WO2009142436A2 - 다중 안테나 시스템에서 harq 수행 방법 및 장치 - Google Patents

다중 안테나 시스템에서 harq 수행 방법 및 장치 Download PDF

Info

Publication number
WO2009142436A2
WO2009142436A2 PCT/KR2009/002655 KR2009002655W WO2009142436A2 WO 2009142436 A2 WO2009142436 A2 WO 2009142436A2 KR 2009002655 W KR2009002655 W KR 2009002655W WO 2009142436 A2 WO2009142436 A2 WO 2009142436A2
Authority
WO
WIPO (PCT)
Prior art keywords
phich
ack
codeword
codewords
uplink
Prior art date
Application number
PCT/KR2009/002655
Other languages
English (en)
French (fr)
Other versions
WO2009142436A3 (ko
Inventor
김소연
고현수
정재훈
이문일
Original Assignee
엘지전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자주식회사 filed Critical 엘지전자주식회사
Priority to US12/991,692 priority Critical patent/US8516327B2/en
Publication of WO2009142436A2 publication Critical patent/WO2009142436A2/ko
Publication of WO2009142436A3 publication Critical patent/WO2009142436A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47GHOUSEHOLD OR TABLE EQUIPMENT
    • A47G9/00Bed-covers; Counterpanes; Travelling rugs; Sleeping rugs; Sleeping bags; Pillows
    • A47G9/10Pillows
    • A47G9/1036Pillows with cooling or heating means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0072Error control for data other than payload data, e.g. control data
    • H04L1/0073Special arrangements for feedback channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1692Physical properties of the supervisory signal, e.g. acknowledgement by energy bursts
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0697Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using spatial multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L2001/125Arrangements for preventing errors in the return channel

Definitions

  • the present invention relates to wireless communications, and more particularly, to a method and apparatus for performing a hybrid automatic repeat request (HARQ) in a multi-antenna system.
  • HARQ hybrid automatic repeat request
  • MIMO Multiple Input Multiple Output
  • the Multiple Input Multiple Output (MIMO) scheme increases the capacity of a system by simultaneously transmitting several data streams spatially by a base station and / or a terminal using two or more transmission antennas. Transmit diversity enables reliable data transmission on fast time-varying channels by transmitting the same data stream through multiple transmit antennas. Spatial multiplexing increases the capacity of a system by transmitting different data streams through a plurality of transmit antennas.
  • Spatial multiplexing for a single user is referred to as Single User-MIMO (SU-MIMO), and the channel capacity of the MIMO system increases in proportion to the minimum of the number of transmit antennas and the number of receive antennas.
  • Spatial multiplexing for multiple users is called SDMA (Spatial Division Multiple Access) or MU-MIMO (MU-MIMO).
  • a single codeword (SCW) scheme is used to transmit N (N> 1) data streams simultaneously transmitted using one codeword, and M (M ⁇ N) codewords for N data streams.
  • MCW multiple codeword
  • Each codeword is generated through independent channel encoding to enable independent error detection.
  • LTE Long-Term Evolution
  • 3GPP 3rd Generation Partnership Project
  • LTE is one of the latest standards in mobile communications technology.
  • the wireless connection of LTE is called Evolved-UMTS Terrestrial Radio Access Network (E-UTRAN).
  • E-UTRAN Evolved-UMTS Terrestrial Radio Access Network
  • LTE supports multiple antennas and can support both SU-MIMO and MU-MIMO.
  • LTE supports HARQ (Hybrid Automatic Repeat Request) for both uplink transmission and downlink transmission.
  • the downlink HARQ means that the terminal transmits an ACK / NACK signal for the downlink data when the base station transmits the downlink data.
  • the uplink HARQ means that the base station transmits an ACK / NACK signal for the uplink data when the terminal transmits uplink data.
  • the LTE system In order to transmit ACK / NACK signal for uplink data, the LTE system defines a PHICH (Physical Hybrid-ARQ Indicator Channel). According to the current LTE system, only the SCW scheme is applied to the uplink HARQ and does not support the MCW scheme. Therefore, the PHICH is designed to provide only one ACK / NACK signal for one uplink data (ie, codeword). This means that according to the existing LTE system, uplink HARQ cannot support SU-MIMO.
  • PHICH Physical Hybrid-ARQ Indicator Channel
  • An object of the present invention is to provide a method and apparatus for performing HARQ in a multi-antenna system.
  • Another object of the present invention is to provide a method and apparatus for transmitting an ACK / NACK signal for multiple codewords.
  • a method of performing a hybrid automatic repeat request (HARQ) in a multi-antenna system includes receiving a plurality of codewords on an uplink channel, generating an ACK / NACK signal for each of the plurality of codewords, And transmitting a plurality of ACK / NACK signals on a downlink channel associated with a resource used for transmission of the uplink channel.
  • HARQ hybrid automatic repeat request
  • the plurality of ACK / NACK signals may be transmitted on one downlink channel.
  • the plurality of ACK / NACK signals may be transmitted on a plurality of downlink channels.
  • the downlink channel may be a Physical Hybrid-ARQ Indicator Channel (PHICH), and the uplink channel may be a Physical Uplink Shared Channel (PUSCH).
  • PHICH Physical Hybrid-ARQ Indicator Channel
  • PUSCH Physical Uplink Shared Channel
  • an ACK / NACK signal for each of a plurality of codewords can be transmitted. Therefore, system capacity is increased, and transmission reliability can be improved.
  • 1 shows a wireless communication system.
  • FIG. 2 shows a structure of a radio frame in 3GPP LTE.
  • 3 is an exemplary diagram illustrating a resource grid for one downlink slot.
  • FIG. 6 is a flowchart showing the configuration of a PHICH.
  • FIG. 9 is a flowchart illustrating a method of performing HARQ according to an embodiment of the present invention.
  • FIG. 14 is a flowchart illustrating a method of performing HARQ according to an embodiment of the present invention.
  • FIG 17 illustrates a wireless communication system having multiple antennas according to an embodiment of the present invention.
  • the wireless communication system 10 includes at least one base station (BS) 11. Each base station 11 provides a communication service for a particular geographic area (generally called a cell) 15a, 15b, 15c. The cell can in turn be divided into a number of regions (called sectors).
  • the user equipment (UE) 12 may be fixed or mobile, and may include a mobile station (MS), a user terminal (UT), a subscriber station (SS), a wireless device, a personal digital assistant (PDA), It may be called other terms such as a wireless modem and a handheld device.
  • the base station 11 generally refers to a fixed station communicating with the terminal 12, and may be referred to as other terms such as an evolved-NodeB (eNB), a base transceiver system (BTS), an access point, and the like. have.
  • eNB evolved-NodeB
  • BTS base transceiver system
  • access point and the like. have.
  • a radio frame consists of 10 subframes, and one subframe consists of two slots.
  • the time it takes for one subframe to be transmitted is called a transmission time interval (TTI).
  • TTI transmission time interval
  • one subframe may have a length of 1 ms and one slot may have a length of 0.5 ms.
  • One slot includes a plurality of orthogonal frequency division multiplexing (OFDM) symbols in the time domain, and includes a plurality of resource blocks (RBs) in the frequency domain.
  • the OFDM symbol is used to represent one symbol period since 3GPP LTE uses OFDMA in downlink, and may be referred to as an SC-FDMA symbol or a symbol period according to a system.
  • the RB includes a plurality of consecutive subcarriers in one slot in resource allocation units.
  • the structure of the radio frame is only an example, and the number of subframes included in the radio frame or the number of slots included in the subframe and the number of OFDM symbols included in the slot may be variously changed.
  • the downlink slot includes a plurality of OFDM symbols in the time domain.
  • one downlink slot includes 7 OFDMA symbols and one resource block includes 12 subcarriers in a frequency domain, but is not limited thereto.
  • Each element on the resource grid is called a resource element, and one resource block includes 12 ⁇ 7 resource elements.
  • the number N DL of resource blocks included in the downlink slot depends on the downlink transmission bandwidth set in the cell.
  • the subframe 4 shows a structure of a downlink subframe.
  • the subframe includes two slots. Up to three OFDM symbols in the first slot of the subframe are control regions to which control channels are allocated, and the remaining OFDM symbols are data regions to which a Physical Downlink Shared Channel (PDSCH) is allocated.
  • PDSCH Physical Downlink Shared Channel
  • Downlink control channels used in 3GPP LTE include a Physical Control Format Indicator Channel (PCFICH), a Physical Downlink Control Channel (PDCCH), a Physical Hybrid-ARQ Indicator Channel (PHICH), and the like.
  • PCFICH Physical Control Format Indicator Channel
  • PDCCH Physical Downlink Control Channel
  • PHICH Physical Hybrid-ARQ Indicator Channel
  • the PCFICH transmitted in the first OFDM symbol of a subframe carries information about the number of OFDM symbols used for transmission of control channels in the subframe.
  • Control information transmitted through the PDCCH is called downlink control information (DCI).
  • DCI transmits uplink or downlink scheduling information or an uplink transmission power control command for certain UE groups.
  • the wireless communication system may support uplink and / or downlink Hybrid Automatic Repeat Request (HARQ).
  • HARQ Hybrid Automatic Repeat Request
  • the ACK / NACK signal 102 becomes an ACK signal when the uplink data 101 is successfully decoded, and becomes an NACK signal when the decoding of the uplink data 101 fails.
  • the terminal may transmit retransmission data 111 for the uplink data 101 until ACK information is received or up to a maximum number of retransmissions.
  • the base station may transmit the ACK / NACK signal 112 for the retransmission data 111 on the PHICH.
  • FIG. 6 is a flowchart showing the configuration of a PHICH. This may be referred to Section 6.9 of 3GPP TS 36.211 V8.2.0 (2008-03) "Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 8)".
  • the PHICH carries a 1-bit ACK / NACK signal corresponding to a PUSCH for one UE. This means that multi-codeword transmission is not supported in uplink transmission.
  • the 1-bit ACK / NACK signal performs channel coding using repetition coding at a code rate 1/3.
  • the ACK / NACK signal coded with a 3-bit codeword is mapped to three modulation symbols through Binary Phase Shift Keying (BPSK) modulation.
  • BPSK Binary Phase Shift Keying
  • modulation symbols are spread using a Spreading Factor (SF) N PHICH SF and an orthogonal sequence.
  • SF Spreading Factor
  • the number of orthogonal sequences used for spreading is twice the N PHICH SF to apply I / Q multiplexing.
  • 2N SF PHICH orthogonal 2N SF PHICH of PHICH is spread by using the sequences are defined as one PHICH group. PHICHs belonging to the same PHICH group are distinguished through different orthogonal sequences.
  • the spread symbols are layer mapped according to rank.
  • the hierarchically mapped symbols are mapped to resource elements, respectively.
  • the PHICH resource corresponding to the PUSCH is the lowest physical resource block (PRB) index I lowest_index PRB_RA of the resource used for the PUSCH and the data copy used for the PUSCH. It is defined using the cyclic shift n DMRS of the quiet reference signal.
  • the demodulation reference signal refers to a reference signal used for demodulation of data transmitted on the PUSCH. More specifically, PHICH resources are known by index pairs (n group PHICH , n seq PHICH ). n group PHICH is a PHICH group number, n seq PHICH is an orthogonal sequence index within a PHICH group, and is given as follows.
  • n group PHICH has a value between 0 and (N group PHICH- 1), and the number of PHICH groups N group PHICH is given as follows.
  • N g ⁇ ⁇ 1/6, 1/2, 1, 2 ⁇ is given in the upper layer.
  • Orthogonal sequences used in the PHICH are shown in the following table.
  • FIG. 7 shows a transmitter supporting a multiple codeword (MCW) scheme.
  • MCW multiple codeword
  • the transmitter 300 includes channel encoders 310-1 and 310-2, mappers 320-1 and 320-2, a layer mapping unit 340, and a precoder ( 350) and a signal generator (Signal Generator, 360-1, ..., 360-Nt). Nt is the number of antenna ports.
  • the channel encoders 310-1 and 310-2 encode the input information bits according to a predetermined coding scheme to generate codewords (CW).
  • the first channel encoder 310-1 generates a first codeword CW1
  • the second channel encoder 310-2 generates a second codeword CW2.
  • the mappers 320-1 and 320-2 modulate each codeword according to a modulation scheme and map them to modulation symbols having a complex value.
  • the first mapper 320-1 generates modulation symbols for the first codeword CW1
  • the second mapper 320-2 generates modulation symbols for the second codeword CW2.
  • the layer mapping unit 340 maps modulation symbols of input codewords CW1 and CW2 to each layer according to the number of layers.
  • the layer may be referred to as an information path input to the precoder 350 and corresponds to a rank value.
  • the layer mapping unit 340 may determine the number of layers (ie, rank) and then map modulation symbols of each codeword to each layer.
  • the precoder 350 processes the mapping symbols mapped to each layer by a MIMO scheme according to the plurality of antenna ports 390-1,..., 390 -Nt, and outputs antenna specific symbols.
  • the signal generators 360-1, ..., 360-Nt convert the antenna specific symbols into transmission signals, and the transmission signals are transmitted through each antenna port 390-1, ..., 390-Nt.
  • the signal generators 360-1,..., 160 -Nt may perform OFDM modulation.
  • the transmitter 300 includes two channel encoders 310-1 and 310-2 and two mappers 320-1 and 320-2 to process two codewords
  • the transmitter 300 The number of channel encoders and the number of mappers included in the are not limited.
  • the transmitter 300 may include a plurality of channel encoders and a plurality of mappers for processing a plurality of codewords.
  • 3GPP LTE shows codeword-layer mapping in 3GPP LTE. This may be referred to Section 6.3 of 3GPP TS 36.211 V8.2.0 (2008-03). If the rank is 1, one codeword CW1 is mapped to one layer. One layer is processed to be transmitted through four antenna ports by precoding. If the rank is 2, two codewords CW1 and CW2 are mapped to two layers and mapped to four antenna ports by a precoder.
  • one codeword of two codewords (CW1, CW2) is mapped to two layers by a serial-to-parallel converter (S / P), so that a total of two codewords Mapped to layer
  • S / P serial-to-parallel converter
  • each of the two code words CW1 and CW2 is mapped to two layers by the serial-to-parallel converter S / P, respectively. Since a transmitter having four antenna ports may have up to four layers, four independent codewords may be transmitted, but 3GPP LTE supports a maximum of two codewords. Therefore, when each codeword has an independent HARQ process, up to two independent HARQ processes may be performed.
  • the configuration of PHICH for PUSCH transmission does not consider SU-MIMO in uplink. This is because multi-codeword transmission is not defined in uplink. Only an ACK / NACK signal for one codeword is transmitted on the PHICH, and the PHICH has not been designed in consideration of SU-MIMO in which multiple codewords are transmitted. Accordingly, when multiple codewords are transmitted on a PUSCH in uplink SU-MIMO, a method for transmitting an ACK / NACK signal for the multiple codewords through a PHICH is needed.
  • PHICH group number n group PHICH and orthogonal sequence index n seq PHICH used for spreading within PHICH group are used to allocate PHICH resources.
  • the orthogonal sequence index nn seq PHICH is determined using the lowest PRB index I lowest_index PRB_RA of the resources used for the PUSCH and the cyclic shift n DMRS of the data demodulation reference signal used for the PUSCH.
  • n ACK / NACK signals for n codewords are transmitted through one PHICH.
  • I lowest_index PRB_RA may be used in the same concept.
  • PHICH resources cannot be distinguished by I lowest_index PRB_RA alone because a plurality of UEs can simultaneously use the same RB in uplink MU-MIMO. Therefore, in uplink SU-MIMO, since only one PHICH resource needs to be allocated to each codeword without allocating PHICH resources according to joint coding, PHICH resources may be allocated in a manner similar to that of the existing LTE system.
  • FIG. 9 is a flowchart illustrating a method of performing HARQ according to an embodiment of the present invention. This method may be performed at the base station.
  • step S510 the base station receives n (n> 1) codewords (CW) from the terminal on the PUSCH.
  • step S520 the base station performs channel coding on n ACK / NACK signals for n codewords.
  • one ACK / NACK signal is 1 bit, and channel coding is performed on n bits for n ACK / NACK signals.
  • Various channel coding schemes may be applied.
  • repetition coding may be used.
  • the 2-bit ACK / NACK signal is repeated m times according to the code rate 1 / m used for PHICH coding.
  • code rate 1 / m 1/3
  • codewords for two bits of information bits for two ACK / NACK signals are shown in the following table.
  • a simple code may be used. For example, to code two bits of information bits for two ACK / NACK signals with a PHICH code rate of 1/3, they are coded using a (3, 2) simple code, and the generated code is repeatedly coded. Can generate words.
  • the following table shows an example of the generated codeword.
  • block coding may be used.
  • the basic sequence M i, k may be defined as shown in the following table.
  • codewords that generate two ACK / NACK signals according to code rate 1/3 are shown in the following table.
  • step S530 the codeword for the generated ACK / NACK signal is mapped to modulation symbols having a complex value in the signal constellation according to the modulation scheme.
  • BPSK modulation may be used in the same manner as the existing LTE system.
  • the number of PHICHs that can be multiplexed to one PHICH group may be increased by using the existing I / Q multiplexing concept as it is.
  • the spectral efficiency can be increased by using a modulation method of higher order than the BPSK.
  • QPSK quadrature phase shift keying
  • step S540 modulation symbols are spread using orthogonal sequences and mapped to resources. Specific examples for determining an index pair (n group PHICH , n seq PHICH ) for resource mapping are described below.
  • the length or modulation scheme of the codeword is only an example and may vary depending on the maximum number of codewords and the code rate in the uplink SU-MIMO.
  • QPSK modulation When QPSK modulation is used, I / Q multiplexing used in the existing LTE system cannot be used, and up to four PHICHs can be multiplexed in one PHICH group. Since the same SF as the existing LTE system is used, the same orthogonal sequence can be used. Accordingly, the terminal using the uplink SU-MIMO may allocate a PHICH resource as shown in the following equation to distinguish the terminal from the terminal that does not support the uplink SU-MIMO.
  • the terminal using the UL-MIMO is assigned an orthogonal sequence of the I-phase.
  • REG Resource Element Group
  • the REG includes a plurality of contiguous resource elements, and the REGs are distributed and mapped to physical resources in the time and / or frequency domain. That is, REG refers to a unit of consecutive resource elements, and REGs increase time / frequency selectivity by distributing and mapping according to a specific pattern.
  • One box represents the REG.
  • FIG. 10A shows that one REG includes four consecutive resource elements RE
  • FIG. 10B shows that one REG includes six consecutive resource elements RE. Indicates.
  • N group PHICH may be determined as follows.
  • N group PHICH_MCW means the number of PHICH groups calculated by a UE using UL SU-MIMO.
  • Ng is two bits of information transmitted on a broadcast channel and is expanded like N g ⁇ ⁇ 1/2, 1, 2, 4 ⁇ , unlike the existing N g ⁇ ⁇ 1/6, 1/2, 1, 2 ⁇ . Can be used.
  • Zadoff-Chu Pseudo-Noise
  • PN Pseudo-Noise
  • One box represents the REG.
  • 11 (A) shows that one REG includes four consecutive resource elements (RE), and
  • FIG. 11 (B) shows that one REG includes eight consecutive resource elements (RE).
  • 11 (C) shows that four consecutive resource elements constitute one REG, and two REGs are grouped and mapped in group units.
  • FIG. 11D shows that one REG includes six consecutive resource elements RE.
  • the configuration of one REG with four resource elements is for allocating PHICH resources to be compatible with existing terminals that do not use uplink SU-MIMO.
  • the configuration of one REG with six or eight resource elements is to allow the maximum number of antenna ports used for downlink transmission to support six or eight.
  • the use of two REGs as a group and resource mapping on a group basis is to support PHICH resource allocation while maintaining compatibility with existing terminals that do not support uplink SU-MIMO.
  • BPSK modulation is used to map to 6 modulation symbols.
  • Spreading six modulation symbols with SF 4 generates 24 spread symbols. Therefore, using I / Q multiplexing, up to eight (PH * 2) PHICHs can be multiplexed in one PHICH group.
  • SF used in the existing LTE system is maintained, and the same orthogonal sequence can be used.
  • One box represents the REG. 12 (A) shows that one REG includes four consecutive resource elements (RE), and FIG. 12 (B) shows that one REG includes eight consecutive resource elements (RE).
  • Indicates. 12 (C) shows that four consecutive resource elements constitute one REG, and two REGs are grouped and mapped in group units. 12D illustrates that one REG includes six consecutive resource elements RE.
  • BPSK modulation is used to map to 6 modulation symbols.
  • Spreading six modulation symbols with SF 2 generates 12 spread symbols. Therefore, using I / Q multiplexing, up to four (PH * 2) PHICHs can be multiplexed in one PHICH group.
  • SF used in the existing LTE system is maintained, and the same orthogonal sequence can be used.
  • One box represents the REG.
  • FIG. 13A shows that one REG includes four consecutive resource elements RE
  • FIG. 13B shows that one REG includes six consecutive resource elements RE. Indicates.
  • step S550 the base station transmits n ACK / NACK signals on one PHICH.
  • a method of transmitting a plurality of ACK / NACK signals on a plurality of PHICHs by performing separate coding on each ACK / NACK signal for multiple codewords That is, according to separation coding, one ACK / ACK signal for one codeword is transmitted on one PHICH.
  • the plurality of PHICH resources are divided into three types such as (same PHICH group, different sequence index), (different PHICH group, different sequence index), (different PHICH group, same sequence index). Can be assigned using a scheme. At least one of three methods may be designated and used, and at least one of three methods may be selected and used.
  • n ACK / NACK signals for n codewords are transmitted through n PHICHs.
  • the lowest PRB index I lowest_index PRB_RA of the resource used for the PUSCH may be used in the same concept.
  • I lowest_index PRB_RA and n DMRS it is necessary to use different n DMRS for each PHICH resource if I lowest_index PRB_RA is the same.
  • a codeword specific parameter for differently allocating PHICH resources for each codeword may be used.
  • the plurality of PHICH resources are divided into three schemes: (same PHICH group, different sequence index), (different PHICH group, different sequence index), (different PHICH group, same sequence index). Can be used.
  • the codeword specific parameter may be used to allocate a sequence index n seq PHICH .
  • the codeword specific parameter may be used to allocate sequence index n seq PHICH and / or PHICH group number n group PHICH .
  • the codeword specific parameter may be used to allocate the PHICH group number n group PHICH .
  • the codeword specific parameter is used to distinguish a plurality of PHICH resources used for a terminal supporting uplink SU-MIMO.
  • the codeword specific parameter may be variously defined regardless of the form and content as long as the parameter has different characteristics or values for each codeword or PHICH.
  • a modulation and coding scheme (MCS) and / or a redundancy version may be used. This is because a plurality of codewords may have different MCSs and may have different redundancy versions in HARQ retransmission.
  • the MCS and the redundancy version may be allocated for each codeword as parameters that the base station informs when the base station allocates uplink resources.
  • an index pair (n group PHICH , n seq PHICH ) for allocating a plurality of PHICH resources may be determined as follows.
  • an index pair may be determined as in the following equation.
  • an index pair may be determined as in the following equation.
  • an index pair may be determined as in the following equation.
  • the PHICH allocation parameter may be used.
  • the PHICH allocation parameter is a characteristic parameter for each PHICH resource in order to allocate a plurality of PHICH resources.
  • the PHICH allocation parameter may inform the terminal by the base station as part of uplink resource allocation for multi-codeword transmission.
  • the PHICH allocation parameter may be determined to have a different value for each codeword.
  • an index pair (n group PHICH , n seq PHICH ) for allocating a plurality of PHICH resources may be determined as follows.
  • an index pair may be determined as in the following equation.
  • an index pair may be determined as in the following equation.
  • an index pair may be determined as in the following equation.
  • a relationship between a codeword and an antenna port may be used.
  • the number of antenna ports is always equal to or greater than the number of codewords. Therefore, the cyclic shift n DMRS of the demodulation reference signal allocated to each antenna port is used for the plurality of PHICH allocations by using the relationship between the codeword and the antenna port.
  • uplink transmission supports up to four antenna ports and supports up to two codewords
  • a relationship between codewords and antenna ports as shown in the following table may occur.
  • PHICH resources may be allocated for each codeword using cyclic shift nDMRS of a demodulation reference signal allocated to an antenna port having the same index as the codeword index.
  • nDMRS cyclic shift nDMRS of a demodulation reference signal allocated to an antenna port having the same index as the codeword index.
  • i denotes a codeword index
  • j denotes an antenna port index
  • n DMRS (j) denotes a cyclic shift of a demodulation reference signal allocated to the j-th antenna port.
  • PHICH resources may be allocated for each codeword using cyclic shift n DMRS of a demodulation reference signal allocated to an antenna port having the same index as the codeword index.
  • index pairs n group PHICH (i) and n seq PHICH (i) may be determined.
  • the cyclic shift of the demodulation reference signal assigned to the jth antenna port for each codeword by setting the relation between codeword index i and antenna port index j n DMRS (j) Can be determined.
  • the index pair (n group PHICH (i), n seq PHICH (i)) of the i-th codeword may be determined as follows.
  • Variables such as the number of codewords can set the relationship between i and j in a variety of ways.
  • the relationship between the codeword index and the index of the antenna port may be combined and used for PHICH resource allocation.
  • step S710 the base station receives n (n> 1) codewords (CW) from the terminal on the PUSCH.
  • step S720 the base station performs channel coding on n ACK / NACK signals for n codewords, respectively.
  • one ACK / NACK signal is 1 bit, and channel coding is performed on each of n ACK / NACK signals.
  • Various channel coding schemes may be applied.
  • the code rate is 1/3, an example of repetitive coding for a 1 bit ACK / NACK signal is shown in the following table.
  • step S730 a codeword for each ACK / NACK signal is mapped to modulation symbols having a complex value in a signal constellation according to a modulation scheme.
  • BPSK modulation as in the conventional LTE system, the number of PHICHs that can be multiplexed into one PHICH group can be increased by using the existing I / Q multiplexing concept.
  • the spectral efficiency can be increased by using a modulation method of higher order than the BPSK. For example, QPSK can be used.
  • step S740 modulation symbols are spread using orthogonal sequences and mapped to resources. Specific examples for determining an index pair (n group PHICH , n seq PHICH ) for resource mapping are described below.
  • the length or modulation scheme of the codeword is only an example and may vary depending on the maximum number of codewords and the code rate in the uplink SU-MIMO.
  • BPSK modulation is used to map to 3 modulation symbols.
  • I / Q multiplexing up to 16 PHICHs can be multiplexed in one PHICH group.
  • an orthogonal sequence of length 8 is required.
  • An orthogonal sequence of length 8 can use various sequences having good correlation characteristics.
  • a well-known ZC sequence or PN sequence may be used, or a new sequence generated by extension or truncation using one of the sequences as a base sequence may be used as an orthogonal sequence.
  • One box represents the REG.
  • 15 (A) shows that one REG includes four consecutive resource elements (RE), and
  • FIG. 15 (B) shows that one REG includes eight consecutive resource elements (RE).
  • FIG. 15C shows that four consecutive resource elements constitute one REG, and two REGs are grouped and mapped in group units.
  • FIG. 15D shows that one REG includes six consecutive resource elements RE.
  • BPSK modulation is used to map to 3 modulation symbols.
  • Spreading three modulation symbols with SF 4 generates 12 spread symbols.
  • I / Q multiplexing up to eight (PH * 2) PHICHs can be multiplexed in one PHICH group. This has the advantage that the orthogonal sequence of the existing LTE system can be used as it is.
  • One box represents the REG.
  • FIG. 16A shows that one REG includes four consecutive resource elements RE
  • FIG. 16B shows that one REG includes six consecutive resource elements RE. Indicates.
  • step S750 the base station transmits each ACK / NACK signal on each PHICH.
  • PHICH resources When separate coding is used, since the number of PHICHs can be as large as the maximum number of codewords supported by the uplink, the amount of PHICH resources also increases. In uplink SU-MIMO, a limit may be placed on the amount of resources allocated to the entire PHICH.
  • Ng is 2-bit information transmitted through a broadcast channel and is information related to the amount of PHICH resources expressed as N g ⁇ ⁇ 1/6, 1/2, 1, 2 ⁇ .
  • N g is 2-bit information transmitted through a broadcast channel and is information related to the amount of PHICH resources expressed as N g ⁇ ⁇ 1/6, 1/2, 1, 2 ⁇ .
  • the PHICH duration may be limited to a specific region.
  • the PHICH interval provides a lower limit of the size of the control region indicated by the PCFICH.
  • Section 6.9.3 of 3GPP TS 36.211 V8.2.0 (2008-03) divides the PHICH interval into 'normal' and 'extended' as shown in the following table.
  • the PHICH interval may be limited to always use 'Extended' as shown in the table.
  • the terminal using the MCW SU-MIMO can be limited to always use only 'Extended'.
  • a control region which is a region to which control channels are allocated in a subframe, may be allocated as much as a region designated for MCW SU-MIMO transmission.
  • the PCFICH indicates the maximum number of OFDM symbols used for the control region in the subframe as shown in the following table.
  • the PHICH is transmitted within the number of OFDM symbols in which the PDCCH is transmitted. That is, if the PCFICH indicates the use of k OFDM symbols, the PHICH can be transmitted only within k OFDM symbols.
  • Base station 800 includes a HARQ processor 802 and a transceiver 804.
  • the transceiver 804 transmits and / or receives a radio signal through multiple antennas.
  • the HARQ processor 802 performs HARQ.
  • the HARQ processor 802 checks an error for a plurality of codewords received from the terminal 850 and generates an ACK / NACK signal therefor.
  • the HARQ processor 802 configures a PHICH for transmitting the generated ACK / NACK signal.
  • the PHICH may be configured through the aforementioned joint coding or separate coding.
  • the terminal 850 includes a HARQ processor 852 and a transceiver 854.
  • the transceiver 854 transmits and / or receives a radio signal through multiple antennas.
  • the HARQ processor 852 configures multiple codewords and transmits multiple codewords on the PUSCH.
  • the HARQ processor 852 may perform HARQ retransmission after receiving the ACK / NACK signal for the multiple codewords from the base station 800 on the PHICH.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Pulmonology (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

다중 안테나 시스템에서 HARQ(Hybrid Automatic Repeat Request) 수행 방법은 상향링크 채널 상으로 복수의 부호어를 수신하는 단계, 상기 복수의 부호어 각각에 대한 ACK/NACK 신호를 생성하는 단계, 및 복수의 ACK/NACK 신호를 하향링크 채널 상으로 전송하는 단계를 포함한다. 다중 안테나 시스템에서 복수의 부호어 각각에 대한 ACK/NACK 신호를 전송할 수 있다.

Description

다중 안테나 시스템에서 HARQ 수행 방법 및 장치
본 발명은 무선통신에 관한 것으로, 더욱 상세하게는 다중 안테나 시스템에서 HARQ(Hybrid Automatic Repeat Request)를 수행하는 방법 및 장치에 관한 것이다.
MIMO(Multiple Input Multiple Output) 기법은 기지국 및/또는 단말이 2개 이상의 전송 안테나를 사용하여 공간적으로 여러 개의 데이터 스트림을 동시에 전송함으로써 시스템의 용량을 증가시키는 것이다. 전송 다이버시티(transmit diversity)는 복수의 전송 안테나를 통하여 동일한 데이터 스트림을 전송함으로써 빠른 시변 채널에서 신뢰도가 높은 데이터 전송을 가능하게 한다. 공간 다중화(spatial multiplexing)는 복수의 전송 안테나를 통해 서로 다른 데이터 스트림을 전송함으로써 시스템의 용량을 증가시킨다.
단일 사용자에 대한 공간 다중화는 SU-MIMO(Single User-MIMO)로 불리며, MIMO 시스템의 채널 용량은 전송 안테나의 갯수 및 수신 안테나의 갯수 중 최소값에 비례하여 증가한다. 다중 사용자에 대한 공간 다중화는 SDMA(Spatial Division Multiple Access) 혹은 MU-MIMO(Multi User-MIMO)로 불린다.
공간 다중화에는 동시에 전송되는 N(N>1)개의 데이터 스트림을 하나의 부호어를 이용하여 전송하는 단일 부호어(Single CodeWord, SCW) 방식과 N 개의 데이터 스트림을 M (M≤N) 개의 부호어를 이용하여 전송하는 다중 부호어(Multiple CodeWord, MCW) 방식이 있다. 각 부호어는 독립적인 에러검출이 가능하도록 각각 독립적인 채널 인코딩을 통해 생성된다.
3GPP(3rd Generation Partnership Project)에 작업 중인 LTE(Long-Term Evolution)는 이동 통신 기술에서 가장 최신의 표준 중 하나이다. LTE의 무선 접속은 E-UTRAN(Evolved-UMTS Terrestrial Radio Access Network)이라고 불린다. LTE는 다중 안테나를 지원하며, SU-MIMO와 MU-MIMO 양자를 지원할 수 있다. 또한, LTE는 HARQ(Hybrid Automatic Repeat Request)를 상향링크 전송과 하향링크 전송 양자에 지원한다. 하향링크 HARQ는 기지국이 하향링크 데이터를 전송하면, 단말이 상기 하향링크 데이터에 대한 ACK/NACK 신호를 전송하는 것을 말한다. 상향링크 HARQ는 단말이 상향링크 데이터를 전송하면, 기지국이 상기 상향링크 데이터에 대한 ACK/NACK 신호를 전송하는 것을 말한다.
상향링크 데이터에 대한 ACK/NACK 신호를 전송하기 위해, LTE 시스템은 PHICH(Physical Hybrid-ARQ Indicator Channel)을 정의한다. 현재 LTE 시스템에 의하면, 상향링크 HARQ는 SCW 방식만이 적용되고 MCW 방식은 지원하지 않는다. 따라서, PHICH은 하나의 상향링크 데이터(즉, 부호어)에 대한 하나의 ACK/NACK 신호만을 제공하도록 설계되어 있다. 이는 기존 LTE 시스템에 의하면 상향링크 HARQ는 SU-MIMO를 지원할 수가 없음을 의미한다.
상향링크 전송에서 보다 많은 전송 용량, 증가된 전송률이 필요해지고, 단말이 사용가능한 전송 안테나의 수도 증가함에 따라, 상향링크 전송도 SU-MIMO를 지원해야 필요성이 대두되고 있다. SU-MIMO에서 상향링크 HARQ를 수행하기 위해 다중 부호어에 관한 ACK/NACK 신호를 어떤 방식으로 전송 또는 수신할지 여부가 문제된다.
본 발명이 이루고자 하는 기술적 과제는 다중 안테나 시스템에서 HARQ를 수행하기 위한 방법 및 장치를 제공하는 데 있다.
본 발명이 이루고자 하는 다른 기술적 과제는 다중 부호어에 관한 ACK/NACK 신호를 전송하는 방법 및 장치를 제공하는 데 있다.
일 양태에 있어서, 다중 안테나 시스템에서 HARQ(Hybrid Automatic Repeat Request) 수행 방법은 상향링크 채널 상으로 복수의 부호어를 수신하는 단계, 상기 복수의 부호어 각각에 대한 ACK/NACK 신호를 생성하는 단계, 및 복수의 ACK/NACK 신호를 상기 상향링크 채널의 전송에 사용되는 자원과 연관된 하향링크 채널 상으로 전송하는 단계를 포함한다.
상기 복수의 ACK/NACK 신호는 하나의 하향링크 채널 상으로 전송될 수 있다. 또는 상기 복수의 ACK/NACK 신호는 복수의 하향링크 채널 상으로 전송될 수 있다.
상기 하향링크 채널은 PHICH(Physical Hybrid-ARQ Indicator Channel)이고, 상기 상향링크 채널은 PUSCH(Physical Uplink Shared Channel)일 수 있다.
다중 안테나 시스템에서 복수의 부호어 각각에 대한 ACK/NACK 신호를 전송할 수 있도록 한다. 따라서, 시스템 용량이 증가되고, 전송 신뢰성을 높일 수 있다.
도 1은 무선통신 시스템을 나타낸다.
도 2는 3GPP LTE에서 무선 프레임의 구조를 나타낸다.
도 3은 하나의 하향링크 슬롯에 대한 자원 그리드(resource grid)를 나타낸 예시도이다.
도 4는 하향링크 서브프레임의 구조를 나타낸다.
도 5는 상향링크 HARQ를 나타낸다.
도 6은 PHICH의 구성을 나타낸 흐름도이다.
도 7은 MCW 방식을 지원하는 전송기를 나타낸다.
도 8은 3GPP LTE에서 부호어-계층 맵핑을 나타낸다.
도 9는 본 발명의 일 실시예에 따른 HARQ 수행 방법을 나타낸 흐름도이다.
도 10은 SF=4일 때 자원 맵핑의 예를 나타낸다.
도 11은 SF=8일 때 자원 맵핑의 예를 나타낸다.
도 12는 SF=4일 때 자원 맵핑의 예를 나타낸다.
도 13은 SF=2일 때 자원 맵핑의 예를 나타낸다.
도 14는 본 발명의 일 실시예에 따른 HARQ 수행 방법을 나타낸 흐름도이다.
도 15는 SF=8일 때 자원 맵핑의 예를 나타낸다.
도 16은 SF=4일 때 자원 맵핑의 예를 나타낸다.
도 17은 본 발명의 일 실시예에 따른 다중 안테나를 갖는 무선 통신 시스템을 나타낸다.
도 1은 무선통신 시스템을 나타낸다. 무선통신 시스템(10)는 적어도 하나의 기지국(11; Base Station, BS)을 포함한다. 각 기지국(11)은 특정한 지리적 영역(일반적으로 셀이라고 함)(15a, 15b, 15c)에 대해 통신 서비스를 제공한다. 셀은 다시 다수의 영역(섹터라고 함)으로 나누어질 수 있다. 단말(12; User Equipment, UE)은 고정되거나 이동성을 가질 수 있으며, MS(mobile station), UT(user terminal), SS(subscriber station), 무선기기(wireless device), PDA(personal digital assistant), 무선 모뎀(wireless modem), 휴대기기(handheld device) 등 다른 용어로 불릴 수 있다. 기지국(11)은 일반적으로 단말(12)과 통신하는 고정된 지점(fixed station)을 말하며, eNB(evolved-NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point) 등 다른 용어로 불릴 수 있다.
도 2는 3GPP LTE(Long Term Evolution)에서 무선 프레임의 구조를 나타낸다. 무선 프레임(radio frame)은 10개의 서브프레임(subframe)으로 구성되고, 하나의 서브프레임은 2개의 슬롯(slot)으로 구성된다. 하나의 서브 프레임이 전송되는 데 걸리는 시간을 TTI(transmission time interval)이라 하고, 예를 들어 하나의 서브프레임의 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms 일 수 있다.
하나의 슬롯은 시간 영역(time domain)에서 복수의 OFDM(orthogonal frequency division multiplexing) 심벌을 포함하고, 주파수 영역에서 다수의 RB(resource block)을 포함한다. OFDM 심벌은 3GPP LTE가 하향링크에서 OFDMA를 사용하므로 하나의 심벌 구간(symbol period)을 표현하기 위한 것으로, 시스템에 따라 SC-FDMA 심벌 또는 심벌 구간이라고 할 수 있다. RB는 자원 할당 단위로 하나의 슬롯에서 복수의 연속하는 부반송파를 포함한다.
무선 프레임의 구조는 예시에 불과하고, 무선 프레임에 포함되는 서브프레임의 수 또는 서브프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 OFDM 심벌의 수는 다양하게 변경될 수 있다.
도 3은 하나의 하향링크 슬롯에 대한 자원 그리드(resource grid)를 나타낸 예시도이다. 하향링크 슬롯은 시간 영역(time domain)에서 복수의 OFDM 심벌을 포함한다. 여기서, 하나의 하향링크 슬롯은 7 OFDMA 심벌을 포함하고, 하나의 자원블록은 주파수 영역에서 12 부반송파를 포함하는 것을 예시적으로 기술하나, 이에 제한되는 것은 아니다. 자원 그리드 상의 각 요소(element)를 자원요소(resource element)라 하며, 하나의 자원블록은 12×7개의 자원요소를 포함한다. 하향링크 슬롯에 포함되는 자원블록의 수 NDL은 셀에서 설정되는 하향링크 전송 대역폭(bandwidth)에 종속한다.
도 4는 하향링크 서브프레임의 구조를 나타낸다. 서브 프레임은 2개의 슬롯을 포함한다. 서브 프레임내의 첫번째 슬롯의 앞선 최대 3 OFDM 심벌들이 제어채널들이 할당되는 제어영역(control region)이고, 나머지 OFDM 심벌들은 PDSCH(Physical Downlink Shared Channel)가 할당되는 데이터 영역이 된다.
3GPP LTE에서 사용되는 하향링크 제어채널들은 PCFICH(Physical Control Format Indicator Channel), PDCCH(Physical Downlink Control Channel), PHICH(Physical Hybrid-ARQ Indicator Channel) 등이 있다. 서브프레임의 첫번째 OFDM 심벌에서 전송되는 PCFICH는 서브프레임내에서 제어채널들의 전송에 사용되는 OFDM 심벌의 수에 관한 정보를 나른다. PDCCH를 통해 전송되는 제어정보를 하향링크 제어정보(downlink control information, DCI)라고 한다. DCI는 상향링크 또는 하향링크 스케줄링 정보 또는, 임의의 UE 그룹들에 대한 상향링크 전송 파워 제어 명령을 전송한다.
무선통신 시스템은 상향링크 및/또는 하향링크 HARQ(Hybrid Automatic Repeat Request)를 지원할 수 있다.
도 5는 상향링크 HARQ를 나타낸다. 단말로부터 PUSCH(Physical Uplink Shared Channel) 상으로 상향링크 데이터(101)를 수신한 기지국은 일정 서브프레임이 경과한 후에 PHICH 상으로 ACK(Acknowledgement)/NACK(Not-Acknowledgement) 신호(102)를 전송한다. ACK/NACK 신호(102)는 상기 상향링크 데이터(101)가 성공적으로 디코딩되면 ACK 신호가 되고, 상기 상향링크 데이터(101)의 디코딩에 실패하면 NACK 신호가 된다. 단말은 NACK 신호가 수신되면, ACK 정보가 수신되거나 최대 재전송 횟수까지 상기 상향링크 데이터(101)에 대한 재전송 데이터(111)를 전송할 수 있다. 기지국은 재전송 데이터(111)에 대한 ACK/NACK 신호(112)를 PHICH 상으로 전송할 수 있다.
도 6은 PHICH의 구성을 나타낸 흐름도이다. 이는 3GPP TS 36.211 V8.2.0 (2008-03) "Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 8)"의 6.9절을 참조할 수 있다.
도 6을 참조하면, LTE 시스템은 상향링크에서 SU-MIMO를 지원하지 않기 때문에, PHICH는 한 단말에 대한 PUSCH에 대응하는 1비트의 ACK/NACK 신호를 나른다. 이는 상향링크 전송에서 다중 부호어(multi-codeword) 전송이 지원되지 않음을 의미한다. 단계 S210에서, 1비트 ACK/NACK 신호는 코드율(code rate) 1/3인 반복 코딩(repetition coding)을 이용하여 채널 코딩을 수행한다. 단계 S220에서, 3비트의 부호어로 코딩된 ACK/NACK 신호는 BPSK(Binary Phase Shift Keying) 변조를 통해 3개의 변조 심벌로 맵핑된다. 단계 S230에서, 변조 심벌들은 SF(Spreading Factor) NPHICH SF과 직교 시퀀스를 이용하여 확산된다. 확산에 사용되는 직교 시퀀스의 갯수는 I/Q 다중화(multiplexing)을 적용하기 위해 NPHICH SF의 2배가 된다. 2NPHICH SF개의 직교 시퀀스를 사용하여 확산되는 2NPHICH SF개의 PHICH들이 1개의 PHICH 그룹으로 정의된다. 동일한 PHICH 그룹에 속하는 PHICH들은 다른 직교 시퀀스를 통해 구분된다. 단계 S240에서, 확산된 심벌들은 랭크에 따라 계층 맵핑된다. 단계 S250에서, 계층 맵핑된 심벌들은 자원 요소에 각각 맵핑된다.
3GPP TS 36.211 V8.2.0 (2008-03)의 6.9절에 의하면, PUSCH에 대응하는 PHICH 자원은 PUSCH에 사용되는 자원의 가장 낮은 PRB(Physical Resource Block) 인덱스 Ilowest_index PRB_RA와 상기 PUSCH에 사용되는 데이터 복조용 기준신호의 순환 쉬프트 nDMRS를 이용하여 정의된다. 복조용 기준신호는 PUSCH 상으로 전송되는 데이터의 복조에 사용되는 기준신호를 말한다. 보다 구체적으로, PHICH 자원은 인덱스 쌍 (ngroup PHICH , nseq PHICH)에 의해 알려진다. ngroup PHICH는 PHICH 그룹 번호이고, nseq PHICH는 PHICH 그룹내에서 직교 시퀀스 인덱스이며, 다음과 같이 주어진다.
수학식 1
Figure PCTKR2009002655-appb-M000001
여기서, 'mod'는 모듈로 연산을 나타낸다.
ngroup PHICH은 0부터 (Ngroup PHICH-1) 사이의 값을 가지고, PHICH 그룹의 수 Ngroup PHICH는 다음과 같이 주어진다.
수학식 2
Figure PCTKR2009002655-appb-M000002
여기서, Ng∈{1/6, 1/2, 1, 2}는 상위 계층에서 주어진다.
PHICH에 사용되는 직교 시퀀스는 다음 표와 같다.
표 1
Figure PCTKR2009002655-appb-T000001
도 7은 MCW(Multiple CodeWord) 방식을 지원하는 전송기를 나타낸다.
도 7을 참조하면, 전송기(300)는 채널 인코더들(310-1, 310-2), 맵퍼들(320-1, 320-2) 및 계층 맵핑부(Layer Mapping Unit, 340), 프리코더(350) 및 신호 생성기(Signal Generator, 360-1, ..., 360-Nt)를 포함한다. Nt는 안테나 포트(port)의 수이다. 채널 인코더(310-1, 310-2)는 입력되는 정보비트들을 정해진 코딩 방식에 따라 인코딩하여 부호어(codeword, CW)를 생성한다. 제1 채널 인코더(310-1)는 제1 부호어(CW1)를 생성하고, 제2 채널 인코더(310-2)는 제2 부호어(CW2)를 생성한다.
맵퍼(320-1, 320-2)는 각 부호어를 변조 방식(modulation scheme)에 따라 변조하여 복소값을 갖는 변조 심벌들로 맵핑한다. 제1 맵퍼(320-1)는 제1 부호어(CW1)에 대한 변조 심벌들을 생성하고, 제2 맵퍼(320-2)는 제2 부호어(CW2)에 대한 변조 심벌들을 생성한다.
계층 맵핑부(340)는 입력되는 부호어들(CW1, CW2)들의 변조 심벌들을 계층의 갯수에 따라 각 계층으로 맵핑한다. 계층(layer)은 프리코더(350)로 입력되는 정보 경로(information path)라 할 수 있으며, 랭크(rank)의 값에 대응한다. 계층 맵핑부(340)는 계층의 갯수(즉, 랭크)를 결정한 후, 각 계층으로 각 코드워드의 변조 심벌들을 맵핑할 수 있다. 프리코더(350)는 각 계층으로 맵핑된 맵핑 심벌을 복수의 안테나 포트(390-1,..,390-Nt)에 따른 MIMO 방식으로 처리하여 안테나 특정 심벌(antenna specific symbol)을 출력한다. 신호 발생기(360-1,...,360-Nt)는 안테나 특정 심벌을 전송 신호로 변환하고, 전송 신호는 각 안테나 포트(390-1,...,390-Nt)을 통해 전송된다. 신호 발생기(360-1,...,160-Nt)는 OFDM 변조를 수행할 수 있다.
2개의 부호어를 처리하기 위해 전송기(300)가 2개의 채널 인코더들(310-1, 310-2)과 2개의 맵퍼들(320-1, 320-2)를 포함하고 있으나, 전송기(300)에 포함되는 채널 인코더들의 수와 맵퍼의 수는 제한이 아니다. 전송기(300)는 복수의 부호어를 처리하기 위한 복수의 채널 인코더와 복수의 맵퍼를 포함할 수 있다.
도 8은 3GPP LTE에서 부호어-계층 맵핑을 나타낸다. 이는 3GPP TS 36.211 V8.2.0 (2008-03)의 6.3절을 참조할 수 있다. 랭크가 1인 경우, 하나의 부호어(CW1)가 하나의 계층으로 매핑된다. 하나의 계층은 프리코딩에 의해 4개의 안테나 포트를 통해 전송되도록 처리된다. 랭크가 2인 경우, 2개의 부호어(CW1, CW2)가 2개의 계층으로 매핑되고, 프리코더에 의해 4개의 안테나 포트에 매핑된다. 랭크가 3인 경우 2개의 부호어(CW1, CW2)중 하나의 부호어는 직-병렬 변환기(Serial-to-Parallel Converter, S/P)에 의해 2개의 계층에 매핑되어 총 2개의 부호어가 3개의 계층으로 매핑된다. 랭크가 4인 경우, 2개의 부호어(CW1, CW2) 각각이 직-병렬 변환기(S/P)에 의해 각각 2개의 계층에 매핑된다. 4개의 안테나 포트를 가지는 전송기는 최대 4개의 계층을 가질 수 있으므로, 4개의 독립적인 부호어를 전송할 수 있지만, 3GPP LTE에서는 부호어의 개수를 최대 2개 지원하도록 하고 있다. 따라서, 각 부호어가 독립적인 HARQ 프로세스(process)를 가지는 경우, 최대 2개의 독립적인 HARQ 프로세스가 수행될 수 있다.
3GPP TS 36.211 V8.2.0 (2008-03)에 의하면, PUSCH 전송에 대한 PHICH의 구성은 상향링크에서 SU-MIMO를 고려하지 않고 있다. 상향링크에서 다중 부호어 전송은 정의되지 않기 때문이다. 하나의 부호어에 대한 ACK/NACK 신호만이 PHICH 상으로 전송되고, PHICH는 다중 부호어가 전송되는 SU-MIMO를 고려하여 설계되지 못하고 있다. 따라서, 상향링크 SU-MIMO에서 다중 부호어가 PUSCH 상으로 전송되는 경우, 상기 다중 부호어에 대한 ACK/NACK 신호를 PHICH를 통해 전송할 수 있는 방법이 필요하다.
<조인트 코딩>
이하에서는, 다중 부호어에 대한 각 ACK/NACK 신호에 대해 조인트 코딩(joint coding)을 수행하여, 복수의 ACK/NACK 신호들을 PHICH 상으로 전송할 수 있는 방법을 개시한다.
기존 LTE 시스템으로부터의 변경을 최소화하기 위해, PHICH 자원을 할당하기 위해 PHICH 그룹 번호 ngroup PHICH와 PHICH 그룹내에서 확산에 사용하는 직교 시퀀스 인덱스 nseq PHICH를 사용한다. 마찬가지로, 직교 시퀀스 인덱스 nnseq PHICH는 PUSCH에 사용되는 자원의 가장 낮은 PRB 인덱스 Ilowest_index PRB_RA와 상기 PUSCH에 사용되는 데이터 복조용 기준신호의 순환 쉬프트 nDMRS를 이용하여 결정된다. 조인트 코딩을 사용하면 n개의 부호어에 대한 n개의 ACK/NACK 신호가 하나의 PHICH를 통해 전송된다. SU-MIMO를 위해, PUSCH상으로 n개의 부호어들이 전송되더라도 Ilowest_index PRB_RA는 동일한 개념으로 사용할 수 있다. PHICH 할당에 복조용 기준신호의 순환 쉬프트 nDMRS가 사용되는 이유는 상향링크 MU-MIMO에서 동일한 RB를 복수의 단말들이 동시에 사용할 수 있기 때문에 Ilowest_index PRB_RA만으로는 PHICH 자원을 구별할 수 없기 때문이다. 따라서, 상향링크 SU-MIMO에서, 조인트 코딩에 의하면 부호어별로 PHICH 자원을 할당하지 않고 하나의 PHICH 자원만을 할당하면 되므로, 기존 LTE 시스템과 유사한 방식으로 PHICH 자원을 할당할 수 있다.
도 9는 본 발명의 일 실시예에 따른 HARQ 수행 방법을 나타낸 흐름도이다. 이 방법은 기지국에서 수행될 수 있다.
도 9을 참조하면, 단계 S510에서, 기지국은 단말로부터 n(n>1)개의 부호어(CW)를 PUSCH 상으로 수신한다.
단계 S520에서, 기지국은 n개의 부호어에 대한 n개의 ACK/NACK 신호에 대해 채널 코딩을 수행한다. 예를 들어, 하나의 ACK/NACK 신호가 1비트이고, n개의 ACK/NACK 신호에 대한 n개의 비트에 대해 채널 코딩을 수행한다. 다양한 채널 코딩 방식이 적용될 수 있다.
채널 코딩을 위한 제1 실시예에 있어서, 반복 코딩(repetition coding)이 사용될 수 있다. 예를 들어, 상향링크 SU-MIMO에서, 사용 가능한 최대 부호어의 갯수를 2라고 할 때, 2비트 ACK/NACK 신호를 PHICH 코딩에 사용되는 코드율 1/m에 따라 m번 반복시키는 것이다. 코드율 1/m=1/3일 때, 2개의 ACK/NACK 신호들에 대한 2비트의 정보 비트들에 대한 부호어는 다음 표와 같다.
표 2
Figure PCTKR2009002655-appb-T000002
채널 코딩을 위한 제2 실시예에 있어서, 단순 부호(simplex code)가 사용될 수 있다. 예를 들어, 2개의 ACK/NACK 신호들에 대한 2비트의 정보 비트들을 PHICH 코드율 1/3로 코딩하기 위해, (3, 2) 단순 부호를 이용하여 코딩하고, 생성된 부호를 반복하여 부호어를 생성할 수 있다. 다음 표는 생성된 부호어의 일 예를 나타낸다.
표 3
Figure PCTKR2009002655-appb-T000003
이는 표 2의 반복 코딩과 비교할 때, 최소 거리가 증가하는 장점을 가진다.
채널 코딩을 위한 제3 실시예에 있어서, 블록 코딩(block coding)이 사용될 수 있다. 코드율 1/m일 때, n개의 ACK/NACK 신호들에 대한 n비트의 정보 비트들 ak (k=0,...,n-1)에 대한 부호어 bi (i=0, ..., mn-1)는 다음 식과 같이 생성될 수 있다.
수학식 3
Figure PCTKR2009002655-appb-M000003
여기서, n=2, m=3일 때, 기본 시퀀스 Mi,k는 다음 표와 같이 정의될 수 있다.
표 4
Figure PCTKR2009002655-appb-T000004
예를 들어, 2개의 ACK/NACK 신호들을 코드율 1/3에 따라 생성한 부호어는 다음 표와 같다.
표 5
Figure PCTKR2009002655-appb-T000005
단계 S530에서, 생성된 ACK/NACK 신호에 대한 부호어를 변조 방식에 따라 신호 성상상의 복소값을 갖는 변조 심벌들로 맵핑한다. 변조 방식으로 기존 LTE 시스템과 동일하게 BPSK 변조를 사용할 수 있다. 이때, 기존 I/Q 다중화 개념을 그대로 사용하여 한 PHICH 그룹에 다중화될 수 있는 PHICH의 갯수를 증가시킬 수 있다. 또는, BPSK 보다 높은 차수의 변조 방식을 사용하여 주파수 효율(spectral efficiency)을 높일 수 있다. 예를 들어, QPSK(Quadrature Phase Shift Keying)을 사용할 수 있다.
단계 S540에서, 변조 심벌들은 직교 시퀀스를 이용하여 확산되어, 자원에 맵핑된다. 자원 맵핑을 위한 인덱스 쌍 (ngroup PHICH , nseq PHICH)을 결정하기 위한 구체적인 예를 이하에서 개시한다. 부호어의 길이나 변조 방식은 예시에 불과하며, 상향링크 SU-MIMO에서 최대 부호어의 수와 코드율에 따라 달라질 수 있다.
(1) 부호어의 길이가 6비트, QPSK, SF=4
부호어의 길이가 6비트일 때, QPSK 변조를 사용하면 3개의 변조 심벌로 맵핑된다. 3개의 변조 심벌들을 SF=4로 확산시키면 12개의 확산 심벌이 생성된다. QPSK 변조를 사용하면 기존 LTE 시스템에서 사용하는 I/Q 다중화를 사용할 수 없게 되어, 1개의 PHICH 그룹에 최대 4개의 PHICH가 다중화될 수 있다. 기존 LTE 시스템과 동일한 SF를 사용하므로, 동일한 직교 시퀀스를 사용할 수 있다. 따라서, 상향링크 SU-MIMO를 사용하는 단말은 상향링크 SU-MIMO를 지원하지 않는 단말과 구분하기 위해 다음 식과 같이 PHICH 자원을 할당할 수 있다.
수학식 4
Figure PCTKR2009002655-appb-M000004
상기 식에 의하면, UL-MIMO를 사용하는 단말은 I-위상의 직교 시퀀스를 할당받게 된다.
확산 심벌들을 물리적 자원에 맵핑하기 위해 REG(Resource Element Group)을 사용할 수 있다. REG는 연속적인 복수의 자원요소를 포함하며, 시간 및/또는 주파수 영역에서 REG들간은 분산되어 물리적 자원으로 맵핑된다. 즉, REG는 연속적인 자원요소들의 단위를 말하고, REG들은 특정 패턴에 따라 분산시켜 맵핑함으로써 시간/주파수 선택성을 높인다.
도 10은 SF=4일 때 자원 맵핑의 예를 나타낸다. 하나의 박스는 REG를 나타낸다. 도 10의 (A)는 하나의 REG가 4개의 연속된 자원요소(RE)를 포함하는 것을 나타내고, 도 10의 (B)는 하나의 REG가 6개의 연속된 자원요소(RE)를 포함하는 것을 나타낸다.
다른 실시예로, QPSK 변조 및 SF=4를 이용하는 경우 PHICH가 차지하는 물리적인 자원의 양은 기존 LTE 시스템과 동일하지만, I/Q 다중화를 사용할 수 없으므로 1 PHICH 그룹에 다중화되는 PHICH의 갯수는 SF의 값과 같아진다. 따라서, 줄어든 PHICH 용량을 보상하기 위해서 아래와 같이 Ngroup PHICH를 결정할 수 있다.
수학식 5
Figure PCTKR2009002655-appb-M000005
여기서, Ngroup PHICH_MCW는 상향링크 SU-MIMO를 사용하는 단말이 계산하는 PHICH 그룹의 갯수를 의미한다.
또는, PHICH 그룹의 갯수를 확보하기 위해 Ngroup PHICH의 계산에서 사용되는 Ng의 값을 변화시킬 수 있다. Ng는 브로드캐스트 채널상으로 전송되는 2비트 정보로 기존 Ng∈{1/6, 1/2, 1, 2}와 달리 Ng∈{1/2, 1, 2, 4}와 같이 확장된 값을 사용할 수 있다.
(2) 부호어의 길이가 6비트, QPSK, SF=8
부호어의 길이가 6비트일 때, QPSK 변조를 사용하면 3개의 변조 심벌로 맵핑된다. 3개의 변조 심벌들을 SF=8로 확산시키면 24개의 확산 심벌이 생성된다. SF=8은 기존 LTE 시스템이 지원하지 않는 SF이므로, 길이가 8인 직교 시퀀스가 필요하다. 길이가 8인 직교 시퀀스는 상관 특성이 좋은 다양한 시퀀스를 사용할 수 있다. 잘 알려진 ZC(Zadoff-Chu) 시퀀스나 PN(Pseudo-Noise) 시퀀스를 사용할 수 있고, 또는 상기 시퀀스들 중 하나를 기본 시퀀스로 하여 확장(extension)이나 절단(truncation)을 통해 생성된 새로운 시퀀스를 직교 시퀀스로 사용할 수 있다.
도 11은 SF=8일 때 자원 맵핑의 예를 나타낸다. 하나의 박스는 REG를 나타낸다. 도 11의 (A)는 하나의 REG가 4개의 연속된 자원요소(RE)를 포함하는 것을 나타내고, 도 11의 (B)는 하나의 REG가 8개의 연속된 자원요소(RE)를 포함하는 것을 나타낸다. 도 11의 (C)는 4개의 연속된 자원요소가 하나의 REG를 구성하고, 2개의 REG가 그룹으로 묶여, 그룹 단위로 맵핑되는 것을 나타낸다. 도 11의 (D)는 하나의 REG가 6개의 연속된 자원요소(RE)를 포함하는 것을 나타낸다.
하나의 REG를 4개의 자원요소로 구성하는 것은 상향링크 SU-MIMO를 사용하지 않는 기존의 단말과 호환성 있게 PHICH 자원을 할당하기 위함이다. 하나의 REG를 6개 또는 8개의 자원요소로 구성하는 것은 하향링크 전송에 사용되는 최대 안테나 포트의 개수가 6개 또는 8개를 지원할 수 있도록 하기 위함이다. 2개의 REG를 하나의 그룹으로 하여, 그룹 단위로 자원 맵핑에 사용하는 것은 상향링크 SU-MIMO를 지원하지 않는 기존의 단말과 호환성을 유지하면서, PHICH 자원 할당을 지원하기 위함이다.
(3) 부호어의 길이가 6비트, BPSK, SF=4
부호어의 길이가 6비트일 때, BPSK 변조를 사용하면 6개의 변조 심벌로 맵핑된다. 6개의 변조 심벌들을 SF=4로 확산시키면 24개의 확산 심벌이 생성된다. 따라서, I/Q 다중화를 이용하면 1개의 PHICH 그룹에 최대 8개(SF*2)의 PHICH가 다중화될 수 있다. 기존 LTE 시스템에서 사용하던 SF가 유지되고, 동일한 직교 시퀀스를 사용할 수 있다.
도 12는 SF=4일 때 자원 맵핑의 예를 나타낸다. 하나의 박스는 REG를 나타낸다. 도 12의 (A)는 하나의 REG가 4개의 연속된 자원요소(RE)를 포함하는 것을 나타내고, 도 12의 (B)는 하나의 REG가 8개의 연속된 자원요소(RE)를 포함하는 것을 나타낸다. 도 12의 (C)는 4개의 연속된 자원요소가 하나의 REG를 구성하고, 2개의 REG가 그룹으로 묶여, 그룹 단위로 맵핑되는 것을 나타낸다. 도 12의 (D)는 하나의 REG가 6개의 연속된 자원요소(RE)를 포함하는 것을 나타낸다.
(3) 부호어의 길이가 6비트, BPSK, SF=2
부호어의 길이가 6비트일 때, BPSK 변조를 사용하면 6개의 변조 심벌로 맵핑된다. 6개의 변조 심벌들을 SF=2로 확산시키면 12개의 확산 심벌이 생성된다. 따라서, I/Q 다중화를 이용하면 1개의 PHICH 그룹에 최대 4개(SF*2)의 PHICH가 다중화될 수 있다. 기존 LTE 시스템에서 사용하던 SF가 유지되고, 동일한 직교 시퀀스를 사용할 수 있다.
도 13은 SF=2일 때 자원 맵핑의 예를 나타낸다. 하나의 박스는 REG를 나타낸다. 도 13의 (A)는 하나의 REG가 4개의 연속된 자원요소(RE)를 포함하는 것을 나타내고, 도 13의 (B)는 하나의 REG가 6개의 연속된 자원요소(RE)를 포함하는 것을 나타낸다.
단계 S550에서, 기지국은 n개의 ACK/NACK 신호를 하나의 PHICH 상으로 전송한다.
<분리 코딩>
이하에서는, 다중 부호어에 대한 각 ACK/NACK 신호에 대해 분리 코딩(separate coding)을 수행하여, 복수의 ACK/NACK 신호들을 복수의 PHICH 상으로 전송할 수 있는 방법을 개시한다. 즉, 분리 코딩에 의하면, 하나의 부호어에 대한 하나의 ACK/ACK 신호는 하나의 PHICH 상으로 전송되도록 한다.
하나의 단말에게 복수의 PHICH를 할당하기 위해, 복수의 PHICH 자원들은 (동일 PHICH 그룹, 다른 시퀀스 인덱스), (다른 PHICH 그룹, 다른 시퀀스 인덱스), (다른 PHICH 그룹, 동일 시퀀스 인덱스)와 같은 3가지 방식을 이용하여 할당될 수 있다. 3가지 방식 중 적어도 하나를 지정하여 사용할 수 있고, 3가지 방식 중 적어도 하나를 선택하여 사용할 수 있다.
분리 코딩을 사용하면 n개의 부호어에 대한 n개의 ACK/NACK 신호가 n개의 PHICH를 통해 전송된다. PHICH 자원 할당시 상향링크 SU-MIMO에서 PUSCH 상으로 n개의 부호어들이 전송되더라도 PUSCH에 사용되는 자원의 가장 낮은 PRB 인덱스 Ilowest_index PRB_RA는 동일한 개념으로 사용할 수 있다. 기존 LTE 시스템과 같이 Ilowest_index PRB_RA와 nDMRS를 사용하여 복수의 PHICH 자원을 할당하기 위해서는, Ilowest_index PRB_RA가 동일하다면 PHICH 자원마다 서로 다른 nDMRS가 사용되는 것이 필요하다. 그러나, 기존 LTE 시스템에서 복조용 기준신호의 순환 쉬프트는 부호어별로 할당되는 것이 아니고 안테나 포트별로 할당되기 때문에, nDMRS를 부호어별로 할당하기는 어렵다. 이는 기존 LTE 시스템과 같이 Ilowest_index PRB_RA와 nDMRS만을 이용하여 PHICH 자원을 할당하면 복수의 PHICH 자원을 하나의 단말에게 할당할 수 없음을 의미한다. 2개 이상의 PHICH 자원이 동일한 Ilowest_index PRB_RA와 동일한 nDMRS를 사용하면 단말이 PHICH를 구분할 수 없기 때문이다.
따라서, 복수의 부호어에 대해 복수의 PHICH를 할당하기 위해 다음과 같은 방법들을 제안한다.
복수의 부호어에 대해 복수의 PHICH를 할당하기 위한 제1 방안으로써, 부호어별로 PHICH 자원을 다르게 할당하기 위한 부호어 특정(specific) 파라미터를 이용할 수 있다. 하나의 단말에게 복수의 PHICH를 할당하기 위해 복수의 PHICH 자원들은 (동일 PHICH 그룹, 다른 시퀀스 인덱스), (다른 PHICH 그룹, 다른 시퀀스 인덱스), (다른 PHICH 그룹, 동일 시퀀스 인덱스)와 같은 3가지 방식을 이용할 수 있다.
(동일 PHICH 그룹, 다른 시퀀스 인덱스)을 사용할 경우 시퀀스 인덱스 nseq PHICH를 할당하기 위해 상기 부호어 특정 파라미터를 사용할 수 있다. (다른 PHICH 그룹, 다른 시퀀스 인덱스)을 사용할 경우 시퀀스 인덱스 nseq PHICH 및/또는 PHICH 그룹 번호 ngroup PHICH를 할당하기 위해 상기 부호어 특정 파라미터를 사용할 수 있다. (다른 PHICH 그룹, 동일 시퀀스 인덱스)을 사용할 경우 PHICH 그룹 번호 ngroup PHICH를 할당하기 위해 상기 부호어 특정 파라미터를 사용할 수 있다.
부호어 특정 파라미터는 상향링크 SU-MIMO를 지원하는 단말을 위해 사용되는 복수의 PHICH 자원들을 구분하기 위해 사용된다. 부호어 특정 파라미터는 부호어 별 또는 PHICH 별로 다른 특성 또는 값을 갖는 파라미터이면 그 형식 및 내용에 구애받지 않고 다양하게 정의할 수 있다.
부호어 특정 파라미터의 일 예로, 변조 및 코딩 방식(Modulation and coding scheme, MCS) 및/또는 리던던시 버전(redundancy version)을 사용할 수 있다. 복수의 부호어는 서로 다른 MCS를 가질 수 있고, 또한 HARQ 재전송시 서로 다른 리던던시 버전을 가질 수 있기 때문이다. MCS 및 리던던시 버전은 기지국이 단말로 상향링크 자원 할당시 알려주는 파라미터들로 부호어별로 할당될 수 있다. i번째 부호어에 대한 부호어 특정 파라미터를 M(i)라 할 때, 복수의 PHICH 자원을 할당하기 위한 인덱스 쌍 (ngroup PHICH , nseq PHICH)은 다음과 같이 결정될 수 있다.
복수의 PHICH 자원들이 (동일 PHICH 그룹, 다른 시퀀스 인덱스)을 가질 때 다음 식과 같이 인덱스 쌍을 결정할 수 있다.
수학식 6
Figure PCTKR2009002655-appb-M000006
복수의 PHICH 자원들이 (다른 PHICH 그룹, 다른 시퀀스 인덱스)을 가질 때 다음 식과 같이 인덱스 쌍을 결정할 수 있다.
수학식 7
Figure PCTKR2009002655-appb-M000007
복수의 PHICH 자원들이 (다른 PHICH 그룹, 동일 시퀀스 인덱스)을 가질 때 다음 식과 같이 인덱스 쌍을 결정할 수 있다.
수학식 8
Figure PCTKR2009002655-appb-M000008
부호어 특정 파라미터의 다른 예로, PHICH 할당 파라미터를 사용할 수 있다. PHICH 할당 파라미터는 복수의 PHICH 자원을 할당하기 위해, 각 PHICH 자원마다 특징적인 파라미터이다. PHICH 할당 파라미터는 다중 부호어 전송을 위한 상향링크 자원 할당의 일부로써 기지국이 단말에게 알려줄 수 있다. PHICH 할당 파라미터는 각 부호어별로 서로 다른 값을 가지도록 결정될 수 있다.
i번째 부호어에 대한 PHICH 할당 파라미터를 N(i)라 할 때, 복수의 PHICH 자원을 할당하기 위한 인덱스 쌍 (ngroup PHICH , nseq PHICH)은 다음과 같이 결정될 수 있다.
복수의 PHICH 자원들이 (동일 PHICH 그룹, 다른 시퀀스 인덱스)을 가질 때 다음 식과 같이 인덱스 쌍을 결정할 수 있다.
수학식 9
Figure PCTKR2009002655-appb-M000009
복수의 PHICH 자원들이 (다른 PHICH 그룹, 다른 시퀀스 인덱스)을 가질 때 다음 식과 같이 인덱스 쌍을 결정할 수 있다.
수학식 10
Figure PCTKR2009002655-appb-M000010
복수의 PHICH 자원들이 (다른 PHICH 그룹, 동일 시퀀스 인덱스)을 가질 때 다음 식과 같이 인덱스 쌍을 결정할 수 있다.
수학식 11
Figure PCTKR2009002655-appb-M000011
복수의 부호어에 대해 복수의 PHICH를 할당하기 위한 제2 방안으로써, 부호어와 안테나 포트간의 관계를 이용할 수 있다. MIMO 시스템에서, 안테나 포트의 갯수는 항상 부호어의 갯수와 같거나 크다. 따라서, 부호어와 안테나 포트간의 관계를 이용하여 각 안테나 포트에 할당되는 복조용 기준신호의 순환 쉬프트 nDMRS를 복수의 PHICH 할당에 이용한다.
예를 들어, 상향링크 전송에서 안테나 포트의 갯수를 4개까지 지원하고, 부호어의 갯수를 2개까지 지원한다고 가정하면, 아래의 표와 같은 부호어와 안테나 포트간의 관계가 발생할 수 있다.
표 6
Figure PCTKR2009002655-appb-T000006
부호어의 갯수가 안테나 포트의 갯수와 동일한 때, 부호어 인덱스와 동일한 인덱스를 갖는 안테나 포트에 할당되는 복조용 기준신호의 순환 쉬프트 nDMRS를 사용하여 부호어별로 PHICH 자원을 할당할 수 있다. 다음 식은 nDMRS를 이용하여 i번째 부호어의 인덱스 쌍 (ngroup PHICH(i) , nseq PHICH(i))을 결정하는 방법을 나타낸다.
수학식 12
Figure PCTKR2009002655-appb-M000012
여기서, i는 부호어 인덱스, j는 안테나 포트 인덱스, nDMRS(j)는 j번째 안테나 포트에 할당되는 복조용 기준신호의 순환 쉬프트를 나타낸다.
부호어의 갯수가 안테나 포트의 갯수보다 작을 때, 항상 부호어 인덱스와 동일한 인덱스를 갖는 안테나 포트에 할당되는 복조용 기준신호의 순환 쉬프트 nDMRS를 사용하여 부호어별로 PHICH 자원을 할당할 수 있다. 이 경우 상기 수학식 12의 실시예와 마찬가지로 인덱스 쌍 (ngroup PHICH(i) , nseq PHICH(i))을 결정할 수 있다.
부호어의 갯수가 안테나 포트의 갯수보다 작은 경우에는 부호어 인덱스 i와 안테나 포트 인덱스 j의 관계식을 설정함으로써 부호어별로 다른 j번째 안테나 포트에 할당되는 복조용 기준신호의 순환 쉬프트 nDMRS(j)를 결정할 수 있다. 이때, i번째 부호어의 인덱스 쌍 (ngroup PHICH(i) , nseq PHICH(i))은 다음 식과 같이 결정할 수 있다.
수학식 13
Figure PCTKR2009002655-appb-M000013
예를 들어, j=2i, j=2i+1, j=i+1, j=i+2 와 같이 i와 j의 관계를 설정할 수 있으나, 이는 예시에 불과하고 모듈로 연산과 같은 연산이나 최대 부호어의 갯수와 같은 변수를 통해 다양한 방법으로 i와 j의 관계를 설정할 수 있을 것이다.
또는 안테나 포트별 복조용 기준신호의 위치에 따라 복조용 기준신호의 순환 쉬프트가 할당될 경우, 부호어 인덱스와 안테나 포트의 인덱스간의 관계를 조합하여 PHICH 자원 할당에 사용할 수도 있다.
도 14는 본 발명의 일 실시예에 따른 HARQ 수행 방법을 나타낸 흐름도이다. 이 방법은 기지국에서 수행될 수 있다. 단계 S710에서, 기지국은 단말로부터 n(n>1)개의 부호어(CW)를 PUSCH 상으로 수신한다.
단계 S720에서, 기지국은 n개의 부호어에 대한 n개의 ACK/NACK 신호에 대해 각각 채널 코딩을 수행한다. 예를 들어, 하나의 ACK/NACK 신호가 1비트이고, n개의 ACK/NACK 신호에 대해 각각 채널 코딩을 수행한다. 다양한 채널 코딩 방식이 적용될 수 있다. 코드율을 1/3이라고 할 때, 1 비트 ACK/NACK 신호에 대한 반복 코딩의 일 예가 다음 표에 나타나있다.
표 7
Figure PCTKR2009002655-appb-T000007
단계 S730에서, 각 ACK/NACK 신호에 대한 부호어를 변조 방식에 따라 신호 성상상의 복소값을 갖는 변조 심벌들로 맵핑한다. 변조 방식으로 기존 LTE 시스템과 동일하게 BPSK 변조를 사용하면, 기존 I/Q 다중화 개념을 그대로 사용하여 한 PHICH 그룹에 다중화될 수 있는 PHICH의 갯수를 증가시킬 수 있다. 또는, BPSK 보다 높은 차수의 변조 방식을 사용하여 주파수 효율(spectral efficiency)을 높일 수 있다. 예를 들어, QPSK을 사용할 수 있다.
단계 S740에서, 변조 심벌들은 직교 시퀀스를 이용하여 확산되어, 자원에 맵핑된다. 자원 맵핑을 위한 인덱스 쌍 (ngroup PHICH , nseq PHICH)을 결정하기 위한 구체적인 예를 이하에서 개시한다. 부호어의 길이나 변조 방식은 예시에 불과하며, 상향링크 SU-MIMO에서 최대 부호어의 수와 코드율에 따라 달라질 수 있다.
(1) 부호어의 길이가 3비트, BPSK, SF=8
하나의 ACK/NACK 신호에 대한 부호어의 길이가 3비트일 때, BPSK 변조를 사용하면 3개의 변조 심벌로 맵핑된다. 3개의 변조 심벌들을 SF=8로 확산시키면 24개의 확산 심벌이 생성된다. I/Q 다중화를 이용하면 1개의 PHICH 그룹에 최대 16개(SF*2)의 PHICH가 다중화될 수 있다. 다만, SF=8로 확산시키기 위해, 길이 8의 직교 시퀀스가 필요하다. 길이가 8인 직교 시퀀스는 상관 특성이 좋은 다양한 시퀀스를 사용할 수 있다. 잘 알려진 ZC 시퀀스나 PN 시퀀스를 사용할 수 있고, 또는 상기 시퀀스들 중 하나를 기본 시퀀스로 하여 확장이나 절단을 통해 생성된 새로운 시퀀스를 직교 시퀀스로 사용할 수 있다.
도 15는 SF=8일 때 자원 맵핑의 예를 나타낸다. 하나의 박스는 REG를 나타낸다. 도 15의 (A)는 하나의 REG가 4개의 연속된 자원요소(RE)를 포함하는 것을 나타내고, 도 15의 (B)는 하나의 REG가 8개의 연속된 자원요소(RE)를 포함하는 것을 나타낸다. 도 15의 (C)는 4개의 연속된 자원요소가 하나의 REG를 구성하고, 2개의 REG가 그룹으로 묶여, 그룹 단위로 맵핑되는 것을 나타낸다. 도 15의 (D)는 하나의 REG가 6개의 연속된 자원요소(RE)를 포함하는 것을 나타낸다.
(2) 부호어의 길이가 3비트, BPSK, SF=4
하나의 ACK/NACK 신호에 대한 부호어의 길이가 3비트일 때, BPSK 변조를 사용하면 3개의 변조 심벌로 맵핑된다. 3개의 변조 심벌들을 SF=4로 확산시키면 12개의 확산 심벌이 생성된다. I/Q 다중화를 이용하면 1개의 PHICH 그룹에 최대 8개(SF*2)의 PHICH가 다중화될 수 있다. 이는 기존 LTE 시스템의 직교 시퀀스를 그대로 사용할 수 있는 장점이 있다.
도 16은 SF=4일 때 자원 맵핑의 예를 나타낸다. 하나의 박스는 REG를 나타낸다. 도 16의 (A)는 하나의 REG가 4개의 연속된 자원요소(RE)를 포함하는 것을 나타내고, 도 16의 (B)는 하나의 REG가 6개의 연속된 자원요소(RE)를 포함하는 것을 나타낸다.
단계 S750에서, 기지국은 각 ACK/NACK 신호를 각 PHICH 상으로 전송한다.
분리 코딩을 사용하면, PHICH 개수가 상향링크에서 지원하는 최대 부호어의 갯수만큼 될 수 있기 때문에, PHICH 자원의 양도 그만큼 늘어난다. 상향링크 SU-MIMO에서, 전체 PHICH에 할당되는 자원의 양에 제한을 둘 수 있다.
PHICH 자원의 제한을 위한 일 예로, Ngroup PHICH의 계산에 사용되는 Ng의 선택에 제한을 줄 수 있다. Ng는 브로드캐스트 채널로 전송되는 2비트 정보로, Ng∈{1/6, 1/2, 1, 2}로 표현되는 PHICH 자원의 양과 관련된 정보이다. 상향링크 MCW SU-MIMO를 사용하는 경우, Ng의 값은 선택 가능한 집합에 속하는 요소들 중에서 최대값, 예를 들어 Ng=2로 한정한다. 또는 선택 가능한 집합에 속하는 요소들 중에서 값이 큰 일부만을 선택하도록 제한할 수 있다. 예를 들어, Ng∈{1,2}와 같이 제한된 집합내에서 Ng을 선택하도록 한정할 수 있다.
PHICH 자원의 제한을 위한 다른 예로, PHICH 구간(duration)을 특정 영역에 한정할 수 있다. PHICH 구간은 PCFICH에 의해 지시되는 제어 영역의 크기의 하위 한계(lower limit)를 제공한다. 3GPP TS 36.211 V8.2.0 (2008-03)의 6.9.3절은 다음 표와 같이 PHICH 구간을 'normal'와 'extended'로 나눈다.
표 8
Figure PCTKR2009002655-appb-T000008
MCW SU-MIMO인 경우에는 표와 같이 PHICH 구간을 항상 'Extended'만 사용하도록 한정할 수 있다.
표 9
Figure PCTKR2009002655-appb-T000009
이는 브로드캐스트 채널로 알려줄 수 있고, MCW SU-MIMO를 사용하는 단말은 항상 'Extended'만 사용하도록 한정할 수 있다.
PHICH 자원의 제한을 위한 또 다른 예로, 서브프레임내에서 제어채널들이 할당되는 영역인 제어영역을 MCW SU-MIMO 전송시 지정된 영역만큼 할당할 수 있다. 예를 들어, 3GPP TS 36.211 V8.2.0 (2008-03)의 6.7절에 개시된 바와 같이 PCFICH는 다음 표와 같이 서브프레임내에서 제어영역에 사용되는 OFDM 심벌의 최대 갯수를 지시한다.
표 10
Figure PCTKR2009002655-appb-T000010
임의의 서브프레임에서 PHICH는 PDCCH가 전송되는 OFDM 심볼 개수 내에 전송되게 된다. 즉, PCFICH가 k개의 OFDM심볼의 사용을 지시하면, PHICH는 k개의 OFDM 심볼 이내에만 전송이 가능한 것이다. 상향링크 MCW SU-MIMO를 사용하는 경우에 늘어난 PHICH의 양을 지원해 주기 위해서 PCFICH가 항상 최대값(예를 들어, k=3)을 할당하도록 제한할 수 있다. 사용 가능한 PRB의 수가 많지 않은 협대역 시스템에서는 해당하는 시스템 대역폭에서 다른 시스템 대역폭들과 다르게 사용하는 PCFICH의 최대값(k≥3)만을 할당하도록 제한할 수 있다.
도 17은 본 발명의 일 실시예에 따른 다중 안테나를 갖는 무선 통신 시스템을 나타낸다. 기지국(800)은 HARQ 프로세서(802)와 송수신기(804)를 포함한다. 송수신기(804)는 다중 안테나를 통해 무선신호를 송신 및/또는 수신한다. HARQ 프로세서(802)는 HARQ를 수행한다. HARQ 프로세서(802)는 단말(850)로부터 수신한 복수의 부호어에 대한 오류를 확인하고, 이에 대한 ACK/NACK 신호를 생성한다. 그리고, HARQ 프로세서(802)는 생성된 ACK/NACK 신호를 전송하기 위한 PHICH를 구성한다. PHICH는 전술한 조인트 코딩 또는 분리 코딩을 통해 구성될 수 있다.
단말(850)은 HARQ 프로세서(852)와 송수신기(854)를 포함한다. 송수신기(854)는 다중 안테나를 통해 무선신호를 송신 및/또는 수신한다. HARQ 프로세서(852)는 다중 부호어를 구성하고, PUSCH 상으로 다중 부호어를 전송한다. 그리고, HARQ 프로세서(852)는 기지국(800)으로부터 다중 부호어에 대한 ACK/NACK 신호를 PHICH 상으로 수신한 후, HARQ 재전송을 수행할 수 있다.

Claims (7)

  1. 다중 안테나 시스템에서 HARQ(Hybrid Automatic Repeat Request) 수행 방법에 있어서,
    상향링크 채널 상으로 복수의 부호어를 수신하는 단계;
    상기 복수의 부호어 각각에 대한 ACK/NACK 신호를 생성하는 단계; 및
    복수의 ACK/NACK 신호를 상기 상향링크 채널의 전송에 사용되는 자원과 연관된 하향링크 채널 상으로 전송하는 단계를 포함하는 것을 특징으로 하는 방법.
  2. 제 1 항에 있어서,
    상기 복수의 ACK/NACK 신호는 하나의 하향링크 채널 상으로 전송되는 것을 특징으로 하는 방법.
  3. 제 1 항에 있어서,
    상기 복수의 ACK/NACK 신호는 복수의 하향링크 채널 상으로 전송되는 것을 특징으로 하는 방법.
  4. 제 3 항에 있어서,
    상기 복수의 하향링크 채널은 상기 복수의 부호어 각각에 따라 서로 다른 부호어 특정 파라미터에 의해 결정되는 것을 특징으로 하는 방법.
  5. 제 3 항에 있어서,
    상기 복수의 하향링크 채널은 상기 복수의 부호어 각각에 따라 서로 다른 부호어 특정 파라미터에 의해 결정되는 것을 특징으로 하는 방법.
  6. 제 1 항에 있어서,
    상기 하향링크 채널은 PHICH(Physical Hybrid-ARQ Indicator Channel)인 것을 것을 특징으로 하는 방법.
  7. 제 1 항에 있어서,
    상기 상향링크 채널은 PUSCH(Physical Uplink Shared Channel)인 것을 특징으로 하는 방법.
PCT/KR2009/002655 2008-05-21 2009-05-20 다중 안테나 시스템에서 harq 수행 방법 및 장치 WO2009142436A2 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/991,692 US8516327B2 (en) 2008-05-21 2009-05-20 Method and apparatus for performing HARQ in a multiple antenna system

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US5481408P 2008-05-21 2008-05-21
US61/054,814 2008-05-21
US7614608P 2008-06-27 2008-06-27
US61/076,146 2008-06-27
KR10-2009-0008015 2009-02-02
KR1020090008015A KR101591086B1 (ko) 2008-05-21 2009-02-02 다중 안테나 시스템에서 harq 수행 방법

Publications (2)

Publication Number Publication Date
WO2009142436A2 true WO2009142436A2 (ko) 2009-11-26
WO2009142436A3 WO2009142436A3 (ko) 2010-02-25

Family

ID=41604317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/002655 WO2009142436A2 (ko) 2008-05-21 2009-05-20 다중 안테나 시스템에서 harq 수행 방법 및 장치

Country Status (3)

Country Link
US (1) US8516327B2 (ko)
KR (1) KR101591086B1 (ko)
WO (1) WO2009142436A2 (ko)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011118965A2 (en) * 2010-03-22 2011-09-29 Samsung Electronics Co., Ltd. Multiplexing control and data information from a user equipment in a physical data channel
WO2012005523A2 (ko) * 2010-07-07 2012-01-12 엘지전자 주식회사 무선 통신 시스템에서 응답 정보 송신 방법 및 이를 위한 장치
WO2011119006A3 (ko) * 2010-03-25 2012-01-26 엘지전자 주식회사 Ack/nack 신호를 전송하는 방법 및 이를 위한 장치
CN102823183A (zh) * 2010-03-29 2012-12-12 Lg电子株式会社 传输控制信息以支持上行链路多天线传输的有效方法和装置
CN102823184A (zh) * 2010-03-29 2012-12-12 Lg电子株式会社 用于有效传输控制信息以支持上行链路多天线传输的方法和设备
AU2014201577B2 (en) * 2010-03-22 2015-07-16 Samsung Electronics Co., Ltd. Multiplexing control and data information from a User Equipment in a physical data channel
EP2568649A4 (en) * 2010-05-04 2017-05-17 LG Electronics Inc. Method and device for downlink confirmation response data transmission resource allocation in a wireless communication system

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030081538A1 (en) * 2001-10-18 2003-05-01 Walton Jay R. Multiple-access hybrid OFDM-CDMA system
EP2294746A2 (en) * 2008-07-03 2011-03-16 Telefonaktiebolaget L M Ericsson (publ) Methods and arrangements in a wireless communication system
ES2666205T3 (es) * 2008-07-22 2018-05-03 Lg Electronics Inc. Método para asignar un PHICH en un sistema que usa SU-MIMO con múltiples palabras de código en enlace ascendente
CN101764627B (zh) * 2008-12-26 2014-05-07 株式会社Ntt都科摩 确定上行链路的解调导频序列的方法、终端以及上行链路系统
CN101695017A (zh) * 2009-10-27 2010-04-14 中兴通讯股份有限公司 物理上行共享信道传输上行控制信令的方法与装置
CN104618000B (zh) * 2009-11-09 2018-05-15 Lg电子株式会社 用于支持多天线传输技术的有效控制信息传输方法和装置
KR101730656B1 (ko) * 2009-11-23 2017-05-12 엘지전자 주식회사 무선 통신 시스템에서 경쟁 기반 상향링크 전송 수행 방법 및 장치
CN102123013B (zh) * 2010-01-08 2015-06-03 中兴通讯股份有限公司 一种解调参考符号的映射方法和装置
CN102158319B (zh) * 2010-02-12 2015-12-16 中兴通讯股份有限公司 一种基于混合复用解调参考符号的预编码方法及装置
US8891462B2 (en) * 2010-05-14 2014-11-18 Qualcomm Incorporated Methods and apparatuses for downlink channel resource assignment
US9054844B2 (en) 2010-05-20 2015-06-09 Lg Electronics Inc. Method for determining modulation order of uplink control information in multiple antenna wireless communication system and device therefor
JP5715129B2 (ja) 2010-06-21 2015-05-07 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America 端末装置及びその通信方法
KR101821947B1 (ko) * 2010-08-13 2018-01-24 선 페이턴트 트러스트 통신 장치, 통신 방법 및 집적 회로
CN102437987B (zh) * 2010-09-29 2015-09-16 中兴通讯股份有限公司 信道状态信息参考信号序列的生成和映射方法及装置
US8724722B2 (en) 2011-04-14 2014-05-13 Lsi Corporation Method for reducing latency on LTE DL implementation
US8842628B2 (en) 2011-09-12 2014-09-23 Blackberry Limited Enhanced PDCCH with transmit diversity in LTE systems
US20130083826A1 (en) * 2011-09-30 2013-04-04 Fujitsu Limited Spreading data symbols among multiple layers in a mimo transmission scheme
US9148258B2 (en) 2012-02-08 2015-09-29 Telefonaktiebolaget L M Ericsson (Publ) Methods of communicating data including shared ACK/NACK messages and related devices
US9144067B2 (en) * 2012-03-16 2015-09-22 Nokia Technologies Oy Flexible extension of an information block
WO2013141772A1 (en) * 2012-03-20 2013-09-26 Telefonaktiebolaget L M Ericsson (Publ) Methods and devices relating to mimo communications
US9325397B2 (en) 2012-03-26 2016-04-26 Telefonaktiebolaget Lm Ericsson (Publ) Methods of selecting MIMO ranks and related devices
IN2014DN10432A (ko) 2012-06-14 2015-08-21 Ericsson Telefon Ab L M
US20160277155A1 (en) * 2015-03-17 2016-09-22 Nokia Technologies Oy Efficient resource allocation for acknowledgement/non-acknowledgement physical uplink shared channel and periodic channel state information physical uplink shared channel
GB2537017B (en) * 2016-02-05 2020-06-03 3G Wave Ltd Sequential ACK/NACK encoding
ES2952020T3 (es) * 2017-09-14 2023-10-26 Ntt Docomo Inc Terminal de usuario
US10615916B2 (en) 2018-04-06 2020-04-07 At&T Intellectual Property I, L.P. Retransmission of failed transport blocks for 5G or other next generation network
WO2020155187A1 (zh) * 2019-02-03 2020-08-06 华为技术有限公司 数据调度方法、装置及系统
US11418289B2 (en) * 2020-08-10 2022-08-16 Huawei Technologies Co., Ltd. Low latency ACK/NACK transmission
CA3230011A1 (en) * 2021-08-23 2023-03-02 Zhipeng LIN Uplink transmission with multiple codewords

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060074014A (ko) * 2004-12-27 2006-06-30 엘지전자 주식회사 Ofdma 무선 접속 시스템에서의 자동 재전송 요구지원 방법
US20060153060A1 (en) * 2003-02-11 2006-07-13 Myeon-Gyun Cho Method of reducing feedback channel state information within adaptive ofdma system and adaptive ofdma system using the same
WO2007105904A2 (en) * 2006-03-14 2007-09-20 Lg Electronics Inc. Method for transmitting signals in the system with multiful antennas
KR100788897B1 (ko) * 2006-02-06 2007-12-27 한국전자통신연구원 Ofdma 시스템에서 하이브리드 arq 패킷에 대한응답 전송 방법 및 이를 위한 송수신 장치
KR20080088127A (ko) * 2007-03-28 2008-10-02 삼성전자주식회사 하이브리드 자동 재전송 요구 및 다중 안테나 기법을사용하는 무선 통신 시스템에서 비동기 긍정적/부정적 인지검파를 사용하는 상향 링크 긍정적/부정적 인지 채널 자원할당을 위한 암시적 시그널링 장치 및 방법
KR20090084996A (ko) * 2008-02-03 2009-08-06 엘지전자 주식회사 Harq를 지원하는 방법 및 장치

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6590598B2 (en) * 2000-02-28 2003-07-08 Fuji Photo Film Co., Ltd. Image forming apparatus
AU2005320417B2 (en) * 2004-12-27 2009-12-10 Lg Electronics Inc. Supporting hybrid automatic retransmission request in orthogonal frequency division multiplexing access radio access system
US8234535B2 (en) * 2006-04-07 2012-07-31 Telefonaktiebolaget Lm Ericsson (Publ) Method, receiver and transmitter for improved hybrid automatic repeat request
US8243673B2 (en) * 2007-06-15 2012-08-14 Panasonic Corporation Radio communication apparatus, radio communication system, and radio communication method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060153060A1 (en) * 2003-02-11 2006-07-13 Myeon-Gyun Cho Method of reducing feedback channel state information within adaptive ofdma system and adaptive ofdma system using the same
KR20060074014A (ko) * 2004-12-27 2006-06-30 엘지전자 주식회사 Ofdma 무선 접속 시스템에서의 자동 재전송 요구지원 방법
KR100788897B1 (ko) * 2006-02-06 2007-12-27 한국전자통신연구원 Ofdma 시스템에서 하이브리드 arq 패킷에 대한응답 전송 방법 및 이를 위한 송수신 장치
WO2007105904A2 (en) * 2006-03-14 2007-09-20 Lg Electronics Inc. Method for transmitting signals in the system with multiful antennas
KR20080088127A (ko) * 2007-03-28 2008-10-02 삼성전자주식회사 하이브리드 자동 재전송 요구 및 다중 안테나 기법을사용하는 무선 통신 시스템에서 비동기 긍정적/부정적 인지검파를 사용하는 상향 링크 긍정적/부정적 인지 채널 자원할당을 위한 암시적 시그널링 장치 및 방법
KR20090084996A (ko) * 2008-02-03 2009-08-06 엘지전자 주식회사 Harq를 지원하는 방법 및 장치

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102859923A (zh) * 2010-03-22 2013-01-02 三星电子株式会社 在物理数据信道中复用来自用户设备的控制和数据信息
AU2014201577B2 (en) * 2010-03-22 2015-07-16 Samsung Electronics Co., Ltd. Multiplexing control and data information from a User Equipment in a physical data channel
AU2011230149B2 (en) * 2010-03-22 2014-04-03 Samsung Electronics Co., Ltd. Multiplexing control and data information from a User Equipment in a Physical data channel
US10856271B2 (en) 2010-03-22 2020-12-01 Samsung Electronics Co., Ltd. Multiplexing control and data information from a user equipment in a physical data channel
WO2011118965A3 (en) * 2010-03-22 2012-03-15 Samsung Electronics Co., Ltd. Multiplexing control and data information from a user equipment in a physical data channel
US10856272B2 (en) 2010-03-22 2020-12-01 Samsung Electronics Co., Ltd Multiplexing control and data information from a user equipment in a physical data channel
US9161348B2 (en) 2010-03-22 2015-10-13 Samsung Electronics Co., Ltd Multiplexing control and data information from a user equipment in a physical data channel
WO2011118965A2 (en) * 2010-03-22 2011-09-29 Samsung Electronics Co., Ltd. Multiplexing control and data information from a user equipment in a physical data channel
KR101777996B1 (ko) 2010-03-22 2017-09-12 삼성전자주식회사 물리적 데이터 채널에서 사용자 기기로부터의 제어 및 데이터 정보의 다중화
US10200979B2 (en) 2010-03-22 2019-02-05 Samsung Electronics Co., Ltd Multiplexing control and data information from a user equipment in a physical data channel
US11516784B2 (en) 2010-03-22 2022-11-29 Samsung Electronics Co., Ltd Multiplexing control and data information from a user equipment in a physical data channel
US10506569B2 (en) 2010-03-22 2019-12-10 Samsung Electronics Co., Ltd Multiplexing control and data information from a user equipment in a physical data channel
CN102859923B (zh) * 2010-03-22 2015-03-11 三星电子株式会社 在物理数据信道中复用来自用户设备的控制和数据信息
US11825481B2 (en) 2010-03-22 2023-11-21 Samsung Electronics Co., Ltd Multiplexing control and data information from a user equipment in a physical data channel
WO2011119006A3 (ko) * 2010-03-25 2012-01-26 엘지전자 주식회사 Ack/nack 신호를 전송하는 방법 및 이를 위한 장치
US9178663B2 (en) 2010-03-25 2015-11-03 Lg Electronics Inc. Method and apparatus for transmitting ACK/NACK signals
CN102823182A (zh) * 2010-03-25 2012-12-12 Lg电子株式会社 发送ack/nack信号的方法和设备
CN102823182B (zh) * 2010-03-25 2015-11-25 Lg电子株式会社 发送ack/nack信号的方法和设备
CN102823184A (zh) * 2010-03-29 2012-12-12 Lg电子株式会社 用于有效传输控制信息以支持上行链路多天线传输的方法和设备
US9590769B2 (en) 2010-03-29 2017-03-07 Lg Electronics Inc. Effective method and device for transmitting control information for supporting uplink multi-antenna transmission
US9148880B2 (en) 2010-03-29 2015-09-29 Lg Electronics Inc. Effective method and device for transmitting control information for supporting uplink multi-antenna transmission
CN104618077B (zh) * 2010-03-29 2018-04-17 Lg电子株式会社 传输控制信息以支持上行链路多天线传输的有效方法和装置
CN102823183B (zh) * 2010-03-29 2015-01-07 Lg电子株式会社 传输控制信息以支持上行链路多天线传输的有效方法和装置
US8819501B2 (en) 2010-03-29 2014-08-26 Lg Electronics Inc. Effective method and device for transmitting control information for supporting uplink multi-antenna transmission
CN102823183A (zh) * 2010-03-29 2012-12-12 Lg电子株式会社 传输控制信息以支持上行链路多天线传输的有效方法和装置
EP2568649A4 (en) * 2010-05-04 2017-05-17 LG Electronics Inc. Method and device for downlink confirmation response data transmission resource allocation in a wireless communication system
US9100954B2 (en) 2010-07-07 2015-08-04 Lg Electronics Inc. Method for transmitting response information in a wireless communication system, and apparatus for same
WO2012005523A3 (ko) * 2010-07-07 2012-03-01 엘지전자 주식회사 무선 통신 시스템에서 응답 정보 송신 방법 및 이를 위한 장치
WO2012005523A2 (ko) * 2010-07-07 2012-01-12 엘지전자 주식회사 무선 통신 시스템에서 응답 정보 송신 방법 및 이를 위한 장치

Also Published As

Publication number Publication date
US8516327B2 (en) 2013-08-20
KR20090121185A (ko) 2009-11-25
US20110051824A1 (en) 2011-03-03
KR101591086B1 (ko) 2016-02-03
WO2009142436A3 (ko) 2010-02-25

Similar Documents

Publication Publication Date Title
WO2009142436A2 (ko) 다중 안테나 시스템에서 harq 수행 방법 및 장치
WO2018026220A1 (en) Method and apparatus for reference signal signaling for advanced wireless communications
WO2017007184A1 (ko) 단말 간 신호를 전송하는 방법 및 이를 위한 장치
WO2010120106A2 (en) Multi-user mimo transmissions in wireless communication systems
WO2010087681A2 (en) System and method for multi-user and multi-cell mimo transmissions
WO2012044083A1 (en) Transmission/reception method and apparatus for uplink mimo retransmission in lte system
WO2019143131A1 (ko) 무선 통신 시스템에서 상향링크 신호를 송신하는 방법 및 장치
WO2013032202A2 (ko) 하향링크 신호 수신 방법 및 사용자기기와, 하향링크 신호 전송 방법 및 기지국
WO2013073909A1 (en) Method and apparatus for transmitting control information in wireless communication systems
WO2010134742A2 (ko) 엘티이 시스템에서 자원 할당 방법
WO2011090282A2 (ko) 하향링크 데이터 전송방법 및 기지국과, 하향링크 데이터 수신방법 및 사용자기기
WO2013043026A2 (ko) 상향링크 신호 전송방법 및 사용자기기와, 상향링크 신호 수신방법 및 기지국
WO2013022326A2 (en) System and method for physical downlink control and hybrid-arq indicator channels in lte-a systems
WO2011129626A2 (en) Method and system for mapping uplink control information
WO2011031019A2 (en) Method and apparatus for transmitting downlink signal in a mimo wireless communicaiton system
WO2013133608A1 (en) Method and apparatus for transmitting or receiving downlink signal
WO2011083972A2 (en) Method and system for enabling resource block bundling in lte-a systems
WO2010018980A2 (ko) 무선 통신 시스템에서 제어신호 전송 방법 및 장치
WO2010087676A2 (en) Method and system for reference signal pattern design in resource blocks
WO2010050766A2 (ko) 무선통신 시스템에서 harq 수행 방법 및 장치
WO2009116789A1 (en) Method of transmitting uplink data in wireless communication system
WO2010079933A2 (en) Method of cooperative transmission
WO2011105827A2 (en) Method and system for indicating an enabled transport block
WO2010016729A2 (en) Method and apparatus for transmitting signal in wireless communication system
WO2010095884A2 (en) Method for indicating precoding matrix indicator in uplink mimo system with based on sc-fdma

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09750758

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 12991692

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09750758

Country of ref document: EP

Kind code of ref document: A2