WO2009144989A1 - Vibration testing device - Google Patents

Vibration testing device Download PDF

Info

Publication number
WO2009144989A1
WO2009144989A1 PCT/JP2009/054615 JP2009054615W WO2009144989A1 WO 2009144989 A1 WO2009144989 A1 WO 2009144989A1 JP 2009054615 W JP2009054615 W JP 2009054615W WO 2009144989 A1 WO2009144989 A1 WO 2009144989A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
rail
axle
carriage
runner block
Prior art date
Application number
PCT/JP2009/054615
Other languages
French (fr)
Japanese (ja)
Inventor
繁 松本
博至 宮下
一宏 村内
正伸 長谷川
友隆 坂上
Original Assignee
国際計測器株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国際計測器株式会社 filed Critical 国際計測器株式会社
Priority to CN200980108738.7A priority Critical patent/CN101970999B/en
Priority to KR1020107017015A priority patent/KR101242523B1/en
Priority to JP2009550641A priority patent/JP4812879B2/en
Priority to TW098115246A priority patent/TWI461677B/en
Publication of WO2009144989A1 publication Critical patent/WO2009144989A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/02Vibration-testing by means of a shake table
    • G01M7/04Monodirectional test stands
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/08Railway vehicles

Definitions

  • the present invention relates to a vibration test apparatus that vibrates while applying a compressive static load in the vertical direction to an axle of a railway vehicle or a trailer.
  • the vibration test apparatus described in the above publication places a vehicle on a rail wheel, drives the rail wheel to rotate and rotates the wheel of the vehicle, and applies vibration to the bearing of the vehicle by exciting the rail wheel in the axle direction. Is added.
  • the conventional vibration test apparatus performs the vibration test in a state where the vehicle body is attached to the entire vehicle, that is, the carriage, so that a large space is required to perform the test.
  • the load of the weight of the vehicle body / the number of wheels is applied to each rail wheel, when the vehicle is vibrated in the vertical direction, a vibration output mechanism capable of withstanding this large load is required.
  • the present invention has been made to solve the above problems. That is, it is an object of the present invention to provide a vibration test apparatus that has a small space for performing a vibration test and can vibrate a vehicle bearing in the vertical direction without using a high-output vibration mechanism.
  • a vibration testing apparatus includes a bearing unit that rotatably supports an axle of a vehicle carriage, an axle drive mechanism that rotates the axle, and a bearing unit that extends in the vertical direction. It has an up-and-down direction vibration unit that vibrates, an air cylinder mechanism that applies an upward load to the bearing unit, and a reaction force frame that presses the carriage from above.
  • the vehicle carriage is sandwiched between the air cylinder mechanism and the reaction force frame. For this reason, by driving the air cylinder mechanism, a compressive static load corresponding to the weight of the vehicle body / the number of wheels can be applied to the bearing of the axle of the carriage. For this reason, the vibration test apparatus according to the embodiment of the present invention does not need to vibrate the entire vehicle, and only the carriage can be attached to the test apparatus for vibration. For this reason, the space for performing the vibration test can be significantly reduced.
  • the vertical vibration unit since the carriage is supported from below by the air cylinder mechanism, the vertical vibration unit may have a relatively small output enough to withstand the inertia when the carriage is vibrated in the vertical direction.
  • the bearing unit is configured to support the axle at the wheel mounting position of the axle, the state of the carriage when the carriage is attached to the vehicle can be accurately reproduced.
  • the bearing unit is configured to rotatably support the axle by a self-aligning roller bearing. With such a configuration, it is possible to rotatably support an axle on which a heavy load is applied in a direction orthogonal to the axle.
  • the vertical vibration unit vibrates the bearing unit in the vertical direction by a servo motor and a feed screw mechanism.
  • the bearing unit is fixed on the vibration table, and the vertical vibration unit vibrates the vibration table in the vertical direction.
  • an axle direction vibration unit that vibrates the vibration table in the axle direction of the carriage, first connection means for slidably connecting the vibration table to the vertical vibration unit in the axle direction, and the vibration table as the axle. It is preferable to further have a second connecting means that is slidably connected to the direction excitation unit in the vertical direction. According to such a configuration, the vibration table can be vibrated simultaneously in both the vertical direction and the axle direction without crosstalk.
  • the axle drive mechanism preferably includes a drive pulley that is rotationally driven by a motor, a driven pulley that is attached to the axle of the carriage, and an endless belt that is wound around the drive pulley and the driven pulley.
  • a drive pulley that is rotationally driven by a motor
  • a driven pulley that is attached to the axle of the carriage
  • an endless belt that is wound around the drive pulley and the driven pulley.
  • the reaction force frame applies a downward load to the carriage by abutting against the carriage on both sides in the axial direction of the transverse beam of the carriage and pressing the carriage from above.
  • the reaction force frame has an upright portion that is substantially upright and a pressing portion that is formed so as to extend in two directions substantially parallel to the side beam of the carriage at the upper end of the series portion. The carriage is pressed down in contact with the horizontal beam.
  • first and second connecting means are each provided with a rail, a linear guide mechanism provided with a runner block that engages with the rail and is slidable along the rail, and the table, the vertical excitation unit, and the axle direction acceleration unit. It is good also as a structure which connects a vibration unit so that sliding is possible.
  • the movement direction of the groove so that the runner block is formed in a recess surrounding the rail, a groove formed in the recess along the movement direction of the runner block, and formed inside the runner block, forming a closed circuit with the groove. It is preferable to include a retreat path connected to both ends, and a plurality of balls that circulate in a closed circuit and that come into contact with the rail when positioned in the groove. Furthermore, four closed circuits are formed in the runner block, and the balls arranged in the grooves of the two closed circuits of the four closed circuits are arranged in the radial direction of the guide mechanism including the rail and the runner block.
  • the ball having a contact angle of approximately ⁇ 45 degrees with respect to each other, and the balls disposed in the grooves of the other two closed circuits have a contact angle of approximately ⁇ 45 degrees with respect to the reverse radial direction of the linear guide mechanism, More preferably.
  • the linear guide mechanism having such a configuration can smoothly move the runner block along the rail even when a large load is applied in the radial direction, the reverse radial direction, and the lateral direction. And since the table and the vertical and axle direction vibration unit are connected via such a linear guide mechanism, the table does not rattle even when a heavy truck is vibrated, and the rails are smooth. Can be moved to.
  • the runner block includes a recess surrounding the rail, a plurality of rollers arranged so that its cylindrical surface is sandwiched between the rail and the recess, and attached to the recess.
  • a roller holding member that forms a rolling groove in which the roller rolls in the sliding direction of the runner block; and both ends of the rolling groove in the sliding direction that are formed inside the runner block and form a closed circuit with the rolling groove.
  • a plurality of rollers may circulate in a closed circuit.
  • four closed circuits are formed in the runner block, and the four rows of rollers arranged in each of the four closed circuits have their axes every 90 ° on a plane perpendicular to the rail axis. It is arranged as follows. More preferably, the diameter of the roller is smaller than the distance between the runner block and the rail in the rolling groove, and the difference is 1 micrometer or less.
  • the linear guide mechanism having such a configuration can smoothly move the runner block along the rail even when a heavy load is applied to the runner block. Moreover, each roller, the rail, and the runner block are in contact with each other with a relatively large contact area, and vibrations from the vertical and axle direction vibration units can be transmitted to the table without a response delay. For this reason, the table can be vibrated at a relatively high frequency of several hundred Hz or more.
  • a retainer for preventing contact between the two adjacent rollers is provided. More preferably, the retainer has a cylindrical concave surface that comes into contact with the cylindrical surface of the roller.
  • the rollers contact each other with a relatively small contact area, so that a large stress is applied to the contact portion.
  • the cylindrical surfaces of the roller and the retainer are in contact with each other with a relatively wide contact area, and the stress applied to the roller by this contact is kept relatively small. . Therefore, the roller can be prevented from being damaged or worn as compared with a linear guide mechanism having no retainer.
  • the linear guide mechanism used in the embodiment of the present invention is configured such that the rollers do not directly contact each other. When the rollers are in direct contact with each other, noise is generated. However, in the linear guide mechanism used in the embodiment of the present invention, such a noise can be suppressed because the retainer is disposed between the rollers.
  • the rail has a plurality of through holes arranged along the axial direction, and the rail is fixed to the table, the vertical vibration unit or the axle direction vibration unit through the bolts in each of the through holes, and the bolts are attached.
  • the interval is 50 to 80% of the width of the rail.
  • the bolt mounting interval is 60 to 70% of the rail width.
  • the rail is firmly fixed to the table, the vertical vibration unit or the axle vibration unit without bending.
  • 1 is a top view of a vibration test apparatus according to an embodiment of the present invention.
  • 1 is a front view of a vibration test apparatus according to an embodiment of the present invention.
  • 1 is a side view of a vibration test apparatus according to an embodiment of the present invention. It is the top view which notched the axle direction excitation unit of the vibration test apparatus which concerns on embodiment of this invention partially. It is the front view which notched some up-and-down direction vibration units of the vibration testing device concerning an embodiment of the invention.
  • the linear guide mechanism of the vibration test apparatus which concerns on embodiment of this invention, it is sectional drawing which cut
  • FIG. 10 is a sectional view taken along line II-II in FIG.
  • FIG. 10 is a cross-sectional view taken along the line III-III in FIG. 9. It is a perspective view of the roller of the runner block of the linear guide mechanism used in the modification of embodiment of this invention.
  • 1 is a block diagram of a vibration test apparatus according to an embodiment of the present invention.
  • 1, 2, and 3 are a top view, a front view, and a side view, respectively, of the cart vibration test apparatus of the present embodiment.
  • the vibration test apparatus 1 is an apparatus for exciting the railway vehicle carriage 100.
  • the carriage 100 includes a pair of axles 112, axle boxes 114 (FIGS. 2 and 3) attached to both ends of each axle, and a carriage frame 120.
  • the carriage frame 120 includes a pair of side beams 122 (FIGS. 1 and 2) extending in a direction substantially horizontal to the axle 112 (that is, a traveling direction of the vehicle), and a pair of lateral beams 124 extending in a direction substantially parallel to the axle 112. And have.
  • the lateral beam 124 is connected to the substantially central portion of the side beam 122 near both ends thereof.
  • the pair of cross beams 124 are connected to each other at both ends via a top plate 125 and a bottom plate 126 (FIG. 2).
  • An air spring mounting portion 127 is provided on the top plate 125.
  • the vehicle body of the vehicle is connected to the carriage 100 via the air spring at the air spring mounting portion 127.
  • the vibration test apparatus of the present embodiment the vehicle body is not attached.
  • the axle box 114 incorporates a double-row outward tapered roller bearing 116 (FIG. 3), and the axle 112 is rotatably supported by the axle box 114 via the bearing 116. Moreover, the upper surface of the axle box 114 and the edge part of the side beam 122 are connected via the coil spring 132 (FIG. 2, 3). That is, the carriage frame 120 is supported by the axle box 114 via the coil spring 132.
  • the cart 100 is a substantially rectangular body constituted by a pair of axles 112 and a pair of side beams 122 when viewed from above in FIG.
  • a pair of horizontal beams 124 are arranged in parallel with the axle 112 so as to straddle between the side beams 122.
  • the right axle 112 is not shown so that the vertical vibration unit 20, the axle direction vibration unit 30, and the like appear in the drawing.
  • the axle 112 is supported by the bearing unit 12 at the position of the wheel mounting portion 112a. That is, a total of four bearing units 12 are provided, two for each axle.
  • the bearing unit 12 includes a self-aligning roller bearing 12a, and rotatably supports the axle 112 to which a large load is applied in the vertical direction.
  • Each of the bearing units 12 is fixed on the vibration table 14. Further, a load sensor 16 is provided between the bearing unit 12 and the vibration table 14, and the magnitude of the load along the vertical direction, the axle direction, and the vehicle traveling direction applied to the carriage 100 can be measured.
  • each axle 112 two on one end side (lower side in FIG. 1) of each axle 112 are vertically excited units that vibrate the vibration table 14 in the vertical direction. 20 and an axle direction excitation unit 30 for exciting the vibration table 14 in the axle direction. Only two vertical vibration units 20 are provided on the two vibration tables on the other end side (upper side in FIG. 1) of each axle 112.
  • FIG. 4 is an enlarged top view of the axle-direction excitation unit 30 of the present embodiment.
  • the axle direction vibration unit 30 includes a fixed frame 31, a servo motor 32, a ball screw 33, a coupling 34, a bearing portion 35, and a ball nut 37.
  • the coupling 34 connects the drive shaft 32 a of the servo motor 32 and the ball screw 33.
  • the bearing portion 35 is fixed to a bearing support plate 31b that is welded so as to extend in the vertical direction from the upper surface plate 31a of the fixed frame, and supports the ball screw 33 rotatably.
  • the ball nut 37 engages with the ball screw 33 and is supported so as not to move around its axis.
  • the servo motor 32 when the servo motor 32 is driven, the ball screw rotates and the ball nut 33 advances and retreats in the axial direction (that is, in the axle direction).
  • the movement of the ball nut 37 is transmitted to the vibration table 14 through a coupling mechanism including the rail 44 and the runner block 46, whereby the vibration table 14 is driven in the axle direction.
  • the vibration table 14 can be vibrated in the axle direction with a desired amplitude and cycle.
  • a motor support plate 31c extending in the vertical direction is welded to the upper surface of the upper surface plate 31a of the fixed frame 31.
  • the motor support plate 31c is provided so as to be substantially perpendicular to the axial direction of the servo motor 32, and the servo motor 32 is cantilevered on one surface thereof (a surface distal to the vibration table 14).
  • the motor support plate 33c is provided with an opening 31d, and the drive shaft 32a of the servo motor 32 passes through the opening 31d and is connected to the ball screw 33 on the other surface side of the motor support plate 31c.
  • ribs 31e are provided at corners formed by the upper surface plate 31a and the motor support plate 31c.
  • the bearing portion 35 has a pair of angular ball bearings 35a and 35b combined in a front combination.
  • the angular ball bearings 35a and 35b are accommodated in the hollow portion of the bearing support plate 31b.
  • a bearing pressing plate 35c is provided on one surface of the angular ball bearing 35b (in a direction proximal to the vibration table 14), and the bearing pressing plate 35c is fastened to the bearing support plate 31b using a bolt. As a result, the angular ball bearing 35 b is pushed in the direction toward the servo motor 32.
  • a threaded portion 33a is formed on a cylindrical surface on the side proximal to the coupling 34, and a collar 35d having a female screw formed on the inner periphery is attached to the threaded portion 33a. It is supposed to be.
  • the angular ball bearing 35 a is pushed in a direction toward the ball nut 37.
  • the two are in close contact with each other, and a suitable preload is applied to the bearings 35a and 35b.
  • the connecting portion 40 includes a nut guide 42, a pair of rails 44, and a pair of runner blocks 46 attached to each of the rails 44.
  • the nut guide 42 is fixed to the ball nut 37.
  • a pair of rails 38 extending in the direction from the servo motor 32 toward the vibration table 14 are fixed to the upper surface plate 31 a of the fixed frame 31 side by side so as to sandwich the ball nut 37 and the nut guide 42.
  • a runner block mounting plate 43 that extends in the direction toward the rail 38 is fixed to the bottom surface of the nut guide 42.
  • a runner block 45 that engages with the rail 38 is fixed to the bottom surface of the runner block mounting plate 43, and the runner block mounting plate 43 and the nut guide 42 advance and retreat with respect to the vibration table 14 along the rail 38. It can slide only in the direction.
  • the rail 44 of the connecting portion 40 extends in the vertical direction, and the runner block 46 is movable along the rail 44 in the vertical direction.
  • the runner block 46 is fixed to the vibration table 14. For this reason, when the vibration table 14 is moved in the vertical direction by the vertical vibration unit 20 to be described later, the runner block 46 slides along the rail 44, so that a vertical load is applied to the axle direction vibration unit 30. In addition, bending stress due to such a load in the vertical direction is not applied to the ball screw 33.
  • the nut guide 42 can be advanced and retracted by driving the ball screw 33, but this displacement is transmitted to the vibration table 14 via the rail 44 and the runner block 46.
  • the vibration table 14 is moved in the axle direction by the axle direction vibration unit 30 without crosstalk. Can be vibrated.
  • the rail 44 extending in the vertical direction and the runner block that engages with the rail 44 are also provided between the vibration table 14 and the vertical vibration unit 20 as shown in FIG.
  • the vibration table 14 can be moved smoothly in the vertical direction.
  • Position detection means 39 is arranged on one side surface (right side in FIG. 4) 43a of the runner block mounting plate 43.
  • the position detection means 39 includes three proximity sensors 39a arranged at regular intervals in the direction from the servo motor 32 toward the vibration table 14, a detection plate 39b provided on the side surface 43a of the runner block mounting plate 43, and the proximity sensor 39a.
  • the proximity sensor 39a is an element that can detect whether any object is in proximity (for example, within 1 millimeter) in front of each proximity sensor. Since the side surface 43a of the runner block mounting plate 43 and the proximity sensor 39a are sufficiently separated from each other, the proximity sensor 39a can detect whether or not there is a detection plate 39b in front of each proximity sensor 39a.
  • a control means (not shown) of the vibration test apparatus 1 can feedback-control the servo motor 32 using, for example, the detection result of the proximity sensor 39a.
  • restriction blocks 47 arranged so as to sandwich the runner block mounting plate 43 from both sides of the nut guide 42 in the advancing and retreating direction.
  • the restriction block 47 is for restricting the movement range of the nut guide 42. That is, when the servo motor 32 is driven and the nut guide 42 is continuously moved toward the vibration table 14, finally, the restriction block 47 and the runner block mounting plate disposed on the proximal side with respect to the vibration table 14. 43 comes into contact with the nut guide 42 and the nut guide 42 cannot move in the direction toward the vibration table 14 any more.
  • FIG. 5 is a partially cutaway front view of the vertical vibration unit 20 of the present embodiment.
  • an air cylinder 72 (FIGS. 1 and 2), which will be described later, is omitted in FIG.
  • the vertical vibration unit 20 includes a fixed frame 21, a servo motor 22, a ball screw 23, a coupling 24, a bearing portion 25, and a ball nut 27.
  • the fixed frame 21 is welded to a base plate 21a fixed to a device base (not shown), a plurality of beams 21b welded so as to extend vertically from the base plate 21a, and a beam 21b so as to cover the top of the beam 21b.
  • a face plate 21c is provided.
  • a bearing support plate 21d for mounting the bearing portion 25 is fixed on the top plate 21c via a bolt (not shown).
  • the coupling 24 connects the drive shaft 22a of the servo motor 22 and the ball screw 23.
  • the bearing portion 25 is fixed to the above-described bearing support plate 21d, and supports the ball screw 23 so as to be rotatable.
  • the ball nut 27 engages with the ball screw 23 and is supported so as not to move around its axis. Therefore, when the servo motor 22 is driven, the ball screw 23 rotates and the ball nut 27 advances and retreats in the axial direction (that is, the vertical direction). The movement of the ball nut 27 is transmitted to the vibration table 14 so that the vibration table 14 is driven in the vertical direction. Then, by controlling the servo motor 22 so as to switch the rotation direction of the rotating shaft 22a of the servo motor 22 with a short cycle, the vibration table 14 can be vibrated in the vertical direction with a desired amplitude and cycle.
  • a motor support plate 21f extending in a substantially horizontal direction is fixed to the lower surface of the bearing support plate 21d via two connecting plates 21e.
  • a servo motor 22 is suspended and fixed on the lower surface of the motor support plate 21f.
  • the motor support plate 21f is provided with an opening 21g.
  • the drive shaft 22a of the servo motor 22 passes through the opening 21g and is connected to the ball screw 23 on the upper surface side of the motor support plate 21f.
  • the bearing portion 25 is provided so as to penetrate the bearing support plate 21d.
  • the structure of the bearing part 25 is the same as that of the bearing part 35 (FIG. 4) in the axle-axis direction excitation unit 30, description is abbreviate
  • the connecting portion 60 includes a movable frame 62, a pair of rails 64 extending in the axle direction, and a runner block 66 movable along the rails 64.
  • the movable frame 62 has a frame portion 62a fixed to the ball nut 27, a top plate 62b fixed to the upper end of the frame portion 62a, and a side beam 122 direction (left and right direction in the figure) of the top plate 62b downward from both edges.
  • the side wall 62c is fixed to extend.
  • the pair of rails 64 are arranged and fixed on the top surface of the top plate 62 b of the movable frame 62 in the direction of the side beam 122.
  • the runner block 66 that engages with the rail 64 is fixed to the lower surface of the table 14.
  • the vibration table 14 when the vibration table 14 is moved in the axle direction by the axle direction vibration unit 30, the runner block 66 slides along the rail 64, so that no load in the axle direction is applied to the vertical direction vibration unit 20. Such bending stress due to the load in the axle direction is not applied to the ball screw 23.
  • the ball nut 27 and the movable frame 62 can be advanced and retracted by driving the ball screw 23, but this displacement is transmitted to the vibration table 14 via the rail 64 and the runner block 66.
  • the vibration table 14 is moved in the vertical direction by the vertical vibration unit 20 without crosstalk. Can be vibrated.
  • two runner blocks 66 are provided, two for each rail 64. Since the relatively heavy weight of the vibration table 14 and the carriage are added to the movable frame 62, the number of the runner blocks 66 is set to four so that an excessive load is not applied to each runner block 66.
  • a pair of rails 54 (FIGS. 1 and 5) are fixed to the side wall 62c of the movable frame 62, respectively.
  • the rail 54 is a rail extending in the vertical direction.
  • a runner block 56 is engaged with the rail 54, and can slide up and down along the rail 54.
  • the runner block 56 is fixed on the top plate 21 b of the fixed frame 21 via the runner block mounting member 65.
  • the runner block mounting member 65 includes a side plate 65a substantially parallel to the side wall 62c of the movable frame 62, and a bottom plate 65b fixed to the lower end of the side plate 65a, and has an L-shaped cross section as a whole. .
  • the runner block mounting member 65 is reinforced by ribs so as to withstand this rotational moment.
  • a pair of first ribs 65c are provided at the corners formed by the side plate 65a and the bottom plate 65b at both ends (see FIGS. 3 and 5) of the runner block mounting member 65, and the pair of first ribs is further provided.
  • a second rib 65d is provided between 65c.
  • the runner block 56 is fixed to the fixed frame 21 and is slidable in the vertical direction with respect to the rail 64 fixed to the movable frame 62. Therefore, the movable frame 62 is slidable in the vertical direction, and movement of the movable frame 62 other than the vertical direction is restricted.
  • the moving direction of the movable frame 62 is restricted only in the vertical direction, when the servo motor 22 is driven to rotate the ball screw 23, the movable frame 62, the movable frame 62, the rail 64, and the runner are rotated.
  • the vibration table 14 connected via the block 66 moves forward and backward.
  • position detection means similar to the position detection means 39 (FIG. 4) of the axle direction vibration unit 30 is also provided in the vertical vibration unit 20.
  • a control means (not shown) of the vibration test apparatus 1 can control the height of the movable frame 62 within a predetermined range based on the detection result of the position detection means.
  • the vertical vibration unit 20 and the axle vibration unit 30 can simultaneously vibrate the vibration table 14 without crosstalk. For this reason, a complicated vibration in which the vibrations in the axle direction and the vertical direction are combined can be given to the carriage 100.
  • the rail 34 and the runner block 36, the rail 54 and the runner block 56, and the rail 64 and the runner block 66 also have the same structure as the rail 44 and the runner block 46.
  • FIG. 6 is a cross-sectional view of the rail 44 and the runner block 46 taken along one plane (that is, a horizontal plane) perpendicular to the major axis direction of the rail 44
  • FIG. 7 is a cross-sectional view taken along the line II in FIG.
  • the runner block 46 is formed with a recess so as to surround the rail 44, and four grooves 46 a and 46 a ′ extending in the axial direction of the rail 44 are formed in the recess.
  • Numerous stainless steel balls 46b are accommodated in the grooves 46a and 46a ′.
  • the rail 44 is provided with grooves 44a and 44a 'at positions facing the grooves 46a and 46a' of the runner block 46, respectively, and the ball 46b is formed between the grooves 46a and 44a or between the grooves 46a 'and 44a'. It is designed to be sandwiched between them.
  • the cross-sectional shape of the grooves 46a, 46a ′, 44a, 44a ′ is an arc shape, and the radius of curvature thereof is substantially equal to the radius of the ball 46b. For this reason, the ball 46b is in close contact with the grooves 46a, 46a ′, 44a, 44a ′ with little play.
  • each ball retraction paths 46c and 46c ' are provided which are substantially parallel to the grooves 46a.
  • the groove 46a and the retreat path 46c are connected to each other via a U-shaped path 46d, and the groove 46a, the groove 44a, the retreat path 46c, and the U-shaped path 46d
  • a circulation path for circulating the ball 46b is formed.
  • a similar circulation path is also formed by the groove 46a ', the groove 44a', and the retreat path 46c '.
  • the runner block 46 moves with respect to the rail 44, a large number of balls 46b circulate in the circulation path while rolling in the grooves 46a, 46a ', 44a, 44a'. For this reason, even if a heavy load is applied in a direction other than the rail axial direction, the runner block can be supported by a large number of balls, and the resistance in the rail axial direction is kept small by rolling the balls 46b.
  • the block 46 can be moved smoothly with respect to the rail 44.
  • the inner diameters of the retreat path 46c and the U-shaped path 46d are slightly larger than the diameter of the ball 46b. For this reason, the frictional force generated between the retreat path 46c and the U-shaped path 46d and the ball 46b is very small, and the circulation of the ball 46b is not hindered.
  • the two rows of balls 46b sandwiched between the grooves 46a and 44a form a front combination type angular ball bearing having a contact angle of approximately ⁇ 45 °.
  • the contact angle means that the line connecting the contact points where the grooves 46a and 44a contact the ball 46b is the radial direction of the linear guide mechanism (the direction from the runner block to the rail, the downward direction in FIG. 6). It is an angle made with respect to.
  • the angular ball bearings formed in this way are in the reverse radial direction (the direction from the rail toward the runner block, the upward direction in FIG. 6) and the lateral direction (the direction orthogonal to both the radial direction and the advance / retreat direction of the runner block). Yes, the load in the left-right direction in FIG. 6 can be supported.
  • the two rows of balls 46b sandwiched between the grooves 46a ′ and 44a ′ have a contact angle (a line connecting contact points where the grooves 46a ′ and 44a ′ are in contact with the ball 46b is connected to the linear guide mechanism).
  • a front combination angular contact ball bearing having an angle of about ⁇ 45 ° with respect to the reverse radial direction is formed. This angular ball bearing can support radial and lateral loads.
  • two rows of balls 46b sandwiched between one of the grooves 46a and 44a (left side in the figure) and one of the grooves 46a 'and 44a' (left side in the figure) are also a front combination type angular ball bearing.
  • two rows of balls 46b sandwiched between the other of the grooves 46a and 44a (the right side in the figure) and the other of the grooves 46a 'and 44a' (the right side in the figure) are also a front combination type angular ball bearing.
  • the front combination type angular contact ball bearing having a large number of balls 46b supports the load acting in each of the radial direction, the reverse radial direction, and the lateral direction.
  • a large load applied in a direction other than the direction can be sufficiently supported.
  • FIG. 8 is a perspective view showing the rail 44 attached to the nut guide 42.
  • the rail mounting structure is the same for other rails used in the vibration testing apparatus of this embodiment.
  • the nut guide 42 is formed with a groove 42a having substantially the same width as the rail 44, and the rail 44 is fitted in the groove 42a.
  • the rail 44 is formed with a plurality of through holes 44b arranged side by side in the axial direction. Although not shown in the drawing, a plurality of bolt holes are formed at positions corresponding to the through holes 44b at the bottom of the groove 42a.
  • the rail 44 is fixed to the nut guide 42 by passing the bolt 44c through the through hole 44b and screwing it into the bolt hole of the nut guide 42.
  • the interval between the through holes 44b of the rail 44 (and the interval between the bolt holes of Anzaka) s is relatively short, 50 to 80%, preferably 60 to 70% of the width w of the rail 44. Yes.
  • the rail 44 is firmly fixed to the nut guide 42 without being bent by relatively shortening the mounting interval of the bolts 44c.
  • the runner block 46 is slid with respect to the rail 44 by the rolling of the ball 46b.
  • the embodiment of the present invention is not limited to the above configuration. Absent.
  • a roller 246b may be used instead of the ball 46b, and a linear guide mechanism that slides the runner block 246 relative to the rail 244 by rolling of the roller 246b may be used.
  • FIG. 9 to FIG. 12 show modifications of the embodiment of the present invention.
  • FIG. 9 is a cross-sectional view of the runner block 246 and the rail 244 taken along a plane perpendicular to the major axis direction of the rail 244.
  • 10 and 11 are a II-II sectional view and a III-III sectional view of FIG. 9, respectively.
  • a recess 246 e is formed in the runner block 246 so as to surround the rail 244.
  • a roller holding member 246f is sandwiched between the recess 246e and the outer peripheral surface of the rail 244.
  • the roller holding member 246f forms four rolling grooves 246a and 246a 'extending in the axial direction in the gap between the recess 246e and the outer peripheral surface of the rail 244.
  • a large number of stainless steel rollers 246b are accommodated in the rolling grooves 246a and 246a '. Both ends of the roller 246b in the axial direction are held by a roller holding member 246f, and the cylindrical surface is in contact with both the recess of the runner block 246 and the outer peripheral surface of the rail 244.
  • the distance between the recess of the runner block 246 and the outer peripheral surface of the rail 244 is substantially equal to the diameter of the roller 246b, and the roller 246b is in close contact with the recess 246e of the runner block 246 and the outer peripheral surface of the rail 244 with little play.
  • two rail retracting paths 246c ' are provided that are substantially parallel to the rolling grooves 246a.
  • the rail retracting path 246c ' is formed by bending a tube that accommodates the roller 246b into a C shape.
  • two rail retreat paths 246 c that are substantially parallel to the rolling grooves 246 a ′ are provided inside the runner block 246, and the retreat paths 246 c and the rolling grooves 246 a ′ are provided. Also forms a similar circuit.
  • the distance d (FIGS. 10 and 11) between the recess 246e of the runner block 246 and the outer peripheral surface of the rail 244 is a length that is slightly larger (1 micrometer or less) than the diameter of the roller 246b. ing.
  • the preload from the roller 246b is applied to the runner block 246 and the rail 244, and the outer peripheral surface of the roller 246b is in close contact with the concave portion 246e of the runner block 246 and the outer peripheral surface of the rail 244.
  • a load in a direction other than the axial direction of the rail 244 is applied to one of the runner block 246 and the rail 244, the load is transmitted to the other via the roller 246b with almost no response delay.
  • the vibration table 14 can be vibrated at a high frequency.
  • the four rows of rollers 246 b arranged in the four rolling grooves 246 a and 246 a ′ have their axes every 90 ° on a plane orthogonal to the axis of the rail 244. It is arranged as follows.
  • each roller 246b is arranged in this way, when a load in a direction from the runner block 246 toward the upper surface of the rail 244 (a direction from the top to the bottom in FIG. 9) is applied, this load mainly includes two rolling elements.
  • the two rows of rollers 246b disposed in the moving groove 246a receive.
  • this load is mainly disposed in the two rolling grooves 246a ′. Two rows of rollers 246b receive.
  • the load is mainly the other side of the runner block of the rolling groove 246a ( The roller 246b disposed on the right side in the drawing and the roller 246b disposed on one side of the runner block (left side in the drawing) of the rolling groove 246a ′ are received. If the direction of the torsional load is counterclockwise in FIG. 9, the load is mainly arranged on the roller 246b arranged on one side of the runner block of the rolling groove 246a and on the other side of the runner block of the rolling groove 246a ′. The roller 246b receives.
  • FIG. 12 A perspective view of the roller 246b of the runner block 246 is shown in FIG.
  • a retainer 246g is provided between the rollers of the runner block used in the vibration test apparatus 1 of the present embodiment.
  • the retainer 246g has two cylindrical surfaces that are in contact with the outer peripheral surfaces of the two adjacent rollers 246b, and the retainer 246g contacts the roller 246b through the cylindrical surfaces.
  • the axes of the two cylindrical surfaces of the retainer 246g are parallel to each other. Since the retainer 246g is in contact with the roller 246b before and after the retainer 246g, the rollers 246b in the circulation path are aligned so that their axial directions are parallel to each other. For this reason, the roller 246b circulates smoothly in the circulation path without rattling.
  • the rollers 246b contact with each other with a relatively small contact area, so that a large stress is applied to the contact portion.
  • the cylindrical surfaces of the roller 246b and the retainer 246g are in contact with each other over a relatively wide contact area, and the stress applied to the roller 246b by this contact is kept relatively small. Therefore, the linear guide mechanism of this modification can suppress the damage and wear of the roller 246b as compared with the linear guide mechanism that does not have a retainer.
  • the linear guide mechanism used in the modified example of the present embodiment is configured such that the rollers 246b do not directly contact each other. Although noise is generated when the rollers 246b are in direct contact with each other, in the present embodiment, since the retainer 246g is disposed between the rollers 246b, such noise can be suppressed.
  • the vibration test apparatus 1 can apply an upward static load to each vibration table 14 by the air cylinder mechanism 70 (FIGS. 1 to 3). Further, the horizontal beam 124 of the carriage 100 is pressed from above by a reaction force frame 80 (FIG. 2). That is, the carriage 100 is sandwiched between the reaction force frame 80 and the air cylinder mechanism 70 from above and below. When the air cylinder mechanism 70 is applied to apply an upward load to the vibration table 14, the reaction force frame 80. A downward load is applied to the carriage 100. Further, since the carriage 100 is supported from below by the air cylinder mechanism, the downward load applied to the carriage 100 from the reaction force frame 80 and the weight of the carriage 100 itself are caused by the nut 27, the feed screw and the vertical vibration unit 20.
  • the torque of the servo motor 22 may be sufficiently large with respect to the inertia due to the vertical vibration of the carriage 100. That is, the torque of the servo motor 22 may be approximately the same as the torque of the servo motor 32 of the axle direction vibration unit 30.
  • the reaction force frame 80 of the present embodiment is a beam that stands upright from above the apparatus frame 11 that is disposed at a substantially lower center in the side beam 122 direction.
  • a pressing portion 81 is formed that branches and extends on both sides in the direction of the side beam 122.
  • the reaction force frame 80 has a T-shape as a whole. The lower surface of the pressing portion 81 abuts against the pair of transverse beams 124 and presses them from above. As shown in FIGS.
  • reaction force frames 80 are provided one on each side in the axial direction of the cross beam 124, and the carriage 100 is provided on both sides in the axial direction of each cross beam 124, that is, a total of four locations. It is pressed down by the reaction force frame 80.
  • the air cylinder mechanism 70 supplies eight air cylinders 72 (FIG. 1) provided between the fixed frame 21 and the movable frame 28 of each vertical vibration unit 20 and air to the air cylinders 72. And an air tank 74. As shown in FIG. 1, one air tank 74 is provided for each vertical vibration unit 20, and the vibration table 14 is adjusted by adjusting the pressure of the air supplied from the air tank 74 to the air cylinder 72. The load applied every time can be adjusted. The magnitude of the load by the air cylinder mechanism 70 is measured by the load sensor 16, and the pressure of the air sent to the air cylinder 72 by the controller (described later) of the vibration test apparatus 1 based on the measurement result of the load sensor 16. To be adjusted.
  • the carriage 100 can be vibrated while the axle 112 of the carriage 100 is rotated by the axle drive mechanism 90 so that the behavior of the carriage in the running railway vehicle can be reproduced.
  • the configuration of the axle drive mechanism 90 will be described below.
  • the axle drive mechanism 90 has a servo motor 92 and first to fourth pulleys 93 to 96.
  • the first pulley 93 is fixed to the drive shaft of the servo motor 92 and is driven to rotate by the servo motor 92.
  • the fourth pulley 96 is attached to the approximate center of the axle 112.
  • the second and third pulleys 94 and 95 are disposed directly above the servo motor 92 and at substantially the same height as the fourth pulley 96 (FIG. 3). As shown in FIGS. 1 to 3, the second pulley 94 and the third pulley 95 are fixed to a common rotating shaft 91 and rotate together. Further, the bearing and the servo motor 92 that support the rotating shaft 91 are both fixed on the apparatus frame 11.
  • a first endless belt 97 is wound around the first pulley 93 and the second pulley 94.
  • a second endless belt 98 is wound around the third pulley 95 and the fourth pulley 96. Therefore, when the servo motor 92 is driven, the rotational motion of the drive shaft is transmitted from the first pulley 93 to the second pulley 94 via the first endless belt 97, and the second pulley 94 and the third pulley 95. Rotates. Then, the rotational movement of the third pulley 95 is transmitted to the fourth pulley 96 via the second endless belt 98, whereby the axle 112 rotates.
  • the first and second pulleys 93 and 94, the first endless belt 97, the third and fourth pulleys 95 and 96, and the second endless belt 98 are configured.
  • the axle 112 can be rotated through the two sets of belt-pulley mechanisms.
  • the first pulley 96 is displaced.
  • the second belt 98 does not loosen with respect to the third and fourth pulleys 95 and 96. Therefore, the vibration test apparatus 1 according to the present embodiment can vibrate the carriage 100 in the vertical direction and the axle direction at the same time as rotating the axle 112.
  • FIG. 13 is a block diagram of the vibration test apparatus 1 of the present embodiment.
  • the vibration test apparatus 1 includes a controller 2, a power supply 3, and a servo amplifier 4.
  • the servo amplifier 4 is supplied with electric power from the power supply 3 to generate a three-phase alternating current and supplies it to the servo motors 22, 32 and 92.
  • the controller 2 can control the servo amplifier 4 to adjust the amplitude and frequency of the alternating current supplied to each servo motor 22, 32, 92. Thereby, the rotation speed of each servomotor 22, 32, 92 is controlled.
  • the controller 2 can feedback control the displacement, speed, and acceleration amplitude of the vibration table 14 based on the detection result of the acceleration sensor 18 provided on the vibration table 14 (FIG. 2).
  • the acceleration sensor 18 instead of the acceleration sensor 18, another sensor that measures displacement and speed may be used.
  • the load by which the air cylinder 72 lifts the vibration table 14 is measured by the load sensor 16, and the controller 2 is provided between the air tank 74 and the air cylinder 72 based on the measurement result of the load sensor 16.
  • the opening degree of the valve 76 (FIGS. 1 and 3) is adjusted by feedback control. By this feedback control, a static load corresponding to the vehicle load can be applied to the carriage 100.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Bearings For Parts Moving Linearly (AREA)

Abstract

A vibration testing device which allows to reduce a space for performing a vibration test and to vertically vibrate the bearing of a vehicle without using a vibration mechanism of large output. The vibration testing device comprises a bearing unit which rotatably supports the axle of the truck of a vehicle an axle drive mechanism which rotates the axle, a vertical vibration unit which vertically vibrates the bearing unit, an air cylinder mechanism which applies an upward load to the bearing unit, and a reaction frame which presses the truck from above.

Description

振動試験装置Vibration test equipment
 本発明は、鉄道車両やトレーラー等の車軸に上下方向の圧縮静荷重を加えながら振動させる振動試験装置に関する。 The present invention relates to a vibration test apparatus that vibrates while applying a compressive static load in the vertical direction to an axle of a railway vehicle or a trailer.
 鉄道やトレーラーなどの貨物車両に走行時と同等の振動を加え、主として車両の車軸の軸受の挙動を観察したり、この軸受の疲労試験を行うため、特開2005-274211号公報1のような振動試験装置が使用されている。 In order to apply vibration equivalent to that during traveling to a freight vehicle such as a railway or a trailer, mainly to observe the behavior of the bearing of the axle of the vehicle, or to conduct a fatigue test of this bearing, as disclosed in JP-A-2005-274211 Vibration test equipment is used.
 上記公報に記載の振動試験装置は、軌条輪の上に車両を載せ、軌条輪を回転駆動して車両の車輪を回転させると共に、軌条輪を車軸方向に加振することによって車両の軸受に負荷を加えている。 The vibration test apparatus described in the above publication places a vehicle on a rail wheel, drives the rail wheel to rotate and rotates the wheel of the vehicle, and applies vibration to the bearing of the vehicle by exciting the rail wheel in the axle direction. Is added.
発明の概要Summary of the Invention
 このように、従来の振動試験装置は、車両全体、すなわち台車に車体が取り付けられた状態で振動試験を行っていたため、試験を行うために大きなスペースを必要としていた。また、車体の重量/車輪数の荷重が各軌条輪に加わるため、車両を上下方向に振動させる場合は、この大荷重に耐えられるだけの大出力の加振機構を必要とする。 As described above, the conventional vibration test apparatus performs the vibration test in a state where the vehicle body is attached to the entire vehicle, that is, the carriage, so that a large space is required to perform the test. In addition, since the load of the weight of the vehicle body / the number of wheels is applied to each rail wheel, when the vehicle is vibrated in the vertical direction, a vibration output mechanism capable of withstanding this large load is required.
 本発明は上記の問題を解決するためになされたものである。すなわち、本発明は振動試験を行うためのスペースが小さく、且つ大出力の加振機構を用いずに車両の軸受を上下方向に振動させることができる振動試験装置を提供することを目的とする。 The present invention has been made to solve the above problems. That is, it is an object of the present invention to provide a vibration test apparatus that has a small space for performing a vibration test and can vibrate a vehicle bearing in the vertical direction without using a high-output vibration mechanism.
 上記の目的を達成するため、本発明の実施形態に係る振動試験装置は、車両の台車の車軸を回転可能に支持する軸受ユニットと、車軸を回転させる車軸駆動機構と、軸受ユニットを上下方向に加振する上下方向加振ユニットと、軸受ユニットに上向きの荷重を加えるエアシリンダ機構と、台車を上から押さえつける反力フレームとを有する。 In order to achieve the above object, a vibration testing apparatus according to an embodiment of the present invention includes a bearing unit that rotatably supports an axle of a vehicle carriage, an axle drive mechanism that rotates the axle, and a bearing unit that extends in the vertical direction. It has an up-and-down direction vibration unit that vibrates, an air cylinder mechanism that applies an upward load to the bearing unit, and a reaction force frame that presses the carriage from above.
 本発明の実施形態に係る振動試験装置によれば、エアシリンダ機構と反力フレームの間に車両の台車が挟まれている。このため、エアシリンダ機構を駆動することにより、台車の車軸の軸受に車体の重量/車輪数相当の圧縮静荷重を加えることができる。このため、本発明の実施形態に係る振動試験装置は、車両全体を振動させる必要はなく、台車のみを試験装置に取り付けて加振を行うことができる。このため、振動試験を行うためのスペースを大幅に小さくすることができる。また、エアシリンダ機構により台車が下から支えられるので、上下方向加振ユニットは、台車を上下方向に振動させる際の慣性に十分耐えられる程度の、比較的小出力のものでよい。 According to the vibration test apparatus according to the embodiment of the present invention, the vehicle carriage is sandwiched between the air cylinder mechanism and the reaction force frame. For this reason, by driving the air cylinder mechanism, a compressive static load corresponding to the weight of the vehicle body / the number of wheels can be applied to the bearing of the axle of the carriage. For this reason, the vibration test apparatus according to the embodiment of the present invention does not need to vibrate the entire vehicle, and only the carriage can be attached to the test apparatus for vibration. For this reason, the space for performing the vibration test can be significantly reduced. In addition, since the carriage is supported from below by the air cylinder mechanism, the vertical vibration unit may have a relatively small output enough to withstand the inertia when the carriage is vibrated in the vertical direction.
 また、軸受ユニットが車軸の車輪取り付け位置で車軸を支持する構成とすることにより,台車を車両に取り付けたときの台車の状態を精度よく再現可能である。 In addition, since the bearing unit is configured to support the axle at the wheel mounting position of the axle, the state of the carriage when the carriage is attached to the vehicle can be accurately reproduced.
 また、軸受ユニットが、自動調心ころ軸受によって車軸を回転可能に支持する構成とすることが好ましい。このような構成とすると、車軸に直交する方向に大荷重が加わっている車軸を回転可能に支持可能である。 Also, it is preferable that the bearing unit is configured to rotatably support the axle by a self-aligning roller bearing. With such a configuration, it is possible to rotatably support an axle on which a heavy load is applied in a direction orthogonal to the axle.
 好ましくは、上下方向加振ユニットは、サーボモータと送りねじ機構によって軸受ユニットを上下方向に加振する。 Preferably, the vertical vibration unit vibrates the bearing unit in the vertical direction by a servo motor and a feed screw mechanism.
 また、本発明においては、軸受ユニットは振動テーブルの上に固定されており、上下方向加振ユニットは振動テーブルを上下方向に加振する。 In the present invention, the bearing unit is fixed on the vibration table, and the vertical vibration unit vibrates the vibration table in the vertical direction.
 また,振動テーブルを台車の車軸方向に加振する車軸方向加振ユニットと、振動テーブルを上下方向加振ユニットに対して車軸方向にスライド可能に連結する第1の連結手段と、振動テーブルを車軸方向加振ユニットに対して上下方向にスライド可能に連結する第2の連結手段とを更に有することが好ましい。このような構成によれば、クロストーク無く振動テーブルを上下方向と車軸方向の双方に同時に加振可能となる。 Also, an axle direction vibration unit that vibrates the vibration table in the axle direction of the carriage, first connection means for slidably connecting the vibration table to the vertical vibration unit in the axle direction, and the vibration table as the axle. It is preferable to further have a second connecting means that is slidably connected to the direction excitation unit in the vertical direction. According to such a configuration, the vibration table can be vibrated simultaneously in both the vertical direction and the axle direction without crosstalk.
 また、車軸駆動機構が、モータによって回転駆動される駆動プーリと、台車の車軸に取り付けられる従動プーリと、駆動プーリと従動プーリとに巻回されている無端ベルトとを有する構成とすることが好ましい。このように、ベルト機構によって車軸を駆動する構成であるため、台車を振動させながら車軸を回転させることが可能である。従動プーリは、例えば台車の車軸の略中央に取り付けられている。 The axle drive mechanism preferably includes a drive pulley that is rotationally driven by a motor, a driven pulley that is attached to the axle of the carriage, and an endless belt that is wound around the drive pulley and the driven pulley. . Thus, since it is the structure which drives an axle shaft by a belt mechanism, it is possible to rotate an axle shaft, vibrating a trolley | bogie. The driven pulley is attached to the approximate center of the axle of the carriage, for example.
 好ましくは、反力フレームは、台車の横梁の車軸方向両側で台車と当接して台車を上から押さえつけることによって,台車に下向きの荷重を加えている。例えば、反力フレームは、略直立する直立部と、該直列部の上端において台車の側梁に略平行な二方向に延びるよう形成された押圧部とを有し、押圧部の下面が台車の横梁に当接して台車が下方に押さえつけられる。 Preferably, the reaction force frame applies a downward load to the carriage by abutting against the carriage on both sides in the axial direction of the transverse beam of the carriage and pressing the carriage from above. For example, the reaction force frame has an upright portion that is substantially upright and a pressing portion that is formed so as to extend in two directions substantially parallel to the side beam of the carriage at the upper end of the series portion. The carriage is pressed down in contact with the horizontal beam.
 また、第1及び第2の連結手段は夫々、レールと該レールに係合し且つ該レールに沿ってスライド可能なランナーブロックを備えたリニアガイド機構によってテーブルと上下方向加振ユニット及び車軸方向加振ユニットとをスライド可能に連結する構成としてもよい。 In addition, the first and second connecting means are each provided with a rail, a linear guide mechanism provided with a runner block that engages with the rail and is slidable along the rail, and the table, the vertical excitation unit, and the axle direction acceleration unit. It is good also as a structure which connects a vibration unit so that sliding is possible.
 また、ランナーブロックが、レールを囲む凹部と、凹部においてランナーブロックの移動方向に沿って形成された溝と、ランナーブロックの内部に形成され、溝と閉回路を形成するように溝の前記移動方向両端と繋がっている退避路と、閉回路を循環するとともに、前記溝に位置するときは前記レールと当接するようになっている複数のボールとを有する構成とすることが好ましい。さらに、ランナーブロックには閉回路が4つ形成されており、4つの閉回路のうち2つの閉回路の溝の夫々に配置されたボールが、レールとランナーブロックを備えたガイド機構のラジアル方向に対して略±45度の接触角を有し、他の2つの閉回路の溝の夫々に配置されたボールはリニアガイド機構の逆ラジアル方向に対して略±45度の接触角を有する構成とすることがより好ましい。 Also, the movement direction of the groove so that the runner block is formed in a recess surrounding the rail, a groove formed in the recess along the movement direction of the runner block, and formed inside the runner block, forming a closed circuit with the groove. It is preferable to include a retreat path connected to both ends, and a plurality of balls that circulate in a closed circuit and that come into contact with the rail when positioned in the groove. Furthermore, four closed circuits are formed in the runner block, and the balls arranged in the grooves of the two closed circuits of the four closed circuits are arranged in the radial direction of the guide mechanism including the rail and the runner block. The ball having a contact angle of approximately ± 45 degrees with respect to each other, and the balls disposed in the grooves of the other two closed circuits have a contact angle of approximately ± 45 degrees with respect to the reverse radial direction of the linear guide mechanism, More preferably.
 このような構成のリニアガイド機構は、そのラジアル方向、逆ラジアル方向及び横方向に大荷重が加わったとしても、ランナーブロックをレールに沿ってスムーズに移動させることができる。そして、このようなリニアガイド機構を介してテーブルと上下方向及び車軸方向加振ユニットが連結されるので、大重量の台車を加振する場合であっても、テーブルはがたつくことなく、スムーズにレールに移動可能である。 The linear guide mechanism having such a configuration can smoothly move the runner block along the rail even when a large load is applied in the radial direction, the reverse radial direction, and the lateral direction. And since the table and the vertical and axle direction vibration unit are connected via such a linear guide mechanism, the table does not rattle even when a heavy truck is vibrated, and the rails are smooth. Can be moved to.
 或いは、ランナーブロックが、レールを囲む凹部と、その円筒面が前記レールと凹部の間に挟み込まれるように配置される複数のローラと、凹部に取り付けられ、ローラの軸方向両端をガイドして該ローラがランナーブロックのスライド方向に転動する転動溝を形成するローラ保持部材と、ランナーブロックの内部に形成され、転動溝と閉回路を形成するように転動溝の前記スライド方向両端と繋がっている退避路とを有し、複数のローラは閉回路を循環するような構成としてもよい。好ましくは、ランナーブロックには閉回路が4つ形成されており、4つの閉回路の夫々に配置された4列のローラは、その軸がレールの軸に直交する面上において90°おきとなるよう配置されている。さらに好ましくは、ローラの径は、転動溝における前記ランナーブロックとレールとの間隔より小さく、その差は1マイクロメートル以下である。 Alternatively, the runner block includes a recess surrounding the rail, a plurality of rollers arranged so that its cylindrical surface is sandwiched between the rail and the recess, and attached to the recess. A roller holding member that forms a rolling groove in which the roller rolls in the sliding direction of the runner block; and both ends of the rolling groove in the sliding direction that are formed inside the runner block and form a closed circuit with the rolling groove. A plurality of rollers may circulate in a closed circuit. Preferably, four closed circuits are formed in the runner block, and the four rows of rollers arranged in each of the four closed circuits have their axes every 90 ° on a plane perpendicular to the rail axis. It is arranged as follows. More preferably, the diameter of the roller is smaller than the distance between the runner block and the rail in the rolling groove, and the difference is 1 micrometer or less.
 このような構成のリニアガイド機構は、ランナーブロックに大荷重が加わったとしても、ランナーブロックをレールに沿ってスムーズに移動させることかできる。また、各ローラとレール及びランナーブロックは、比較的大きい接触面積で当接しており、上下方向及び車軸方向加振ユニットからの振動を応答遅れなくテーブルに伝達させることができる。このため、数100Hz以上の比較的高い振動数でテーブルを振動させることができる。 The linear guide mechanism having such a configuration can smoothly move the runner block along the rail even when a heavy load is applied to the runner block. Moreover, each roller, the rail, and the runner block are in contact with each other with a relatively large contact area, and vibrations from the vertical and axle direction vibration units can be transmitted to the table without a response delay. For this reason, the table can be vibrated at a relatively high frequency of several hundred Hz or more.
 また、隣接する2つのローラの間には、該ローラ同士の接触を防止するためのリテーナが設けられている構成とすることがより好ましい。さらに好ましくは、リテーナが、ローラの円筒面と当接する円筒凹面を有している。 In addition, it is more preferable that a retainer for preventing contact between the two adjacent rollers is provided. More preferably, the retainer has a cylindrical concave surface that comes into contact with the cylindrical surface of the roller.
 リテーナを有さないようなリニアガイド機構においては、ローラ同士が比較的小さい接触面積にて接触するため、接触部には大きな応力が加わる。これに対し、本発明の実施形態において使用されるリニアガイド機構は、ローラとリテーナの円筒面同士が比較的広い接触面積にて接触し、この接触によってローラに加わる応力は比較的小さく保たれる。そのため、リテーナを有さないリニアガイド機構と比べ、ローラの破損や磨耗を抑えることができる。 In a linear guide mechanism that does not have a retainer, the rollers contact each other with a relatively small contact area, so that a large stress is applied to the contact portion. In contrast, in the linear guide mechanism used in the embodiment of the present invention, the cylindrical surfaces of the roller and the retainer are in contact with each other with a relatively wide contact area, and the stress applied to the roller by this contact is kept relatively small. . Therefore, the roller can be prevented from being damaged or worn as compared with a linear guide mechanism having no retainer.
 さらに、本発明の実施形態において使用されるリニアガイド機構は、ローラ同士が直接接触しないようになっている。ローラ同士が直接接触すると騒音が発生するが、本発明の実施形態において使用されるリニアガイド機構においては、ローラの間にリテーナが配置されているため、このような騒音を抑えることができる。 Furthermore, the linear guide mechanism used in the embodiment of the present invention is configured such that the rollers do not directly contact each other. When the rollers are in direct contact with each other, noise is generated. However, in the linear guide mechanism used in the embodiment of the present invention, such a noise can be suppressed because the retainer is disposed between the rollers.
 また、レールがその軸方向に沿って配列される複数の貫通孔を有し、貫通孔の夫々にボルトを通してテーブル、上下方向加振ユニット又は車軸方向加振ユニットにレールが固定され、ボルトの取り付け間隔は、前記レールの幅の50~80%である。好ましくは、ボルトの取り付け間隔が、レールの幅の60~70%である。 In addition, the rail has a plurality of through holes arranged along the axial direction, and the rail is fixed to the table, the vertical vibration unit or the axle direction vibration unit through the bolts in each of the through holes, and the bolts are attached. The interval is 50 to 80% of the width of the rail. Preferably, the bolt mounting interval is 60 to 70% of the rail width.
 このように、ボルトの取り付け間隔を比較的短くすることによって、レールは撓むことなくテーブル、上下方向加振ユニット又は車軸方向加振ユニットに強固に固定される。 As described above, by relatively shortening the bolt mounting interval, the rail is firmly fixed to the table, the vertical vibration unit or the axle vibration unit without bending.
本発明の実施の形態に係る振動試験装置の上面図である。1 is a top view of a vibration test apparatus according to an embodiment of the present invention. 本発明の実施の形態に係る振動試験装置の正面図である。1 is a front view of a vibration test apparatus according to an embodiment of the present invention. 本発明の実施の形態に係る振動試験装置の側面図である。1 is a side view of a vibration test apparatus according to an embodiment of the present invention. 本発明の実施の形態に係る振動試験装置の車軸方向加振ユニットを一部切り欠いた上面図である。It is the top view which notched the axle direction excitation unit of the vibration test apparatus which concerns on embodiment of this invention partially. 本発明の実施の形態に係る振動試験装置の上下方向加振ユニットを一部切り欠いた正面図である。It is the front view which notched some up-and-down direction vibration units of the vibration testing device concerning an embodiment of the invention. 本発明の実施の形態に係る振動試験装置のリニアガイド機構において、ランナーブロック及びレールをレールの長軸方向に垂直な一面で切断した断面図である。In the linear guide mechanism of the vibration test apparatus which concerns on embodiment of this invention, it is sectional drawing which cut | disconnected the runner block and the rail by one surface perpendicular | vertical to the major axis direction of a rail. 図6のI-I断面図である。It is II sectional drawing of FIG. 本発明の実施形態に係るリニアガイド機構のレールの取り付け構造を示す斜視図である。It is a perspective view which shows the attachment structure of the rail of the linear guide mechanism which concerns on embodiment of this invention. 本発明の実施の形態に係る振動試験装置の変形例において、ランナーブロック及びレールをレールの長軸方向に垂直な一面で切断した断面図である。In the modification of the vibration testing apparatus which concerns on embodiment of this invention, it is sectional drawing which cut | disconnected the runner block and the rail by one surface perpendicular | vertical to the major axis direction of a rail. 図9のII-II断面図である。FIG. 10 is a sectional view taken along line II-II in FIG. 図9のIII-III断面図である。FIG. 10 is a cross-sectional view taken along the line III-III in FIG. 9. 本発明の実施の形態の変形例で使用されるリニアガイド機構のランナーブロックのローラの斜視図である。It is a perspective view of the roller of the runner block of the linear guide mechanism used in the modification of embodiment of this invention. 本発明の実施の形態に係る振動試験装置のブロック図である。1 is a block diagram of a vibration test apparatus according to an embodiment of the present invention.
 以下、本発明の実施の形態について、図面を用いて詳細に説明する。図1、図2及び図3は、夫々本実施形態の台車用振動試験装置の上面図、正面図及び側面図である。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. 1, 2, and 3 are a top view, a front view, and a side view, respectively, of the cart vibration test apparatus of the present embodiment.
 本実施形態の振動試験装置1は、鉄道車両の台車100を加振するための装置である。台車100は、一対の車軸112、各車軸の両端に取り付けられている軸箱114(図2、3)、及び台車フレーム120を有している。 The vibration test apparatus 1 according to the present embodiment is an apparatus for exciting the railway vehicle carriage 100. The carriage 100 includes a pair of axles 112, axle boxes 114 (FIGS. 2 and 3) attached to both ends of each axle, and a carriage frame 120.
 台車フレーム120は、車軸112に垂直かつ略水平な方向(すなわち、車両の進行方向)に延びる一対の側梁122(図1、2)と、車軸112に略平行な方向に延びる一対の横梁124とを有している。横梁124はその両端部付近で側梁122の略中央部に連結されている。 The carriage frame 120 includes a pair of side beams 122 (FIGS. 1 and 2) extending in a direction substantially horizontal to the axle 112 (that is, a traveling direction of the vehicle), and a pair of lateral beams 124 extending in a direction substantially parallel to the axle 112. And have. The lateral beam 124 is connected to the substantially central portion of the side beam 122 near both ends thereof.
 一対の横梁124は、その両端部で天板125及び底板126(図2)を介して連結されている。天板125の上には、空気ばね取り付け部127が設けられており、従来の振動試験装置にあっては、車両の車体が、この空気ばね取り付け部127において空気ばねを介して台車100に連結されるが、本実施形態の振動試験装置では、車両の車体は取り付けられていない。 The pair of cross beams 124 are connected to each other at both ends via a top plate 125 and a bottom plate 126 (FIG. 2). An air spring mounting portion 127 is provided on the top plate 125. In the conventional vibration test apparatus, the vehicle body of the vehicle is connected to the carriage 100 via the air spring at the air spring mounting portion 127. However, in the vibration test apparatus of the present embodiment, the vehicle body is not attached.
 軸箱114には、複列外向き円すいころ軸受116(図3)が内蔵されており、車軸112はこの軸受116を介して軸箱114に回転可能に支持されている。また、軸箱114の上面と側梁122の端部とは、コイルばね132(図2、3)を介して連結している。すなわち、台車フレーム120は、コイルばね132を介して軸箱114に支持されることになる。以上の説明から明らかなように、台車100は、図1の上方から見ると、一対の車軸112と一対の側梁122とによって構成される略矩形体となっており、一対の車軸112間の略中央部に、該車軸112と平行に一対の横梁124が、側梁122間に跨って配置された構成となっている。尚、図1においては、上下方向加振ユニット20、車軸方向加振ユニット30などが図中に現れるようにする為、右側の車軸112の図示が省略されている。 The axle box 114 incorporates a double-row outward tapered roller bearing 116 (FIG. 3), and the axle 112 is rotatably supported by the axle box 114 via the bearing 116. Moreover, the upper surface of the axle box 114 and the edge part of the side beam 122 are connected via the coil spring 132 (FIG. 2, 3). That is, the carriage frame 120 is supported by the axle box 114 via the coil spring 132. As is clear from the above description, the cart 100 is a substantially rectangular body constituted by a pair of axles 112 and a pair of side beams 122 when viewed from above in FIG. In a substantially central portion, a pair of horizontal beams 124 are arranged in parallel with the axle 112 so as to straddle between the side beams 122. In FIG. 1, the right axle 112 is not shown so that the vertical vibration unit 20, the axle direction vibration unit 30, and the like appear in the drawing.
 図3に示されるように、車軸112は、車輪取り付け部112aの位置において、軸受ユニット12に支持されている。すなわち、軸受ユニット12は、車軸ごとに2つずつ、計4つ設けられている。軸受ユニット12には、自動調心ころ軸受12aが内蔵されており、上下方向に大荷重の加わる車軸112を回転可能に支持する。 As shown in FIG. 3, the axle 112 is supported by the bearing unit 12 at the position of the wheel mounting portion 112a. That is, a total of four bearing units 12 are provided, two for each axle. The bearing unit 12 includes a self-aligning roller bearing 12a, and rotatably supports the axle 112 to which a large load is applied in the vertical direction.
 軸受ユニット12の夫々は、振動テーブル14上に固定されている。また、軸受ユニット12と振動テーブル14の間には、荷重センサ16が設けられており、台車100に加わる上下方向、車軸方向、車両進行方向に沿った荷重の大きさを計測することができる。 Each of the bearing units 12 is fixed on the vibration table 14. Further, a load sensor 16 is provided between the bearing unit 12 and the vibration table 14, and the magnitude of the load along the vertical direction, the axle direction, and the vehicle traveling direction applied to the carriage 100 can be measured.
 図1に示されるように、4つの振動テーブル14のうち、各車軸112の一端側(図1中下側)の2つには、振動テーブル14を上下方向に加振する上下方向加振ユニット20と、振動テーブル14を車軸方向に加振する車軸方向加振ユニット30とが設けられている。各車軸112の他端側(図1中上側)の2つの振動テーブルには、上下方向加振ユニット20のみが設けられている。 As shown in FIG. 1, of the four vibration tables 14, two on one end side (lower side in FIG. 1) of each axle 112 are vertically excited units that vibrate the vibration table 14 in the vertical direction. 20 and an axle direction excitation unit 30 for exciting the vibration table 14 in the axle direction. Only two vertical vibration units 20 are provided on the two vibration tables on the other end side (upper side in FIG. 1) of each axle 112.
 車軸方向加振ユニット30の構造について以下説明する。図4は、本実施形態の車軸方向加振ユニット30の拡大上面図である。図4に示されるように、車軸方向加振ユニット30は、固定フレーム31、サーボモータ32、ボールねじ33、カップリング34、軸受部35、及びボールナット37を有している。カップリング34は、サーボモータ32の駆動軸32aとボールねじ33とを連結するものである。また、軸受部35は、固定フレームの上面板31aから上下方向に伸びるように溶接された軸受支持プレート31bに固定されており、ボールねじ33を回転可能に支持するようになっている。ボールナット37は、ボールねじ33と係合すると共に、その軸回りに移動されないよう支持されている。そのため、サーボモータ32を駆動すると、ボールねじが回転して、ボールナット33がその軸方向(すなわち車軸方向)に進退する。このボールナット37の運動が、レール44とランナーブロック46からなる連結機構を介して振動テーブル14に伝達されることによって、振動テーブル14は車軸方向に駆動される。そして、短い周期でサーボモータ32の回転方向を切り換えるようサーボモータ32を制御することによって、振動テーブル14を所望の振幅及び周期で車軸方向に振動させることができる。 The structure of the axle direction vibration unit 30 will be described below. FIG. 4 is an enlarged top view of the axle-direction excitation unit 30 of the present embodiment. As shown in FIG. 4, the axle direction vibration unit 30 includes a fixed frame 31, a servo motor 32, a ball screw 33, a coupling 34, a bearing portion 35, and a ball nut 37. The coupling 34 connects the drive shaft 32 a of the servo motor 32 and the ball screw 33. The bearing portion 35 is fixed to a bearing support plate 31b that is welded so as to extend in the vertical direction from the upper surface plate 31a of the fixed frame, and supports the ball screw 33 rotatably. The ball nut 37 engages with the ball screw 33 and is supported so as not to move around its axis. Therefore, when the servo motor 32 is driven, the ball screw rotates and the ball nut 33 advances and retreats in the axial direction (that is, in the axle direction). The movement of the ball nut 37 is transmitted to the vibration table 14 through a coupling mechanism including the rail 44 and the runner block 46, whereby the vibration table 14 is driven in the axle direction. Then, by controlling the servo motor 32 so as to switch the rotation direction of the servo motor 32 at a short cycle, the vibration table 14 can be vibrated in the axle direction with a desired amplitude and cycle.
 固定フレーム31の上面板31aの上面には、上下方向に伸びるモータ支持プレート31cが溶接されている。モータ支持プレート31cは、サーボモータ32の軸方向に略垂直となるように設けられており、その一面(振動テーブル14に対して遠位となる面)にサーボモータ32が片持ち支持されている。モータ支持プレート33cには、開口部31dが設けられており、サーボモータ32の駆動軸32aはこの開口部31dを貫通し、モータ支持プレート31cの他面側でボールねじ33と連結される。 A motor support plate 31c extending in the vertical direction is welded to the upper surface of the upper surface plate 31a of the fixed frame 31. The motor support plate 31c is provided so as to be substantially perpendicular to the axial direction of the servo motor 32, and the servo motor 32 is cantilevered on one surface thereof (a surface distal to the vibration table 14). . The motor support plate 33c is provided with an opening 31d, and the drive shaft 32a of the servo motor 32 passes through the opening 31d and is connected to the ball screw 33 on the other surface side of the motor support plate 31c.
 なお、サーボモータ32がモータ支持プレート31cに片持ち支持されているため、モータ支持プレート31c、特に上面板31aとの溶接部には大きな曲げ応力が加わる。この曲げ応力を緩和するために、上面板31aとモータ支持プレート31cとによって形成されるコーナーには、リブ31eが設けられている。 In addition, since the servo motor 32 is cantilevered by the motor support plate 31c, a large bending stress is applied to the welded portion of the motor support plate 31c, particularly the upper surface plate 31a. In order to relieve the bending stress, ribs 31e are provided at corners formed by the upper surface plate 31a and the motor support plate 31c.
 軸受部35は、正面組合せで組み合わされた一対のアンギュラ球軸受35a、35bを有している。アンギュラ球軸受35a、35bは、軸受支持プレート31bの中空部の中に収納されている。アンギュラ球軸受35bの一面(振動テーブル14に対して近位となる方向)には、軸受押圧プレート35cが設けられており、この軸受押圧プレート35cをボルトを用いて軸受支持プレート31bに締結することによって、アンギュラ球軸受35bはサーボモータ32に向かう方向に押し込まれる。また、ボールねじ33において、カップリング34に近位となる側の円筒面には、ねじ部33aが形成されており、このねじ部33aに、内周にめねじが形成されたカラー35dが取り付けられるようになっている。カラー35dをボールねじ33に対して回動させてカップリング34から離れる方向に移動させることによって、アンギュラ球軸受35aはボールナット37に向かう方向に押し込まれる。このように、アンギュラ球軸受35aと35bが、互いに近づく方向に押し込まれるようになっているので、両者が互いに密着して好適なプリロードが軸受35a、35bに付与される。 The bearing portion 35 has a pair of angular ball bearings 35a and 35b combined in a front combination. The angular ball bearings 35a and 35b are accommodated in the hollow portion of the bearing support plate 31b. A bearing pressing plate 35c is provided on one surface of the angular ball bearing 35b (in a direction proximal to the vibration table 14), and the bearing pressing plate 35c is fastened to the bearing support plate 31b using a bolt. As a result, the angular ball bearing 35 b is pushed in the direction toward the servo motor 32. Further, in the ball screw 33, a threaded portion 33a is formed on a cylindrical surface on the side proximal to the coupling 34, and a collar 35d having a female screw formed on the inner periphery is attached to the threaded portion 33a. It is supposed to be. By rotating the collar 35 d with respect to the ball screw 33 and moving it away from the coupling 34, the angular ball bearing 35 a is pushed in a direction toward the ball nut 37. Thus, since the angular ball bearings 35a and 35b are pushed in the direction approaching each other, the two are in close contact with each other, and a suitable preload is applied to the bearings 35a and 35b.
 次いで、振動テーブル14と車軸方向加振ユニット30を連結する連結部40の構成について説明する。連結部40は、ナットガイド42、一対のレール44、及びレール44の夫々に取り付けられる一対のランナーブロック46を有している。 Next, the configuration of the connecting portion 40 that connects the vibration table 14 and the axle direction excitation unit 30 will be described. The connecting portion 40 includes a nut guide 42, a pair of rails 44, and a pair of runner blocks 46 attached to each of the rails 44.
 ナットガイド42は、ボールナット37に固定されている。また、サーボモータ32から振動テーブル14に向かう方向に延びる一対のレール38が、ボールナット37及びナットガイド42を挟むように並んで固定フレーム31の上面板31aに固定されている。また、ナットガイド42の底面には、このレール38に向かう方向に広がるランナーブロック取付プレート43が固定されている。レール38と係合するランナーブロック45が、このランナーブロック取付プレート43の底面に固定されており、ランナーブロック取付プレート43及びナットガイド42は、レール38に沿って、振動テーブル14に対して進退する方向のみにスライド可能となっている。このように、ナットガイド42の移動方向が振動テーブル14に対して進退する方向、すなわちボールねじ33の軸方向のみに規制されているため、ボールねじ33を回転させると、ナットガイド42が振動テーブル14に対して進退する。 The nut guide 42 is fixed to the ball nut 37. A pair of rails 38 extending in the direction from the servo motor 32 toward the vibration table 14 are fixed to the upper surface plate 31 a of the fixed frame 31 side by side so as to sandwich the ball nut 37 and the nut guide 42. A runner block mounting plate 43 that extends in the direction toward the rail 38 is fixed to the bottom surface of the nut guide 42. A runner block 45 that engages with the rail 38 is fixed to the bottom surface of the runner block mounting plate 43, and the runner block mounting plate 43 and the nut guide 42 advance and retreat with respect to the vibration table 14 along the rail 38. It can slide only in the direction. Thus, since the moving direction of the nut guide 42 is restricted only in the direction in which the nut table 42 moves forward and backward, that is, in the axial direction of the ball screw 33, when the ball screw 33 is rotated, the nut guide 42 is moved to the vibrating table. Move forward and backward with respect to 14.
 連結部40のレール44は上下方向に延びており、ランナーブロック46はこのレール44に沿って上下方向に移動可能となっている。そして、ランナーブロック46は振動テーブル14に固定されている。このため、後述する上下方向加振ユニット20によって振動テーブル14が上下方向に移動すると、ランナーブロック46がレール44に沿ってスライドするため、車軸方向加振ユニット30に上下方向の荷重が加わることはなく、このような上下方向の荷重に起因する曲げ応力がボールねじ33に加わることはない。一方、ボールねじ33の駆動によってナットガイド42を進退させることができるが、この変位はレール44及びランナーブロック46を介して振動テーブル14に伝わる。このように、本実施形態の構成によれば、振動テーブル14が上下方向に振動しているような状態であっても、車軸方向加振ユニット30によって振動テーブル14を車軸方向に、クロストークなく振動させることができる。 The rail 44 of the connecting portion 40 extends in the vertical direction, and the runner block 46 is movable along the rail 44 in the vertical direction. The runner block 46 is fixed to the vibration table 14. For this reason, when the vibration table 14 is moved in the vertical direction by the vertical vibration unit 20 to be described later, the runner block 46 slides along the rail 44, so that a vertical load is applied to the axle direction vibration unit 30. In addition, bending stress due to such a load in the vertical direction is not applied to the ball screw 33. On the other hand, the nut guide 42 can be advanced and retracted by driving the ball screw 33, but this displacement is transmitted to the vibration table 14 via the rail 44 and the runner block 46. As described above, according to the configuration of the present embodiment, even when the vibration table 14 vibrates in the vertical direction, the vibration table 14 is moved in the axle direction by the axle direction vibration unit 30 without crosstalk. Can be vibrated.
 なお、上下方向に延びるレール44及び、このレール44に係合するランナーブロックは、図1に示されるように、振動テーブル14と上下方向加振ユニット20の間にも設けられており、これによって振動テーブル14を上下方向にスムーズに動かすことができるようになっている。 The rail 44 extending in the vertical direction and the runner block that engages with the rail 44 are also provided between the vibration table 14 and the vertical vibration unit 20 as shown in FIG. The vibration table 14 can be moved smoothly in the vertical direction.
 ランナーブロック取付プレート43の、一方の側面(図4においては右側)43aには、位置検出手段39が配置されている。位置検出手段39は、サーボモータ32から振動テーブル14に向かう方向に一定間隔で並べられた3つの近接センサ39a、ランナーブロック取付プレート43の側面43aに設けられた検出用プレート39b、及び近接センサ39aを支持するセンサ支持プレート39cを有している。近接センサ39aは、各々の近接センサの前に何らかの物体が近接して(例えば1ミリメートル以内)いるかどうかを検出可能な素子である。ランナーブロック取付プレート43の側面43aと近接センサ39aとは充分に離れているため、近接センサ39aは、各々の近接センサ39aの前に検出用プレート39bがあるかどうかを検知することができる。振動試験装置1の図示しない制御手段は、例えば近接センサ39aの検出結果を用いてサーボモータ32をフィードバック制御することができる。 Position detection means 39 is arranged on one side surface (right side in FIG. 4) 43a of the runner block mounting plate 43. The position detection means 39 includes three proximity sensors 39a arranged at regular intervals in the direction from the servo motor 32 toward the vibration table 14, a detection plate 39b provided on the side surface 43a of the runner block mounting plate 43, and the proximity sensor 39a. Has a sensor support plate 39c. The proximity sensor 39a is an element that can detect whether any object is in proximity (for example, within 1 millimeter) in front of each proximity sensor. Since the side surface 43a of the runner block mounting plate 43 and the proximity sensor 39a are sufficiently separated from each other, the proximity sensor 39a can detect whether or not there is a detection plate 39b in front of each proximity sensor 39a. A control means (not shown) of the vibration test apparatus 1 can feedback-control the servo motor 32 using, for example, the detection result of the proximity sensor 39a.
 また、固定フレーム31の上面板31aの上には、ランナーブロック取り付けプレート43をナットガイド42の進退方向両側から挟むように配置された規制ブロック47が設けられている。この規制ブロック47は、ナットガイド42の移動範囲を規制するためのものである。すなわち、サーボモータ32を駆動させてナットガイド42を振動テーブル14に向って移動させ続けると、最終的には、振動テーブル14に対して近位側に配置された規制ブロック47とランナーブロック取付プレート43とが接触し、それ以上ナットガイド42は振動テーブル14に向かう方向に移動できなくなる。ナットガイド42を振動テーブル14から離れる方向に向って移動させ続ける場合も同様であり、振動テーブル14に対して遠位側に配置された規制ブロック47とランナーブロック取付プレート47とが接触して、それ以上ナットガイド42は振動テーブル14から離れる方向に移動できなくなる。 Further, on the upper surface plate 31 a of the fixed frame 31, there are provided restriction blocks 47 arranged so as to sandwich the runner block mounting plate 43 from both sides of the nut guide 42 in the advancing and retreating direction. The restriction block 47 is for restricting the movement range of the nut guide 42. That is, when the servo motor 32 is driven and the nut guide 42 is continuously moved toward the vibration table 14, finally, the restriction block 47 and the runner block mounting plate disposed on the proximal side with respect to the vibration table 14. 43 comes into contact with the nut guide 42 and the nut guide 42 cannot move in the direction toward the vibration table 14 any more. The same applies to the case where the nut guide 42 is continuously moved in the direction away from the vibration table 14, and the restriction block 47 and the runner block mounting plate 47 arranged on the distal side with respect to the vibration table 14 come into contact with each other. Further, the nut guide 42 cannot move away from the vibration table 14.
 次いで、振動テーブル14を上下方向に駆動する上下方向加振ユニット20の構造について説明する。図5は、本実施形態の上下方向加振ユニット20の一部切り欠いた正面図である。なお、振動テーブル14の駆動機構を明確に示すため、後述するエアシリンダ72(図1、2)は図5においては省略されている。 Next, the structure of the vertical vibration unit 20 that drives the vibration table 14 in the vertical direction will be described. FIG. 5 is a partially cutaway front view of the vertical vibration unit 20 of the present embodiment. In order to clearly show the drive mechanism of the vibration table 14, an air cylinder 72 (FIGS. 1 and 2), which will be described later, is omitted in FIG.
 図5に示されるように、上下方向加振ユニット20は、固定フレーム21、サーボモータ22、ボールねじ23、カップリング24、軸受部25、及びボールナット27を有している。固定フレーム21は、図示しない装置ベースに固定される底板21a、底板21aから上下方向に伸びるよう溶接された複数のはり21b、及び、このはり21bの上を覆うようにはり21bに溶接された上面板21cを有している。また、軸受部25を取り付けるための軸受支持プレート21dが、天板21cの上に図示しないボルトを介して固定されている。 As shown in FIG. 5, the vertical vibration unit 20 includes a fixed frame 21, a servo motor 22, a ball screw 23, a coupling 24, a bearing portion 25, and a ball nut 27. The fixed frame 21 is welded to a base plate 21a fixed to a device base (not shown), a plurality of beams 21b welded so as to extend vertically from the base plate 21a, and a beam 21b so as to cover the top of the beam 21b. A face plate 21c is provided. A bearing support plate 21d for mounting the bearing portion 25 is fixed on the top plate 21c via a bolt (not shown).
 カップリング24は、サーボモータ22の駆動軸22aとボールねじ23とを連結するものである。また、軸受部25は、前述の軸受支持プレート21dに固定されており、ボールねじ23を回転可能に支持するようになっている。ボールナット27は、ボールねじ23と係合すると共に、その軸回りに移動されないよう支持されている。そのため、サーボモータ22を駆動すると、ボールねじ23が回転して、ボールナット27がその軸方向(すなわち上下方向)に進退する。このボールナット27の運動が振動テーブル14に伝達されることによって、振動テーブル14は上下方向に駆動される。そして、短い周期でサーボモータ22の回転軸22aの回転方向を切り換えるようサーボモータ22を制御することによって、振動テーブル14を所望の振幅及び周期で上下方向に振動させることができる。 The coupling 24 connects the drive shaft 22a of the servo motor 22 and the ball screw 23. The bearing portion 25 is fixed to the above-described bearing support plate 21d, and supports the ball screw 23 so as to be rotatable. The ball nut 27 engages with the ball screw 23 and is supported so as not to move around its axis. Therefore, when the servo motor 22 is driven, the ball screw 23 rotates and the ball nut 27 advances and retreats in the axial direction (that is, the vertical direction). The movement of the ball nut 27 is transmitted to the vibration table 14 so that the vibration table 14 is driven in the vertical direction. Then, by controlling the servo motor 22 so as to switch the rotation direction of the rotating shaft 22a of the servo motor 22 with a short cycle, the vibration table 14 can be vibrated in the vertical direction with a desired amplitude and cycle.
 軸受支持プレート21dの下面には、2枚の連結プレート21eを介して、略水平方向に広がるモータ支持プレート21fが固定されている。モータ支持プレート21fの下面には、サーボモータ22が吊り下げられ、固定されている。モータ支持プレート21fには、開口部21gが設けられており、サーボモータ22の駆動軸22aはこの開口部21gを貫通し、モータ支持プレート21fの上面側でボールねじ23と連結される。 A motor support plate 21f extending in a substantially horizontal direction is fixed to the lower surface of the bearing support plate 21d via two connecting plates 21e. A servo motor 22 is suspended and fixed on the lower surface of the motor support plate 21f. The motor support plate 21f is provided with an opening 21g. The drive shaft 22a of the servo motor 22 passes through the opening 21g and is connected to the ball screw 23 on the upper surface side of the motor support plate 21f.
 軸受部25は、軸受支持プレート21dを貫通するように設けられている。なお、軸受部25の構造は、車軸方向加振ユニット30における軸受部35(図4)と同様であるので、説明は省略する。 The bearing portion 25 is provided so as to penetrate the bearing support plate 21d. In addition, since the structure of the bearing part 25 is the same as that of the bearing part 35 (FIG. 4) in the axle-axis direction excitation unit 30, description is abbreviate | omitted.
 次いで、ボールナット27と振動テーブル14を連結する連結部60の構成につき説明する。連結部60は、可動フレーム62、車軸方向に延びる一対のレール64、及び、このレール64に沿って移動可能なランナーブロック66を有している。 Next, the configuration of the connecting portion 60 that connects the ball nut 27 and the vibration table 14 will be described. The connecting portion 60 includes a movable frame 62, a pair of rails 64 extending in the axle direction, and a runner block 66 movable along the rails 64.
 可動フレーム62は、ボールナット27に固定されている枠部62a、枠部62aの上端に固定された天板62b、及び天板62bの側梁122方向(図中左右方向)両縁から下方に伸びるよう固定された側壁62cを有している。一対のレール64は、可動フレーム62の天板62bの上面に、側梁122方向に並べられて固定されている。また、レール64と係合するランナーブロック66は、テーブル14の下面に固定されている。このため、車軸方向加振ユニット30によって振動テーブル14が車軸方向に移動すると、ランナーブロック66がレール64に沿ってスライドするため、上下方向加振ユニット20に車軸方向の荷重が加わることはなく、このような車軸方向の荷重に起因する曲げ応力がボールねじ23に加わることはない。一方、ボールねじ23の駆動によってボールナット27及び可動フレーム62を進退させることができるが、この変位はレール64及びランナーブロック66を介して振動テーブル14に伝わる。このように、本実施形態の構成によれば、振動テーブル14が軸受方向に振動しているような状態であっても、上下方向加振ユニット20によって振動テーブル14を上下方向に、クロストークなく振動させることができる。 The movable frame 62 has a frame portion 62a fixed to the ball nut 27, a top plate 62b fixed to the upper end of the frame portion 62a, and a side beam 122 direction (left and right direction in the figure) of the top plate 62b downward from both edges. The side wall 62c is fixed to extend. The pair of rails 64 are arranged and fixed on the top surface of the top plate 62 b of the movable frame 62 in the direction of the side beam 122. The runner block 66 that engages with the rail 64 is fixed to the lower surface of the table 14. For this reason, when the vibration table 14 is moved in the axle direction by the axle direction vibration unit 30, the runner block 66 slides along the rail 64, so that no load in the axle direction is applied to the vertical direction vibration unit 20. Such bending stress due to the load in the axle direction is not applied to the ball screw 23. On the other hand, the ball nut 27 and the movable frame 62 can be advanced and retracted by driving the ball screw 23, but this displacement is transmitted to the vibration table 14 via the rail 64 and the runner block 66. As described above, according to the configuration of the present embodiment, even when the vibration table 14 is vibrating in the bearing direction, the vibration table 14 is moved in the vertical direction by the vertical vibration unit 20 without crosstalk. Can be vibrated.
 なお、本実施形態においては、ランナーブロック66は、図1に示されるように、レール64一本に対して2つずつ、計4つ設けられている。可動フレーム62には比較的大重量の振動テーブル14及び台車の重量が加わるため、ランナーブロック66の数を4として、各ランナーブロック66に過大な荷重が加わらないようにしている。 In the present embodiment, as shown in FIG. 1, two runner blocks 66 are provided, two for each rail 64. Since the relatively heavy weight of the vibration table 14 and the carriage are added to the movable frame 62, the number of the runner blocks 66 is set to four so that an excessive load is not applied to each runner block 66.
 次いで、可動フレーム62を支持するための構造について説明する。可動フレーム62の側壁62cには、夫々一対(図1及び図5)のレール54が固定されている。このレール54は、上下方向に伸びるレールである。図5に示されるように、このレール54には、ランナーブロック56が係合し、レール54に沿って上下方向にスライド可能となっている。ランナーブロック56は、ランナーブロック取付部材65を介して固定フレーム21の天板21b上に固定されるようになっている。ランナーブロック取付部材65は、可動フレーム62の側壁62cと略平行な側板65aと、この側板65aの下端に固定された底板65bとを有しており、全体としてはL字断面形状となっている。また、本実施形態においては、特に重心の高く且つ大重量のワークを振動テーブル14の上に固定すると、水平方向に延びる軸回りの大きなモーメントが可動フレーム62に加わりやすくなっている。ランナーブロック取付部材65は、この回転モーメントに耐えられるよう、リブによって補強されている。具体的には、ランナーブロック取付部材65の両端(図3及び図5参照)における側板65aと底板65bとが成すコーナーに、一対の第1リブ65cが設けられ、さらに、この一対の第1リブ65cの間に渡された第2リブ65dが設けられている。 Next, a structure for supporting the movable frame 62 will be described. A pair of rails 54 (FIGS. 1 and 5) are fixed to the side wall 62c of the movable frame 62, respectively. The rail 54 is a rail extending in the vertical direction. As shown in FIG. 5, a runner block 56 is engaged with the rail 54, and can slide up and down along the rail 54. The runner block 56 is fixed on the top plate 21 b of the fixed frame 21 via the runner block mounting member 65. The runner block mounting member 65 includes a side plate 65a substantially parallel to the side wall 62c of the movable frame 62, and a bottom plate 65b fixed to the lower end of the side plate 65a, and has an L-shaped cross section as a whole. . In this embodiment, when a particularly heavy and heavy workpiece is fixed on the vibration table 14, a large moment around an axis extending in the horizontal direction is easily applied to the movable frame 62. The runner block mounting member 65 is reinforced by ribs so as to withstand this rotational moment. Specifically, a pair of first ribs 65c are provided at the corners formed by the side plate 65a and the bottom plate 65b at both ends (see FIGS. 3 and 5) of the runner block mounting member 65, and the pair of first ribs is further provided. A second rib 65d is provided between 65c.
 このように、ランナーブロック56が固定フレーム21に対して固定されており、且つ可動フレーム62に固定されたレール64に対して上下方向にスライド可能となっている。従って、可動フレーム62は、上下方向にスライド可能であるとともに、可動フレーム62の上下方向以外の移動は規制される。このように、可動フレーム62の移動方向が上下方向のみに規制されているため、サーボモータ22を駆動してボールねじ23を回動させると、可動フレーム62及びこの可動フレーム62とレール64及びランナーブロック66を介して連結された振動テーブル14は、上下方向に進退する。 Thus, the runner block 56 is fixed to the fixed frame 21 and is slidable in the vertical direction with respect to the rail 64 fixed to the movable frame 62. Therefore, the movable frame 62 is slidable in the vertical direction, and movement of the movable frame 62 other than the vertical direction is restricted. Thus, since the moving direction of the movable frame 62 is restricted only in the vertical direction, when the servo motor 22 is driven to rotate the ball screw 23, the movable frame 62, the movable frame 62, the rail 64, and the runner are rotated. The vibration table 14 connected via the block 66 moves forward and backward.
 また、車軸方向加振ユニット30の位置検出手段39(図4)と同様の位置検出手段(不図示)が上下方向加振ユニット20にも設けられている。振動試験装置1の図示しない制御手段は、この位置検出手段の検出結果に基づいて、可動フレーム62の高さが所定の範囲内となるように制御することができる。 Further, position detection means (not shown) similar to the position detection means 39 (FIG. 4) of the axle direction vibration unit 30 is also provided in the vertical vibration unit 20. A control means (not shown) of the vibration test apparatus 1 can control the height of the movable frame 62 within a predetermined range based on the detection result of the position detection means.
 以上のように、本実施形態においては、上下方向加振ユニット20と車軸方向加振ユニット30とが、夫々クロストークなく振動テーブル14を同時に加振できるようになっている。このため、車軸方向と上下方向の振動が合成された複雑な振動を台車100に与えることができる。 As described above, in the present embodiment, the vertical vibration unit 20 and the axle vibration unit 30 can simultaneously vibrate the vibration table 14 without crosstalk. For this reason, a complicated vibration in which the vibrations in the axle direction and the vertical direction are combined can be given to the carriage 100.
 次に、本実施形態によるレール44及びランナーブロック46から構成されるリニアガイド機構について、図面を用いて詳細に説明する。なお、レール34とランナーブロック36、レール54とランナーブロック56、及びレール64とランナーブロック66もまた、レール44及びランナーブロック46と同一の構造である。 Next, the linear guide mechanism including the rail 44 and the runner block 46 according to the present embodiment will be described in detail with reference to the drawings. The rail 34 and the runner block 36, the rail 54 and the runner block 56, and the rail 64 and the runner block 66 also have the same structure as the rail 44 and the runner block 46.
 図6は、レール44及びランナーブロック46を、レール44の長軸方向に垂直な一面(すなわち水平面)で切断した断面図であり、図7は図4のI-I断面図である。図
6及び図7に示されるように、ランナーブロック46にはレール44を囲むように凹部が形成されており、この凹部にはレール44の軸方向に延びる4本の溝46a、46a’が形成されている。この溝46a、46a’には、多数のステンレス鋼製のボール46bが収納されている。レール44には、ランナーブロック46の溝46a、46a’と対向する位置にそれぞれ溝44a、44a’が設けられており、ボール46bが溝46aと溝44a、又は溝46a’と溝44a’との間に挟まれるようになっている。溝46a、46a’、44a、44a’の断面形状は円弧状であり、その曲率半径はボール46bの半径と略等しい。このため、ボール46bは、あそびのほとんど無い状態で溝46a、46a’、44a、44a’に密着する。
6 is a cross-sectional view of the rail 44 and the runner block 46 taken along one plane (that is, a horizontal plane) perpendicular to the major axis direction of the rail 44, and FIG. 7 is a cross-sectional view taken along the line II in FIG. As shown in FIGS. 6 and 7, the runner block 46 is formed with a recess so as to surround the rail 44, and four grooves 46 a and 46 a ′ extending in the axial direction of the rail 44 are formed in the recess. Has been. Numerous stainless steel balls 46b are accommodated in the grooves 46a and 46a ′. The rail 44 is provided with grooves 44a and 44a 'at positions facing the grooves 46a and 46a' of the runner block 46, respectively, and the ball 46b is formed between the grooves 46a and 44a or between the grooves 46a 'and 44a'. It is designed to be sandwiched between them. The cross-sectional shape of the grooves 46a, 46a ′, 44a, 44a ′ is an arc shape, and the radius of curvature thereof is substantially equal to the radius of the ball 46b. For this reason, the ball 46b is in close contact with the grooves 46a, 46a ′, 44a, 44a ′ with little play.
 ランナーブロック46の内部には、溝46aの夫々と略平行な4本のボール退避路46c、46c’が設けられている。図7に示されるように、溝46aと退避路46cとは、夫々の両端でU字路46dを介して接続されており、溝46a、溝44a、退避路46c、及びU字路46dによって、ボール46bを循環させるための循環路が形成される。溝46a’、溝44a’及び退避路46c’によっても、同様の循環路が形成されている。 Inside the runner block 46, four ball retraction paths 46c and 46c 'are provided which are substantially parallel to the grooves 46a. As shown in FIG. 7, the groove 46a and the retreat path 46c are connected to each other via a U-shaped path 46d, and the groove 46a, the groove 44a, the retreat path 46c, and the U-shaped path 46d A circulation path for circulating the ball 46b is formed. A similar circulation path is also formed by the groove 46a ', the groove 44a', and the retreat path 46c '.
 このため、ランナーブロック46がレール44に対して移動すると、多数のボール46bが溝46a、46a’、44a、44a’を転がりながら循環路を循環する。このため、レール軸方向以外の方向に大荷重が加わっていたとしても、多数のボールでランナーブロックを支持可能であると共にボール46bが転がることによりレール軸方向の抵抗が小さく保たれるので、ランナーブロック46をレール44に対してスムーズに移動させることができる。なお、退避路46c及びU字路46dの内径は、ボール46bの径よりやや大きくなっている。このため、退避路46c及びU字路46dとボール46bとの間に発生する摩擦力はごくわずかであり、それによってボール46bの循環が妨げられることはない。 Therefore, when the runner block 46 moves with respect to the rail 44, a large number of balls 46b circulate in the circulation path while rolling in the grooves 46a, 46a ', 44a, 44a'. For this reason, even if a heavy load is applied in a direction other than the rail axial direction, the runner block can be supported by a large number of balls, and the resistance in the rail axial direction is kept small by rolling the balls 46b. The block 46 can be moved smoothly with respect to the rail 44. The inner diameters of the retreat path 46c and the U-shaped path 46d are slightly larger than the diameter of the ball 46b. For this reason, the frictional force generated between the retreat path 46c and the U-shaped path 46d and the ball 46b is very small, and the circulation of the ball 46b is not hindered.
 図示されているように、溝46aと44aに挟まれた二列のボール46bの列は、接触角が略±45°となる正面組合せ型のアンギュラ玉軸受を形成する。この場合の接触角とは、溝46a及び44aがボール46bと接触する接触点同士を結んだ線が、リニアガイド機構のラジアル方向(ランナーブロックからレールに向かう方向であり、図6における下方向)に対してなす角度である。このように形成されたアンギュラ玉軸受は、逆ラジアル方向(レールからランナーブロックに向かう方向であり、図6における上方向)及び横方向(ラジアル方向及びランナーブロックの進退方向の双方に直交する方向であり、図6における左右方向)の荷重を支持することができる。 As shown in the drawing, the two rows of balls 46b sandwiched between the grooves 46a and 44a form a front combination type angular ball bearing having a contact angle of approximately ± 45 °. In this case, the contact angle means that the line connecting the contact points where the grooves 46a and 44a contact the ball 46b is the radial direction of the linear guide mechanism (the direction from the runner block to the rail, the downward direction in FIG. 6). It is an angle made with respect to. The angular ball bearings formed in this way are in the reverse radial direction (the direction from the rail toward the runner block, the upward direction in FIG. 6) and the lateral direction (the direction orthogonal to both the radial direction and the advance / retreat direction of the runner block). Yes, the load in the left-right direction in FIG. 6 can be supported.
 同様に、溝46a’と44a’に挟まれた二列のボール46bの列は、接触角(溝46a’及び44a’がボール46bと接触する接触点同士を結んだ線が、リニアガイド機構の逆ラジアル方向に対してなす角度)が略±45°となる正面組合せ型のアンギュラ玉軸受を形成する。このアンギュラ玉軸受は、ラジアル方向及び横方向の荷重を支持することができる。 Similarly, the two rows of balls 46b sandwiched between the grooves 46a ′ and 44a ′ have a contact angle (a line connecting contact points where the grooves 46a ′ and 44a ′ are in contact with the ball 46b is connected to the linear guide mechanism). A front combination angular contact ball bearing having an angle of about ± 45 ° with respect to the reverse radial direction is formed. This angular ball bearing can support radial and lateral loads.
 また、溝46aと44aの一方(図中左側)と、溝46a’と44a’の一方(図中左側)にそれぞれ挟まれた二列のボール46bの列もまた、正面組み合わせ型のアンギュラ玉軸受を形成する。同様に溝46aと44aの他方(図中右側)と、溝46a’と44a’の他方(図中右側)にそれぞれ挟まれた二列のボール46bの列もまた、正面組合せ型のアンギュラ玉軸受を形成する。 Further, two rows of balls 46b sandwiched between one of the grooves 46a and 44a (left side in the figure) and one of the grooves 46a 'and 44a' (left side in the figure) are also a front combination type angular ball bearing. Form. Similarly, two rows of balls 46b sandwiched between the other of the grooves 46a and 44a (the right side in the figure) and the other of the grooves 46a 'and 44a' (the right side in the figure) are also a front combination type angular ball bearing. Form.
 このように、本実施形態においては、ラジアル方向、逆ラジアル方向、横方向のそれぞれに働く荷重に対して、多数のボール46bを有する正面組合せ型のアンギュラ玉軸受が支持することになり、レール軸方向以外の方向に加わる大荷重を十分支持できるようになっている。 Thus, in this embodiment, the front combination type angular contact ball bearing having a large number of balls 46b supports the load acting in each of the radial direction, the reverse radial direction, and the lateral direction. A large load applied in a direction other than the direction can be sufficiently supported.
 次いで、本実施形態に採用されているリニアガイド機構のレールの取り付け構造について説明する。図8は、ナットガイド42に取り付けられたレール44を示す斜視図である。なお、このレールの取り付け構造は、本実施形態の振動試験装置で使用されている他のレールについても同様である。 Next, the rail mounting structure of the linear guide mechanism employed in this embodiment will be described. FIG. 8 is a perspective view showing the rail 44 attached to the nut guide 42. The rail mounting structure is the same for other rails used in the vibration testing apparatus of this embodiment.
 図8に示されるように、ナットガイド42には、レール44と略同じ幅の溝42aが形成されており、レール44は、この溝42aに嵌め込まれている。レール44には、その軸方向に並んで配置された複数の貫通孔44bが形成されている。また、図中には示されていないが、溝42aの底の貫通孔44bに対応する位置には、複数のボルト穴が形成されている。レール44は、貫通孔44bにボルト44cを通して、ナットガイド42のボルト穴にねじ込むことによって、ナットガイド42に固定される。 As shown in FIG. 8, the nut guide 42 is formed with a groove 42a having substantially the same width as the rail 44, and the rail 44 is fitted in the groove 42a. The rail 44 is formed with a plurality of through holes 44b arranged side by side in the axial direction. Although not shown in the drawing, a plurality of bolt holes are formed at positions corresponding to the through holes 44b at the bottom of the groove 42a. The rail 44 is fixed to the nut guide 42 by passing the bolt 44c through the through hole 44b and screwing it into the bolt hole of the nut guide 42.
 本実施形態においては、レール44の貫通孔44bの間隔(及び天坂のボルト穴の間隔)sは、レール44の幅wの50~80%、好ましくは60~70%と比較的短くなっている。このように、ボルト44cの取り付け間隔を比較的短くすることによって、レール44は撓むことなくナットガイド42に強固に固定される。 In the present embodiment, the interval between the through holes 44b of the rail 44 (and the interval between the bolt holes of Anzaka) s is relatively short, 50 to 80%, preferably 60 to 70% of the width w of the rail 44. Yes. Thus, the rail 44 is firmly fixed to the nut guide 42 without being bent by relatively shortening the mounting interval of the bolts 44c.
 以上説明した本実施形態のリニアガイド機構においては、ボール46bの転動によってランナーブロック46をレール44に対してスライドさせるものであるが、本発明の実施形態は上記の構成に限定されるものではない。以下に説明する変形例のように、ボール46bの代わりにローラ246bを使用し、このローラ246bの転動によってランナーブロック246をレール244に対してスライドさせるリニアガイド機構を使用してもよい。 In the linear guide mechanism of the present embodiment described above, the runner block 46 is slid with respect to the rail 44 by the rolling of the ball 46b. However, the embodiment of the present invention is not limited to the above configuration. Absent. As in a modification described below, a roller 246b may be used instead of the ball 46b, and a linear guide mechanism that slides the runner block 246 relative to the rail 244 by rolling of the roller 246b may be used.
 本発明の実施形態の変形例を図9から図12に示す。図9は、ランナーブロック246及びレール244を、レール244の長軸方向に垂直な一面で切断した断面図である。図10及び11は、夫々図9のII-II断面図及びIII-III断面図である。図9に示されるように、ランナーブロック246にはレール244を囲むように凹部246eが形成されている。この凹部246eとレール244の外周面との間には、ローラ保持部材246fが挟み込まれている。このローラ保持部材246fによって、凹部246eとレール244の外周面との隙間に、軸方向に延びる4本の転動溝246a、246a’が形成される。この転動溝246a、246a’には、多数のステンレス鋼製のローラ246bが収納されている。ローラ246bは、その軸方向両端がローラ保持部材246fによって保持され、円筒面がランナーブロック246の凹部とレール244の外周面の双方に当接するようになっている。ランナーブロック246の凹部とレール244の外周面との間隔は、ローラ246bの径に略等しく、ローラ246bは、あそびのほとんど無い状態でランナーブロック246の凹部246e及びレール244の外周面に密着する。 FIG. 9 to FIG. 12 show modifications of the embodiment of the present invention. FIG. 9 is a cross-sectional view of the runner block 246 and the rail 244 taken along a plane perpendicular to the major axis direction of the rail 244. 10 and 11 are a II-II sectional view and a III-III sectional view of FIG. 9, respectively. As shown in FIG. 9, a recess 246 e is formed in the runner block 246 so as to surround the rail 244. A roller holding member 246f is sandwiched between the recess 246e and the outer peripheral surface of the rail 244. The roller holding member 246f forms four rolling grooves 246a and 246a 'extending in the axial direction in the gap between the recess 246e and the outer peripheral surface of the rail 244. A large number of stainless steel rollers 246b are accommodated in the rolling grooves 246a and 246a '. Both ends of the roller 246b in the axial direction are held by a roller holding member 246f, and the cylindrical surface is in contact with both the recess of the runner block 246 and the outer peripheral surface of the rail 244. The distance between the recess of the runner block 246 and the outer peripheral surface of the rail 244 is substantially equal to the diameter of the roller 246b, and the roller 246b is in close contact with the recess 246e of the runner block 246 and the outer peripheral surface of the rail 244 with little play.
 ランナーブロック246の内部には、転動溝246aの夫々と略平行なレール退避路246c’が2本設けられている。図10に示されるように、レール退避路246c’は、ローラ246bを収容するチューブをC字形状に屈曲して形成したものである。転動溝246aと退避路246c’とは、夫々の両端で接続されており、ローラ246bを循環させるための循環路を形成する。また、図11に示されるように、ランナーブロック246の内部には、転動溝246a’の夫々と略平行なレール退避路246cが2本設けられており、退避路246c及び転動溝246a’もまた、同様の循環路を形成する。 Inside the runner block 246, two rail retracting paths 246c 'are provided that are substantially parallel to the rolling grooves 246a. As shown in FIG. 10, the rail retracting path 246c 'is formed by bending a tube that accommodates the roller 246b into a C shape. The rolling groove 246a and the retreat path 246c 'are connected at both ends, and form a circulation path for circulating the roller 246b. Further, as shown in FIG. 11, two rail retreat paths 246 c that are substantially parallel to the rolling grooves 246 a ′ are provided inside the runner block 246, and the retreat paths 246 c and the rolling grooves 246 a ′ are provided. Also forms a similar circuit.
 このため、ランナーブロック246がレール244に対して移動すると、多数のローラ246bが転動溝246a、246a’を転がりながら循環路を循環する。このため、レール軸方向以外の方向に大荷重が加わっていたとしても、多数のローラ246bでランナーブロック246を支持可能であると共にローラ246bが転がることによりレール軸方向の抵抗が小さく保たれるので、ランナーブロック246をレール244に対してスムーズに移動させることができる。 Therefore, when the runner block 246 moves with respect to the rail 244, a large number of rollers 246b circulate in the circulation path while rolling on the rolling grooves 246a and 246a '. For this reason, even if a heavy load is applied in directions other than the rail axial direction, the runner block 246 can be supported by a large number of rollers 246b, and the resistance in the rail axial direction is kept small by rolling the rollers 246b. The runner block 246 can be smoothly moved with respect to the rail 244.
 本変形例においては、ランナーブロック246の凹部246eとレール244の外周面との間隔d(図10、図11)は、ローラ246bの径よりわずかに(1マイクロメートル以下)大きい程度の長さとなっている。このような状態においては、ランナーブロック246及びレール244にローラ246bからのプリロードが加わって、ローラ246bの外周面がランナーブロック246の凹部246e及びレール244の外周面に密着した状態となる。そして、レール244の軸方向以外の方向の荷重がランナーブロック246及びレール244の一方に加わった場合、その荷重はローラ246bを介して、応答遅れを殆ど起こすことなく他方に伝達される。このため、上下方向加振ユニット20及び車軸方向加振ユニット30を数100Hz程度の高い周波数で往復駆動させたとしても、その振動は中間ステージを介して確実に振動テーブル14に伝達される。すなわち、本実施形態の振動試験装置1によれば、高周波で振動テーブル14を振動させることができる。 In this modification, the distance d (FIGS. 10 and 11) between the recess 246e of the runner block 246 and the outer peripheral surface of the rail 244 is a length that is slightly larger (1 micrometer or less) than the diameter of the roller 246b. ing. In such a state, the preload from the roller 246b is applied to the runner block 246 and the rail 244, and the outer peripheral surface of the roller 246b is in close contact with the concave portion 246e of the runner block 246 and the outer peripheral surface of the rail 244. When a load in a direction other than the axial direction of the rail 244 is applied to one of the runner block 246 and the rail 244, the load is transmitted to the other via the roller 246b with almost no response delay. For this reason, even if the vertical direction vibration unit 20 and the axle direction vibration unit 30 are reciprocally driven at a high frequency of about several hundred Hz, the vibration is reliably transmitted to the vibration table 14 via the intermediate stage. That is, according to the vibration test apparatus 1 of the present embodiment, the vibration table 14 can be vibrated at a high frequency.
 図9に示されているように、4本の転動溝246a、246a’に配置された4列のローラ246bは、その軸が、レール244の軸に直交する面上において90°おきとなるよう配置されている。 As shown in FIG. 9, the four rows of rollers 246 b arranged in the four rolling grooves 246 a and 246 a ′ have their axes every 90 ° on a plane orthogonal to the axis of the rail 244. It is arranged as follows.
 各ローラ246bがこのように配置されているため、ランナーブロック246からレール244の上面に向かう方向(図9において上から下に向かう方向)の荷重が加わる場合、この荷重は、主として2本の転動溝246aに配置された2列のローラ246bが受ける。また、ランナーブロック246に、レール244の上面から離れるような方向(図9において下から上に向かう方向)の荷重が加わる場合は、この荷重は、主として2本の転動溝246a’に配置された2列のローラ246bが受ける。 Since each roller 246b is arranged in this way, when a load in a direction from the runner block 246 toward the upper surface of the rail 244 (a direction from the top to the bottom in FIG. 9) is applied, this load mainly includes two rolling elements. The two rows of rollers 246b disposed in the moving groove 246a receive. In addition, when a load is applied to the runner block 246 in a direction away from the upper surface of the rail 244 (a direction from the bottom to the top in FIG. 9), this load is mainly disposed in the two rolling grooves 246a ′. Two rows of rollers 246b receive.
 また、ランナーブロック246に、その一方の側面(図中左側)から他方の側面(図中右側)に向かう方向の荷重が加わる場合は、その荷重は、主として転動溝246a’及び246aのランナーブロック一方側(図中左側)に配置されている2列のローラ246bが受ける。一方、ランナーブロック246に、その他方の側面から一方の側面に向かう方向の荷重が加わる場合は、その荷重は、主として転動溝246a’及び246aのランナーブロック他方側(図中右側)に配置されている2列のローラ246bが受ける。 Further, when a load is applied to the runner block 246 in the direction from one side surface (left side in the figure) to the other side surface (right side in the figure), the load is mainly caused by the runner blocks of the rolling grooves 246a ′ and 246a. Two rows of rollers 246b arranged on one side (left side in the figure) receive. On the other hand, when a load in the direction from the other side surface to the one side surface is applied to the runner block 246, the load is mainly disposed on the other side of the runner block (right side in the drawing) of the rolling grooves 246a ′ and 246a. The two rows of rollers 246b are received.
 さらに、ランナーブロック246に、レール244の軸方向周りのねじり荷重が加わる場合、そのねじり荷重の方向が図9中時計回りであれば、その荷重は、主として転動溝246aのランナーブロック他方側(図中右側)に配置されるローラ246bと、転動溝246a’のランナーブロック一方側(図中左側)に配置されるローラ246bが受ける。ねじり荷重の方向が図9中反時計回りであれば、その荷重は、主として転動溝246aのランナーブロック一方側に配置されるローラ246bと、転動溝246a’のランナーブロック他方側に配置されるローラ246bが受ける。 Furthermore, when a torsional load around the axial direction of the rail 244 is applied to the runner block 246, if the direction of the torsional load is clockwise in FIG. 9, the load is mainly the other side of the runner block of the rolling groove 246a ( The roller 246b disposed on the right side in the drawing and the roller 246b disposed on one side of the runner block (left side in the drawing) of the rolling groove 246a ′ are received. If the direction of the torsional load is counterclockwise in FIG. 9, the load is mainly arranged on the roller 246b arranged on one side of the runner block of the rolling groove 246a and on the other side of the runner block of the rolling groove 246a ′. The roller 246b receives.
 このように、本変形例においては、ランナーブロック246に図9中上下方向、左右方向、ねじり方向の荷重の何れが加わった場合であっても、それらの荷重は常に2列のローラ246bが受けるようになっている。このため、本変形例のリニアガイド機構は、これらの方向に大荷重が加わったとしても、特定の列のローラ246bのみに荷重が加わってローラ246bが破損に至ることはなく且つスムーズに転動可能であり、ローラ246bによってランナーブロック246はレール244に沿ってスムーズに移動可能である。 As described above, in this modification, regardless of whether the load in the vertical direction, the horizontal direction, or the torsional direction in FIG. 9 is applied to the runner block 246, these loads are always received by the two rows of rollers 246b. It is like that. For this reason, the linear guide mechanism of this modification does not cause damage to the roller 246b by applying a load only to the roller 246b in a specific row even when a heavy load is applied in these directions, and smoothly rolls. The runner block 246 can be smoothly moved along the rail 244 by the roller 246b.
 ランナーブロック246のローラ246bの斜視図を図12に示す。図12に示されるように、本実施形態の振動試験装置1に使用されるランナーブロックのローラ同士の間には、リテーナ246gが設けられている。リテーナ246gは、隣接する二本のローラ246bの外周面と当接する二つの円筒面を有し、この円筒面を介してリテーナ246gはローラ246bに接触する。リテーナ246gの2円筒面の軸は、互いに平行となっている。そして、リテーナ246gがその前後でローラ246bに接触しているため、循環路中のローラ246bはその軸方向が平行となるように整列される。このため、ローラ246bは循環路内をガタつくことなくスムーズに循環する。 A perspective view of the roller 246b of the runner block 246 is shown in FIG. As shown in FIG. 12, a retainer 246g is provided between the rollers of the runner block used in the vibration test apparatus 1 of the present embodiment. The retainer 246g has two cylindrical surfaces that are in contact with the outer peripheral surfaces of the two adjacent rollers 246b, and the retainer 246g contacts the roller 246b through the cylindrical surfaces. The axes of the two cylindrical surfaces of the retainer 246g are parallel to each other. Since the retainer 246g is in contact with the roller 246b before and after the retainer 246g, the rollers 246b in the circulation path are aligned so that their axial directions are parallel to each other. For this reason, the roller 246b circulates smoothly in the circulation path without rattling.
 また、リテーナ246gを有さないようなリニアガイド機構においては、ローラ246b同士が比較的小さい接触面積にて接触するため、接触部には大きな応力が加わる。これに対し、本変形例のリニアガイド機構は、ローラ246bとリテーナ246gの円筒面同士が比較的広い接触面積にて接触し、この接触によってローラ246bに加わる応力は比較的小さく保たれる。そのため、本変形例のリニアガイド機構は、リテーナを有さないものと比べ、ローラ246bの破損や磨耗を抑えることができる。 Further, in the linear guide mechanism that does not have the retainer 246g, the rollers 246b contact with each other with a relatively small contact area, so that a large stress is applied to the contact portion. On the other hand, in the linear guide mechanism of this modification, the cylindrical surfaces of the roller 246b and the retainer 246g are in contact with each other over a relatively wide contact area, and the stress applied to the roller 246b by this contact is kept relatively small. Therefore, the linear guide mechanism of this modification can suppress the damage and wear of the roller 246b as compared with the linear guide mechanism that does not have a retainer.
 さらに、本実施形態の変形例で使用されるリニアガイド機構は、ローラ246b同士が直接接触しないようになっている。ローラ246b同士が直接接触すると騒音が発生するが、本実施形態においては、ローラ246bの間にリテーナ246gが配置されているため、このような騒音を抑えることができる。 Furthermore, the linear guide mechanism used in the modified example of the present embodiment is configured such that the rollers 246b do not directly contact each other. Although noise is generated when the rollers 246b are in direct contact with each other, in the present embodiment, since the retainer 246g is disposed between the rollers 246b, such noise can be suppressed.
 本実施形態に係る振動試験装置1は、エアシリンダ機構70(図1~3)により、各振動テーブル14に上向きの静荷重を加えることができる。また、台車100の横梁124は、反力フレーム80(図2)によって上から押さえつけられている。すなわち、台車100は反力フレーム80とエアシリンダ機構70によって上下方向から挟まれた状態となっており、エアシリンダ機構70を作用させて振動テーブル14に上向きの荷重を加えると、反力フレーム80から下向きの荷重が台車100に加えられることになる。また、エアシリンダ機構によって台車100が下から支えられることになるため、反力フレーム80から台車100に加えられる下向きの荷重及び台車100自身の重量が上下方向加振ユニット20のナット27、送りねじ23及びサーボモータ22に加わることはない。従って、サーボモータ22のトルクは、台車100の上下方向の振動による慣性に対して十分大きい程度でよい。すなわち、サーボモータ22のトルクは、車軸方向加振ユニット30のサーボモータ32のトルクと同程度でよい。 The vibration test apparatus 1 according to the present embodiment can apply an upward static load to each vibration table 14 by the air cylinder mechanism 70 (FIGS. 1 to 3). Further, the horizontal beam 124 of the carriage 100 is pressed from above by a reaction force frame 80 (FIG. 2). That is, the carriage 100 is sandwiched between the reaction force frame 80 and the air cylinder mechanism 70 from above and below. When the air cylinder mechanism 70 is applied to apply an upward load to the vibration table 14, the reaction force frame 80. A downward load is applied to the carriage 100. Further, since the carriage 100 is supported from below by the air cylinder mechanism, the downward load applied to the carriage 100 from the reaction force frame 80 and the weight of the carriage 100 itself are caused by the nut 27, the feed screw and the vertical vibration unit 20. 23 and the servo motor 22 are not added. Accordingly, the torque of the servo motor 22 may be sufficiently large with respect to the inertia due to the vertical vibration of the carriage 100. That is, the torque of the servo motor 22 may be approximately the same as the torque of the servo motor 32 of the axle direction vibration unit 30.
 図1~3に示されるように、本実施形態の反力フレーム80は、側梁122方向略中央下部に配置された装置フレーム11の上から直立する梁である。反力フレーム80の上端には、側梁122方向両側に分岐して延びる押圧部81が形成されており、反力フレーム80は全体としてT字形状となっている。この押圧部81の下面が、一対の横梁124に当接してこれを上から押さえつけている。なお、図1、3に示されているように、反力フレーム80は横梁124の車軸方向両側に一つずつ設けられており、台車100は、各横梁124の車軸方向両側、すなわち計4カ所で反力フレーム80によって押さえつけられる。 As shown in FIGS. 1 to 3, the reaction force frame 80 of the present embodiment is a beam that stands upright from above the apparatus frame 11 that is disposed at a substantially lower center in the side beam 122 direction. At the upper end of the reaction force frame 80, a pressing portion 81 is formed that branches and extends on both sides in the direction of the side beam 122. The reaction force frame 80 has a T-shape as a whole. The lower surface of the pressing portion 81 abuts against the pair of transverse beams 124 and presses them from above. As shown in FIGS. 1 and 3, reaction force frames 80 are provided one on each side in the axial direction of the cross beam 124, and the carriage 100 is provided on both sides in the axial direction of each cross beam 124, that is, a total of four locations. It is pressed down by the reaction force frame 80.
 エアシリンダ機構70は、各上下方向加振ユニット20の固定フレーム21と可動フレーム28との間に8つずつ設けられているエアシリンダ72(図1)と、このエアシリンダ72にエアを供給するエアタンク74とを有している。図1に示されるように、エアタンク74は、上下方向加振ユニット20毎に1つずつ設けられており、エアタンク74からエアシリンダ72に供給されるエアの圧力を調整することによって、振動テーブル14毎に加える荷重を調整することができる。エアシリンダ機構70による荷重の大きさは、荷重センサ16によって計測されており、振動試験装置1のコントローラ(後述)が、荷重センサ16の計測結果に基づいて、エアシリンダ72に送られるエアの圧力を調整するようになっている。 The air cylinder mechanism 70 supplies eight air cylinders 72 (FIG. 1) provided between the fixed frame 21 and the movable frame 28 of each vertical vibration unit 20 and air to the air cylinders 72. And an air tank 74. As shown in FIG. 1, one air tank 74 is provided for each vertical vibration unit 20, and the vibration table 14 is adjusted by adjusting the pressure of the air supplied from the air tank 74 to the air cylinder 72. The load applied every time can be adjusted. The magnitude of the load by the air cylinder mechanism 70 is measured by the load sensor 16, and the pressure of the air sent to the air cylinder 72 by the controller (described later) of the vibration test apparatus 1 based on the measurement result of the load sensor 16. To be adjusted.
 本実施形態においては、走行中の鉄道車両における台車の挙動を再現できるように、車軸駆動機構90によって台車100の車軸112を回転させながら、台車100を加振できるようになっている。車軸駆動機構90の構成について以下説明する。 In this embodiment, the carriage 100 can be vibrated while the axle 112 of the carriage 100 is rotated by the axle drive mechanism 90 so that the behavior of the carriage in the running railway vehicle can be reproduced. The configuration of the axle drive mechanism 90 will be described below.
 車軸駆動機構90は、サーボモータ92と、第1~第4のプーリ93~96とを有している。第1のプーリ93は、サーボモータ92の駆動軸に固定されており、サーボモータ92によって回転駆動される。第4のプーリ96は、車軸112の略中央部に取り付けられている。第2及び第3のプーリ94、95は、サーボモータ92の真上且つ第4のプーリ96と略同一高さに配置されている(図3)。図1~3に示されているように、第2のプーリ94と第3のプーリ95は、共通の回転軸91に固定されており、一体となって回転する。また、回転軸91を支持する軸受及びサーボモータ92は、共に装置フレーム11上に固定されている。 The axle drive mechanism 90 has a servo motor 92 and first to fourth pulleys 93 to 96. The first pulley 93 is fixed to the drive shaft of the servo motor 92 and is driven to rotate by the servo motor 92. The fourth pulley 96 is attached to the approximate center of the axle 112. The second and third pulleys 94 and 95 are disposed directly above the servo motor 92 and at substantially the same height as the fourth pulley 96 (FIG. 3). As shown in FIGS. 1 to 3, the second pulley 94 and the third pulley 95 are fixed to a common rotating shaft 91 and rotate together. Further, the bearing and the servo motor 92 that support the rotating shaft 91 are both fixed on the apparatus frame 11.
 図3に示されるように、第1のプーリ93と第2のプーリ94には第1の無端ベルト97が巻回されている。同様に、第3のプーリ95と第4のプーリ96には第2の無端ベルト98が巻回されている。従って、サーボモータ92を駆動すると、その駆動軸の回転運動は第1の無端ベルト97を介して第1のプーリ93から第2のプーリ94に伝わり、第2のプーリ94及び第3のプーリ95が回転する。そして、第3のプーリ95の回転運動は、第2の無端ベルト98を介して第4のプーリ96に伝達され、これによって車軸112が回転する。このように、本実施形態の構成においては、第1及び第2のプーリ93、94と第1の無端ベルト97、及び第3及び第4のプーリ95、96と第2の無端ベルト98から構成される2組のベルト-プーリ機構を介して、車軸112を回転させることができるようになっている。このように、ベルト-プーリ機構によって車軸112を回転させる構成であるため、加振によって第4のプーリ96が他のプーリ93~95に対して上下方向及び車軸方向に多少変位したとしても、第2のベルト98が第3、第4のプーリ95、96に対して緩むことはない。従って、本実施形態に係る振動試験装置1は、車軸112を回転させると同時に、台車100を上下方向及び車軸方向に振動させることができる。 As shown in FIG. 3, a first endless belt 97 is wound around the first pulley 93 and the second pulley 94. Similarly, a second endless belt 98 is wound around the third pulley 95 and the fourth pulley 96. Therefore, when the servo motor 92 is driven, the rotational motion of the drive shaft is transmitted from the first pulley 93 to the second pulley 94 via the first endless belt 97, and the second pulley 94 and the third pulley 95. Rotates. Then, the rotational movement of the third pulley 95 is transmitted to the fourth pulley 96 via the second endless belt 98, whereby the axle 112 rotates. Thus, in the configuration of the present embodiment, the first and second pulleys 93 and 94, the first endless belt 97, the third and fourth pulleys 95 and 96, and the second endless belt 98 are configured. The axle 112 can be rotated through the two sets of belt-pulley mechanisms. Thus, since the axle 112 is rotated by the belt-pulley mechanism, even if the fourth pulley 96 is slightly displaced in the vertical direction and the axle direction with respect to the other pulleys 93 to 95 by vibration, the first pulley 96 is displaced. The second belt 98 does not loosen with respect to the third and fourth pulleys 95 and 96. Therefore, the vibration test apparatus 1 according to the present embodiment can vibrate the carriage 100 in the vertical direction and the axle direction at the same time as rotating the axle 112.
 次に、本実施形態の振動試験装置1の制御について説明する。図13は、本実施形態の振動試験装置1のブロック図である。図13に示されるように、振動試験装置1は、コントローラ2、電源3、及びサーボアンプ4を有している。サーボアンプ4は、電源3から電力の供給を受けて三相の交流電流を生成し、これをサーボモータ22、32及び92に供給する。コントローラ2はサーボアンプ4を制御して、各サーボモータ22、32、92に供給する交流電流の振幅及び周波数を調整可能である。これにより、各サーボモータ22、32、92の回転数が制御される。 Next, control of the vibration test apparatus 1 of the present embodiment will be described. FIG. 13 is a block diagram of the vibration test apparatus 1 of the present embodiment. As shown in FIG. 13, the vibration test apparatus 1 includes a controller 2, a power supply 3, and a servo amplifier 4. The servo amplifier 4 is supplied with electric power from the power supply 3 to generate a three-phase alternating current and supplies it to the servo motors 22, 32 and 92. The controller 2 can control the servo amplifier 4 to adjust the amplitude and frequency of the alternating current supplied to each servo motor 22, 32, 92. Thereby, the rotation speed of each servomotor 22, 32, 92 is controlled.
 また、コントローラ2は、振動テーブル14(図2)に設けられた加速度センサ18の検出結果に基づいて、振動テーブル14の変位、速度、加速度振幅をフィードバック制御することが可能である。なお、加速度センサ18の代わりに、変位や速度を計測する他のセンサを用いても良い。 The controller 2 can feedback control the displacement, speed, and acceleration amplitude of the vibration table 14 based on the detection result of the acceleration sensor 18 provided on the vibration table 14 (FIG. 2). Instead of the acceleration sensor 18, another sensor that measures displacement and speed may be used.
 前述のように、エアシリンダ72が振動テーブル14を持ち上げる荷重は荷重センサ16によって計測されており、コントローラ2は、荷重センサ16の計測結果に基づいて、エアタンク74とエアシリンダ72の間に設けられたバルブ76(図1、3)の開度をフィードバック制御にて調整する。このフィードバック制御によって、車両の荷重に相当する静荷重を台車100に加えることができる。 As described above, the load by which the air cylinder 72 lifts the vibration table 14 is measured by the load sensor 16, and the controller 2 is provided between the air tank 74 and the air cylinder 72 based on the measurement result of the load sensor 16. The opening degree of the valve 76 (FIGS. 1 and 3) is adjusted by feedback control. By this feedback control, a static load corresponding to the vehicle load can be applied to the carriage 100.

Claims (20)

  1.  車両の台車に上下方向の圧縮静荷重を加えながら該台車を加振する振動装置であって、
      該台車の車軸を回転可能に支持する軸受ユニットと、
      前記車軸を回転させる車軸駆動機構と、
      前記軸受ユニットを上下方向に加振する上下方向加振ユニットと、
      前記軸受ユニットに上向きの荷重を加えるエアシリンダ機構と、
      前記エアシリンダ機構との間で前記台車が上下方向に挟み込まれるように前記台車を上から押さえつける反力フレームと
    を有する振動試験装置。
    A vibration device that vibrates the carriage while applying a vertical compressive static load to the carriage of the vehicle,
    A bearing unit that rotatably supports the axle of the carriage;
    An axle drive mechanism for rotating the axle;
    A vertical vibration unit for vibrating the bearing unit in the vertical direction;
    An air cylinder mechanism for applying an upward load to the bearing unit;
    A vibration test apparatus comprising: a reaction force frame that presses the carriage from above so that the carriage is sandwiched vertically between the air cylinder mechanism.
  2.  前記軸受ユニットは、前記車軸の車輪取り付け位置で該車軸を支持することを特徴とする請求項1に記載の振動試験装置。 2. The vibration test apparatus according to claim 1, wherein the bearing unit supports the axle at a wheel mounting position of the axle.
  3.  前記軸受ユニットは、自動調心ころ軸受によって前記車軸を回転可能に支持することを特徴とする請求項1に記載の振動試験装置。 2. The vibration test apparatus according to claim 1, wherein the bearing unit rotatably supports the axle by a self-aligning roller bearing.
  4.  前記上下方向加振ユニットは、サーボモータと送りねじ機構によって前記軸受ユニットを上下方向に加振することを特徴とする請求項1から3のいずれかに記載の振動試験装置。 4. The vibration test apparatus according to claim 1, wherein the vertical vibration unit vibrates the bearing unit in the vertical direction by a servo motor and a feed screw mechanism.
  5.  前記軸受ユニットは振動テーブルの上に固定されており、
     前記上下方向加振ユニットは前記振動テーブルを上下方向に加振する
    ことを特徴とする請求項1に記載の振動試験装置。
    The bearing unit is fixed on a vibration table;
    The vibration test apparatus according to claim 1, wherein the vertical vibration unit vibrates the vibration table in a vertical direction.
  6.  前記振動テーブルを前記台車の車軸方向に加振する車軸方向加振ユニットと、
    前記振動テーブルを前記上下方向加振ユニットに対して車軸方向にスライド可能に連結する第1の連結手段と、
     前記振動テーブルを前記車軸方向加振ユニットに対して上下方向にスライド可能に連結する第2の連結手段と
    を更に有する請求項5に記載の振動試験装置。
    An axle direction excitation unit for exciting the vibration table in the direction of the axle of the carriage;
    First coupling means for slidably coupling the vibration table to the vertical excitation unit in an axle direction;
    The vibration test apparatus according to claim 5, further comprising second connection means for connecting the vibration table to the axle direction vibration unit so as to be slidable in the vertical direction.
  7.  前記車軸駆動機構が、
      モータによって回転駆動される駆動プーリと、
      前記台車の車軸に取り付けられる従動プーリと、
      前記駆動プーリと前記従動プーリとに巻回されている無端ベルトと
    を有することを特徴とする請求項1に記載の振動試験装置。
    The axle drive mechanism is
    A drive pulley that is rotationally driven by a motor;
    A driven pulley attached to the axle of the carriage;
    The vibration test apparatus according to claim 1, further comprising an endless belt wound around the drive pulley and the driven pulley.
  8.  前記従動プーリは、前記台車の車軸の略中央に取り付けられていることを特徴とする請求項7に記載の振動試験装置。 The vibration testing apparatus according to claim 7, wherein the driven pulley is attached to a substantially center of an axle of the carriage.
  9.  前記反力フレームは、前記台車の横梁の車軸方向両側で該台車と当接して該台車を上から押さえつけていることを特徴とする請求項1に記載の振動試験装置。 The vibration test apparatus according to claim 1, wherein the reaction force frame abuts against the carriage on both sides in the axial direction of the transverse beam of the carriage to press the carriage from above.
  10.  前記反力フレームは、略直立する直立部と、該直列部の上端において前記台車の側梁に略平行な二方向に延びるよう形成された押圧部とを有し、
     前記押圧部の下面が前記台車の横梁に当接して前記台車が下方に押さえつけられる
    ことを特徴とする請求項1に記載の振動試験装置。
    The reaction force frame includes an upright portion that is substantially upright, and a pressing portion that is formed to extend in two directions substantially parallel to a side beam of the carriage at the upper end of the series portion.
    The vibration test apparatus according to claim 1, wherein a lower surface of the pressing portion abuts against a lateral beam of the carriage and the carriage is pressed downward.
  11.  前記第1及び第2の連結手段は夫々、レールと該レールに係合し且つ該レールに沿ってスライド可能なランナーブロックを備えたリニアガイド機構によって前記テーブルと前記上下方向加振ユニット及び車軸方向加振ユニットとをスライド可能に連結することを特徴とする請求項6に記載の振動試験装置。 Each of the first and second connecting means includes a rail, a linear guide mechanism having a runner block that engages with the rail and is slidable along the rail, and the table, the vertical vibration unit, and the axle direction. The vibration test apparatus according to claim 6, wherein the vibration unit is slidably connected to the vibration unit.
  12.  前記ランナーブロックが、
      前記レールを囲む凹部と、
      前記凹部において、前記ランナーブロックの移動方向に沿って形成された溝と、
      前記ランナーブロックの内部に形成され、前記溝と閉回路を形成するように前記溝の前記移動方向両端と繋がっている退避路と、
      前記閉回路を循環するとともに、前記溝に位置するときは前記レールと当接するようになっている複数のボールと、
    を有することを特徴とする請求項11に記載の振動試験装置。
    The runner block is
    A recess surrounding the rail;
    In the recess, a groove formed along the direction of movement of the runner block;
    A retreat path formed inside the runner block and connected to both ends of the groove in the moving direction so as to form a closed circuit with the groove;
    A plurality of balls that circulate through the closed circuit and are adapted to contact the rail when positioned in the groove;
    The vibration test apparatus according to claim 11, comprising:
  13.  前記ランナーブロックには前記閉回路が4つ形成されており、
     前記4つの閉回路のうち2つの閉回路の溝の夫々に配置されたボールが、前記レールと前記ランナーブロックを備えたリニアガイド機構のラジアル方向に対して略±45度の接触角を有し、他の2つの閉回路の溝の夫々に配置されたボールは前記リニアガイド機構の逆ラジアル方向に対して略±45度の接触角を有する
    ことを特徴とする請求項12に記載の振動試験装置。
    The runner block has four closed circuits,
    The balls arranged in the grooves of two of the four closed circuits each have a contact angle of approximately ± 45 degrees with respect to the radial direction of the linear guide mechanism including the rail and the runner block. The vibration test according to claim 12, wherein the balls disposed in the grooves of the other two closed circuits each have a contact angle of approximately ± 45 degrees with respect to the reverse radial direction of the linear guide mechanism. apparatus.
  14.  前記ランナーブロックは、
      前記レールを囲む凹部と、
      その円筒面が前記レールと前記凹部の間に挟み込まれるように配置される複数のローラと、
      前記凹部に取り付けられ、前記ローラの軸方向両端をガイドして該ローラが前記ランナーブロックのスライド方向に転動する転動溝を形成するローラ保持部材と、
      前記ランナーブロックの内部に形成され、前記転動溝と閉回路を形成するように前記転動溝の前記スライド方向両端と繋がっている退避路と、
    を有し、
     前記複数のローラは前記閉回路を循環するよう構成されている
    ことを特徴とする請求項11に記載の振動試験装置。
    The runner block is
    A recess surrounding the rail;
    A plurality of rollers arranged such that the cylindrical surface is sandwiched between the rail and the recess;
    A roller holding member that is attached to the recess and guides both axial ends of the roller to form a rolling groove in which the roller rolls in the sliding direction of the runner block;
    A retreat path formed inside the runner block and connected to both ends of the rolling groove in the sliding direction so as to form a closed circuit with the rolling groove;
    Have
    The vibration test apparatus according to claim 11, wherein the plurality of rollers are configured to circulate through the closed circuit.
  15.  前記ランナーブロックには前記閉回路が4つ形成されており、
     前記4つの閉回路の夫々に配置された4列のローラは、その軸が、前記レールの軸に直交する面上において90°おきとなるよう配置されている
    ことを特徴とする請求項14に記載の振動試験装置。
    The runner block has four closed circuits,
    The four rows of rollers arranged in each of the four closed circuits are arranged so that their axes are every 90 ° on a plane orthogonal to the axis of the rail. The vibration test apparatus described.
  16.  前記ローラの径は、前記転動溝における前記ランナーブロックと前記レールとの間隔より小さく、その差は1マイクロメートル以下であることを特徴とする請求項14に記載の振動試験装置。 The vibration test apparatus according to claim 14, wherein a diameter of the roller is smaller than an interval between the runner block and the rail in the rolling groove, and a difference thereof is 1 micrometer or less.
  17.  隣接する2つのローラの間には、該ローラ同士の接触を防止するためのリテーナが設けられていることを特徴とする請求項14に記載の振動試験装置。 The vibration test apparatus according to claim 14, wherein a retainer is provided between two adjacent rollers to prevent contact between the rollers.
  18.  前記リテーナが、前記ローラの円筒面と当接する円筒凹面を有することを特徴とする請求項17に記載の振動試験装置。 The vibration testing apparatus according to claim 17, wherein the retainer has a cylindrical concave surface that comes into contact with the cylindrical surface of the roller.
  19.  前記レールは、その軸方向に沿って配列される複数の貫通孔を有し、
     前記貫通孔の夫々にボルトを通して前記テーブル、前記上下方向加振ユニット又は前記車軸方向加振ユニットに固定され、
     前記ボルトの取り付け間隔は、前記レールの幅の50~80%である
    ことを特徴とする請求項11に記載の振動試験装置。
    The rail has a plurality of through holes arranged along the axial direction thereof,
    It is fixed to the table, the vertical direction vibration unit or the axle direction vibration unit through a bolt through each of the through holes,
    The vibration testing apparatus according to claim 11, wherein the bolt mounting interval is 50 to 80% of the width of the rail.
  20.  前記ボルトの取り付け間隔は、前記レールの幅の60~70%であることを特徴とする請求項19に記載の振動試験装置。 The vibration test apparatus according to claim 19, wherein the bolt mounting interval is 60 to 70% of the width of the rail.
PCT/JP2009/054615 2008-05-24 2009-03-11 Vibration testing device WO2009144989A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN200980108738.7A CN101970999B (en) 2008-05-24 2009-03-11 Vibration testing device
KR1020107017015A KR101242523B1 (en) 2008-05-24 2009-03-11 Vibration testing device
JP2009550641A JP4812879B2 (en) 2008-05-24 2009-03-11 Vibration test equipment
TW098115246A TWI461677B (en) 2008-05-24 2009-05-08 Vibration testing machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008136128 2008-05-24
JP2008-136128 2008-05-24

Publications (1)

Publication Number Publication Date
WO2009144989A1 true WO2009144989A1 (en) 2009-12-03

Family

ID=41376876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/054615 WO2009144989A1 (en) 2008-05-24 2009-03-11 Vibration testing device

Country Status (5)

Country Link
JP (1) JP4812879B2 (en)
KR (1) KR101242523B1 (en)
CN (1) CN101970999B (en)
TW (1) TWI461677B (en)
WO (1) WO2009144989A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160282225A1 (en) * 2013-12-12 2016-09-29 Kokusai Keisokuki Kabushiki Kaisha Bearing testing machine
JP2017154136A (en) * 2011-04-26 2017-09-07 国際計測器株式会社 Electrodynamic actuator and electrodynamic excitation device
CN113465851A (en) * 2021-06-30 2021-10-01 湖北恒利建材科技有限公司 Concrete shaking table device
US11289991B2 (en) 2011-04-26 2022-03-29 Kokusai Keisokuki Kabushiki Kaisha Electrodynamic actuator and electrodynamic excitation device with movable part support mechanism and fixed part support mechanism

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101236437B1 (en) * 2011-04-04 2013-02-21 국방과학연구소 Spherical Bearing and Supporting Apparatus for Vibration Test using the Same
KR101236923B1 (en) * 2011-07-01 2013-02-25 대원강업주식회사 Burst & Buckling for testing air spring
DE102014103299B4 (en) * 2014-03-12 2021-07-22 Spektra Schwingungstechnik Und Akustik Gmbh Dresden Vibration exciter with load compensation
KR102016412B1 (en) * 2018-03-15 2019-08-30 케이티엠엔지니어링(주) An Apparatus for Investigating a Wheel Shaft Bearing of a Train
JP7124215B2 (en) * 2019-04-22 2022-08-23 本田技研工業株式会社 Vibrator
JP6982637B2 (en) * 2020-01-15 2021-12-17 本田技研工業株式会社 Vibration device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03277810A (en) * 1990-03-23 1991-12-09 Nippon Seiko Kk Impact resistant linear guide device
JPH05281096A (en) * 1992-04-06 1993-10-29 Hitachi Ltd Railway rolling stock testing apparatus and method thereof
JP2006234032A (en) * 2005-02-23 2006-09-07 Nsk Ltd Linear guide bearing device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3415288B2 (en) * 1993-11-09 2003-06-09 株式会社東芝 Information recording / reproducing device
JP4044376B2 (en) * 2002-06-24 2008-02-06 株式会社ノーケン Temperature measurement method, object detection method and object detection apparatus for vibration type level sensor
CN200989818Y (en) * 2006-11-03 2007-12-12 大连佳博轴承仪器有限公司 Vertical shaft semi-automatic bearing vibration measuring device
US9266967B2 (en) * 2007-12-21 2016-02-23 Hoffmann-La Roche, Inc. Bivalent, bispecific antibodies

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03277810A (en) * 1990-03-23 1991-12-09 Nippon Seiko Kk Impact resistant linear guide device
JPH05281096A (en) * 1992-04-06 1993-10-29 Hitachi Ltd Railway rolling stock testing apparatus and method thereof
JP2006234032A (en) * 2005-02-23 2006-09-07 Nsk Ltd Linear guide bearing device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017154136A (en) * 2011-04-26 2017-09-07 国際計測器株式会社 Electrodynamic actuator and electrodynamic excitation device
US11289991B2 (en) 2011-04-26 2022-03-29 Kokusai Keisokuki Kabushiki Kaisha Electrodynamic actuator and electrodynamic excitation device with movable part support mechanism and fixed part support mechanism
US11824416B2 (en) 2011-04-26 2023-11-21 Kokusai Keisokuki Kabushiki Kaisha Electrodynamic actuator and electrodynamic excitation device
US20160282225A1 (en) * 2013-12-12 2016-09-29 Kokusai Keisokuki Kabushiki Kaisha Bearing testing machine
US10203266B2 (en) * 2013-12-12 2019-02-12 Kokusai Keisokuki Kabushiki Kaisha Bearing testing machine
CN113465851A (en) * 2021-06-30 2021-10-01 湖北恒利建材科技有限公司 Concrete shaking table device

Also Published As

Publication number Publication date
JP4812879B2 (en) 2011-11-09
TW200949226A (en) 2009-12-01
KR101242523B1 (en) 2013-03-12
KR20100133955A (en) 2010-12-22
JPWO2009144989A1 (en) 2011-10-06
TWI461677B (en) 2014-11-21
CN101970999B (en) 2014-05-21
CN101970999A (en) 2011-02-09

Similar Documents

Publication Publication Date Title
JP4812879B2 (en) Vibration test equipment
US8397644B2 (en) Storage and retrieval machine
JP5670541B2 (en) Toggle type clamping mechanism of injection molding machine
US20220297980A1 (en) Walking device with self-adaptive track gauge and wheel pressure for preventing rail gnawing
WO2009136459A1 (en) Impact test device
US20210033496A1 (en) Excitation device
US10850942B2 (en) Roller guide for a car of an elevator system
US9574607B2 (en) Roller of a support arrangement for a rotary milking platform
US3418838A (en) Stand changing units for continuous rolling mills
JP6916386B2 (en) Underfloor wheel set machine, specifically, underfloor wheel lathe with adjustable track width
KR101958357B1 (en) Wheel-set Exchanging Apparatus for Railway Car
US20120137762A1 (en) Floating mechanism loading vehicle provided with double shafts and eight wheels for pavement accelerated loading test
JP5113942B2 (en) Track testing equipment for track carriage
JP3835747B2 (en) Automatic warehouse transfer equipment
KR101497328B1 (en) carriage for heat treat apparatus
JP3843593B2 (en) Moving shelf cart structure, moving shelf & shelf system
CN217315953U (en) Drilling device
JP4940194B2 (en) Track testing equipment for track carriage
KR200344464Y1 (en) Conveyor of career method
JP5368416B2 (en) Branching device
CN115976756A (en) Moving mechanism and embroidery machine driving device
JP4610794B2 (en) Rolling machine replacement conveyor
JPH09131230A (en) Moving shelf equipment
SU1132179A1 (en) Stand for tractor suspension carriage running-in
JPH09189646A (en) Test equipment for rolling stock

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980108738.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2009550641

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09754497

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107017015

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09754497

Country of ref document: EP

Kind code of ref document: A1