WO2009142211A1 - Method of diagnosing roll - Google Patents

Method of diagnosing roll Download PDF

Info

Publication number
WO2009142211A1
WO2009142211A1 PCT/JP2009/059216 JP2009059216W WO2009142211A1 WO 2009142211 A1 WO2009142211 A1 WO 2009142211A1 JP 2009059216 W JP2009059216 W JP 2009059216W WO 2009142211 A1 WO2009142211 A1 WO 2009142211A1
Authority
WO
WIPO (PCT)
Prior art keywords
roll
sensor
time
pair
interval
Prior art date
Application number
PCT/JP2009/059216
Other languages
French (fr)
Japanese (ja)
Inventor
保雄 丸木
潤哉 岩崎
悟 山條
孝幸 矢野
隆 西原
孝之 白神
Original Assignee
新日本製鐵株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日本製鐵株式会社 filed Critical 新日本製鐵株式会社
Priority to BRPI0912766A priority Critical patent/BRPI0912766A2/en
Priority to KR1020107025824A priority patent/KR101332950B1/en
Priority to CN2009801178511A priority patent/CN102036770B/en
Publication of WO2009142211A1 publication Critical patent/WO2009142211A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/20Controlling or regulating processes or operations for removing cast stock

Definitions

  • the present invention relates to a roll diagnosis method for knowing in advance the roll replacement time in a continuous casting machine.
  • the continuous casting machine is provided with a plurality of roll pairs (guide rolls) arranged along the slab passage.
  • the slab passes through the slab passage while being guided by these roll pairs.
  • ⁇ Factors affecting roll spacing include roll bearing anomalies, roll wear, and roll bending. Among these factors, the abnormality of the roll bearing has a great influence on the gap between the rolls. Therefore, in the technique described in Patent Document 2 below, the measurement for one roll is performed at a plurality of locations, and the measurement is performed once. Using the obtained measurement data at a plurality of locations, the presence or absence of breakage of the roll bearing is detected.
  • the rolls of this roll pair are inspected, and if there are any abnormalities in the roll bearings, the rolls are replaced at that time.
  • the value of the roll interval is less than the allowable value, an abnormality occurs in the roll bearing or the like during continuous casting, and as a result, flaws are produced in the manufactured slab.
  • There is an abnormality and it may be found that the roll bearing or the like is hindered. In this case, there is a problem that defective slabs are manufactured in large quantities. Therefore, it is desired to estimate the roll replacement life by estimating the life of the roll bearing.
  • Patent Document 1 discloses an apparatus for measuring the interval between roll pairs, but the point of estimating the roll replacement time by estimating the life of the roll bearing, We do not disclose anything. Moreover, in the said patent document 2, although the detection precision of the presence or absence of breakage of a roll bearing increased by judging using the measurement data in several places obtained by one measurement, a failure time is predicted beforehand. It was not reached.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a roll diagnosis method capable of solving the above-described problem by predicting in advance the breakage time of a roll mainly caused by a roll bearing. .
  • the present invention employs the following means in order to solve the above problems and achieve the object. That is, (1)
  • the roll diagnosis method of the present invention is a method of diagnosing a pair of rolls that are opposed to each other with a slab passage of a continuous casting machine interposed therebetween, and the roll when a dummy bar passes through the slab passage. Obtaining a measurement result by measuring a pair interval several times over time; obtaining a time series tendency of a difference value between the measurement result and a reference value; and based on the time series tendency, the difference Predicting a time when the value is equal to or greater than a predetermined value, and determining the time as a time when the roll pair is broken.
  • the roll bearing supporting the roll gradually wears and deteriorates, and accordingly, the roll interval gradually deviates from the reference value. Moreover, it has been found that the difference value between the measured value and the reference value tends to increase in proportion to time, and this difference value suddenly increases from a certain point on the time axis and breaks.
  • the present invention has been made on the basis of such knowledge, first, the interval between the opposed roll pairs is measured a plurality of times over time, and data relating to the roll interval for each roll pair is time-series. To collect.
  • the time series tendency of the difference value between the measurement result and the reference value is examined, and based on this time series tendency, a time when the difference value is equal to or greater than a predetermined value is predicted, and this time is determined as a roll breakage. Judging that it is time. Therefore, it is possible to know when the roll is replaced before the roll bearing is damaged.
  • the predetermined value for example, when the roll bearing is actually damaged, the interval value of the roll pair having the roll bearing is measured in advance, and the difference value between the interval value and the reference value at this time is adopted. May be. In this case, there are a plurality of roll pairs that are opposed to each other with the slab passage of the continuous casting machine in between, and the load varies depending on the installation location. Is different. Therefore, it is preferable to determine the predetermined value for each pair of rolls.
  • the roll diagnosis method according to (1) may further include a step of notifying a warning when the difference value reaches or exceeds a first reference value smaller than the predetermined value.
  • the warning notification mentioned here include display such as lighting of a lamp to notify through vision, and sounding of a buzzer to notify through hearing. As a result, for example, a warning is given before the roll bearing supporting the roll is damaged, so that the roll bearing can be replaced more reliably.
  • the roll diagnosis method according to (1) may further include a step of measuring a tilt of the roll pair.
  • the tilt of the roll can also be detected at the same time.
  • the inclination of the roll here refers to the inclination of the slab passage formed by the surfaces of the rolls arranged side by side, specifically, the predetermined position of each roll forming the predetermined slab passage. It is represented by the amount of misalignment (misalignment amount).
  • the method may further include a step of notifying a warning when the inclination reaches the second reference value or more.
  • the method may further include a step of detecting rotation and non-rotation of the roll pair.
  • the rotation / non-rotation of the roll pair can be detected simultaneously.
  • a step of notifying a warning when non-rotation of the roll pair is detected may be further provided.
  • the present invention it is possible to predict in advance the roll breakage mainly due to the roll bearing, and it is possible to replace the roll before breakage.
  • 49 roll pair it is a graph showing the difference value between the roll pair interval and the reference value with the increase in the number of charges, the horizontal axis is the number of online charges, the vertical axis is the roll pair interval and the reference value Indicates the difference value. It is a graph which shows the measurement result about the inclination of a roll in No. 29 to No. 34 roll pairs, the horizontal axis shows the roll pair number, and the vertical axis shows the misalignment amount. It is the graph which displayed the signal from the roll inversion sensor for every cast by a rotation rate about a specific roll, a horizontal axis shows a cast number and a vertical axis shows a rotation rate.
  • FIG. 1 is a side view schematically showing a dummy bar 1 equipped with a roll interval measuring device for performing the roll diagnosis method of the present embodiment.
  • the dummy bar 1 has a large number of link members 1 a and shafts 1 b, and a slab formed between a plurality of rolls 4 and 5 by leading a molten steel 3 cast from a tundish (not shown) through a mold 2. Move through the aisle.
  • FIG. 2 shows the bottom surface of the dummy bar 1 on which the roll interval measuring device is mounted.
  • sensor units 7a, 7b, and 7c are provided at both ends in the width direction and the center of the sensor link 6 of the dummy bar 1, respectively.
  • Each of these sensor units 7a, 7b, 7c is provided with one roll interval measuring device S.
  • the sensor units 7a and 7b at both ends are further provided with a roll alignment sensor Q for measuring the inclination of the rolls 4 and 5, and a roll inversion sensor R for detecting the rotation / non-rotation of the roll.
  • the roll interval measuring device S has sensor devices 10 and 20 for measuring the interval between the roll pairs 4 and 5 facing the top and bottom surfaces thereof.
  • the sensor device 10 on the upper surface side is for measuring the displacement of the roll 4 on the movable surface side
  • the sensor device 20 provided on the bottom surface side is for measuring the displacement of the roll 5 on the fixed surface side. .
  • the distance between the rolls 4 and 5 is measured based on the measurement result of the displacement measured by both the sensor devices 10 and 20.
  • the sensor device 10 is fixed to both the sensor head 11 in contact with the roll 4; the main body of the sensor unit 7 a and the connecting member 30, and has a cylindrical shape that houses the sensor head 11. And a sensor housing 12.
  • the sensor head 11 includes a cylindrical main body portion 11a; a head portion 11b having a conical shape on the upper portion of the main body portion 11a and having a shape in which the top portion is convexly curved toward the roll 4; have.
  • a spring 13 is arranged along the vertical direction of the paper surface between the locking portion 11c formed inside the sensor head 11 and the connecting portion 30, and the sensor head 11 is located above the paper surface relative to the sensor housing 12, that is, It is urging toward the roll 4.
  • a flange portion 11 d is formed at the lower end of the sensor head 11. Since the flange portion 11 d is locked to the locking portion 12 a of the sensor housing 12, the sensor head 11 does not come out of the sensor housing 12.
  • a detection rod 14 is provided at the center of the sensor head 11.
  • the upper end of the detection rod 14 is in contact with the lower surface of the head portion 11b, and the detection rod 14 also moves up and down as the head portion 11b moves up and down, and this movement is transmitted to the displacement meter 15 so as to be detected. It has become.
  • annular step part 11e is formed.
  • the width dimension d (see FIG. 5) of the step portion 11e is set to 0.5 mm.
  • the sensor device 20 that measures the amount of displacement with respect to the reference position on the roll 5 side also has substantially the same configuration as the sensor device 10. That is, the sensor device 20 includes: a sensor head 21 that comes into contact with the roll 5; a cylindrical sensor housing 22 that is fixed to both the main body of the sensor unit 7a and the connecting member 30 and that houses the sensor head 21 therein. I have.
  • the sensor head 21 includes a cylindrical main body portion 21 a and a head portion 21 b that is curved so that the top portion is convex toward the roll 5.
  • a spring 23 is disposed between the engaging portion 21c and the connecting portion 30 inside the sensor head 21, and the sensor head 21 moves vertically downward with respect to the sensor housing 22 (that is, on the roll 5 side).
  • a detection rod 24 is provided at the center in the sensor head 21.
  • the lower end of the detection rod 24 is in contact with the upper surface of the head portion 21b, and the detection rod 24 also moves up and down as the head portion 21b moves up and down, and this movement is transmitted to the displacement meter 25 so as to be detected. It has become.
  • the dummy bar 1 on which the roll interval measuring device S is mounted leads the molten steel 3 and passes through the slab passage formed by the plurality of rolls 4 and 5.
  • the sensor head 11 of the sensor device 10 comes into contact with each roll 4 and the sensor head 21 of the sensor device 20 comes into contact with each roll 5, thereby measuring the distance between the roll pairs 4, 5.
  • an annular receiving portion AP is formed in which the bottom surface shape is an annular band in plan view and the vertical cross-sectional shape is an inverted trapezoid.
  • the vertical cross-sectional shape of the receiving part AP is not a tapered shape (tapered or V-shaped) with a sharp tip as in the prior art, but is an inverted trapezoid as described above. That is, it is received by the step portion 11e.
  • the dummy bar 1 advances, the contact of the sensor head 11 with the roll 4 ends, and when the sensor head 11 is returned to the original position by the spring 13, the foreign matter x is directly moved out of the sensor housing 12 by the step portion 11e. It is pushed out. Accordingly, the sensor head 11 can be smoothly returned to the original position without the occurrence of the biting phenomenon of the foreign matter x as in the prior art. Therefore, it is possible to accurately measure the roll interval stably over a long period of time. Moreover, since the protrusion length itself from the sensor housing 12 of the sensor head 11 is not different from the conventional one, the safety of the sensor head 11 is ensured as it is.
  • the width dimension d of the step portion 11e constituting the bottom surface of the receiving portion AP is set to 0.5 mm.
  • 0.5 mm to 2 mm for example, about 1 mm is desirable.
  • the step portion 11e of the present embodiment when viewed in the enlarged cross-sectional view shown in FIG. 7, the bottom surface 11e1 that is the annular plane, and the bottom surface 11e1 is continuous with the bottom surface 11e1 and goes upward in the vertical direction.
  • the sensor housing 12 is formed by an inclined surface 11e2 that is gradually separated from the inner peripheral surface of the upper end.
  • the roll alignment sensor Q has a contact 41 that receives an urging force and projects downward from the lower surfaces of the sensor units 7a and 7b.
  • the contact 41 is in contact with each of the rolls on the fixed surface side (that is, the pair of rolls 5 and 5 adjacent to each other along the direction of the slab passage, and the inclination between the rolls 5 and 5 (that is, , The inclination between the rolls 5 and 5 forming the lower surface of the slab passage) is detected by the amount of deviation of these rolls 5 and 5 from a predetermined position.
  • the roll inversion sensor R includes, in its main body, a roll contact body 51 that rotates in contact with the roll 4; and a roll contact body 52 that rotates in contact with the roll 5. Yes.
  • the roll contact bodies 51 and 52 rotate in the direction opposite to the rotation direction of the rolls 4 and 5, but when the rolls 4 and 5 are in a non-rotating state, the roll contact bodies 51 and 52 rotate in the reverse direction. . Therefore, the rotation / non-rotation of the rolls 4 and 5 can be detected by detecting the rotation angle (rotation rate) of the rolls 4 and 5 with a detector (not shown).
  • Each of the signals detected by the roll interval measuring device S, the roll alignment sensor Q, and the roll non-rotation sensor R described above is a signal processing unit 8 mounted on the link material 1a in the vicinity of the sensor link 6 (FIG. 2). Output).
  • the signal output from the signal processing unit 8 mounted on the dummy bar 1 is output to the host computer 61 in the central operation room, and further sent to the server 63 in the central operation room via the HUB 62. And stored in the server 63. Then, a measurement result for each roll obtained every time the dummy bar 1 passes through the slab passage is processed and accumulated for each roll.
  • the server 63 can be connected from a plurality of monitoring client terminals 65 and 66 via the router 64. Therefore, the role diagnosis method of this embodiment can be performed from outside the central operation room using the monitoring client terminals 65 and 66 as necessary.
  • the main apparatus and system configuration for performing the role diagnosis method of the present embodiment are as described above. Hereinafter, examples of the roll diagnosis method will be described.
  • FIG. 11 shows one roll interval measurement value from the roll interval measuring device S mounted on the dummy bar 1 for each roll pair.
  • the measurement value of the first roll is set to 0 and each roll pair interval is shown.
  • the measured value is displayed. According to this, it turns out that there is variation in the roll interval of each roll pair installed in the continuous casting machine. However, this data alone does not reveal the tendency of rolls to deteriorate over time. Therefore, paying attention to a specific roll pair, for example, the 49th roll pair, the 49th roll pair is measured a plurality of times at intervals, and the difference value from the reference value is calculated. Shown in 12 graphs.
  • the horizontal axis in the graph of FIG. 12 indicates the number of online charges, and the vertical axis indicates the difference value between the measured value and the reference value.
  • the number of on-line charges is the number of times molten steel is poured into the tundish from the ladle, so it is not directly related to the number of measurements when the dummy bar 1 passes through the slab passage, and is a graph showing the actual measurement time point.
  • the number of plots in the middle indicates the number of measurements.
  • the black circle in the graph indicates the roll interval on one end side of the roll (specifically, the fixed side roll bearing side), and the black triangle in the graph indicates the other end side of the roll (specifically, the free side). The roll interval on the roll bearing side) is shown.
  • the graph of FIG. 12 is a plot of the difference value from the reference value of the roll pair interval near both ends of the roll pair.
  • the difference value between the roll pair interval on the free side and the roll bearing side and the reference value is approximately 0.6 mm.
  • the difference between the roll pair interval on the fixed side and the roll bearing side and the reference value increases in proportion to the increase in the number of charges, reaches 1.0 mm at approximately 36500 charges, and then increases rapidly.
  • the roll interval is measured a plurality of times over time, the difference value between these measurement values and the reference value is calculated, and further, the time series tendency of this difference value is examined, so that the difference value becomes 1.0 mm or more.
  • the accumulated charge number can be predicted.
  • the time of the accumulated charge number obtained in this way can be predicted as the roll bearing breakage time. Therefore, it is possible to replace the roll bearing before the time of the accumulated charge number comes.
  • an alarm signal when the difference value between the measurement result and the reference value is less than the predetermined value and equal to or more than the predetermined reference value in the server 63, an alarm signal is output. Therefore, for example, an alarm signal can be output when the difference value becomes 0.9 mm. As a result, it is possible to identify in advance a roll whose roll bearing will be damaged in the near future, and to replace this roll in advance.
  • the dummy alignment bar 1 is mounted with a roll alignment sensor Q that measures the tilt of the roll. Therefore, the tilt of the roll can also be monitored by the server 63 and the monitoring client terminals 65 and 66.
  • FIG. 13 is a graph of roll tilt measurement data for rolls No. 29 to No. 34. According to this graph, it can be seen that a misalignment (positional deviation) in which the deviation from the predetermined position exceeds the allowable value occurs for the 31st roll.
  • an alarm signal is output when the value exceeds a predetermined reference value. Therefore, when the positional deviation amount exceeds a predetermined reference value, this can be known. . Therefore, it is possible to perform replacement and maintenance of the corresponding roll in advance.
  • rolls whose positional deviation is equal to or greater than the specified reference value are identified, this is far more than when the equipment is stopped and the operator manually checks all rolls as before. The time required for role discovery and handling can be shortened. Therefore, productivity can be improved.
  • the roll inversion sensor R for detecting the rotation / non-rotation of the roll is mounted on the dummy bar 1, whether or not the rolls 4 and 5 are rotating during continuous casting, Monitoring can be performed by the server 63 and the monitoring client terminals 65 and 66.
  • FIG. 14 shows the rotation rate of the signal from the roll inversion sensor R for each specific roll for each cast (that is, every time the dummy bar 1 leads the molten steel and passes through the slab passage of the continuous casting machine). It is displayed.
  • the rotation rate has reached 80% or more.
  • the rotation rate changes between 70% and 80% until the segment supporting the roll is replaced.
  • the rotation rate is reduced to about 15% in the 11th cast after the corresponding roll is exchanged by exchanging the segments.
  • the roll is not determined to rotate when the rotation rate exceeds 20%.
  • rotation / non-rotation detection data is output to the server 63 for each roll, and an alarm signal is output when the output signal value for each roll exceeds a predetermined value. It has become. Therefore, for example, by setting a rotation rate of 20% as the predetermined value, it is possible to immediately know a roll in which non-rotation has occurred. Therefore, as in the conventional case, after the slab oyster is found in the manufactured slab, the facility is stopped, and the operator manually checks the rotation / non-rotation of the roll for all the rolls. In comparison, the non-rotating roll can be found very easily and in a short time, and the equipment stop time can be shortened, thereby improving the productivity.
  • the present invention is useful for diagnosis of a roll of a continuous casting apparatus.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

Disclosed is a method of diagnosing a pair of rolls disposed opposite to each other on both sides of a cast piece passage in a continuous casting machine.  The method comprises a step of providing the result of measurement by measuring multiple times the interval between the pair of rolls when a dummy bar passes the cast piece passage at time intervals, a step of providing the trend of the time series of the differential values between the result of measurement and reference values, and a step of predicting a time at which the differential values reach or exceed a predetermined value according to the trend of the time series and determining the time when the pair of rolls break.

Description

ロール診断方法Role diagnosis method
 本発明は、連続鋳造機におけるロールの交換時期を事前に知るためのロール診断方法に関する。
 本願は、2008年5月19日に、日本に出願された特願2008-130466号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a roll diagnosis method for knowing in advance the roll replacement time in a continuous casting machine.
This application claims priority on May 19, 2008 based on Japanese Patent Application No. 2008-130466 filed in Japan, the contents of which are incorporated herein by reference.
 連続鋳造機は、鋳片通路に沿って並べられた複数のロール対(ガイドロール)を備えている。鋳片は、これらロール対にガイドされながら前記鋳片通路を通過する。ところで、ロール対の間隔に異常が発生すると、鋳片の中心偏析や内部割れなどの品質低下をもたらす虞がある。そのため、ロール対の間隔を適正に維持することは極めて重要であり、そのために従来からロール対間の間隔測定が行われている(例えば、下記特許文献1,2参照)。 The continuous casting machine is provided with a plurality of roll pairs (guide rolls) arranged along the slab passage. The slab passes through the slab passage while being guided by these roll pairs. By the way, if an abnormality occurs in the interval between the roll pairs, there is a possibility that quality deterioration such as center segregation or internal crack of the slab may be caused. For this reason, it is extremely important to properly maintain the interval between the roll pairs, and for that purpose, the interval between the roll pairs has been conventionally measured (for example, see Patent Documents 1 and 2 below).
 ロール間隔に影響を及ぼす因子としては、ロールベアリングの異常、ロールの磨耗、ロールの曲がり等がある。これら因子の中でも、とりわけロールベアリングの異常は、ロールの間隔に大きい影響を与えるので、下記特許文献2に記載の技術では、1つのロールに対する測定を複数箇所で行うようにし、1回の測定で得られた複数個所での測定データを用いて、ロールベアリングの破損有無を検出するようにしている。 ¡Factors affecting roll spacing include roll bearing anomalies, roll wear, and roll bending. Among these factors, the abnormality of the roll bearing has a great influence on the gap between the rolls. Therefore, in the technique described in Patent Document 2 below, the measurement for one roll is performed at a plurality of locations, and the measurement is performed once. Using the obtained measurement data at a plurality of locations, the presence or absence of breakage of the roll bearing is detected.
特開平10-274502号公報JP-A-10-274502 特開2006-231350号公報JP 2006-231350 A
 ロール間隔の測定値が許容値を超えていた場合、このロール対のロールを点検し、ロールベアリング等に異常があれば、その時点でロールを交換することが行なわれる。しかしながら、例えロール間隔の値が許容値以下であっても、連続鋳造中にロールベアリング等に異常が発生し、その結果、製造された鋳片に疵が生じ、この疵によって、はじめてロール間隔に異常があり、ロールベアリング等が支障をきたしていることが判明する場合がある。この場合、不良の鋳片を大量に製造してしまうという問題がある。そのため、ロールベアリングの寿命を推定して、ロールの交換時期を予測する事が望まれている。 If the measured value of the roll interval exceeds the allowable value, the rolls of this roll pair are inspected, and if there are any abnormalities in the roll bearings, the rolls are replaced at that time. However, even if the value of the roll interval is less than the allowable value, an abnormality occurs in the roll bearing or the like during continuous casting, and as a result, flaws are produced in the manufactured slab. There is an abnormality, and it may be found that the roll bearing or the like is hindered. In this case, there is a problem that defective slabs are manufactured in large quantities. Therefore, it is desired to estimate the roll replacement life by estimating the life of the roll bearing.
 このような観点から見た場合、上記特許文献1は、ロール対の間隔を測定する装置を開示しているものの、ロールベアリングの寿命を推定して、ロールの交換時期を予測する点については、何ら開示していない。また、上記特許文献2においては、1回の測定によって得られた複数個所での測定データを用いて判断することでロールベアリングの破損有無の検出精度が高まったものの、事前に破損時期を予測するまでには至らなかった。 From this point of view, the above Patent Document 1 discloses an apparatus for measuring the interval between roll pairs, but the point of estimating the roll replacement time by estimating the life of the roll bearing, We do not disclose anything. Moreover, in the said patent document 2, although the detection precision of the presence or absence of breakage of a roll bearing increased by judging using the measurement data in several places obtained by one measurement, a failure time is predicted beforehand. It was not reached.
 本発明は、上記事情に鑑みてなされたものであり、主としてロールベアリングに起因するロールの破損時期を事前に予測することで上記問題の解決を図ることができるロール診断方法の提供を目的とする。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a roll diagnosis method capable of solving the above-described problem by predicting in advance the breakage time of a roll mainly caused by a roll bearing. .
 本発明は、上記問題を解決して係る目的を達成するために以下の手段を採用した。すなわち、
(1)本発明のロール診断方法は、連続鋳造機の鋳片通路を間に挟んで対向配置されるロール対を診断する方法であって、前記鋳片通路をダミーバーが通過する際の前記ロール対の間隔を、時間を隔てて複数回測定して測定結果を得る工程と;前記測定結果と基準値との差分値の時系列傾向を求める工程と;前記時系列傾向に基づいて、前記差分値が、予め定めた所定値以上となる時期を予測し、この時期を前記ロール対の破損時期と判断する工程と;を備える。
The present invention employs the following means in order to solve the above problems and achieve the object. That is,
(1) The roll diagnosis method of the present invention is a method of diagnosing a pair of rolls that are opposed to each other with a slab passage of a continuous casting machine interposed therebetween, and the roll when a dummy bar passes through the slab passage. Obtaining a measurement result by measuring a pair interval several times over time; obtaining a time series tendency of a difference value between the measurement result and a reference value; and based on the time series tendency, the difference Predicting a time when the value is equal to or greater than a predetermined value, and determining the time as a time when the roll pair is broken.
 本発明者らによれば、ロールを支持しているロールベアリングは、次第に磨耗劣化し、それに伴ってロール間隔が基準値から漸次離れていく。しかも、測定値と基準値との差分値が概ね時間と比例して増加する傾向にあり、時間軸上のある時点から急激にこの差分値が大きくなって破損することがわかった。本発明は、かかる知見に基づいてなされたものであり、まず、対向配置されているロール対の間隔を、時間を隔てて複数回測定し、各ロール対ごとのロール間隔に関するデータを、時系列に収集する。そして、測定結果と基準値との差分値の時系列傾向を調べ、この時系列傾向に基づいて、前記差分値が、予め定めた所定値以上となる時期を予測し、この時期をロールの破損時期と判断するようにしている。よって、ロールベアリングが破損する前に、ロールの交換時を知ることができる。 According to the present inventors, the roll bearing supporting the roll gradually wears and deteriorates, and accordingly, the roll interval gradually deviates from the reference value. Moreover, it has been found that the difference value between the measured value and the reference value tends to increase in proportion to time, and this difference value suddenly increases from a certain point on the time axis and breaks. The present invention has been made on the basis of such knowledge, first, the interval between the opposed roll pairs is measured a plurality of times over time, and data relating to the roll interval for each roll pair is time-series. To collect. Then, the time series tendency of the difference value between the measurement result and the reference value is examined, and based on this time series tendency, a time when the difference value is equal to or greater than a predetermined value is predicted, and this time is determined as a roll breakage. Judging that it is time. Therefore, it is possible to know when the roll is replaced before the roll bearing is damaged.
 予め定める所定値としては、例えば、ロールベアリングが実際に破損したときの、このロールベアリングを有するロール対の間隔値を予め測定しておき、このときの間隔値と基準値との差分値を採用してもよい。この場合、続鋳造機の鋳片通路を間に挟んで対向配置されているロール対は複数あり、設置場所によって負荷が異なっているので、劣化進行度合いや破損時のロール間隔値も設置場所毎に異なっている。したがって、各ロール対ごとに前記所定値を定めておくことが好ましい。 As the predetermined value, for example, when the roll bearing is actually damaged, the interval value of the roll pair having the roll bearing is measured in advance, and the difference value between the interval value and the reference value at this time is adopted. May be. In this case, there are a plurality of roll pairs that are opposed to each other with the slab passage of the continuous casting machine in between, and the load varies depending on the installation location. Is different. Therefore, it is preferable to determine the predetermined value for each pair of rolls.
(2)上記(1)に記載のロール診断方法は、前記差分値が、前記所定値より小さい第1の基準値以上に達した場合に、警告を報知する工程をさらに備えてもよい。
 ここで言う警告の報知としては、例えば視覚を通じて知らせるランプの点灯などの表示や、聴覚を通じて知らせるブザーの発鳴等が挙げられる。これによって、例えばロールを支持しているロールベアリングが破損する前に、警報による報知がなされるので、より確実にロールベアリングを交換することができる。
(2) The roll diagnosis method according to (1) may further include a step of notifying a warning when the difference value reaches or exceeds a first reference value smaller than the predetermined value.
Examples of the warning notification mentioned here include display such as lighting of a lamp to notify through vision, and sounding of a buzzer to notify through hearing. As a result, for example, a warning is given before the roll bearing supporting the roll is damaged, so that the roll bearing can be replaced more reliably.
(3)上記(1)に記載のロール診断方法は、前記ロール対の傾きを測定する工程をさらに備えてもよい。
 この場合、ロールの傾きも同時に検出することができる。ここで言うロールの傾きとは、複数並んで配列されている各ロールの面によって形成される鋳片通路の傾きを言い、具体的には所定の鋳片通路を形成する各ロールの、所定位置からのズレ量(ミスアライメント量)で表される。
(4)上記(3)の場合、前記傾きが第2の基準値以上に達した際に警告を報知する工程をさらに備えてもよい。
(3) The roll diagnosis method according to (1) may further include a step of measuring a tilt of the roll pair.
In this case, the tilt of the roll can also be detected at the same time. The inclination of the roll here refers to the inclination of the slab passage formed by the surfaces of the rolls arranged side by side, specifically, the predetermined position of each roll forming the predetermined slab passage. It is represented by the amount of misalignment (misalignment amount).
(4) In the case of (3) above, the method may further include a step of notifying a warning when the inclination reaches the second reference value or more.
(5)上記(1)の場合、前記ロール対の回転及び不回転を検出する工程をさらに備えてもよい。
 この場合、ロール対の回転/不回転も同時に検出することができる。
(6)上記(5)の場合、前記ロール対の不回転を検出した際に警告を報知する工程をさらに備えてもよい。
(5) In the case of (1) above, the method may further include a step of detecting rotation and non-rotation of the roll pair.
In this case, the rotation / non-rotation of the roll pair can be detected simultaneously.
(6) In the case of the above (5), a step of notifying a warning when non-rotation of the roll pair is detected may be further provided.
 本発明によれば、主としてロールベアリングに起因するロールの破損時期を事前に予測することができ、破損する前にロールの交換を実施することができる。 According to the present invention, it is possible to predict in advance the roll breakage mainly due to the roll bearing, and it is possible to replace the roll before breakage.
本発明のロール診断方法の一実施形態を行うためのロール間隔測定装置を装備したダミーバーが、連続鋳造機の鋳片通路を通過する際の様子を示す側面図である。It is a side view which shows a mode when the dummy bar equipped with the roll space | interval measuring apparatus for performing one Embodiment of the roll diagnostic method of this invention passes the slab path | route of a continuous casting machine. 同ダミーバーの底面図である。It is a bottom view of the dummy bar. 前記ロール間隔測定装置の縦断面図である。It is a longitudinal cross-sectional view of the said roll space | interval measuring apparatus. 同ロール間隔測定装置におけるセンサヘッドとセンサハウジングとを示す図であって、図3のA部の拡大断面図である。It is a figure which shows the sensor head and sensor housing in the same roll space | interval measuring apparatus, Comprising: It is an expanded sectional view of the A section of FIG. 同センサヘッドの平面図である。It is a top view of the sensor head. 前記ロール間隔測定装置がロールと接触しているときの状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows a state when the said roll space | interval measuring apparatus is contacting the roll. 前記ロール間隔測定装置の受容部に異物が入り込んだ様子を模式的に示す図であって、図6のB部の拡大断面図である。It is a figure which shows a mode that the foreign material entered into the receiving part of the said roll space | interval measuring apparatus, Comprising: It is an expanded sectional view of the B section of FIG. ロールアライメントセンサの概要を模式的に示す側面図である。It is a side view which shows the outline | summary of a roll alignment sensor typically. ロール不転センサの概要を模式的に示す側面図である。It is a side view which shows typically the outline | summary of a roll inversion sensor. 前記ロール診断方法を実施するためのシステムの概要を模式的に示すブロック図である。It is a block diagram which shows typically the outline | summary of the system for enforcing the said roll diagnostic method. 1回のロール間隔測定値を、各ロール対ごとに示したグラフであって、横軸が各ロール対の番号を、縦軸が各ロール対の間隔の実測値を示す。It is the graph which showed one roll space | interval measured value for every roll pair, Comprising: The horizontal axis shows the number of each roll pair, and a vertical axis | shaft shows the measured value of the space | interval of each roll pair. 第49番のロール対における、チャージ数の増加に伴うロール対間隔と基準値との差分値を示すグラフであって、横軸がオンラインチャージ数を、縦軸がロール対間隔と基準値との差分値を示す。In the No. 49 roll pair, it is a graph showing the difference value between the roll pair interval and the reference value with the increase in the number of charges, the horizontal axis is the number of online charges, the vertical axis is the roll pair interval and the reference value Indicates the difference value. 第29番~第34番のロール対における、ロールの傾きについての測定結果を示すグラフであり、横軸がロール対番号を、縦軸がミスアライメント量を示す。It is a graph which shows the measurement result about the inclination of a roll in No. 29 to No. 34 roll pairs, the horizontal axis shows the roll pair number, and the vertical axis shows the misalignment amount. 特定のロールについて、キャストごとのロール不転センサからの信号を回転率で表示したグラフであり、横軸がキャスト番号を、縦軸が回転率を示す。It is the graph which displayed the signal from the roll inversion sensor for every cast by a rotation rate about a specific roll, a horizontal axis shows a cast number and a vertical axis shows a rotation rate.
 本発明のロール診断方法の一実施形態を以下に説明する。
 図1は、本実施形態のロール診断方法を行うロール間隔測定装置が搭載されたダミーバー1を模式的に示す側面図である。ダミーバー1は、多数のリンク材1aとシャフト1bとを有しており、図示しないタンディッシュから鋳型2を通じて鋳造される溶鋼3を先導して、複数のロール4,5間に形成される鋳片通路内を移動させていく。
One embodiment of the roll diagnosis method of the present invention will be described below.
FIG. 1 is a side view schematically showing a dummy bar 1 equipped with a roll interval measuring device for performing the roll diagnosis method of the present embodiment. The dummy bar 1 has a large number of link members 1 a and shafts 1 b, and a slab formed between a plurality of rolls 4 and 5 by leading a molten steel 3 cast from a tundish (not shown) through a mold 2. Move through the aisle.
 図2は、上記ロール間隔測定装置が搭載されたダミーバー1の底面を示している。本実施形態においては、ダミーバー1のセンサリンク6の幅方向両端と中央とのそれぞれに、センサユニット7a,7b,7cが設けられている。そして、これらセンサユニット7a,7b,7cのそれぞれに、ロール間隔測定装置Sが1台ずつ設けられている。また、両端のセンサユニット7a,7bには、ロール4,5の傾きを測定するロールアライメントセンサQと、ロールの回転/不回転を検出するロール不転センサRとがさらに設けられている。 FIG. 2 shows the bottom surface of the dummy bar 1 on which the roll interval measuring device is mounted. In the present embodiment, sensor units 7a, 7b, and 7c are provided at both ends in the width direction and the center of the sensor link 6 of the dummy bar 1, respectively. Each of these sensor units 7a, 7b, 7c is provided with one roll interval measuring device S. The sensor units 7a and 7b at both ends are further provided with a roll alignment sensor Q for measuring the inclination of the rolls 4 and 5, and a roll inversion sensor R for detecting the rotation / non-rotation of the roll.
 各センサユニット7a,7b,7cのそれぞれに設けられているロール間隔測定装置Sは、全て同一構成を有するので、以下の説明では、センサユニット7aに設けられているロール間隔測定装置Sの例として、図3を参照しながら詳細に説明する。
 ロール間隔測定装置Sは、その上面と底面に対向しているロール対4,5間の間隔を測定するためのセンサ装置10,20を有している。上面側のセンサ装置10は可動面側のロール4の変位を測定するためのものであり、底面側に設けられたセンサ装置20は固定面側のロール5の変位を測定するためのものである。これら双方のセンサ装置10,20によって測定された変位量の測定結果によって、ロール4,5間の間隔が測定される。
Since the roll interval measuring devices S provided in each of the sensor units 7a, 7b, and 7c all have the same configuration, in the following description, as an example of the roll interval measuring device S provided in the sensor unit 7a. This will be described in detail with reference to FIG.
The roll interval measuring device S has sensor devices 10 and 20 for measuring the interval between the roll pairs 4 and 5 facing the top and bottom surfaces thereof. The sensor device 10 on the upper surface side is for measuring the displacement of the roll 4 on the movable surface side, and the sensor device 20 provided on the bottom surface side is for measuring the displacement of the roll 5 on the fixed surface side. . The distance between the rolls 4 and 5 is measured based on the measurement result of the displacement measured by both the sensor devices 10 and 20.
 図3に示すように、センサ装置10は、ロール4と接触するセンサヘッド11と;センサユニット7aの本体と連結部材30との双方に対して固定され、センサヘッド11を内部に収納する円筒形のセンサハウジング12と;を有している。 As shown in FIG. 3, the sensor device 10 is fixed to both the sensor head 11 in contact with the roll 4; the main body of the sensor unit 7 a and the connecting member 30, and has a cylindrical shape that houses the sensor head 11. And a sensor housing 12.
 センサヘッド11は、筒状の本体部11aと;本体部11aの上部に円錐状をなして連設され、頂上部がロール4側に向かって凸状に湾曲した形状を有するヘッド部11bと;を有している。センサヘッド11の内部に形成された係止部11cと連結部30との間には、紙面上下方向に沿ってスプリング13が配置され、センサヘッド11を、センサハウジング12に対して紙面上方、すなわちロール4に向けて付勢している。なお、センサヘッド11の下端には、フランジ部11dが形成されている。このフランジ部11dがセンサハウジング12の係止部12aに係止しているため、センサヘッド11はセンサハウジング12から抜け出ることがない。また、センサヘッド11内の中心部には、検知ロッド14が設けられている。この検知ロッド14は、その上端がヘッド部11bの下面に当接しており、ヘッド部11bの上下動に伴って検知ロッド14も上下動し、この動きが変位計15に伝わって検知されるようになっている。 The sensor head 11 includes a cylindrical main body portion 11a; a head portion 11b having a conical shape on the upper portion of the main body portion 11a and having a shape in which the top portion is convexly curved toward the roll 4; have. A spring 13 is arranged along the vertical direction of the paper surface between the locking portion 11c formed inside the sensor head 11 and the connecting portion 30, and the sensor head 11 is located above the paper surface relative to the sensor housing 12, that is, It is urging toward the roll 4. A flange portion 11 d is formed at the lower end of the sensor head 11. Since the flange portion 11 d is locked to the locking portion 12 a of the sensor housing 12, the sensor head 11 does not come out of the sensor housing 12. A detection rod 14 is provided at the center of the sensor head 11. The upper end of the detection rod 14 is in contact with the lower surface of the head portion 11b, and the detection rod 14 also moves up and down as the head portion 11b moves up and down, and this movement is transmitted to the displacement meter 15 so as to be detected. It has become.
 そして、センサヘッド11におけるヘッド部11bの下端と本体部11aの上端との間には、図4に示すように、環状の段部11eが形成されている。本実施形態では、段部11eの幅寸法d(図5参照)が、0.5mmに設定されている。 And between the lower end of the head part 11b and the upper end of the main-body part 11a in the sensor head 11, as shown in FIG. 4, the cyclic | annular step part 11e is formed. In the present embodiment, the width dimension d (see FIG. 5) of the step portion 11e is set to 0.5 mm.
 図3に示すように、ロール5側の基準位置に対する変位量を測定するセンサ装置20も、センサ装置10とほぼ同様の構成を有している。すなわち、センサ装置20は、ロール5と接触するセンサヘッド21と;センサユニット7aの本体と連結部材30との双方に固定され、センサヘッド21を内部に収納する円筒形のセンサハウジング22と;を備えている。センサヘッド21は、筒状の本体部21aと、頂上部がロール5に向かって凸状をなすように湾曲した形状のヘッド部21bとを有している。また、センサヘッド21の内部の係止部21cと連結部30との間にはスプリング23が配置されており、センサヘッド21がセンサハウジング22に対して鉛直方向下方へと(すなわち、ロール5側に向かって)付勢されている。また、センサヘッド21内の中心には、検知ロッド24が設けられている。この検知ロッド24は、その下端がヘッド部21bの上面に当接しており、ヘッド部21bの上下動に伴って検知ロッド24も上下動し、この動きが変位計25に伝わって検知されるようになっている。 As shown in FIG. 3, the sensor device 20 that measures the amount of displacement with respect to the reference position on the roll 5 side also has substantially the same configuration as the sensor device 10. That is, the sensor device 20 includes: a sensor head 21 that comes into contact with the roll 5; a cylindrical sensor housing 22 that is fixed to both the main body of the sensor unit 7a and the connecting member 30 and that houses the sensor head 21 therein. I have. The sensor head 21 includes a cylindrical main body portion 21 a and a head portion 21 b that is curved so that the top portion is convex toward the roll 5. In addition, a spring 23 is disposed between the engaging portion 21c and the connecting portion 30 inside the sensor head 21, and the sensor head 21 moves vertically downward with respect to the sensor housing 22 (that is, on the roll 5 side). (Towards). A detection rod 24 is provided at the center in the sensor head 21. The lower end of the detection rod 24 is in contact with the upper surface of the head portion 21b, and the detection rod 24 also moves up and down as the head portion 21b moves up and down, and this movement is transmitted to the displacement meter 25 so as to be detected. It has become.
 以上説明の構成を有するロール間隔測定装置Sによれば、ロール間隔測定装置Sが搭載されたダミーバー1が、溶鋼3を先導して、複数のロール4,5で形成される鋳片通路内を移動していくと、センサ装置10のセンサヘッド11が各ロール4に接触するとともに、センサ装置20のセンサヘッド21が各ロール5と接触し、これによりロール対4,5間の間隔を測定していく。 According to the roll interval measuring device S having the above-described configuration, the dummy bar 1 on which the roll interval measuring device S is mounted leads the molten steel 3 and passes through the slab passage formed by the plurality of rolls 4 and 5. As it moves, the sensor head 11 of the sensor device 10 comes into contact with each roll 4 and the sensor head 21 of the sensor device 20 comes into contact with each roll 5, thereby measuring the distance between the roll pairs 4, 5. To go.
 そして、センサ装置10について言えば、図6に示すように、ロール4と接触したセンサヘッド11は、スプリング13による付勢力に抗して、下方へ押し下げられ、センサハウジング12内に収納される。そして、図7に示すように、センサヘッド11のヘッド部11bの下端がセンサハウジング12内に入り込んだ際に、ヘッド部11bの下端の外周面とセンサハウジング12の上端の内周面との間に形成された段部11eにより、底面形状が平面視して環帯状をなすとともに鉛直断面形状が逆台形をなす環状の受容部APが形成される。 As for the sensor device 10, as shown in FIG. 6, the sensor head 11 in contact with the roll 4 is pushed down against the urging force of the spring 13 and stored in the sensor housing 12. Then, as shown in FIG. 7, when the lower end of the head portion 11 b of the sensor head 11 enters the sensor housing 12, the gap between the outer peripheral surface of the lower end of the head portion 11 b and the inner peripheral surface of the upper end of the sensor housing 12. By the step portion 11e formed in the above, an annular receiving portion AP is formed in which the bottom surface shape is an annular band in plan view and the vertical cross-sectional shape is an inverted trapezoid.
 したがって、ダミーバー1が前記鋳片通路内を移動する際に、冷却材やスケールなどの異物xが発生して、センサヘッド11のヘッド部11bの外周面とセンサハウジング12の内周面との間に入り込んだとしても、この異物xは受容部APに受容される。受容部APの鉛直断面形状は、従来のような先端が尖った先細り状(テーパー状またはV字状)ではなく、前記したように逆台形であるので、異物xは、受容部APの底面、すなわち段部11eで受け止められる。したがって、ダミーバー1の進行に伴って、ロール4に対するセンサヘッド11の接触が終わり、スプリング13によってセンサヘッド11が元の位置に復帰する際、異物xは、段部11eによってそのままセンサハウジング12外へと押し出される。したがって、従来のような異物xの噛み込み現象を生じることがなく、円滑にセンサヘッド11が元の位置に復帰する。それゆえ、長期間にわたって安定してロール間隔の測定を精度良く行うことが可能である。また、センサヘッド11のセンサハウジング12からの突出長さ自体は従来と変わらないので、センサヘッド11の安全性はそのまま確保されている。 Therefore, when the dummy bar 1 moves in the slab passage, foreign matter x such as a coolant or scale is generated, and the gap between the outer peripheral surface of the head portion 11 b of the sensor head 11 and the inner peripheral surface of the sensor housing 12 is generated. Even if it enters, this foreign substance x is received by the receiving part AP. The vertical cross-sectional shape of the receiving part AP is not a tapered shape (tapered or V-shaped) with a sharp tip as in the prior art, but is an inverted trapezoid as described above. That is, it is received by the step portion 11e. Therefore, as the dummy bar 1 advances, the contact of the sensor head 11 with the roll 4 ends, and when the sensor head 11 is returned to the original position by the spring 13, the foreign matter x is directly moved out of the sensor housing 12 by the step portion 11e. It is pushed out. Accordingly, the sensor head 11 can be smoothly returned to the original position without the occurrence of the biting phenomenon of the foreign matter x as in the prior art. Therefore, it is possible to accurately measure the roll interval stably over a long period of time. Moreover, since the protrusion length itself from the sensor housing 12 of the sensor head 11 is not different from the conventional one, the safety of the sensor head 11 is ensured as it is.
 なお、連続鋳造機のロールに付着している異物は概ね0.5mm未満であるため、上記実施形態では、受容部APの底面を構成する段部11eの幅寸法dを0.5mmとしたが、好ましくは0.5mm~2mm、例えば1mm程度が望ましい。
 また、本実施形態の段部11eは、図7に示す拡大断面図で見た場合、前記環状平面である底面11e1と、この底面11e1に連続してかつ、鉛直方向上方に向かうにしたがって、前記センサハウジング12の上端の内周面より徐々に離間する傾斜面11e2とにより形成されている。したがって、例え0.5mm以上の比較的大きな異物xが受容部APに入り込んだとしても、センサヘッド11がスプリング13の付勢力により上方に復帰する際の復元力と、傾斜面11e2の傾斜角度とを利用して、この大きな異物xを受容部APの外部に効果的に押し出すことができる。
In addition, since the foreign matter adhering to the roll of the continuous casting machine is generally less than 0.5 mm, in the above embodiment, the width dimension d of the step portion 11e constituting the bottom surface of the receiving portion AP is set to 0.5 mm. Preferably, 0.5 mm to 2 mm, for example, about 1 mm is desirable.
Further, the step portion 11e of the present embodiment, when viewed in the enlarged cross-sectional view shown in FIG. 7, the bottom surface 11e1 that is the annular plane, and the bottom surface 11e1 is continuous with the bottom surface 11e1 and goes upward in the vertical direction. The sensor housing 12 is formed by an inclined surface 11e2 that is gradually separated from the inner peripheral surface of the upper end. Therefore, even if a relatively large foreign object x of 0.5 mm or more enters the receiving portion AP, the restoring force when the sensor head 11 returns upward by the urging force of the spring 13 and the inclination angle of the inclined surface 11e2 This large foreign matter x can be effectively pushed out of the receiving part AP.
 次に、図8を参照しながら、ロールアライメントセンサQについて説明する。このロールアライメントセンサQは、付勢力を受けてセンサユニット7a,7bの下面より下方に突出する接触子41を有している。この接触子41は、固定面側の各ロール(すなわち、鋳片通路の方向に沿って互いに隣り合う一対のロール5,5のそれぞれに対して接触し、これらロール5,5間の傾き(すなわち、前記鋳片通路の下面を形成するロール5,5間の傾き)を、これらロール5,5の所定位置からのズレ量により検出する。 Next, the roll alignment sensor Q will be described with reference to FIG. The roll alignment sensor Q has a contact 41 that receives an urging force and projects downward from the lower surfaces of the sensor units 7a and 7b. The contact 41 is in contact with each of the rolls on the fixed surface side (that is, the pair of rolls 5 and 5 adjacent to each other along the direction of the slab passage, and the inclination between the rolls 5 and 5 (that is, , The inclination between the rolls 5 and 5 forming the lower surface of the slab passage) is detected by the amount of deviation of these rolls 5 and 5 from a predetermined position.
 ロール不転センサRは、図9に示すように、その本体内に、ロール4に接触して回転するロール接触体51と;ロール5に接触して回転するロール接触体52と;を備えている。ロール4,5が回転している場合、ロール接触体51,52は、これらロール4,5の回転方向と逆方向に回転するが、ロール4,5が不転状態にある場合は逆回転する。よって、これらロール4,5の回転角度(回転率)を図示されない検出器で検出することにより、ロール4,5の回転/不回転を検出できる。 As shown in FIG. 9, the roll inversion sensor R includes, in its main body, a roll contact body 51 that rotates in contact with the roll 4; and a roll contact body 52 that rotates in contact with the roll 5. Yes. When the rolls 4 and 5 are rotating, the roll contact bodies 51 and 52 rotate in the direction opposite to the rotation direction of the rolls 4 and 5, but when the rolls 4 and 5 are in a non-rotating state, the roll contact bodies 51 and 52 rotate in the reverse direction. . Therefore, the rotation / non-rotation of the rolls 4 and 5 can be detected by detecting the rotation angle (rotation rate) of the rolls 4 and 5 with a detector (not shown).
 以上説明のロール間隔測定装置Sと、ロールアライメントセンサQと、ロール不転センサRとのそれぞれが検出した各信号は、センサリンク6近傍のリンク材1aに搭載された信号処理ユニット8(図2参照)へと出力される。 Each of the signals detected by the roll interval measuring device S, the roll alignment sensor Q, and the roll non-rotation sensor R described above is a signal processing unit 8 mounted on the link material 1a in the vicinity of the sensor link 6 (FIG. 2). Output).
 ダミーバー1に搭載された信号処理ユニット8より出力された信号は、図10に示すように、中央操作室のホストコンピュータ61へと出力され、さらにHUB62を介して中央操作室のサーバー63へと送られ、このサーバー63に保存される。そして、1回の測定結果、すなわちダミーバー1が前記鋳片通路を通過する度に得られる各ロールごとの測定結果が、各ロールごとに処理して蓄積される。 As shown in FIG. 10, the signal output from the signal processing unit 8 mounted on the dummy bar 1 is output to the host computer 61 in the central operation room, and further sent to the server 63 in the central operation room via the HUB 62. And stored in the server 63. Then, a measurement result for each roll obtained every time the dummy bar 1 passes through the slab passage is processed and accumulated for each roll.
 サーバー63には、データ解析に必要なソフトウェアがインストールされており、ロール間隔については、予め求めた測定結果と基準値との差分値の時系列傾向を演算する。そして、この時系列傾向に基づいて、前記差分値が、予め定めた所定値以上となる時期を外挿法により予測する。また、測定の結果,前記差分値が前記所定値よりも小さい所定基準値以上になった際に、図示されない警報手段にアラーム信号が出力される。ロールアライメントセンサQからの信号は、各ロールごとの出力信号に基づくミスアライメント量が所定値以上になった場合に、アラーム信号が前記警報手段に出力される。ロール不転センサRからの信号も、各ロールごとの出力信号に基づく回転率が所定値以上になった際に、アラーム信号が前記警報手段に出力される。 Software necessary for data analysis is installed in the server 63, and for the roll interval, the time series tendency of the difference value between the measurement result obtained in advance and the reference value is calculated. Then, based on this time series trend, a time when the difference value is equal to or greater than a predetermined value is predicted by extrapolation. Further, as a result of the measurement, when the difference value becomes equal to or greater than a predetermined reference value smaller than the predetermined value, an alarm signal is output to an alarm means (not shown). As for the signal from the roll alignment sensor Q, an alarm signal is output to the alarm means when the misalignment amount based on the output signal for each roll becomes a predetermined value or more. As for the signal from the roll inversion sensor R, an alarm signal is output to the alarm means when the rotation rate based on the output signal for each roll becomes a predetermined value or more.
 サーバー63に対しては、ルータ64を介して、複数の監視クライアント端末65,66から接続可能である。したがって、必要に応じて、監視クライアント端末65,66を利用して中央操作室外から本実施形態のロール診断方法を実施することが可能である。 The server 63 can be connected from a plurality of monitoring client terminals 65 and 66 via the router 64. Therefore, the role diagnosis method of this embodiment can be performed from outside the central operation room using the monitoring client terminals 65 and 66 as necessary.
 本実施形態のロール診断方法を行うための主要装置及びシステム構成は以上の通りである。以下に、ロール診断方法の実施例について説明する。 The main apparatus and system configuration for performing the role diagnosis method of the present embodiment are as described above. Hereinafter, examples of the roll diagnosis method will be described.
 図11は、ダミーバー1に搭載したロール間隔測定装置Sからの1回のロール間隔測定値を、各ロール対ごとに示したものであり、第1番ロールの測定値を0として各ロール対間隔測定値を表示したものである。これによれば,連続鋳造機に設置されている各ロール対のロール間隔にばらつきがあることが判る。しかしながらこのデータだけでは、ロールの経時劣化傾向は判らない。そこで、特定のロール対、例えば第49番のロール対に着目し、この第49番のロール対について、時間を隔てて複数回の測定を行い、基準値との差分値を算出した結果を図12のグラフに示す。 FIG. 11 shows one roll interval measurement value from the roll interval measuring device S mounted on the dummy bar 1 for each roll pair. The measurement value of the first roll is set to 0 and each roll pair interval is shown. The measured value is displayed. According to this, it turns out that there is variation in the roll interval of each roll pair installed in the continuous casting machine. However, this data alone does not reveal the tendency of rolls to deteriorate over time. Therefore, paying attention to a specific roll pair, for example, the 49th roll pair, the 49th roll pair is measured a plurality of times at intervals, and the difference value from the reference value is calculated. Shown in 12 graphs.
 図12のグラフにおける横軸はオンラインチャージ数を示し、縦軸は測定値と基準値との差分値を示している。なお、オンラインチャージ数は、取鍋からタンディッシュに溶鋼を投入する回数であるので、ダミーバー1が前記鋳片通路を通過する際の測定回数とは直接関係がなく、実際の測定時点を示すグラフ中のプロット数が、測定回数を示している。また、グラフ中の黒丸は、ロールの一端側(具体的には固定側のロールベアリング側)のロール間隔を示し、同グラフ中の黒三角は、ロールの他端側(具体的には自由側のロールベアリング側)のロール間隔を示している。これらは、センサリンク6の両側に設けられたセンサユニット7a,7bに搭載されたロール間隔測定装置Sからのデータに基づいている。すなわち、図12のグラフは、ロール対の両端近傍のロール対間隔の、基準値からの差分値をプロットしたものである。 The horizontal axis in the graph of FIG. 12 indicates the number of online charges, and the vertical axis indicates the difference value between the measured value and the reference value. The number of on-line charges is the number of times molten steel is poured into the tundish from the ladle, so it is not directly related to the number of measurements when the dummy bar 1 passes through the slab passage, and is a graph showing the actual measurement time point. The number of plots in the middle indicates the number of measurements. The black circle in the graph indicates the roll interval on one end side of the roll (specifically, the fixed side roll bearing side), and the black triangle in the graph indicates the other end side of the roll (specifically, the free side). The roll interval on the roll bearing side) is shown. These are based on data from the roll interval measuring device S mounted on the sensor units 7 a and 7 b provided on both sides of the sensor link 6. That is, the graph of FIG. 12 is a plot of the difference value from the reference value of the roll pair interval near both ends of the roll pair.
 図12のグラフによれば、自由側でかつロールベアリング側のロール対間隔と基準値との差分値は、ほぼ0.6mmで推移している。一方、固定側でかつロールベアリング側のロール対間隔と基準値との差分値は、チャージ数の増加に比例して増加し、ほぼ36500チャージのところで1.0mmに達し、これ以後、急激に増加していることが判る。後日検証した結果、このロールにおいては基準値との差分値が1.0mm以上になったときにロールベアリングが破損していることが確認できた。 According to the graph of FIG. 12, the difference value between the roll pair interval on the free side and the roll bearing side and the reference value is approximately 0.6 mm. On the other hand, the difference between the roll pair interval on the fixed side and the roll bearing side and the reference value increases in proportion to the increase in the number of charges, reaches 1.0 mm at approximately 36500 charges, and then increases rapidly. You can see that As a result of verification at a later date, it was confirmed that the roll bearing was damaged when the difference value from the reference value was 1.0 mm or more in this roll.
 したがって、時間を隔ててロール間隔を複数回測定し、これら測定値と基準値との差分値を算出し、さらにこの差分値の時系列傾向を調べることにより、前記差分値が1.0mm以上になる積算チャージ数を予測することができる。こうして求められた前記積算チャージ数の時期を、ロールベアリング破損時期として予測することができる。それゆえ、この積算チャージ数の時期が到来する前に、ロールベアリングを交換することが可能になる。 Accordingly, the roll interval is measured a plurality of times over time, the difference value between these measurement values and the reference value is calculated, and further, the time series tendency of this difference value is examined, so that the difference value becomes 1.0 mm or more. The accumulated charge number can be predicted. The time of the accumulated charge number obtained in this way can be predicted as the roll bearing breakage time. Therefore, it is possible to replace the roll bearing before the time of the accumulated charge number comes.
 また、本実施形態では、サーバー63において、測定結果と基準値との差分値が、所定値未満でかつ所定基準値以上になった際、アラーム信号が出力されるようになっている。よって、例えば前記差分値が0.9mmになった時点で、アラーム信号を出力することが可能である。これにより、近い将来にロールベアリングが破損するロールを前もって特定することができ、事前にこのロールを交換することができる。 Further, in the present embodiment, when the difference value between the measurement result and the reference value is less than the predetermined value and equal to or more than the predetermined reference value in the server 63, an alarm signal is output. Therefore, for example, an alarm signal can be output when the difference value becomes 0.9 mm. As a result, it is possible to identify in advance a roll whose roll bearing will be damaged in the near future, and to replace this roll in advance.
 また、本実施形態では、ダミーバー1に、ロールの傾きを測定するロールアライメントセンサQが搭載されている。したがって、ロールの傾きについても、サーバー63や監視クライアント端末65,66で監視することができる。 In this embodiment, the dummy alignment bar 1 is mounted with a roll alignment sensor Q that measures the tilt of the roll. Therefore, the tilt of the roll can also be monitored by the server 63 and the monitoring client terminals 65 and 66.
 図13は、第29番~第34番のロールにおける、ロールの傾きの測定データをグラフ化したものである。このグラフによれば、第31番のロールに関して、所定の位置からのズレが許容値を超えるミスアライメント(位置ズレ)が生じていることが判る。サーバー63においては、所定の基準値以上になった際にアラーム信号が出力されるようになっているので、前記位置ズレ量が所定の基準値以上になった時点で、これを知ることができる。よって、事前に該当ロールの交換や保守を実施することが可能である。また、位置ズレが所定の基準値以上になったロールが特定されるので、従来のように設備を停止して、作業員が全てのロールについて手作業により確認する場合と比べて、はるかに該当ロールの発見や対処に要する時間を短縮することができる。したがって、生産性を向上させる事が可能である。 FIG. 13 is a graph of roll tilt measurement data for rolls No. 29 to No. 34. According to this graph, it can be seen that a misalignment (positional deviation) in which the deviation from the predetermined position exceeds the allowable value occurs for the 31st roll. In the server 63, an alarm signal is output when the value exceeds a predetermined reference value. Therefore, when the positional deviation amount exceeds a predetermined reference value, this can be known. . Therefore, it is possible to perform replacement and maintenance of the corresponding roll in advance. In addition, since rolls whose positional deviation is equal to or greater than the specified reference value are identified, this is far more than when the equipment is stopped and the operator manually checks all rolls as before. The time required for role discovery and handling can be shortened. Therefore, productivity can be improved.
 さらに、本実施形態では、ダミーバー1に、ロールの回転/不回転を検出するロール不転センサRが搭載されているので、ロール4,5が連続鋳造の際に回転しているかどうかについても、サーバー63や監視クライアント端末65,66において監視することができる。 Furthermore, in this embodiment, since the roll inversion sensor R for detecting the rotation / non-rotation of the roll is mounted on the dummy bar 1, whether or not the rolls 4 and 5 are rotating during continuous casting, Monitoring can be performed by the server 63 and the monitoring client terminals 65 and 66.
 図14は、ある特定のロールについて、キャストごと(すなわち、ダミーバー1が溶鋼を先導して連続鋳造機の鋳片通路を通過する回数ごと)に、ロール不転センサRからの信号を回転率で表示したものである。 FIG. 14 shows the rotation rate of the signal from the roll inversion sensor R for each specific roll for each cast (that is, every time the dummy bar 1 leads the molten steel and passes through the slab passage of the continuous casting machine). It is displayed.
 これによれば、6キャスト目の時点で回転率が80%以上に達している。そして、この6キャスト目以後、ロールを支持しているセグメントを交換するまでの間、回転率が70%~80%の間で推移している。そして、10キャスト目が終了した後、セグメントの交換により該当ロールを交換した後の11キャスト目では、回転率が約15%に低下している。なお、本実施例では、回転率20%を超えるとロール不回転と判定するように設定した。 According to this, at the time of the sixth cast, the rotation rate has reached 80% or more. After the sixth cast, the rotation rate changes between 70% and 80% until the segment supporting the roll is replaced. Then, after the 10th cast is completed, the rotation rate is reduced to about 15% in the 11th cast after the corresponding roll is exchanged by exchanging the segments. In this embodiment, the roll is not determined to rotate when the rotation rate exceeds 20%.
 実際に検証したところ、6キャスト目の連続鋳造によって製造された鋳片には鋳片カキ疵を確認することができ、11キャスト目以降の連続鋳造によって製造された鋳片には鋳片カキ疵が確認できなかった。 As a result of actual verification, it is possible to confirm the slab crease in the slab produced by the continuous casting of the sixth cast, and the slab crease in the slab produced by the continuous casting after the 11th cast. Could not be confirmed.
 また、本実施形態では、各ロールごとに回転/不回転の検出データがサーバー63へと出力され、各ロールごとの出力信号値が所定値以上になった際に、アラーム信号が出力されるようになっている。よって、例えば回転率20%を前記所定値と設定しておくことで、不回転が発生したロールを直ちに知る事ができる。したがって、従来のように、製造された鋳片に鋳片カキ疵が発見されてから、設備を停止して、作業員が全てのロールについて手作業によってロールの回転/不回転をチェックすることに比べると、不回転ロールの発見を極めて容易かつ短時間で行なえ、設備の停止時間を短縮することが可能であり、生産性を向上させる事ができる。 Further, in this embodiment, rotation / non-rotation detection data is output to the server 63 for each roll, and an alarm signal is output when the output signal value for each roll exceeds a predetermined value. It has become. Therefore, for example, by setting a rotation rate of 20% as the predetermined value, it is possible to immediately know a roll in which non-rotation has occurred. Therefore, as in the conventional case, after the slab oyster is found in the manufactured slab, the facility is stopped, and the operator manually checks the rotation / non-rotation of the roll for all the rolls. In comparison, the non-rotating roll can be found very easily and in a short time, and the equipment stop time can be shortened, thereby improving the productivity.
 本発明は、連続鋳造装置のロールの診断にとって有用である。 The present invention is useful for diagnosis of a roll of a continuous casting apparatus.
   1  ダミーバー
   1a リンク材
   1b シャフト
   2  鋳型
   3  溶鋼
   4  ロール
   5  ロール
   6  センサリンク
   7a,7b,7c センサユニット
   8  信号処理ユニット
  10  センサ装置
  11  センサヘッド
  11a 本体部
  11b ヘッド部
  11c 係止部
  11d フランジ部
  11e 段部
  12  センサハウジング
  12a 係止部
  12b 段部
  13  スプリング
  14  検知ロッド
  15  変位計
  20  センサ装置
  21  センサヘッド
  21a 本体部
  21b ヘッド部
  11c 係止部
  22  センサハウジング
  23  スプリング
  24  検知ロッド
  25  変位計
  30  連結部材
  51  ロール接触体
  52  ロール接触体
  61  ホストコンピュータ
  62  HUB
  63  サーバー
  64  ルータ64
  65,66  監視クライアント端末
  AP  受容部
  D  搬送方向
  Q  ロールアライメントセンサ
  R  ロール不転センサ
  S  ロール間隔測定装置
  d  幅
  x  異物
DESCRIPTION OF SYMBOLS 1 Dummy bar 1a Link material 1b Shaft 2 Mold 3 Molten steel 4 Roll 5 Roll 6 Sensor link 7a, 7b, 7c Sensor unit 8 Signal processing unit 10 Sensor apparatus 11 Sensor head 11a Body part 11b Head part 11c Locking part 11d Flange part 11e Stage Part 12 Sensor housing 12a Locking part 12b Step part 13 Spring 14 Detection rod 15 Displacement meter 20 Sensor device 21 Sensor head 21a Body part 21b Head part 11c Locking part 22 Sensor housing 23 Spring 24 Detection rod 25 Displacement gauge 30 Connecting member 51 Roll contact body 52 Roll contact body 61 Host computer 62 HUB
63 Server 64 Router 64
65, 66 Monitoring client terminal AP receiving part D Transport direction Q Roll alignment sensor R Roll inversion sensor S Roll interval measuring device d Width x Foreign object

Claims (6)

  1.  連続鋳造機の鋳片通路を間に挟んで対向配置されるロール対の診断方法であって、
     前記鋳片通路をダミーバーが通過する際の前記ロール対の間隔を、時間を隔てて複数回測定して測定結果を得る工程と;
     前記測定結果と基準値との差分値の時系列傾向を求める工程と;
     前記時系列傾向に基づいて、前記差分値が、予め定めた所定値以上となる時期を予測し、この時期を前記ロール対の破損時期と判断する工程と;
    を備えることを特徴とするロール診断方法。
    A method for diagnosing a roll pair disposed opposite to each other with a slab passage of a continuous casting machine interposed therebetween,
    Measuring the interval between the pair of rolls when a dummy bar passes through the slab passage a plurality of times, and obtaining a measurement result;
    Obtaining a time series tendency of a difference value between the measurement result and a reference value;
    Predicting a time when the difference value is equal to or greater than a predetermined value based on the time-series trend, and determining this time as a break time of the roll pair;
    A roll diagnosis method comprising:
  2.  前記差分値が、前記所定値より小さい第1の基準値以上に達した場合に、警告を報知する工程をさらに備えることを特徴とする請求項1に記載のロール診断方法。 The roll diagnosis method according to claim 1, further comprising a step of notifying a warning when the difference value reaches or exceeds a first reference value smaller than the predetermined value.
  3.  前記ロール対の傾きを測定する工程をさらに備えることを特徴とする請求項1に記載のロール診断方法。 The roll diagnosis method according to claim 1, further comprising a step of measuring an inclination of the roll pair.
  4.  前記傾きが第2の基準値以上に達した場合に、警告を報知する工程をさらに備えることを特徴とする請求項3に記載のロール診断方法。 The roll diagnosis method according to claim 3, further comprising a step of notifying a warning when the inclination reaches a second reference value or more.
  5.  前記ロール対の回転及び不回転を検出する工程をさらに備えることを特徴とする請求項1に記載のロール診断方法。 The roll diagnosis method according to claim 1, further comprising a step of detecting rotation and non-rotation of the roll pair.
  6.  前記ロール対の不回転を検出した際に警告を報知する工程をさらに備えることを特徴とする請求項5に記載のロール診断方法。 6. The roll diagnosis method according to claim 5, further comprising a step of notifying a warning when non-rotation of the roll pair is detected.
PCT/JP2009/059216 2008-05-19 2009-05-19 Method of diagnosing roll WO2009142211A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BRPI0912766A BRPI0912766A2 (en) 2008-05-19 2009-05-19 roller diagnostic method
KR1020107025824A KR101332950B1 (en) 2008-05-19 2009-05-19 Method of diagnosing roll
CN2009801178511A CN102036770B (en) 2008-05-19 2009-05-19 Method of diagnosing roll

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-130466 2008-05-19
JP2008130466A JP5217620B2 (en) 2008-05-19 2008-05-19 Role diagnosis method

Publications (1)

Publication Number Publication Date
WO2009142211A1 true WO2009142211A1 (en) 2009-11-26

Family

ID=41340144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/059216 WO2009142211A1 (en) 2008-05-19 2009-05-19 Method of diagnosing roll

Country Status (5)

Country Link
JP (1) JP5217620B2 (en)
KR (1) KR101332950B1 (en)
CN (1) CN102036770B (en)
BR (1) BRPI0912766A2 (en)
WO (1) WO2009142211A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109522660A (en) * 2018-11-22 2019-03-26 阳春新钢铁有限责任公司 Detection method, storage medium and the calculating equipment of continuous rolling production line milling train roll breakage

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6617439B2 (en) * 2015-06-01 2019-12-11 日本電気硝子株式会社 Glass article manufacturing equipment
JP7396158B2 (en) * 2020-03-26 2023-12-12 住友電気工業株式会社 Optical fiber manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06307937A (en) * 1993-04-23 1994-11-04 Kobe Steel Ltd Method and equipment for measuring roll alignment in continuous casting machine
JP2001170752A (en) * 1999-12-16 2001-06-26 Ube Techno Enji Kk Method for observing abnormality of die-clamping mechanism in die casting machine and device therefor
JP2002178119A (en) * 2000-12-20 2002-06-25 Kawasaki Steel Corp Instrument for detecting rotation of roll in continuous caster
JP2005182465A (en) * 2003-12-19 2005-07-07 Toshiba Corp Maintenance support method and program
JP2006247687A (en) * 2005-03-09 2006-09-21 Nippon Steel Corp Apparatus and method for detecting abnormality of bearing for roll in continuous casting machine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2187779Y (en) * 1993-11-19 1995-01-18 冶金工业部自动化研究院 Processing device for measuring data of roll gap for continuous casting machine
JP4392366B2 (en) * 2005-02-23 2009-12-24 新日本製鐵株式会社 Roll interval measuring method and roll interval measuring apparatus for continuous casting machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06307937A (en) * 1993-04-23 1994-11-04 Kobe Steel Ltd Method and equipment for measuring roll alignment in continuous casting machine
JP2001170752A (en) * 1999-12-16 2001-06-26 Ube Techno Enji Kk Method for observing abnormality of die-clamping mechanism in die casting machine and device therefor
JP2002178119A (en) * 2000-12-20 2002-06-25 Kawasaki Steel Corp Instrument for detecting rotation of roll in continuous caster
JP2005182465A (en) * 2003-12-19 2005-07-07 Toshiba Corp Maintenance support method and program
JP2006247687A (en) * 2005-03-09 2006-09-21 Nippon Steel Corp Apparatus and method for detecting abnormality of bearing for roll in continuous casting machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109522660A (en) * 2018-11-22 2019-03-26 阳春新钢铁有限责任公司 Detection method, storage medium and the calculating equipment of continuous rolling production line milling train roll breakage
CN109522660B (en) * 2018-11-22 2023-01-17 阳春新钢铁有限责任公司 Detection method for roll breakage of rolling mill in continuous rolling production line, storage medium and computing equipment

Also Published As

Publication number Publication date
BRPI0912766A2 (en) 2015-10-13
KR101332950B1 (en) 2013-11-25
CN102036770B (en) 2013-12-11
CN102036770A (en) 2011-04-27
JP5217620B2 (en) 2013-06-19
KR20100139143A (en) 2010-12-31
JP2009274130A (en) 2009-11-26

Similar Documents

Publication Publication Date Title
JP7183632B2 (en) Continuous casting apparatus and continuous casting method
KR101249168B1 (en) The method and system to control quality in cold rolling system
WO2009142211A1 (en) Method of diagnosing roll
US20170052149A1 (en) Acoustic emission indications of defects formed during elongated metal materials manufacturing processes
JP4392366B2 (en) Roll interval measuring method and roll interval measuring apparatus for continuous casting machine
JP4383373B2 (en) Apparatus and method for detecting abnormal bearing of roll in continuous casting machine
JP7188023B2 (en) rolling mill
JP5352123B2 (en) Roll interval measuring device
KR101961830B1 (en) Inspection apparatus for abrasion of brush roll and inspection method using the same
BRPI0912766B1 (en) ROLLET DIAGNOSTIC METHOD
WO2024070088A1 (en) Casting mold, control equipment, and continuous casting method for steel
JP2003170256A (en) Method and device for controlling clogging of spray nozzle arranged inside continuous casting machine
JP2014036975A (en) Detection device and detection method of setting state of continuous casting machine
US11980931B2 (en) Guide roller with integrated optical sensors and continuous casting machine
KR102045645B1 (en) Error Detection Method of Work-roll Alignment of Rolling Mill
KR101153548B1 (en) Apparatus for checking drive state of roll which is porvided inside galvanizing bath
JP5009088B2 (en) Prevention of mold surface fluctuation at the start of continuous casting
JP4576726B2 (en) Flaw detection method and apparatus for roll for rolling metal plate, and rolling operation method for metal plate using the same
CN111829431A (en) Sector section arc-alignment online monitoring method
KR20200025529A (en) Apparatus and method for diagnosing misalignment in rolling mill line
JP2019155379A (en) Abnormality detection method for continuous casting facility
JP2000084626A (en) Method and device for deformation defect inspection of hoop
WO2022023869A1 (en) Wear detection apparatus
JP2012096283A (en) Method for detecting seizure of slipper type spindle joint and device for detecting seizure of slipper type spindle joint
JP2021161480A (en) Thickener lake revolving bearing inspection apparatus

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980117851.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09750573

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 7587/DELNP/2010

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20107025824

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09750573

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: PI0912766

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20101117