
  • the number of times of fixed allocation of retransmissions is increased according to the degree of communication quality, and as the communication quality becomes better, the number of times of fixed allocation of retransmissions is decreased. Increase the number of times to dynamically allocate retransmissions. As a result, it is possible to reduce both empty resources during retransmission and overhead due to dynamic allocation, and it is possible to optimize both empty resources during retransmission and overhead due to dynamic allocation to improve frequency utilization efficiency.
  • the timing for determining the allocation method in the allocation method determination procedure of FIG. 2 is at the start of communication. However, it is desirable that the allocation method determined at the start of communication can be changed during communication (when a transmission packet is generated) in accordance with the subsequent change in communication quality.
  • FIG. 4 is a flowchart illustrating an allocation method change procedure in the wireless communication method executed by the wireless communication apparatus (base station) 100 according to the first embodiment.
  • the allocation method change procedure shown in FIG. 4 is to change the allocation method determined by the allocation method determination procedure of FIG. 2 according to the change in communication quality, and is executed at regular intervals.
  • step S21 the communication quality acquisition unit 150a acquires the communication quality (communication quality level) of the wireless propagation path with the communication partner (terminal).
  • step S22 the retransmission number control unit 150b determines whether or not the first transmission of data to the communication partner (terminal) is fixed allocation.
  • step S22 when the first transmission is not fixed allocation, the process proceeds to step S23, and retransmission number control section 150b dynamically allocates all transmissions including the first transmission and retransmission.
  • step S24 the process proceeds to step S24.
  • step S12 whether or not the initial transmission of data to the communication partner (terminal) is fixed allocation is determined based on, for example, QoS (QualityQof Service).
  • step S24 the retransmission number control unit 150b assigns a fixed number of retransmissions at a preset first frequency according to the communication quality acquired by the communication quality acquisition unit 150a in step S21, and sets the number of retransmissions. Dynamically assign more retransmissions to the second frequency. That is, in step S24, the retransmission number control unit 150b first determines whether the communication quality level acquired in step S21 is the communication quality level 1, the communication quality level 2, the communication quality level 3,. Then, according to the determination result, if the communication quality level is level 1, the process proceeds to step S25, if it is level 2, the process proceeds to step S26, and if it is level 3, the process proceeds to step S27. Perform step processing.
  • step S25 that proceeds to communication quality level 1, which is the highest communication quality, since the communication quality is extremely good, the probability of occurrence of retransmission is reduced, the occurrence of empty resources is reduced, and all retransmissions are performed. Dynamic allocation can perform efficient communication.
  • the retransmission number control unit 150b controls the number of retransmissions to 0 so that retransmission (fixed allocation) at a preset first frequency is stopped, and all retransmissions are second.
  • retransmission number control section 150b controls the number of retransmissions of fixed assignment to 1, assigns a single retransmission, and assigns a second retransmission. Dynamically allocate the rest.
  • step S27 which proceeds in the case of communication quality level 3, which is an environment in which communication quality has deteriorated, retransmissions occur more frequently, and the fixed allocation up to a certain number of retransmissions reduces the overhead when performing dynamic allocation.
  • the retransmission count control unit 150b controls the fixed allocation retransmission count to 2, performs fixed allocation of 2 retransmissions, and dynamically allocates the 3rd and subsequent retransmissions.
  • step S28 the retransmission number control unit 150b determines whether or not the allocation scheme determined in step S25, step S26 or step S27 matches the current allocation scheme.
  • step S28 when the current allocation method matches the allocation method determined in the preceding step (step S25, step S26 or step S27), the process proceeds to step S29 and the current allocation method is maintained.
  • step S30 if the current allocation method and the allocation method determined in the preceding step do not match in step S28, the process proceeds to step S30, and the retransmission number control unit 150b sets the allocation method to steps S25 and S26.
  • the allocation method determined in step S27 is changed.
  • step S29 or step S30 it returns to step S21 and repeats the said allocation system change procedure. For this reason, when a transmission packet is generated, the allocation method is changed at any time according to a change in communication quality.
  • the allocation method determination procedure of FIG. 4 is performed.
  • the number of retransmissions increases as the communication quality level decreases, and the number of retransmissions decreases as the communication quality level increases.
  • the number of times is controlled, and retransmission is performed using the preset first frequency for the number of times of retransmission.
  • the number of retransmissions is controlled so that the number of retransmissions of dynamic allocation increases as the communication quality level becomes better, and is arbitrarily set with the communication partner (terminal) by the number of retransmissions Control is performed so that retransmission is performed at the second frequency.
  • the number of times of fixed allocation of retransmissions is increased according to the degree of communication quality, and as the communication quality becomes better, the number of times of fixed allocation of retransmissions is decreased. Increase the number of times to dynamically allocate retransmissions. As a result, it is possible to reduce both empty resources during retransmission and overhead due to dynamic allocation, and it is possible to optimize both empty resources during retransmission and overhead due to dynamic allocation to improve frequency utilization efficiency.
  • the outline of the allocation method determination procedure and the allocation method change procedure in the wireless communication apparatus (base station) of the first embodiment described above is as follows. That is, according to the communication quality level, the number of retransmissions is increased as the communication quality level is lower, and the number of retransmissions is fixed so that the number of retransmissions is decreased as the communication quality level is higher. Assign.
  • the following allocation scheme determination procedure and allocation scheme change procedure can be used in combination. That is, according to the movement speed of the communication partner (terminal), the number of retransmissions increases as the movement speed increases, and the number of retransmissions is fixed so that the number of retransmissions decreases as the movement speed decreases. Is dynamically allocated. The case where the latter assignment method determination procedure and assignment method change procedure that can be used together in this way are used alone will be further described below.
  • FIG. 5 is a block diagram showing a schematic configuration of a wireless communication apparatus according to the second embodiment of the present invention.
  • Radio communication apparatus (base station) 300 according to the second embodiment is configured to perform data communication corresponding to a predetermined communication method (for example, LTE).
  • Radio communication apparatus (base station) 300 according to the second embodiment changes the internal configuration of system control unit 150 and system storage unit 180 in radio communication apparatus (base station) 100 according to the first embodiment described above. It is a thing. Accordingly, the same functional blocks as those of radio communication apparatus (base station) 100 according to the first embodiment shown in FIG.
  • a radio communication apparatus (base station) 300 includes an antenna 110, an RF unit 130, an RF control unit 140, a system control unit 150, an input unit 160, a display unit 170, and a system storage. Part 180 and the like.
  • the RF control unit 140 includes a reception unit 140a and a transmission unit 140b.
  • system control unit 150 includes moving speed acquisition unit 350a, retransmission number control unit 150b, and retransmission control unit 150c.
  • the system storage unit 180 includes a moving speed information storage unit 380a.
  • the RF unit 130 converts data to be transmitted by a predetermined communication method into a high-frequency signal and transmits it from the antenna 110, and converts the high-frequency signal input from the antenna 110 into a data signal.
  • the RF control unit 140 controls communication (transmission / reception) of a predetermined communication method, and measures the strength of an electric field (RSSI or the like) from a wireless communication device (terminal) that is a communication partner received by an antenna.
  • the RF control unit 140 functions as a reception unit 140 a and a transmission unit 140 b corresponding to the data signal input from the RF unit 130 and the data signal output to the RF unit 130.
  • the system control unit 150 is a control unit that controls each unit of the base station 300 in an integrated manner.
  • the moving speed acquisition unit 350a acquires the moving speed of the communication partner (terminal).
  • the movement speed acquired by the movement speed acquisition unit 350a is stored in the movement speed information storage unit 380a of the system storage unit 180 as movement speed information.
  • the moving speed acquisition unit 350a is notified of the moving speed of the communication partner (terminal) measured by the communication partner (terminal) according to the sequence of FIG. To get.
  • the moving speed of the communication partner is, for example, an ultra-low speed area (less than 1 km / h), a low speed area (1 to 5 km / h), a medium speed area (5 to 80 km / h), and a high speed area (80 km / h or more). ),...
  • the moving speed acquisition unit 350a determines which moving speed corresponds to one of the divided speed areas. In this way, the retransmission speed control unit 150b classifies the movement speed determined by the movement speed acquisition unit 350a into any one of “ultra low speed”, “low speed”, “medium speed”, “high speed”,. To do.
  • “Ultra-low speed” is the moving speed at which the highest communication quality can be expected
  • “Low speed” is the moving speed at which the next highest communication quality can be expected
  • “Medium speed”, “High speed”, and so on As the communication quality decreases.
  • Table 2 shows an example of the definition of the speed area of the above moving speed.
  • a case where transmission of 50% or more succeeds when the number of retransmissions is 0 (no retransmission) is defined as “very low speed”. If transmission of 50% or more succeeds after one retransmission, define it as “low speed”. If transmission of 50% or more succeeds in two retransmissions, define it as “medium speed” and send more than 50%. Is defined as “high-speed” when it succeeds after 3 retransmissions. From this point onward, “ultra-high speed” or the like is defined in the same manner as described above, if necessary.
  • the definition of the speed region of the moving speed shown in Table 2 is not limited to this, and can be changed to various modes as necessary. For example, in the case where “reduction of overhead when performing dynamic allocation” is more important than “reduction of empty resources when retransmission does not occur”, “50%” in the definition of the speed region of the moving speed is used. Is set to “a predetermined value less than 50%”. In addition, when “reducing empty resources when no retransmission occurs” is more important than “reducing overhead when performing dynamic allocation”, “50%” in the definition of the speed region of the moving speed is used. Is set to a “predetermined value exceeding 50%”.
  • each speed region of the moving speed shown in Table 2 differ in “relationship between moving speed and communication quality” for each communication method applied to the wireless communication apparatus according to the second embodiment. In view of this, it may be set as appropriate so as to be an optimum value in the communication system to be applied.
  • the retransmission number control unit 150b controls the number of retransmissions at a preset first frequency according to the movement speed of the communication partner (terminal) acquired by the movement speed acquisition unit 350a. Specifically, the number of retransmissions to be fixedly assigned is set based on the relationship between the movement speed of the communication partner (terminal) and the number of retransmissions shown in Table 2. At that time, as shown in Table 2, the retransmission number control unit 150b increases the number of retransmissions as the movement speed of the communication partner (terminal) acquired by the movement speed acquisition unit 350a increases, and the movement speed acquisition unit 350a Control is performed so that the number of retransmissions decreases as the movement speed of the acquired communication partner (terminal) decreases.
  • the number-of-retransmissions control section 150b Control is performed so that the number of retransmissions is zero so that retransmissions at a certain frequency are stopped.
  • the retransmission control unit 150c performs retransmission at the first frequency for the number of retransmissions controlled by the retransmission number control unit 150b, and for a retransmission exceeding the number of retransmissions controlled by the retransmission number control unit 150b, the communication partner (terminal ) To perform the retransmission at a second frequency arbitrarily set between In this case, the second frequency may be different from the first frequency or may be the same frequency as the first frequency in some cases.
  • the retransmission control unit 150c uses the second frequency. Perform all retransmissions (perform all retransmissions with dynamic allocation).
  • the input unit 160 is used when inputting information or selecting one of the options displayed on the display screen of the display unit 170, and has various keys and various buttons. Note that the input unit 160 and the display unit 170 may be omitted as necessary.
  • the system storage unit 180 is configured by a memory such as a RAM, and stores application programs and temporary data.
  • the moving speed information storage unit 380a sets the moving speed of the communication partner (terminal) acquired by the moving speed acquisition unit 350a to any one of “ultra low speed”, “low speed”, “medium speed”, “high speed”,. Or stored as one piece of moving speed information.
  • the wireless communication apparatus (base station) 300 has a “moving speed acquisition unit having a function of periodically acquiring (detecting) the moving speed of the terminal” as the communication partner (terminal) 200. It communicates with the wireless communication terminal provided.
  • the communication partner (terminal) 200 is a wireless device configured to periodically acquire (detect) the moving speed of the terminal using one of the two types of moving speed detection methods described below. A communication terminal.
  • [Movement speed detection method 1 Method of using position information acquired by GPS] Using the position information acquired by GPS, the moving distance is calculated from the position information at the previous monitoring time and the position information at the current monitoring time, and the moving speed is detected (calculated) from the time difference between the previous time and the current time. For example, in the Northern Hemisphere, the previous monitoring time is t0 (h), the current monitoring time is t1 (h), the longitude / latitude at t0 is x0 ⁇ y0, and the longitude / latitude at t1 is x1 ⁇ h. Let y1. The moving distance r (km) and moving speed v (km / h) at this time are obtained by the following equations (1) and (2), respectively.
  • the speed v of the moving body is a speed when the moving body is moving toward the base station direction. Therefore, when the moving body moves in a direction deviating from the base station direction by an average angle ⁇ , The relationship (5) is established.
  • ⁇ / 4, which is the median of 0 ⁇ ⁇ ⁇ ⁇ / 2,
  • the moving speed v is calculated by the following equation (6).
  • FIG. 6 is a flowchart illustrating a procedure in which the communication partner (terminal) 200 acquires the moving speed used in the wireless communication method executed by the wireless communication apparatus (base station) 300 according to the second embodiment.
  • the moving speed acquisition procedure of FIG. 6 is started at the start of moving speed monitoring.
  • step S01 the communication partner (terminal) 200 acquires the moving speed of the terminal by the moving speed detection method 1 or the moving speed detection method 2.
  • the movement speed acquired in step S41 if the terminal is within the range, the loop of step S41 is repeated again through step S42, step S43, and step S44.
  • the acquired moving speed is updated every predetermined period (every 10 seconds) determined by the timer value (for example, 10 seconds) of the moving speed monitoring timer. Note that when the terminal is out of service, communication is interrupted, and thus the acquisition (monitoring) of the moving speed is terminated.
  • FIG. 7 shows a wireless communication method executed by the wireless communication apparatus (base station) according to the second embodiment, where the wireless communication apparatus (base station) acquires the moving speed of the terminal from the communication partner (terminal), It is a figure which illustrates the allocation system determination sequence which instruct
  • the communication partner (terminal) 200 While the communication partner (terminal) 200 periodically acquires (detects) the moving speed of the terminal, the communication partner (terminal) 200 and the wireless communication device (base station) 300 Suppose that wireless access is started. As described above, when wireless access is started between the communication partner (terminal) 200 and the wireless communication device (base station) 300, the communication partner (terminal) 200 determines the obtained movement speed of the terminal as the wireless communication device. (Base station) 300 is notified. The wireless communication apparatus (base station) 300 that has received the notification of the moving speed of the terminal determines the number of retransmissions at the first frequency set in advance, the allocation method (fixed allocation, dynamic allocation), etc. ) 200 is instructed.
  • FIG. 8 is a flowchart illustrating an allocation method determination procedure in the wireless communication method executed by wireless communication apparatus (base station) 300 according to the second embodiment.
  • the allocation method determination procedure in FIG. 8 is activated at the start of communication (at the start of wireless access).
  • step S51 the moving speed acquisition unit 350a acquires the moving speed of the communication partner (terminal).
  • step S52 the retransmission number control unit 150b determines whether or not the first transmission of data to the communication partner (terminal) is fixed allocation.
  • step S52 if the first transmission is not fixed allocation, the process proceeds to step S53, and retransmission number control section 150b dynamically allocates all transmissions including the first transmission and retransmission.
  • step S54 whether or not the initial transmission of data to the communication partner (terminal) is fixed allocation is determined based on, for example, QoS (QualityQof Service).
  • step S54 the retransmission number control unit 150b assigns a fixed number of retransmissions at a preset first frequency according to the movement speed of the communication partner (terminal) acquired in step S51, and sets the number of retransmissions. Dynamically assign more retransmissions to the second frequency. That is, in step S54, the retransmission number control unit 150b first sets the movement speed of the communication partner (terminal) acquired in step S51 to “ultra low speed”, “low speed”, “medium speed”, “high speed”,. Which one is determined.
  • step S55 if “low speed”, the process proceeds to step S56, and if “middle speed”, the process proceeds to step S57. If so, the process proceeds to step S58, and the retransmission number control unit 150b performs the process of each step.
  • step S55 which proceeds to "ultra-low speed" where the highest communication quality can be expected, the communication quality is extremely good, so the probability of retransmission occurring is reduced, the generation of empty resources is reduced, and all retransmissions are performed dynamically.
  • the assigned one can perform efficient communication.
  • the retransmission number control unit 150b controls the number of retransmissions to 0 so that retransmission (fixed allocation) at a preset first frequency is stopped, and all retransmissions are second.
  • step S56 which proceeds in the case of “low speed” in which the second highest communication quality can be expected
  • the retransmission number control unit 150b controls the number of retransmissions for fixed allocation to 1, performs fixed allocation for one retransmission, and performs the second retransmission. Dynamically allocate the rest.
  • step S57 which proceeds in the case of “medium speed” where there is a possibility that the communication quality may be deteriorated
  • the retransmission number control unit 150b controls the fixed number of retransmissions to 2 and assigns the two retransmissions fixedly
  • Dynamic allocation is performed after the third retransmission.
  • step S58 which proceeds in the case of “high speed” where there is a high possibility that the communication quality is deteriorated, the retransmission number control unit 150b controls the fixed allocation retransmission number to 3, and allocates 3 retransmissions fixedly, Dynamic allocation is performed after the fourth retransmission.
  • FIG. 9 is a diagram illustrating an operation example of the allocation method determination procedure described in FIG. FIG. 9 shows an “operation example in a scheduling example in which fixed retransmissions up to two retransmissions are allocated and dynamic retransmissions are subsequently allocated”.
  • FIG. 9 in the first transmission period corresponding to step S57 in FIG. 8, after the first transmission, data retransmission by fixed allocation to the communication partner is performed twice, and then data retransmission by dynamic allocation is performed once. It has been broken. For this reason, there is no empty resource without retransmission, and data is retransmitted once by dynamic allocation. Therefore, the overhead for performing dynamic allocation is two times in the conventional example 2 shown in FIG. 12, but is reduced to one time in FIG. In FIG.
  • step S ⁇ b> 57 in FIG. 8 data is retransmitted only once by fixed allocation to the communication partner after the first transmission. For this reason, in FIG. 9, empty resources without retransmission are generated once, but the empty resources are greatly reduced as compared with the case of three times in the conventional example 1 shown in FIG.
  • the allocation method determination procedure of FIG. 8 is performed. That is, at the start of communication, depending on the moving speed of the communication partner (terminal), the number of retransmissions increases as the moving speed of the communication partner (terminal) increases, and the moving speed of the communication partner (terminal) decreases.
  • the number of retransmissions for fixed allocation is controlled so that the number of retransmissions is reduced, and retransmission is performed using the first frequency set in advance for the number of retransmissions.
  • the number of retransmissions is controlled so that the number of retransmissions for dynamic allocation increases as the movement speed decreases, and is arbitrarily set with the communication partner (terminal) for the number of retransmissions. Control is performed to perform retransmission at the second frequency.
  • the number of times that retransmission is fixedly allocated is increased according to the degree of communication quality as the communication quality deteriorates as the moving speed of the communication partner (terminal) increases.
  • the number of times of fixed allocation of retransmissions is reduced and the number of times of dynamic allocation of retransmissions is increased as the communication quality improves as the moving speed of the communication partner (terminal) decreases.
  • the number of times of fixed allocation of retransmissions is reduced and the number of times of dynamic allocation of retransmissions is increased as the communication quality improves as the moving speed of the communication partner (terminal) decreases.
  • the timing for determining the allocation method in the allocation method determination procedure of FIG. 8 is when communication is started. However, it is desirable that the allocation method determined at the start of communication can be changed during communication (when a transmission packet is generated) in accordance with the subsequent change in communication quality.
  • FIG. 10 is a flowchart illustrating an allocation method change procedure in the radio communication method executed by radio communication apparatus (base station) 300 according to the second embodiment.
  • the allocation method change procedure shown in FIG. 10 is to change the allocation method determined by the allocation method determination procedure of FIG. 8 according to a change in communication quality, and is executed at regular intervals.
  • step S61 the movement speed acquisition unit 350a acquires the movement speed of the communication partner (terminal).
  • step S62 the retransmission number control unit 150b determines whether or not the first transmission of data to the communication partner (terminal) is fixed allocation. If the first transmission is not fixed allocation in step S62, the process proceeds to step S63, and the retransmission number control unit 150b dynamically allocates all transmissions including the first transmission and retransmission. On the other hand, if the first transmission is fixed assignment in step S62, the process proceeds to step S64. In step S62, whether or not the initial transmission of data to the communication partner (terminal) is fixed allocation is determined based on, for example, QoS (QualityQof Service).
  • QoS Quality of Service
  • step S64 the retransmission number control unit 150b fixedly allocates the number of retransmissions at the preset first frequency according to the moving speed of the communication partner (terminal) acquired by the communication quality acquisition unit 150a in step S61. At the same time, retransmissions exceeding the number of retransmissions are dynamically allocated to the second frequency. That is, in step S64, the retransmission number control unit 150b first sets the movement speed of the communication partner (terminal) acquired in step S61 to “ultra low speed”, “low speed”, “medium speed”, “high speed”,. Which one is determined.
  • step S65 if “ultra low speed”, the process proceeds to step S65, if “low speed”, the process proceeds to step S66, and if “middle speed”, the process proceeds to step S67. If so, the process proceeds to step S68.
  • step S65 which proceeds to the “ultra-low speed” in which the highest communication quality can be expected, the communication quality is extremely good. Therefore, the probability that retransmission will occur is reduced, the generation of empty resources is reduced, and all retransmissions are performed. Dynamic allocation can perform efficient communication.
  • the retransmission number control unit 150b controls the number of retransmissions to 0 so that retransmission (fixed allocation) at a preset first frequency is stopped, and all retransmissions are second.
  • step S66 Dynamic allocation to the frequency of
  • step S66 the process proceeds to “low speed” in which the second highest communication quality can be expected, the retransmission number control unit 150b controls the number of retransmissions for fixed allocation to 1, performs fixed allocation for one retransmission, and performs the second retransmission. Dynamically allocate the rest.
  • step S67 which proceeds in the case of “medium speed” where there is a possibility that the communication quality may be deteriorated, the retransmission number control unit 150b controls the fixed number of retransmissions to 2, and allocates two retransmissions fixedly, Dynamic allocation is performed after the third retransmission.
  • step S68 which proceeds in the case of “high speed” where there is a high possibility of becoming an environment in which communication quality has deteriorated, the retransmission number control unit 150b controls the number of retransmissions of fixed allocation to 3, and performs fixed allocation of 3 retransmissions, Dynamic allocation is performed after the fourth retransmission.
  • step S69 the retransmission number control unit 150b determines whether or not the allocation method determined in step S65, step S66, step S67, or step S68 matches the current allocation method.
  • step S69 if the current allocation method matches the allocation method determined in the preceding step (step S65, step S66, step S67 or step S68), the process proceeds to step S70 and the current allocation method is changed. maintain.
  • step S71 if the current allocation method and the allocation method determined in the preceding step do not match in step S69, the process proceeds to step S71, and the retransmission number control unit 150b sets the allocation method to steps S65 and S66. , Change to the allocation method determined in step S67 or step S68.
  • step S70 or step S71 it returns to step S61 and repeats the said allocation system change procedure. For this reason, when a transmission packet is generated, the allocation method is changed at any time according to a change in communication quality.
  • the allocation method determination procedure of FIG. 10 is performed.
  • the number of retransmissions increases as the moving speed of the communication partner (terminal) increases according to the moving speed of the communication partner (terminal).
  • the number of retransmissions of fixed allocation is controlled so that the number of retransmissions decreases as the movement speed decreases, and retransmission is performed using the preset first frequency for the number of retransmissions.
  • the number of retransmissions is controlled so that the number of retransmissions for dynamic allocation increases as the movement speed decreases, and is arbitrarily set with the communication partner (terminal) for the number of retransmissions. Control is performed to perform retransmission at the second frequency.
  • the number of times that retransmission is fixedly allocated is increased according to the degree of communication quality as the communication quality deteriorates as the moving speed of the communication partner (terminal) increases.
  • the number of times of fixed allocation of retransmissions is reduced and the number of times of dynamic allocation of retransmissions is increased as the communication quality improves as the moving speed of the communication partner (terminal) decreases.
  • the number of times of fixed allocation of retransmissions is reduced and the number of times of dynamic allocation of retransmissions is increased as the communication quality improves as the moving speed of the communication partner (terminal) decreases.
  • the outline of the allocation method determination procedure and the allocation method change procedure in the wireless communication apparatus (base station) of the second embodiment described above is as follows. That is, according to the movement speed of the communication partner (terminal), the number of retransmissions increases as the movement speed increases, and the number of retransmissions is fixed so that the number of retransmissions decreases as the movement speed decreases. Is dynamically allocated.
  • the allocation method determination procedure and the allocation method change procedure as in the first embodiment described above can be used in combination. That is, according to the communication quality level, the number of retransmissions is increased as the communication quality level is lower, and the number of retransmissions is fixed so that the number of retransmissions is decreased as the communication quality level is higher.
  • the allocation scheme determination procedure to be allocated and the allocation scheme change procedure can be used in combination with the present embodiment.
  • the number of retransmissions at the preset first frequency is controlled according to the communication quality of the wireless propagation path with the communication partner so that the number of retransmissions decreases as the communication quality increases, for example. To do.
  • control is performed so that retransmission is performed at a second frequency arbitrarily set with a communication partner.
  • the number of retransmissions to be fixedly allocated is increased according to the degree of communication quality as the communication quality is deteriorated, and the number of retransmissions to be dynamically allocated is increased by decreasing the number of retransmissions to be fixedly allocated as the communication quality is improved. Therefore, it is possible to reduce both empty resources at the time of retransmission and overhead due to dynamic allocation. Further, it is possible to improve both frequency resources efficiency by optimizing both empty resources at the time of retransmission and overhead due to dynamic allocation.
  • the number of retransmissions at a preset first frequency is controlled according to the moving speed of the communication partner, for example, so that the number of retransmissions decreases as the moving speed of the communication partner decreases.
  • control is performed so that retransmission is performed at a second frequency arbitrarily set with a communication partner.
  • the number of retransmissions to be fixedly allocated is increased according to the moving speed of the communication partner, and the number of retransmissions to be fixedly allocated increases as the moving speed of the communication partner decreases.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A radio communication device (100) includes: a communication quality acquisition unit (150a) which acquires communication quality of a radio propagation path to a communication partner; a retransmission quantity control unit (150b) which controls the number of retransmissions with a preset first frequency in accordance with communication quality obtained by the communication quality acquisition unit (150a); and a retransmission control unit (150c) which controls a retransmission exceeding the retransmission quantity controlled by the retransmission quantity control unit (150b) to be performed with a second frequency set for communication with the communication partner.

Description

無線通信装置および無線通信方法Wireless communication apparatus and wireless communication method 関連出願の相互参照Cross-reference of related applications
 本出願は、2008年5月29日に出願された日本国特許出願2008-140854号、および2008年5月29日に出願された日本国特許出願2008-140747号の優先権を主張するものであり、これらの先の出願の開示全体をここに参照のために取り込む。 This application claims the priority of Japanese Patent Application No. 2008-140854 filed on May 29, 2008 and Japanese Patent Application No. 2008-140747 filed on May 29, 2008. And the entire disclosures of these earlier applications are incorporated herein by reference.
 本発明は、通信相手に対するデータの再送時には、予め設定された周波数を利用して前記再送を行う、無線通信装置および無線通信方法に関するものである。 The present invention relates to a wireless communication apparatus and a wireless communication method for performing retransmission using a preset frequency when retransmitting data to a communication partner.
 時間・周波数リソースをダイナミック割当する通信方式としては、例えば3GPP(3rd Generation Partnership Project)において3.9Gとして位置づけられている「LTE(Long Term Evolution)」がある。このような時間・周波数リソースをダイナミック割当する通信方式においては、ある程度安定した通信量が持続するパケット通信(例えばVoIP(Voice Over Internet Protocol))を行う際に、オーバーヘッドを削減することを目的として、固定的に無線リソースを割り当てる方式が検討されている。 As a communication method for dynamically allocating time / frequency resources, there is, for example, “LTE (Long Term Evolution”) positioned as 3.9 G in 3GPP (3rd Generation Partnership Project). In such a communication method that dynamically allocates time / frequency resources, in order to reduce overhead when performing packet communication (for example, VoIP (Voice Over Internet Protocol)) in which a certain amount of stable communication amount is maintained, A method of allocating radio resources in a fixed manner is being studied.
 図11は所定の周波数チャネルに2単位時間毎に再送のためのリソースを固定割当する固定スケジューリング例(従来例1)を説明するための図である。図中にて、右上から左下向きの斜線を付けたリソースは、固定割当したリソースである。この固定スケジューリング例では、通信相手に対するデータの初回の送信を行った後に、同一周波数チャンネルにおいて2単位時間毎に再送のためのリソースを合計4回分確保するように構成されており、10単位時間が1つのデータの送信期間となっている。最初の送信期間には、初回の送信後に通信相手に対する固定割当によるデータの再送が2回行われたため、再送がない空リソース(図中にて左上から右下向きの斜線を付けたリソース)が2回分生じている。また、次の送信期間には、初回の送信後に通信相手に対する固定割当によるデータの再送が1回行われたため、再送がない空リソース(図中にて左上から右下向きの斜線を付けたリソース)が3回分生じている。 FIG. 11 is a diagram for explaining a fixed scheduling example (conventional example 1) in which resources for retransmission are fixedly allocated to a predetermined frequency channel every two unit times. In the figure, resources with diagonal lines extending from upper right to lower left are fixedly allocated resources. In this fixed scheduling example, after the initial transmission of data to the communication partner, a resource for retransmission is secured for a total of four times every two unit times in the same frequency channel. One data transmission period is set. In the first transmission period, data was retransmitted twice with fixed allocation to the communication partner after the first transmission, so that there are 2 empty resources (resources with diagonal lines from the upper left to the lower right in the figure) without retransmission. Has occurred batch. In addition, in the next transmission period, data was retransmitted once by fixed assignment to the communication partner after the first transmission, so there is no retransmission (empty resource with a diagonal line from the upper left to the lower right in the figure) Has occurred three times.
 このような使用されない空リソースの発生を回避するために、図12に示すように、「初回固定・再送ダイナミックスケジューリング例(従来例2)」が提案されている。これは、図中にて右上から左下向きの斜線を付けたリソースに対応する初回の送信のみを固定割当して、図中にて網目状の斜線を付けたリソースに対応する再送時にはリソースをダイナミック割当するものである。 In order to avoid the occurrence of such unused unused resources, as shown in FIG. 12, an “initial fixed / retransmission dynamic scheduling example (conventional example 2)” has been proposed. In this figure, only the first transmission corresponding to the resource with the diagonal line from the upper right to the lower left in the figure is fixedly allocated, and the resource is dynamically allocated at the time of retransmission corresponding to the resource with the meshed diagonal line in the figure. To be assigned.
 従来例1の固定スケジューリングの場合には、通信品質が良好な環境においては、図11に示すように空リソースが発生するため、動的に他ユーザにリソースを割り当てし直さない限り、リソースを有効に活用できないという問題が生じる。通信品質が良好な環境とは、例えば、通信相手が移動していない場合や通信相手の移動速度が超低速の場合などを挙げることができる。 In the case of the fixed scheduling of Conventional Example 1, empty resources are generated as shown in FIG. 11 in an environment where the communication quality is good. Therefore, the resources are effective unless resources are dynamically reassigned to other users. The problem arises that it cannot be used. An environment with good communication quality includes, for example, a case where the communication partner is not moving or a case where the moving speed of the communication partner is extremely low.
 また、従来例2の初回固定・再送ダイナミックスケジューリングの場合には、無線環境が劣化した環境においては、再送(すなわちダイナミック割当)が多発することとなり、オーバーヘッドが大きくなるという問題が生じる。無線環境が劣化した環境とは、例えば、通信相手の移動速度が高速でフェージングが大きくなる場合などを挙げることができる。 Further, in the case of the first fixed / retransmission dynamic scheduling of the conventional example 2, in an environment where the radio environment is deteriorated, retransmission (that is, dynamic allocation) occurs frequently, resulting in a problem that overhead is increased. Examples of the environment in which the wireless environment has deteriorated include a case where the moving speed of the communication partner is high and fading increases.
 本発明は、予め設定された周波数で固定割当を行う通信方式において、再送時の空リソースおよびダイナミック割当によるオーバーヘッドの双方を最適化して、周波数利用効率を向上させる技術(無線通信装置および無線通信方法)を提供することを目的とする。 The present invention relates to a technique (a wireless communication apparatus and a wireless communication method) that improves both frequency utilization efficiency by optimizing both empty resources at the time of retransmission and overhead due to dynamic allocation in a communication scheme that performs fixed allocation at a preset frequency. ).
 上記目的を達成する本発明の第1の観点に係る無線通信装置は、
 通信相手に対するデータの再送時には、予め設定された周波数を利用して前記再送を行う無線通信装置であって、
 前記通信相手との間の無線伝搬路の通信品質を取得する通信品質取得部と、
 前記通信品質取得部により取得した通信品質に応じて、予め設定された第1の周波数での再送回数を制御する再送回数制御部と、
 前記再送回数制御部により制御した再送回数を超える再送については、前記通信相手との間で設定した第2の周波数にて前記再送を行うように制御する再送制御部と、を備えることを特徴とするものである。
A wireless communication apparatus according to a first aspect of the present invention that achieves the above object is
When retransmitting data to a communication partner, a wireless communication device that performs the retransmission using a preset frequency,
A communication quality acquisition unit for acquiring communication quality of a radio propagation path between the communication partners;
In accordance with the communication quality acquired by the communication quality acquisition unit, a retransmission number control unit that controls the number of retransmissions at a preset first frequency;
A retransmission control unit that controls to perform retransmission at a second frequency set with the communication partner for retransmission exceeding the number of retransmissions controlled by the retransmission number control unit. To do.
 第2の観点に係る発明は、第1の観点に係る無線通信装置において、
 前記再送回数制御部は、前記通信品質取得部により取得した通信品質が高くなるほど前記再送回数が少なくなるように制御することを特徴とするものである。
The invention according to a second aspect is the wireless communication device according to the first aspect,
The retransmission number control unit controls the number of retransmissions to decrease as the communication quality acquired by the communication quality acquisition unit increases.
 第3の観点に係る発明は、第1または第2の観点に係る無線通信装置において、
 前記再送回数制御部は、前記通信品質取得部により取得した通信品質が所定通信品質を超える場合には、前記第1の周波数での再送が停止されるように前記再送回数を制御することを特徴とするものである。
The invention according to a third aspect is the wireless communication device according to the first or second aspect,
The retransmission number control unit controls the number of retransmissions so that retransmission at the first frequency is stopped when the communication quality acquired by the communication quality acquisition unit exceeds a predetermined communication quality. It is what.
 また、上記目的を達成する本発明の第4の観点に係る無線通信方法は、
 通信相手に対するデータの再送時には、予め設定された周波数を利用して前記再送を行う無線通信方法であって、
 前記通信相手との間の無線伝搬路の通信品質を取得する通信品質取得ステップと、
 前記通信品質取得ステップにより取得した通信品質に応じて、予め設定された第1の周波数での再送回数を制御する再送回数制御ステップと、
 前記再送回数制御ステップにより制御した再送回数を超える再送については、前記通信相手との間で設定した第2の周波数にて前記再送を行うように制御する再送制御ステップと、
 を行うことを特徴とするものである。
A wireless communication method according to a fourth aspect of the present invention that achieves the above object is
When retransmitting data to a communication partner, a wireless communication method for performing the retransmission using a preset frequency,
A communication quality acquisition step of acquiring communication quality of a radio propagation path between the communication partners;
A retransmission count control step for controlling the number of retransmissions at a preset first frequency according to the communication quality acquired in the communication quality acquisition step;
For retransmission exceeding the number of retransmissions controlled in the retransmission number control step, a retransmission control step for controlling to perform the retransmission at a second frequency set with the communication partner;
It is characterized by performing.
 さらに、上記目的を達成する本発明の第5の観点に係る無線通信装置は、
 通信相手に対するデータの再送時には、予め設定された周波数を利用して前記再送を行う無線通信装置であって、
 前記通信相手の移動速度を取得する移動速度取得部と、
 前記移動速度取得部により取得した前記通信相手の移動速度に応じて、予め設定された第1の周波数での再送回数を制御する再送回数制御部と、
 前記再送回数制御部により制御した再送回数を超える再送については、前記通信相手との間で設定した第2の周波数にて前記再送を行うように制御する再送制御部と、
 を備えることを特徴とするものである。
Furthermore, a wireless communication apparatus according to a fifth aspect of the present invention that achieves the above object is
When retransmitting data to a communication partner, a wireless communication apparatus that performs the retransmission using a preset frequency,
A moving speed acquisition unit that acquires the moving speed of the communication partner;
A retransmission number control unit that controls the number of retransmissions at a preset first frequency according to the moving speed of the communication partner acquired by the moving speed acquisition unit;
For retransmission exceeding the number of retransmissions controlled by the retransmission number control unit, a retransmission control unit that controls to perform the retransmission at a second frequency set with the communication partner;
It is characterized by providing.
 第6の観点に係る発明は、第5の観点に係る無線通信装置において、
 前記再送回数制御部は、前記移動速度取得部により取得した前記通信相手の移動速度が低速になるほど前記再送回数が少なくなるように制御することを特徴とするものである。
An invention according to a sixth aspect is the wireless communication apparatus according to the fifth aspect,
The retransmission number control unit controls the number of retransmissions to decrease as the movement speed of the communication partner acquired by the movement speed acquisition unit decreases.
 第7の観点に係る発明は、第5または第6の観点に係る無線通信装置において、
 前記再送回数制御部は、前記移動速度取得部により取得した前記通信相手の移動速度が所定速度未満の場合には、前記第1の周波数での再送が停止されるように前記再送回数を制御することを特徴とするものである。
The invention according to a seventh aspect is the wireless communication apparatus according to the fifth or sixth aspect,
The retransmission number control unit controls the number of retransmissions so that retransmission at the first frequency is stopped when the movement speed of the communication partner acquired by the movement speed acquisition unit is less than a predetermined speed. It is characterized by this.
 第8の観点に係る発明は、第5~第7の何れか1つの観点に係る無線通信装置において、
 前記移動速度取得部は、前記通信相手が測定した当該通信相手の移動速度を通知されることにより、前記通信相手の移動速度を取得することを特徴とするものである。
The invention according to an eighth aspect is the wireless communication apparatus according to any one of the fifth to seventh aspects,
The moving speed acquisition unit acquires the moving speed of the communication partner by being notified of the moving speed of the communication partner measured by the communication partner.
 また、上記目的を達成する本発明の第9の観点に係る無線通信方法は、
 通信相手に対するデータの再送時には、予め設定された周波数を利用して前記再送を行う無線通信方法であって、
 前記通信相手の移動速度を取得する移動速度取得ステップと、
 前記移動速度取得ステップにより取得した前記通信相手の移動速度に応じて、予め設定された第1の周波数での再送回数を制御する再送回数制御ステップと、
 前記再送回数制御ステップにより制御した再送回数を超える再送については、前記通信相手との間で設定した第2の周波数にて前記再送を行うように制御する再送制御ステップと、
 を行うことを特徴とするものである。
A wireless communication method according to a ninth aspect of the present invention that achieves the above object is
When retransmitting data to a communication partner, a wireless communication method for performing the retransmission using a preset frequency,
A moving speed acquisition step of acquiring the moving speed of the communication partner;
A retransmission number control step for controlling the number of retransmissions at a preset first frequency according to the movement speed of the communication partner acquired in the movement speed acquisition step;
For retransmission exceeding the number of retransmissions controlled in the retransmission number control step, a retransmission control step for controlling to perform the retransmission at the second frequency set with the communication partner;
It is characterized by performing.
本発明の第1実施の形態に係る無線通信装置(基地局)の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the radio | wireless communication apparatus (base station) which concerns on 1st Embodiment of this invention. 第1実施の形態に係る無線通信装置(基地局)が実行する無線通信方法における割当方式決定手順を例示するフローチャートである。It is a flowchart which illustrates the allocation method determination procedure in the radio | wireless communication method which the radio | wireless communication apparatus (base station) which concerns on 1st Embodiment performs. 図2の割当方式決定手順の動作例を示す図である。It is a figure which shows the operation example of the allocation system determination procedure of FIG. 第1実施の形態に係る無線通信装置(基地局)が実行する無線通信方法における割当方式変更手順を例示するフローチャートである。It is a flowchart which illustrates the allocation system change procedure in the radio | wireless communication method which the radio | wireless communication apparatus (base station) which concerns on 1st Embodiment performs. 本発明の第2実施の形態に係る無線通信装置(基地局)の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the radio | wireless communication apparatus (base station) which concerns on 2nd Embodiment of this invention. 第2実施の形態に係る無線通信装置(基地局)が実行する無線通信方法で用いる移動速度を通信相手(端末)において取得する手順を例示するフローチャートである。It is a flowchart which illustrates the procedure which acquires in the communicating party (terminal) the moving speed used with the radio | wireless communication method which the radio | wireless communication apparatus (base station) which concerns on 2nd Embodiment performs. 第2実施の形態に係る無線通信装置(基地局)が実行する無線通信方法において、無線通信装置(基地局)が通信相手(端末)から当該端末の移動速度を取得して再送回数等を通信相手(端末)に指示する割当方式決定シーケンスを例示する図である。In the wireless communication method executed by the wireless communication apparatus (base station) according to the second embodiment, the wireless communication apparatus (base station) acquires the moving speed of the terminal from the communication partner (terminal) and communicates the number of retransmissions, etc. It is a figure which illustrates the allocation system determination sequence instruct | indicated to the other party (terminal). 第2実施の形態に係る無線通信装置(基地局)が実行する無線通信方法における割当方式決定手順を例示するフローチャートである。It is a flowchart which illustrates the allocation method determination procedure in the radio | wireless communication method which the radio | wireless communication apparatus (base station) which concerns on 2nd Embodiment performs. 図8の割当方式決定手順の動作例を示す図である。It is a figure which shows the operation example of the allocation method determination procedure of FIG. 第2実施の形態に係る無線通信装置(基地局)が実行する無線通信方法における割当方式変更手順を例示するフローチャートである。It is a flowchart which illustrates the allocation system change procedure in the radio | wireless communication method which the radio | wireless communication apparatus (base station) which concerns on 2nd Embodiment performs. 所定の周波数チャネルに再送のためのリソースを固定割当する、固定スケジューリング例(従来例1)を説明するための図である。It is a figure for demonstrating the fixed scheduling example (conventional example 1) which carries out fixed allocation of the resource for resending to a predetermined frequency channel. 初回のみ所定の周波数チャネルに再送のためのリソースを固定割当しその後は再送のためのリソースをダイナミック割当する、初回固定・再送ダイナミックスケジューリング例(従来例2)を説明するための図である。It is a figure for demonstrating the example of an initial fixed and resending dynamic scheduling (conventional example 2) which carries out fixed allocation of the resource for resending to the predetermined frequency channel only for the first time, and dynamically allocating the resource for resending after that.
 以下、本発明を実施するための各実施の形態を、図面に基づき詳細に説明する。 Hereinafter, each embodiment for carrying out the present invention will be described in detail with reference to the drawings.
(第1実施の形態)
 図1は、本発明の第1実施の形態に係る無線通信装置の概略構成を示すブロック図である。第1実施の形態に係る無線通信装置(基地局)100は、所定の通信方式(例えばLTE)に対応するデータ通信を行い得るように構成されている。図1に示すように、無線通信装置(基地局)100は、アンテナ110と、RF部130と、RF制御部140と、システム制御部150と、入力部160と、表示部170と、システム記憶部180等を有している。RF制御部140は、受信部140aおよび送信部140bを有している。システム制御部150は、通信品質取得部150aと、再送回数制御部150bと、再送制御部150cとを有している。システム記憶部180は、通信品質情報記憶部180aを有している。
(First embodiment)
FIG. 1 is a block diagram showing a schematic configuration of a wireless communication apparatus according to the first embodiment of the present invention. The wireless communication apparatus (base station) 100 according to the first embodiment is configured to be able to perform data communication corresponding to a predetermined communication method (for example, LTE). As shown in FIG. 1, a radio communication apparatus (base station) 100 includes an antenna 110, an RF unit 130, an RF control unit 140, a system control unit 150, an input unit 160, a display unit 170, and a system memory. Part 180 and the like. The RF control unit 140 includes a reception unit 140a and a transmission unit 140b. The system control unit 150 includes a communication quality acquisition unit 150a, a retransmission number control unit 150b, and a retransmission control unit 150c. The system storage unit 180 includes a communication quality information storage unit 180a.
 上記RF部130は、所定の通信方式で送信するデータを高周波信号に変換してアンテナ110から送信するとともに、アンテナ110から入力された高周波信号をデータ信号に変換する。上記RF制御部140は、所定の通信方式の通信(送受信)を制御するとともに、アンテナで受信した通信相手となる無線通信装置(端末)からの電界の強度(RSSI等)を測定する。また、上記RF制御部140は、RF部130から入力されるデータ信号およびRF部130へ出力するデータ信号に対応して受信部140aおよび送信部140bとして機能する。 The RF unit 130 converts data to be transmitted by a predetermined communication method into a high-frequency signal and transmits it from the antenna 110, and converts the high-frequency signal input from the antenna 110 into a data signal. The RF control unit 140 controls communication (transmission / reception) of a predetermined communication method, and measures the strength of an electric field (RSSI or the like) from a wireless communication device (terminal) that is a communication partner received by an antenna. The RF control unit 140 functions as a reception unit 140 a and a transmission unit 140 b corresponding to the data signal input from the RF unit 130 and the data signal output to the RF unit 130.
 上記システム制御部150は、基地局100の各部を統括して制御する制御部である。 The system control unit 150 is a control unit that controls each unit of the base station 100 in an integrated manner.
 上記通信品質取得部150aは、通信相手(端末)との間の無線伝搬路の通信品質を取得する。通信品質取得部150aが取得した通信品質は、上りまたは下りの、SINR、CINR、ドップラー周波数等の通信品質情報として、システム記憶部180の通信品質情報記憶部180aに記憶する。その際、上り(Uplink)の情報を用いる場合には、通信相手(端末)の送信信号を無線通信装置(基地局)100が測定することにより当該情報を取得する。また、下り(Downlink)の情報を用いる場合には、通信相手(端末)からのフィードバック信号を無線通信装置(基地局)100が受信することにより当該情報を取得する。 The communication quality acquisition unit 150a acquires the communication quality of the wireless propagation path with the communication partner (terminal). The communication quality acquired by the communication quality acquisition unit 150a is stored in the communication quality information storage unit 180a of the system storage unit 180 as communication quality information such as uplink or downlink SINR, CINR, and Doppler frequency. In this case, when using uplink information, the wireless communication device (base station) 100 measures the transmission signal of the communication partner (terminal), and acquires the information. When downlink information is used, the wireless communication apparatus (base station) 100 receives the feedback signal from the communication partner (terminal) to acquire the information.
 上記通信品質は、例えば通信品質レベル1,通信品質レベル2,通信品質レベル3,・・・のように段階的に表わすことができる。ここで、通信品質レベル1が最高位の通信品質であり、通信品質レベル2が次に高い通信品質であり、通信品質レベル3,・・と進むにつれて低い通信品質とする。 The communication quality can be expressed in stages, for example, communication quality level 1, communication quality level 2, communication quality level 3,. Here, the communication quality level 1 is the highest communication quality, the communication quality level 2 is the next highest communication quality, and the communication quality level 3,...
 上記通信品質レベルの定義の一例を表1に示す。表1の例では、50%以上の送信が再送回数0回(再送無し)で成功する場合を通信品質レベル1と定義している。50%以上の送信が再送回数1回で成功する場合は通信品質レベル2と定義し、50%以上の送信が再送回数2回で成功する場合は通信品質レベル3と定義している。これ以降も、必要に応じて、上記と同様にして通信品質レベル4以降を定義する。 Table 1 shows an example of the definition of the communication quality level. In the example of Table 1, a case where 50% or more transmission succeeds with 0 retransmissions (no retransmission) is defined as communication quality level 1. When transmission of 50% or more succeeds after one retransmission, it is defined as communication quality level 2, and when transmission of 50% or more succeeds after two retransmissions, it is defined as communication quality level 3. Thereafter, communication quality level 4 and later are defined in the same manner as described above as necessary.
 なお、表1に示す通信品質レベルの定義は、これに限定されるものではなく、必要に応じて種々の態様に変更することができる。例えば、「ダイナミック割当を行う際のオーバーヘッドの削減」を「再送が発生しなかった場合の空リソースの削減」よりも重視する場合には、上記通信品質レベルの定義中の「50%」を「50%未満の所定値」に設定する。また、「再送が発生しなかった場合の空リソースの削減」を「ダイナミック割当を行う際のオーバーヘッドの削減」よりも重視する場合には、上記通信品質レベルの定義中の「50%」を「50%を超える所定値」に設定する。 In addition, the definition of the communication quality level shown in Table 1 is not limited to this, and can be changed to various modes as necessary. For example, when “reduction of overhead when performing dynamic allocation” is more important than “reduction of empty resources when retransmission does not occur”, “50%” in the definition of the communication quality level is “ Set to a “predetermined value less than 50%”. Further, when “reduction of empty resources when no retransmission occurs” is more important than “reduction of overhead when performing dynamic allocation”, “50%” in the definition of the communication quality level is set to “50%”. Set to a “predetermined value exceeding 50%”.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記再送回数制御部150bは、通信品質取得部150aにより取得した通信品質に応じて、予め設定された第1の周波数での再送回数を制御する。具体的には、表1に示す通信品質レベルと再送回数との関係に基づいて、固定割当する再送回数を設定する。その際、上記再送回数制御部150bは、表1に示すように、通信品質取得部150aにより取得した通信品質(通信品質レベル)が低くなるほど再送回数が多くなり、通信品質取得部150aにより取得した通信品質(通信品質レベル)が高くなるほど再送回数が少なくなるように制御する。これとともに、上記再送回数制御部150bは、通信品質取得部150aにより取得した通信品質(通信品質レベル)が所定の通信品質を超えた場合(例えば最高位の通信品質である通信品質レベル1の場合)には、前記第1の周波数での再送が停止されるように再送回数を0とするように制御する。 The retransmission number control unit 150b controls the number of retransmissions at a preset first frequency according to the communication quality acquired by the communication quality acquisition unit 150a. Specifically, the fixed number of retransmissions is set based on the relationship between the communication quality level and the number of retransmissions shown in Table 1. At that time, as shown in Table 1, the retransmission number control unit 150b increases the number of retransmissions as the communication quality (communication quality level) acquired by the communication quality acquisition unit 150a decreases, and is acquired by the communication quality acquisition unit 150a. Control is performed so that the number of retransmissions decreases as the communication quality (communication quality level) increases. At the same time, when the communication quality (communication quality level) acquired by the communication quality acquisition unit 150a exceeds a predetermined communication quality (for example, when communication quality level 1 is the highest communication quality) ), The number of retransmissions is controlled to be 0 so that retransmission at the first frequency is stopped.
 上記再送制御部150cは、再送回数制御部150bにより制御した再送回数だけ前記第1の周波数にて再送を行うとともに、再送回数制御部150bにより制御した再送回数を超える再送については、通信相手(端末)との間で任意に設定した第2の周波数にて前記再送を行うように制御する。なお、この場合、第2の周波数は、第1の周波数と異なる周波数となることも、場合によっては、第1の周波数と同じ周波数となることもある。また、上記再送制御部150cは、再送回数制御部150bにより前記第1の周波数での再送が停止するように再送回数を0とするように制御された場合には、前記第2の周波数にて全ての再送を行う(ダイナミック割当で全ての再送を行う)。 The retransmission control unit 150c performs retransmission at the first frequency for the number of retransmissions controlled by the retransmission number control unit 150b, and for a retransmission exceeding the number of retransmissions controlled by the retransmission number control unit 150b, the communication partner (terminal ) To perform the retransmission at a second frequency arbitrarily set between In this case, the second frequency may be different from the first frequency or may be the same frequency as the first frequency in some cases. In addition, when the retransmission control unit 150c is controlled by the retransmission number control unit 150b to set the number of retransmissions to 0 so that retransmission at the first frequency stops, the retransmission control unit 150c uses the second frequency. Perform all retransmissions (perform all retransmissions with dynamic allocation).
 上記入力部160は、情報を入力したり、表示部170の表示画面に表示された選択肢の何れかを選択する際に使用するものであり、各種キーおよび各種ボタンを有している。なお、入力部160、表示部170は、必要に応じて省略することもできる。 The input unit 160 is used when inputting information or selecting one of the options displayed on the display screen of the display unit 170, and has various keys and various buttons. Note that the input unit 160 and the display unit 170 may be omitted as necessary.
 上記システム記憶部180は、RAM等のメモリによって構成され、アプリケーションプログラムや一時的なデータを保存する。上記通信品質情報記憶部180aは、上記通信品質取得部150aが取得した通信品質を、上りSINR、下りSINR、CINR、ドップラー周波数等の通信品質情報として記憶する。 The system storage unit 180 is configured by a memory such as a RAM, and stores application programs and temporary data. The communication quality information storage unit 180a stores the communication quality acquired by the communication quality acquisition unit 150a as communication quality information such as uplink SINR, downlink SINR, CINR, and Doppler frequency.
[割当方式決定手順のフローチャート]
 図2は、第1実施の形態に係る無線通信装置(基地局)100が実行する無線通信方法における割当方式決定手順を例示するフローチャートである。この図2の割当方式決定手順は、通信開始時(無線アクセス開始時)に起動される。
[Flow chart of allocation method determination procedure]
FIG. 2 is a flowchart illustrating an allocation method determination procedure in the radio communication method executed by radio communication apparatus (base station) 100 according to the first embodiment. The allocation method determination procedure in FIG. 2 is started at the start of communication (at the start of wireless access).
 まず、ステップS11では、通信品質取得部150aが、通信相手(端末)との間の無線伝搬路の通信品質(通信品質レベル)を取得する。次のステップS12では、再送回数制御部150bは、通信相手(端末)に対するデータの初回の送信が固定割当であるか否かを判定する。ステップS12にて、初回の送信が固定割当でない場合、ステップS13に進んで、再送回数制御部150bは、初回の送信および再送を含む全ての送信をダイナミック割当する。一方、ステップS12にて、初回の送信が固定割当である場合は、ステップS14に進む。なお、ステップS12にて、通信相手(端末)に対するデータの初回の送信が固定割当であるか否かの判定は、例えばQoS(Quality of Service)に基づいて行う。 First, in step S11, the communication quality acquisition unit 150a acquires the communication quality (communication quality level) of the wireless propagation path with the communication partner (terminal). In the next step S12, the retransmission number control unit 150b determines whether or not the first transmission of data to the communication partner (terminal) is fixed allocation. If the first transmission is not fixed allocation in step S12, the process proceeds to step S13, and the retransmission number control unit 150b dynamically allocates all transmissions including the first transmission and retransmission. On the other hand, if the first transmission is fixed assignment in step S12, the process proceeds to step S14. In step S12, whether or not the initial transmission of data to the communication partner (terminal) is fixed allocation is determined based on, for example, QoS (QualityQof Service).
 ステップS14では、再送回数制御部150bは、ステップS11で通信品質取得部150aが取得した通信品質に応じて、予め設定された第1の周波数での再送回数を固定割当するとともに、該再送回数を超える再送を第2の周波数にダイナミック割当する。すなわち、ステップS14では、再送回数制御部150bは、まず、ステップS11で取得した通信品質レベルが通信品質レベル1,通信品質レベル2,通信品質レベル3,・・の何れであるかを判定する。それから、この判定結果に応じて、通信品質レベルがレベル1であればステップS15に進み、レベル2であればステップS16に進み、レベル3であればステップS17に進み、再送回数制御部150bは各ステップの処理を行う。 In step S14, the retransmission number control unit 150b fixedly assigns the number of retransmissions at the first frequency set in advance according to the communication quality acquired by the communication quality acquisition unit 150a in step S11, and sets the number of retransmissions. Dynamically assign more retransmissions to the second frequency. That is, in step S14, the retransmission number control unit 150b first determines whether the communication quality level acquired in step S11 is the communication quality level 1, the communication quality level 2, the communication quality level 3,. Then, according to the determination result, if the communication quality level is level 1, the process proceeds to step S15, if it is level 2, the process proceeds to step S16, and if it is level 3, the process proceeds to step S17. Perform step processing.
 最高位の通信品質である通信品質レベル1の場合に進むステップS15では、通信品質が極めて良好な環境であるため、再送が発生する確率が低くなって空リソースの発生が減り、全ての再送をダイナミック割当した方が、効率の良い通信を行うことができる。このことを考慮して、再送回数制御部150bは、予め設定された第1の周波数での再送(固定割当)が停止されるように再送回数を0に制御して、全ての再送を第2の周波数にダイナミック割当する。2番目に高い通信品質である通信品質レベル2の場合に進むステップS16では、再送回数制御部150bは、固定割当の再送回数を1に制御して、再送1回を固定割当し、再送2回目以降をダイナミック割当する。通信品質が劣化した環境である通信品質レベル3の場合に進むステップS17では、再送が頻発して一定の再送回数までは固定割当した方がダイナミック割当を行う際のオーバーヘッドが減る。このことを考慮して、再送回数制御部150bは、固定割当の再送回数を2に制御して、再送2回を固定割当し、再送3回目以降をダイナミック割当する。 In step S15 that proceeds to the communication quality level 1 that is the highest communication quality, since the communication quality is very good, the probability of retransmission occurring is reduced, the occurrence of empty resources is reduced, and all retransmissions are performed. Dynamic allocation can perform efficient communication. In consideration of this, the retransmission number control unit 150b controls the number of retransmissions to 0 so that retransmission (fixed allocation) at a preset first frequency is stopped, and all retransmissions are second. Dynamic allocation to the frequency of In step S16 that proceeds to the case of communication quality level 2 that is the second highest communication quality, retransmission number control section 150b controls the number of retransmissions for fixed allocation to 1, performs fixed allocation for one retransmission, and performs the second retransmission. Dynamically allocate the rest. In step S17 that proceeds to the case of communication quality level 3, which is an environment in which communication quality has deteriorated, retransmissions occur more frequently, and the fixed assignment up to a certain number of retransmissions reduces the overhead when performing dynamic assignment. In consideration of this, the retransmission count control unit 150b controls the fixed allocation retransmission count to 2, performs fixed allocation of 2 retransmissions, and dynamically allocates the 3rd and subsequent retransmissions.
 図3は、図2にて説明した割当方式決定手順の動作例を示す図である。この図3は、「再送2回までを固定割当し、その後の再送をダイナミック割当するスケジューリング例における動作例」を示している。図3において、図2のステップS17に対応する最初の送信期間には、初回の送信後に通信相手に対する固定割当によるデータの再送が2回行われた後、ダイナミック割当によるデータの再送が1回行われている。このため、再送がない空リソースは発生せず、かつ、ダイナミック割当によるデータの再送も1回になる。したがって、ダイナミック割当を行う際のオーバーヘッドは、図12に示す従来例2においては2回分であったが、図3においては1回分に減少している。また、図3において、図2のステップS17に対応する次の送信期間には、初回の送信後に通信相手に対する固定割当によるデータの再送が1回だけ行われている。このため、図3においては、再送がない空リソースが1回分生じているが、図11に示した従来例1における3回分と比べると、空リソースは大幅に減少している。 FIG. 3 is a diagram illustrating an operation example of the allocation method determination procedure described in FIG. FIG. 3 shows an “operation example in a scheduling example in which fixed retransmission is performed up to two retransmissions and dynamic retransmission is then allocated”. In FIG. 3, in the first transmission period corresponding to step S17 of FIG. 2, after the first transmission, data retransmission by fixed allocation to the communication partner is performed twice, and then data retransmission by dynamic allocation is performed once. It has been broken. For this reason, there is no empty resource without retransmission, and data is retransmitted once by dynamic allocation. Therefore, the overhead for performing dynamic allocation is two times in the conventional example 2 shown in FIG. 12, but is reduced to one time in FIG. In FIG. 3, in the next transmission period corresponding to step S17 in FIG. 2, data is retransmitted only once by fixed assignment to the communication partner after the first transmission. For this reason, in FIG. 3, there is one empty resource that does not have retransmission, but the empty resource is significantly reduced as compared to three in the conventional example 1 shown in FIG. 11.
 第1実施の形態に係る無線通信装置(基地局)および当該無線通信装置(基地局)が実行する無線通信方法においては、図2の割当方式決定手順を行う。すなわち、通信開始時に、通信品質レベルに応じて、通信品質レベルが低いほど再送回数が増えるように、また通信品質レベルが高いほど再送回数が減るように固定割当の再送回数を制御して、当該再送回数だけ予め設定された第1の周波数を利用して再送を行う。一方、前記再送回数を超える再送については、通信品質レベルが良好になるほどダイナミック割当の再送回数が増えるように再送回数を制御して、当該再送回数だけ通信相手(端末)との間で任意に設定した第2の周波数にて再送を行うように制御する。このように、第1実施の形態においては、通信品質が劣化するほど通信品質の程度に応じて再送を固定割当する回数を増やすとともに、通信品質が良好になるほど再送を固定割当する回数を減らして再送をダイナミック割当する回数を増やす。これにより、再送時の空リソースおよびダイナミック割当によるオーバーヘッドの双方を削減することができ、再送時の空リソースおよびダイナミック割当によるオーバーヘッドの双方を最適化して、周波数利用効率を向上させることができる。 In the wireless communication apparatus (base station) and the wireless communication method executed by the wireless communication apparatus (base station) according to the first embodiment, the allocation method determination procedure of FIG. 2 is performed. That is, at the start of communication, according to the communication quality level, the number of retransmissions is controlled so that the number of retransmissions increases as the communication quality level is low, and the number of retransmissions decreases as the communication quality level is high. Retransmission is performed using the first frequency set in advance for the number of retransmissions. On the other hand, for retransmission exceeding the number of retransmissions, the number of retransmissions is controlled so that the number of retransmissions of dynamic allocation increases as the communication quality level becomes better, and is arbitrarily set with the communication partner (terminal) by the number of retransmissions Control is performed so that retransmission is performed at the second frequency. As described above, in the first embodiment, as the communication quality deteriorates, the number of times of fixed allocation of retransmissions is increased according to the degree of communication quality, and as the communication quality becomes better, the number of times of fixed allocation of retransmissions is decreased. Increase the number of times to dynamically allocate retransmissions. As a result, it is possible to reduce both empty resources during retransmission and overhead due to dynamic allocation, and it is possible to optimize both empty resources during retransmission and overhead due to dynamic allocation to improve frequency utilization efficiency.
[割当方式変更手順のフローチャート]
 図2の割当方式決定手順において割当方式を決定するタイミングは、通信開始時である。しかしながら、通信開始時に決定した割当方式は、その後の通信品質の変動に応じて、通信中(送信パケット発生時)も変更可能とすることが望ましい。
[Flow chart of allocation method change procedure]
The timing for determining the allocation method in the allocation method determination procedure of FIG. 2 is at the start of communication. However, it is desirable that the allocation method determined at the start of communication can be changed during communication (when a transmission packet is generated) in accordance with the subsequent change in communication quality.
 図4は、第1実施の形態に係る無線通信装置(基地局)100が実行する無線通信方法における割当方式変更手順を例示するフローチャートである。この図4に示す割当方式変更手順は、図2の割当方式決定手順により決定した割当方式を、通信品質の変動に応じて変更するものであり、一定周期毎に実行する。 FIG. 4 is a flowchart illustrating an allocation method change procedure in the wireless communication method executed by the wireless communication apparatus (base station) 100 according to the first embodiment. The allocation method change procedure shown in FIG. 4 is to change the allocation method determined by the allocation method determination procedure of FIG. 2 according to the change in communication quality, and is executed at regular intervals.
 上記割当方式変更手順においては、まず、ステップS21において、通信品質取得部150aが、通信相手(端末)との間の無線伝搬路の通信品質(通信品質レベル)を取得する。次のステップS22では、再送回数制御部150bは、通信相手(端末)に対するデータの初回の送信が固定割当であるか否かを判定する。ステップS22にて、初回の送信が固定割当でない場合、ステップS23に進んで、再送回数制御部150bは、初回の送信および再送を含む全ての送信をダイナミック割当する。一方、ステップS22にて、初回の送信が固定割当である場合は、ステップS24に進む。なお、ステップS12にて、通信相手(端末)に対するデータの初回の送信が固定割当であるか否かの判定は、例えばQoS(Quality of Service)に基づいて行う。 In the allocation method changing procedure, first, in step S21, the communication quality acquisition unit 150a acquires the communication quality (communication quality level) of the wireless propagation path with the communication partner (terminal). In the next step S22, the retransmission number control unit 150b determines whether or not the first transmission of data to the communication partner (terminal) is fixed allocation. In step S22, when the first transmission is not fixed allocation, the process proceeds to step S23, and retransmission number control section 150b dynamically allocates all transmissions including the first transmission and retransmission. On the other hand, if the first transmission is fixed assignment in step S22, the process proceeds to step S24. In step S12, whether or not the initial transmission of data to the communication partner (terminal) is fixed allocation is determined based on, for example, QoS (QualityQof Service).
 ステップS24では、再送回数制御部150bは、ステップS21で通信品質取得部150aが取得した通信品質に応じて、予め設定された第1の周波数での再送回数を固定割当するとともに、該再送回数を超える再送を第2の周波数にダイナミック割当する。すなわち、ステップS24では、再送回数制御部150bは、まず、ステップS21で取得した通信品質レベルが通信品質レベル1,通信品質レベル2,通信品質レベル3,・・の何れであるかを判定する。それから、この判定結果に応じて、通信品質レベルがレベル1であればステップS25に進み、レベル2であればステップS26に進み、レベル3であればステップS27に進み、再送回数制御部150bは各ステップの処理を行う。 In step S24, the retransmission number control unit 150b assigns a fixed number of retransmissions at a preset first frequency according to the communication quality acquired by the communication quality acquisition unit 150a in step S21, and sets the number of retransmissions. Dynamically assign more retransmissions to the second frequency. That is, in step S24, the retransmission number control unit 150b first determines whether the communication quality level acquired in step S21 is the communication quality level 1, the communication quality level 2, the communication quality level 3,. Then, according to the determination result, if the communication quality level is level 1, the process proceeds to step S25, if it is level 2, the process proceeds to step S26, and if it is level 3, the process proceeds to step S27. Perform step processing.
 最高位の通信品質である通信品質レベル1の場合に進むステップS25では、通信品質が極めて良好な環境であるため、再送が発生する確率が低くなって空リソースの発生が減り、全ての再送をダイナミック割当した方が、効率の良い通信を行うことができる。このことを考慮して、再送回数制御部150bは、予め設定された第1の周波数での再送(固定割当)が停止されるように再送回数を0に制御して、全ての再送を第2の周波数にダイナミック割当する。2番目に高い通信品質である通信品質レベル2の場合に進むステップS26では、再送回数制御部150bは、固定割当の再送回数を1に制御して、再送1回を固定割当し、再送2回目以降をダイナミック割当する。通信品質が劣化した環境である通信品質レベル3の場合に進むステップS27では、再送が頻発して一定の再送回数までは固定割当した方がダイナミック割当を行う際のオーバーヘッドが減る。このことを考慮して、再送回数制御部150bは、固定割当の再送回数を2に制御して、再送2回を固定割当し、再送3回目以降をダイナミック割当する。 In step S25 that proceeds to communication quality level 1, which is the highest communication quality, since the communication quality is extremely good, the probability of occurrence of retransmission is reduced, the occurrence of empty resources is reduced, and all retransmissions are performed. Dynamic allocation can perform efficient communication. In consideration of this, the retransmission number control unit 150b controls the number of retransmissions to 0 so that retransmission (fixed allocation) at a preset first frequency is stopped, and all retransmissions are second. Dynamic allocation to the frequency of In step S26 that proceeds to the case of communication quality level 2 that is the second highest communication quality, retransmission number control section 150b controls the number of retransmissions of fixed assignment to 1, assigns a single retransmission, and assigns a second retransmission. Dynamically allocate the rest. In step S27, which proceeds in the case of communication quality level 3, which is an environment in which communication quality has deteriorated, retransmissions occur more frequently, and the fixed allocation up to a certain number of retransmissions reduces the overhead when performing dynamic allocation. In consideration of this, the retransmission count control unit 150b controls the fixed allocation retransmission count to 2, performs fixed allocation of 2 retransmissions, and dynamically allocates the 3rd and subsequent retransmissions.
 次のステップS28では、再送回数制御部150bは、ステップS25,ステップS26またはステップS27で決定した割当方式が、現在の割当方式と一致しているか否かを判定する。ステップS28において、現在の割当方式と、先行するステップ(ステップS25,ステップS26またはステップS27)にて決定した割当方式とが一致している場合、ステップS29に進んで現在の割当方式を維持する。一方、ステップS28において、現在の割当方式と、先行するステップにて決定した割当方式とが不一致である場合、ステップS30に進んで、再送回数制御部150bは、割当方式を、ステップS25,ステップS26またはステップS27で決定した割当方式に変更する。なお、ステップS29またはステップS30の実行後は、ステップS21に戻って上記割当方式変更手順を繰り返す。このため、送信パケット発生時であれば、通信品質の変動に応じて割当方式が随時変更される。 In the next step S28, the retransmission number control unit 150b determines whether or not the allocation scheme determined in step S25, step S26 or step S27 matches the current allocation scheme. In step S28, when the current allocation method matches the allocation method determined in the preceding step (step S25, step S26 or step S27), the process proceeds to step S29 and the current allocation method is maintained. On the other hand, if the current allocation method and the allocation method determined in the preceding step do not match in step S28, the process proceeds to step S30, and the retransmission number control unit 150b sets the allocation method to steps S25 and S26. Alternatively, the allocation method determined in step S27 is changed. In addition, after execution of step S29 or step S30, it returns to step S21 and repeats the said allocation system change procedure. For this reason, when a transmission packet is generated, the allocation method is changed at any time according to a change in communication quality.
 第1実施の形態に係る無線通信装置(基地局)および当該無線通信装置(基地局)が実行する無線通信方法においては、図4の割当方式判定手順を行う。すなわち、通信開始時のみならず通信中においても、通信品質レベルに応じて、通信品質レベルが低いほど再送回数が増えるように、また通信品質レベルが高いほど再送回数が減るように固定割当の再送回数を制御して、当該再送回数だけ予め設定された第1の周波数を利用して再送を行う。一方、前記再送回数を超える再送については、通信品質レベルが良好になるほどダイナミック割当の再送回数が増えるように再送回数を制御して、当該再送回数だけ通信相手(端末)との間で任意に設定した第2の周波数にて再送を行うように制御する。このように、第1実施の形態においては、通信品質が劣化するほど通信品質の程度に応じて再送を固定割当する回数を増やすとともに、通信品質が良好になるほど再送を固定割当する回数を減らして再送をダイナミック割当する回数を増やす。これにより、再送時の空リソースおよびダイナミック割当によるオーバーヘッドの双方を削減することができ、再送時の空リソースおよびダイナミック割当によるオーバーヘッドの双方を最適化して、周波数利用効率を向上させることができる。 In the wireless communication apparatus (base station) and the wireless communication method executed by the wireless communication apparatus (base station) according to the first embodiment, the allocation method determination procedure of FIG. 4 is performed. In other words, not only at the start of communication but also during communication, depending on the communication quality level, the number of retransmissions increases as the communication quality level decreases, and the number of retransmissions decreases as the communication quality level increases. The number of times is controlled, and retransmission is performed using the preset first frequency for the number of times of retransmission. On the other hand, for retransmission exceeding the number of retransmissions, the number of retransmissions is controlled so that the number of retransmissions of dynamic allocation increases as the communication quality level becomes better, and is arbitrarily set with the communication partner (terminal) by the number of retransmissions Control is performed so that retransmission is performed at the second frequency. As described above, in the first embodiment, as the communication quality deteriorates, the number of times of fixed allocation of retransmissions is increased according to the degree of communication quality, and as the communication quality becomes better, the number of times of fixed allocation of retransmissions is decreased. Increase the number of times to dynamically allocate retransmissions. As a result, it is possible to reduce both empty resources during retransmission and overhead due to dynamic allocation, and it is possible to optimize both empty resources during retransmission and overhead due to dynamic allocation to improve frequency utilization efficiency.
 なお、上述した第1実施形態の無線通信装置(基地局)における割当方式決定手順および割当方式変更手順の概要は、次のようになる。すなわち、通信品質レベルに応じて、通信品質レベルが低いほど再送回数が増え、通信品質レベルが高いほど再送回数が減るように固定割当の再送回数を制御し、前記再送回数を超える再送についてはダイナミック割当する。しかしながら、例えば、次のような割当方式決定手順および割当方式変更手順を併用することもできる。すなわち、通信相手(端末)の移動速度に応じて、移動速度が速いほど再送回数が増え、移動速度が遅いほど再送回数が減るように固定割当の再送回数を制御し、前記再送回数を超える再送についてはダイナミック割当する。このようにして併用することができる後者の割当方式決定手順および割当方式変更手順を単独で用いる場合について、以下、さらに説明する。 The outline of the allocation method determination procedure and the allocation method change procedure in the wireless communication apparatus (base station) of the first embodiment described above is as follows. That is, according to the communication quality level, the number of retransmissions is increased as the communication quality level is lower, and the number of retransmissions is fixed so that the number of retransmissions is decreased as the communication quality level is higher. Assign. However, for example, the following allocation scheme determination procedure and allocation scheme change procedure can be used in combination. That is, according to the movement speed of the communication partner (terminal), the number of retransmissions increases as the movement speed increases, and the number of retransmissions is fixed so that the number of retransmissions decreases as the movement speed decreases. Is dynamically allocated. The case where the latter assignment method determination procedure and assignment method change procedure that can be used together in this way are used alone will be further described below.
(第2実施の形態)
 次に、本発明の第2実施の形態を、図面に基づき詳細に説明する。
(Second Embodiment)
Next, a second embodiment of the present invention will be described in detail with reference to the drawings.
 図5は、本発明の第2実施の形態に係る無線通信装置の概略構成を示すブロック図である。第2実施の形態に係る無線通信装置(基地局)300は、所定の通信方式(例えばLTE)に対応するデータ通信を行い得るように構成されている。第2実施の形態に係る無線通信装置(基地局)300は、上述した第1実施の形態に係る無線通信装置(基地局)100において、システム制御部150およびシステム記憶部180の内部構成を変更したものである。したがって、図1に示した第1実施の形態に係る無線通信装置(基地局)100と同じ機能ブロックには同じ参照符号を付してある。 FIG. 5 is a block diagram showing a schematic configuration of a wireless communication apparatus according to the second embodiment of the present invention. Radio communication apparatus (base station) 300 according to the second embodiment is configured to perform data communication corresponding to a predetermined communication method (for example, LTE). Radio communication apparatus (base station) 300 according to the second embodiment changes the internal configuration of system control unit 150 and system storage unit 180 in radio communication apparatus (base station) 100 according to the first embodiment described above. It is a thing. Accordingly, the same functional blocks as those of radio communication apparatus (base station) 100 according to the first embodiment shown in FIG.
 図5に示すように、無線通信装置(基地局)300は、アンテナ110と、RF部130と、RF制御部140と、システム制御部150と、入力部160と、表示部170と、システム記憶部180等を有している。RF制御部140は、受信部140aおよび送信部140bを有している。第2実施の形態に係る無線通信装置(基地局)300においては、システム制御部150は、移動速度取得部350aと、再送回数制御部150bと、再送制御部150cとを有している。また、システム記憶部180は、移動速度情報記憶部380aを有している。 As shown in FIG. 5, a radio communication apparatus (base station) 300 includes an antenna 110, an RF unit 130, an RF control unit 140, a system control unit 150, an input unit 160, a display unit 170, and a system storage. Part 180 and the like. The RF control unit 140 includes a reception unit 140a and a transmission unit 140b. In radio communication apparatus (base station) 300 according to the second embodiment, system control unit 150 includes moving speed acquisition unit 350a, retransmission number control unit 150b, and retransmission control unit 150c. In addition, the system storage unit 180 includes a moving speed information storage unit 380a.
 上記RF部130は、所定の通信方式で送信するデータを高周波信号に変換してアンテナ110から送信するとともに、アンテナ110から入力された高周波信号をデータ信号に変換する。上記RF制御部140は、所定の通信方式の通信(送受信)を制御するとともに、アンテナで受信した通信相手となる無線通信装置(端末)からの電界の強度(RSSI等)を測定する。また、上記RF制御部140は、RF部130から入力されるデータ信号およびRF部130へ出力するデータ信号に対応して受信部140aおよび送信部140bとして機能する。 The RF unit 130 converts data to be transmitted by a predetermined communication method into a high-frequency signal and transmits it from the antenna 110, and converts the high-frequency signal input from the antenna 110 into a data signal. The RF control unit 140 controls communication (transmission / reception) of a predetermined communication method, and measures the strength of an electric field (RSSI or the like) from a wireless communication device (terminal) that is a communication partner received by an antenna. The RF control unit 140 functions as a reception unit 140 a and a transmission unit 140 b corresponding to the data signal input from the RF unit 130 and the data signal output to the RF unit 130.
 上記システム制御部150は、基地局300の各部を統括して制御する制御部である。 The system control unit 150 is a control unit that controls each unit of the base station 300 in an integrated manner.
 上記移動速度取得部350aは、通信相手(端末)の移動速度を取得する。ものであり、移動速度取得部350aが取得した移動速度は、移動速度情報として、システム記憶部180の移動速度情報記憶部380aに記憶する。その際、移動速度取得部350aは、後述する図7のシーケンスにより通信相手(端末)が測定した当該通信相手(端末)の移動速度を通知されることにより、前記通信相手(端末)の移動速度を取得する。 The moving speed acquisition unit 350a acquires the moving speed of the communication partner (terminal). The movement speed acquired by the movement speed acquisition unit 350a is stored in the movement speed information storage unit 380a of the system storage unit 180 as movement speed information. At that time, the moving speed acquisition unit 350a is notified of the moving speed of the communication partner (terminal) measured by the communication partner (terminal) according to the sequence of FIG. To get.
 上記通信相手(端末)の移動速度は、例えば超低速領域(1km/h未満)、低速領域(1~5km/h)、中速領域(5~80km/h)、高速領域(80km/h以上)、・・のように複数に区分した速度領域の何れに該当する移動速度であるかを移動速度取得部350aが判断する。このようにして移動速度取得部350aが判断した移動速度を、再送回数制御部150bは、「超低速」、「低速」、「中速」、「高速」、・・の何れか1つに分類する。ここで、「超低速」が最高の通信品質が期待できる移動速度であり、「低速」が次に高い通信品質が期待できる移動速度であり、「中速」、「高速」、・・と進むにつれて通信品質が低下する。 The moving speed of the communication partner (terminal) is, for example, an ultra-low speed area (less than 1 km / h), a low speed area (1 to 5 km / h), a medium speed area (5 to 80 km / h), and a high speed area (80 km / h or more). ),... The moving speed acquisition unit 350a determines which moving speed corresponds to one of the divided speed areas. In this way, the retransmission speed control unit 150b classifies the movement speed determined by the movement speed acquisition unit 350a into any one of “ultra low speed”, “low speed”, “medium speed”, “high speed”,. To do. Here, “Ultra-low speed” is the moving speed at which the highest communication quality can be expected, “Low speed” is the moving speed at which the next highest communication quality can be expected, and “Medium speed”, “High speed”, and so on. As the communication quality decreases.
 上記移動速度の速度領域の定義の一例を表2に示す。表2の例では、50%以上の送信が再送回数0回(再送無し)で成功する場合を「超低速」と定義している。50%以上の送信が再送回数1回で成功する場合は「低速」と定義し、50%以上の送信が再送回数2回で成功する場合は「中速」と定義し、50%以上の送信が再送回数3回で成功する場合を「高速」と定義している。これ以降も、必要に応じて、上記と同様にして「超高速」等を定義する。 Table 2 shows an example of the definition of the speed area of the above moving speed. In the example of Table 2, a case where transmission of 50% or more succeeds when the number of retransmissions is 0 (no retransmission) is defined as “very low speed”. If transmission of 50% or more succeeds after one retransmission, define it as “low speed”. If transmission of 50% or more succeeds in two retransmissions, define it as “medium speed” and send more than 50%. Is defined as “high-speed” when it succeeds after 3 retransmissions. From this point onward, “ultra-high speed” or the like is defined in the same manner as described above, if necessary.
 なお、表2に示す移動速度の速度領域の定義は、これに限定されるものではなく、必要に応じて種々の態様に変更することができる。例えば、「ダイナミック割当を行う際のオーバーヘッドの削減」を「再送が発生しなかった場合の空リソースの削減」よりも重視する場合には、上記移動速度の速度領域の定義中の「50%」を「50%未満の所定値」に設定する。また、「再送が発生しなかった場合の空リソースの削減」を「ダイナミック割当を行う際のオーバーヘッドの削減」よりも重視する場合には、上記移動速度の速度領域の定義中の「50%」を「50%を超える所定値」に設定する。なお、表2に示す移動速度の各速度領域の上限値および下限値は、第2実施の形態に係る無線通信装置に適用する通信方式毎に、「移動速度と通信品質との関係」が異なることを考慮して、適用する通信方式における最適値となるように適宜設定するようにしてもよい。 In addition, the definition of the speed region of the moving speed shown in Table 2 is not limited to this, and can be changed to various modes as necessary. For example, in the case where “reduction of overhead when performing dynamic allocation” is more important than “reduction of empty resources when retransmission does not occur”, “50%” in the definition of the speed region of the moving speed is used. Is set to “a predetermined value less than 50%”. In addition, when “reducing empty resources when no retransmission occurs” is more important than “reducing overhead when performing dynamic allocation”, “50%” in the definition of the speed region of the moving speed is used. Is set to a “predetermined value exceeding 50%”. In addition, the upper limit value and the lower limit value of each speed region of the moving speed shown in Table 2 differ in “relationship between moving speed and communication quality” for each communication method applied to the wireless communication apparatus according to the second embodiment. In view of this, it may be set as appropriate so as to be an optimum value in the communication system to be applied.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上記再送回数制御部150bは、移動速度取得部350aにより取得した通信相手(端末)の移動速度に応じて、予め設定された第1の周波数での再送回数を制御する。具体的には、表2に示す通信相手(端末)の移動速度と再送回数との関係に基づいて、固定割当する再送回数を設定する。その際、上記再送回数制御部150bは、表2に示すように、移動速度取得部350aにより取得した通信相手(端末)の移動速度が高速になるほど再送回数が多くなり、移動速度取得部350aにより取得した通信相手(端末)の移動速度が低速になるほど再送回数が少なくなるように制御する。これとともに、上記再送回数制御部150bは、移動速度取得部350aにより取得した通信相手(端末)の移動速度が所定速度未満(表2の場合、1km/h未満)の場合には、前記第1の周波数での再送が停止されるように再送回数を0とするように制御する。 The retransmission number control unit 150b controls the number of retransmissions at a preset first frequency according to the movement speed of the communication partner (terminal) acquired by the movement speed acquisition unit 350a. Specifically, the number of retransmissions to be fixedly assigned is set based on the relationship between the movement speed of the communication partner (terminal) and the number of retransmissions shown in Table 2. At that time, as shown in Table 2, the retransmission number control unit 150b increases the number of retransmissions as the movement speed of the communication partner (terminal) acquired by the movement speed acquisition unit 350a increases, and the movement speed acquisition unit 350a Control is performed so that the number of retransmissions decreases as the movement speed of the acquired communication partner (terminal) decreases. At the same time, when the movement speed of the communication partner (terminal) acquired by the movement speed acquisition section 350a is less than a predetermined speed (in the case of Table 2, less than 1 km / h), the number-of-retransmissions control section 150b Control is performed so that the number of retransmissions is zero so that retransmissions at a certain frequency are stopped.
 上記再送制御部150cは、再送回数制御部150bにより制御した再送回数だけ前記第1の周波数にて再送を行うとともに、再送回数制御部150bにより制御した再送回数を超える再送については、通信相手(端末)との間で任意に設定した第2の周波数にて前記再送を行うように制御する。なお、この場合、第2の周波数は、第1の周波数と異なる周波数となることも、場合によっては、第1の周波数と同じ周波数となることもある。また、上記再送制御部150cは、再送回数制御部150bにより前記第1の周波数での再送が停止するように再送回数を0とするように制御された場合には、前記第2の周波数にて全ての再送を行う(ダイナミック割当で全ての再送を行う)。 The retransmission control unit 150c performs retransmission at the first frequency for the number of retransmissions controlled by the retransmission number control unit 150b, and for a retransmission exceeding the number of retransmissions controlled by the retransmission number control unit 150b, the communication partner (terminal ) To perform the retransmission at a second frequency arbitrarily set between In this case, the second frequency may be different from the first frequency or may be the same frequency as the first frequency in some cases. In addition, when the retransmission control unit 150c is controlled by the retransmission number control unit 150b to set the number of retransmissions to 0 so that retransmission at the first frequency stops, the retransmission control unit 150c uses the second frequency. Perform all retransmissions (perform all retransmissions with dynamic allocation).
 上記入力部160は、情報を入力したり、表示部170の表示画面に表示された選択肢の何れかを選択する際に使用するものであり、各種キーおよび各種ボタンを有している。なお、入力部160、表示部170は、必要に応じて省略することもできる。 The input unit 160 is used when inputting information or selecting one of the options displayed on the display screen of the display unit 170, and has various keys and various buttons. Note that the input unit 160 and the display unit 170 may be omitted as necessary.
 上記システム記憶部180は、RAM等のメモリによって構成され、アプリケーションプログラムや一時的なデータを保存する。上記移動速度情報記憶部380aは、上記移動速度取得部350aが取得した通信相手(端末)の移動速度を、「超低速」、「低速」、「中速」、「高速」、・・の何れか1つの移動速度情報として記憶する。 The system storage unit 180 is configured by a memory such as a RAM, and stores application programs and temporary data. The moving speed information storage unit 380a sets the moving speed of the communication partner (terminal) acquired by the moving speed acquisition unit 350a to any one of “ultra low speed”, “low speed”, “medium speed”, “high speed”,. Or stored as one piece of moving speed information.
 次に、第2実施の形態に係る無線通信装置(基地局)300と通信を行う通信相手(端末)200について説明する。第2実施の形態に係る無線通信装置(基地局)300は、その通信相手(端末)200として、「当該端末の移動速度を周期的に取得(検出)する機能を有する移動速度取得部」を備える無線通信端末と通信を行う。具体的には、通信相手(端末)200は、以下に説明する2種類の移動速度検出方法の何れかを用いて、当該端末の移動速度を周期的に取得(検出)するように構成した無線通信端末とする。 Next, communication partner (terminal) 200 that communicates with radio communication apparatus (base station) 300 according to the second embodiment will be described. The wireless communication apparatus (base station) 300 according to the second embodiment has a “moving speed acquisition unit having a function of periodically acquiring (detecting) the moving speed of the terminal” as the communication partner (terminal) 200. It communicates with the wireless communication terminal provided. Specifically, the communication partner (terminal) 200 is a wireless device configured to periodically acquire (detect) the moving speed of the terminal using one of the two types of moving speed detection methods described below. A communication terminal.
[移動速度検出方法1:GPSにより取得した位置情報を使用する方法]
 GPSにより取得した位置情報を使用して、前回監視時の位置情報と今回監視時の位置情報とから移動距離を算出し、前回と今回の時間差から移動速度を検出(算出)する。例えば、北半球において、前回の監視時刻をt0(h)とし、今回の監視時刻をt1(h)とし、t0のときの経度・緯度をx0・y0とし、t1のときの経度・緯度をx1・y1とする。このときの移動距離r(km)および移動速度v(km/h)は、それぞれ、次式(1),(2)で求められる。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
[Movement speed detection method 1: Method of using position information acquired by GPS]
Using the position information acquired by GPS, the moving distance is calculated from the position information at the previous monitoring time and the position information at the current monitoring time, and the moving speed is detected (calculated) from the time difference between the previous time and the current time. For example, in the Northern Hemisphere, the previous monitoring time is t0 (h), the current monitoring time is t1 (h), the longitude / latitude at t0 is x0 · y0, and the longitude / latitude at t1 is x1 · h. Let y1. The moving distance r (km) and moving speed v (km / h) at this time are obtained by the following equations (1) and (2), respectively.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
[移動速度検出方法2:通信相手の基地局または周辺基地局の周波数のドップラー偏移を使用する方法]
 一般に、静止状態の基地局に向かって速度vで移動する移動体は、基地局から発信している無線周波数fに対して、次式(3)のような周波数f’を観測する。
Figure JPOXMLDOC01-appb-M000005
 ここで、cは光速(電波の速度)とする。上記式(3)より、移動体の速度vは、次式(4)で求められる。
Figure JPOXMLDOC01-appb-M000006
[Moving speed detection method 2: Method using Doppler shift of frequency of base station or peripheral base station of communication partner]
In general, a mobile that moves at a speed v toward a base station in a stationary state observes a frequency f ′ represented by the following equation (3) with respect to a radio frequency f transmitted from the base station.
Figure JPOXMLDOC01-appb-M000005
Here, c is the speed of light (the speed of radio waves). From the above equation (3), the velocity v of the moving body is obtained by the following equation (4).
Figure JPOXMLDOC01-appb-M000006
 上記移動体の速度vは、移動体が基地局方向に向かって移動している場合の速度であるから、移動体が基地局方向と平均角度θだけそれた方向へ移動する場合は、次式(5)の関係になる。
Figure JPOXMLDOC01-appb-M000007
 ここで、通信相手の基地局の周波数のみを観測する場合には、θの値が確定できないため、0≦θ≦π/2の中央値であるθ=π/4であると仮定して、次式(6)で移動速度vを算出する。
Figure JPOXMLDOC01-appb-M000008
The speed v of the moving body is a speed when the moving body is moving toward the base station direction. Therefore, when the moving body moves in a direction deviating from the base station direction by an average angle θ, The relationship (5) is established.
Figure JPOXMLDOC01-appb-M000007
Here, when only observing the frequency of the communication partner base station, since the value of θ cannot be determined, it is assumed that θ = π / 4, which is the median of 0 ≦ θ ≦ π / 2, The moving speed v is calculated by the following equation (6).
Figure JPOXMLDOC01-appb-M000008
[通信相手(端末)の移動速度の取得のフローチャート]
 図6は、第2実施の形態に係る無線通信装置(基地局)300が実行する無線通信方法で用いる移動速度を、通信相手(端末)200において取得する手順を例示するフローチャートである。この図6の移動速度の取得手順は、移動速度監視開始時に起動される。
[Flowchart for obtaining movement speed of communication partner (terminal)]
FIG. 6 is a flowchart illustrating a procedure in which the communication partner (terminal) 200 acquires the moving speed used in the wireless communication method executed by the wireless communication apparatus (base station) 300 according to the second embodiment. The moving speed acquisition procedure of FIG. 6 is started at the start of moving speed monitoring.
 まず、ステップS01では、通信相手(端末)200は、当該端末の移動速度を、上記移動速度検出方法1または上記移動速度検出方法2によって取得する。このステップS41において取得する移動速度は、当該端末が圏内であれば、ステップS42のYes、ステップS43、ステップS44のYesを経て、再びステップS41、のループを繰り返す。これにより、当該端末が圏内であれば、取得する移動速度は、移動速度監視タイマのタイマ値(例えば10秒とする)により定まる所定周期毎(10秒毎)に更新される。なお、当該端末が圏外になった場合には、通信が途切れるため、移動速度の取得(監視)を終了する。 First, in step S01, the communication partner (terminal) 200 acquires the moving speed of the terminal by the moving speed detection method 1 or the moving speed detection method 2. As for the movement speed acquired in step S41, if the terminal is within the range, the loop of step S41 is repeated again through step S42, step S43, and step S44. Thus, if the terminal is within range, the acquired moving speed is updated every predetermined period (every 10 seconds) determined by the timer value (for example, 10 seconds) of the moving speed monitoring timer. Note that when the terminal is out of service, communication is interrupted, and thus the acquisition (monitoring) of the moving speed is terminated.
[割当方式決定シーケンス例]
 図7は、第2実施の形態に係る無線通信装置(基地局)が実行する無線通信方法において、無線通信装置(基地局)が通信相手(端末)から当該端末の移動速度を取得して、再送回数等を通信相手(端末)に指示する、割当方式決定シーケンスを例示する図である。
[Example of allocation method determination sequence]
FIG. 7 shows a wireless communication method executed by the wireless communication apparatus (base station) according to the second embodiment, where the wireless communication apparatus (base station) acquires the moving speed of the terminal from the communication partner (terminal), It is a figure which illustrates the allocation system determination sequence which instruct | indicates the frequency | count of resending etc. to the communicating party (terminal).
 図7に示すように、通信相手(端末)200が当該端末の移動速度を周期的に取得(検出)している間に、通信相手(端末)200と無線通信装置(基地局)300との間で無線アクセスが開始されたとする。このように、通信相手(端末)200と無線通信装置(基地局)300との間で無線アクセスが開始されると、通信相手(端末)200は、取得した当該端末の移動速度を無線通信装置(基地局)300に通知する。この当該端末の移動速度の通知を受信した無線通信装置(基地局)300は、予め設定された第1の周波数での再送回数や割当方式(固定割当、ダイナミック割当)等を、通信相手(端末)200に指示する。 As shown in FIG. 7, while the communication partner (terminal) 200 periodically acquires (detects) the moving speed of the terminal, the communication partner (terminal) 200 and the wireless communication device (base station) 300 Suppose that wireless access is started. As described above, when wireless access is started between the communication partner (terminal) 200 and the wireless communication device (base station) 300, the communication partner (terminal) 200 determines the obtained movement speed of the terminal as the wireless communication device. (Base station) 300 is notified. The wireless communication apparatus (base station) 300 that has received the notification of the moving speed of the terminal determines the number of retransmissions at the first frequency set in advance, the allocation method (fixed allocation, dynamic allocation), etc. ) 200 is instructed.
[割当方式決定手順のフローチャート]
 図8は、第2実施の形態に係る無線通信装置(基地局)300が実行する無線通信方法における割当方式決定手順を例示するフローチャートである。この図8の割当方式決定手順は、通信開始時(無線アクセス開始時)に起動される。
[Flow chart of allocation method determination procedure]
FIG. 8 is a flowchart illustrating an allocation method determination procedure in the wireless communication method executed by wireless communication apparatus (base station) 300 according to the second embodiment. The allocation method determination procedure in FIG. 8 is activated at the start of communication (at the start of wireless access).
 まず、ステップS51では、移動速度取得部350aが、通信相手(端末)の移動速度を取得する。次のステップS52では、再送回数制御部150bは、通信相手(端末)に対するデータの初回の送信が固定割当であるか否かを判定する。ステップS52にて、初回の送信が固定割当でない場合、ステップS53に進んで、再送回数制御部150bは、初回の送信および再送を含む全ての送信をダイナミック割当する。一方、ステップS52にて、初回の送信が固定割当である場合は、ステップS54に進む。なお、ステップS52にて、通信相手(端末)に対するデータの初回の送信が固定割当であるか否かの判定は、例えばQoS(Quality of Service)に基づいて行う。 First, in step S51, the moving speed acquisition unit 350a acquires the moving speed of the communication partner (terminal). In the next step S52, the retransmission number control unit 150b determines whether or not the first transmission of data to the communication partner (terminal) is fixed allocation. In step S52, if the first transmission is not fixed allocation, the process proceeds to step S53, and retransmission number control section 150b dynamically allocates all transmissions including the first transmission and retransmission. On the other hand, if the first transmission is fixed assignment in step S52, the process proceeds to step S54. In step S52, whether or not the initial transmission of data to the communication partner (terminal) is fixed allocation is determined based on, for example, QoS (QualityQof Service).
 ステップS54では、再送回数制御部150bは、ステップS51で取得した通信相手(端末)の移動速度に応じて、予め設定された第1の周波数での再送回数を固定割当するとともに、該再送回数を超える再送を第2の周波数にダイナミック割当する。すなわち、ステップS54では、再送回数制御部150bは、まず、ステップS51で取得した通信相手(端末)の移動速度が「超低速」、「低速」、「中速」、「高速」、・・の何れであるかを判定する。それから、この判定結果に応じて、移動速度が「超低速」であればステップS55に進み、「低速」であればステップS56に進み、「中速」であればステップS57に進み、「高速」であればステップS58に進み、再送回数制御部150bは各ステップの処理を行う。 In step S54, the retransmission number control unit 150b assigns a fixed number of retransmissions at a preset first frequency according to the movement speed of the communication partner (terminal) acquired in step S51, and sets the number of retransmissions. Dynamically assign more retransmissions to the second frequency. That is, in step S54, the retransmission number control unit 150b first sets the movement speed of the communication partner (terminal) acquired in step S51 to “ultra low speed”, “low speed”, “medium speed”, “high speed”,. Which one is determined. Then, according to the determination result, if the moving speed is “ultra low speed”, the process proceeds to step S55, if “low speed”, the process proceeds to step S56, and if “middle speed”, the process proceeds to step S57. If so, the process proceeds to step S58, and the retransmission number control unit 150b performs the process of each step.
 最高の通信品質が期待できる「超低速」の場合に進むステップS55では、通信品質が極めて良好な環境であるため再送が発生する確率が低くなって空リソースの発生が減り、全ての再送をダイナミック割当した方が、効率の良い通信を行うことができる。このことを考慮して、再送回数制御部150bは、予め設定された第1の周波数での再送(固定割当)が停止されるように再送回数を0に制御して、全ての再送を第2の周波数にダイナミック割当する。2番目に高い通信品質が期待できる「低速」の場合に進むステップS56では、再送回数制御部150bは、固定割当の再送回数を1に制御して、再送1回を固定割当し、再送2回目以降をダイナミック割当する。通信品質が劣化した環境となる可能性がある「中速」の場合に進むステップS57では、再送回数制御部150bは、固定割当の再送回数2に制御して、再送2回を固定割当し、再送3回目以降をダイナミック割当する。通信品質が劣化した環境となる可能性が高い「高速」の場合に進むステップS58では、再送回数制御部150bは、固定割当の再送回数を3に制御して、再送3回を固定割当し、再送4回目以降をダイナミック割当する。 In step S55, which proceeds to "ultra-low speed" where the highest communication quality can be expected, the communication quality is extremely good, so the probability of retransmission occurring is reduced, the generation of empty resources is reduced, and all retransmissions are performed dynamically. The assigned one can perform efficient communication. In consideration of this, the retransmission number control unit 150b controls the number of retransmissions to 0 so that retransmission (fixed allocation) at a preset first frequency is stopped, and all retransmissions are second. Dynamic allocation to the frequency of In step S56, which proceeds in the case of “low speed” in which the second highest communication quality can be expected, the retransmission number control unit 150b controls the number of retransmissions for fixed allocation to 1, performs fixed allocation for one retransmission, and performs the second retransmission. Dynamically allocate the rest. In step S57, which proceeds in the case of “medium speed” where there is a possibility that the communication quality may be deteriorated, the retransmission number control unit 150b controls the fixed number of retransmissions to 2 and assigns the two retransmissions fixedly, Dynamic allocation is performed after the third retransmission. In step S58, which proceeds in the case of “high speed” where there is a high possibility that the communication quality is deteriorated, the retransmission number control unit 150b controls the fixed allocation retransmission number to 3, and allocates 3 retransmissions fixedly, Dynamic allocation is performed after the fourth retransmission.
 図9は、図8にて説明した割当方式決定手順の動作例を示す図である。この図9は、「再送2回までを固定割当し、その後の再送をダイナミック割当するスケジューリング例における動作例」を示している。図9において、図8のステップS57に対応する最初の送信期間には、初回の送信後に通信相手に対する固定割当によるデータの再送が2回行われた後、ダイナミック割当によるデータの再送が1回行われている。このため、再送がない空リソースは発生せず、かつ、ダイナミック割当によるデータの再送も1回になる。したがって、ダイナミック割当を行う際のオーバーヘッドは、図12に示す従来例2においては2回分であったが、図9においては1回分に減少している。また、図9において、図8のステップS57に対応する次の送信期間には、初回の送信後に通信相手に対する固定割当によるデータの再送が1回だけ行われている。このため、図9においては、再送がない空リソースが1回分生じているが、図11に示した従来例1における3回分と比べると、空リソースは大幅に減少している。 FIG. 9 is a diagram illustrating an operation example of the allocation method determination procedure described in FIG. FIG. 9 shows an “operation example in a scheduling example in which fixed retransmissions up to two retransmissions are allocated and dynamic retransmissions are subsequently allocated”. In FIG. 9, in the first transmission period corresponding to step S57 in FIG. 8, after the first transmission, data retransmission by fixed allocation to the communication partner is performed twice, and then data retransmission by dynamic allocation is performed once. It has been broken. For this reason, there is no empty resource without retransmission, and data is retransmitted once by dynamic allocation. Therefore, the overhead for performing dynamic allocation is two times in the conventional example 2 shown in FIG. 12, but is reduced to one time in FIG. In FIG. 9, in the next transmission period corresponding to step S <b> 57 in FIG. 8, data is retransmitted only once by fixed allocation to the communication partner after the first transmission. For this reason, in FIG. 9, empty resources without retransmission are generated once, but the empty resources are greatly reduced as compared with the case of three times in the conventional example 1 shown in FIG.
 第2実施の形態に係る無線通信装置(基地局)および当該無線通信装置(基地局)が実行する無線通信方法においては、図8の割当方式決定手順を行う。すなわち、通信開始時に、通信相手(端末)の移動速度に応じて、通信相手(端末)の移動速度が高速になるほど再送回数が増えるように、また通信相手(端末)の移動速度が低速になるほど再送回数が減るように固定割当の再送回数を制御して、当該再送回数だけ予め設定された第1の周波数を利用して再送を行う。一方、前記再送回数を超える再送については、移動速度が低速になるほどダイナミック割当の再送回数が増えるように再送回数を制御して、当該再送回数だけ通信相手(端末)との間で任意に設定した第2の周波数にて再送を行うように制御する。このように、第2実施の形態においては、通信相手(端末)の移動速度の上昇に伴い通信品質が劣化するほど通信品質の程度に応じて再送を固定割当する回数を増やす。また、これとともに、第2実施の形態においては、通信相手(端末)の移動速度の低下に伴い通信品質が良好になるほど再送を固定割当する回数を減らして再送をダイナミック割当する回数を増やす。これにより、再送時の空リソースおよびダイナミック割当によるオーバーヘッドの双方を削減することができ、再送時の空リソースおよびダイナミック割当によるオーバーヘッドの双方を最適化して、周波数利用効率を向上させることができる。 In the wireless communication apparatus (base station) and the wireless communication method executed by the wireless communication apparatus (base station) according to the second embodiment, the allocation method determination procedure of FIG. 8 is performed. That is, at the start of communication, depending on the moving speed of the communication partner (terminal), the number of retransmissions increases as the moving speed of the communication partner (terminal) increases, and the moving speed of the communication partner (terminal) decreases. The number of retransmissions for fixed allocation is controlled so that the number of retransmissions is reduced, and retransmission is performed using the first frequency set in advance for the number of retransmissions. On the other hand, for retransmissions that exceed the number of retransmissions, the number of retransmissions is controlled so that the number of retransmissions for dynamic allocation increases as the movement speed decreases, and is arbitrarily set with the communication partner (terminal) for the number of retransmissions. Control is performed to perform retransmission at the second frequency. As described above, in the second embodiment, the number of times that retransmission is fixedly allocated is increased according to the degree of communication quality as the communication quality deteriorates as the moving speed of the communication partner (terminal) increases. At the same time, in the second embodiment, the number of times of fixed allocation of retransmissions is reduced and the number of times of dynamic allocation of retransmissions is increased as the communication quality improves as the moving speed of the communication partner (terminal) decreases. As a result, it is possible to reduce both empty resources during retransmission and overhead due to dynamic allocation, and it is possible to optimize both empty resources during retransmission and overhead due to dynamic allocation to improve frequency utilization efficiency.
[割当方式変更手順のフローチャート]
 図8の割当方式決定手順において割当方式を決定するタイミングは、通信開始時である。しかしながら、通信開始時に決定した割当方式は、その後の通信品質の変動に応じて、通信中(送信パケット発生時)も変更可能とすることが望ましい。
[Flow chart of allocation method change procedure]
The timing for determining the allocation method in the allocation method determination procedure of FIG. 8 is when communication is started. However, it is desirable that the allocation method determined at the start of communication can be changed during communication (when a transmission packet is generated) in accordance with the subsequent change in communication quality.
 図10は、第2実施の形態に係る無線通信装置(基地局)300が実行する無線通信方法における割当方式変更手順を例示するフローチャートである。この図10に示す割当方式変更手順は、図8の割当方式決定手順により決定した割当方式を、通信品質の変動に応じて変更するものであり、一定周期毎に実行する。 FIG. 10 is a flowchart illustrating an allocation method change procedure in the radio communication method executed by radio communication apparatus (base station) 300 according to the second embodiment. The allocation method change procedure shown in FIG. 10 is to change the allocation method determined by the allocation method determination procedure of FIG. 8 according to a change in communication quality, and is executed at regular intervals.
 上記割当方式変更手順においては、まず、ステップS61において、移動速度取得部350aが、通信相手(端末)の移動速度を取得する。次のステップS62では、再送回数制御部150bは、通信相手(端末)に対するデータの初回の送信が固定割当であるか否かを判定する。ステップS62にて、初回の送信が固定割当でない場合、ステップS63に進んで、再送回数制御部150bは、初回の送信および再送を含む全ての送信をダイナミック割当する。一方、ステップS62にて、初回の送信が固定割当である場合は、ステップS64に進む。なお、ステップS62にて、通信相手(端末)に対するデータの初回の送信が固定割当であるか否かの判定は、例えばQoS(Quality of Service)に基づいて行う。 In the allocation method changing procedure, first, in step S61, the movement speed acquisition unit 350a acquires the movement speed of the communication partner (terminal). In next step S62, the retransmission number control unit 150b determines whether or not the first transmission of data to the communication partner (terminal) is fixed allocation. If the first transmission is not fixed allocation in step S62, the process proceeds to step S63, and the retransmission number control unit 150b dynamically allocates all transmissions including the first transmission and retransmission. On the other hand, if the first transmission is fixed assignment in step S62, the process proceeds to step S64. In step S62, whether or not the initial transmission of data to the communication partner (terminal) is fixed allocation is determined based on, for example, QoS (QualityQof Service).
 ステップS64では、再送回数制御部150bは、ステップS61で通信品質取得部150aが取得した通信相手(端末)の移動速度に応じて、予め設定された第1の周波数での再送回数を固定割当するとともに、該再送回数を超える再送を第2の周波数にダイナミック割当する。すなわち、ステップS64では、再送回数制御部150bは、まず、ステップS61で取得した通信相手(端末)の移動速度が「超低速」、「低速」、「中速」、「高速」、・・の何れであるかを判定する。それから、この判定結果に応じて、移動速度が「超低速」であればステップS65に進み、「低速」であればステップS66に進み、「中速」であればステップS67に進み、「高速」であればステップS68に進む。 In step S64, the retransmission number control unit 150b fixedly allocates the number of retransmissions at the preset first frequency according to the moving speed of the communication partner (terminal) acquired by the communication quality acquisition unit 150a in step S61. At the same time, retransmissions exceeding the number of retransmissions are dynamically allocated to the second frequency. That is, in step S64, the retransmission number control unit 150b first sets the movement speed of the communication partner (terminal) acquired in step S61 to “ultra low speed”, “low speed”, “medium speed”, “high speed”,. Which one is determined. Then, according to the determination result, if the moving speed is “ultra low speed”, the process proceeds to step S65, if “low speed”, the process proceeds to step S66, and if “middle speed”, the process proceeds to step S67. If so, the process proceeds to step S68.
 最高の通信品質が期待できる「超低速」の場合に進むステップS65では、通信品質が極めて良好な環境であるため、再送が発生する確率が低くなって空リソースの発生が減り、全ての再送をダイナミック割当した方が、効率の良い通信を行うことができる。このことを考慮して、再送回数制御部150bは、予め設定された第1の周波数での再送(固定割当)が停止されるように再送回数を0に制御して、全ての再送を第2の周波数にダイナミック割当する。2番目に高い通信品質が期待できる「低速」の場合に進むステップS66では、再送回数制御部150bは、固定割当の再送回数を1に制御して、再送1回を固定割当し、再送2回目以降をダイナミック割当する。通信品質が劣化した環境となる可能性がある「中速」の場合に進むステップS67では、再送回数制御部150bは、固定割当の再送回数2に制御して、再送2回を固定割当し、再送3回目以降をダイナミック割当する。通信品質が劣化した環境となる可能性が高い「高速」の場合に進むステップS68では、再送回数制御部150bは、固定割当の再送回数を3に制御して、再送3回を固定割当し、再送4回目以降をダイナミック割当する。 In step S65, which proceeds to the “ultra-low speed” in which the highest communication quality can be expected, the communication quality is extremely good. Therefore, the probability that retransmission will occur is reduced, the generation of empty resources is reduced, and all retransmissions are performed. Dynamic allocation can perform efficient communication. In consideration of this, the retransmission number control unit 150b controls the number of retransmissions to 0 so that retransmission (fixed allocation) at a preset first frequency is stopped, and all retransmissions are second. Dynamic allocation to the frequency of In step S66, the process proceeds to “low speed” in which the second highest communication quality can be expected, the retransmission number control unit 150b controls the number of retransmissions for fixed allocation to 1, performs fixed allocation for one retransmission, and performs the second retransmission. Dynamically allocate the rest. In step S67, which proceeds in the case of “medium speed” where there is a possibility that the communication quality may be deteriorated, the retransmission number control unit 150b controls the fixed number of retransmissions to 2, and allocates two retransmissions fixedly, Dynamic allocation is performed after the third retransmission. In step S68, which proceeds in the case of “high speed” where there is a high possibility of becoming an environment in which communication quality has deteriorated, the retransmission number control unit 150b controls the number of retransmissions of fixed allocation to 3, and performs fixed allocation of 3 retransmissions, Dynamic allocation is performed after the fourth retransmission.
 次のステップS69では、再送回数制御部150bは、ステップS65,ステップS66、ステップS67またはステップS68で決定した割当方式が、現在の割当方式と一致しているか否かを判定する。ステップS69において、現在の割当方式と、先行するステップ(ステップS65,ステップS66,ステップS67またはステップS68)にて決定した割当方式とが一致している場合、ステップS70に進んで現在の割当方式を維持する。一方、ステップS69において、現在の割当方式と、先行するステップにて決定した割当方式とが不一致である場合、ステップS71に進んで、再送回数制御部150bは、割当方式を、ステップS65,ステップS66,ステップS67またはステップS68で決定した割当方式に変更する。なお、ステップS70またはステップS71の実行後は、ステップS61に戻って上記割当方式変更手順を繰り返す。このため、送信パケット発生時であれば、通信品質の変動に応じて割当方式が随時変更される。 In the next step S69, the retransmission number control unit 150b determines whether or not the allocation method determined in step S65, step S66, step S67, or step S68 matches the current allocation method. In step S69, if the current allocation method matches the allocation method determined in the preceding step (step S65, step S66, step S67 or step S68), the process proceeds to step S70 and the current allocation method is changed. maintain. On the other hand, if the current allocation method and the allocation method determined in the preceding step do not match in step S69, the process proceeds to step S71, and the retransmission number control unit 150b sets the allocation method to steps S65 and S66. , Change to the allocation method determined in step S67 or step S68. In addition, after execution of step S70 or step S71, it returns to step S61 and repeats the said allocation system change procedure. For this reason, when a transmission packet is generated, the allocation method is changed at any time according to a change in communication quality.
 第2実施の形態に係る無線通信装置(基地局)および当該無線通信装置(基地局)が実行する無線通信方法においては、図10の割当方式判定手順を行う。すなわち、通信開始時のみならず通信中においても、通信相手(端末)の移動速度に応じて、通信相手(端末)の移動速度が高速になるほど再送回数が増えるように、また通信相手(端末)の移動速度が低速になるほど再送回数が減るように固定割当の再送回数を制御して、当該再送回数だけ予め設定された第1の周波数を利用して再送を行う。一方、前記再送回数を超える再送については、移動速度が低速になるほどダイナミック割当の再送回数が増えるように再送回数を制御して、当該再送回数だけ通信相手(端末)との間で任意に設定した第2の周波数にて再送を行うように制御する。このように、第2実施の形態においては、通信相手(端末)の移動速度の上昇に伴い通信品質が劣化するほど通信品質の程度に応じて再送を固定割当する回数を増やす。また、これとともに、第2実施の形態においては、通信相手(端末)の移動速度の低下に伴い通信品質が良好になるほど再送を固定割当する回数を減らして再送をダイナミック割当する回数を増やす。これにより、再送時の空リソースおよびダイナミック割当によるオーバーヘッドの双方を削減することができ、再送時の空リソースおよびダイナミック割当によるオーバーヘッドの双方を最適化して、周波数利用効率を向上させることができる。 In the wireless communication apparatus (base station) and the wireless communication method executed by the wireless communication apparatus (base station) according to the second embodiment, the allocation method determination procedure of FIG. 10 is performed. In other words, not only at the start of communication but also during communication, the number of retransmissions increases as the moving speed of the communication partner (terminal) increases according to the moving speed of the communication partner (terminal). The number of retransmissions of fixed allocation is controlled so that the number of retransmissions decreases as the movement speed decreases, and retransmission is performed using the preset first frequency for the number of retransmissions. On the other hand, for retransmissions that exceed the number of retransmissions, the number of retransmissions is controlled so that the number of retransmissions for dynamic allocation increases as the movement speed decreases, and is arbitrarily set with the communication partner (terminal) for the number of retransmissions. Control is performed to perform retransmission at the second frequency. As described above, in the second embodiment, the number of times that retransmission is fixedly allocated is increased according to the degree of communication quality as the communication quality deteriorates as the moving speed of the communication partner (terminal) increases. At the same time, in the second embodiment, the number of times of fixed allocation of retransmissions is reduced and the number of times of dynamic allocation of retransmissions is increased as the communication quality improves as the moving speed of the communication partner (terminal) decreases. As a result, it is possible to reduce both empty resources during retransmission and overhead due to dynamic allocation, and it is possible to optimize both empty resources during retransmission and overhead due to dynamic allocation to improve frequency utilization efficiency.
 なお、上述した第2実施形態の無線通信装置(基地局)における割当方式決定手順および割当方式変更手順の概要は、次のようになる。すなわち、通信相手(端末)の移動速度に応じて、移動速度が速いほど再送回数が増え、移動速度が遅いほど再送回数が減るように固定割当の再送回数を制御し、前記再送回数を超える再送についてはダイナミック割当する。しかしながら、例えば、上述した第1実施の形態のような割当方式決定手順および割当方式変更手順を併用することもできる。すなわち、通信品質レベルに応じて、通信品質レベルが低いほど再送回数が増え、通信品質レベルが高いほど再送回数が減るように固定割当の再送回数を制御し、前記再送回数を超える再送についてはダイナミック割当する割当方式決定手順および割当方式変更手順を、本実施の形態と併用することもできる。 The outline of the allocation method determination procedure and the allocation method change procedure in the wireless communication apparatus (base station) of the second embodiment described above is as follows. That is, according to the movement speed of the communication partner (terminal), the number of retransmissions increases as the movement speed increases, and the number of retransmissions is fixed so that the number of retransmissions decreases as the movement speed decreases. Is dynamically allocated. However, for example, the allocation method determination procedure and the allocation method change procedure as in the first embodiment described above can be used in combination. That is, according to the communication quality level, the number of retransmissions is increased as the communication quality level is lower, and the number of retransmissions is fixed so that the number of retransmissions is decreased as the communication quality level is higher. The allocation scheme determination procedure to be allocated and the allocation scheme change procedure can be used in combination with the present embodiment.
 本発明によれば、通信相手との間の無線伝搬路の通信品質に応じて、予め設定された第1の周波数での再送回数を、例えば通信品質が高くなるほど再送回数が少なくなるように制御する。また、本発明によれば、前記再送回数を超える再送については、通信相手との間で任意に設定した第2の周波数にて再送を行うように制御する。本発明においては、例えば、通信品質が劣化するほど通信品質の程度に応じて固定割当する再送回数を増やし、通信品質が良好になるほど固定割当する再送回数を減らしてダイナミック割当する再送回数を増やす。したがって、再送時の空リソースおよびダイナミック割当によるオーバーヘッドの双方を削減することができる。また、再送時の空リソースおよびダイナミック割当によるオーバーヘッドの双方を最適化して、周波数利用効率を向上させることができる。 According to the present invention, the number of retransmissions at the preset first frequency is controlled according to the communication quality of the wireless propagation path with the communication partner so that the number of retransmissions decreases as the communication quality increases, for example. To do. In addition, according to the present invention, for retransmission exceeding the number of retransmissions, control is performed so that retransmission is performed at a second frequency arbitrarily set with a communication partner. In the present invention, for example, the number of retransmissions to be fixedly allocated is increased according to the degree of communication quality as the communication quality is deteriorated, and the number of retransmissions to be dynamically allocated is increased by decreasing the number of retransmissions to be fixedly allocated as the communication quality is improved. Therefore, it is possible to reduce both empty resources at the time of retransmission and overhead due to dynamic allocation. Further, it is possible to improve both frequency resources efficiency by optimizing both empty resources at the time of retransmission and overhead due to dynamic allocation.
 また、本発明によれば、通信相手の移動速度に応じて、予め設定された第1の周波数での再送回数を、例えば前記通信相手の移動速度が低速になるほど再送回数が少なくなるように制御する。さらに、本発明によれば、前記再送回数を超える再送については、通信相手との間で任意に設定した第2の周波数にて再送を行うように制御する。本発明においては、例えば、前記通信相手の移動速度が高速になるほど前記通信相手の移動速度に応じて固定割当する再送回数を増やし、前記通信相手の移動速度が低速になるほど固定割当する再送回数を減らしてダイナミック割当する再送回数を増やす。これにより、再送時の空リソースおよびダイナミック割当によるオーバーヘッドの双方を削減することができる。また、再送時の空リソースおよびダイナミック割当によるオーバーヘッドの双方を最適化して、周波数利用効率を向上させることができる。 Further, according to the present invention, the number of retransmissions at a preset first frequency is controlled according to the moving speed of the communication partner, for example, so that the number of retransmissions decreases as the moving speed of the communication partner decreases. To do. Furthermore, according to the present invention, for retransmission exceeding the number of retransmissions, control is performed so that retransmission is performed at a second frequency arbitrarily set with a communication partner. In the present invention, for example, as the moving speed of the communication partner increases, the number of retransmissions to be fixedly allocated is increased according to the moving speed of the communication partner, and the number of retransmissions to be fixedly allocated increases as the moving speed of the communication partner decreases. Reduce the number of retransmissions to be dynamically allocated. Thereby, it is possible to reduce both empty resources at the time of retransmission and overhead due to dynamic allocation. Further, it is possible to improve both frequency resources efficiency by optimizing both empty resources at the time of retransmission and overhead due to dynamic allocation.
100,300 無線通信装置(基地局)
110 アンテナ
130 RF部
140 RF制御部
140a 受信部
140b 送信部
150 システム制御部
150a 通信品質取得部
150b 再送回数制御部
150c 再送制御部
160 入力部
170 表示部
180 システム記憶部
180a 通信品質情報記憶部
200 通信相手(端末)
350a 移動速度取得部
380a 移動速度情報記憶部
 
 
100,300 Wireless communication device (base station)
110 antenna 130 RF unit 140 RF control unit 140a reception unit 140b transmission unit 150 system control unit 150a communication quality acquisition unit 150b retransmission count control unit 150c retransmission control unit 160 input unit 170 display unit 180 system storage unit 180a communication quality information storage unit 200 Communication partner (terminal)
350a Moving speed acquisition unit 380a Moving speed information storage unit

Claims (9)

  1.  通信相手に対するデータの再送時には、予め設定された周波数を利用して前記再送を行う無線通信装置であって、
     前記通信相手との間の無線伝搬路の通信品質を取得する通信品質取得部と、
     前記通信品質取得部により取得した通信品質に応じて、予め設定された第1の周波数での再送回数を制御する再送回数制御部と、
     前記再送回数制御部により制御した再送回数を超える再送については、前記通信相手との間で設定した第2の周波数にて前記再送を行うように制御する再送制御部と、
     を備えることを特徴とする無線通信装置。
    When retransmitting data to a communication partner, a wireless communication device that performs the retransmission using a preset frequency,
    A communication quality acquisition unit for acquiring communication quality of a radio propagation path between the communication partners;
    In accordance with the communication quality acquired by the communication quality acquisition unit, a retransmission number control unit that controls the number of retransmissions at a preset first frequency;
    For retransmission exceeding the number of retransmissions controlled by the retransmission number control unit, a retransmission control unit that controls to perform the retransmission at the second frequency set with the communication partner;
    A wireless communication apparatus comprising:
  2.  前記再送回数制御部は、前記通信品質取得部により取得した通信品質が高くなるほど前記再送回数が少なくなるように制御することを特徴とする請求項1に記載の無線通信装置。 The wireless communication apparatus according to claim 1, wherein the retransmission number control unit controls the number of retransmissions to decrease as the communication quality acquired by the communication quality acquisition unit increases.
  3.  前記再送回数制御部は、前記通信品質取得部により取得した通信品質が所定通信品質を超える場合には、前記第1の周波数での再送が停止されるように前記再送回数を制御することを特徴とする請求項1または2に記載の無線通信装置。 The retransmission number control unit controls the number of retransmissions so that retransmission at the first frequency is stopped when the communication quality acquired by the communication quality acquisition unit exceeds a predetermined communication quality. The wireless communication apparatus according to claim 1 or 2.
  4.  通信相手に対するデータの再送時には、予め設定された周波数を利用して前記再送を行う無線通信方法であって、
     前記通信相手との間の無線伝搬路の通信品質を取得する通信品質取得ステップと、
     前記通信品質取得ステップにより取得した通信品質に応じて、予め設定された第1の周波数での再送回数を制御する再送回数制御ステップと、
     前記再送回数制御ステップにより制御した再送回数を超える再送については、前記通信相手との間で設定した第2の周波数にて前記再送を行うように制御する再送制御ステップと、
     を行うことを特徴とする無線通信方法。
    When retransmitting data to a communication partner, a wireless communication method for performing the retransmission using a preset frequency,
    A communication quality acquisition step of acquiring communication quality of a radio propagation path between the communication partners;
    A retransmission count control step for controlling the number of retransmissions at a preset first frequency according to the communication quality acquired in the communication quality acquisition step;
    For retransmission exceeding the number of retransmissions controlled in the retransmission number control step, a retransmission control step for controlling to perform the retransmission at a second frequency set with the communication partner;
    A wireless communication method.
  5.  通信相手に対するデータの再送時には、予め設定された周波数を利用して前記再送を行う無線通信装置であって、
     前記通信相手の移動速度を取得する移動速度取得部と、
     前記移動速度取得部により取得した前記通信相手の移動速度に応じて、予め設定された第1の周波数での再送回数を制御する再送回数制御部と、
     前記再送回数制御部により制御した再送回数を超える再送については、前記通信相手との間で設定した第2の周波数にて前記再送を行うように制御する再送制御部と、
     を備えることを特徴とする無線通信装置。
    When retransmitting data to a communication partner, a wireless communication device that performs the retransmission using a preset frequency,
    A moving speed acquisition unit that acquires the moving speed of the communication partner;
    A retransmission number control unit that controls the number of retransmissions at a preset first frequency according to the moving speed of the communication partner acquired by the moving speed acquisition unit;
    For retransmission exceeding the number of retransmissions controlled by the retransmission number control unit, a retransmission control unit that controls to perform the retransmission at the second frequency set with the communication partner;
    A wireless communication apparatus comprising:
  6.  前記再送回数制御部は、前記移動速度取得部により取得した前記通信相手の移動速度が低速になるほど前記再送回数が少なくなるように制御することを特徴とする請求項5に記載の無線通信装置。 The wireless communication apparatus according to claim 5, wherein the retransmission number control unit controls the number of retransmissions to decrease as the movement speed of the communication partner acquired by the movement speed acquisition unit decreases.
  7.  前記再送回数制御部は、前記移動速度取得部により取得した前記通信相手の移動速度が所定速度未満の場合には、前記第1の周波数での再送が停止されるように前記再送回数を制御することを特徴とする請求項5または6に記載の無線通信装置。 The retransmission number control unit controls the number of retransmissions so that retransmission at the first frequency is stopped when the movement speed of the communication partner acquired by the movement speed acquisition unit is less than a predetermined speed. The wireless communication apparatus according to claim 5, wherein the wireless communication apparatus is a wireless communication apparatus.
  8.  前記移動速度取得部は、前記通信相手が測定した当該通信相手の移動速度を通知されることにより、前記通信相手の移動速度を取得することを特徴とする請求項5~7の何れか1項に記載の無線通信装置。 8. The moving speed acquisition unit according to claim 5, wherein the moving speed of the communication partner is acquired by being notified of the moving speed of the communication partner measured by the communication partner. A wireless communication device according to 1.
  9.  通信相手に対するデータの再送時には、予め設定された周波数を利用して前記再送を行う無線通信方法であって、
     前記通信相手の移動速度を取得する移動速度取得ステップと、
     前記移動速度取得ステップにより取得した前記通信相手の移動速度に応じて、予め設定された第1の周波数での再送回数を制御する再送回数制御ステップと、
     前記再送回数制御ステップにより制御した再送回数を超える再送については、前記通信相手との間で設定した第2の周波数にて前記再送を行うように制御する再送制御ステップと、
     を行うことを特徴とする無線通信方法。
     
     
     
    When retransmitting data to a communication partner, a wireless communication method for performing the retransmission using a preset frequency,
    A moving speed acquisition step of acquiring the moving speed of the communication partner;
    A retransmission number control step for controlling the number of retransmissions at a preset first frequency according to the movement speed of the communication partner acquired in the movement speed acquisition step;
    For retransmission exceeding the number of retransmissions controlled in the retransmission number control step, a retransmission control step for controlling to perform the retransmission at a second frequency set with the communication partner;
    A wireless communication method.


PCT/JP2009/059893 2008-05-29 2009-05-29 Radio communication device and radio communication method WO2009145315A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/994,826 US20110076938A1 (en) 2008-05-29 2009-05-29 Wireless communication apparatus and wireless communication method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008140854A JP2009290544A (en) 2008-05-29 2008-05-29 Radio communication device and radio communication method
JP2008-140854 2008-05-29
JP2008-140747 2008-05-29
JP2008140747A JP2009290535A (en) 2008-05-29 2008-05-29 Radio communication device and radio communication method

Publications (1)

Publication Number Publication Date
WO2009145315A1 true WO2009145315A1 (en) 2009-12-03

Family

ID=41377184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/059893 WO2009145315A1 (en) 2008-05-29 2009-05-29 Radio communication device and radio communication method

Country Status (3)

Country Link
US (1) US20110076938A1 (en)
KR (1) KR20110009195A (en)
WO (1) WO2009145315A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6036841B2 (en) * 2012-10-31 2016-11-30 富士通株式会社 COMMUNICATION CONTROL METHOD, NETWORK SYSTEM, AND COMMUNICATION DEVICE
CN104796931B (en) * 2014-01-08 2018-06-12 财团法人资讯工业策进会 Radio Network System and its base station bus connection method
US10644848B2 (en) 2015-08-13 2020-05-05 Electronics And Telecommunications Research Institute Operation method of communication node supporting direct communication in network
JP2020102826A (en) * 2018-12-25 2020-07-02 株式会社デンソー Communication terminal device and base station device
JP7318745B2 (en) * 2020-01-23 2023-08-01 日本電信電話株式会社 Optimization engine, optimization method, and program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002325074A (en) * 2001-04-25 2002-11-08 Matsushita Electric Ind Co Ltd Radio communication equipment and method therefor
JP2003152691A (en) * 2001-08-31 2003-05-23 Matsushita Electric Ind Co Ltd Transmission/reception apparatus and transmission/ reception method
JP2006086879A (en) * 2004-09-16 2006-03-30 Fujitsu Ten Ltd Data communication unit
JP2007142880A (en) * 2005-11-18 2007-06-07 Kyocera Corp Data retransmission control method, system and data retransmission control device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4284773B2 (en) * 1999-09-07 2009-06-24 ソニー株式会社 Transmission device, reception device, communication system, transmission method, and communication method
EP1845636A4 (en) * 2005-02-03 2012-03-14 Fujitsu Ltd Wireless communication system and wireless communication method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002325074A (en) * 2001-04-25 2002-11-08 Matsushita Electric Ind Co Ltd Radio communication equipment and method therefor
JP2003152691A (en) * 2001-08-31 2003-05-23 Matsushita Electric Ind Co Ltd Transmission/reception apparatus and transmission/ reception method
JP2006086879A (en) * 2004-09-16 2006-03-30 Fujitsu Ten Ltd Data communication unit
JP2007142880A (en) * 2005-11-18 2007-06-07 Kyocera Corp Data retransmission control method, system and data retransmission control device

Also Published As

Publication number Publication date
KR20110009195A (en) 2011-01-27
US20110076938A1 (en) 2011-03-31

Similar Documents

Publication Publication Date Title
US11937216B2 (en) Method and apparatus for determining data feedback resource
CN107615693B (en) Apparatus and method for link adaptation in uplink unlicensed random access
US9521585B2 (en) Method and apparatus for dynamic adjustment of uplink transmission time
US8325683B2 (en) Communication device
JP5515607B2 (en) Inter-cell interference reducing communication method and apparatus
EP2301265B1 (en) Recovery schemes for group switching procedures for multi-group frequency division duplex wireless networks
US20080280615A1 (en) Method and apparatus ensuring application quality of service
JP5054804B2 (en) Radio base station and radio resource allocation method
JP2009296537A (en) Control method of radio resource assignment request transmission period
CN109699085A (en) A kind of method and terminal device for transmitting data
WO2009145315A1 (en) Radio communication device and radio communication method
JP5423885B2 (en) Wireless communication system, base station, terminal, and wireless communication method
CN114402561B (en) Method and apparatus for selecting a time division duplex time slot format specific to a user equipment
US20080002602A1 (en) Reverse link overload power gain control
CN118317434A (en) Resource selection method and device and computer readable storage medium
US10251188B2 (en) Base station and radio resource dynamic allocation method for narrowband internet of thing system
US10212734B2 (en) Data transmission method, sender device, and receiver device
JP2009290535A (en) Radio communication device and radio communication method
JP5371696B2 (en) Radio base station, radio resource allocation method, and radio communication system
KR102301818B1 (en) Method and apparatus for controlling an uplink coverage in a wireless communication system
JP2009290544A (en) Radio communication device and radio communication method
WO2022027426A1 (en) Resource reporting method and apparatus and resource selection method and apparatus
JP2006042150A (en) Wireless communication terminal, program, and communication method
GB2624149A (en) Use of estimated arrival probability-related information to select target secondary nodes for early data forwarding for dual connectivity wireless communicati
CN117460050A (en) Resource allocation method and equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09754823

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12994826

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20107026701

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09754823

Country of ref document: EP

Kind code of ref document: A1