WO2009142530A1 - Procédé de synthèse nucléaire d’éléments légers - Google Patents

Procédé de synthèse nucléaire d’éléments légers Download PDF

Info

Publication number
WO2009142530A1
WO2009142530A1 PCT/RU2008/000600 RU2008000600W WO2009142530A1 WO 2009142530 A1 WO2009142530 A1 WO 2009142530A1 RU 2008000600 W RU2008000600 W RU 2008000600W WO 2009142530 A1 WO2009142530 A1 WO 2009142530A1
Authority
WO
WIPO (PCT)
Prior art keywords
ions
beams
portions
reaction
nuclear
Prior art date
Application number
PCT/RU2008/000600
Other languages
English (en)
Russian (ru)
Inventor
Александр Иванович ОБРУЧКОВ
Original Assignee
РЯБОВА, Ольга Александровна
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by РЯБОВА, Ольга Александровна filed Critical РЯБОВА, Ольга Александровна
Publication of WO2009142530A1 publication Critical patent/WO2009142530A1/fr

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H6/00Targets for producing nuclear reactions
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21GCONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
    • G21G1/00Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes
    • G21G1/04Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes outside nuclear reactors or particle accelerators
    • G21G1/10Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes outside nuclear reactors or particle accelerators by bombardment with electrically charged particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H3/00Production or acceleration of neutral particle beams, e.g. molecular or atomic beams
    • H05H3/06Generating neutron beams
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Definitions

  • the method of nuclear synthesis of light elements belongs to the field of nuclear physics and is a method of connecting light nuclei to produce neutrons, to reproduce elements of thermonuclear fuel and to obtain thermal energy.
  • thermonuclear bomb a thermonuclear bomb
  • neutrons up to 1 * 10 24 neutrons / s
  • Such an explosion has tremendous energy, but it acts only for destruction.
  • new elements are synthesized, but it is practically impossible to assemble them in the future.
  • the simplest analogue of the method of nuclear fusion is the principle of operation of the fast neutron generator.
  • deuterium ions deuterons
  • deuterons are usually accelerated to hundreds of kiloelectronvolts and bombard a target where either tritium or deuterium atoms are sorbed, deuterons of this energy cross the Coulomb barrier of tritium or deuterium nuclei and combine with them.
  • one neutron and one alpha particle are emitted (a helium-4 atom is formed), which have a certain energy in the dependence and type of nuclear reaction.
  • a nuclear reaction can proceed through two channels, when, in addition to neutrons, tritium and fusion-3 atoms are also formed. which may be the starting material for the implementation of new synthesis reactions.
  • a close prototype of the method of nuclear synthesis of light elements is the method described in the patent RU 21 ⁇ 2619 C2, which consists in the injection of macroscopic particles of nuclear fuel accelerated towards each other to kinetic energy equal to the thermal energy generated from them when a plasma collides, the temperature of which is optimal temperature of fusion 2 * 10 8 K.
  • This method of nuclear fusion corresponds to controlled thermonuclear fusion (TCF) with inertial plasma confinement, and another method is CTF with magnetic plasma thermal insulation -
  • thermonuclear fusion which conditions (Lawson) must be met, but the engineering solution for the TCB has not yet been implemented.
  • the method proposed in the prior art has disadvantages such as complexity of forming and producing of macroscopic particles and the electric charge message for him to accelerate their rate of the order of 10 * 9.4 minutes m / s.
  • the required temperature will be achieved only with a central impact. Part of the particles may fly by without colliding, and will be lost for the TCB.
  • the technical result of the proposed method for the nuclear synthesis of light elements is that they assemble the system in the form of a set of the same type of reaction chambers and place them on a blank, and at the entrance of each chamber, which is a common accelerating electrode, from the two opposite sides are pre-focused and simultaneously introduced towards each other accelerated beams or portions of deuterium or deuterium ions on the one hand and tritium on the other, or deuterium on the one hand and relium-3 on the other, where they fall into the axial beam common to both into a constant magnetic field and where they are previously deviated from the rectilinear motion by the action of a transverse electric field and they are given a cylindrical helical trajectory of movement inside the reaction chamber, and when forming the trajectory of the beams or portions, the accelerating and deflecting stresses are changed, and thereby ensure equal radii of their Larmor rotation , step of the helical trajectory and the simultaneity of their encounter, expressed in an increase in the flux of formed neutrons or in an increase
  • reaction (1) proceeds in a blanket where reaction chambers are placed and emitted fast neutrons are slowed down to thermal energies. It will be reproduced by the same reaction with fast neutrons, but its cross section is much smaller. Tritium will also be reproduced by reaction (1).
  • reaction (6) As a result of which a large amount of energy is released when a proton is emitted and a stable 4 He isotope is formed and the environment is practically not activated.
  • the reaction has a sufficiently high cross section at a relatively low energy of interacting nuclei. 3 He atoms are also absent in nature and their production is possible either by reaction (2) or their accumulation during ⁇ -decay of tritium:
  • the figure 1 shows a schematic design of a device for the synthesis of light nuclei.
  • the injection into the accelerating space of the reacting nuclei occurs continuously or in the form of individual portions.
  • synthesis is carried out in such a sequence.
  • ions are formed in the ion sources 2 from the synthesized atoms of light elements coming into them (ionize them).
  • electrodes 3 the formed ions are simultaneously extracted from ion sources and injected into the space of accelerating electrodes 4.
  • Acceleration of ions can be performed using high-voltage transformers and high voltage rectification.
  • High voltage to accelerating electrodes can be obtained using cascade generators.
  • the ions are focused on paired quadrupole magnetic coils 5 mounted at the entrance of the reaction chamber b and in the spaces between the electrodes.
  • reaction chamber b is also a shortening electrode.
  • reaction chamber b is also a shortening electrode.
  • Inside the reaction chamber 6 using a coil 7 creates a constant axial magnetic field. Accelerated ions arriving at the input of chamber 6 are deflected by a transverse (perpendicular to a constant magnetic field) constant electric field created between the plates 8.
  • the action of a longitudinal magnetic and transverse electric field accelerates an ion beam due to Lorentz forces cylindrical helical trajectory of motion (Larmor, cyclotron rotation). Given the constancy of the axial magnetic field within the reaction chamber, ions moving towards each other will have the opposite direction of rotation.
  • the process of fusion of element nuclei is controlled so that the colliding ions overcome the Coulomb barrier and connect, for this we accelerate to a relatively small energy (0.065 MeV), which we can increase based on technical capabilities.
  • a relatively small energy 0.065 MeV
  • the process taking place in the reaction chamber is not self-sustaining. It can roughly be called the burning (compound) of deuterium in the atmosphere of tritium, or vice versa, the burning of tritium in the atmosphere of deuterium. This is an analogy of carbon burning in an oxygen atmosphere.
  • the synthesis takes place also at high temperature; the average energy of interacting ions (3) is 0.065 MeV, which corresponds to the temperature:
  • thermonuclear fusion the joining process takes place in a plasma state, where at high temperature the nuclei randomly collide and interact along one of the channels of nuclear reactions (1) ⁇ (6).
  • fusion reactions must be controlled and self-sustaining.
  • the number of collisions in colliding beams is approximately estimated by the formula:
  • N article N d * Nt * ⁇ * R / S (9).
  • Nd, Nt - the number of accelerated ions towards each other (deuterons and tritons), are determined by the current of each half of the accelerator;
  • is the cross section for the interaction of accelerated ions;
  • R is the utilization factor of the accelerating structure, equal to the ratio of the meeting length of accelerated beams to the total length of the accelerator
  • S is the cross-sectional area of the oncoming beams, is assumed to be the same for them.
  • High-current ion sources can be created on the basis of duoplasmotrons or other arc ion sources without a magnetic field, where currents can reach tens or hundreds of amperes.
  • the literature contains a wide description of the sources of ions ..
  • the collision process can be represented as the passage of a stream of ions of one type through a layer of matter consisting of ions of this or another type, when the process of ion interaction is in the form of absorption exponentially:
  • I and Io - the intensity of the ion flux, after passing the distance x in the other ion flux and the initial ion flux;
  • is the linear absorption coefficient of ions of one type in another;
  • x is the distance that a beam of ions of one kind passed in another.
  • the probability of interaction between the beams can be controlled either by the value of the cross section (surface density or beam current) or the distance traveled by one beam in another.
  • reaction (3) where the cross section is 5.0 bar at an energy of 0.13 MeV and is allocated for each act of 17.6 MzV, is the most likely nuclear fusion reaction to occur.
  • the distance x within the range of collisions of ion beams is determined by the length of the reaction chamber, the ion current density in the beams. In this case, it is required to observe the alignment of the oncoming beams.
  • the beam current density is achieved by focusing them before entering the reaction chamber.
  • Quadrupole magnetic lenses 5 should form a minimum emittance of each oncoming beam. To ensure the alignment of the opposing beams, it is possible to adjust the position of the quadrupole lenses at the inlet of the reaction chamber from one or its other side.
  • the initial meeting of deuteron and triton beams should take place in the center of the chamber, and moving towards its ends the concentration of ions of the oncoming type should decrease and approach zero (at the entrance to the reaction chamber of the deuterons there should be a minimum concentration of tritons; at the entrance of the tritons - zero concentration of deuterons) .
  • concentration of ions of the oncoming type should decrease and approach zero (at the entrance to the reaction chamber of the deuterons there should be a minimum concentration of tritons; at the entrance of the tritons - zero concentration of deuterons) .
  • their velocities must be equal.
  • the speed of accelerated ions is determined by the formula:
  • the length of the reaction chamber can be reduced by deflecting the focused ion beam in the reaction chamber perpendicular to the direction of motion.
  • the Lorentz forces will act on the ions and the ions will acquire cyclotron rotation.
  • VJL is the ion velocity perpendicular to the direction of the magnetic field;
  • q is the ion charge;
  • is the angular velocity. It follows from formula (15) that a cylindrical helical trajectory can be created if the moving ions are in a longitudinal magnetic field and deflected at a speed vx by a transverse electric field.
  • the step of the helical trajectory is determined by the mass of ions, the speed of accelerated ions and the induction of a magnetic field.
  • One of the requirements for the maximum probability of interaction of counter ion beams is the exact coincidence of their trajectories, that is, they must have the same radius r, the same step and the helical trajectories must coincide in phase, that is, they must meet at the same time so that the helical trajectory of deuterons “enters” into the helical trajectory of newts.
  • the value of the radius r can be changed (adjusted) either by the structural elements of the deflecting plates (U, dpl), or by smoothly-deflecting voltage on the plates U pl .
  • step I of the helical trajectory can be changed by the speed of accelerated ions, that is, the energy of accelerated ions (q * U) or the magnitude of magnetic induction (B). If earlier, when deriving formula (13), the ion velocities were equated, to estimate the value of the length of the linear trajectory to the almost complete absorption of counter ions. Now we will not focus on this attention and estimate the velocity of deuterons and tritons so that their step coincides.
  • the coincidence of the radius and step of the helical cylindrical trajectory of two opposing ion beams does not mean that the nuclear fusion reaction will proceed with maximum probability.
  • the helical trajectories coincide in phase, that is, that one trajectory as if enters into the oncoming trajectory, although they have a different rotation period.
  • it will be necessary to adjust the ion beams in terms of speed vc within one step, followed by adjusting the Larmor radius and the pitch of the helical path.
  • the maximum efficiency of the nuclear fusion reaction will be marked by an increase in the neutron yield when making adjustments.
  • the products of nuclear reactions will accumulate in the reaction chamber, which will impede the effective course of the process.
  • the products of nuclear reactions and light elements that did not participate in the synthesis are continuously pumped out. These products are subsequently separated either by difference in mass ( 2 H 1 3 H, 4 He) or by chemical activity (He and 3 H).

Landscapes

  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Particle Accelerators (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

Le procédé de synthèse nucléaire d’éléments légers de cette invention appartient au domaine de la physique nucléaire et peut s’utiliser comme une source commandée intense de neutrons destinés à être utilisés dans l’analyser par activation neutronique de différents éléments. L’invention peut s’utiliser comme un producteur d’éléments légers qui constituent un combustible pour de futurs réacteurs thermonucléaires et peut également servir à la production d’énergie thermique. Selon l’invention, dans un assemblage constitué d’un ensemble de chambres de réaction du même type, montées dans une couverture, chaque chambre de réaction, dans laquelle arrivent simultanément des deux côtés opposés les faisceaux ou portions accélérées préalablement focalisées et constituées d’ions de deutérium, ou de deutérium d’un côté et de tritium de l’autre, ou de deutérium d’un côté et d’hélium-3 de l’autre, on accélère les ions jusqu’à une énergie qui leur permet de surmonter le repoussement de Coulons lors de la collision, de manière à ce que les noyaux entrant en collision puissent entrer dans une réaction de fusion nucléaire avec une probabilité maximale. Les ions accélérés arrivent en même temps à l’entrée de la chambre de réaction qui constitue une électrode d’accélération commune, où ils sont déviés par l’action d’un champ électrique transversal et acquièrent dans un champ axial magnétique (selon la loi de Lorentz) une trajectoire cylindrique en spirale sous l’effet de leur rotation de Larmore. Afin de porter au maximum la probabilité de l’interaction des faisceaux opposés on modifie la tension d’accélération et la tension de déviation, de façon que le rayon et le pas des trajectoires cylindriques en spirale des portions ou faisceaux opposés soient identiques. En faisant varier le décalage dans le temps ainsi que les faisceaux ou portions opposées, on parvient à assurer la probabilité maximale de l’interaction, qui est déterminée par l’enregistrement ininterrompu du flux de neutrons en formation et de la chaleur dégagée. Les isotopes formés suite à la réaction nucléaire et les éléments légers en cours de synthèse qui ne font plus partie du processus d’accélération sont évacués par pompage de façon ininterrompue depuis le système à vide puis séparés suivant leur masse et leur degré d’activité chimique.
PCT/RU2008/000600 2008-05-22 2008-09-17 Procédé de synthèse nucléaire d’éléments légers WO2009142530A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2008120128 2008-05-22
RU2008120128/06A RU2008120128A (ru) 2008-05-22 2008-05-22 Способ ядерного синтеза легких элементов

Publications (1)

Publication Number Publication Date
WO2009142530A1 true WO2009142530A1 (fr) 2009-11-26

Family

ID=41340320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2008/000600 WO2009142530A1 (fr) 2008-05-22 2008-09-17 Procédé de synthèse nucléaire d’éléments légers

Country Status (2)

Country Link
RU (1) RU2008120128A (fr)
WO (1) WO2009142530A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011096834A1 (fr) * 2010-02-03 2011-08-11 Kurenya Aleksandr Nikolaevich Procédé d'organisation d'une réaction de fusion thermonucléaire
WO2016049768A1 (fr) * 2014-10-01 2016-04-07 Zheng xian-jun Source de neutrons basée sur une configuration équilibrée de faisceaux de plasma
US10643753B2 (en) 2011-06-10 2020-05-05 Xian-Jun Zheng Hollow particle beam emitter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0116656A1 (fr) * 1980-04-07 1984-08-29 Energy Profiles, Inc. Réaction de fusion de faisceau directionnel avec alignement du spin d'ions
SU1735909A1 (ru) * 1981-12-04 1992-05-23 Научно-исследовательский институт ядерной физики при Томском политехническом институте Способ получени атомной энергии и устройство дл его осуществлени
RU2174717C2 (ru) * 1995-09-11 2001-10-10 Зэ Риджентс оф Зэ Юниверсити оф Калифорниа Термоядерный реактор и способ проведения реакции в нем
RU2002117457A (ru) * 2002-07-02 2004-01-27 Александр Иванович Обручков Способ управляемого термоядерного синтеза и устройство для его осуществления
RU46121U1 (ru) * 2005-01-14 2005-06-10 Жиляков Лев Альбертович Устройство для осуществления управляемой реакции ядерного синтеза

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0116656A1 (fr) * 1980-04-07 1984-08-29 Energy Profiles, Inc. Réaction de fusion de faisceau directionnel avec alignement du spin d'ions
SU1735909A1 (ru) * 1981-12-04 1992-05-23 Научно-исследовательский институт ядерной физики при Томском политехническом институте Способ получени атомной энергии и устройство дл его осуществлени
RU2174717C2 (ru) * 1995-09-11 2001-10-10 Зэ Риджентс оф Зэ Юниверсити оф Калифорниа Термоядерный реактор и способ проведения реакции в нем
RU2002117457A (ru) * 2002-07-02 2004-01-27 Александр Иванович Обручков Способ управляемого термоядерного синтеза и устройство для его осуществления
RU46121U1 (ru) * 2005-01-14 2005-06-10 Жиляков Лев Альбертович Устройство для осуществления управляемой реакции ядерного синтеза

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
A.M. PROKHOROV.: "Fizicheskaya entsiklopediya.", BOLSHAYA ROSSIISKAY ENTSIKLOPEDIYA, vol. 5, 1998, MOSCOW, pages 104, 231 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011096834A1 (fr) * 2010-02-03 2011-08-11 Kurenya Aleksandr Nikolaevich Procédé d'organisation d'une réaction de fusion thermonucléaire
US10643753B2 (en) 2011-06-10 2020-05-05 Xian-Jun Zheng Hollow particle beam emitter
WO2016049768A1 (fr) * 2014-10-01 2016-04-07 Zheng xian-jun Source de neutrons basée sur une configuration équilibrée de faisceaux de plasma

Also Published As

Publication number Publication date
RU2008120128A (ru) 2009-11-27

Similar Documents

Publication Publication Date Title
Steck et al. Heavy-ion storage rings and their use in precision experiments with highly charged ions
US6441569B1 (en) Particle accelerator for inducing contained particle collisions
US20110158369A1 (en) Cellular, electron cooled storage ring system and method for fusion power generation
US20080205573A1 (en) Cellular, Electron Cooled Storage Ring System and Method for Fusion Power Generation
WO2009142530A1 (fr) Procédé de synthèse nucléaire d’éléments légers
Prasad et al. Fundamentals and applications of heavy ion collisions: below 10 MeV/nucleon energies
Vonta et al. Neutron-rich rare-isotope production from projectile fission of heavy nuclei near 20 MeV/nucleon beam energy
Donets Electron beam ion sources and their development at JINR
Pitters et al. Summary of charge breeding investigations for a future $^{11} $ C treatment facility
Kester et al. Fission fragment accelerators for the Grenoble and Munich high flux reactors
RU2683963C1 (ru) Импульсный генератор термоядерных нейтронов
Dietrich et al. Beam–plasma interaction experiments with heavy-ion beams
SU1067972A1 (ru) Способ получени отрицательных ионов
Nolen Radioactive beam facilities of North America
US20070282672A1 (en) Method and assembly for nuclear fusion using multiple intersecting positive ion storage rings
Novikov et al. Exotic nuclides at the reactor pik: pitrap project
Grigorenko et al. DERICA Project and Strategies of the Development of Low-Energy Nuclear Physics
Kurmanova et al. Design of a compact Thomson Parabola Spectrometer for diagnostics of proton-boron fusion reaction products initiated by laser
RU2237297C2 (ru) Способ осуществления реакций термоядерного синтеза
Fessenden et al. Heavy ion inertial fusion Report on the International Symposium held at Monterey, California, United States of America, 3–6 December 1990
Buhr et al. Particle emission from As* 71 produced via Ne 20+ 51 V and N 15+ 56 Fe reactions at 530 MeV
Wexler et al. Hydrogen displacement in n-butane by fast T2 and T2+ collisions
Belmont et al. The PIAFE project at Grenoble
Kuznetsov Experiments at the Dubna synchrophasotron
JP2752144B2 (ja) 同位体分離方法及び装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08874415

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08874415

Country of ref document: EP

Kind code of ref document: A1