WO2009142287A1 - Hologram recording device, hologram recording method, hologram reproducing device and hologram reproducing method - Google Patents

Hologram recording device, hologram recording method, hologram reproducing device and hologram reproducing method Download PDF

Info

Publication number
WO2009142287A1
WO2009142287A1 PCT/JP2009/059409 JP2009059409W WO2009142287A1 WO 2009142287 A1 WO2009142287 A1 WO 2009142287A1 JP 2009059409 W JP2009059409 W JP 2009059409W WO 2009142287 A1 WO2009142287 A1 WO 2009142287A1
Authority
WO
WIPO (PCT)
Prior art keywords
bits
code block
state
row
column
Prior art date
Application number
PCT/JP2009/059409
Other languages
French (fr)
Japanese (ja)
Inventor
篤 中村
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2009142287A1 publication Critical patent/WO2009142287A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/12Formatting, e.g. arrangement of data block or words on the record carriers
    • G11B20/1217Formatting, e.g. arrangement of data block or words on the record carriers on discs
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/18Error detection or correction; Testing, e.g. of drop-outs
    • G11B20/1833Error detection or correction; Testing, e.g. of drop-outs by adding special lists or symbols to the coded information
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0065Recording, reproducing or erasing by using optical interference patterns, e.g. holograms
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/125Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
    • G11B7/128Modulators
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/12Formatting, e.g. arrangement of data block or words on the record carriers
    • G11B20/1217Formatting, e.g. arrangement of data block or words on the record carriers on discs
    • G11B2020/1218Formatting, e.g. arrangement of data block or words on the record carriers on discs wherein the formatting concerns a specific area of the disc
    • G11B2020/1222ECC block, i.e. a block of error correction encoded symbols which includes all parity data needed for decoding
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B2220/00Record carriers by type
    • G11B2220/20Disc-shaped record carriers
    • G11B2220/25Disc-shaped record carriers characterised in that the disc is based on a specific recording technology
    • G11B2220/2504Holographic discs; Holographic digital data storage [HDDS]

Definitions

  • the present invention relates to a digital data recording / reproducing system, and more particularly to a hologram recording apparatus, a hologram recording method, a hologram reproducing apparatus, and a hologram reproducing method for recording and reproducing information using a hologram.
  • the holographic memory system generates interference fringes by causing information light having information and reference light to interfere with each other, and records it on a recording medium such as a photorefractive crystal or a photosensitive polymer.
  • a recording medium such as a photorefractive crystal or a photosensitive polymer.
  • a laser beam having a Gaussian distribution used at the time of recording / reproduction is uniform within the beam spot. This is because the non-uniform laser beam has a problem that the sensitivity of the recording material is consumed non-uniformly.
  • the holographic memory system irradiates a predetermined position of the medium with only the reference light at the time of reproduction, so that the page data corresponding to the incident angle and phase of the reference light is stored in a CCD (charge coupled device) or the like. It can be read through the imaging element.
  • CCD charge coupled device
  • FIG. 1 is a schematic diagram showing distortion of a reproduced image corresponding to a pixel of a spatial light modulator.
  • Patent Document 1 JP-A-2006-260619
  • FIG. 2 is a configuration diagram of a digital data recording / reproducing apparatus and its peripheral devices in the prior art described in Patent Document 1.
  • the digital data recording / reproducing apparatus records data input from the external device 1004 on the recording medium 1002 or outputs data recorded on the recording medium 1002 to the external device 1004.
  • the digital data recording / reproducing apparatus shown in FIG. 2 generates information light by passing an error correction apparatus 1001 that performs error correction coding and error correction processing, and page data output from the error correction apparatus 1001 through a spatial light modulator.
  • the page data is recorded on the recording medium 1002 by making interference fringes by causing the information light different from the generated information light (reference light) and the information light to interfere with each other on the recording medium 1002 (holographic memory).
  • the recording / reproducing circuit 1003 reproduces page data by irradiating only a light to a predetermined position of the recording medium 1002.
  • the error correction apparatus 1001 adds an error correction code to the data input from the external device 1004 and outputs the data to the recording / reproducing circuit 1003, and data obtained by performing error correction on the data reproduced from the recording medium 1002 by the recording / reproducing circuit 1003. This is output to the external device 1004.
  • the error correction apparatus 1001 stores a buffer memory 1015 that temporarily stores data to be input / output to / from the external device 1004 and the recording / reproducing circuit 1003, and stores data input from the external device 1004 in the buffer memory 1015.
  • a data input / output unit 1011 that reads the data recorded in the data 1015 and outputs the data to the external device 1004, and a code that generates an error correction code for the data recorded in the buffer memory 1015 and performs error correction coding
  • the control unit 1014 controls the entire 1001.
  • FIG. 3 is a flowchart showing a flow of processing at the time of recording in the prior art described in Patent Document 1.
  • step S101 the control unit 1014 records how the data transferred from the external device 1004 is stored in the buffer memory 1015 based on the control signal output from the external device 1004 to the control unit 1014. Settings are made such as how to divide the area of the page data output to the reproduction circuit 1003, and how to correct the error correction capability when encoding for each area.
  • This control signal includes a command indicating the start of recording and the number of transfer data.
  • FIG. 4 is a schematic diagram showing a configuration of page data and a region dividing method in the prior art described in Patent Document 1.
  • the error correction apparatus 1001 performs error correction coding on the data sent from the external device 1004, and shows the data arrangement of the page data that is finally output to the recording / reproducing circuit 1003, for example, as shown in FIG. Thus, it is configured by an array of 1024 ⁇ 1024 bits.
  • the recording / reproducing circuit 1003 performs processing such as spatial light modulation on the page data and starts a recording operation on the recording medium 1002. At this time, depending on the performance of the lens and laser used by the recording / reproducing circuit 1003, distortion occurs in the peripheral area of the page data, particularly in the four corners, so that the quality of the data is divided in the page data.
  • step S101 the control unit 1014 performs area division as shown in FIG. 4B on the data arrangement of the page data shown in FIG. 4A according to whether the data quality is good or bad.
  • an “A” area composed of 768 ⁇ 768 bits located at the center of the page data is defined as an area with good data quality.
  • four “B” regions composed of 768 ⁇ 128 bits adjacent to the four sides of the “A” region are defined as regions having an average data quality level.
  • the four “C” areas composed of 128 bits ⁇ 128 bits located at the four corners of the page data are defined as areas with poor data quality.
  • different error correction levels are provided in the respective areas “A”, “B”, and “C”.
  • the error correction code itself may not be discriminated due to the distortion of the optical system or the luminance unevenness.
  • Another way to prevent loss of page data is to insert an element that makes the intensity distribution uniform in the optical path of the Gaussian-distributed light beam, or to process the optical element to make the intensity distribution uniform. It is done.
  • such a method has a problem that an increase in the number of parts, an increase in part costs, an increase in assembly man-hours, and an increase in adjustment man-hours are unavoidable.
  • the present invention has been made to solve the above-described problems, and provides a hologram recording apparatus and a hologram reproducing apparatus that can reduce data loss in a holographic memory without special processing of optical elements. This is the issue.
  • the present invention is a hologram recording apparatus, comprising: a laser that emits laser light; a spatial light modulator that modulates laser light; and information recorded on a hologram recording medium in m rows ⁇ n columns.
  • An encoding unit that generates a code block encoded with a bit pattern of a plurality of bits, a redundant information generation unit that generates redundant information according to the number of bits in the first state in each row / column of the code block, and a space
  • the optical modulator includes a control device that modulates the laser light so that the code block is arranged so as to surround the redundant information.
  • control device arranges redundant information in a region near the optical axis of the optical element that focuses the laser light modulated by the spatial light modulator on the hologram recording medium in the spatial light modulator, and the peripheral region of the optical element The laser beam is modulated so that the code block is arranged in the area.
  • the redundant information consists of redundant bits each corresponding to the number of bits in the first state in each row / column.
  • the redundant bit indicates whether the number of first state bits in a row / column is the largest among the number of first state bits in all rows / columns.
  • the redundant information generation unit corresponds to the row / column in which the number of bits in the first state in the row / column is the maximum among the number of bits in the first state in all the rows / columns. Redundant bits are set to the bright state.
  • the present invention according to another aspect is a hologram recording method, wherein a code block including a plurality of bits arranged in a bit pattern of m rows ⁇ n columns corresponding to information recorded on a hologram recording medium is generated. Generating redundant information according to the number of bits in the first state in each row / column of the code block, and encircling the redundant information with laser light emitted from a laser by surrounding the redundant information with the spatial light modulator Modulating the code block to be arranged.
  • redundant information is arranged in a region near the optical axis of the optical element that focuses the modulated laser beam on the hologram recording medium, and a code block is provided in a region around the optical element.
  • the laser beam is modulated so that is arranged.
  • the redundant information consists of redundant bits each corresponding to the number of bits in the first state in each row / column.
  • the redundant bit indicates whether the number of first state bits in a row / column is the largest among the number of first state bits in all rows / columns.
  • the number of bits in the first state in the row / column is the row / column that is the largest among the number of bits in the first state in all the rows / columns.
  • the corresponding redundant bit is set to the bright state.
  • the present invention according to still another aspect is a hologram reproducing apparatus, comprising: a reproducing unit that irradiates a hologram recording medium with a laser beam, detects a reproduced image from the hologram recording medium irradiated with the laser beam; , A first area in which a code block composed of a plurality of bits of m rows ⁇ n columns is recorded, and redundant information according to the number of bits in the first state in each row / column of the code block is recorded Based on a cutout unit that cuts out the second area, a detection result of the code block in the first area, a detection result of the redundant information in the second area, a generation rule of the code block, and a generation rule of the redundant information And an error correction unit for estimating the code block and a decoding unit for decoding the estimated code block.
  • the first area is an area near the center of the reproduced image
  • the second area is an area around the reproduced image
  • the redundant information consists of redundant bits each corresponding to the number of bits in the first state in each row / column.
  • the redundant bit indicates whether the number of first state bits in a row / column is the largest among the number of first state bits in all rows / columns.
  • the redundant bit corresponding to the row / column in which the number of first state bits in the row / column is the largest among the number of first state bits in all rows / columns is in the light state. is there.
  • the present invention according to still another aspect is a hologram reproducing method, comprising: irradiating a hologram recording medium with laser light; detecting a reproduced image from the hologram recording medium irradiated with the laser light; and A first area in which a code block composed of a plurality of bits of m rows ⁇ n columns is recorded, and redundancy information corresponding to the number of bits in the first state in each row / column of the code block is recorded.
  • the detection result of the code block in the first region Based on the step of cutting out the two regions, the detection result of the code block in the first region, the detection result of the redundant information in the second region, the generation rule of the code block, and the generation rule of the redundant information, A step of estimating a code block; and a step of decoding a code block estimation result.
  • the first area is an area near the center of the reproduced image
  • the second area is an area around the reproduced image
  • the redundant information consists of redundant bits each corresponding to the number of bits in the first state in each row / column.
  • the redundant bit indicates whether the number of first state bits in a row / column is the largest among the number of first state bits in all rows / columns.
  • the redundant bit corresponding to the row / column in which the number of first state bits in the row / column is the largest among the number of first state bits in all rows / columns is in the light state. is there.
  • the present invention it is possible to arrange redundant information corresponding to a code block in an area where distortion is unlikely to occur compared to an area where a code block obtained by encoding information to be recorded is arranged. As a result, even if an error occurs in the code block at the time of reproducing information, it is possible to reduce the influence of the error generated in the code block by using redundant information that is not easily affected by distortion.
  • FIG. 9 is a schematic diagram showing a configuration of page data and a region dividing method in the prior art described in Patent Document 1.
  • 1 is a configuration diagram of a hologram recording / reproducing apparatus 1 and peripheral devices according to a first embodiment. It is a schematic diagram which shows the structure of the recording / reproducing part 12 which concerns on 1st Embodiment.
  • the present embodiment relates to a hologram recording apparatus that records information on a recording medium.
  • FIG. 5 is a configuration diagram of the hologram recording / reproducing apparatus 1 and peripheral devices according to the first embodiment.
  • the hologram recording / reproducing apparatus 1 records data input from the external device 4 on the recording medium 2. Further, the hologram recording / reproducing apparatus 1 reproduces the data recorded on the recording medium 2 and outputs it to the external device 4.
  • the hologram recording / reproducing apparatus 1 includes an information generating unit 3, a buffer memory 10, a control unit 11, and a recording / reproducing unit 12.
  • an information generating unit 3 a buffer memory 10
  • a control unit 11 a control unit 11
  • a recording / reproducing unit 12 a recording / reproducing unit 12.
  • the information generation unit 3 generates page data to be recorded on the recording medium 2 based on the recording target information input from the external device 4 and stores the generated page data in the buffer memory 10.
  • the page data generated by the information generating unit 3 includes a unit code block obtained by encoding the recording target information and redundant information corresponding to the unit code block.
  • the information generation unit 3 includes an encoding / decoding unit 5, an error correction unit 6, a data division / combination unit, a page generation unit 8, and a data cutout unit 9.
  • the data cutout unit 9 is used only during data reproduction, the description thereof is omitted in the present embodiment.
  • the encoding / decoding unit 5 converts the recording target information input from the external device 4 according to a predetermined modulation method to generate two-dimensional data.
  • Two-dimensional data consists of at least one unit code block.
  • the unit code block is a plurality of bits arranged two-dimensionally, and information of a predetermined number of bits is represented by an arrangement pattern of bits in the first state and bits in the second state (hereinafter referred to as bits). This is encoded using a pattern). Since the unit code block is obtained by encoding the original information, the number of bits of the unit code block is larger than the number of bits of the original information.
  • the encoding / decoding unit 5 divides the target information into a predetermined number of bits, and generates two-dimensional data by combining unit code blocks obtained by converting the divided information. A specific example of the unit code block will be described later.
  • the data dividing / combining unit 7 cuts the two-dimensional data generated by the encoding / decoding unit 5 into unit code blocks.
  • the error correction unit 6 generates or detects redundant information for reducing the loss of page data.
  • the error correction unit 6 includes a redundant information generation unit 6out and a redundant information detection unit 6in.
  • the redundant information generation unit 6out generates redundant information corresponding to the unit code block obtained by the segmentation. More specifically, the redundant information generation unit 6out generates redundant information corresponding to the bit pattern in the unit code block. In the present embodiment, it is assumed that the redundancy information generation unit 6out generates row-direction redundancy information reflecting a row bit pattern and column-direction redundancy information reflecting a column bit pattern.
  • the page generation unit 8 determines each unit code block and the arrangement position of redundant information corresponding to the unit code block, and generates and generates page data in which each unit code block and each redundant information is arranged according to the determined arrangement position.
  • the page data is transmitted to the buffer memory 10.
  • the control unit 11 receives a signal from the external device 4, reads page data stored in the buffer memory 10, and drives the recording / reproducing unit 12.
  • the recording / reproducing unit 12 includes a recording / reproducing circuit and an optical member for recording a hologram on the recording medium 2 and reading information from the recording medium 2.
  • the optical member includes a laser that oscillates laser light, a spatial light modulator that modulates the laser light, and an optical element that focuses the modulated laser light on the recording medium 2.
  • the recording / reproducing unit 12 displays the page data stored in the buffer memory 10 on the spatial light modulator based on an instruction from the control unit 11. That is, the recording / reproducing unit 12 generates signal light by modulating the light beam emitted from the laser with a pattern corresponding to the page data. In addition, the recording / reproducing unit 12 generates reference light different from the signal light, and induces interference between the reference light and the signal light in the recording medium 2, so that information is stored in the recording medium 2 in the form of interference fringes. Record.
  • the recording / reproducing unit 12 may perform multiplex recording by changing the angle of the reference light incident on the recording medium 2 as needed, or by shifting the position of the recording medium 2.
  • FIG. 6 shows an example of the configuration of the recording / reproducing unit 12 according to the present embodiment.
  • FIG. 6 is a schematic diagram showing a configuration of the recording / reproducing unit 12 according to the first embodiment.
  • the recording / reproducing unit 12 includes a laser 20 that emits laser light, a laser controller 21 that controls the operation of the laser 20 based on a signal from the control unit 11, and a first laser that collects the laser light emitted from the laser 20.
  • the controller 11 controls the rotation mechanism 24 at the time of recording the hologram, and adjusts the angle of the quarter wavelength plate 23 so that the light is transmitted to the surface of the polarization beam splitter 27 on the spatial light modulator 29 side.
  • the control unit 11 controls the spatial light modulator 29 so that the laser light is modulated with a pattern corresponding to information.
  • the configuration of the recording / reproducing unit 12 is not limited to that shown in FIG. 6 shows the collinear recording / reproducing unit 12 in which the optical axis of the signal light and the optical axis of the reference light are the same, the recording / reproducing unit 12 irradiates the recording medium with the reference light from a direction different from the signal light.
  • a two-beam interference type may be used.
  • other modified examples can be taken as appropriate.
  • the fourth lens instead of the fourth lens, another optical element that condenses light on the recording medium 2 can be used.
  • FIG. 7 is a flowchart showing a flow of processing at the time of data recording of the hologram recording / reproducing apparatus 1 according to the first embodiment.
  • step S1 the encoding / decoding unit 5 generates two-dimensional data that determines the modulation pattern of the spatial light modulator based on information from the external device 4. More specifically, the encoding / decoding unit 5 converts information input from the external device 4 into two-dimensional data based on a predetermined two-dimensional data generation rule.
  • “3-16 modulation method” is adopted as a method for generating two-dimensional data.
  • 8 bits are represented by arranging 3 bright bits in a 4 ⁇ 4 bit unit code block.
  • the “bright bit” is a bit in a state (bright state) indicating that the spatial light modulator passes light in a region corresponding to the bit.
  • the other bits in the unit code block are in a state (dark state) indicating that the spatial light modulator blocks light in the region corresponding to the bit.
  • Such a bit is referred to as a “dark bit”.
  • the area of the spatial light modulator corresponding to each bit may be one pixel of the spatial light modulator or a set of a plurality of pixels.
  • FIG. 8 is a diagram for explaining a bit pattern in the 3-16 modulation method.
  • FIG. 8A shows an example of a bit pattern in the 3-16 modulation scheme.
  • FIG. 8B is a diagram showing bits corresponding to the bit pattern shown in FIG.
  • the 4 ⁇ 4 bit unit code block 700 is composed of four 2 ⁇ 2 bit sets 710, 712, 714, and 716.
  • One set of four sets consists of four dark bits.
  • the remaining three sets consist of three dark bits and one bright bit.
  • dark bits are indicated by hatched areas and bright bits are indicated by white areas.
  • 2 bits out of 8 bits represented by the unit code block 700 are represented by the position of a set of 4 dark bits. For example, if the first 2 bits of the 8-bit bit string are “00”, the upper left 2 ⁇ 2 bits 710 are darkened, and if the first 2 bits are “11”, the upper right 2 ⁇ 2 If bit 712 is dark and the first 2 bits are “01”, the lower right 2 ⁇ 2 bit 716 is dark, and if the first 2 bits are “10”, the lower left 2 ⁇ 2 bits A rule is given to make 714 a dark state. In the example shown in FIG. 8, since the first two bits are “10” as shown in FIG. 8B, the lower left 2 ⁇ 2 bits 714 are in a dark state. Note that the two bits in the bit string that determines the arrangement of the set are not limited to the first two bits of the bit string.
  • the remaining 6 bits are expressed by representing 3 sets of 3 dark bits and 1 bright bit, each representing 2 bits.
  • the remaining 2 bits ⁇ 3 are sequentially assigned to the upper left, upper right, lower left, and lower right sets. However, the remaining bits are not assigned to the set of four dark bits.
  • the bright bit can take four positions, so that two bits can be represented by the position of the bright bit. For example, if 2 bits are “00”, the upper left 1 bit of 2 ⁇ 2 bits is in a bright state, and if 2 bits are “11”, the upper right 1 bit of 2 ⁇ 2 bits is in a bright state If the 2 bits are “01”, the lower right 1 bit of the 2 ⁇ 2 bits is in a bright state, and if the 2 bits are “10”, the lower left 1 bit of the 2 ⁇ 2 bits is bright. Give rules that state.
  • FIG. 8A shows the remaining six bits (“010011”) of FIG. 8B according to this rule.
  • 2 bits are represented by 2 ⁇ 2 bits, so that the connection of bright bits in one direction of a 4 ⁇ 4 bit unit code block can be made long and two. Thereby, it is possible to avoid the concentration of bright bits in the two-dimensional pattern.
  • the shaded area is the dark bit and the white area is the bright bit, but the reverse is also possible.
  • step S2 the data dividing / combining unit 7 cuts out two-dimensional data for each unit code block. That is, the data dividing / combining unit 7 divides the two-dimensional data into unit code blocks.
  • step S3 the redundant information generation unit 6out searches for the row of the unit code block and generates redundant information in the row direction.
  • step S4 the redundant information generation unit 6out searches for a column of unit code blocks and generates redundant information in the column direction.
  • FIG. 9 is a schematic diagram showing unit code blocks constituting the two-dimensional data according to the first embodiment and redundant information in the row direction / column direction.
  • the redundant information generation unit 6out generates redundant information in the row direction and the column direction based on the pixels in the row direction and the column direction of the unit code block 40.
  • the redundancy information 41 in the row direction and the redundancy information 42 in the column direction are 4 ⁇ 1 one-dimensional bit sequences.
  • the redundant information in the row / column direction is represented by 1 bit, the number of bits of the redundant information is minimized.
  • the number of bits of the redundant information is smaller than the number of bits of the unit code block.
  • the redundant information generation unit 6out performs redundant bits corresponding to the row / column. Is in a dark state.
  • the maximum number of bright bits is determined according to the unit code block generation rule.
  • the combination of the number of bright bits included in a row or column is (2, 1, 0, 0) or (1, 1 , 1, 0) and a row (or column) including two bright bits always includes the maximum number of bright bits in all rows (or columns). Therefore, the maximum number of bright bits included in each row / column in the region of the unit code block 40 is two. Therefore, if the number of bright bits included in a row / column is two, the redundant information generation unit 6out sets the corresponding redundant bit to a dark state.
  • FIG. 10 shows an example of a unit code block in 3-16 modulation adopted in the present embodiment and redundant information corresponding to the unit code block.
  • c) and redundant information 502 (a) to 502 (c) in the column direction are shown.
  • step S5 the redundant information generation unit 6out determines whether redundant information for all rows and columns has been generated for all unit code blocks. If there is a row or column for which redundant information has not yet been generated (No in step S5), the redundant information generating unit 6out repeats the processes in steps S3 and S4.
  • step S5 When it is determined that the redundant information generation unit 6out has generated redundant information for all rows and columns for all unit code blocks (Yes in step S5), the page generation unit 8 performs step S2, step S2, step S6. It is determined in which region the unit code block, the row-direction redundancy information, and the column-direction redundancy information generated in S3 and Step S4 are respectively arranged.
  • step S7 the page generation unit 8 generates page data in which unit code blocks are arranged so as to surround the redundant information in the row direction and the redundant information in the column direction based on the determination in step S6. That is, the page generation unit 8 sets the area where the unit code block is arranged so as to surround the area where the redundant information is arranged.
  • step S8 the hologram recording / reproducing apparatus 1 records the generated page data on a recording medium.
  • the redundant information is in a region that is less susceptible to the lens distortion than in a different arrangement, for example, when the unit code block is surrounded by the redundant information. Will be placed. Therefore, the possibility of causing an error in the reproduced redundant information is reduced.
  • the page generation unit 8 has redundant information 501 in the row direction in an area near the center of the page data 60 through which the optical axis of the optical element that collects the modulated laser light passes.
  • (A) to 501 (c) and redundant information 502 (a) to 502 (c) in the column direction are arranged, and unit code blocks 50 (a) to 50 (c) are arranged in the periphery of the page data 60.
  • the information to be recorded is arranged around the page data, and the redundant information corresponding to the information to be recorded is arranged at the center of the page data. It is possible to correct an error that occurs in the recording control information by using redundant information that is less affected by distortion because it is arranged near the center of the recording medium. That is, even if an error occurs in the unit code block due to distortion of the optical system at the time of reproduction, since the corresponding redundant information is arranged near the center of the page data, it is hardly affected by the distortion. It is possible to correct an error of the unit code block arranged in the peripheral portion.
  • the redundant information in the row direction / column direction often becomes dark bits, and the redundant information is information to be recorded. Compared with, the number of bright bits is reduced. As a result, the light intensity near the center of the page data can be reduced, the waste of the dynamic range of the recording medium can be suppressed, and the dynamic range can be used effectively.
  • the present embodiment relates to a hologram reproducing apparatus that reproduces information recorded on a recording medium.
  • FIG. 12 is a configuration diagram of the hologram recording / reproducing apparatus 1 and peripheral devices according to the second embodiment.
  • the same components as those shown in the drawing according to the first embodiment are denoted by the same reference numerals, and the description thereof is omitted. Only the differences from the form will be described.
  • control unit 11 receives a signal from the external device 4, drives the recording / reproduction unit 12, and irradiates the recording medium 2 with reproduction reference light.
  • the recording / reproducing unit 12 detects a reproduced image generated as a result of the reference light irradiation.
  • the buffer memory 10 stores the detected reproduced image.
  • the control unit 11 controls the rotation mechanism 24 and adjusts the angle of the 1 ⁇ 4 wavelength plate 23 so that the reproduced image from the recording medium 2 is transmitted through the surface of the imaging element 28 of the polarization beam splitter 27. To do.
  • the image sensor 28 detects the reproduced image and sends it to the buffer memory 10.
  • the data cutout unit 9 cuts out a region where redundant information in each row direction / column direction is arranged and a region where each unit code block is arranged from the detected reproduced image. Then, the data cutout unit 9 acquires each redundant information and the detection result of each unit code block.
  • the redundant information detection unit 6in corrects an error occurring in the unit code block based on the detected redundant information and the unit code block.
  • error correction means that the original unit code block is estimated from the redundant information and the detection result of the unit code block, thereby suppressing the influence of the bit (error bit) in which the error has occurred and suppressing the unit code block. Is read out.
  • the data dividing / combining unit 7 combines the divided unit code blocks with two-dimensional data.
  • the encoding / decoding unit 5 decodes the two-dimensional data, restores the original data, and outputs the original data to the external device 4.
  • FIG. 13 is a flowchart showing a flow of processing at the time of data reproduction of the hologram recording / reproducing apparatus 1 according to the second embodiment.
  • step S81 the control unit 11 controls the recording / reproducing unit 12 to irradiate the recording medium 2 with reference light for reproduction.
  • the recording / reproducing unit 12 reproduces the multi-recorded information as needed by irradiating a plurality of reproduction reference beams at different incident angles. .
  • step S82 the recording / reproducing unit 12 detects the reproduced image from the recording medium 2, and stores the reproduced image in the buffer memory 10.
  • the data cutout 9 cuts out a unit code block area and a redundant information area from the detected reproduced image.
  • the unit code block area is arranged near the periphery of the reproduced image
  • the redundant information area is arranged near the center of the reproduced image.
  • the data cutout unit 9 follows the arrangement of the unit code block region and the redundant information region in the reproduction image determined based on the arrangement position determined by the page generation unit 8 at the time of hologram recording and the parameters of the optical system for reproduction, etc. Cut out these.
  • the data cutout unit 9 may perform image distortion correction based on an optical system parameter or the like.
  • step S84 the data cutout unit 9 selects and extracts redundant information in one row direction from the redundant information area in the reproduced image. Further, the data cutout unit 9 selects and extracts the redundant information in the column direction corresponding to the selected redundant information in the row direction.
  • step S85 the data cutout unit 9 extracts a unit code block corresponding to the redundant information in the row and column directions selected in step S84 from the reproduced image.
  • step S86 the redundant information detection unit 6in estimates how bright spots (bright bits) are distributed in the unit code block from the redundant information in the row / column direction. Then, the redundant information detection unit 6in corrects the error of the corresponding unit code block based on the determination result. That is, the redundant information detection unit 6in estimates the arrangement state of the unit code block based on the redundant information, and thus is closer to the arrangement state originally recorded on the recording medium 2 than the arrangement state obtained by simple reading. A unit code block having an arrangement state can be output as a read result.
  • the method for estimating the distribution of bright bits in step S86 will be described in detail.
  • the bits of the redundant information in the row / column including two bright bits are the bright bits.
  • the combination of the number of bright bits included in the four rows / columns is (2, 1, 0, 0) or ( 1, 1, 1, 0). Therefore, the number of redundant bits in the row / column direction, which are bright bits, is 1 or 0.
  • the redundant information detection unit 6in determines that a point where a row and a column with a bright bit intersect is a bright bit. Then, the remaining two bright bits are extracted from the row / column in which the bright bits of the redundant information exist. That is, a point having the maximum luminance other than the point where the row and the column intersect among the rows or columns where the bright bit exists is estimated as the bright bit.
  • the redundant information detector 6in uses the unit code corresponding to the row / column in which the bright bit of the redundant information exists. From the row / column of the block, the points with the highest brightness are extracted as bright bits, and the point with the maximum luminance is extracted as the bright bits in the remaining regions (rows / columns where no bright bit exists).
  • the redundant information detection unit 6in ranks the luminance in the unit code block corresponding to the row and column redundant information, and the luminance values up to the upper three are obtained. Are extracted as bright bits.
  • FIG. 14 is a diagram for explaining a portion where error bits are likely to occur.
  • 14 (a), 14 (b), and 14 (c) are diagrams showing locations where error bits are likely to occur in the unit code block 1410, the unit code block 1420, and the unit code block 1430, respectively. .
  • error bits frequently occur in the circled region 1412, region 1422, and region 1432. That is, when the bright bits are densely packed rather than being isolated, an error is likely to occur at a location where there are many bright bits in the vicinity. This may be due to the point spread function of the optical system, image interpolation by distortion correction, or the influence of luminance unevenness during reproduction. Due to these effects, it is considered that the pixels in the region indicated by the circles in FIG. 14 are relatively brighter than the other pixels when ranking the luminance.
  • the influence of such error bits can be reduced.
  • step S87 the encoding / decoding unit 5 decodes the estimation result of the unit code block into information, and determines whether decoding of all information is completed.
  • step S87 If the decoding has not been completed (No in step S87), the hologram recording / reproducing apparatus 1 repeats the processing from step S84.
  • step S87 the encoding / decoding unit 5 outputs the data obtained by decoding to the external device 4.
  • the unit code block generation rule and the redundant information generation rule in the present invention are not limited to those described in the first embodiment.
  • a hologram recording apparatus that generates unit code blocks and redundant information according to a different rule from the first embodiment will be described.
  • the configuration of the hologram recording apparatus according to the third embodiment is the same as that described in the first embodiment.
  • the modulation scheme in which the encoding / decoding unit 5 converts the recording target information into two-dimensional data is different from that of the first embodiment.
  • the redundant information generation rule of the redundant information generation unit 6out is different.
  • the flow of page data generation processing by the hologram recording apparatus according to the third embodiment is the same as that described in the first embodiment. However, the method for generating two-dimensional data based on information from the external device 4 and the method for generating redundant information from unit code blocks are different.
  • a unit code block generation rule in the third embodiment will be described with reference to FIG. 15 and FIG.
  • a unit code block of 4 pixels ⁇ 3 pixels represents 8-bit information.
  • FIG. 15 is a diagram for explaining a method of expressing 2 bits out of 8 bits in the unit code block generation rule according to the third embodiment.
  • the first two bits of the bit string are expressed at the position of the bit string 1500 having the shape shown in FIG. 15A, which is composed of two bright bits and one dark bit. Since there are four arrangement methods of the bit string 1500, two bits can be expressed at the position of the bit string 1500. Note that 2 bits may be expressed at the position of a bit string having a bit pattern different from that of the bit string 1500.
  • “00” is stored in the unit code block 1510 in which the bit string 1500 is arranged in the leftmost column, and the unit code block in which the bit string 1500 is arranged in the second column from the left.
  • “15” represents “01” in 1520, “10” in the unit code block 1530 in which the bit string 1500 is arranged in the second column from the right, and “11” in the unit code block 1540 in which the bit string 1500 is arranged in the rightmost column.
  • the correspondence between the unit code blocks 1510 to 1540 and the represented information is not limited to that described with reference to FIG.
  • the area other than the bit string 1500 is shown as a dark bit. However, as will be described later, the remaining area is also brightened according to the information to be recorded. Bits are assigned.
  • the remaining 6 bits are represented by 3 columns excluding the bit sequence 1500 in the unit code block. Specifically, 6 bits are represented by giving information of 2 bits to the remaining 3 columns from left to right.
  • FIG. 16 is a diagram for explaining a method of expressing the remaining bits in the unit code block generation rule according to the third embodiment.
  • the bit string 1630 having the middle stage is assigned to the bit string 1640 having one bright bit in the lower stage with respect to “11”.
  • the method of assigning information to the bit strings 1610 to 1640 is not limited to that described with reference to FIG.
  • FIG. 17 is a diagram illustrating a first example of a unit code block according to the third embodiment.
  • FIG. 17 shows a unit code block representing the bit string “01011110”. Since the first two bits of the bit string are “01”, the bit string 1500 is assigned to the second column from the left. In the remaining three columns, the remaining 6 bits are assigned in units of 2 bits in order from the left to the right, corresponding to the rules shown in FIG.
  • FIG. 18 is a diagram illustrating a second example of the unit code block according to the third embodiment.
  • FIG. 18 shows a unit code block representing the bit string “10001010”. Since the first two bits of the bit string are “10”, the bit string 1500 is assigned to the second column from the right. In the remaining three columns, the remaining 6 bits are assigned in units of 2 bits in order from the left to the right, corresponding to the rules shown in FIG.
  • FIG. 19 is a diagram for describing a redundant information generation rule according to the third embodiment.
  • redundant information is generated in each of the vertical (column) and horizontal (row) directions.
  • the state of the generated redundant bit depends on whether the number of bits included in the corresponding column / row is maximum. In the present embodiment, when the number of bits included in a column / row is the maximum, the corresponding redundant bit is set in a bright state.
  • a redundant bit in a column having the bit string 1500 is a bright bit.
  • a redundant bit corresponding to a row including two or more bright bits is a bright bit, and in other cases, a redundant bit in the row direction is a dark bit. This is because a row including two or more bright bits includes the maximum number of bright bits as follows.
  • the number of bright bits included in the unit code block is 2 to 5.
  • combinations of the number of bright bits included in each row are (4, 1, 0), (3, 1, 1), (2, 2, 1 )
  • the combination of the number of bright bits included in each row is any one of (3, 1, 0), (2, 2, 0), and (2, 1, 1).
  • the combination of the number of bright bits included in each row is either (2, 1, 0) or (1, 1, 1).
  • the combination of the number of bright bits included in each row is only (1, 1, 0). Therefore, the number of bright bits is the largest among all the rows including any combination of two or more bright bits.
  • a generation rule may be defined in which redundant bits corresponding to rows including two or more bright bits are used as bright bits.
  • the redundant information generation unit 6out generates redundant information corresponding to the unit code block in accordance with the generation rule described above.
  • the configuration of the hologram reproducing apparatus according to the fourth embodiment is the same as that described in the second embodiment.
  • the unit code block estimation method by the redundant information detector 6in is different from that of the second embodiment.
  • corresponds with the encoding in 3rd Embodiment differs from the thing of 2nd Embodiment.
  • the flow of page data reproduction processing by the hologram reproduction apparatus according to the fourth embodiment is the same as that described in the second embodiment. However, the method by which the redundant information detection unit 6in estimates how bright spots (bright bits) are distributed in the unit code block from the redundant information in the row / column direction is different.
  • FIG. 20 is a diagram for explaining a method of estimating a method of estimating a unit code block from the first example of redundant information.
  • FIG. 20 shows unit code block 1700 shown in FIG. 19 and row direction redundant information 1910 and column direction redundant information 1920 corresponding to unit code block 1700. Further, in FIG. 20, portions where errors are likely to occur are indicated by circles.
  • the redundant information detector 6in determines from the column direction redundant information 1920 that the position of the bit string representing the first two bits is the second column from the left.
  • the redundant bits corresponding to row A and the redundant bits corresponding to row C are bright bits, so the number of bright bits included in rows A, B, and C is , (2,1,2) or (2,0,2).
  • the redundant information detection unit 6in determines that the number of bright bits included in the rows A and C is two. Then, in each of row A and row C, pixels having up to the top two luminances are estimated as bright bits.
  • the redundant information detection unit 6in extracts a pixel having the maximum luminance from the pixels that are included in the row B and in the column where the corresponding redundant bit in the column direction is not a bright bit. Whether the pixel having the maximum luminance is a bright bit or a dark bit depends on the unit code block. Therefore, the redundant information detection unit 6in determines, for example, the luminance value of the extracted pixel and the luminance value of the peripheral pixel of the extracted pixel. When the difference value is equal to or greater than a predetermined value, it is estimated that the extracted pixel is a bright bit.
  • the estimation method of the state of the extracted pixel is not limited to this. For example, the redundant information detection unit 6in may estimate that the extracted pixel is a bright bit when the luminance value of the extracted pixel exceeds a predetermined threshold value.
  • the original unit code block can be correctly estimated.
  • FIG. 21 is a diagram for explaining a method of estimating a method of estimating a unit code block from the second example of redundant information.
  • FIG. 21 shows unit code block 2100 and row direction redundant information 2110 and column direction redundant information 2120 corresponding to unit code block 2100.
  • the redundant information detector 6in determines from the column direction redundant information 2120 that the position of the bit string representing the first two bits is the second column from the right.
  • the redundant bit corresponding to row B is a bright bit, so the number of bright bits included in rows A, B, and C is (1, 3, 1) or It can be seen that it was either (1, 2, 1).
  • the redundant information detection unit 6in determines that the bright bit included in the row A and the row C is one in the second column from the right in which the corresponding redundant bit in the column direction is the bright bit.
  • the redundant information detection unit 6in brightens pixels having luminances up to the top two from the pixels included in the row B and the corresponding redundant bits in the column direction are in the columns that are not bright bits. Estimated bit. Since whether or not the remaining one pixel (here, pixel 2104 is an error that does not cause an error that changes the order of luminance) is a bright bit or a dark bit depends on the unit code block, it is redundant. For example, when the difference value between the luminance value of the remaining pixel and the luminance value of the upper and lower pixels of the remaining pixel is equal to or greater than a predetermined value, the information detection unit 6in estimates that the remaining pixel is a bright bit. However, the remaining pixel state estimation method is not limited to this. For example, the redundant information detection unit 6in may estimate that the extracted pixel is a bright bit when the luminance value of the remaining pixel exceeds a predetermined threshold value.
  • the original unit code block can be correctly estimated.
  • FIG. 22 is a diagram for explaining a method of estimating a method of estimating a unit code block from the third example of redundant information.
  • FIG. 22 shows unit code block 2200 and row direction redundant information 2210 and column direction redundant information 2220 corresponding to unit code block 2200.
  • the row direction redundant information 2210 and the column direction redundant information 2220 are the same as the row direction redundant information 2110 and the column direction redundant information 2120 shown in FIG. 21, respectively. Therefore, the unit code block estimation method is the same as in the second example. If the redundant information detection unit 6in determines that the pixel 2204 is a bright bit, the estimation result of the unit code block 2200 by the redundant information detection unit 6in is correct.
  • FIG. 23 is a diagram for explaining a method of estimating a method of estimating a unit code block from the fourth example of redundant information.
  • FIG. 23 shows unit code block 2300 and row direction redundant information 2310 and column direction redundant information 2320 corresponding to unit code block 2300.
  • pixels 2302 and 2304 that are prone to errors are also indicated by circles.
  • the redundant information detector 6in determines from the column direction redundant information 2120 that the position of the bit string representing the first two bits is the second column from the right.
  • the redundant bits corresponding to the row A and the redundant bits corresponding to the row B are bright bits, and therefore the number of bright bits included in the rows A, B, and C is as follows: It can be seen that it was (2, 2, 1).
  • the redundant information detection unit 6in determines that the bright bit included in the row C is one in the second column from the right in which the corresponding redundant bit in the column direction is the bright bit.
  • the redundant information detection unit 6in ranks the luminances of the pixels in the row A and the row B, and estimates the pixels up to the top four as bright bits.
  • bright bits are not adjacent to each other vertically. Based on this, the redundant information detector 6in estimates the distribution of bright bits. In other words, when two pixels having the highest four luminance values are arranged in the same column, the pixel with the lower luminance value is a pixel whose luminance value has increased due to the influence of the surroundings and is not a bright bit. It is considered.
  • the redundant information detector 6in estimates the original unit code block from the redundant information based on the unit code block generation rule. Therefore, the influence of error bits can be reduced when generating information.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Signal Processing For Digital Recording And Reproducing (AREA)
  • Holo Graphy (AREA)

Abstract

Provided are a hologram recording device and a hologram reproducing device which can reduce data loss in holographic memory without specially processing an optical element.  A hologram recording/reproducing device (1) is provided with an information generating section (3), which has, on the peripheral section, a unit encoded block of encoded recording target information inputted from an external device (4), generates page data having redundancy information which corresponds to the unit encoded block at the center section, and stores the generated page data in buffer memory (10); a control section (11), which receives signals from the external device (4), reads out the page data stored in the buffer memory (10) and makes a recording/reproducing section (12) drive; and a recording/reproducing section (12) which generates a signal light provided by modulating laser light by a pattern which corresponds to the page data stored in the buffer memory (10), based on an instruction given from a control section (11).

Description

ホログラム記録装置、ホログラム記録方法、ホログラム再生装置およびホログラム再生方法Hologram recording apparatus, hologram recording method, hologram reproducing apparatus and hologram reproducing method
 本発明は、デジタルデータ記録再生システムに関し、特にホログラムを用いて情報を記録再生するホログラム記録装置、ホログラム記録方法、ホログラム再生装置、ホログラム再生方法に関する。 The present invention relates to a digital data recording / reproducing system, and more particularly to a hologram recording apparatus, a hologram recording method, a hologram reproducing apparatus, and a hologram reproducing method for recording and reproducing information using a hologram.
 近年、動画データやバックアップ対象データの増加に伴って、大容量かつ高転送レートを実現できるシステムの需要が高まっている。このような要望に応えるものの一つに、高密度の光学的記録を可能とするホログラフィックメモリシステムがある。 In recent years, with the increase in video data and backup target data, there is an increasing demand for systems that can realize a large capacity and a high transfer rate. One of the responses to such a demand is a holographic memory system that enables high-density optical recording.
 ホログラフィックメモリシステムは、情報を有する情報光と参照光とを干渉させることによって干渉縞を生じさせ、光屈折性結晶や感光性ポリマーなどの記録媒体に記録する。これらの材料は、干渉縞の振幅や位相などによって別様に反応し得る物質である。参照光の入射角度や振幅、位相を変えることによって、複数の二次元からなるページを同一の位置に重ねて記録することができるため、大量のデータを記録することができる。 The holographic memory system generates interference fringes by causing information light having information and reference light to interfere with each other, and records it on a recording medium such as a photorefractive crystal or a photosensitive polymer. These materials are substances that can react differently depending on the amplitude and phase of interference fringes. By changing the incident angle, amplitude, and phase of the reference light, a plurality of two-dimensional pages can be overlaid and recorded at the same position, so that a large amount of data can be recorded.
 なお、一般的に、記録再生時に使用されるガウシアン分布をもつレーザビームは、ビームスポット内で一様であることが好ましい。一様でないレーザビームには、記録材料の感度を非一様に消費してしまうという問題があるためである。 In general, it is preferable that a laser beam having a Gaussian distribution used at the time of recording / reproduction is uniform within the beam spot. This is because the non-uniform laser beam has a problem that the sensitivity of the recording material is consumed non-uniformly.
 また、ホログラフィックメモリシステムは、再生時には、参照光のみを媒体の所定の位置に照射することで、その参照光の入射角や位相に対応したページのデータを、CCD(charge coupled device)などの撮影素子を通して読み取ることができる。 In addition, the holographic memory system irradiates a predetermined position of the medium with only the reference light at the time of reproduction, so that the page data corresponding to the incident angle and phase of the reference light is stored in a CCD (charge coupled device) or the like. It can be read through the imaging element.
 しかし、ホログラフィックメモリシステムでは、システムに用いられるレンズの収差などの影響によりページデータの一部を損失することがある。特に、再生時に撮影素子が読み取ることのできるページデータの周辺領域において、データの損失が起こることが多い。図1に示したように、レンズの収差などの影響により、再生時に撮影素子が読み取ることのできるページデータの中央領域よりも周辺領域(特に四隅)のほうが非常に歪みやすいためである。図1は、再生像の歪みを空間光変調器の画素に対応させて示した模式図である。 However, in the holographic memory system, part of the page data may be lost due to the influence of the aberration of the lens used in the system. In particular, data loss often occurs in the peripheral area of page data that can be read by the imaging element during reproduction. This is because, as shown in FIG. 1, the peripheral area (particularly, the four corners) is much easier to distort than the central area of page data that can be read by the imaging element during reproduction due to the effects of lens aberration and the like. FIG. 1 is a schematic diagram showing distortion of a reproduced image corresponding to a pixel of a spatial light modulator.
 それを解決する一つの従来技術として、領域ごとに異なる誤り訂正能力を持つ誤り訂正符号を用いて符号化を行う手法がある(例えば、特開2006-260619号公報(特許文献1)参照)。 As one conventional technique for solving this problem, there is a technique of performing encoding using an error correction code having different error correction capability for each region (see, for example, JP-A-2006-260619 (Patent Document 1)).
 図2は、特許文献1に記載の従来技術におけるデジタルデータ記録再生装置およびその周辺機器の構成図である。図2において、デジタルデータ記録再生装置は、外部機器1004から入力されたデータを記録媒体1002に記録したり、あるいは記録媒体1002に記録されているデータを外部機器1004に出力したりする。図2に示すデジタルデータ記録再生装置は、誤り訂正符号化や誤り訂正処理を行なう誤り訂正装置1001と、誤り訂正装置1001が出力するページデータを空間光変調器を通すことにより情報光を生成し、当該生成した情報光とは異なる光(参照光)と当該情報光とを記録媒体1002(ホログラフィックメモリ)上で干渉させて干渉縞を作ることでページデータを記録媒体1002に記録し、参照光のみを記録媒体1002の所定の位置に照射することでページデータを再生する記録再生回路1003とからなる。 FIG. 2 is a configuration diagram of a digital data recording / reproducing apparatus and its peripheral devices in the prior art described in Patent Document 1. In FIG. 2, the digital data recording / reproducing apparatus records data input from the external device 1004 on the recording medium 1002 or outputs data recorded on the recording medium 1002 to the external device 1004. The digital data recording / reproducing apparatus shown in FIG. 2 generates information light by passing an error correction apparatus 1001 that performs error correction coding and error correction processing, and page data output from the error correction apparatus 1001 through a spatial light modulator. The page data is recorded on the recording medium 1002 by making interference fringes by causing the information light different from the generated information light (reference light) and the information light to interfere with each other on the recording medium 1002 (holographic memory). The recording / reproducing circuit 1003 reproduces page data by irradiating only a light to a predetermined position of the recording medium 1002.
 誤り訂正装置1001は、外部機器1004から入力されたデータに誤り訂正符号を付加して記録再生回路1003に出力し、記録再生回路1003が記録媒体1002から再生したデータに誤り訂正を施したデータを外部機器1004に出力するものである。誤り訂正装置1001は、外部機器1004や記録再生回路1003に入出力するデータを一時的に記憶しておくバッファメモリ1015と、外部機器1004から入力したデータをバッファメモリ1015に格納したり、バッファメモリ1015に記録されているデータを読み出し、外部機器1004に出力したりするデータ入出力部1011と、バッファメモリ1015に記録されているデータに対して誤り訂正符号を生成し誤り訂正符号化を行なう符号化部1012と、バッファメモリ1015に記録されているデータに対して誤り訂正処理を行う誤り訂正部1013と、外部機器1004や記録再生回路1003との間でデータ送受信の制御を行い、誤り訂正装置1001全体を制御する制御部1014とからなる。 The error correction apparatus 1001 adds an error correction code to the data input from the external device 1004 and outputs the data to the recording / reproducing circuit 1003, and data obtained by performing error correction on the data reproduced from the recording medium 1002 by the recording / reproducing circuit 1003. This is output to the external device 1004. The error correction apparatus 1001 stores a buffer memory 1015 that temporarily stores data to be input / output to / from the external device 1004 and the recording / reproducing circuit 1003, and stores data input from the external device 1004 in the buffer memory 1015. A data input / output unit 1011 that reads the data recorded in the data 1015 and outputs the data to the external device 1004, and a code that generates an error correction code for the data recorded in the buffer memory 1015 and performs error correction coding The error correction unit 1012, the error correction unit 1013 that performs error correction processing on the data recorded in the buffer memory 1015, and the data transmission / reception control between the external device 1004 and the recording / reproducing circuit 1003. The control unit 1014 controls the entire 1001.
 次に、特許文献1に記載の従来技術において、記録媒体1002にページデータを記録する場合の処理について、図3に示すフローチャートに沿って、具体的に説明する。図3は、特許文献1に記載の従来技術における記録時の処理の流れを示したフローチャートである。 Next, a process for recording page data on the recording medium 1002 in the prior art described in Patent Document 1 will be specifically described along the flowchart shown in FIG. FIG. 3 is a flowchart showing a flow of processing at the time of recording in the prior art described in Patent Document 1.
 制御部1014は、ステップS101において、外部機器1004から制御部1014に対して出力される制御信号に基づいて、外部機器1004から転送されてきたデータをどのようにバッファメモリ1015に格納するか、記録再生回路1003に出力するページデータの領域分割をどのように行なうか、その領域ごとで符号化する際の誤り訂正能力をどのようにするか、などの設定を行なう。この制御信号には、記録開始などを示すコマンドや、転送データ数が含まれている。 In step S101, the control unit 1014 records how the data transferred from the external device 1004 is stored in the buffer memory 1015 based on the control signal output from the external device 1004 to the control unit 1014. Settings are made such as how to divide the area of the page data output to the reproduction circuit 1003, and how to correct the error correction capability when encoding for each area. This control signal includes a command indicating the start of recording and the number of transfer data.
 領域分割について、図4を参照して説明しておく。図4は、特許文献1に記載の従来技術におけるページデータの構成と、領域分割方法とを示した模式図である。 The area division will be described with reference to FIG. FIG. 4 is a schematic diagram showing a configuration of page data and a region dividing method in the prior art described in Patent Document 1.
 誤り訂正装置1001は、外部機器1004から送られてきたデータに対して誤り訂正符号化を行ない、最終的に記録再生回路1003に出力するページデータのデータ配列を、例えば図4(a)に示すように、1024×1024ビットのアレイで構成する。記録再生回路1003ではこのページデータに対して空間光変調などの処理を施して記録媒体1002への記録動作を開始する。このとき記録再生回路1003が使用するレンズやレーザの性能によりページデータの周辺領域、特に四隅に歪みが生じることで、データ品質の良し悪しがページデータ内で分かれる。 The error correction apparatus 1001 performs error correction coding on the data sent from the external device 1004, and shows the data arrangement of the page data that is finally output to the recording / reproducing circuit 1003, for example, as shown in FIG. Thus, it is configured by an array of 1024 × 1024 bits. The recording / reproducing circuit 1003 performs processing such as spatial light modulation on the page data and starts a recording operation on the recording medium 1002. At this time, depending on the performance of the lens and laser used by the recording / reproducing circuit 1003, distortion occurs in the peripheral area of the page data, particularly in the four corners, so that the quality of the data is divided in the page data.
 そこで、制御部1014は、ステップS101において、図4(a)に示すページデータのデータ配列に対して、データ品質の良し悪しに従って図4(b)に示すような領域分割を行なう。例えば、ページデータの中央に位置する768×768ビットで構成される“A”領域を、データ品質が良い領域と定義する。次に“A”領域の四辺に隣接する768×128ビットで構成される四つの“B”領域を、データ品質が平均レベルである領域と定義する。最後にページデータの四隅に位置する128ビット×128ビットで構成される四つの“C”領域を、データ品質が悪い領域と定義する。従来技術では、これらの“A”“B”“C”の各領域において、異なる誤り訂正レベルをもたせている。 Therefore, in step S101, the control unit 1014 performs area division as shown in FIG. 4B on the data arrangement of the page data shown in FIG. 4A according to whether the data quality is good or bad. For example, an “A” area composed of 768 × 768 bits located at the center of the page data is defined as an area with good data quality. Next, four “B” regions composed of 768 × 128 bits adjacent to the four sides of the “A” region are defined as regions having an average data quality level. Finally, the four “C” areas composed of 128 bits × 128 bits located at the four corners of the page data are defined as areas with poor data quality. In the prior art, different error correction levels are provided in the respective areas “A”, “B”, and “C”.
特開2006-260619号公報JP 2006-260619 A
 しかしながら、領域ごとに異なる誤り訂正能力を用いて符号化を行う場合、ページデータサイズの拡大に伴い画像の歪量が変化するため、結果として、誤り訂正の処理手法が多様化しシステムの処理時間を要する。また、光学系の歪や輝度ムラの影響により、エラー訂正用の符号自体が判別できない場合が生じる。 However, if encoding is performed using different error correction capabilities for each region, the amount of image distortion changes as the page data size increases, resulting in diversified error correction processing methods and reduced system processing time. Cost. In addition, the error correction code itself may not be discriminated due to the distortion of the optical system or the luminance unevenness.
 また、ページデータの損失を防ぐ別の方法として、ガウシアン分布する光束の光路中に強度分布を均一にする素子を挿入したり、光学素子に強度分布を均一にする加工を施したりすることが考えられる。しかし、このような方法は、部品点数の増加、部品コストの増加、組み立て工数の増加、調整工数の増加に繋がり、コストアップが避けられないという問題を有する。 Another way to prevent loss of page data is to insert an element that makes the intensity distribution uniform in the optical path of the Gaussian-distributed light beam, or to process the optical element to make the intensity distribution uniform. It is done. However, such a method has a problem that an increase in the number of parts, an increase in part costs, an increase in assembly man-hours, and an increase in adjustment man-hours are unavoidable.
 本願発明は上述のような問題を解決するためになされたものであって、光学素子に特別な加工をすることなく、ホログラフィックメモリにおけるデータ損失を低減できるホログラム記録装置およびホログラム再生装置を提供することを課題とする。 The present invention has been made to solve the above-described problems, and provides a hologram recording apparatus and a hologram reproducing apparatus that can reduce data loss in a holographic memory without special processing of optical elements. This is the issue.
 1つの局面に係る本願発明は、ホログラム記録装置であって、レーザ光を出射するレーザと、レーザ光を変調する空間光変調器と、ホログラム記録媒体に記録される情報をm行×n列の複数のビットのビットパターンで符号化した符号ブロックを生成する符号化部と、符号ブロックの各行/列における第1の状態のビットの数に応じた冗長情報を生成する冗長情報生成部と、空間光変調器に、冗長情報を囲んで符号ブロックが配置されるようにレーザ光を変調させる制御装置とを備える。 The present invention according to one aspect is a hologram recording apparatus, comprising: a laser that emits laser light; a spatial light modulator that modulates laser light; and information recorded on a hologram recording medium in m rows × n columns. An encoding unit that generates a code block encoded with a bit pattern of a plurality of bits, a redundant information generation unit that generates redundant information according to the number of bits in the first state in each row / column of the code block, and a space The optical modulator includes a control device that modulates the laser light so that the code block is arranged so as to surround the redundant information.
 好ましくは、制御装置は、空間光変調器に、空間光変調器によって変調されたレーザ光をホログラム記録媒体に集光する光学素子の光軸近傍領域に冗長情報を配置し、光学素子の周辺領域に符号ブロックが配置されるようにレーザ光を変調させる。 Preferably, the control device arranges redundant information in a region near the optical axis of the optical element that focuses the laser light modulated by the spatial light modulator on the hologram recording medium in the spatial light modulator, and the peripheral region of the optical element The laser beam is modulated so that the code block is arranged in the area.
 好ましくは、冗長情報は、各々が各行/列における第1の状態のビットの数に対応する冗長ビットからなる。 Preferably, the redundant information consists of redundant bits each corresponding to the number of bits in the first state in each row / column.
 さらに好ましくは、冗長ビットは、行/列における第1の状態のビットの数が、全ての行/列における第1の状態のビットの数の中で最大であるかどうかを表わす。 More preferably, the redundant bit indicates whether the number of first state bits in a row / column is the largest among the number of first state bits in all rows / columns.
 さらに好ましくは、冗長情報生成部は、行/列における第1の状態のビットの数が、全ての行/列における第1の状態のビットの数の中で最大である行/列に対応する冗長ビットを、明状態とする。 More preferably, the redundant information generation unit corresponds to the row / column in which the number of bits in the first state in the row / column is the maximum among the number of bits in the first state in all the rows / columns. Redundant bits are set to the bright state.
 他の局面に係る本願発明は、ホログラム記録方法であって、ホログラム記録媒体に記録される情報に対応するm行×n列のビットパターンで配置された複数のビットからなる符号ブロックを生成するステップと、符号ブロックの各行/列における第1の状態のビットの数に応じた冗長情報を生成するステップと、レーザから出射されたレーザ光を、空間光変調器によって、前記冗長情報を囲んで前記符号ブロックが配置されるように変調するステップとを備える。 The present invention according to another aspect is a hologram recording method, wherein a code block including a plurality of bits arranged in a bit pattern of m rows × n columns corresponding to information recorded on a hologram recording medium is generated. Generating redundant information according to the number of bits in the first state in each row / column of the code block, and encircling the redundant information with laser light emitted from a laser by surrounding the redundant information with the spatial light modulator Modulating the code block to be arranged.
 好ましくは、レーザ光を変調させるステップにおいて、変調されたレーザ光をホログラム記録媒体に集光する光学素子の光軸近傍の領域に冗長情報が配置され、かつ、光学素子の周辺の領域に符号ブロックが配置されるようにレーザ光を変調する。 Preferably, in the step of modulating the laser beam, redundant information is arranged in a region near the optical axis of the optical element that focuses the modulated laser beam on the hologram recording medium, and a code block is provided in a region around the optical element. The laser beam is modulated so that is arranged.
 好ましくは、冗長情報は、各々が各行/列における第1の状態のビットの数に対応する冗長ビットからなる。 Preferably, the redundant information consists of redundant bits each corresponding to the number of bits in the first state in each row / column.
 さらに好ましくは、冗長ビットは、行/列における第1の状態のビットの数が、全ての行/列における第1の状態のビットの数の中で最大であるかどうかを表わす。 More preferably, the redundant bit indicates whether the number of first state bits in a row / column is the largest among the number of first state bits in all rows / columns.
 さらに好ましくは、冗長情報を生成するステップにおいて、行/列における第1の状態のビットの数が、全ての行/列における第1の状態のビットの数の中で最大である行/列に対応する冗長ビットを、明状態とする。 More preferably, in the step of generating redundant information, the number of bits in the first state in the row / column is the row / column that is the largest among the number of bits in the first state in all the rows / columns. The corresponding redundant bit is set to the bright state.
 さらに他の局面に係る本願発明は、ホログラム再生装置であって、ホログラム記録媒体にレーザ光を照射し、レーザ光を照射されたホログラム記録媒体からの再生像を検出する再生部と、再生像から、m行×n列の複数のビットからなる符号ブロックが記録されている第1の領域と、符号ブロックの各行/列における第1の状態のビットの数に応じた冗長情報が記録されている第2の領域とを切り出す切り出し部と、第1の領域における符号ブロックの検出結果と、第2の領域における冗長情報の検出結果と、符号ブロックの生成規則と、冗長情報の生成規則とに基づいて、符号ブロックを推測するエラー訂正部と、推測された符号ブロックを復号化する復号化部とを備える。 The present invention according to still another aspect is a hologram reproducing apparatus, comprising: a reproducing unit that irradiates a hologram recording medium with a laser beam, detects a reproduced image from the hologram recording medium irradiated with the laser beam; , A first area in which a code block composed of a plurality of bits of m rows × n columns is recorded, and redundant information according to the number of bits in the first state in each row / column of the code block is recorded Based on a cutout unit that cuts out the second area, a detection result of the code block in the first area, a detection result of the redundant information in the second area, a generation rule of the code block, and a generation rule of the redundant information And an error correction unit for estimating the code block and a decoding unit for decoding the estimated code block.
 好ましくは、第1の領域は、再生像の中心付近の領域であり、第2の領域は、再生像の周辺の領域である。 Preferably, the first area is an area near the center of the reproduced image, and the second area is an area around the reproduced image.
 好ましくは、冗長情報は、各々が各行/列における第1の状態のビットの数に対応する冗長ビットからなる。 Preferably, the redundant information consists of redundant bits each corresponding to the number of bits in the first state in each row / column.
 さらに好ましくは、冗長ビットは、行/列における第1の状態のビットの数が、全ての行/列における第1の状態のビットの数の中で最大であるかどうかを表わす。 More preferably, the redundant bit indicates whether the number of first state bits in a row / column is the largest among the number of first state bits in all rows / columns.
 さらに好ましくは、行/列における第1の状態のビットの数が、全ての行/列における第1の状態のビットの数の中で最大である行/列に対応する冗長ビットは明状態である。 More preferably, the redundant bit corresponding to the row / column in which the number of first state bits in the row / column is the largest among the number of first state bits in all rows / columns is in the light state. is there.
 さらに他の局面に係る本願発明は、ホログラム再生方法であって、ホログラム記録媒体にレーザ光を照射し、レーザ光を照射されたホログラム記録媒体からの再生像を検出するステップと、再生像から、m行×n列の複数のビットからなる符号ブロックが記録されている第1の領域と、符号ブロックの各行/列における第1の状態のビットの数に応じた冗長情報が記録されている第2の領域とを切り出すステップと、第1の領域における符号ブロックの検出結果と、第2の領域における冗長情報の検出結果と、符号ブロックの生成規則と、冗長情報の生成規則とに基づいて、符号ブロックを推測するステップと、符号ブロックの推測結果を復号化するステップとを備える。 The present invention according to still another aspect is a hologram reproducing method, comprising: irradiating a hologram recording medium with laser light; detecting a reproduced image from the hologram recording medium irradiated with the laser light; and A first area in which a code block composed of a plurality of bits of m rows × n columns is recorded, and redundancy information corresponding to the number of bits in the first state in each row / column of the code block is recorded. Based on the step of cutting out the two regions, the detection result of the code block in the first region, the detection result of the redundant information in the second region, the generation rule of the code block, and the generation rule of the redundant information, A step of estimating a code block; and a step of decoding a code block estimation result.
 好ましくは、第1の領域は、再生像の中心付近の領域であり、第2の領域は、再生像の周辺の領域である。 Preferably, the first area is an area near the center of the reproduced image, and the second area is an area around the reproduced image.
 好ましくは、冗長情報は、各々が各行/列における第1の状態のビットの数に対応する冗長ビットからなる。 Preferably, the redundant information consists of redundant bits each corresponding to the number of bits in the first state in each row / column.
 さらに好ましくは、冗長ビットは、行/列における第1の状態のビットの数が、全ての行/列における第1の状態のビットの数の中で最大であるかどうかを表わす。 More preferably, the redundant bit indicates whether the number of first state bits in a row / column is the largest among the number of first state bits in all rows / columns.
 さらに好ましくは、行/列における第1の状態のビットの数が、全ての行/列における第1の状態のビットの数の中で最大である行/列に対応する冗長ビットは明状態である。 More preferably, the redundant bit corresponding to the row / column in which the number of first state bits in the row / column is the largest among the number of first state bits in all rows / columns is in the light state. is there.
 本発明によれば、記録対象の情報を符号化した符号ブロックを配置する領域に比べて歪みが起きにくい領域に符号ブロックに対応する冗長情報を配置することができる。その結果、情報の再生時に符号ブロックにエラーが生じたとしても、歪みの影響を受けにくい冗長情報を用いて、符号ブロックに生じたエラーの影響を低減することができる。 According to the present invention, it is possible to arrange redundant information corresponding to a code block in an area where distortion is unlikely to occur compared to an area where a code block obtained by encoding information to be recorded is arranged. As a result, even if an error occurs in the code block at the time of reproducing information, it is possible to reduce the influence of the error generated in the code block by using redundant information that is not easily affected by distortion.
再生像の歪みを空間光変調器の画素に対応させて示した模式図である。It is the schematic diagram which showed the distortion of the reproduced image corresponding to the pixel of the spatial light modulator. 特許文献1に記載の従来技術におけるデジタルデータ記録再生装置およびその周辺機器の構成図である。1 is a configuration diagram of a digital data recording / reproducing apparatus and its peripheral devices in the prior art described in Patent Document 1. 特許文献1に記載の従来技術における記録時の処理の流れを示したフローチャートである。10 is a flowchart showing a flow of processing at the time of recording in the conventional technique described in Patent Document 1. 特許文献1に記載の従来技術におけるページデータの構成と、領域分割方法とを示した模式図である。FIG. 9 is a schematic diagram showing a configuration of page data and a region dividing method in the prior art described in Patent Document 1. 第1の実施の形態に係るホログラム記録再生装置1および周辺機器の構成図である。1 is a configuration diagram of a hologram recording / reproducing apparatus 1 and peripheral devices according to a first embodiment. 第1の実施の形態に係る記録再生部12の構成を示す模式図である。It is a schematic diagram which shows the structure of the recording / reproducing part 12 which concerns on 1st Embodiment. 第1の実施の形態に係るホログラム記録再生装置1のデータ記録時の処理の流れを示したフローチャートである。It is the flowchart which showed the flow of the process at the time of the data recording of the hologram recording / reproducing apparatus 1 which concerns on 1st Embodiment. 3-16変調方式におけるビットパターンを説明するための図である。It is a figure for demonstrating the bit pattern in a 3-16 modulation system. 第1の実施の形態に係る2次元データを構成する単位符号ブロックと行方向/列方向の冗長情報を示す模式図である。It is a schematic diagram which shows the redundant information of the unit code block and row direction / column direction which comprise the two-dimensional data which concern on 1st Embodiment. 第1の実施の形態における単位符号ブロックおよび冗長情報の例を示す図である。It is a figure which shows the example of the unit code block in 1st Embodiment, and redundant information. 第1の実施の形態における単位符号ブロックおよび冗長情報のページデータ内の配置を示す模式図である。It is a schematic diagram which shows arrangement | positioning in the page data of the unit code block and redundant information in 1st Embodiment. 第2の実施の形態に係るホログラム記録再生装置1および周辺機器の構成図である。It is a block diagram of the hologram recording / reproducing apparatus 1 which concerns on 2nd Embodiment, and a peripheral device. 第2の実施の形態に係るホログラム記録再生装置1のデータ再生時の処理の流れを示したフローチャートである。It is the flowchart which showed the flow of the process at the time of the data reproduction of the hologram recording / reproducing apparatus 1 which concerns on 2nd Embodiment. 誤りビットが生じやすくなっている箇所を説明するための図である。It is a figure for demonstrating the location where it is easy to produce an error bit. 第3の実施の形態に係る単位符号ブロックの生成規則における8ビットのうちの2ビットの表現方法を説明するための図である。It is a figure for demonstrating the representation method of 2 bits of 8 bits in the production | generation rule of the unit code block which concerns on 3rd Embodiment. 第3の実施の形態に係る単位符号ブロックの生成規則における残りのビットの表現方法を説明するための図である。It is a figure for demonstrating the representation method of the remaining bits in the production | generation rule of the unit code block which concerns on 3rd Embodiment. 第3の実施の形態に係る単位符号ブロックの第1の例を示す図である。It is a figure which shows the 1st example of the unit code block which concerns on 3rd Embodiment. 第3の実施の形態に係る単位符号ブロックの第2の例を示す図である。It is a figure which shows the 2nd example of the unit code block which concerns on 3rd Embodiment. 第3の実施の形態における冗長情報の生成規則について説明するための図である。It is a figure for demonstrating the production | generation rule of the redundant information in 3rd Embodiment. 冗長情報の第1の例から、単位符号ブロックを推定する方法を推測する方法を説明するための図である。It is a figure for demonstrating the method of estimating the method of estimating a unit code block from the 1st example of redundant information. 冗長情報の第2の例から、単位符号ブロックを推定する方法を推測する方法を説明するための図である。It is a figure for demonstrating the method of estimating the method of estimating a unit code block from the 2nd example of redundant information. 冗長情報の第3の例から、単位符号ブロックを推定する方法を推測する方法を説明するための図である。It is a figure for demonstrating the method of estimating the method of estimating a unit code block from the 3rd example of redundant information. 冗長情報の第4の例から、単位符号ブロックを推定する方法を推測する方法を説明するための図である。It is a figure for demonstrating the method of estimating the method of estimating a unit code block from the 4th example of redundant information.
 以下、図面を参照しつつ、本発明の実施の形態について説明する。以下の説明では、同一の部分には同一の符号を付してある。それらの名称および機能も同じである。したがってそれらについての詳細な説明は繰り返さない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description, the same parts are denoted by the same reference numerals. Their names and functions are also the same. Therefore, detailed description thereof will not be repeated.
 [第1の実施の形態]
 以下、本発明の第1の実施の形態を、図面を参照して具体的に説明する。本実施の形態は、記録媒体へ情報を記録するホログラム記録装置に関する。
[First Embodiment]
Hereinafter, a first embodiment of the present invention will be specifically described with reference to the drawings. The present embodiment relates to a hologram recording apparatus that records information on a recording medium.
 はじめに、本実施の形態に係るホログラム記録再生装置1の構成に関して、図5を参照しつつ説明する。図5は、第1の実施の形態に係るホログラム記録再生装置1および周辺機器の構成図である。 First, the configuration of the hologram recording / reproducing apparatus 1 according to the present embodiment will be described with reference to FIG. FIG. 5 is a configuration diagram of the hologram recording / reproducing apparatus 1 and peripheral devices according to the first embodiment.
 ホログラム記録再生装置1は、外部機器4から入力したデータを記録媒体2に記録する。また、ホログラム記録再生装置1は、記録媒体2に記録されているデータを再生し、外部機器4に出力する。 The hologram recording / reproducing apparatus 1 records data input from the external device 4 on the recording medium 2. Further, the hologram recording / reproducing apparatus 1 reproduces the data recorded on the recording medium 2 and outputs it to the external device 4.
 ホログラム記録再生装置1は、情報生成部3と、バッファメモリ10と、制御部11と、記録再生部12とを備える。ここでは、外部機器4から入力したデータを記録媒体2に記録する際のホログラム記録再生装置1の各部の動作について説明する。 The hologram recording / reproducing apparatus 1 includes an information generating unit 3, a buffer memory 10, a control unit 11, and a recording / reproducing unit 12. Here, the operation of each unit of the hologram recording / reproducing apparatus 1 when data input from the external device 4 is recorded on the recording medium 2 will be described.
 情報生成部3は、外部機器4から入力された記録対象情報に基づいて、記録媒体2に記録するページデータを生成し、生成したページデータをバッファメモリ10に格納する。なお、情報生成部3が生成するページデータは、記録対象情報を符号化した単位符号ブロックと、単位符号ブロックに対応する冗長情報とを含む。 The information generation unit 3 generates page data to be recorded on the recording medium 2 based on the recording target information input from the external device 4 and stores the generated page data in the buffer memory 10. Note that the page data generated by the information generating unit 3 includes a unit code block obtained by encoding the recording target information and redundant information corresponding to the unit code block.
 次に、情報生成部3の構成について説明する。情報生成部3は、符号化・復号化部5と、誤り訂正部6と、データ分割・結合部と、ページ生成部8と、データ切り出し部9とを含む。ただし、データ切り出し部9は、データの再生時のみに用いられるため、本実施の形態では、その説明を省略する。 Next, the configuration of the information generation unit 3 will be described. The information generation unit 3 includes an encoding / decoding unit 5, an error correction unit 6, a data division / combination unit, a page generation unit 8, and a data cutout unit 9. However, since the data cutout unit 9 is used only during data reproduction, the description thereof is omitted in the present embodiment.
 符号化・復号化部5は、所定の変調方式にしたがって、外部機器4から入力された記録対象情報を変換して、2次元データを生成する。2次元データは、少なくとも1つの単位符号ブロックからなる。ここで、単位符号ブロックとは、2次元的に配列した複数のビットであって、所定のビット数の情報を、第1の状態のビットおよび第2の状態のビットの配置パターン(以下、ビットパターンとよぶ)を用いて符号化したものである。単位符号ブロックは、もとの情報を符号化したものであるので、単位符号ブロックのビット数は、もとの情報のビット数よりも多い。符号化・復号化部5は、対象情報を所定のビット数ごとに分割し、分割後の情報をそれぞれ変換した単位符号ブロックを結合することで、2次元データを生成する。単位符号ブロックの具体例については、後述する。 The encoding / decoding unit 5 converts the recording target information input from the external device 4 according to a predetermined modulation method to generate two-dimensional data. Two-dimensional data consists of at least one unit code block. Here, the unit code block is a plurality of bits arranged two-dimensionally, and information of a predetermined number of bits is represented by an arrangement pattern of bits in the first state and bits in the second state (hereinafter referred to as bits). This is encoded using a pattern). Since the unit code block is obtained by encoding the original information, the number of bits of the unit code block is larger than the number of bits of the original information. The encoding / decoding unit 5 divides the target information into a predetermined number of bits, and generates two-dimensional data by combining unit code blocks obtained by converting the divided information. A specific example of the unit code block will be described later.
 データ分割・結合部7は、符号化・復号化部5によって生成された2次元データを単位符号ブロックに切り分ける。 The data dividing / combining unit 7 cuts the two-dimensional data generated by the encoding / decoding unit 5 into unit code blocks.
 誤り訂正部6は、ページデータの損失を低減するための冗長情報を生成あるいは検出する。誤り訂正部6は、冗長情報生成部6outと、冗長情報検出部6inとを含む。 The error correction unit 6 generates or detects redundant information for reducing the loss of page data. The error correction unit 6 includes a redundant information generation unit 6out and a redundant information detection unit 6in.
 冗長情報生成部6outは、切り分けで得られた単位符号ブロックに対応した冗長情報を生成する。より具体的には、冗長情報生成部6outは、単位符号ブロックにおけるビットパターンに応じた冗長情報を生成する。本実施の形態では、冗長情報生成部6outは、行のビットパターンを反映した行方向の冗長情報および列のビットパターンを反映した列方向の冗長情報を生成するものとする。 The redundant information generation unit 6out generates redundant information corresponding to the unit code block obtained by the segmentation. More specifically, the redundant information generation unit 6out generates redundant information corresponding to the bit pattern in the unit code block. In the present embodiment, it is assumed that the redundancy information generation unit 6out generates row-direction redundancy information reflecting a row bit pattern and column-direction redundancy information reflecting a column bit pattern.
 冗長情報検出部6inは、データの再生時のみに用いられるため、本実施の形態では、その説明を省略する。 Since the redundant information detection unit 6in is used only during data reproduction, the description thereof is omitted in the present embodiment.
 ページ生成部8は、各単位符号ブロック、および、それに対応した冗長情報の配置位置を決定し、決定された配置位置に従って各単位符号ブロックおよび各冗長情報を配置したページデータを生成し、生成したページデータをバッファメモリ10に送信する。 The page generation unit 8 determines each unit code block and the arrangement position of redundant information corresponding to the unit code block, and generates and generates page data in which each unit code block and each redundant information is arranged according to the determined arrangement position. The page data is transmitted to the buffer memory 10.
 制御部11は、外部機器4からの信号を受け、バッファメモリ10に格納されているページデータを読み出し、記録再生部12を駆動させる。 The control unit 11 receives a signal from the external device 4, reads page data stored in the buffer memory 10, and drives the recording / reproducing unit 12.
 記録再生部12は、記録媒体2にホログラムを記録し、記録媒体2から情報を読み出すための記録再生回路と光学部材とを備える。光学部材は、レーザ光を発振するレーザと、レーザ光を変調する空間光変調器と、変調されたレーザ光を記録媒体2に集光する光学素子とを含む。 The recording / reproducing unit 12 includes a recording / reproducing circuit and an optical member for recording a hologram on the recording medium 2 and reading information from the recording medium 2. The optical member includes a laser that oscillates laser light, a spatial light modulator that modulates the laser light, and an optical element that focuses the modulated laser light on the recording medium 2.
 記録時において、記録再生部12は、制御部11からの指示に基づいて、バッファメモリ10に格納されているページデータを空間光変調器に表示させる。つまり、記録再生部12は、レーザから出射された光束をページデータに対応したパターンで変調することにより信号光を生成する。また、記録再生部12は、信号光とは別の参照光を生成し、参照光と信号光との干渉を記録媒体2中で誘起させることにより、情報を干渉縞の形として記録媒体2に記録する。ここで、記録再生部12は、記録媒体2に入射する参照光の角度を随時変更する、あるいは記録媒体2の位置をずらすなどして多重記録を行っても構わない。 During recording, the recording / reproducing unit 12 displays the page data stored in the buffer memory 10 on the spatial light modulator based on an instruction from the control unit 11. That is, the recording / reproducing unit 12 generates signal light by modulating the light beam emitted from the laser with a pattern corresponding to the page data. In addition, the recording / reproducing unit 12 generates reference light different from the signal light, and induces interference between the reference light and the signal light in the recording medium 2, so that information is stored in the recording medium 2 in the form of interference fringes. Record. Here, the recording / reproducing unit 12 may perform multiplex recording by changing the angle of the reference light incident on the recording medium 2 as needed, or by shifting the position of the recording medium 2.
 本実施の形態に係る記録再生部12の構成の一例を図6に示す。図6は、第1の実施の形態に係る記録再生部12の構成を示す模式図である。記録再生部12は、レーザ光を出射するレーザ20と、制御部11からの信号などに基づいてレーザ20の動作を制御するレーザコントローラ21と、レーザ20から出射されたレーザ光を集光する第1のレンズ22と、1/4波長板23と、1/4波長板23をレーザ光の光軸を中心として回転させる回転機構24と、第2のレンズ25と、第3のレンズ26と、偏光ビームスプリッタ27と、撮像素子28と、レーザ光を変調する空間光変調器29と、変調されたレーザ光を記録媒体2に集光する第4のレンズとを含む。 FIG. 6 shows an example of the configuration of the recording / reproducing unit 12 according to the present embodiment. FIG. 6 is a schematic diagram showing a configuration of the recording / reproducing unit 12 according to the first embodiment. The recording / reproducing unit 12 includes a laser 20 that emits laser light, a laser controller 21 that controls the operation of the laser 20 based on a signal from the control unit 11, and a first laser that collects the laser light emitted from the laser 20. 1 lens 22, a quarter wavelength plate 23, a rotation mechanism 24 for rotating the quarter wavelength plate 23 around the optical axis of the laser beam, a second lens 25, a third lens 26, The polarizing beam splitter 27, the image sensor 28, a spatial light modulator 29 that modulates laser light, and a fourth lens that condenses the modulated laser light on the recording medium 2.
 制御部11は、ホログラムの記録時には、回転機構24を制御し、偏光ビームスプリッタ27の空間光変調器29側の面に光が透過するように1/4波長板23の角度を調整する。また、制御部11は、レーザ光が情報に対応するパターンで変調されるように空間光変調器29を制御する。 The controller 11 controls the rotation mechanism 24 at the time of recording the hologram, and adjusts the angle of the quarter wavelength plate 23 so that the light is transmitted to the surface of the polarization beam splitter 27 on the spatial light modulator 29 side. In addition, the control unit 11 controls the spatial light modulator 29 so that the laser light is modulated with a pattern corresponding to information.
 なお、記録再生部12の構成は、図6に示したものに限られるわけではない。図6では、信号光の光軸と参照光の光軸とが同じコリニア方式の記録再生部12を示したが、記録再生部12としては、信号光と異なる方向から参照光を記録媒体に照射する2光束干渉方式のものを用いてもよい。また、他の変形例も適宜とりうる。例えば、第4のレンズのかわりに、光を記録媒体2に集光する他の光学素子を用いることもできる。 Note that the configuration of the recording / reproducing unit 12 is not limited to that shown in FIG. 6 shows the collinear recording / reproducing unit 12 in which the optical axis of the signal light and the optical axis of the reference light are the same, the recording / reproducing unit 12 irradiates the recording medium with the reference light from a direction different from the signal light. A two-beam interference type may be used. Also, other modified examples can be taken as appropriate. For example, instead of the fourth lens, another optical element that condenses light on the recording medium 2 can be used.
 次に、図7に示すフローチャートを用いて、ページデータの生成手法について説明するとともに、情報生成部3の構成について詳細に説明する。図7は、第1の実施の形態に係るホログラム記録再生装置1のデータ記録時の処理の流れを示したフローチャートである。 Next, a method for generating page data will be described using the flowchart shown in FIG. 7, and the configuration of the information generation unit 3 will be described in detail. FIG. 7 is a flowchart showing a flow of processing at the time of data recording of the hologram recording / reproducing apparatus 1 according to the first embodiment.
 ステップS1において、符号化・復号化部5は、外部機器4からの情報に基づき、空間光変調器の変調パターンを決める2次元データを生成する。より具体的には、符号化・復号化部5は、外部機器4から入力された情報を、所定の2次元データ生成規則に基づいて、2次元データに変換する。 In step S1, the encoding / decoding unit 5 generates two-dimensional data that determines the modulation pattern of the spatial light modulator based on information from the external device 4. More specifically, the encoding / decoding unit 5 converts information input from the external device 4 into two-dimensional data based on a predetermined two-dimensional data generation rule.
 本実施の形態においては、2次元データを生成する方式として、「3-16変調方式」を採用する。3-16変調方式では、8ビットが、4×4ビットの単位符号ブロック中に明ビットを3点配置することで表わされる。ここで、「明ビット」とは、空間光変調器に、当該ビットに対応する領域の光を通過させることを表わす状態(明状態)のビットである。また、単位符号ブロック中の他のビットは、空間光変調器に、当該ビットに対応する領域の光を遮断させることを表わす状態(暗状態)にある。このようなビットを「暗ビット」と呼ぶことにする。なお、各ビットに対応する空間光変調器の領域は、空間光変調器の1画素であってもよいし、複数の画素の集合であってもよい。 In this embodiment, “3-16 modulation method” is adopted as a method for generating two-dimensional data. In the 3-16 modulation method, 8 bits are represented by arranging 3 bright bits in a 4 × 4 bit unit code block. Here, the “bright bit” is a bit in a state (bright state) indicating that the spatial light modulator passes light in a region corresponding to the bit. The other bits in the unit code block are in a state (dark state) indicating that the spatial light modulator blocks light in the region corresponding to the bit. Such a bit is referred to as a “dark bit”. Note that the area of the spatial light modulator corresponding to each bit may be one pixel of the spatial light modulator or a set of a plurality of pixels.
 図8を参照して、3-16変調方式における明ビットおよび暗ビットの配置(ビットパターン)について説明する。図8は、3-16変調方式におけるビットパターンを説明するための図である。 Referring to FIG. 8, the arrangement (bit pattern) of bright bits and dark bits in the 3-16 modulation method will be described. FIG. 8 is a diagram for explaining a bit pattern in the 3-16 modulation method.
 3-16変調方式によるビットパターンの一例を図8(a)および図8(b)を参照して説明する。図8(a)は、3-16変調方式におけるビットパターンの一例を示す図である。図8(b)は、図8(a)に示されるビットパターンに対応するビットを示す図である。 An example of a bit pattern based on the 3-16 modulation method will be described with reference to FIGS. 8 (a) and 8 (b). FIG. 8A shows an example of a bit pattern in the 3-16 modulation scheme. FIG. 8B is a diagram showing bits corresponding to the bit pattern shown in FIG.
 図8(a)に示すように、3-16変調方式では、4×4ビットの単位符号ブロック700は、4つの2×2ビットの集合710,712,714,716からなる。4つの集合のうち1つの集合は、4つの暗ビットからなる。残りの3つの集合は3つの暗ビットと1つの明ビットからなる。なお、図8では、暗ビットを斜線の領域で、明ビットを白抜きの領域で示している。 As shown in FIG. 8 (a), in the 3-16 modulation system, the 4 × 4 bit unit code block 700 is composed of four 2 × 2 bit sets 710, 712, 714, and 716. One set of four sets consists of four dark bits. The remaining three sets consist of three dark bits and one bright bit. In FIG. 8, dark bits are indicated by hatched areas and bright bits are indicated by white areas.
 この方式では、単位符号ブロック700で表わす8ビットのうち2ビットを、4つの暗ビットからなる集合の位置によって表わす。例えば、8ビットのビット列のうち、初めの2ビットが“00”であれば、左上の2×2ビット710を暗状態とし、初めの2ビットが“11”であれば、右上の2×2ビット712を暗状態とし、初めの2ビットが“01”であれば、右下の2×2ビット716を暗状態とし、初めの2ビットが“10”であれば、左下の2×2ビット714を暗状態とするような規則を与える。図8に示す例では、図8(b)のとおり初めの2ビットが“10”であるので、左下の2×2ビット714が暗状態になっている。なお、集合の配置を決めるビット列のうちの2ビットは、ビット列の初めの2ビットに限られるわけではない。 In this method, 2 bits out of 8 bits represented by the unit code block 700 are represented by the position of a set of 4 dark bits. For example, if the first 2 bits of the 8-bit bit string are “00”, the upper left 2 × 2 bits 710 are darkened, and if the first 2 bits are “11”, the upper right 2 × 2 If bit 712 is dark and the first 2 bits are “01”, the lower right 2 × 2 bit 716 is dark, and if the first 2 bits are “10”, the lower left 2 × 2 bits A rule is given to make 714 a dark state. In the example shown in FIG. 8, since the first two bits are “10” as shown in FIG. 8B, the lower left 2 × 2 bits 714 are in a dark state. Note that the two bits in the bit string that determines the arrangement of the set are not limited to the first two bits of the bit string.
 8ビットのうち、残りの6ビットは、3つの暗ビットと1つの明ビットとからなる3つの集合が、それぞれ2ビットを表わすことにより表現される。残りの2ビット×3を、順に、左上、右上、左下、右下の集合に割り当てる。ただし、4つの暗ビットからなる集合には、残りのビットを割り当てない。 Of the 8 bits, the remaining 6 bits are expressed by representing 3 sets of 3 dark bits and 1 bright bit, each representing 2 bits. The remaining 2 bits × 3 are sequentially assigned to the upper left, upper right, lower left, and lower right sets. However, the remaining bits are not assigned to the set of four dark bits.
 3つの暗ビットと1つの明ビットとからなる集合においては、明ビットは4通りの位置をとりえるので、明ビットの位置により2ビットを表わすことができる。例えば、2ビットが“00”であれば、2×2ビットのうち左上の1ビットを明状態とし、2ビットが“11”であれば、2×2ビットのうち右上の1ビットを明状態とし、2ビットが“01”であれば、2×2ビットのうち右下の1ビットを明状態とし、2ビットが“10”であれば、2×2ビットのうち左下の1ビットを明状態とするような規則を与える。図8(a)は、この規則にしたがって、図8(b)の残り6つのビット(“010011”)を表わしたものである。 In a set consisting of three dark bits and one bright bit, the bright bit can take four positions, so that two bits can be represented by the position of the bright bit. For example, if 2 bits are “00”, the upper left 1 bit of 2 × 2 bits is in a bright state, and if 2 bits are “11”, the upper right 1 bit of 2 × 2 bits is in a bright state If the 2 bits are “01”, the lower right 1 bit of the 2 × 2 bits is in a bright state, and if the 2 bits are “10”, the lower left 1 bit of the 2 × 2 bits is bright. Give rules that state. FIG. 8A shows the remaining six bits (“010011”) of FIG. 8B according to this rule.
 この変調方式では、2×2ビットによって2ビットを表わすことにより、4×4ビットの単位符号ブロックの一方向での明ビットの連結を長くて二つとすることができる。これにより、2次元パターン内で明ビットの集中を避けることができる。 In this modulation system, 2 bits are represented by 2 × 2 bits, so that the connection of bright bits in one direction of a 4 × 4 bit unit code block can be made long and two. Thereby, it is possible to avoid the concentration of bright bits in the two-dimensional pattern.
 本実施の形態では、図8(c)に示すように明ビットが3個連結するようなことはおきない。ホログラムの記録において、表示するページデータの低周波成分の干渉が支配的となった場合、すなわち明ビットが図8(c)に示したように複数個連結するような場合は、フーリエ面における0次成分の強度が高くなり、その結果、媒体蝕和による再生像品質の劣化が生じてしまう。このため、本実施の形態では、図8(c)に示すように明ビットが3個連結するような変調方式は採用せず、縦横の方向に連結する明ビットが2個までになる3-16変調方式で変調を行なった。 In this embodiment, three bright bits are not connected as shown in FIG. In hologram recording, when interference of low frequency components of displayed page data becomes dominant, that is, when a plurality of bright bits are connected as shown in FIG. The strength of the next component is increased, and as a result, the reproduction image quality is deteriorated due to medium corrosion. For this reason, in this embodiment, as shown in FIG. 8C, a modulation scheme in which three bright bits are connected is not adopted, and up to two bright bits are connected in the vertical and horizontal directions. Modulation was performed with 16 modulation methods.
 なお、上述の説明では、斜線部の領域を暗ビット、白抜きの領域を明ビットとしたが、逆であってもよい。 In the above description, the shaded area is the dark bit and the white area is the bright bit, but the reverse is also possible.
 図7に戻り、ステップS2において、データ分割・結合部7は、単位符号ブロックごとに2次元データを切り出す。つまり、データ分割・結合部7は、2次元データを単位符号ブロックに分割する。 Returning to FIG. 7, in step S2, the data dividing / combining unit 7 cuts out two-dimensional data for each unit code block. That is, the data dividing / combining unit 7 divides the two-dimensional data into unit code blocks.
 ステップS3において、冗長情報生成部6outは、単位符号ブロックの行を探索し、行方向の冗長情報を生成する。 In step S3, the redundant information generation unit 6out searches for the row of the unit code block and generates redundant information in the row direction.
 また、ステップS4において、冗長情報生成部6outは、単位符号ブロックの列を探索し、列方向の冗長情報を生成する。 In step S4, the redundant information generation unit 6out searches for a column of unit code blocks and generates redundant information in the column direction.
 図9を参照して、単位符号ブロックと生成される冗長情報との関係について説明する。図9は、第1の実施の形態に係る2次元データを構成する単位符号ブロックと行方向/列方向の冗長情報を示す模式図である。図9に示すように、冗長情報生成部6outは、単位符号ブロック40の行方向と列方向の画素に基づき、行方向と列方向の冗長情報を生成する。本実施の形態においては、単位符号ブロックは4行×4列のビットからなるため、行方向の冗長情報41および列方向の冗長情報42を、4×1の1次元ビット列とする。この場合、行/列方向の冗長情報を1ビットで表わしているので、冗長情報のビット数は最小となる。当然のことながら、冗長情報のビット数は、単位符号ブロックのビット数よりも少ない。 The relationship between the unit code block and the generated redundant information will be described with reference to FIG. FIG. 9 is a schematic diagram showing unit code blocks constituting the two-dimensional data according to the first embodiment and redundant information in the row direction / column direction. As illustrated in FIG. 9, the redundant information generation unit 6out generates redundant information in the row direction and the column direction based on the pixels in the row direction and the column direction of the unit code block 40. In the present embodiment, since the unit code block is composed of 4 rows × 4 columns of bits, the redundancy information 41 in the row direction and the redundancy information 42 in the column direction are 4 × 1 one-dimensional bit sequences. In this case, since the redundant information in the row / column direction is represented by 1 bit, the number of bits of the redundant information is minimized. As a matter of course, the number of bits of the redundant information is smaller than the number of bits of the unit code block.
 ここで、行方向の冗長情報41および列方向の冗長情報42を構成するビット(冗長ビット)の明暗状態に関して説明する。冗長情報生成部6outは、単位符号ブロックを構成する行/列に含まれる明ビットの個数が、行方向/列方向の明ビットの最大数であるときに、当該行/列に対応する冗長ビットを暗状態とする。 Here, the light and dark states of the bits (redundant bits) constituting the redundant information 41 in the row direction and the redundant information 42 in the column direction will be described. When the number of bright bits included in the row / column constituting the unit code block is the maximum number of bright bits in the row direction / column direction, the redundant information generation unit 6out performs redundant bits corresponding to the row / column. Is in a dark state.
 明ビットの最大数は、単位符号ブロックの生成規則に応じて決まる。本実施の形態に係る単位符号ブロックの生成規則である3-16変調方式においては、行あるいは列に含まれる明ビットの個数の組み合わせは、(2,1,0,0)あるいは(1,1,1,0)のいずれかであり、2個明ビットを含む行(あるいは列)は、必ず、全ての行(あるいは列)の中で、最大数の明ビットを含む。したがって、単位符号ブロック40の領域内の各行・各列に含まれる明ビットの最大数は2個である。よって、冗長情報生成部6outは、行/列に含まれる明ビットの個数が2個であれば、対応する冗長ビットを暗状態とする。 The maximum number of bright bits is determined according to the unit code block generation rule. In the 3-16 modulation scheme which is a unit code block generation rule according to the present embodiment, the combination of the number of bright bits included in a row or column is (2, 1, 0, 0) or (1, 1 , 1, 0) and a row (or column) including two bright bits always includes the maximum number of bright bits in all rows (or columns). Therefore, the maximum number of bright bits included in each row / column in the region of the unit code block 40 is two. Therefore, if the number of bright bits included in a row / column is two, the redundant information generation unit 6out sets the corresponding redundant bit to a dark state.
 図10に、本実施の形態において採用した3-16変調における単位符号ブロックと、単位符号ブロックに対応する冗長情報の例を示す。図10には、3種類の単位符号ブロック50(a)~50(c)と、単位符号ブロック50(a)~50(c)にそれぞれ対応する行方向における冗長情報501(a)~501(c)および列方向における冗長情報502(a)~502(c)を示した。 FIG. 10 shows an example of a unit code block in 3-16 modulation adopted in the present embodiment and redundant information corresponding to the unit code block. In FIG. 10, three types of unit code blocks 50 (a) to 50 (c) and redundant information 501 (a) to 501 (501) in the row direction corresponding to the unit code blocks 50 (a) to 50 (c), respectively. c) and redundant information 502 (a) to 502 (c) in the column direction are shown.
 再び、図7に戻る。ステップS5において、冗長情報生成部6outは、すべての単位符号ブロックについて、すべての行・列の冗長情報を生成したかどうか判断する。まだ冗長情報を生成していない行あるいは列がある場合(ステップS5においてNo)、冗長情報生成部6outは、ステップS3、ステップS4の処理を繰り返す。 Return to Fig. 7 again. In step S5, the redundant information generation unit 6out determines whether redundant information for all rows and columns has been generated for all unit code blocks. If there is a row or column for which redundant information has not yet been generated (No in step S5), the redundant information generating unit 6out repeats the processes in steps S3 and S4.
 冗長情報生成部6outが、すべての単位符号ブロックについて、すべての行・列の冗長情報を生成したと判断した場合(ステップS5においてYes)、ページ生成部8は、ステップS6において、ステップS2、ステップS3、ステップS4にて生成した単位符号ブロック、行方向の冗長情報、列方向の冗長情報を、それぞれどの領域に配置するか決定する。 When it is determined that the redundant information generation unit 6out has generated redundant information for all rows and columns for all unit code blocks (Yes in step S5), the page generation unit 8 performs step S2, step S2, step S6. It is determined in which region the unit code block, the row-direction redundancy information, and the column-direction redundancy information generated in S3 and Step S4 are respectively arranged.
 ステップS7において、ページ生成部8は、ステップS6の決定に基づいて、行方向の冗長情報および列方向の冗長情報を囲むように単位符号ブロックを配置したページデータを生成する。つまり、ページ生成部8は、単位符号ブロックを配置する領域を、冗長情報を配置する領域を囲むように設定する。ステップS8において、ホログラム記録再生装置1は、生成されたページデータを記録媒体に記録する。 In step S7, the page generation unit 8 generates page data in which unit code blocks are arranged so as to surround the redundant information in the row direction and the redundant information in the column direction based on the determination in step S6. That is, the page generation unit 8 sets the area where the unit code block is arranged so as to surround the area where the redundant information is arranged. In step S8, the hologram recording / reproducing apparatus 1 records the generated page data on a recording medium.
 このように冗長情報および単位符号ブロックが配置されたページデータでは、異なる配置、例えば、単位符号ブロックを冗長情報が囲む場合などに比べて、冗長情報が、レンズの歪みの影響を受けにくい領域に配置されることになる。したがって、再生された冗長情報にエラーを生じる可能性が低くなる。 In the page data in which the redundant information and the unit code block are arranged in this way, the redundant information is in a region that is less susceptible to the lens distortion than in a different arrangement, for example, when the unit code block is surrounded by the redundant information. Will be placed. Therefore, the possibility of causing an error in the reproduced redundant information is reduced.
 本実施の形態では、ページ生成部8は、図11に示すように、変調されたレーザ光を集光する光学素子の光軸が通るページデータ60の中心付近の領域に行方向の冗長情報501(a)~501(c)および列方向の冗長情報502(a)~502(c)を配置し、ページデータ60の周辺部に単位符号ブロック50(a)~50(c)を配置する。 In this embodiment, as shown in FIG. 11, the page generation unit 8 has redundant information 501 in the row direction in an area near the center of the page data 60 through which the optical axis of the optical element that collects the modulated laser light passes. (A) to 501 (c) and redundant information 502 (a) to 502 (c) in the column direction are arranged, and unit code blocks 50 (a) to 50 (c) are arranged in the periphery of the page data 60.
 このように、記録対象の情報をページデータの周辺に配置し、記録対象の情報に対応した冗長情報をページデータの中心に配置することで、再生像に歪が生じた場合においても、再生像の中心部付近に配置されているため歪の影響が少ない冗長情報を用いて、記録対照の情報に生じるエラーを訂正することが可能になる。すなわち、再生時に光学系の歪などにより単位符号ブロックにエラーが生じたとしても、対応する冗長情報はページデータの中心付近に配置されているため歪の影響を受けにくく、冗長情報を用いて、周辺部に配置された単位符号ブロックのエラーを訂正することができる。 As described above, the information to be recorded is arranged around the page data, and the redundant information corresponding to the information to be recorded is arranged at the center of the page data. It is possible to correct an error that occurs in the recording control information by using redundant information that is less affected by distortion because it is arranged near the center of the recording medium. That is, even if an error occurs in the unit code block due to distortion of the optical system at the time of reproduction, since the corresponding redundant information is arranged near the center of the page data, it is hardly affected by the distortion. It is possible to correct an error of the unit code block arranged in the peripheral portion.
 特に、本実施の形態では、行方向および列方向の2通りの冗長情報を記録することにより、単位符号ブロックに関してより多くの情報を得ることができるため、単位符号ブロックのエラーをより精度よく訂正することができる。 In particular, in the present embodiment, by recording two types of redundant information in the row direction and the column direction, it is possible to obtain more information regarding the unit code block, so that errors in the unit code block can be corrected with higher accuracy. can do.
 また、本実施の形態のような変調方式および冗長情報を採用した場合には、行方向/列方向における冗長情報が全て暗ビットになる場合が生じることが多く、冗長情報は、記録対象の情報と比較して明ビットの数が少なくなる。その結果、ページデータの中心付近の光強度を低減することが可能であり、記録媒体のダイナミックレンジの浪費を抑え、ダイナミックレンジを有効に使うことが可能になる。 In addition, when the modulation scheme and redundant information as in the present embodiment are employed, the redundant information in the row direction / column direction often becomes dark bits, and the redundant information is information to be recorded. Compared with, the number of bright bits is reduced. As a result, the light intensity near the center of the page data can be reduced, the waste of the dynamic range of the recording medium can be suppressed, and the dynamic range can be used effectively.
 [第2の実施の形態]
 以下、本発明の第2の実施の形態を、図面を参照して具体的に説明する。本実施の形態は、記録媒体に記録された情報を再生するホログラム再生装置に関する。
[Second Embodiment]
Hereinafter, a second embodiment of the present invention will be specifically described with reference to the drawings. The present embodiment relates to a hologram reproducing apparatus that reproduces information recorded on a recording medium.
 はじめに、記録媒体2からの情報を再生するホログラム記録再生装置1の構成に関して、図12を参照して説明する。図12は、第2の実施の形態に係るホログラム記録再生装置1および周辺機器の構成図である。なお、第2の実施の形態に関しては、上記第1の実施の形態に係る図に示される構成要素と同一の要素には同一の符号を付してその説明を省略し、第1の実施の形態と異なる点のみ説明することとする。 First, the configuration of the hologram recording / reproducing apparatus 1 that reproduces information from the recording medium 2 will be described with reference to FIG. FIG. 12 is a configuration diagram of the hologram recording / reproducing apparatus 1 and peripheral devices according to the second embodiment. Regarding the second embodiment, the same components as those shown in the drawing according to the first embodiment are denoted by the same reference numerals, and the description thereof is omitted. Only the differences from the form will be described.
 再生時、制御部11は、外部機器4からの信号を受けて、記録再生部12を駆動させ、記録媒体2に再生用の参照光を照射させる。記録再生部12は、参照光の照射の結果生じた再生像を検出する。バッファメモリ10は、検出された再生像を格納する。 During reproduction, the control unit 11 receives a signal from the external device 4, drives the recording / reproduction unit 12, and irradiates the recording medium 2 with reproduction reference light. The recording / reproducing unit 12 detects a reproduced image generated as a result of the reference light irradiation. The buffer memory 10 stores the detected reproduced image.
 図6を参照して、本実施の形態にかかる記録再生部12の動作について詳細に説明しておく。制御部11は、ホログラムの再生時には、回転機構24を制御し、偏光ビームスプリッタ27の撮像素子28の面を記録媒体2からの再生像が透過するように1/4波長板23の角度を調整する。撮像素子28は、再生像を検出し、バッファメモリ10に送る。 The operation of the recording / reproducing unit 12 according to the present embodiment will be described in detail with reference to FIG. When reproducing the hologram, the control unit 11 controls the rotation mechanism 24 and adjusts the angle of the ¼ wavelength plate 23 so that the reproduced image from the recording medium 2 is transmitted through the surface of the imaging element 28 of the polarization beam splitter 27. To do. The image sensor 28 detects the reproduced image and sends it to the buffer memory 10.
 データ切り出し部9は、検出された再生像の中から、各行方向/列方向における冗長情報が配置されている領域と、各単位符号ブロックが配置されている領域とを切り出す。そして、データ切り出し部9は、各冗長情報および各単位符号ブロックの検出結果を取得する。 The data cutout unit 9 cuts out a region where redundant information in each row direction / column direction is arranged and a region where each unit code block is arranged from the detected reproduced image. Then, the data cutout unit 9 acquires each redundant information and the detection result of each unit code block.
 冗長情報検出部6inは検出された冗長情報および単位符号ブロックに基づいて、単位符号ブロックに生じるエラーを訂正する。ここで、「エラーの訂正」とは、冗長情報と単位符号ブロックの検出結果とから本来の単位符号ブロックを推測することで、エラーが発生したビット(誤りビット)の影響を抑えて単位符号ブロックを読み出すことを意味する。 The redundant information detection unit 6in corrects an error occurring in the unit code block based on the detected redundant information and the unit code block. Here, “error correction” means that the original unit code block is estimated from the redundant information and the detection result of the unit code block, thereby suppressing the influence of the bit (error bit) in which the error has occurred and suppressing the unit code block. Is read out.
 データ分割・結合部7は、分割されている単位符号ブロックを2次元データに結合する。符号化・復号化部5は、2次元のデータを復号化して、元のデータに復元し、外部機器4に出力する。 The data dividing / combining unit 7 combines the divided unit code blocks with two-dimensional data. The encoding / decoding unit 5 decodes the two-dimensional data, restores the original data, and outputs the original data to the external device 4.
 次に、図13に示すフローチャートを用いて、ページデータの再生手法について詳細に説明する。図13は、第2の実施の形態に係るホログラム記録再生装置1のデータ再生時の処理の流れを示したフローチャートである。 Next, a method for reproducing page data will be described in detail using the flowchart shown in FIG. FIG. 13 is a flowchart showing a flow of processing at the time of data reproduction of the hologram recording / reproducing apparatus 1 according to the second embodiment.
 ステップS81において、制御部11は、記録再生部12を制御し、記録媒体2に再生用の参照光を照射させる。なお、記録媒体2に対し多重記録がなされている場合は、記録再生部12は、複数の互いに異なる入射角度で再生用の参照光を照射するなどして、多重記録された情報を随時再生する。 In step S81, the control unit 11 controls the recording / reproducing unit 12 to irradiate the recording medium 2 with reference light for reproduction. When multiple recording is performed on the recording medium 2, the recording / reproducing unit 12 reproduces the multi-recorded information as needed by irradiating a plurality of reproduction reference beams at different incident angles. .
 ステップS82において、記録再生部12は、記録媒体2から再生像を検出し、バッファメモリ10に再生像を格納する。 In step S82, the recording / reproducing unit 12 detects the reproduced image from the recording medium 2, and stores the reproduced image in the buffer memory 10.
 ステップS83において、データ切り出し9は、検出された再生像から、単位符号ブロック領域と、冗長情報領域とを切り出す。本実施の形態においては、単位符号ブロック領域は再生像の周辺部付近、冗長情報領域は再生像の中心部付近に配置されている。データ切り出し部9は、ホログラム記録時にページ生成部8が決定した配置位置および再生用の光学系のパラメータなどに基づいて決定される再生像中の単位符号ブロック領域および冗長情報領域の配置にしたがって、これらを切り出す。なお、データ切り出し部9は、光学系のパラメータ等に基づいて、画像の歪み補正を行なってもよい。 In step S83, the data cutout 9 cuts out a unit code block area and a redundant information area from the detected reproduced image. In the present embodiment, the unit code block area is arranged near the periphery of the reproduced image, and the redundant information area is arranged near the center of the reproduced image. The data cutout unit 9 follows the arrangement of the unit code block region and the redundant information region in the reproduction image determined based on the arrangement position determined by the page generation unit 8 at the time of hologram recording and the parameters of the optical system for reproduction, etc. Cut out these. The data cutout unit 9 may perform image distortion correction based on an optical system parameter or the like.
 ステップS84において、データ切り出し部9は、再生像中の冗長情報領域から、1つの行方向の冗長情報を選択し、抽出する。また、データ切り出し部9は、選択した行方向の冗長情報に対応する列方向の冗長情報を選択し、抽出する。 In step S84, the data cutout unit 9 selects and extracts redundant information in one row direction from the redundant information area in the reproduced image. Further, the data cutout unit 9 selects and extracts the redundant information in the column direction corresponding to the selected redundant information in the row direction.
 ステップS85において、データ切り出し部9は、再生像中から、ステップS84において選択した行および列方向の冗長情報に対応する単位符号ブロックを抽出する。 In step S85, the data cutout unit 9 extracts a unit code block corresponding to the redundant information in the row and column directions selected in step S84 from the reproduced image.
 ステップS86では、冗長情報検出部6inは、行/列方向の冗長情報から、単位符号ブロック中に輝点(明ビット)がどのように分布しているかを推定する。そして、冗長情報検出部6inは、判断結果に基づいて、対応する単位符号ブロックのエラーを訂正する。つまり、冗長情報検出部6inは、冗長情報に基づいて単位符号ブロックの配置状態を推定することにより、単に読み取りで得られる配置状態に比べて、元々記録媒体2に記録されていた配置状態に近い配置状態をもつ単位符号ブロックを読み取り結果として出力することができる。 In step S86, the redundant information detection unit 6in estimates how bright spots (bright bits) are distributed in the unit code block from the redundant information in the row / column direction. Then, the redundant information detection unit 6in corrects the error of the corresponding unit code block based on the determination result. That is, the redundant information detection unit 6in estimates the arrangement state of the unit code block based on the redundant information, and thus is closer to the arrangement state originally recorded on the recording medium 2 than the arrangement state obtained by simple reading. A unit code block having an arrangement state can be output as a read result.
 再生時に単位符号ブロックが光学系の歪によりエラーが生じたとしても、冗長情報はページデータの中心付近に配置されているため歪の影響を受けにくく、周辺部に配置された単位符号ブロックのエラーを訂正することができる。 Even if an error occurs in the unit code block due to the distortion of the optical system during playback, the redundant information is located near the center of the page data, so it is not easily affected by the distortion. Can be corrected.
 ここで、ステップS86における、明ビットの分布の推定方法について詳しく説明する。第1の実施の形態で説明したような冗長情報の与え方によれば、単位符号ブロック中において、2つの明ビットが含まれる行/列の冗長情報のビットが明ビットになっている。一方、第1の実施の形態で説明したような単位符号ブロックの定め方によれば、4つの行/列に含まれる明ビットの数の組み合わせは、(2,1,0,0)もしくは(1,1,1,0)のいずれかである。したがって、明ビットとなる行/列方向の冗長ビットの個数は、1個もしくは0個である。 Here, the method for estimating the distribution of bright bits in step S86 will be described in detail. According to the method of providing redundant information as described in the first embodiment, in the unit code block, the bits of the redundant information in the row / column including two bright bits are the bright bits. On the other hand, according to the method of determining the unit code block as described in the first embodiment, the combination of the number of bright bits included in the four rows / columns is (2, 1, 0, 0) or ( 1, 1, 1, 0). Therefore, the number of redundant bits in the row / column direction, which are bright bits, is 1 or 0.
 行/列の冗長情報のうちの両方に明ビットがある場合、明ビットがある行および列が交わる点は、必ず明ビットである(その点が明ビットでないとすると、単位符号ブロックに含まれる明ビットの個数が4つになってしまうため)。よって、冗長情報検出部6inは、明ビットがある行および列が交わる点を明ビットであると決定する。そして、残りの2個の明ビットを冗長情報の明ビットが存在する行/列から抽出する。すなわち、明ビットが存在する行あるいは列のうち、行および列が交わる点以外で最大輝度を持つ点を明ビットと推定する。 If there is a bright bit in both of the row / column redundancy information, the point where the row and the column with the bright bit intersect is always a bright bit (if the point is not a bright bit, it is included in the unit code block) Because the number of bright bits is four). Therefore, the redundant information detection unit 6in determines that a point where a row and a column with a bright bit intersect is a bright bit. Then, the remaining two bright bits are extracted from the row / column in which the bright bits of the redundant information exist. That is, a point having the maximum luminance other than the point where the row and the column intersect among the rows or columns where the bright bit exists is estimated as the bright bit.
 行/列の冗長情報のうち、一方が明ビット1個を含み、もう一方がすべて暗ビットの場合、冗長情報検出部6inは、冗長情報の明ビットが存在する行/列に対応した単位符号ブロックの行/列から、輝度が上位2位までの点を明ビットとして抽出し、残りの領域(明ビットが存在しない行/列)のうち最大輝度の点を明ビットとして抽出する。 If one of the redundant information in the row / column includes one bright bit and the other is a dark bit, the redundant information detector 6in uses the unit code corresponding to the row / column in which the bright bit of the redundant information exists. From the row / column of the block, the points with the highest brightness are extracted as bright bits, and the point with the maximum luminance is extracted as the bright bits in the remaining regions (rows / columns where no bright bit exists).
 行/列の冗長情報が両方とも全て暗ビットの場合、冗長情報検出部6inは、行および列の冗長情報に対応する単位符号ブロック中で輝度の順位付けを行ない、上位3つまでの輝度値の画素を明ビットとして抽出する。 When both the row / column redundant information are all dark bits, the redundant information detection unit 6in ranks the luminance in the unit code block corresponding to the row and column redundant information, and the luminance values up to the upper three are obtained. Are extracted as bright bits.
 以上で説明した推定方法によりエラーを訂正できることについて、補足説明しておく。実際の記録再生においては、画像の歪み補正を行なった直後の状態(エラー訂正を行なう前の生データ)で、誤りビットが生じやすくなっている箇所を分析したところ、誤りビットが頻繁に発生する箇所があることが分かった。 A supplementary explanation will be given that errors can be corrected by the estimation method described above. In actual recording / reproduction, the error bit is frequently generated when the portion where the error bit is likely to be generated is analyzed in the state immediately after image distortion correction (raw data before error correction). I found that there was a place.
 図14は、誤りビットが生じやすくなっている箇所を説明するための図である。図14(a)、図14(b)、図14(c)は、それぞれ、単位符号ブロック1410、単位符号ブロック1420、単位符号ブロック1430において誤りビットが生じやすくなっている箇所を示す図である。分析の結果、丸で囲んだ領域1412、領域1422、領域1432において、誤りビットが頻繁に発生することが分かった。つまり、各明ビットが孤立しているよりも、明ビット同士が密集している場合に、付近に明ビットが多く存在する箇所においてエラーが生じやすい。この要因としては、光学系の点像分布関数、歪み補正による画像の補間、あるいは、再生時の輝度ムラによる影響などが考えられる。これらの影響により、輝度の順位付けを行なう際に、図14の丸で示した領域の画素が、他の画素に比べて相対的に明るくなってしまったものと考えられる。 FIG. 14 is a diagram for explaining a portion where error bits are likely to occur. 14 (a), 14 (b), and 14 (c) are diagrams showing locations where error bits are likely to occur in the unit code block 1410, the unit code block 1420, and the unit code block 1430, respectively. . As a result of analysis, it was found that error bits frequently occur in the circled region 1412, region 1422, and region 1432. That is, when the bright bits are densely packed rather than being isolated, an error is likely to occur at a location where there are many bright bits in the vicinity. This may be due to the point spread function of the optical system, image interpolation by distortion correction, or the influence of luminance unevenness during reproduction. Due to these effects, it is considered that the pixels in the region indicated by the circles in FIG. 14 are relatively brighter than the other pixels when ranking the luminance.
 本発明によれば、冗長情報により明ビットの分布を推測しているので、このような誤りビットの影響を低減することができる。 According to the present invention, since the distribution of bright bits is estimated based on redundant information, the influence of such error bits can be reduced.
 図13に戻り、処理の説明を続ける。ステップS87において、符号化・復号化部5は、単位符号ブロックの推測結果を情報に復号し、全ての情報の復号化が完了したか判断する。 Returning to FIG. 13, the description of the processing is continued. In step S87, the encoding / decoding unit 5 decodes the estimation result of the unit code block into information, and determines whether decoding of all information is completed.
 復号化が完了していない場合(ステップS87においてNo)、ホログラム記録再生装置1は、ステップS84からの処理を繰り返す。 If the decoding has not been completed (No in step S87), the hologram recording / reproducing apparatus 1 repeats the processing from step S84.
 復号化が完了した場合(ステップS87においてYes)、符号化・復号化部5は、外部機器4に、復号化して得られたデータを出力する。 When the decoding is completed (Yes in step S87), the encoding / decoding unit 5 outputs the data obtained by decoding to the external device 4.
 [第3の実施の形態]
 本発明における単位符号ブロックの生成規則および冗長情報の生成規則は、第1の実施の形態で説明したものに限られるわけではない。第3の実施の形態では、第1の実施の形態と異なる規則で単位符号ブロックおよび冗長情報を生成するホログラム記録装置について説明する。
[Third Embodiment]
The unit code block generation rule and the redundant information generation rule in the present invention are not limited to those described in the first embodiment. In the third embodiment, a hologram recording apparatus that generates unit code blocks and redundant information according to a different rule from the first embodiment will be described.
 第3の実施の形態に係るホログラム記録装置の構成は、第1の実施の形態で説明したものと同様である。ただし、符号化・復号化部5が、記録対象情報を二次元データに変換する変調方式が、第1の実施の形態のものと異なる。また、冗長情報生成部6outの、冗長情報の生成規則が異なる。 The configuration of the hologram recording apparatus according to the third embodiment is the same as that described in the first embodiment. However, the modulation scheme in which the encoding / decoding unit 5 converts the recording target information into two-dimensional data is different from that of the first embodiment. Also, the redundant information generation rule of the redundant information generation unit 6out is different.
 第3の実施の形態に係るホログラム記録装置によるページデータの生成処理の流れも、第1の実施の形態で説明したものと同様である。ただし、外部機器4からの情報に基づいて2次元データを生成する方法、単位符号ブロックから冗長情報を生成する方法が異なる。 The flow of page data generation processing by the hologram recording apparatus according to the third embodiment is the same as that described in the first embodiment. However, the method for generating two-dimensional data based on information from the external device 4 and the method for generating redundant information from unit code blocks are different.
 第3の実施の形態における、単位符号ブロックの生成規則について、図15および図16を参照して説明する。本実施の形態では、4画素×3画素の単位符号ブロックが、8ビットの情報を表現する。 A unit code block generation rule in the third embodiment will be described with reference to FIG. 15 and FIG. In the present embodiment, a unit code block of 4 pixels × 3 pixels represents 8-bit information.
 図15は、第3の実施の形態に係る単位符号ブロックの生成規則における8ビットのうちの2ビットの表現方法を説明するための図である。本生成規則では、2つの明ビットと1つの暗ビットとからなる、図15(a)に示す形状のビット列1500の位置で、ビット列のうちの初めの2ビットを表現するものとする。ビット列1500の配置方法は4通りあるので、ビット列1500の位置で、2ビットが表現できる。なお、ビット列1500と異なるビットパターンを持つビット列の位置で、2ビットを表現してもよい。 FIG. 15 is a diagram for explaining a method of expressing 2 bits out of 8 bits in the unit code block generation rule according to the third embodiment. In this generation rule, the first two bits of the bit string are expressed at the position of the bit string 1500 having the shape shown in FIG. 15A, which is composed of two bright bits and one dark bit. Since there are four arrangement methods of the bit string 1500, two bits can be expressed at the position of the bit string 1500. Note that 2 bits may be expressed at the position of a bit string having a bit pattern different from that of the bit string 1500.
 本実施の形態では、図15(b)に示すように、ビット列1500を左端の列に配置した単位符号ブロック1510で“00”を、ビット列1500を左から2番目の列に配置した単位符号ブロック1520で“01”を、ビット列1500を右から2番目の列に配置した単位符号ブロック1530で“10”を、ビット列1500を右端の列に配置した単位符号ブロック1540で“11”を表わすこととする。ただし、単位符号ブロック1510~1540と、表わされる情報との対応関係は、図15(b)で説明したものに限られるわけではない。なお、図15(b)では、分かりやすさのため、ビット列1500以外の領域は、暗ビットで示しているが、あとで説明するように、残りの領域にも記録対象の情報に応じて明ビットが割り当てられる。 In the present embodiment, as shown in FIG. 15B, “00” is stored in the unit code block 1510 in which the bit string 1500 is arranged in the leftmost column, and the unit code block in which the bit string 1500 is arranged in the second column from the left. “15” represents “01” in 1520, “10” in the unit code block 1530 in which the bit string 1500 is arranged in the second column from the right, and “11” in the unit code block 1540 in which the bit string 1500 is arranged in the rightmost column. To do. However, the correspondence between the unit code blocks 1510 to 1540 and the represented information is not limited to that described with reference to FIG. In FIG. 15B, for the sake of easy understanding, the area other than the bit string 1500 is shown as a dark bit. However, as will be described later, the remaining area is also brightened according to the information to be recorded. Bits are assigned.
 残りの6ビットは、単位符号ブロックのうちビット列1500を除いた3列で表わす。具体的には、残りの3列に、左から右に沿って、2ビットずつの情報を与えることで、6ビットを表わす。 The remaining 6 bits are represented by 3 columns excluding the bit sequence 1500 in the unit code block. Specifically, 6 bits are represented by giving information of 2 bits to the remaining 3 columns from left to right.
 残りの列のビットパターンの生成規則を図16を参照して説明する。図16は、第3の実施の形態に係る単位符号ブロックの生成規則における残りのビットの表現方法を説明するための図である。図16に示すように、“00”に対し、すべて暗ビットのビット列1610を、“01”に対し、1つの明ビットを上段に持つビット列1620を、“10”に対し、1つの明ビットを中段に持つビット列1630を、“11”に対し、1つの明ビットを下段に持つビット列1640を、それぞれ割り当てる。ただし、ビット列1610~1640への情報の割り当て方は、図16で説明したものに限られるわけではない。 The rules for generating the bit patterns of the remaining columns will be described with reference to FIG. FIG. 16 is a diagram for explaining a method of expressing the remaining bits in the unit code block generation rule according to the third embodiment. As shown in FIG. 16, a bit string 1610 of all dark bits for “00”, a bit string 1620 having one bright bit in the upper stage for “01”, and one bright bit for “10”. The bit string 1630 having the middle stage is assigned to the bit string 1640 having one bright bit in the lower stage with respect to “11”. However, the method of assigning information to the bit strings 1610 to 1640 is not limited to that described with reference to FIG.
 以下に、上述の生成規則により生成される単位符号ブロックの具体例を図17、図18を参照して説明する。 Hereinafter, specific examples of unit code blocks generated according to the above-described generation rules will be described with reference to FIGS.
 図17は、第3の実施の形態に係る単位符号ブロックの第1の例を示す図である。図17では、ビット列“01011110”を表わす単位符号ブロックを示している。ビット列の初めの2ビットが“01”であるので、左から2番目の列に、ビット列1500が割り当てられる。残りの3列には、残りの6ビットが2ビットずつ、左から右に沿って、順に、図16に示す規則に対応して割り当てられる。 FIG. 17 is a diagram illustrating a first example of a unit code block according to the third embodiment. FIG. 17 shows a unit code block representing the bit string “01011110”. Since the first two bits of the bit string are “01”, the bit string 1500 is assigned to the second column from the left. In the remaining three columns, the remaining 6 bits are assigned in units of 2 bits in order from the left to the right, corresponding to the rules shown in FIG.
 図18は、第3の実施の形態に係る単位符号ブロックの第2の例を示す図である。図18では、ビット列“10001010”を表わす単位符号ブロックを示している。ビット列の初めの2ビットが“10”であるので、右から2番目の列に、ビット列1500が割り当てられる。残りの3列には、残りの6ビットが2ビットずつ、左から右に沿って、順に、図16に示す規則に対応して割り当てられる。 FIG. 18 is a diagram illustrating a second example of the unit code block according to the third embodiment. FIG. 18 shows a unit code block representing the bit string “10001010”. Since the first two bits of the bit string are “10”, the bit string 1500 is assigned to the second column from the right. In the remaining three columns, the remaining 6 bits are assigned in units of 2 bits in order from the left to the right, corresponding to the rules shown in FIG.
 続いて、第3の実施の形態における冗長情報の生成規則について、図19を参照しつつ説明する。図19は、第3の実施の形態における冗長情報の生成規則について説明するための図である。 Subsequently, a redundant information generation rule in the third embodiment will be described with reference to FIG. FIG. 19 is a diagram for describing a redundant information generation rule according to the third embodiment.
 図19に示すように、冗長情報は、縦(列)、横(行)のそれぞれの方向について生成される。生成される冗長ビットの状態は、対応する列/行に含まれるビット数が最大であるかどうかによって決まる。本実施の形態では、列/行に含まれるビット数が最大である場合に、対応する冗長ビットを明状態とする。 As shown in FIG. 19, redundant information is generated in each of the vertical (column) and horizontal (row) directions. The state of the generated redundant bit depends on whether the number of bits included in the corresponding column / row is maximum. In the present embodiment, when the number of bits included in a column / row is the maximum, the corresponding redundant bit is set in a bright state.
 まず、列が2つの明ビットを含むとき、対応する列方向の冗長ビットを明ビットとし、それ以外の場合、列方向の冗長ビットを暗ビットとする。したがって、ビット列1500がある列の冗長ビットが明ビットとなる。 First, when a column includes two bright bits, the corresponding redundant bit in the column direction is a bright bit, otherwise, the redundant bit in the column direction is a dark bit. Therefore, a redundant bit in a column having the bit string 1500 is a bright bit.
 また、2つ以上の明ビットを含む行に対応する冗長ビットを明ビットとし、それ以外の場合、行方向の冗長ビットを暗ビットとする。2つ以上の明ビットを含む行は、次のとおり、最大数の明ビットを含んでいるといえるからである。 Also, a redundant bit corresponding to a row including two or more bright bits is a bright bit, and in other cases, a redundant bit in the row direction is a dark bit. This is because a row including two or more bright bits includes the maximum number of bright bits as follows.
 上述の単位符号ブロックの生成規則によれば、単位符号ブロックに含まれる明ビットの個数は、2個から5個である。明ビットが5個の場合、各行に含まれる明ビットの個数の組み合わせ(行の順番は問わない)は、(4,1,0)、(3,1,1)、(2,2,1)のいずれかである。明ビットが4個の場合、各行に含まれる明ビットの個数の組み合わせは(3,1,0)、(2,2,0)、(2,1,1)のいずれかである。明ビットが3個の場合、各行に含まれる明ビットの個数の組み合わせは(2,1,0)もしくは(1,1,1)のいずれかである。明ビットが2個の場合、各行に含まれる明ビットの個数の組み合わせは(1,1,0)のみである。したがって、2つ以上の明ビットを含む行は、どのような組み合わせであっても、全ての行の中で明ビット数が最大になっている。 According to the unit code block generation rule described above, the number of bright bits included in the unit code block is 2 to 5. When there are five bright bits, combinations of the number of bright bits included in each row (regardless of the order of the rows) are (4, 1, 0), (3, 1, 1), (2, 2, 1 ) When there are four bright bits, the combination of the number of bright bits included in each row is any one of (3, 1, 0), (2, 2, 0), and (2, 1, 1). When there are three bright bits, the combination of the number of bright bits included in each row is either (2, 1, 0) or (1, 1, 1). When there are two bright bits, the combination of the number of bright bits included in each row is only (1, 1, 0). Therefore, the number of bright bits is the largest among all the rows including any combination of two or more bright bits.
 よって、本実施の形態では、2つ以上の明ビットを含む行に対応する冗長ビットを明ビットとするという生成規則を定めればよい。 Therefore, in the present embodiment, a generation rule may be defined in which redundant bits corresponding to rows including two or more bright bits are used as bright bits.
 本実施の形態では、冗長情報生成部6outは、上述の生成規則にしたがって、単位符号ブロックに対応する冗長情報を生成する。 In the present embodiment, the redundant information generation unit 6out generates redundant information corresponding to the unit code block in accordance with the generation rule described above.
 [第4の実施の形態]
 第4の実施の形態では、第3の実施の形態に係る規則で生成された単位符号ブロックおよび冗長情報を再生するホログラム再生装置について説明する。
[Fourth Embodiment]
In the fourth embodiment, a hologram reproducing apparatus that reproduces unit code blocks and redundant information generated according to the rules according to the third embodiment will be described.
 第4の実施の形態に係るホログラム再生装置の構成は、第2の実施の形態で説明したものと同様である。ただし、冗長情報検出部6inによる単位符号ブロックの推定方法が、第2の実施の形態のものと異なる。また、符号化・復号化部5によるデータの復号化が、第3の実施の形態における符号化と対応するものになる点が、第2の実施の形態のものと異なる。 The configuration of the hologram reproducing apparatus according to the fourth embodiment is the same as that described in the second embodiment. However, the unit code block estimation method by the redundant information detector 6in is different from that of the second embodiment. Moreover, the point from which the decoding of the data by the encoding / decoding part 5 respond | corresponds with the encoding in 3rd Embodiment differs from the thing of 2nd Embodiment.
 第4の実施の形態に係るホログラム再生装置によるページデータの再生処理の流れも、第2の実施の形態で説明したものと同様である。ただし、冗長情報検出部6inが、行/列方向の冗長情報から、単位符号ブロック中に輝点(明ビット)がどのように分布しているかを推定する方法が異なる。 The flow of page data reproduction processing by the hologram reproduction apparatus according to the fourth embodiment is the same as that described in the second embodiment. However, the method by which the redundant information detection unit 6in estimates how bright spots (bright bits) are distributed in the unit code block from the redundant information in the row / column direction is different.
 明ビットの分布の推定方法について、図20から図23を参照しつつ、具体例を挙げて説明する。 A method for estimating the distribution of bright bits will be described with reference to FIGS. 20 to 23 with specific examples.
 第1の例を図20を参照して説明する。図20は、冗長情報の第1の例から、単位符号ブロックを推定する方法を推測する方法を説明するための図である。図20には、図19に示した単位符号ブロック1700と、単位符号ブロック1700に対応する行方向冗長情報1910および列方向冗長情報1920とを示している。また、図20には、エラーが生じやすい箇所を丸で示している。 A first example will be described with reference to FIG. FIG. 20 is a diagram for explaining a method of estimating a method of estimating a unit code block from the first example of redundant information. FIG. 20 shows unit code block 1700 shown in FIG. 19 and row direction redundant information 1910 and column direction redundant information 1920 corresponding to unit code block 1700. Further, in FIG. 20, portions where errors are likely to occur are indicated by circles.
 まず、冗長情報検出部6inは、列方向冗長情報1920から、初めの2ビットを表わすビット列の位置は左から2番目の列であると決定する。 First, the redundant information detector 6in determines from the column direction redundant information 1920 that the position of the bit string representing the first two bits is the second column from the left.
 一方、行方向冗長情報1910のうち、行Aに対応する冗長ビットと行Cに対応する冗長ビットとが明ビットであることから、行A,B,Cに含まれる明ビットの個数は、順に、(2,1,2)あるいは(2,0,2)のいずれかであったことが分かる。 On the other hand, in the row direction redundancy information 1910, the redundant bits corresponding to row A and the redundant bits corresponding to row C are bright bits, so the number of bright bits included in rows A, B, and C is , (2,1,2) or (2,0,2).
 従って、冗長情報検出部6inは、行Aおよび行Cに含まれる明ビットの個数は2個であると決定する。そして、行A、行Cのそれぞれにおいて、上位2つまでの輝度を有する画素を明ビットと推定する。 Therefore, the redundant information detection unit 6in determines that the number of bright bits included in the rows A and C is two. Then, in each of row A and row C, pixels having up to the top two luminances are estimated as bright bits.
 また、冗長情報検出部6inは、行Bに含まれる画素であり、かつ、対応する列方向の冗長ビットが明ビットでない列にある画素の中から、最大輝度を有する画素を抽出する。最大輝度を有する画素が明ビットであるか暗ビットであるかどうかは単位符号ブロックによるので、冗長情報検出部6inは、例えば、抽出した画素の輝度値と抽出した画素の周辺画素の輝度値との差分値が所定値以上であるときに、抽出した画素が明ビットであったと推定する。ただし、抽出した画素の状態の推定方法は、これに限られるわけではない。例えば、冗長情報検出部6inは、抽出した画素の輝度値が所定のしきい値を超える場合に、抽出した画素が明ビットであったと推定してもよい。 Also, the redundant information detection unit 6in extracts a pixel having the maximum luminance from the pixels that are included in the row B and in the column where the corresponding redundant bit in the column direction is not a bright bit. Whether the pixel having the maximum luminance is a bright bit or a dark bit depends on the unit code block. Therefore, the redundant information detection unit 6in determines, for example, the luminance value of the extracted pixel and the luminance value of the peripheral pixel of the extracted pixel. When the difference value is equal to or greater than a predetermined value, it is estimated that the extracted pixel is a bright bit. However, the estimation method of the state of the extracted pixel is not limited to this. For example, the redundant information detection unit 6in may estimate that the extracted pixel is a bright bit when the luminance value of the extracted pixel exceeds a predetermined threshold value.
 この推定方法によれば、丸で示した画素2002の輝度値が行Aや行Cの明ビットに対応する画素の輝度値を超えた場合にも、本来の単位符号ブロックを正しく推定できる。 According to this estimation method, even when the luminance value of the pixel 2002 indicated by a circle exceeds the luminance value of the pixel corresponding to the bright bit of row A or row C, the original unit code block can be correctly estimated.
 第2の例を図21を参照して説明する。図21は、冗長情報の第2の例から、単位符号ブロックを推定する方法を推測する方法を説明するための図である。図21には、単位符号ブロック2100と、単位符号ブロック2100に対応する行方向冗長情報2110および列方向冗長情報2120とを示している。 A second example will be described with reference to FIG. FIG. 21 is a diagram for explaining a method of estimating a method of estimating a unit code block from the second example of redundant information. FIG. 21 shows unit code block 2100 and row direction redundant information 2110 and column direction redundant information 2120 corresponding to unit code block 2100.
 まず、冗長情報検出部6inは、列方向冗長情報2120から、初めの2ビットを表わすビット列の位置は右から2番目の列であると決定する。 First, the redundant information detector 6in determines from the column direction redundant information 2120 that the position of the bit string representing the first two bits is the second column from the right.
 一方、行方向冗長情報2110のうち、行Bに対応する冗長ビットが明ビットであることから、行A,B,Cに含まれる明ビットの個数は、順に、(1,3,1)あるいは(1,2,1)のいずれかであったことが分かる。 On the other hand, in the row direction redundant information 2110, the redundant bit corresponding to row B is a bright bit, so the number of bright bits included in rows A, B, and C is (1, 3, 1) or It can be seen that it was either (1, 2, 1).
 従って、冗長情報検出部6inは、行Aおよび行Cに含まれる明ビットは、対応する列方向の冗長ビットが明ビットである右から2番目の列の1個であると決定する。 Therefore, the redundant information detection unit 6in determines that the bright bit included in the row A and the row C is one in the second column from the right in which the corresponding redundant bit in the column direction is the bright bit.
 また、冗長情報検出部6inは、行Bに含まれる画素であり、かつ、対応する列方向の冗長ビットが明ビットでない列にある画素の中から、上位2つまでの輝度を有する画素を明ビットと推定する。残りの1つの画素(ここでは、輝度の順番が入れ替わるほどのエラーは生じないとして、画素2104であるとする)が、明ビットであるか暗ビットであるかどうかは単位符号ブロックによるので、冗長情報検出部6inは、例えば、残りの画素の輝度値と残りの画素の上下の画素の輝度値との差分値が所定値以上であるときに、残りの画素が明ビットであったと推定する。ただし、残りの画素の状態の推定方法は、これに限られるわけではない。例えば、冗長情報検出部6inは、残りの画素の輝度値が所定のしきい値を超える場合に、抽出した画素が明ビットであったと推定してもよい。 Further, the redundant information detection unit 6in brightens pixels having luminances up to the top two from the pixels included in the row B and the corresponding redundant bits in the column direction are in the columns that are not bright bits. Estimated bit. Since whether or not the remaining one pixel (here, pixel 2104 is an error that does not cause an error that changes the order of luminance) is a bright bit or a dark bit depends on the unit code block, it is redundant. For example, when the difference value between the luminance value of the remaining pixel and the luminance value of the upper and lower pixels of the remaining pixel is equal to or greater than a predetermined value, the information detection unit 6in estimates that the remaining pixel is a bright bit. However, the remaining pixel state estimation method is not limited to this. For example, the redundant information detection unit 6in may estimate that the extracted pixel is a bright bit when the luminance value of the remaining pixel exceeds a predetermined threshold value.
 この推定方法によれば、丸で示した画素2102の輝度値が、行Aや行Cの明ビットに対応する画素の輝度値を超えた場合にも、本来の単位符号ブロックを正しく推定できる。 According to this estimation method, even when the luminance value of the pixel 2102 indicated by a circle exceeds the luminance value of the pixel corresponding to the bright bit in row A or row C, the original unit code block can be correctly estimated.
 第3の例を図22を参照して説明する。図22は、冗長情報の第3の例から、単位符号ブロックを推定する方法を推測する方法を説明するための図である。図22には、単位符号ブロック2200と、単位符号ブロック2200に対応する行方向冗長情報2210および列方向冗長情報2220とを示している。 A third example will be described with reference to FIG. FIG. 22 is a diagram for explaining a method of estimating a method of estimating a unit code block from the third example of redundant information. FIG. 22 shows unit code block 2200 and row direction redundant information 2210 and column direction redundant information 2220 corresponding to unit code block 2200.
 行方向冗長情報2210および列方向冗長情報2220は、それぞれ、図21に示した行方向冗長情報2110および列方向冗長情報2120と同じである。したがって、単位符号ブロックの推測方法は、第2の例と同様である。冗長情報検出部6inが、画素2204を明ビットと判断したならば、冗長情報検出部6inによる単位符号ブロック2200の推測結果は正しい。 The row direction redundant information 2210 and the column direction redundant information 2220 are the same as the row direction redundant information 2110 and the column direction redundant information 2120 shown in FIG. 21, respectively. Therefore, the unit code block estimation method is the same as in the second example. If the redundant information detection unit 6in determines that the pixel 2204 is a bright bit, the estimation result of the unit code block 2200 by the redundant information detection unit 6in is correct.
 第4の例を図23を参照して説明する。図23は、冗長情報の第4の例から、単位符号ブロックを推定する方法を推測する方法を説明するための図である。図23には、単位符号ブロック2300と、単位符号ブロック2300に対応する行方向冗長情報2310および列方向冗長情報2320とを示している。また、図23には、エラーが生じやすい画素2302,2304も丸で示している。 A fourth example will be described with reference to FIG. FIG. 23 is a diagram for explaining a method of estimating a method of estimating a unit code block from the fourth example of redundant information. FIG. 23 shows unit code block 2300 and row direction redundant information 2310 and column direction redundant information 2320 corresponding to unit code block 2300. In FIG. 23, pixels 2302 and 2304 that are prone to errors are also indicated by circles.
 まず、冗長情報検出部6inは、列方向冗長情報2120から、初めの2ビットを表わすビット列の位置は右から2番目の列であると決定する。 First, the redundant information detector 6in determines from the column direction redundant information 2120 that the position of the bit string representing the first two bits is the second column from the right.
 一方、行方向冗長情報2110のうち、行Aに対応する冗長ビットおよび行Bに対応する冗長ビットが明ビットであることから、行A,B,Cに含まれる明ビットの個数は、順に、(2,2,1)であったことが分かる。 On the other hand, in the row direction redundant information 2110, the redundant bits corresponding to the row A and the redundant bits corresponding to the row B are bright bits, and therefore the number of bright bits included in the rows A, B, and C is as follows: It can be seen that it was (2, 2, 1).
 従って、冗長情報検出部6inは、行Cに含まれる明ビットは、対応する列方向の冗長ビットが明ビットである右から2番目の列の1個であると決定する。 Therefore, the redundant information detection unit 6in determines that the bright bit included in the row C is one in the second column from the right in which the corresponding redundant bit in the column direction is the bright bit.
 また、冗長情報検出部6inは、行Aおよび行Bの画素の輝度の順位付けを行ない、上位4位までの画素を明ビットと推定する。なお、本実施の形態に係る単位符号ブロックの生成規則では、上下に明ビットが隣接することはない。冗長情報検出部6inは、このことに基づいて、明ビットの分布を推定する。つまり、同じ列に、上位4位までの輝度値を持つ画素が2つ並ぶ場合、輝度値の低いほうの画素は、周囲の影響を受けて輝度値が上がった画素であり、明ビットではないとみなす。 Also, the redundant information detection unit 6in ranks the luminances of the pixels in the row A and the row B, and estimates the pixels up to the top four as bright bits. In the unit code block generation rule according to the present embodiment, bright bits are not adjacent to each other vertically. Based on this, the redundant information detector 6in estimates the distribution of bright bits. In other words, when two pixels having the highest four luminance values are arranged in the same column, the pixel with the lower luminance value is a pixel whose luminance value has increased due to the influence of the surroundings and is not a bright bit. It is considered.
 以上のように、冗長情報検出部6inは、単位符号ブロックの生成規則に基づいて、冗長情報から本来の単位符号ブロックを推測する。したがって、情報の生成にあたって、誤りビットの影響を低減することができる。 As described above, the redundant information detector 6in estimates the original unit code block from the redundant information based on the unit code block generation rule. Therefore, the influence of error bits can be reduced when generating information.
 [その他]
 以上、本発明を上記実施形態に基づき具体的に説明したが、本発明は、上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲において種々変更可能であることは勿論である。
[Others]
Although the present invention has been specifically described above based on the above embodiment, the present invention is not limited to the above embodiment, and it is needless to say that various changes can be made without departing from the scope of the invention.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1101 歪が生じない場合の空間光変調器の画素配列、1102 歪が生じた場合の空間光変調器の画素配列、1001 誤り訂正装置、1002 記録媒体、1003 記録再生回路、1004 外部機器、1011 データ入出力部、1012 符号化部、1013 誤り訂正部、1014 制御部、1015 バッファメモリ、1 ホログラム記録再生装置、2 記録媒体、3 情報生成部、4 外部機器、5 符号化・復号化部、6 誤り訂正部、7 データ分割・結合部、8 ページ生成部、9 データ切り出し部、10 バッファメモリ、11 制御部、12 記録再生部、20 レーザ、21 レーザコントローラ、22 第1のレンズ、23 1/4波長板、24 回転機構、25 第2のレンズ、26 第3のレンズ、27 偏光ビームスプリッタ、28 撮像素子、40 単位符号ブロック、41 行方向の冗長情報、42 列方向の冗長情報、50(a)~50(c) 単位符号ブロック、501(a)~501(c) 行方向の冗長情報、502(a)~502(c) 列方向の冗長情報、60 ページデータ。 1101 Pixel array of spatial light modulator when distortion does not occur, 1102 Pixel array of spatial light modulator when distortion occurs, 1001 error correction device, 1002 recording medium, 1003 recording / reproducing circuit, 1004 external device, 1011 data Input / output unit, 1012, encoding unit, 1013 error correction unit, 1014 control unit, 1015 buffer memory, 1 hologram recording / reproducing device, 2 recording medium, 3 information generation unit, 4 external device, 5 encoding / decoding unit, 6 Error correction unit, 7 data division / combination unit, 8 page generation unit, 9 data cutout unit, 10 buffer memory, 11 control unit, 12 recording / playback unit, 20 laser, 21 laser controller, 22 1st lens, 23 1 / 4 wavelength plate, 24 rotation mechanism, 25 second lens, 26 third lens 27 polarization beam splitter, 28 image sensor, 40 unit code block, 41 redundant information in row direction, 42 redundant information in column direction, 50 (a) -50 (c) unit code block, 501 (a) -501 (c) Redundant information in the row direction, 502 (a) to 502 (c) Redundant information in the column direction, 60 page data.

Claims (20)

  1.  ホログラム記録装置(1)であって、
     レーザ光を出射するレーザ(20)と、
     前記レーザ光を変調する空間光変調器(29)と、
     ホログラム記録媒体(2)に記録される情報をm行×n列の複数のビットのビットパターンで符号化した符号ブロックを生成する符号化部(5)と、
     前記符号ブロックの各行/列における第1の状態のビットの数に応じた冗長情報を生成する冗長情報生成部(6out)と、
     前記空間光変調器に、前記冗長情報を囲んで前記符号ブロックが配置されるように前記レーザ光を変調させる制御装置(11)とを備える、ホログラム記録装置(1)。
    A hologram recording device (1) comprising:
    A laser (20) for emitting laser light;
    A spatial light modulator (29) for modulating the laser light;
    An encoding unit (5) for generating a code block obtained by encoding information recorded on the hologram recording medium (2) with a bit pattern of a plurality of bits of m rows × n columns;
    A redundant information generator (6out) that generates redundant information according to the number of bits in the first state in each row / column of the code block;
    A hologram recording apparatus (1), comprising: a controller (11) that modulates the laser light so that the code block is arranged so as to surround the redundant information in the spatial light modulator.
  2.  前記制御装置(11)は、前記空間光変調器(29)に、前記空間光変調器(29)によって変調された前記レーザ光をホログラム記録媒体(2)に集光する光学素子の光軸近傍領域に前記冗長情報を配置し、前記光学素子の周辺領域に前記符号ブロックが配置されるように前記レーザ光を変調させる、請求の範囲第1項に記載のホログラム記録装置(1)。 The control device (11) is arranged near the optical axis of the optical element that focuses the laser light modulated by the spatial light modulator (29) on the hologram recording medium (2). The hologram recording apparatus (1) according to claim 1, wherein the redundant information is arranged in a region, and the laser beam is modulated so that the code block is arranged in a peripheral region of the optical element.
  3.  前記冗長情報は、各々が各前記行/列における前記第1の状態のビットの数に対応する冗長ビットからなる、請求の範囲第1項に記載のホログラム記録装置(1)。 The hologram recording apparatus (1) according to claim 1, wherein the redundant information is made up of redundant bits each corresponding to the number of bits in the first state in each row / column.
  4.  前記冗長ビットは、前記行/列における前記第1の状態のビットの数が、全ての前記行/列における前記第1の状態のビットの数の中で最大であるかどうかを表わす、請求の範囲第3項に記載のホログラム記録装置(1)。 The redundant bit represents whether the number of bits in the first state in the row / column is the largest among the number of bits in the first state in all the rows / columns. The hologram recording device (1) according to claim 3 in the range.
  5.  前記冗長情報生成部(6out)は、前記行/列における前記第1の状態のビットの数が、全ての前記行/列における前記第1の状態のビットの数の中で最大である前記行/列に対応する前記冗長ビットを、明状態とする、請求の範囲第4項に記載のホログラム記録装置(1)。 The redundant information generation unit (6out) is configured so that the number of bits in the first state in the row / column is the maximum among the number of bits in the first state in all the rows / columns. The hologram recording apparatus (1) according to claim 4, wherein the redundant bit corresponding to the / column is in a bright state.
  6.  ホログラム記録方法であって、
     ホログラム記録媒体に記録される情報に対応するm行×n列のビットパターンで配置された複数のビットからなる符号ブロックを生成するステップ(S1,S2)と、
     前記符号ブロックの各行/列における第1の状態のビットの数に応じた冗長情報を生成するステップ(S3,S4)と、
     レーザから出射されたレーザ光を、空間光変調器によって、前記冗長情報を囲んで前記符号ブロックが配置されるように変調するステップ(S7)とを備える、ホログラム記録方法。
    A hologram recording method comprising:
    Generating a code block composed of a plurality of bits arranged in a bit pattern of m rows × n columns corresponding to information recorded on the hologram recording medium (S1, S2);
    Generating redundant information according to the number of bits in the first state in each row / column of the code block (S3, S4);
    A hologram recording method comprising: (S7) modulating a laser beam emitted from a laser by a spatial light modulator so that the code block is arranged so as to surround the redundant information.
  7.  前記レーザ光を変調させるステップにおいて、変調されたレーザ光をホログラム記録媒体に集光する光学素子の光軸近傍の領域に前記冗長情報が配置され、かつ、前記光学素子の周辺の領域に前記符号ブロックが配置されるように前記レーザ光を変調する、請求の範囲第6項に記載のホログラム記録方法。 In the step of modulating the laser beam, the redundant information is arranged in a region near the optical axis of the optical element that focuses the modulated laser beam on a hologram recording medium, and the code is written in a region around the optical element. The hologram recording method according to claim 6, wherein the laser beam is modulated so that blocks are arranged.
  8.  前記冗長情報は、各々が各前記行/列における前記第1の状態のビットの数に対応する冗長ビットからなる、請求の範囲第6項に記載のホログラム記録方法。 The hologram recording method according to claim 6, wherein the redundant information is made up of redundant bits each corresponding to the number of bits in the first state in each row / column.
  9.  前記冗長ビットは、前記行/列における前記第1の状態のビットの数が、全ての前記行/列における前記第1の状態のビットの数の中で最大であるかどうかを表わす、請求の範囲第8項に記載のホログラム記録方法。 The redundant bit represents whether the number of bits in the first state in the row / column is the largest among the number of bits in the first state in all the rows / columns. 9. The hologram recording method according to item 8 in the range.
  10.  前記冗長情報を生成するステップにおいて、前記行/列における前記第1の状態のビットの数が、全ての前記行/列における前記第1の状態のビットの数の中で最大である前記
    行/列に対応する前記冗長ビットを、明状態とする、請求の範囲第9項に記載のホログラム記録方法。
    In the step of generating redundant information, the number of the first state bits in the row / column is the largest of the number of the first state bits in all the rows / columns. The hologram recording method according to claim 9, wherein the redundant bits corresponding to columns are in a bright state.
  11.  ホログラム再生装置(1)であって、
     ホログラム記録媒体(2)にレーザ光を照射し、前記レーザ光を照射された前記ホログラム記録媒体(2)からの再生像を検出する再生部(12)と、
     前記再生像から、m行×n列の複数のビットからなる符号ブロックが記録されている第1の領域と、前記符号ブロックの各行/列における第1の状態のビットの数に応じた冗長情報が記録されている第2の領域とを切り出す切り出し部(9)と、
     前記第1の領域における前記符号ブロックの検出結果と、前記第2の領域における前記冗長情報の検出結果と、前記符号ブロックの生成規則と、前記冗長情報の生成規則とに基づいて、前記符号ブロックを推測するエラー訂正部(6)と、
     推測された前記符号ブロックを復号化する復号化部(5)とを備える、ホログラム再生装置(1)。
    A hologram reproducing device (1),
    A reproducing unit (12) for irradiating the hologram recording medium (2) with a laser beam and detecting a reproduction image from the hologram recording medium (2) irradiated with the laser beam;
    Redundant information corresponding to a first area in which a code block consisting of a plurality of bits of m rows × n columns is recorded from the reproduced image and the number of bits in the first state in each row / column of the code block A cutout unit (9) for cutting out the second area in which is recorded,
    The code block based on the detection result of the code block in the first region, the detection result of the redundant information in the second region, the generation rule of the code block, and the generation rule of the redundancy information An error correction unit (6) for estimating
    A hologram reproducing device (1) comprising: a decoding unit (5) for decoding the estimated code block.
  12.  前記第1の領域は、前記再生像の中心付近の領域であり、前記第2の領域は、前記再生像の周辺の領域である、請求の範囲第11項に記載のホログラム再生装置(1)。 The hologram reproducing device (1) according to claim 11, wherein the first area is an area near the center of the reproduced image, and the second area is an area around the reproduced image. .
  13.  前記冗長情報は、各々が各前記行/列における前記第1の状態のビットの数に対応する冗長ビットからなる、請求の範囲第11項に記載のホログラム再生装置(1)。 12. The hologram reproducing device (1) according to claim 11, wherein the redundant information is made up of redundant bits each corresponding to the number of bits in the first state in each row / column.
  14.  前記冗長ビットは、前記行/列における前記第1の状態のビットの数が、全ての前記行/列における前記第1の状態のビットの数の中で最大であるかどうかを表わす、請求の範囲第13項に記載のホログラム再生装置(1)。 The redundant bit represents whether the number of bits in the first state in the row / column is the largest among the number of bits in the first state in all the rows / columns. The hologram reproducing device (1) according to the range item 13.
  15.  前記行/列における前記第1の状態のビットの数が、全ての前記行/列における前記第1の状態のビットの数の中で最大である前記行/列に対応する前記冗長ビットは明状態である、請求の範囲第14項に記載のホログラム再生装置(1)。 The redundant bit corresponding to the row / column in which the number of bits in the first state in the row / column is the largest among the number of bits in the first state in all the rows / columns is clear The hologram reproducing device (1) according to claim 14, which is in a state.
  16.  ホログラム再生方法であって、
     ホログラム記録媒体にレーザ光を照射し、前記レーザ光を照射された前記ホログラム記録媒体からの再生像を検出するステップ(S82)と、
     前記再生像から、m行×n列の複数のビットからなる符号ブロックが記録されている第1の領域と、前記符号ブロックの各行/列における第1の状態のビットの数に応じた冗長情報が記録されている第2の領域とを切り出すステップ(S83)と、
     前記第1の領域における前記符号ブロックの検出結果と、前記第2の領域における前記冗長情報の検出結果と、前記符号ブロックの生成規則と、前記冗長情報の生成規則とに基づいて、前記符号ブロックを推測するステップ(S86)と、
     前記符号ブロックの推測結果を復号化するステップ(S86)とを備える、ホログラム再生方法。
    A hologram reproduction method comprising:
    Irradiating the hologram recording medium with laser light, and detecting a reproduction image from the hologram recording medium irradiated with the laser light (S82);
    Redundant information corresponding to a first area in which a code block consisting of a plurality of bits of m rows × n columns is recorded from the reproduced image and the number of bits in the first state in each row / column of the code block Cutting out the second area in which is recorded (S83);
    The code block based on the detection result of the code block in the first region, the detection result of the redundant information in the second region, the generation rule of the code block, and the generation rule of the redundancy information Guessing step (S86),
    And a step (S86) of decoding the estimation result of the code block.
  17.  前記第1の領域は、前記再生像の中心付近の領域であり、前記第2の領域は、前記再生像の周辺の領域である、請求の範囲第16項に記載のホログラム再生方法。 17. The hologram reproducing method according to claim 16, wherein the first area is an area near the center of the reproduced image, and the second area is an area around the reproduced image.
  18.  前記冗長情報は、各々が各前記行/列における前記第1の状態のビットの数に対応する冗長ビットからなる、請求の範囲第16項に記載のホログラム再生方法。 The hologram reproduction method according to claim 16, wherein the redundant information is made up of redundant bits each corresponding to the number of bits in the first state in each row / column.
  19.  前記冗長ビットは、前記行/列における前記第1の状態のビットの数が、全ての前記行/列における前記第1の状態のビットの数の中で最大であるかどうかを表わす、請求の範囲第18項に記載のホログラム再生方法。 The redundant bit represents whether the number of bits in the first state in the row / column is the largest among the number of bits in the first state in all the rows / columns. The hologram reproducing method according to item 18 in the range.
  20.  前記行/列における前記第1の状態のビットの数が、全ての前記行/列における前記第
    1の状態のビットの数の中で最大である前記行/列に対応する前記冗長ビットは明状態である、請求の範囲第19項に記載のホログラム再生方法。
    The redundant bit corresponding to the row / column in which the number of bits in the first state in the row / column is the largest among the number of bits in the first state in all the rows / columns is clear The hologram reproducing method according to claim 19, wherein the hologram reproducing state is in a state.
PCT/JP2009/059409 2008-05-23 2009-05-22 Hologram recording device, hologram recording method, hologram reproducing device and hologram reproducing method WO2009142287A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-135769 2008-05-23
JP2008135769A JP4420961B2 (en) 2008-05-23 2008-05-23 Hologram recording apparatus, hologram recording method, hologram reproducing apparatus and hologram reproducing method

Publications (1)

Publication Number Publication Date
WO2009142287A1 true WO2009142287A1 (en) 2009-11-26

Family

ID=41340214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/059409 WO2009142287A1 (en) 2008-05-23 2009-05-22 Hologram recording device, hologram recording method, hologram reproducing device and hologram reproducing method

Country Status (2)

Country Link
JP (1) JP4420961B2 (en)
WO (1) WO2009142287A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005031560A (en) * 2003-07-11 2005-02-03 Sony Corp Hologram recording device, hologram recording method, hologram recording medium and program
JP2006260619A (en) * 2005-03-15 2006-09-28 Matsushita Electric Ind Co Ltd Device and method for correcting error, and digital data recording/reproducing device
JP2006294110A (en) * 2005-04-08 2006-10-26 Matsushita Electric Ind Co Ltd Error detection and correction method
JP2007299499A (en) * 2006-05-08 2007-11-15 Matsushita Electric Ind Co Ltd Device and method for recording/reproducing hologram

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005031560A (en) * 2003-07-11 2005-02-03 Sony Corp Hologram recording device, hologram recording method, hologram recording medium and program
JP2006260619A (en) * 2005-03-15 2006-09-28 Matsushita Electric Ind Co Ltd Device and method for correcting error, and digital data recording/reproducing device
JP2006294110A (en) * 2005-04-08 2006-10-26 Matsushita Electric Ind Co Ltd Error detection and correction method
JP2007299499A (en) * 2006-05-08 2007-11-15 Matsushita Electric Ind Co Ltd Device and method for recording/reproducing hologram

Also Published As

Publication number Publication date
JP4420961B2 (en) 2010-02-24
JP2009283089A (en) 2009-12-03

Similar Documents

Publication Publication Date Title
EP1734516B1 (en) 2-dimensional modulation method for recording hologram and hologram device
JP4442162B2 (en) Holographic recording and playback system
CN101432807B (en) Apparatus and method of recording/reproducing hologram and hologram recording medium
JP4389584B2 (en) Holographic memory reproducing method and holographic memory reproducing apparatus
JP4741000B2 (en) Two-dimensional demodulation method, two-dimensional demodulation device and hologram device
JP4181616B2 (en) Hologram recording apparatus, hologram reproducing apparatus, information encoding method, recording method, and information reproducing method
JP2005221932A (en) Method for recording and reproducing hologram, hologram recording and reproducing apparatus, and hologram recording medium
JP5230651B2 (en) Data recording / reproducing method and recording / reproducing apparatus for / from holographic recording medium
JP3892970B2 (en) Viterbi detection device, optical information reproducing device, and optical information recording / reproducing device
JP4420961B2 (en) Hologram recording apparatus, hologram recording method, hologram reproducing apparatus and hologram reproducing method
JP4664354B2 (en) Marker selection method, marker selection device, marker, hologram recording device and method, hologram reproducing device and method, and computer program
JP2006236536A (en) Hologram recording and reproducing device
JP2008217990A (en) Hologram recording apparatus, hologram playback apparatus, information encoding method, method of recording, and information playback method
KR101422006B1 (en) Method of encoding/decoding data, method of detecting data, and method of recording/reproducing data
JP2007101811A (en) Recording and reproducing apparatus having function of correcting fixed distortion
US20080239425A1 (en) Hologram Recording Apparatus and Method, Hologram Reproducing Apparatus and Method, and Computer Program
US20080165653A1 (en) Method and apparatus for recording and/or reproducing data on and/or from holographic storage medium
US20100008201A1 (en) Demodulation method and apparatus
JP2005141879A (en) Hologram reproducing device, hologram reproducing method and hologram recording medium
JP2009140606A (en) Hologram memory reproduction system and method for reproducing hologram memory
US8000204B2 (en) Data processing method for a holographic data storage system
JP2008140485A (en) Hologram recording/reproducing device and reproducing method for hologram recording medium
KR101632207B1 (en) Holograpic data signal detection method, appratus and data decoding apparatus
US8135219B2 (en) Method of detecting and compensating fail pixel in hologram optical storage system
JP2006179079A (en) Hologram device and its encoding/decoding method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09750649

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09750649

Country of ref document: EP

Kind code of ref document: A1