WO2009142011A1 - Decision device with minimum power transmission loss system, method, and program - Google Patents

Decision device with minimum power transmission loss system, method, and program Download PDF

Info

Publication number
WO2009142011A1
WO2009142011A1 PCT/JP2009/002224 JP2009002224W WO2009142011A1 WO 2009142011 A1 WO2009142011 A1 WO 2009142011A1 JP 2009002224 W JP2009002224 W JP 2009002224W WO 2009142011 A1 WO2009142011 A1 WO 2009142011A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission loss
system configuration
switch
minimum
closed
Prior art date
Application number
PCT/JP2009/002224
Other languages
French (fr)
Japanese (ja)
Inventor
村井雅彦
小坂葉子
小林武則
小坂田由美子
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to CN2009801182235A priority Critical patent/CN102037627B/en
Publication of WO2009142011A1 publication Critical patent/WO2009142011A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/20Information technology specific aspects, e.g. CAD, simulation, modelling, system security

Definitions

  • the present invention relates to an apparatus for determining a transmission loss of a distribution system, and more particularly, to a determination apparatus, a method, and a program for a minimum transmission loss system configuration capable of determining a system configuration that minimizes the transmission loss in a practical calculation time. .
  • the method of determining the system configuration that minimizes the transmission loss of the distribution system is as follows: “The distribution system is configured radially and there are capacity constraints on feeders and switches in the system”. Thus, a method for determining the open / close state of a switch provided in the distribution system so that the power transmission loss is minimized is known. An example of a method for determining the distribution system configuration that minimizes the transmission loss of such a distribution system will be described below with reference to FIGS.
  • FIG. 9A is a diagram showing a connection configuration example of a distribution system in which five switches 91 to 95 are radially arranged. Among the blocks indicating the switches, the “open” state blocks are blank. The blocks in the “closed” state are indicated by hatching. That is, in FIG. 9A, the switches 91 and 94 are in the “open” state, and the switches 92, 93, and 95 are in the “closed” state.
  • FIG. 9B shows the load and the impedance of the section corresponding to the section numbers 9a to 9g of the distribution system in FIG. 9A.
  • the transmission loss in each section is expressed by the following equation (1).
  • the transmission loss in each section of the distribution system configured radially as shown in FIG. 9A is obtained by substituting the load and impedance shown in FIG. Can be calculated.
  • all the switches 91 to 95 are opened and closed so that the distribution system maintains a radiating state.
  • the power transmission loss is calculated with respect to the state, and the switching states of the switches 91 to 95 are determined so that the total loss is minimized.
  • FIG. 11 is a diagram showing all combinations of the switching states of the switches in such a radially distributed distribution system. That is, (a) to (h) of FIG. 11 respectively show eight system configurations with different switching states of the switches.
  • FIG. 12 shows the result of calculating the power transmission loss corresponding to each system configuration (a) to (h) in FIG. According to FIG. 12, the minimum value of the power transmission loss is the power transmission loss value “56.267W” of the system configuration (f), and it can be seen that this system configuration (f) is a system configuration that minimizes the power transmission loss.
  • a branch exchange method has been proposed as one of the system configuration determination methods for minimizing the transmission loss of such a distribution system (see Non-Patent Document 1).
  • this branch exchange method in a radial distribution system, a switch in an “open” state is changed to a “closed” state to create one loop, and the power flow calculation of the created loop is performed.
  • the system configuration in which the switch having the minimum passing current is set to the “open” state is obtained.
  • the system configuration that minimizes the transmission loss is obtained. This is the extraction method.
  • a loop is created by closing the switch 91 in the “open” state, and the power flow calculation in this loop is performed.
  • the current passing through 91 to 93 and 95 is calculated.
  • the passing current of each of the switches 92 to 93, 95 maintaining the “closed” state is to close the switch 91 with respect to the passing current of the system configuration of FIG. 9 in which the switch 91 is in the “open” state.
  • the calculation is performed by adding the current flowing through the switch 91.
  • the passing current of the switch 91 can be calculated from the potential difference between both ends of the switch 91 in the “open” state in FIG. 9 by using Thevenin's law.
  • the potential difference between both ends of the switch 91 can be obtained by calculating the voltage drop Vd [V] in each section by the following equation (2).
  • the current flowing through the switch 91 by closing the switch 91 can be calculated by the following equation (3) using the Thevenin's law.
  • the power transmission loss of the newly constructed radial distribution system is calculated by opening the switch that minimizes the passing current in the loop. That is, according to FIG. 14, the switch having the minimum passing current is the switch 91, and therefore the system configuration of the distribution system is the same in the operation of setting the switch 91 to the “open” state, and the transmission loss is It does not change.
  • the present invention has been proposed to solve the above-described problems, and its purpose is to determine a system configuration with a practical calculation time and smaller transmission loss than the branch exchange method. It is an object of the present invention to provide an apparatus, a method and a program for determining a minimum power transmission loss system configuration.
  • the present invention provides a minimum transmission loss system configuration determination device that determines a minimum transmission loss system configuration that minimizes a transmission loss among system configurations in which the switching state of the switch is changed. Therefore, it has the following technical features. That is, the minimum power transmission loss system configuration determining apparatus of the present invention first includes “closed” switch selecting means, “open” switch selecting means, power transmission loss calculating means, reduction determining means, updating means, and determining means.
  • the “closed” switch selection means selects two or more open switches from a plurality of switches to be closed so as to create one mesh system in the system configuration. It is means to do.
  • the “open” switch selecting means should open the same number of closed switches as the number of switches selected by the “closed” switch selecting means so as to obtain a radial system configuration. It is a means to select.
  • the transmission loss calculating means changes the open switch selected by the “closed” switch selecting means to the closed state, and the open / closed switch selected by the “open” switch selecting means. It is means for calculating the transmission loss of each system configuration obtained as a result of changing the device to the open state.
  • the reduction determination unit is a unit that determines whether the transmission loss of the specific system configuration newly calculated by the transmission loss calculation unit is lower than the transmission loss of another system configuration calculated earlier.
  • the updating unit is a unit that updates the specific system configuration as a minimum transmission loss system candidate when the reduction determination unit determines that the transmission loss of the specific system configuration is reduced.
  • the determining means is means for determining the minimum transmission loss system configuration from the minimum transmission loss system candidates. In this determination means, the reduction determination means reduces any transmission loss of each system configuration calculated by the transmission loss calculation means from the transmission loss of the minimum transmission loss system candidate that is the latest update result. If it is determined that it is not, the minimum transmission loss system candidate is determined as the minimum transmission loss system configuration.
  • the “open” switch selecting means sequentially selects a switch in a closed state with a minimum passing current among the switches in the mesh system. It is.
  • the “closed” switch selection means can select not only a plurality of open switches to be closed, but also a single switch in an open state. Further, a configuration in which the number of switches to be selected is changed by changing the number of switches to be selected by the “closed” switch selection unit, so that the number of switches to be selected is variable is also an aspect of the present invention. It is.
  • the system includes an initial system generation unit that generates a plurality of initial systems by randomly changing the open / close state of the switch, and the “closed” switch selection unit includes each initial system generated by the initial system generation unit.
  • the “closed” switch selection unit includes each initial system generated by the initial system generation unit.
  • a plurality of "open” state switches are changed to the "closed” state at the same time, and the same number of switches are set to the "open” state, whereby the branch exchange method described above Compared to the above, since it is possible to search in a wide range, it is possible to provide an apparatus, method and program for determining a minimum transmission loss system configuration capable of determining a system configuration with a smaller transmission loss.
  • the block block diagram of the determination apparatus of the minimum power transmission loss system structure which concerns on the 1st Embodiment of this invention The figure which shows the processing flow of the determination apparatus of the minimum power transmission loss system structure which concerns on the 1st Embodiment of this invention.
  • strain structure which concerns on the 3rd Embodiment of this invention strain structure which concerns on the 3rd Embodiment of this invention.
  • FIG. 1 is a block diagram illustrating the configuration of the minimum power loss system configuration determining apparatus according to the first embodiment.
  • This minimum power transmission loss system configuration determining apparatus includes a calculation means 1, an input means 2, a storage means 3, a display means 4, and an I / F means 5 as shown in FIG.
  • the I / F unit 5 is connected to the power distribution system 7 via the power distribution system monitoring control device 6.
  • the computing means 1 is specifically realized by a main memory of a computer, a program stored in the computer, a CPU controlled by the program, etc., and has processing means 10 to 17 as will be described later.
  • the input means 2 is an input device such as a mouse or a keyboard for inputting a signal corresponding to a user operation to the computer.
  • the storage means 3 stores in advance various system information data of the power distribution system necessary for the processing in the computing means 1 and also stores the calculation results by the computing means 1. Realized.
  • the system information data of a power distribution system is information, such as connection information (connection structure of a power distribution system) of a distribution line, an impedance, the switching state of a switch, a load, etc., for example.
  • the display means 4 is a display device such as a display for displaying to the user the data input through the input means 2, the data stored in the storage means 3, and the calculation result processed by the calculation means 1.
  • the I / F unit 5 is a communication interface that transmits and receives system information data and control data of the distribution system 7 via the distribution system monitoring and control device 6, and the received system information data is stored in the storage unit 3.
  • the distribution system monitoring and control device 6 is a device that performs monitoring and control of the distribution system 7, and holds various data related to the planning, operation, and control of the distribution system 7.
  • the computing means 1 includes a data reading means 10, a power transmission loss calculating means 11, a “closed” switch selecting means 12, a power flow calculating means 13, an “open” switch selecting means 14, a power transmission loss reduction determining means 15, an initial stage.
  • System comparison means 16 and loss minimization configuration update means 17 are provided.
  • the data reading means 10 is means for reading the system information data from the storage means 3, that is, the connection configuration of the distribution system, the open / close state of the switch provided in the system, and data on the load and impedance.
  • system configuration to be determined, that is, “system configuration of the distribution system” means the configuration of the distribution system including the switching state of the switch, and “connection configuration of the distribution system”. Means an installation connection configuration of the distribution system that does not include the open / close state of the switch.
  • the power transmission loss calculation means 11 calculates the power transmission loss in the system configuration changed by opening and closing the switch provided in the power distribution system 7.
  • the “closed” switch selection means 12 selects n (n ⁇ 2) switches that are changed from the plurality of switches in the “open” state to the “closed” state among the switches constituting the distribution system 7. select.
  • the power flow calculation means 13 is a means for calculating the power flow of the mesh system created by changing the n switches selected by the “closed” switch selection means 12 to the “closed” state.
  • the “open” switch selecting means 14 is a mesh-like system created by changing the n switches selected by the “closed” switch selecting means 12 to the “closed” state. Among the “closed” state switches to be configured, n switches to be changed to the “open” state are selected. As an example, the “open” switch selection means 14 is a switch that should open the switch with the smallest value of current passing through the power flow of the mesh system calculated by the power flow calculation means 13. Are selected sequentially.
  • the transmission loss reduction determining means 15 is a means for determining whether the transmission loss is reduced from the previous system configuration with respect to the new system configuration in which the switching state of the switch is changed. For example, it is determined whether the current power transmission loss calculated by the power transmission loss calculating means 11 is reduced as compared with the solution candidates that are sequentially updated.
  • the transmission loss reduction determining unit 15 stores the current transmission loss in the storage unit 3 as a new solution candidate.
  • the initial system comparison unit 16 is a unit that determines whether the transmission loss of the solution candidate is lower than the transmission loss of the initial system.
  • the data reading means 10 sends system information data such as data relating to the connection configuration of the distribution system from the storage means 3, the switching state of the switches provided in the system, and the load and impedance. And data to be used in the subsequent processing are prepared.
  • the system configuration used in the initial stage is the initial system configuration, and this is set as a solution candidate.
  • the distribution system used as the object of minimization of power transmission loss has a radial configuration
  • the initial system configuration has a radial configuration.
  • the transmission loss calculation means 11 calculates the transmission loss of the solution candidate that is the initial system, and stores it in the storage means 3 as the initial transmission loss.
  • the initial system configuration and the initial transmission loss stored in the storage unit 3 are adopted as the system configuration in the current distribution system, and serve as a reference for performing a system configuration update process described later.
  • the “closed” switch selection means 12 is set to the “closed” state in the current system configuration, and has not yet been selected (unselected) n (n ⁇ 2) “open” state. Select a combination of switches.
  • the set of n switches selected by the “closed” switch selection means 12 is selected so that one mesh system is created by closing the switch.
  • the “closed” switch selecting unit 12 includes a limiting unit that limits the number of n switches to be selected. By this limiting unit, for example, the potential difference between both ends of the switch is large. The number of sets of switches can be limited in the order that includes the switches.
  • the “closed” switch selecting means 12 selects n “open” switches
  • the “open” switch is changed to the “closed” state on the model.
  • this “closed” switch is selected.
  • the power flow of the mesh system created when the state is changed is calculated by the power flow calculation means 13.
  • the “open” switch selection means 14 selects one switch to be set to the “open” state among the “closed” state switches of the created mesh system. Specifically, in the power flow of the mesh system calculated by the power flow calculation means 13 in STEP 203, the switch in the “closed” state in which the current value passing through is minimized is selected as the switch to be set in the “open” state. To do. In particular, a switch in the “closed” state that minimizes the passing current is selected as a switch that should be in the “open” state based on the capacity constraint of the transmission line.
  • the “open” switch selection means 14 selects the switch in the “closed” state in which the passing current value is minimum, and the selected switch The process of changing the device to the “open” state and calculating the power flow of the newly created mesh system by the flow calculation means 13 is repeated n times.
  • the “open” switch selecting means 14 selects n “closed” state switches one by one, and The calculation means 13 changes the selected switch to the “open” state, and calculates the power flow n times for the remaining mesh system.
  • the transmission loss calculation means 11 calculates the transmission loss of the radial system reconfigured by the processing of STEPs 204 and 205 repeated n times.
  • the transmission loss reduction determination means 15 determines whether or not the current transmission loss of the radial system calculated by the transmission loss calculation means 11 is lower than the transmission loss of the solution candidate.
  • the transmission system loss reduction determination means 15 causes the current system configuration and transmission loss to be a new solution candidate and The transmission loss is stored in the storage means 3.
  • the transmission loss of the current system configuration is not lower than the transmission loss of the solution candidate (NO in STEP 207)
  • the current system configuration is not stored as a solution candidate, and the process proceeds to STEP 209.
  • the “closed” switch selecting means 12 has n “s” in different arrangements from the arrangement of the “open” state switches configured by the processing of STEPs 204 and 205 repeated n times. It is determined whether there is a set of switches in the “open” state. That is, it is determined whether there are n other “open” switch groups that have not yet been selected.
  • n “open” switch sets If there are other n “open” switch sets (YES in STEP 209), the process returns to STEP 202, and a new n “open” switch set is “closed” open / close. It is selected by the device selection means 12, and the subsequent processing is repeated.
  • the initial system comparison means 16 causes the transmission loss of the solution candidate in STEP 208 to be greater than the transmission loss of the initial system. It is determined whether it is reduced (STEP 210).
  • the solution candidate and the transmission loss are stored in the storage unit 3 by the loss minimizing configuration updating unit 17 as the initial system configuration and the initial transmission loss.
  • the initial system configuration and the initial transmission loss are updated (STEP 211).
  • the processing from STEP 202 onward is repeated based on the updated initial system configuration and the initial transmission loss.
  • the configuration updating unit 17 determines the current initial system configuration and initial transmission loss as the minimum transmission loss system configuration and minimum transmission loss, and displays the determined minimum transmission loss system configuration and minimum transmission loss on the display unit 4 and the I / F.
  • the data is output through the means 5 (STEP 212), and the process is terminated.
  • the loss minimization configuration updating unit 17 functions as a determining unit in the present invention.
  • the data reading means 10 reads the power distribution system configuration (initial system configuration) as shown in FIG. 9A and the system information data as shown in FIG. 9B from the storage means 3 as initialization processing. Then, the transmission loss calculation means 11 calculates the transmission loss of the solution candidate which is the initial system configuration of FIG. 9, and obtains 57.567 [W] as shown in FIG. This power transmission loss is stored in the storage means 3 as the initial power transmission loss.
  • the “closed” switch selection means 12 selects a combination of two “open” state switches that should be in the “closed” state in the system configuration of FIG. Two “open” switches are changed to the “closed” state.
  • the power flow calculation means 13 calculates the power flow of the mesh system created when the state is changed to the “closed” state.
  • the “open” switch selecting means 14 selects the switch 92 that minimizes the passing current, and the system configuration as shown in FIG. Is obtained.
  • the power flow calculation means 13 calculates the power flow of the new mesh system in FIG. 4 created when the state is changed to the “open” state.
  • the power transmission loss calculation means 11 calculates the power transmission loss of the newly configured system configuration, and as shown in FIG. 12, the power transmission loss 56.267 corresponding to the system configuration of FIG. [A] is obtained.
  • the power transmission loss reduction determining means 15 determines whether or not the power transmission loss corresponding to the system configuration of FIG. 11 (f) calculated by the power transmission loss calculating means 11 is lower than the solution loss of the solution candidate. .
  • the power transmission loss reduction determination unit 15 includes the power transmission loss 56.267 [W] of the system configuration and the initial power transmission loss 57.567 [W] calculated by the power transmission loss calculation unit 11 in the initialization process of STEP 201. By comparing (see FIG. 10), it is determined that the current transmission loss is lower than the solution loss of the solution candidate. As shown in FIG. 12, there is no system configuration capable of reducing the transmission loss from this transmission loss 56.267 [W], so even when another set of “open” state switches is selected, There is no system configuration lower than the transmission loss of the system configuration in FIG.
  • the transmission loss reduction determination means 15 newly sets this system configuration and transmission loss 56.267 [W]. Are stored in the storage means 3 as possible solution candidates and their transmission losses.
  • the “closed” switch selection means 12 determines whether there are two “open” switch groups having different arrangements with respect to the system configuration of FIG. The If there are other two “open” switch groups (YES in STEP 209), the process returns to STEP 202 and two new “open” switch groups are “closed”. “Selected by the switch selection means 12, and the subsequent processing is repeated.
  • the initial system comparison means 16 causes the transmission loss of the solution candidate in STEP 208 to be greater than the transmission loss of the initial system. It is determined whether it is reduced (STEP 210).
  • the loss minimizing configuration updating unit 17 stores the solution candidate and the power transmission loss in the storage unit 3 as the initial system configuration and the initial power transmission loss.
  • the initial system configuration and the initial transmission loss are updated (STEP 211).
  • the processing from STEP 202 onward is repeated based on the updated initial system configuration and the initial transmission loss.
  • the configuration updating unit 17 determines the current initial system configuration and initial transmission loss as the minimum transmission loss system configuration and minimum transmission loss, and displays the determined minimum transmission loss system configuration and minimum transmission loss on the display unit 4 and the I / F.
  • the data is output through the means 5 (STEP 212), and the process is terminated. That is, the system configuration in FIG. 11F is output as the minimum power transmission system configuration that minimizes the power transmission loss.
  • the “open” switch selecting means 14 selects one switch in the “closed” state to be set in the “open” state one by one, but the present invention is limited to this mode. Not what you want. That is, the present invention also includes an embodiment in which n switches that are in the “closed” state at a time are selected and changed to the “open” state.
  • FIG. 5 is a block diagram showing a configuration of a determination apparatus for a minimum transmission loss system configuration according to the second embodiment for minimizing transmission loss.
  • the same components as those in FIG. 5 are identical to those in FIG.
  • a switch number changing means 18 is provided.
  • the switch number changing means 18 changes the number of switches to be selected at one time by the “closed” switch selecting means 12.
  • the switch number changing means 18 determines whether the number of selected switches is equal to n, which is a predetermined number of preset switches, and the number of selected switches is less than n. In this case, the number of switches to be selected at a time is increased by one up to n.
  • FIG. 6 is a diagram illustrating a system configuration determination flow that minimizes power transmission loss according to the second embodiment.
  • the data reading means 10 relates to the connection configuration of the distribution system from the storage means 3, the switching state of the switch provided in the system, and the load and impedance.
  • System information data such as data is read, and data to be used in the subsequent processing is prepared.
  • the system configuration used in the initial stage is the initial system configuration, and this is set as a solution candidate.
  • the transmission loss calculation means 11 calculates the transmission loss of the solution candidate that is the initial system, and stores it in the storage means 3 as the initial transmission loss.
  • the initial power transmission system and the initial power transmission loss stored in the storage unit 3 are adopted as a system configuration in the current distribution system, and serve as a reference for performing a system configuration update process to be described later.
  • step 602 when selecting n (n ⁇ 1) “open” state switches that have not yet been selected, the “closed” switch selection unit 12 should be in the “closed” state.
  • the “closed” switch selecting unit 12 includes a limiting unit that limits the number of n switches to be selected. By this limiting unit, for example, the potential difference between both ends of the switch is large. The number of sets can be limited in the order including switches.
  • the power flow calculation means 13 calculates the power flow of the mesh system created when the state is changed to the “closed” state.
  • one of the switches in the “closed” state of the created mesh system is selected by the “open” switch selection means 14 to be in the “open” state.
  • the switch in the “closed” state in which the passing current value is minimum is selected as the switch to be set in the “open” state.
  • a switch in the “closed” state that minimizes the passing current is selected as a switch that should be in the “open” state based on the capacity constraint of the transmission line.
  • the “open” switch selecting means 14 selects one “closed” switch
  • the “closed” switch is changed to the “open” state on the model.
  • this “open” switch is selected.
  • the power flow of the new mesh system created when the state is changed is calculated by the power flow calculation means 13.
  • the power transmission loss calculation means 11 calculates the power transmission loss of the reconfigured radial system.
  • the power transmission loss reduction determination means 15 calculates the current power transmission loss of the radial system calculated by the power transmission loss calculation means 11. However, it is determined whether or not it is lower than the transmission loss of the solution candidate.
  • STEP 609 there is one “open” switch group in which the “closed” switch selection means 12 is arranged differently from the arrangement of the “open” switch in the configured system configuration. Determine whether. That is, it is determined whether there is one other “open” switch group that has not yet been selected.
  • the “closed” switch selecting means 12 opens and closes n “open” states of the system configuration configured by repeating the processes of STEPs 604 and 605 n times. It is determined whether there is a set of n “open” switches in a different arrangement from the arrangement of the appliances.
  • the process returns to STEP 602, and one new “open” switch set is “closed” open / close. It is selected by the device selection means 12, and the subsequent processing is repeated.
  • the initial system comparison means 16 causes the transmission loss of the solution candidate in STEP 608 to be greater than the transmission loss of the initial system. It is determined whether it is reduced (STEP 610).
  • the solution candidate and the transmission loss are stored in the storage unit 3 by the loss minimizing configuration updating unit 17 as the initial system configuration and the initial transmission loss.
  • the initial system configuration and its initial transmission loss are updated (STEP 611).
  • the processing from STEP 602 is repeated on the basis of the updated initial system configuration and the initial transmission loss.
  • the switch number changing means 18 determines whether or not the number of switches selected by the “closed” switch selection means 12 is equal to a preset number of n (a preset number of preset switches).
  • the “open” switch selection unit 14 minimizes the passing current value based on the calculated power flow.
  • the process is changed to the “open” state, and the power flow calculating means 13 calculates the power flow of the newly created mesh system n times.
  • the switch number changing unit 18 determines that the number of switches selected by the “closed” switch selecting unit 12 is equal to the preset number n (YES in STEP612)
  • the updated configuration update means 17 determines the current initial system configuration and initial transmission loss as the minimum transmission loss system configuration and minimum transmission loss, and displays the determined minimum transmission loss system configuration and minimum transmission loss on the display unit 4 and the I / I
  • the data is output through the F means 5 (STEP 613), and the process is terminated.
  • the number of switches that are changed from the “open” state to the “closed” state at a time can be increased sequentially from 1, so that the search range is expanded.
  • the minimum transmission loss can be calculated at high speed in the initial stage when the number of switches to be changed is small, and the number of switches to be changed has increased. In the stage, it is possible to gradually improve the degree of minimization of transmission loss.
  • the switch number changing means 18 in the above embodiment determines whether or not the number of switches selected by the “closed” switch selection means 12 is equal to the preset n, and this preset n The number of switches is increased when the number is less than one, but the present invention is not limited to this.
  • FIG. 7 is a block diagram showing a determination apparatus for a minimum transmission loss system configuration according to the third embodiment for minimizing transmission loss.
  • an initial system generation unit 19 an initial system selection unit 20, and a minimized configuration selection unit 21 are provided.
  • the initial system generation means 19 is a means for generating a plurality of initial system configurations having different system configurations from a certain initial system.
  • the initial system selection means 20 is a means for selecting an initial system that has not yet been selected from a plurality of initial systems, and the minimized configuration selection means 21 is a solution candidate for minimizing transmission loss for each initial system configuration. It is a means for selecting the one with the smallest transmission loss from all the obtained system configurations.
  • FIG. 8 is a figure which shows the determination flow of the system
  • the description of the same processing as the flowchart of FIG. 2 is omitted.
  • the data reading unit 10 is configured to transmit data such as the connection configuration of the power distribution system from the storage unit 3, the open / close state of the switch provided in the system, and data regarding the load and impedance.
  • System information data is read and data to be used in the subsequent processing is prepared.
  • the system configuration used in the initial stage is the initial system configuration, and this is set as a solution candidate.
  • the transmission loss calculation means 11 calculates the transmission loss of the solution candidate that is the initial system, and stores it in the storage means 3 as the initial transmission loss.
  • the initial power transmission system and the initial power transmission loss stored in the storage unit 3 are adopted as a system configuration in the current distribution system, and serve as a reference for performing a system configuration update process to be described later.
  • the initial system generation unit 19 creates a plurality of different system configurations for the read initial system, and the transmission loss calculation unit 11 calculates the initial transmission loss for each system configuration.
  • the plurality of initial system configurations created by the initial system generation means 19 are, for example, closing a randomly selected “open” state switch with respect to the initial system, and in the configured mesh system, It is created by opening a randomly selected switch.
  • the initial system selection unit 20 selects a new system configuration that has not yet been selected among the plurality of initial system configurations created by the initial system generation unit 19. Thereafter, by executing the same processing as the processing of STEPs 202 to 211 in FIG. 2 in the first embodiment, the minimum transmission loss and the minimum transmission loss system configuration calculated based on the selected initial system configuration are obtained. Can be derived (STEP 804-813).
  • the initial system selection means 20 determines whether there is another initial system configuration that has not yet been subjected to power transmission loss minimization processing. If there is present (YES in STEP 814), the process proceeds to STEP 803. A new initial system configuration is selected.
  • the minimized configuration selection unit 21 minimizes the transmission loss for each initial system configuration. From all system configurations obtained as candidate solutions, select the system configuration that minimizes the transmission loss, determine the selected system configuration and its transmission loss as the minimum transmission loss system configuration and minimum transmission loss, and display them. The data is output through the means 4 and the I / F means 5, and the process is terminated.
  • the present invention selects the initial system configuration means 19 for generating a plurality of initial systems having different system configurations and an initial system configuration that has not yet been selected from the plurality of initial system configurations according to the third embodiment.
  • the initial system selection means 20 and the minimization configuration selection means 21 for selecting the system configuration with the minimum power transmission loss among the system configurations with the minimum power transmission loss calculated based on all the initial system configurations.
  • Embodiments applied to the forms are also included.
  • the data reading unit 10 receives data such as the configuration of the power distribution system from the storage unit 3, the open / close state of the switch provided in the system, and data on the load and impedance.
  • the system information data is read, and as an initialization process, the initial system generation unit 19 creates a plurality of different system configurations, and the transmission loss calculation unit 11 calculates the initial transmission loss for each system configuration.
  • the initial system selection unit 20 selects a new system configuration that has not yet been selected from among the plurality of initial system configurations created by the initial system generation unit 19, and STEPs 602 to 612 are performed based on the initial system configuration.
  • the process is executed.
  • the switch number changing unit 18 determines that the number of switches selected by the “closed” switch selecting unit 12 is equal to a preset n (predetermined threshold) (YES in STEP612) )
  • the initial system selection means 20 determines whether there is another initial system configuration that has not been subjected to the power transmission loss minimization process.
  • the initial system selection unit 20 When it is determined by the initial system selection unit 20 that there is another initial system configuration that has not been subjected to the power transmission loss minimization process, the initial system selection unit 20 includes a plurality of items created by the initial system generation unit 19. By selecting a new system configuration that has not been selected from among the initial system configurations, the processing from STEPs 602 to 612 is repeated.
  • the minimized configuration selection unit 21 is obtained as a solution candidate for minimizing the transmission loss for each initial system configuration.
  • the system configuration that minimizes the transmission loss is selected from all the system configurations, the selected system configuration and the transmission loss are determined as the minimum transmission loss system configuration and the minimum transmission loss, and the display means 4 and the I / I The data is output through the F means 5 and the process is terminated.

Abstract

Provided are a decision device with a minimum power transmission loss system, a method, and a program which can determine having lower power transmission losses than branch switching during a practical computation period. A “closed” open/close mechanism selection means (12) selects the set of the unselected n (n ³ 2) open/close mechanisms in the “open” state which should be in the “closed” state so that the mesh systems become one in the current system, and changes the mechanisms to the “closed” state. A flow calculation means (13) calculates the power flow of the mesh system created by changing to the “closed” state. An “open” open/close mechanism selection means (14) sequentially selects an open/close mechanism in the “closed” state where the transmitted current value becomes the minimum to be an open/close mechanism which should be in the “open” state in the power flow of the mesh system calculated by the flow calculation means (13), and changes the mechanism to the “open” state.

Description

最小送電損失系統構成の決定装置、方法及びプログラムMinimum transmission loss system configuration determination device, method and program
 本発明は、配電系統の送電損失を決定する装置に係り、特に、実用的な計算時間で、送電損失が最小となる系統構成を決定可能な最小送電損失系統構成の決定装置、方法及びプログラムに関する。 The present invention relates to an apparatus for determining a transmission loss of a distribution system, and more particularly, to a determination apparatus, a method, and a program for a minimum transmission loss system configuration capable of determining a system configuration that minimizes the transmission loss in a practical calculation time. .
 一般的に、配電系統の送電損失を最小化する系統構成を決定する方法としては、「配電系統が放射状に構成され、かつ、系統内のフィーダーや開閉器の容量制約がある」といった条件の下で、送電損失が最小となるように、配電系統に設けられた開閉器の開閉状態を決定する方法が知られている。下記に、このような配電系統の送電損失を最小とする配電系統構成の決定方法の一例を、図9~13を参照して説明する。 Generally, the method of determining the system configuration that minimizes the transmission loss of the distribution system is as follows: “The distribution system is configured radially and there are capacity constraints on feeders and switches in the system”. Thus, a method for determining the open / close state of a switch provided in the distribution system so that the power transmission loss is minimized is known. An example of a method for determining the distribution system configuration that minimizes the transmission loss of such a distribution system will be described below with reference to FIGS.
 図9(a)は、5台の開閉器91~95が放射状に配設された配電系統の接続構成例を示す図であり、開閉器を示すブロックのうち、「開」状態のブロックを空欄で、「閉」状態のブロックをハッチングでそれぞれ示している。すなわち、図9(a)中においては、開閉器91、94が「開」状態、開閉器92、93、95が「閉」状態となっている。また、図9(b)は、図9(a)における配電系統の区間番号9a~9gに対応させた当該区間の負荷、及び区間のインピーダンスを示している。ここで、図9(a)の配電系統の接続構成例において、区間負荷が区間内で一様に分布するものとすると、各区間の送電損失は、下記の式(1)により表される。 FIG. 9A is a diagram showing a connection configuration example of a distribution system in which five switches 91 to 95 are radially arranged. Among the blocks indicating the switches, the “open” state blocks are blank. The blocks in the “closed” state are indicated by hatching. That is, in FIG. 9A, the switches 91 and 94 are in the “open” state, and the switches 92, 93, and 95 are in the “closed” state. FIG. 9B shows the load and the impedance of the section corresponding to the section numbers 9a to 9g of the distribution system in FIG. 9A. Here, in the connection configuration example of the distribution system in FIG. 9A, assuming that the section load is uniformly distributed in the section, the transmission loss in each section is expressed by the following equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 すなわち、図9(a)の放射状に構成された配電系統の各区間の送電損失は、式(1)に対して図9(b)の負荷及びインピーダンスを代入することにより、図10のように算出することができる。なお、図9(a)の配電系統の接続構成例において送電損失が最小となる系統構成を決定するためには、この配電系統が放射状態を保つように、すべての開閉器91~95の開閉状態に対して送電損失を計算し、全体の損失が最小となるように開閉器91~95の開閉状態を決定する。 That is, the transmission loss in each section of the distribution system configured radially as shown in FIG. 9A is obtained by substituting the load and impedance shown in FIG. Can be calculated. In order to determine a system configuration that minimizes the transmission loss in the connection configuration example of the distribution system in FIG. 9A, all the switches 91 to 95 are opened and closed so that the distribution system maintains a radiating state. The power transmission loss is calculated with respect to the state, and the switching states of the switches 91 to 95 are determined so that the total loss is minimized.
 ここで、図11は、このような放射状に構成された配電系統における開閉器の開閉状態のすべての組み合わせを示す図である。すなわち、図11の(a)~(h)は、開閉器の開閉状態の異なる8つの系統構成をそれぞれ示している。図12は、図11の各系統構成(a)~(h)に対応する送電損失を算出した結果である。図12によれば、送電損失の最小値は系統構成(f)の送電損失値「56.267W」であり、この系統構成(f)が送電損失最小となる系統構成であることがわかる。 Here, FIG. 11 is a diagram showing all combinations of the switching states of the switches in such a radially distributed distribution system. That is, (a) to (h) of FIG. 11 respectively show eight system configurations with different switching states of the switches. FIG. 12 shows the result of calculating the power transmission loss corresponding to each system configuration (a) to (h) in FIG. According to FIG. 12, the minimum value of the power transmission loss is the power transmission loss value “56.267W” of the system configuration (f), and it can be seen that this system configuration (f) is a system configuration that minimizes the power transmission loss.
 しかしながら、実際の大規模な配電系統において、すべての開閉器の開閉状態の組み合わせに対して送電損失を計算するこのような方法を適用すると、当該組み合わせは膨大となり、実用的な計算時間で送電損失が最小となる配電系統の構成を決定することは不可能であった。そのため、すべての組み合わせの計算を行う上記方法以外にも、種々の方法を採用して送電損失を最小とする系統構成を求める決定方法が提案されている。 However, in an actual large-scale distribution system, applying this method of calculating transmission loss for all switch combinations of switches will result in an enormous number of combinations and transmission loss in practical calculation time. It was impossible to determine the distribution system configuration that minimizes the power distribution system. For this reason, in addition to the above-described method for calculating all combinations, a determination method for obtaining a system configuration that minimizes transmission loss by employing various methods has been proposed.
 このような配電系統の送電損失の最小化を図る系統構成の決定方法の一つとして、例えば、ブランチ交換法が提案されている(非特許文献1参照)。このブランチ交換法は、放射状の配電系統において、ある「開」状態の開閉器を「閉」状態に変更して1つのループを作成し、作成したループの電力潮流計算を行うことで、開閉器のうち通過電流が最小となる開閉器を「開」状態とした系統構成を求めるものである。そして、このようなループ作成と潮流計算により系統構成を求める処理を、すべての「開」状態の開閉器について繰り返し実施することにより、求めた系統構成のうち、送電損失が最小となる系統構成を抽出する方法である。 For example, a branch exchange method has been proposed as one of the system configuration determination methods for minimizing the transmission loss of such a distribution system (see Non-Patent Document 1). In this branch exchange method, in a radial distribution system, a switch in an “open” state is changed to a “closed” state to create one loop, and the power flow calculation of the created loop is performed. The system configuration in which the switch having the minimum passing current is set to the “open” state is obtained. Then, by repeatedly performing the process of obtaining the system configuration by such loop creation and power flow calculation for all the switches in the “open” state, among the obtained system configurations, the system configuration that minimizes the transmission loss is obtained. This is the extraction method.
 以下には、上述したようなブランチ交換法による、送電損失を最小化する系統構成の決定方法の一例を、図9、13、14を参照して説明する。 Hereinafter, an example of a system configuration determination method that minimizes power transmission loss by the branch exchange method as described above will be described with reference to FIGS.
 まず、図9の配電系統に対してブランチ交換法を適用すると、「開」状態にある開閉器91を閉じることでループを作成し、このループ内の電力潮流計算を行うことで、各開閉器91~93、95を通過する電流を算出する。「閉」状態を維持している各開閉器92~93、95の通過電流は、開閉器91が「開」状態にある図9の系統構成の通過電流に対して、開閉器91を閉じることで当該開閉器91に流れる電流を加えることにより算出する。 First, when the branch exchange method is applied to the distribution system of FIG. 9, a loop is created by closing the switch 91 in the “open” state, and the power flow calculation in this loop is performed. The current passing through 91 to 93 and 95 is calculated. The passing current of each of the switches 92 to 93, 95 maintaining the “closed” state is to close the switch 91 with respect to the passing current of the system configuration of FIG. 9 in which the switch 91 is in the “open” state. The calculation is performed by adding the current flowing through the switch 91.
 また、開閉器91の通過電流は、図9において「開」状態にある開閉器91の両端の電位差から、テブナンの法則を用いて算出することができる。なお、開閉器91の両端の電位差は、各区間の電圧降下Vd[V]を次式(2)により計算することで求めることができる。 Further, the passing current of the switch 91 can be calculated from the potential difference between both ends of the switch 91 in the “open” state in FIG. 9 by using Thevenin's law. The potential difference between both ends of the switch 91 can be obtained by calculating the voltage drop Vd [V] in each section by the following equation (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 また、開閉器91を閉じることで開閉器91に流れる電流は、テブナンの法則を利用して、次式(3)により算出することができる。 Further, the current flowing through the switch 91 by closing the switch 91 can be calculated by the following equation (3) using the Thevenin's law.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 ここで、図13は、図9の系統構成の各開閉器91~95に対して上記の計算によって求めた通過電流と各区間の電圧降下を示している。すなわち、開閉器91の電位差は、図13中に示された各区間の電圧降下Vd[V]から、
ΔV = -0.42-(-0.05-0.125-0.225-0.35) = 0.33
となる。そして、得られたこの電位差と式(3)から、開閉器91を閉じることで生じる電流変化は、
ΔI = 0.33/(0.028+0.01+0.01+0.01+0.01+0.01) = 4.853[A]
となる。従って、開閉器91を閉じた後の開閉器91~93、95の通過電流は図14のようになる。
Here, FIG. 13 shows the passing current and the voltage drop in each section obtained by the above calculation for each of the switches 91 to 95 having the system configuration of FIG. That is, the potential difference of the switch 91 is determined from the voltage drop Vd [V] in each section shown in FIG.
ΔV = -0.42-(-0.05-0.125-0.225-0.35) = 0.33
It becomes. And from this potential difference obtained and equation (3), the current change caused by closing the switch 91 is
ΔI = 0.33 / (0.028 + 0.01 + 0.01 + 0.01 + 0.01 + 0.01) = 4.853 [A]
It becomes. Therefore, the passing currents of the switches 91 to 93 and 95 after the switch 91 is closed are as shown in FIG.
 ブランチ交換法では、次に、ループ内において通過電流が最小となる開閉器を開くことで、新しく構成された放射状の配電系統の送電損失を計算する。つまり、図14によれば、通過電流が最小となる開閉器は開閉器91であるため、この開閉器91を「開」状態にする操作では配電系統の系統構成は同じであり、送電損失は変化しない。 In the branch exchange method, the power transmission loss of the newly constructed radial distribution system is calculated by opening the switch that minimizes the passing current in the loop. That is, according to FIG. 14, the switch having the minimum passing current is the switch 91, and therefore the system configuration of the distribution system is the same in the operation of setting the switch 91 to the “open” state, and the transmission loss is It does not change.
 また、開閉器94に対して同様の処理、すなわち「開」状態にある開閉器94を閉じることでループを作成し、このループ内の電力潮流計算を行うことで、各開閉器92~95を通過する電流を算出する操作を行うと、ループ系統の通過電流は図15のように算出される。ここで、図15によれば、通過電流が最小の開閉器は、やはり開閉器94となるので、配電系統の系統構成は同じであり、送電損失は変化しない。 Further, a similar process is performed on the switch 94, that is, by closing the switch 94 in the “open” state, a loop is created, and the power flow calculation in this loop is performed, so that each of the switches 92 to 95 is When an operation for calculating the passing current is performed, the passing current of the loop system is calculated as shown in FIG. Here, according to FIG. 15, the switch with the smallest passing current is also the switch 94, so that the system configuration of the distribution system is the same and the transmission loss does not change.
 以上のことから分るように、図9の配電系統に対してブランチ交換法を適用すると、「開」状態の開閉器を一度に1つだけ「閉」状態としてループを作成し、ループ内の電力潮流計算を行わなければならないので、送電損失が最小となる配電系統の系統構成を決定するのに多くの反復計算を要する。また、「開」状態の開閉器が一度に1つずつ入れ替わる狭い範囲を近傍として探索する局所探索法であり、探索する近傍の範囲が狭いので、算出結果が局所解(local minimum)に陥り易い。そのため、図11(f)のような、送電損失が真の最小値となる系統構成を求めることができなかった。 As can be seen from the above, when the branch exchange method is applied to the distribution system of FIG. 9, a loop is created with only one “open” switch at a time being “closed”, Since power flow calculation must be performed, iterative calculations are required to determine the system configuration of the distribution system that minimizes transmission loss. In addition, this is a local search method in which a narrow range in which switches in the “open” state are switched one at a time is searched as a neighborhood, and since the neighborhood range to be searched is narrow, the calculation result tends to fall into a local solution (local minimum) . For this reason, a system configuration in which the power transmission loss is a true minimum value as shown in FIG. 11F cannot be obtained.
 本発明は、以上のような課題を解消するために提案されたものであって、その目的は、実用的な計算時間で、かつ、ブランチ交換法より送電損失の小さい系統構成を決定可能な、最小送電損失系統構成の決定装置、方法及びプログラムを提供することにある。 The present invention has been proposed to solve the above-described problems, and its purpose is to determine a system configuration with a practical calculation time and smaller transmission loss than the branch exchange method. It is an object of the present invention to provide an apparatus, a method and a program for determining a minimum power transmission loss system configuration.
 上述した目的を達成するために、本発明は、開閉器の開閉状態が変更された系統構成のうち、送電損失が最小となる最小送電損失系統構成を決定する最小送電損失系統構成の決定装置であって、次のような技術的特徴を有するものである。すなわち、本発明の最小送電損失系統構成決定装置は、まず、「閉」開閉器選択手段、「開」開閉器選択手段、送電損失計算手段、低減判定手段、更新手段、決定手段を備える。ここで、「閉」開閉器選択手段は、前記系統構成内で1つのメッシュ状系統を作成するように、複数の開閉器から2個以上の開状態にある開閉器を閉状態にすべく選択する手段である。「開」開閉器選択手段は、前記「閉」開閉器選択手段により選択された開閉器数と同数の閉状態にある開閉器を、放射状の系統構成が得られるように、開状態にすべく選択する手段である。送電損失計算手段は、前記「閉」開閉器選択手段により選択された開状態にある開閉器を閉状態に変更し、かつ、前記「開」開閉器選択手段により選択された閉状態にある開閉器を開状態に変更した結果として得られる各系統構成の送電損失を計算する手段である。低減判定手段は、前記送電損失計算手段により新たに計算された特定の系統構成の送電損失が、先に計算された別の系統構成の送電損失よりも低減しているかを判定する手段である。更新手段は、前記低減判定手段により前記特定の系統構成の送電損失が低減していると判定された場合に、当該特定の系統構成を最小送電損失系統候補として更新する手段である。決定手段は、最小送電損失系統候補から最小送電損失系統構成を決定する手段である。この決定手段は、前記低減判定手段が、前記送電損失計算手段により計算された各系統構成の送電損失のいずれもが、最新の更新結果である前記最小送電損失系統候補の送電損失よりも低減していないと判定した場合に、当該最小送電損失系統候補を最小送電損失系統構成として決定する。 In order to achieve the above-described object, the present invention provides a minimum transmission loss system configuration determination device that determines a minimum transmission loss system configuration that minimizes a transmission loss among system configurations in which the switching state of the switch is changed. Therefore, it has the following technical features. That is, the minimum power transmission loss system configuration determining apparatus of the present invention first includes “closed” switch selecting means, “open” switch selecting means, power transmission loss calculating means, reduction determining means, updating means, and determining means. Here, the “closed” switch selection means selects two or more open switches from a plurality of switches to be closed so as to create one mesh system in the system configuration. It is means to do. The “open” switch selecting means should open the same number of closed switches as the number of switches selected by the “closed” switch selecting means so as to obtain a radial system configuration. It is a means to select. The transmission loss calculating means changes the open switch selected by the “closed” switch selecting means to the closed state, and the open / closed switch selected by the “open” switch selecting means. It is means for calculating the transmission loss of each system configuration obtained as a result of changing the device to the open state. The reduction determination unit is a unit that determines whether the transmission loss of the specific system configuration newly calculated by the transmission loss calculation unit is lower than the transmission loss of another system configuration calculated earlier. The updating unit is a unit that updates the specific system configuration as a minimum transmission loss system candidate when the reduction determination unit determines that the transmission loss of the specific system configuration is reduced. The determining means is means for determining the minimum transmission loss system configuration from the minimum transmission loss system candidates. In this determination means, the reduction determination means reduces any transmission loss of each system configuration calculated by the transmission loss calculation means from the transmission loss of the minimum transmission loss system candidate that is the latest update result. If it is determined that it is not, the minimum transmission loss system candidate is determined as the minimum transmission loss system configuration.
 また、前記「開」開閉器選択手段は、前記メッシュ状系統内の開閉器のうち、通過電流が最小の閉状態にある開閉器を逐次選択することを特徴とする点も本発明の一態様である。 Further, the “open” switch selecting means sequentially selects a switch in a closed state with a minimum passing current among the switches in the mesh system. It is.
 なお、前記「閉」開閉器選択手段は、複数の開状態にある開閉器を閉状態にすべく選択するだけでなく、開状態にある単数の開閉器を選択することも可能である。さらに、前記「閉」開閉器選択手段により選択される開閉器数を変更する開閉器数変更手段を備えることで、この選択される開閉器数を可変なものとする構成も本発明の一態様である。 The “closed” switch selection means can select not only a plurality of open switches to be closed, but also a single switch in an open state. Further, a configuration in which the number of switches to be selected is changed by changing the number of switches to be selected by the “closed” switch selection unit, so that the number of switches to be selected is variable is also an aspect of the present invention. It is.
 また、ランダムに開閉器の開閉状態を変更することにより複数の初期系統を生成する初期系統生成手段を備え、前記「閉」開閉器選択手段は、前記初期系統生成手段により生成された各初期系統内で1つのメッシュ状系統を作成するように、開状態にある開閉器を選択する構成も本発明の一態様として包含する。 Further, the system includes an initial system generation unit that generates a plurality of initial systems by randomly changing the open / close state of the switch, and the “closed” switch selection unit includes each initial system generated by the initial system generation unit. A configuration in which a switch in an open state is selected so as to create one mesh-like system is also included as one aspect of the present invention.
 以上のような本発明によれば、複数の「開」状態の開閉器を一度に「閉」状態に変更し、それと同数の開閉器を「開」状態とすることにより、前述したブランチ交換法に比べ、広い範囲での探索が可能となるので、送電損失のより小さい系統構成を決定することが可能な最小送電損失系統構成の決定装置、方法及びプログラムを提供することができる。 According to the present invention as described above, a plurality of "open" state switches are changed to the "closed" state at the same time, and the same number of switches are set to the "open" state, whereby the branch exchange method described above Compared to the above, since it is possible to search in a wide range, it is possible to provide an apparatus, method and program for determining a minimum transmission loss system configuration capable of determining a system configuration with a smaller transmission loss.
本発明の第1の実施形態に係る最小送電損失系統構成の決定装置のブロック構成図。The block block diagram of the determination apparatus of the minimum power transmission loss system structure which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る最小送電損失系統構成の決定装置の処理フローを示す図。The figure which shows the processing flow of the determination apparatus of the minimum power transmission loss system structure which concerns on the 1st Embodiment of this invention. 本発明による最小送電損失系統構成の決定過程を説明する図(1)。The figure (1) explaining the determination process of the minimum power transmission loss system structure by this invention. 本発明による最小送電損失系統構成の決定過程を説明する図(2)。The figure (2) explaining the determination process of the minimum power transmission loss system structure by this invention. 本発明の第2の実施形態に係る最小送電損失系統構成の決定装置のブロック構成図。The block block diagram of the determination apparatus of the minimum power transmission loss system structure which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る最小送電損失系統構成の決定装置の処理フローを示す図。The figure which shows the processing flow of the determination apparatus of the minimum power transmission loss system | strain structure which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る最小送電損失系統構成の決定装置のブロック構成図。The block block diagram of the determination apparatus of the minimum power transmission loss system | strain structure which concerns on the 3rd Embodiment of this invention. 本発明の第3の実施形態に係る最小送電損失系統構成の決定装置の処理フローを示す図。The figure which shows the processing flow of the determination apparatus of the minimum power transmission loss system structure which concerns on the 3rd Embodiment of this invention. 配電系統の一例を示す図。The figure which shows an example of a power distribution system. 配電系統の送電損失の計算の一例を示す図。The figure which shows an example of calculation of the transmission loss of a distribution system. 配電系統の開閉器の開閉状態に基づく複数の系統構成を示す図。The figure which shows the some system structure based on the switching state of the switch of a power distribution system. 配電系統の開閉器の開閉状態に基づく複数の系統構成の送電損失のを示す図。The figure which shows the transmission loss of the several system structure based on the switching state of the switch of a distribution system. 従来技術であるブランチ交換法による配電系統の最小送電損失決定過程を示す図(1)。The figure (1) which shows the minimum transmission loss determination process of the distribution system by the branch exchange method which is a prior art. 従来技術であるブランチ交換法による配電系統の最小送電損失決定過程を示す図(2)。The figure (2) which shows the minimum transmission loss determination process of the distribution system by the branch exchange method which is a prior art. 従来技術であるブランチ交換法による配電系統の最小送電損失決定過程を示す図(3)。The figure (3) which shows the minimum transmission loss determination process of the distribution system by the branch exchange method which is a prior art.
[第1の実施形態]
[構成]
 次に、本発明の第1の実施形態に係る配電系統の送電損失が最小となる最小送電損失系統構成の決定装置の構成について、図1~4を参照して以下に説明する。なお、図1は、第1の実施形態に係る最小送電損失系統構成の決定装置の構成を示すブロック図である。
[First Embodiment]
[Constitution]
Next, the configuration of the determination apparatus for the minimum transmission loss system configuration that minimizes the transmission loss of the distribution system according to the first embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a block diagram illustrating the configuration of the minimum power loss system configuration determining apparatus according to the first embodiment.
 この最小送電損失系統構成の決定装置は、図1の通り、演算手段1、入力手段2、記憶手段3、表示手段4、I/F手段5から構成されている。なお、I/F手段5は、配電系統監視制御装置6を介して、配電系統7に接続されている。 This minimum power transmission loss system configuration determining apparatus includes a calculation means 1, an input means 2, a storage means 3, a display means 4, and an I / F means 5 as shown in FIG. The I / F unit 5 is connected to the power distribution system 7 via the power distribution system monitoring control device 6.
 ここで、演算手段1は、具体的には、コンピュータのメインメモリ、それに記憶されたプログラム、そのプログラムによって制御されるCPU等により実現され、後述するような処理手段10~17を有している。入力手段2は、ユーザの操作に応じた信号をコンピュータに入力するマウスやキーボード等の入力装置である。 Here, the computing means 1 is specifically realized by a main memory of a computer, a program stored in the computer, a CPU controlled by the program, etc., and has processing means 10 to 17 as will be described later. . The input means 2 is an input device such as a mouse or a keyboard for inputting a signal corresponding to a user operation to the computer.
 記憶手段3は、演算手段1における処理に必要な配電系統の各種の系統情報データを予め記憶すると共に、演算手段1による算出結果を記憶するものであり、コンピュータの各種メモリや補助記憶装置等により実現される。なお、配電系統の系統情報データは、例えば、配電線の接続情報(配電系統の接続構成)、インピーダンス、開閉器の開閉状態や負荷等の情報である。 The storage means 3 stores in advance various system information data of the power distribution system necessary for the processing in the computing means 1 and also stores the calculation results by the computing means 1. Realized. In addition, the system information data of a power distribution system is information, such as connection information (connection structure of a power distribution system) of a distribution line, an impedance, the switching state of a switch, a load, etc., for example.
 表示手段4は、入力手段2を通じて入力されたデータや、記憶手段3に記憶されたデータ、及び演算手段1により処理された算出結果を、ユーザに対して表示するディスプレイ等の表示装置である。I/F手段5は、配電系統監視制御装置6を介して配電系統7の系統情報データ及び制御データを送受信する通信用のインタフェースであり、受信した系統情報データは記憶手段3に記憶される。配電系統監視制御装置6は、配電系統7の監視制御を行う装置であり、配電系統7の計画、運用、制御に関する各種データを保持している。 The display means 4 is a display device such as a display for displaying to the user the data input through the input means 2, the data stored in the storage means 3, and the calculation result processed by the calculation means 1. The I / F unit 5 is a communication interface that transmits and receives system information data and control data of the distribution system 7 via the distribution system monitoring and control device 6, and the received system information data is stored in the storage unit 3. The distribution system monitoring and control device 6 is a device that performs monitoring and control of the distribution system 7, and holds various data related to the planning, operation, and control of the distribution system 7.
 なお、上記演算手段1は、データ読出手段10、送電損失計算手段11、「閉」開閉器選択手段12、潮流計算手段13、「開」開閉器選択手段14、送電損失低減判定手段15、初期系統対比手段16、損失最小化構成更新手段17を備えている。 The computing means 1 includes a data reading means 10, a power transmission loss calculating means 11, a “closed” switch selecting means 12, a power flow calculating means 13, an “open” switch selecting means 14, a power transmission loss reduction determining means 15, an initial stage. System comparison means 16 and loss minimization configuration update means 17 are provided.
 データ読出手段10は、記憶手段3から系統情報データ、すなわち、配電系統の接続構成、当該系統に設けられた開閉器の開閉状態、及び負荷やインピーダンスに関するデータ等を読み出す手段である。なお、本明細書中において、決定対象となる「系統構成」すなわち「配電系統の系統構成」は、開閉器の開閉状態を含む配電系統の構成を意味しており、「配電系統の接続構成」は、開閉器の開閉状態を含まない配電系統の設備的な接続構成を意味している。 The data reading means 10 is means for reading the system information data from the storage means 3, that is, the connection configuration of the distribution system, the open / close state of the switch provided in the system, and data on the load and impedance. In this specification, “system configuration” to be determined, that is, “system configuration of the distribution system” means the configuration of the distribution system including the switching state of the switch, and “connection configuration of the distribution system”. Means an installation connection configuration of the distribution system that does not include the open / close state of the switch.
 送電損失計算手段11は、配電系統7に設けられた開閉器が開閉することにより変更した系統構成における送電損失を計算する。「閉」開閉器選択手段12は、配電系統7を構成する開閉器のうち「開」状態にある複数の開閉器から、「閉」状態に変更するn(n≧2)個の開閉器を選択する。 The power transmission loss calculation means 11 calculates the power transmission loss in the system configuration changed by opening and closing the switch provided in the power distribution system 7. The “closed” switch selection means 12 selects n (n ≧ 2) switches that are changed from the plurality of switches in the “open” state to the “closed” state among the switches constituting the distribution system 7. select.
 潮流計算手段13は、「閉」開閉器選択手段12により選択されたn個の開閉器を「閉」状態に変更することで作成されるメッシュ状系統の電力潮流を計算する手段である。 The power flow calculation means 13 is a means for calculating the power flow of the mesh system created by changing the n switches selected by the “closed” switch selection means 12 to the “closed” state.
 「開」開閉器選択手段14は、「閉」開閉器選択手段12により選択されたn個の開閉器を「閉」状態に変更することにより作成されたメッシュ状系統において、当該メッシュ状系統を構成する「閉」状態の開閉器のうち「開」状態に変更すべきn個の開閉器を選択する。なお、この「開」開閉器選択手段14は、一例として、潮流計算手段13で計算したメッシュ状系統の電力潮流により、通過する電流値が最小の開閉器を「開」状態にすべき開閉器として逐次選択する。 The “open” switch selecting means 14 is a mesh-like system created by changing the n switches selected by the “closed” switch selecting means 12 to the “closed” state. Among the “closed” state switches to be configured, n switches to be changed to the “open” state are selected. As an example, the “open” switch selection means 14 is a switch that should open the switch with the smallest value of current passing through the power flow of the mesh system calculated by the power flow calculation means 13. Are selected sequentially.
 送電損失低減判定手段15は、開閉器の開閉状態を変更した新たな系統構成に対して、それ以前の系統構成より送電損失が低減しているかを判定する手段である。例えば、送電損失計算手段11により計算された現時点の送電損失が、逐次更新される解候補と比較して低減しているかを判定する。 The transmission loss reduction determining means 15 is a means for determining whether the transmission loss is reduced from the previous system configuration with respect to the new system configuration in which the switching state of the switch is changed. For example, it is determined whether the current power transmission loss calculated by the power transmission loss calculating means 11 is reduced as compared with the solution candidates that are sequentially updated.
 なお、この送電損失低減判定手段15は、現時点の送電損失が解候補より低減していると判定する場合に、当該現時点の送電損失を新たな解候補として記憶手段3に記憶する。初期系統対比手段16は、解候補の送電損失が初期系統の送電損失より低減しているかを判定する手段である。 When determining that the current transmission loss is lower than the solution candidate, the transmission loss reduction determining unit 15 stores the current transmission loss in the storage unit 3 as a new solution candidate. The initial system comparison unit 16 is a unit that determines whether the transmission loss of the solution candidate is lower than the transmission loss of the initial system.
 損失最小化構成更新手段17は、初期系統対比手段16により、解候補の送電損失が初期系統の送電損失より低減していると判定された場合に、この解候補の送電損失、及び当該送電損失を生じる系統構成を、最小送電損失及び系統構成として更新し、記憶手段3に記憶する手段である。 The loss minimizing configuration updating unit 17, when the initial system comparison unit 16 determines that the transmission loss of the solution candidate is lower than the transmission loss of the initial system, the transmission loss of the solution candidate and the transmission loss This is a means for updating the system configuration that generates the minimum transmission loss and the system configuration and storing them in the storage unit 3.
[作用]
 次に、図1の構成を有する最小送電損失系統構成の決定装置において、送電損失が最小となる系統構成の決定手順を、図2のフローチャートを参照して以下に説明する。
[Action]
Next, in the determination apparatus for the minimum transmission loss system configuration having the configuration of FIG. 1, the determination procedure of the system configuration that minimizes the transmission loss will be described below with reference to the flowchart of FIG.
 図2によれば、まず、STEP201で、データ読出手段10が、記憶手段3から配電系統の接続構成、当該系統に設けられた開閉器の開閉状態、及び負荷やインピーダンスに関するデータ等の系統情報データを読み出し、これ以降の処理において利用するデータを準備する。ここで、初期段階で使用する系統構成を初期系統構成とし、これを解候補とする。なお、送電損失の最小化の対象となる配電系統は放射状の構成を有するため、初期系統構成は放射状の構成を有するものとなる。 According to FIG. 2, first, in STEP 201, the data reading means 10 sends system information data such as data relating to the connection configuration of the distribution system from the storage means 3, the switching state of the switches provided in the system, and the load and impedance. And data to be used in the subsequent processing are prepared. Here, the system configuration used in the initial stage is the initial system configuration, and this is set as a solution candidate. In addition, since the distribution system used as the object of minimization of power transmission loss has a radial configuration, the initial system configuration has a radial configuration.
 ここで、STEP201では、初期化処理として、送電損失計算手段11により初期系統である解候補の送電損失を計算し、初期送電損失として記憶手段3に記憶する。この記憶手段3に記憶された初期系統構成とその初期送電損失は、現在の配電系統における系統構成として採用され、後述する系統構成の更新処理を行う上での基準となる。 Here, in STEP 201, as an initialization process, the transmission loss calculation means 11 calculates the transmission loss of the solution candidate that is the initial system, and stores it in the storage means 3 as the initial transmission loss. The initial system configuration and the initial transmission loss stored in the storage unit 3 are adopted as the system configuration in the current distribution system, and serve as a reference for performing a system configuration update process described later.
 STEP202では、「閉」開閉器選択手段12により、現在の系統構成において、「閉」状態とすべき、まだ選択されていない(未選択の)n(n≧2)個の「開」状態の開閉器の組み合わせを選択する。ここで、「閉」開閉器選択手段12により選択するn個の開閉器の組は、開閉器を閉じることによって作成されるメッシュ状系統が1つとなるように選択される。 In STEP 202, the “closed” switch selection means 12 is set to the “closed” state in the current system configuration, and has not yet been selected (unselected) n (n ≧ 2) “open” state. Select a combination of switches. Here, the set of n switches selected by the “closed” switch selection means 12 is selected so that one mesh system is created by closing the switch.
 なお、送電損失を最小化する上で対象となる配電系統の規模が大きい場合には、当該配電系統におけるn個の「開」状態の開閉器の組み合わせが増加するので、計算時間の増大が懸念される。このような場合には、「閉」開閉器選択手段12は、選択するn個の開閉器の組数を制限する制限手段を備え、この制限手段により、例えば、開閉器両端の電位差が大きい当該開閉器を含む順に開閉器の組数を制限することができる。 In addition, when the scale of the target distribution system for minimizing transmission loss is large, the number of combinations of n “open” switches in the distribution system increases, which may increase the calculation time. Is done. In such a case, the “closed” switch selecting unit 12 includes a limiting unit that limits the number of n switches to be selected. By this limiting unit, for example, the potential difference between both ends of the switch is large. The number of sets of switches can be limited in the order that includes the switches.
 ここで、この「閉」開閉器選択手段12がn個の「開」開閉器を選択すると、モデル上、当該「開」開閉器を「閉」状態に変更し、STEP203では、この「閉」状態に変更された場合に作成されるメッシュ状系統の電力潮流が潮流計算手段13により計算される。 Here, when the “closed” switch selecting means 12 selects n “open” switches, the “open” switch is changed to the “closed” state on the model. In STEP 203, this “closed” switch is selected. The power flow of the mesh system created when the state is changed is calculated by the power flow calculation means 13.
 STEP204では、「開」開閉器選択手段14が、作成されたメッシュ状系統の「閉」状態の開閉器のうち「開」状態とすべき開閉器を一つ選択する。具体的には、STEP203で潮流計算手段13により計算されたメッシュ状系統の電力潮流において、通過する電流値が最小となる「閉」状態の開閉器を「開」状態とすべき開閉器として選択する。特に、送電線の容量制約に基づいて通過電流が最小となる「閉」状態の開閉器が「開」状態とすべき開閉器として選択される。 In STEP 204, the “open” switch selection means 14 selects one switch to be set to the “open” state among the “closed” state switches of the created mesh system. Specifically, in the power flow of the mesh system calculated by the power flow calculation means 13 in STEP 203, the switch in the “closed” state in which the current value passing through is minimized is selected as the switch to be set in the “open” state. To do. In particular, a switch in the “closed” state that minimizes the passing current is selected as a switch that should be in the “open” state based on the capacity constraint of the transmission line.
 なお、この「開」開閉器選択手段14が、n個の「閉」開閉器を選択すると、モデル上、当該「閉」開閉器を「開」状態に変更し、STEP205では、この「開」状態に変更された場合に作成される新たなメッシュ状系統の電力潮流が潮流計算手段13により再度計算される。 When the “open” switch selecting unit 14 selects n “closed” switches, the “closed” switch is changed to an “open” state on the model. In STEP 205, this “open” switch is selected. The power flow of the new mesh system created when the state is changed is calculated again by the power flow calculation means 13.
 ここで、STEP205にて、新たに計算される電力潮流に基づいて、「開」開閉器選択手段14により通過電流値が最小となる「閉」状態の開閉器を選択し、当該選択された開閉器を「開」状態に変更し、新たに作成されるメッシュ状系統の電力潮流が潮流計算手段13により計算されるといった処理が、n回繰り返される。 Here, in STEP 205, based on the newly calculated power flow, the “open” switch selection means 14 selects the switch in the “closed” state in which the passing current value is minimum, and the selected switch The process of changing the device to the “open” state and calculating the power flow of the newly created mesh system by the flow calculation means 13 is repeated n times.
 すなわち、作成されたメッシュ状系統の「閉」状態の開閉器のうち、「開」開閉器選択手段14は、n個の「閉」状態にある開閉器を1つずつ選択し、また、潮流計算手段13は、当該選択された開閉器を「開」状態に変更し、残ったメッシュ状系統に対して電力潮流をn回計算する。 That is, among the created “closed” state switches of the mesh system, the “open” switch selecting means 14 selects n “closed” state switches one by one, and The calculation means 13 changes the selected switch to the “open” state, and calculates the power flow n times for the remaining mesh system.
 STEP206では、送電損失計算手段11が、n回繰り返されたSTEP204、205の処理により再構成された放射状系統の送電損失を計算する。STEP207では、送電損失低減判定手段15が、送電損失計算手段11により計算された放射状系統の現時点の送電損失が、解候補の送電損失よりも低減しているかどうかを判定する。 In STEP 206, the transmission loss calculation means 11 calculates the transmission loss of the radial system reconfigured by the processing of STEPs 204 and 205 repeated n times. In STEP 207, the transmission loss reduction determination means 15 determines whether or not the current transmission loss of the radial system calculated by the transmission loss calculation means 11 is lower than the transmission loss of the solution candidate.
 現時点の系統構成の送電損失が解候補の送電損失より低減している場合は(STEP207のYES)、STEP208において、送電損失低減判定手段15により、現時点の系統構成及び送電損失が新たな解候補並びにその送電損失として記憶手段3に記憶される。一方、現時点の系統構成の送電損失が解候補の送電損失より低減していない場合は(STEP207のNO)、現時点の系統構成は解候補として記憶されることなく、STEP209の処理に移行する。 If the transmission loss of the current system configuration is lower than the transmission loss of the solution candidate (YES in STEP 207), in STEP 208, the transmission system loss reduction determination means 15 causes the current system configuration and transmission loss to be a new solution candidate and The transmission loss is stored in the storage means 3. On the other hand, when the transmission loss of the current system configuration is not lower than the transmission loss of the solution candidate (NO in STEP 207), the current system configuration is not stored as a solution candidate, and the process proceeds to STEP 209.
 STEP209では、「閉」開閉器選択手段12が、n回繰り返されたSTEP204、205の処理により構成された系統構成の「開」状態の開閉器の配置とは別の配置にあるn個の「開」状態の開閉器の組が存在するかを判定する。すなわち、他にまだ選択されていないn個の「開」状態の開閉器の組が存在するかが判定される。 In STEP 209, the “closed” switch selecting means 12 has n “s” in different arrangements from the arrangement of the “open” state switches configured by the processing of STEPs 204 and 205 repeated n times. It is determined whether there is a set of switches in the “open” state. That is, it is determined whether there are n other “open” switch groups that have not yet been selected.
 このようなn個の「開」状態の開閉器の組が他に存在する場合には(STEP209のYES)、STEP202へ戻り、新たなn個の「開」開閉器の組が「閉」開閉器選択手段12により選択され、それ以降の処理が繰り返される。一方、n個の「開」状態の開閉器の組が他になかった場合には(STEP209のNO)、初期系統対比手段16により、STEP208における上記解候補の送電損失が初期系統の送電損失より低減しているかが判定される(STEP210)。 If there are other n “open” switch sets (YES in STEP 209), the process returns to STEP 202, and a new n “open” switch set is “closed” open / close. It is selected by the device selection means 12, and the subsequent processing is repeated. On the other hand, when there is no other set of n “open” switches (NO in STEP 209), the initial system comparison means 16 causes the transmission loss of the solution candidate in STEP 208 to be greater than the transmission loss of the initial system. It is determined whether it is reduced (STEP 210).
 初期送電損失よりも小さいと判定された場合には(STEP210のYES)、この解候補及びその送電損失を初期系統構成及び初期送電損失として、損失最小化構成更新手段17により、記憶手段3に記憶されている初期系統構成とその初期送電損失を更新する(STEP211)。損失最小化構成更新手段17により初期系統構成及び初期送電損失が更新されると、更新された初期系統構成及び初期送電損失を基準に、STEP202以降の処理が繰り返される。 If it is determined that it is smaller than the initial transmission loss (YES in STEP 210), the solution candidate and the transmission loss are stored in the storage unit 3 by the loss minimizing configuration updating unit 17 as the initial system configuration and the initial transmission loss. The initial system configuration and the initial transmission loss are updated (STEP 211). When the initial system configuration and the initial transmission loss are updated by the loss minimization configuration updating unit 17, the processing from STEP 202 onward is repeated based on the updated initial system configuration and the initial transmission loss.
 これに対し、解候補の送電損失が初期送電損失より小さいと判定されない場合、すなわち、解候補の送電損失が初期送電損失と同等またはそれ以上である場合には(STEP210のNO)、損失最小化構成更新手段17により、現在の初期系統構成及び初期送電損失を最小送電損失系統構成及び最小送電損失として決定して、決定した最小送電損失系統構成及び最小送電損失を、表示手段4及びI/F手段5を通じて出力し(STEP212)、処理を終了する。このように、本実施形態において、損失最小化構成更新手段17は、本発明における決定手段として機能する。 On the other hand, when it is not determined that the transmission loss of the solution candidate is smaller than the initial transmission loss, that is, when the transmission loss of the solution candidate is equal to or more than the initial transmission loss (NO in STEP 210), loss minimization is performed. The configuration updating unit 17 determines the current initial system configuration and initial transmission loss as the minimum transmission loss system configuration and minimum transmission loss, and displays the determined minimum transmission loss system configuration and minimum transmission loss on the display unit 4 and the I / F. The data is output through the means 5 (STEP 212), and the process is terminated. Thus, in the present embodiment, the loss minimization configuration updating unit 17 functions as a determining unit in the present invention.
[実施例]
 次に、放射状の配電系統の一例を示す図9、11を再び参照し、図2~4に基づいて、第1の実施形態の具体的な実施例について以下に説明する。なお、図2の通り、図9(a)には、2つの「開」状態の開閉器しか存在しないため、n=2とする。
[Example]
Next, referring again to FIGS. 9 and 11 showing an example of a radial distribution system, a specific example of the first embodiment will be described below based on FIGS. As shown in FIG. 2, since only two “open” state switches exist in FIG. 9A, n = 2.
 STEP201では、データ読出手段10により、記憶手段3から図9(a)のような配電系統の構成(初期系統構成)、及び図9(b)のような系統情報データを読み出し、初期化処理として、送電損失計算手段11により図9の初期系統構成である解候補の送電損失を計算し、図10に示すような57.567[W]を得る。なお、この送電損失を初期送電損失として記憶手段3に記憶する。 In STEP 201, the data reading means 10 reads the power distribution system configuration (initial system configuration) as shown in FIG. 9A and the system information data as shown in FIG. 9B from the storage means 3 as initialization processing. Then, the transmission loss calculation means 11 calculates the transmission loss of the solution candidate which is the initial system configuration of FIG. 9, and obtains 57.567 [W] as shown in FIG. This power transmission loss is stored in the storage means 3 as the initial power transmission loss.
 STEP202では、「閉」開閉器選択手段12により、図9(a)の系統構成において、「閉」状態とすべき2個の「開」状態の開閉器の組み合わせが選択され、モデル上、当該2個の「開」開閉器が「閉」状態に変更される。そして、STEP203において、図3の通り、潮流計算手段13が、この「閉」状態に変更された場合に作成されるメッシュ状系統の電力潮流を計算する。 In STEP 202, the “closed” switch selection means 12 selects a combination of two “open” state switches that should be in the “closed” state in the system configuration of FIG. Two “open” switches are changed to the “closed” state. In STEP 203, as shown in FIG. 3, the power flow calculation means 13 calculates the power flow of the mesh system created when the state is changed to the “closed” state.
 STEP204では、「開」開閉器選択手段14により、通過電流が最小となる開閉器92が選択され、モデル上、当該開閉器92を「開」状態に変更することで図4のような系統構成が得られる。そして、STEP205では、この「開」状態に変更された場合に作成される図4の新たなメッシュ状系統の電力潮流を潮流計算手段13が計算する。 In STEP 204, the “open” switch selecting means 14 selects the switch 92 that minimizes the passing current, and the system configuration as shown in FIG. Is obtained. In STEP 205, the power flow calculation means 13 calculates the power flow of the new mesh system in FIG. 4 created when the state is changed to the “open” state.
 このようなSTEP204、205の処理が、計2回(n=2なので)繰り返されることにより、図4の系統構成において、通過電流値が最小となる開閉器95が「開」状態に変更され、図11(f)のようなメッシュ状系統が作成され、潮流計算手段13によりこの作成された系統構成の電力潮流が計算される。 By repeating the processing of STEPs 204 and 205 a total of two times (since n = 2), the switch 95 having the smallest passing current value is changed to the “open” state in the system configuration of FIG. A mesh system as shown in FIG. 11 (f) is created, and the power flow of the created system configuration is calculated by the power flow calculation means 13.
 STEP206では、送電損失計算手段11が、この新たに構成された系統構成の送電損失を計算することで、図12に示すように、図11(f)の系統構成に対応する送電損失56.267[A]を得る。 In STEP 206, the power transmission loss calculation means 11 calculates the power transmission loss of the newly configured system configuration, and as shown in FIG. 12, the power transmission loss 56.267 corresponding to the system configuration of FIG. [A] is obtained.
 STEP207では、送電損失低減判定手段15が、送電損失計算手段11により計算された図11(f)の系統構成に対応する送電損失が、解候補の送電損失よりも低減しているかどうかを判定する。具体的には、送電損失低減判定手段15は、この系統構成の送電損失56.267[W]と、STEP201の初期化処理において送電損失計算手段11が算出した初期送電損失57.567[W](図10参照)とを対比することにより、現時点の送電損失が解候補の送電損失より低減していると判定する。なお、図12に示す通り、この送電損失56.267[W]より送電損失を低減可能な系統構成は存在しないので、他の「開」状態の開閉器の組が選択された場合においても、この図11(f)の系統構成の送電損失を下回る系統構成は存在しない。 In STEP 207, the power transmission loss reduction determining means 15 determines whether or not the power transmission loss corresponding to the system configuration of FIG. 11 (f) calculated by the power transmission loss calculating means 11 is lower than the solution loss of the solution candidate. . Specifically, the power transmission loss reduction determination unit 15 includes the power transmission loss 56.267 [W] of the system configuration and the initial power transmission loss 57.567 [W] calculated by the power transmission loss calculation unit 11 in the initialization process of STEP 201. By comparing (see FIG. 10), it is determined that the current transmission loss is lower than the solution loss of the solution candidate. As shown in FIG. 12, there is no system configuration capable of reducing the transmission loss from this transmission loss 56.267 [W], so even when another set of “open” state switches is selected, There is no system configuration lower than the transmission loss of the system configuration in FIG.
 続いて、現時点の送電損失が解候補の送電損失より低減しているので(STEP207のYES)、STEP208において、送電損失低減判定手段15は、この系統構成及び送電損失56.267[W]を新たな解候補並びにその送電損失として記憶手段3に記憶する。 Subsequently, since the current transmission loss is lower than the solution loss of the candidate solution (YES in STEP 207), in STEP 208, the transmission loss reduction determination means 15 newly sets this system configuration and transmission loss 56.267 [W]. Are stored in the storage means 3 as possible solution candidates and their transmission losses.
 STEP209では、「閉」開閉器選択手段12により、この図11(f)の系統構成に対して、別の配置を有する2個の「開」状態の開閉器の組が存在するかが判断される。このような2個の「開」状態の開閉器の組が他に存在する場合には(STEP209のYES)、STEP202へ戻り、新たな2個の「開」状態の開閉器の組が「閉」開閉器選択手段12により選択され、それ以降の処理が繰り返される。 In STEP 209, the “closed” switch selection means 12 determines whether there are two “open” switch groups having different arrangements with respect to the system configuration of FIG. The If there are other two “open” switch groups (YES in STEP 209), the process returns to STEP 202 and two new “open” switch groups are “closed”. “Selected by the switch selection means 12, and the subsequent processing is repeated.
 一方、2個の「開」状態の開閉器の組が他に存在しない場合には(STEP209のNO)、初期系統対比手段16により、STEP208における上記解候補の送電損失が初期系統の送電損失より低減しているかが判定される(STEP210)。 On the other hand, when there is no other set of two “open” switches (NO in STEP 209), the initial system comparison means 16 causes the transmission loss of the solution candidate in STEP 208 to be greater than the transmission loss of the initial system. It is determined whether it is reduced (STEP 210).
 初期送電損失よりも小さいと判定された場合には(STEP210のYES)、損失最小化構成更新手段17により、この解候補及びその送電損失を初期系統構成及び初期送電損失として、記憶手段3に記憶されている初期系統構成とその初期送電損失を更新する(STEP211)。損失最小化構成更新手段17により初期系統構成及び初期送電損失が更新されると、更新された初期系統構成及び初期送電損失を基準に、STEP202以降の処理が繰り返される。 If it is determined that it is smaller than the initial power transmission loss (YES in STEP 210), the loss minimizing configuration updating unit 17 stores the solution candidate and the power transmission loss in the storage unit 3 as the initial system configuration and the initial power transmission loss. The initial system configuration and the initial transmission loss are updated (STEP 211). When the initial system configuration and the initial transmission loss are updated by the loss minimization configuration updating unit 17, the processing from STEP 202 onward is repeated based on the updated initial system configuration and the initial transmission loss.
 これに対し、解候補の送電損失が初期送電損失より小さいと判定されない場合、すなわち、解候補の送電損失が初期送電損失と同等またはそれ以上である場合には(STEP210のNO)、損失最小化構成更新手段17により、現在の初期系統構成及び初期送電損失を最小送電損失系統構成及び最小送電損失として決定して、決定した最小送電損失系統構成及び最小送電損失を、表示手段4及びI/F手段5を通じて出力し(STEP212)、処理を終了する。すなわち、図11(f)の系統構成が、送電損失の最小となる最小送電系統構成として出力される。 On the other hand, when it is not determined that the transmission loss of the solution candidate is smaller than the initial transmission loss, that is, when the transmission loss of the solution candidate is equal to or more than the initial transmission loss (NO in STEP 210), loss minimization is performed. The configuration updating unit 17 determines the current initial system configuration and initial transmission loss as the minimum transmission loss system configuration and minimum transmission loss, and displays the determined minimum transmission loss system configuration and minimum transmission loss on the display unit 4 and the I / F. The data is output through the means 5 (STEP 212), and the process is terminated. That is, the system configuration in FIG. 11F is output as the minimum power transmission system configuration that minimizes the power transmission loss.
[効果]
 以上のような第1の実施形態によれば、複数の「開」状態の開閉器を一度に「閉」状態に変更し同数の開閉器を「開」状態とすることで探索範囲を広くすることが可能となり、送電損失をより小さくする系統構成を決定可能で、かつ系統構成の決定に要する時間を短縮可能な最小送電損失系統構成の決定装置、方法及びプログラムを提供することができる。
[effect]
According to the first embodiment as described above, a plurality of “open” state switches are changed to the “closed” state at the same time, and the same number of switches are set to the “open” state, thereby widening the search range. Therefore, it is possible to provide a determination apparatus, a method, and a program for determining a minimum transmission loss system configuration that can determine a system configuration that further reduces transmission loss and that can reduce the time required to determine the system configuration.
 なお、上記実施形態において、「開」開閉器選択手段14は、「開」状態とすべき「閉」状態にある開閉器を1つずつ選択しているが、本発明は、この態様に限定するものではない。すなわち、一度にn個の「閉」状態にある開閉器を選択し、「開」状態に変更する実施形態も本発明は包含する。 In the above embodiment, the “open” switch selecting means 14 selects one switch in the “closed” state to be set in the “open” state one by one, but the present invention is limited to this mode. Not what you want. That is, the present invention also includes an embodiment in which n switches that are in the “closed” state at a time are selected and changed to the “open” state.
[第2の実施形態]
[構成]
 次に、本発明の第2の実施形態に係る配電系統の送電損失が最小となる最小送電損失系統構成の決定装置の構成について、図5を参照して以下に説明する。なお、図5は、送電損失の最小化を図るための第2の実施形態に係る最小送電損失系統構成の決定装置の構成を示すブロック図である。ここで、図5において、図1と同じ構成には同じ符号を用い、説明は省略する。
[Second Embodiment]
[Constitution]
Next, the configuration of the minimum transmission loss system configuration determining apparatus that minimizes the transmission loss of the distribution system according to the second embodiment of the present invention will be described below with reference to FIG. FIG. 5 is a block diagram showing a configuration of a determination apparatus for a minimum transmission loss system configuration according to the second embodiment for minimizing transmission loss. Here, in FIG. 5, the same components as those in FIG.
 第2の実施形態では、第1の実施形態における図1の構成に加え、開閉器数変更手段18を備えている。この開閉器数変更手段18は、「閉」開閉器選択手段12により一度に選択させる開閉器の数を変更するものである。特に、この開閉器数変更手段18は、選択される開閉器数が予め設定された所定の開閉器数であるn個に等しいかを判定し、選択される開閉器数がn個に満たない場合には、一度に選択させる開閉器数をn個まで1つずつ増加させる。 In the second embodiment, in addition to the configuration of FIG. 1 in the first embodiment, a switch number changing means 18 is provided. The switch number changing means 18 changes the number of switches to be selected at one time by the “closed” switch selecting means 12. In particular, the switch number changing means 18 determines whether the number of selected switches is equal to n, which is a predetermined number of preset switches, and the number of selected switches is less than n. In this case, the number of switches to be selected at a time is increased by one up to n.
[作用]
 次に、図5の構成を有する最小送電損失系統構成の決定装置において、送電損失が最小となる系統構成の決定手順を、図6のフローチャートを参照して以下に説明する。なお、図6は、第2の実施形態に係り、送電損失が最小となる系統構成の決定フローを示す図である。
[Action]
Next, in the determination apparatus for the minimum transmission loss system configuration having the configuration of FIG. 5, the determination procedure of the system configuration that minimizes the transmission loss will be described below with reference to the flowchart of FIG. FIG. 6 is a diagram illustrating a system configuration determination flow that minimizes power transmission loss according to the second embodiment.
 まず、STEP601では、第1の実施形態と同様に、STEP201で、データ読出手段10が、記憶手段3から配電系統の接続構成、当該系統に設けられた開閉器の開閉状態、及び負荷やインピーダンスに関するデータ等の系統情報データを読み出し、これ以降の処理において利用するデータを準備する。ここで、初期段階で使用する系統構成を初期系統構成とし、これを解候補とする。 First, in STEP 601, as in the first embodiment, in STEP 201, the data reading means 10 relates to the connection configuration of the distribution system from the storage means 3, the switching state of the switch provided in the system, and the load and impedance. System information data such as data is read, and data to be used in the subsequent processing is prepared. Here, the system configuration used in the initial stage is the initial system configuration, and this is set as a solution candidate.
 また、初期化処理として、送電損失計算手段11により初期系統である解候補の送電損失を計算し、初期送電損失として記憶手段3に記憶する。この記憶手段3に記憶された初期送電系統とその初期送電損失は、現在の配電系統における系統構成として採用され、後述する系統構成の更新処理を行う上での基準となる。 Also, as an initialization process, the transmission loss calculation means 11 calculates the transmission loss of the solution candidate that is the initial system, and stores it in the storage means 3 as the initial transmission loss. The initial power transmission system and the initial power transmission loss stored in the storage unit 3 are adopted as a system configuration in the current distribution system, and serve as a reference for performing a system configuration update process to be described later.
 ここで、STEP602において「閉」開閉器選択手段12が「閉」状態とすべき、まだ選択されていないn(n≧1)個の「開」状態の開閉器を選択するにあたり、nの初期値をn=1としておく。そして、第1の実施形態と同様に、「閉」開閉器選択手段12により、「閉」状態とすべき、まだ選択されていない1個(始めは、n=1)の「開」状態の開閉器を選択する。 Here, in step 602, when selecting n (n ≧ 1) “open” state switches that have not yet been selected, the “closed” switch selection unit 12 should be in the “closed” state. The value is set to n = 1. Then, as in the first embodiment, the “closed” switch selection means 12 makes one “open” state (initially n = 1) that has not yet been selected and should be in the “closed” state. Select the switch.
 なお、第1の実施形態と同様に、送電損失を最小化する上で対象とする配電系統の規模が大きいと、現在の系統構成におけるn個の「開」状態の開閉器の組が増加するので、計算時間の増大が懸念される。このような場合には、「閉」開閉器選択手段12は、選択するn個の開閉器の組数を制限する制限手段を備え、この制限手段により、例えば、開閉器両端の電位差が大きい当該開閉器を含む順に組数を制限することができる。 As in the first embodiment, when the scale of the distribution system targeted for minimizing transmission loss is large, a set of n “open” switches in the current system configuration increases. Therefore, there is a concern about an increase in calculation time. In such a case, the “closed” switch selecting unit 12 includes a limiting unit that limits the number of n switches to be selected. By this limiting unit, for example, the potential difference between both ends of the switch is large. The number of sets can be limited in the order including switches.
 そして、この「閉」開閉器選択手段12が、1個の「開」開閉器(始めは、n=1)を選択すると、モデル上、当該「開」開閉器が「閉」状態に変更され、STEP603では、この「閉」状態に変更された場合に作成されるメッシュ状系統の電力潮流が潮流計算手段13により計算される。 When this “closed” switch selecting means 12 selects one “open” switch (initially n = 1), the “open” switch is changed to the “closed” state on the model. In STEP 603, the power flow calculation means 13 calculates the power flow of the mesh system created when the state is changed to the “closed” state.
 STEP604では、作成されたメッシュ状系統の「閉」状態の開閉器のうち、「開」開閉器選択手段14により「開」状態とすべき開閉器を1つ選択する。具体的には、STEP603で潮流計算手段13により計算されたメッシュ状系統の電力潮流において、通過する電流値が最小となる「閉」状態の開閉器を「開」状態とすべき開閉器として選択する。特に、送電線の容量制約に基づいて通過電流が最小となる「閉」状態の開閉器が「開」状態とすべき開閉器として選択される。 In STEP 604, one of the switches in the “closed” state of the created mesh system is selected by the “open” switch selection means 14 to be in the “open” state. Specifically, in the mesh system power flow calculated in STEP 603 by the power flow calculation means 13, the switch in the “closed” state in which the passing current value is minimum is selected as the switch to be set in the “open” state. To do. In particular, a switch in the “closed” state that minimizes the passing current is selected as a switch that should be in the “open” state based on the capacity constraint of the transmission line.
 なお、この「開」開閉器選択手段14が、1個の「閉」開閉器を選択すると、モデル上、当該「閉」開閉器を「開」状態に変更し、STEP605では、この「開」状態に変更された場合に作成される新たなメッシュ状系統の電力潮流が潮流計算手段13により計算される。STEP606では、送電損失計算手段11が、再構成された放射状系統の送電損失を計算し、STEP607において、送電損失低減判定手段15が、送電損失計算手段11により計算された放射状系統の現時点の送電損失が、解候補の送電損失よりも低減しているかどうかを判定する。 When the “open” switch selecting means 14 selects one “closed” switch, the “closed” switch is changed to the “open” state on the model. In STEP 605, this “open” switch is selected. The power flow of the new mesh system created when the state is changed is calculated by the power flow calculation means 13. In STEP 606, the power transmission loss calculation means 11 calculates the power transmission loss of the reconfigured radial system. In STEP 607, the power transmission loss reduction determination means 15 calculates the current power transmission loss of the radial system calculated by the power transmission loss calculation means 11. However, it is determined whether or not it is lower than the transmission loss of the solution candidate.
 現時点の系統構成の送電損失が解候補の送電損失より低減している場合は(STEP607のYES)、STEP608において、送電損失低減判定手段15により、現時点の系統構成及び送電損失が新たな解候補並びにその送電損失として記憶手段3に記憶される。一方、現時点の系統構成の送電損失が解候補の送電損失より低減していない場合は(STEP607のNO)、現時点の系統構成は解候補として記憶されることなく、STEP609の処理に移行する。 When the transmission loss of the current system configuration is lower than the transmission loss of the solution candidate (YES in STEP 607), in STEP 608, the current system configuration and the transmission loss are changed to a new solution candidate and The transmission loss is stored in the storage means 3. On the other hand, when the transmission loss of the current system configuration is not lower than the transmission loss of the solution candidate (NO in STEP 607), the current system configuration is not stored as a solution candidate, and the process proceeds to STEP 609.
 STEP609では、「閉」開閉器選択手段12が、構成された系統構成の「開」状態の開閉器の配置とは別の配置にある1個の「開」状態の開閉器の組が存在するかを判定する。すなわち、他にまだ選択されていない1個の「開」状態の開閉器の組が存在するかが判定される。なお、STEP609において、n≧2の場合には、「閉」開閉器選択手段12は、STEP604、605の処理がn回繰り返されることで構成された系統構成のn個の「開」状態の開閉器の配置と別の配置にあるn個の「開」状態の開閉器の組が存在するかを判定する。 In STEP 609, there is one “open” switch group in which the “closed” switch selection means 12 is arranged differently from the arrangement of the “open” switch in the configured system configuration. Determine whether. That is, it is determined whether there is one other “open” switch group that has not yet been selected. In STEP 609, when n ≧ 2, the “closed” switch selecting means 12 opens and closes n “open” states of the system configuration configured by repeating the processes of STEPs 604 and 605 n times. It is determined whether there is a set of n “open” switches in a different arrangement from the arrangement of the appliances.
 このような1個の「開」状態の開閉器の組が他に存在する場合には(STEP609のYES)、STEP602へ戻り、新たな1個の「開」開閉器の組が「閉」開閉器選択手段12により選択され、それ以降の処理が繰り返される。一方、1個の「開」状態の開閉器の組が他になかった場合には(STEP609のNO)、初期系統対比手段16により、STEP608における上記解候補の送電損失が初期系統の送電損失より低減しているかが判定される(STEP610)。 If there is another such set of “open” switches (YES in STEP 609), the process returns to STEP 602, and one new “open” switch set is “closed” open / close. It is selected by the device selection means 12, and the subsequent processing is repeated. On the other hand, when there is no other switch set in the “open” state (NO in STEP 609), the initial system comparison means 16 causes the transmission loss of the solution candidate in STEP 608 to be greater than the transmission loss of the initial system. It is determined whether it is reduced (STEP 610).
 初期送電損失よりも小さいと判定された場合には(STEP610のYES)、この解候補及びその送電損失を初期系統構成及び初期送電損失として、損失最小化構成更新手段17により、記憶手段3に記憶されている初期系統構成とその初期送電損失を更新する(STEP611)。損失最小化構成更新手段17により初期系統構成及び初期送電損失が更新されると、更新された初期系統構成及び初期送電損失を基準に、STEP602以降の処理が繰り返される。 If it is determined that it is smaller than the initial transmission loss (YES in STEP 610), the solution candidate and the transmission loss are stored in the storage unit 3 by the loss minimizing configuration updating unit 17 as the initial system configuration and the initial transmission loss. The initial system configuration and its initial transmission loss are updated (STEP 611). When the initial system configuration and the initial transmission loss are updated by the loss minimization configuration update unit 17, the processing from STEP 602 is repeated on the basis of the updated initial system configuration and the initial transmission loss.
 これに対し、解候補の送電損失が初期送電損失より小さいと判定されない場合、すなわち、解候補の送電損失が初期送電損失と同等またはそれ以上である場合には(STEP610のNO)、STEP612で、開閉器数変更手段18が、「閉」開閉器選択手段12により選択される開閉器の数が予め設定されたn個(予め設定した所定の開閉器数)に等しいかを判定する。 On the other hand, if it is not determined that the transmission loss of the solution candidate is smaller than the initial transmission loss, that is, if the transmission loss of the solution candidate is equal to or greater than the initial transmission loss (NO in STEP 610), in STEP 612, The switch number changing means 18 determines whether or not the number of switches selected by the “closed” switch selection means 12 is equal to a preset number of n (a preset number of preset switches).
 この予め設定されたn個に満たない場合、例えばn≧2に設定されている場合には(STEP612のNO)、開閉器数変更手段18により、n=1から1つ増加させ、再びSTEP602に戻りそれ以降の処理を繰り返す。つまり、予め設定された「閉」開閉器選択手段12により選択される「開」状態にある開閉器数のn個まで、1から順にn回、上記STEP602~611の処理が繰り返される。 If it is less than the preset number n, for example, if n ≧ 2 (NO in STEP 612), the switch number changing means 18 increases the number from n = 1 by 1, and then returns to STEP 602 again. Return and repeat the process. That is, the processing of STEPs 602 to 611 is repeated n times in order from 1 to the number of switches in the “open” state selected by the preset “closed” switch selection means 12.
 なお、n≧2の場合のSTEP604、605の処理においては、第1の実施形態と同様に、計算された電力潮流に基づいて「開」開閉器選択手段14により通過電流値が最小となる「閉」状態の開閉器が選択されることで「開」状態に変更し、潮流計算手段13が新たに作成されるメッシュ状系統の電力潮流を計算するといった処理がn回繰り返される。 In the processing of STEPs 604 and 605 in the case of n ≧ 2, as in the first embodiment, the “open” switch selection unit 14 minimizes the passing current value based on the calculated power flow. By selecting the switch in the “closed” state, the process is changed to the “open” state, and the power flow calculating means 13 calculates the power flow of the newly created mesh system n times.
 STEP612において、開閉器数変更手段18が、「閉」開閉器選択手段12により選択される開閉器の数が予め設定されたn個に等しいと判定する場合には(STEP612のYES)、損失最小化構成更新手段17により、現在の初期系統構成及び初期送電損失を最小送電損失系統構成及び最小送電損失として決定して、決定した最小送電損失系統構成及び最小送電損失を、表示手段4及びI/F手段5を通じて出力し(STEP613)、処理を終了する。 In STEP612, when the switch number changing unit 18 determines that the number of switches selected by the “closed” switch selecting unit 12 is equal to the preset number n (YES in STEP612), the loss minimum The updated configuration update means 17 determines the current initial system configuration and initial transmission loss as the minimum transmission loss system configuration and minimum transmission loss, and displays the determined minimum transmission loss system configuration and minimum transmission loss on the display unit 4 and the I / I The data is output through the F means 5 (STEP 613), and the process is terminated.
[効果]
 以上のような第2の実施形態によれば、一度に「開」状態から「閉」状態に変更する開閉器の数を1から順に増加させることができるので探索範囲が拡大する。その結果、計算時間が実質的に大きくなる問題に対して、変更すべき開閉器の数が少ない初期段階においては最小となる送電損失を高速に算出でき、変更すべき開閉器の数が増加した段階においては徐々に送電損失の最小化の程度を向上させることが可能となる。 
[effect]
According to the second embodiment as described above, the number of switches that are changed from the “open” state to the “closed” state at a time can be increased sequentially from 1, so that the search range is expanded. As a result, for the problem that the calculation time is substantially increased, the minimum transmission loss can be calculated at high speed in the initial stage when the number of switches to be changed is small, and the number of switches to be changed has increased. In the stage, it is possible to gradually improve the degree of minimization of transmission loss.
 なお、上記実施形態における開閉器数変更手段18は、「閉」開閉器選択手段12により選択される開閉器の数が予め設定されたn個に等しいかを判定し、この予め設定されたn個に満たない場合に開閉器数を増加させているが、本発明は、これに限定されるものではない。 The switch number changing means 18 in the above embodiment determines whether or not the number of switches selected by the “closed” switch selection means 12 is equal to the preset n, and this preset n The number of switches is increased when the number is less than one, but the present invention is not limited to this.
 具体的には、本発明は、送電損失計算手段11により計算された系統構成の送電損失が、送電損失低減判定手段15により解候補の送電損失より低減していないと判定された場合、あるいは初期系統対比手段16により初期送電損失より低減していないと判定された場合に、この開閉器数変更手段18が、「閉」開閉器選択手段12により選択させる開閉数を1つずつ増加させる実施形態を包含する。すなわち、「閉」開閉器選択手段12により選択される所定個の開閉器数において、送電損失計算手段11により計算される送電損失が低減しなくなる場合には、当該「閉」開閉器選択手段12により選択される開閉器数を増加させることで、より小さい送電損失を探索することが可能となる。 Specifically, in the present invention, when the transmission loss of the system configuration calculated by the transmission loss calculation unit 11 is determined not to be lower than the transmission loss of the solution candidate by the transmission loss reduction determination unit 15, Embodiment in which the switch number changing means 18 increases the number of switches to be selected by the “closed” switch selecting means 12 one by one when the system comparison means 16 determines that the initial transmission loss has not been reduced. Is included. That is, when the power transmission loss calculated by the power transmission loss calculation unit 11 is not reduced in the predetermined number of switches selected by the “closed” switch selection unit 12, the “closed” switch selection unit 12. By increasing the number of switches selected by, it becomes possible to search for a smaller transmission loss.
[第3の実施形態]
[構成]
 次に、本発明の第3の実施形態に係る最小送電損失系統構成の決定装置の構成について、図7を参照して以下に説明する。なお、図7は、送電損失の最小化を図るための第3の実施形態に係る最小送電損失系統構成の決定装置を示すブロック図である。ここで、図7において、図1と同じ構成には同じ符号を用い、説明は省略する。
[Third Embodiment]
[Constitution]
Next, the configuration of the minimum transmission loss system configuration determining apparatus according to the third embodiment of the present invention will be described below with reference to FIG. FIG. 7 is a block diagram showing a determination apparatus for a minimum transmission loss system configuration according to the third embodiment for minimizing transmission loss. Here, in FIG. 7, the same components as those in FIG.
 第3の実施形態では、第1の実施形態における図1の構成に加え、初期系統生成手段19、初期系統選択手段20、最小化構成選択手段21を備えている。 In the third embodiment, in addition to the configuration of FIG. 1 in the first embodiment, an initial system generation unit 19, an initial system selection unit 20, and a minimized configuration selection unit 21 are provided.
 この初期系統生成手段19は、ある初期系統から、系統構成の異なる複数の初期系統構成を生成する手段である。また、初期系統選択手段20は、複数の初期系統からまだ選択されていない初期系統を選択する手段であり、最小化構成選択手段21は、初期系統構成毎に送電損失を最小化する解候補として得られたすべての系統構成の中から、送電損失が最小のものを選択する手段である。 The initial system generation means 19 is a means for generating a plurality of initial system configurations having different system configurations from a certain initial system. The initial system selection means 20 is a means for selecting an initial system that has not yet been selected from a plurality of initial systems, and the minimized configuration selection means 21 is a solution candidate for minimizing transmission loss for each initial system configuration. It is a means for selecting the one with the smallest transmission loss from all the obtained system configurations.
[作用]
 次に、図7の構成を有する最小送電損失系統構成の決定装置において、送電損失が最小となる系統構成の決定手順を、図8のフローチャートを参照して以下に説明する。なお、図8は、第3の実施形態に係り、送電損失が最小となる系統構成の決定フローを示す図である。ここで、図2のフローチャートと同じ処理については説明を省略する。
[Action]
Next, in the determination apparatus for the minimum transmission loss system configuration having the configuration of FIG. 7, the determination procedure of the system configuration that minimizes the transmission loss will be described below with reference to the flowchart of FIG. In addition, FIG. 8 is a figure which shows the determination flow of the system | strain structure which concerns on 3rd Embodiment and has the minimum power transmission loss. Here, the description of the same processing as the flowchart of FIG. 2 is omitted.
 まず、STEP801では、第1の実施形態と同様に、データ読出手段10が、記憶手段3から配電系統の接続構成、当該系統に設けられた開閉器の開閉状態、及び負荷やインピーダンスに関するデータ等の系統情報データを読み出し、これ以降の処理において利用するデータを準備する。ここで、初期段階で使用する系統構成を初期系統構成とし、これを解候補とする。 First, in STEP 801, as in the first embodiment, the data reading unit 10 is configured to transmit data such as the connection configuration of the power distribution system from the storage unit 3, the open / close state of the switch provided in the system, and data regarding the load and impedance. System information data is read and data to be used in the subsequent processing is prepared. Here, the system configuration used in the initial stage is the initial system configuration, and this is set as a solution candidate.
 また、初期化処理として、送電損失計算手段11により、初期系統である解候補の送電損失が計算され、初期送電損失として記憶手段3に記憶される。この記憶手段3に記憶された初期送電系統とその初期送電損失は、現在の配電系統における系統構成として採用され、後述する系統構成の更新処理を行う上での基準となる。 Also, as an initialization process, the transmission loss calculation means 11 calculates the transmission loss of the solution candidate that is the initial system, and stores it in the storage means 3 as the initial transmission loss. The initial power transmission system and the initial power transmission loss stored in the storage unit 3 are adopted as a system configuration in the current distribution system, and serve as a reference for performing a system configuration update process to be described later.
 そして、STEP802では、読み出した初期系統に対して、初期系統生成手段19が複数の構成が異なる系統構成を作成し、送電損失計算手段11により当該系統構成毎に初期送電損失を算出する。なお、初期系統生成手段19により作成される複数の初期系統構成は、例えば、初期系統に対して、ランダムに選択した「開」状態の開閉器を閉じ、構成されたメッシュ状系統の中で、ランダムに選択した開閉器を開く、といった方法で作成される。 In STEP 802, the initial system generation unit 19 creates a plurality of different system configurations for the read initial system, and the transmission loss calculation unit 11 calculates the initial transmission loss for each system configuration. In addition, the plurality of initial system configurations created by the initial system generation means 19 are, for example, closing a randomly selected “open” state switch with respect to the initial system, and in the configured mesh system, It is created by opening a randomly selected switch.
 STEP803では、初期系統選択手段20が、初期系統生成手段19により作成された複数の初期系統構成のうち、まだ選択されていない新たな系統構成を選択する。それ以降は、第1の実施形態における図2のSTEP202~211の処理と同様の処理を実行することで、選択された初期系統構成に基づいて算出された最小送電損失及び最小送電損失系統構成を導き出すことができる(STEP804~813)。 In STEP 803, the initial system selection unit 20 selects a new system configuration that has not yet been selected among the plurality of initial system configurations created by the initial system generation unit 19. Thereafter, by executing the same processing as the processing of STEPs 202 to 211 in FIG. 2 in the first embodiment, the minimum transmission loss and the minimum transmission loss system configuration calculated based on the selected initial system configuration are obtained. Can be derived (STEP 804-813).
 STEP814では、初期系統選択手段20により、送電損失の最小化処理をまだ行っていない他の初期系統構成が存在するかが判定され、存在する場合には(STEP814のYES)、STEP803に移行することで新たな初期系統構成が選択される。 In STEP 814, the initial system selection means 20 determines whether there is another initial system configuration that has not yet been subjected to power transmission loss minimization processing. If there is present (YES in STEP 814), the process proceeds to STEP 803. A new initial system configuration is selected.
 初期系統選択手段20により、他の初期系統構成が存在しないと判定された場合には(STEP814のNO)、STEP815において、最小化構成選択手段21が、初期系統構成毎に送電損失を最小化する解候補として得られたすべての系統構成の中から、送電損失が最小となる系統構成を選択し、選択した系統構成及びその送電損失を最小送電損失系統構成及び最小送電損失として決定して、表示手段4及びI/F手段5を通じて出力し、処理を終了する。 When the initial system selection unit 20 determines that no other initial system configuration exists (NO in STEP 814), in STEP 815, the minimized configuration selection unit 21 minimizes the transmission loss for each initial system configuration. From all system configurations obtained as candidate solutions, select the system configuration that minimizes the transmission loss, determine the selected system configuration and its transmission loss as the minimum transmission loss system configuration and minimum transmission loss, and display them. The data is output through the means 4 and the I / F means 5, and the process is terminated.
[効果]
 以上のような本実施形態によれば、予め複数の初期系統構成を作成することができるので、各初期系統構成に対して最小となる送電損失を算出することが可能となり、送電損失の算出処理が局所解に陥ることを回避することができる。そのため、広範囲を探索の対象とすることができ、より送電損失の小さい系統構成を決定することが可能となる。
[effect]
According to the present embodiment as described above, since a plurality of initial system configurations can be created in advance, it is possible to calculate the minimum transmission loss for each initial system configuration, and the transmission loss calculation process Can fall into a local solution. Therefore, a wide range can be set as a search target, and a system configuration with a smaller power transmission loss can be determined.
[他の実施形態]
 なお、本発明は、この第3の実施形態に係る、系統構成の異なる複数の初期系統を生成する初期系統生成手段19と、複数の初期系統構成からまだ選択されていない初期系統構成を選択する初期系統選択手段20と、すべての初期系統構成に基づいて算出された送電損失が最小となる系統構成のうち送電損失が最小のものを選択する最小化構成選択手段21と、を第2の実施形態に対して適用した実施形態も包含する。
[Other Embodiments]
The present invention selects the initial system configuration means 19 for generating a plurality of initial systems having different system configurations and an initial system configuration that has not yet been selected from the plurality of initial system configurations according to the third embodiment. The initial system selection means 20 and the minimization configuration selection means 21 for selecting the system configuration with the minimum power transmission loss among the system configurations with the minimum power transmission loss calculated based on all the initial system configurations. Embodiments applied to the forms are also included.
 具体的には、第2の実施形態において、STEP601で、データ読出手段10が、記憶手段3から配電系統の構成、当該系統に設けられた開閉器の開閉状態、及び負荷やインピーダンスに関するデータ等の系統情報データを読み出し、初期化処理として、初期系統生成手段19が複数の構成が異なる系統構成を作成し、送電損失計算手段11により当該系統構成毎に初期送電損失を算出する。 Specifically, in the second embodiment, in STEP 601, the data reading unit 10 receives data such as the configuration of the power distribution system from the storage unit 3, the open / close state of the switch provided in the system, and data on the load and impedance. The system information data is read, and as an initialization process, the initial system generation unit 19 creates a plurality of different system configurations, and the transmission loss calculation unit 11 calculates the initial transmission loss for each system configuration.
 そして、初期系統選択手段20が、初期系統生成手段19により作成された複数の初期系統構成のうち、まだ選択されていない新たな系統構成を選択し、当該初期系統構成に基づいてSTEP602~612までの処理が実行される。STEP612において、開閉器数変更手段18が、「閉」開閉器選択手段12により選択される開閉器の数が予め設定されたn(所定の閾値)に等しいと判定する場合には(STEP612のYES)、初期系統選択手段20により、送電損失の最小化処理を行っていない他の初期系統構成が存在するかが判定される。 Then, the initial system selection unit 20 selects a new system configuration that has not yet been selected from among the plurality of initial system configurations created by the initial system generation unit 19, and STEPs 602 to 612 are performed based on the initial system configuration. The process is executed. In STEP612, when the switch number changing unit 18 determines that the number of switches selected by the “closed” switch selecting unit 12 is equal to a preset n (predetermined threshold) (YES in STEP612) ), The initial system selection means 20 determines whether there is another initial system configuration that has not been subjected to the power transmission loss minimization process.
 初期系統選択手段20により、送電損失の最小化処理を行っていない他の初期系統構成が存在すると判定された場合には、初期系統選択手段20が、初期系統生成手段19により作成された複数の初期系統構成のうち、選択されていない新たな系統構成を選択することで、STEP602~612までの処理が繰り返される。 When it is determined by the initial system selection unit 20 that there is another initial system configuration that has not been subjected to the power transmission loss minimization process, the initial system selection unit 20 includes a plurality of items created by the initial system generation unit 19. By selecting a new system configuration that has not been selected from among the initial system configurations, the processing from STEPs 602 to 612 is repeated.
 初期系統選択手段20により、他の初期系統構成が存在しないと判定された場合には、STEP613において、最小化構成選択手段21が、初期系統構成毎に送電損失を最小化する解候補として得られたすべての系統構成の中から、送電損失が最小となる系統構成を選択し、選択した系統構成及びその送電損失を最小送電損失系統構成及び最小送電損失として決定して、表示手段4及びI/F手段5を通じて出力し、処理を終了する。 When the initial system selection unit 20 determines that no other initial system configuration exists, in STEP 613, the minimized configuration selection unit 21 is obtained as a solution candidate for minimizing the transmission loss for each initial system configuration. The system configuration that minimizes the transmission loss is selected from all the system configurations, the selected system configuration and the transmission loss are determined as the minimum transmission loss system configuration and the minimum transmission loss, and the display means 4 and the I / I The data is output through the F means 5 and the process is terminated.
1…演算手段
2…入力手段
3…記憶手段
4…表示手段
5…I/F手段
6…配電系統監視制御装置
7…配電系統 
9a~9g…区間番号
10…データ読出手段
11…送電損失計算手段
12…「閉」開閉器選択手段
13…潮流計算手段
14…「開」開閉器選択手段
15…送電損失低減判定手段
16…初期系統対比手段
17…損失最小化構成更新手段
18…開閉器数変更手段
19…初期系統生成手段
20…初期系統選択手段
21…最小化構成選択手段
91~95…開閉器
DESCRIPTION OF SYMBOLS 1 ... Calculation means 2 ... Input means 3 ... Memory | storage means 4 ... Display means 5 ... I / F means 6 ... Distribution system monitoring control apparatus 7 ... Distribution system
9a to 9g ... Section number 10 ... Data reading means 11 ... Transmission loss calculation means 12 ... "Closed" switch selection means 13 ... Power flow calculation means 14 ... "Open" switch selection means 15 ... Transmission loss reduction determination means 16 ... Initial System comparison means 17 ... Loss minimized configuration update means 18 ... Switch number change means 19 ... Initial system generation means 20 ... Initial system selection means 21 ... Minimization configuration selection means 91 to 95 ... Switches

Claims (13)

  1.  開閉器の開閉状態が変更された系統構成のうち、送電損失が最小となる最小送電損失系統構成を決定する最小送電損失系統構成の決定装置であって、
     前記系統構成内で1つのメッシュ状系統を作成するように、複数の開閉器から2個以上の開状態にある開閉器を閉状態にすべく選択する「閉」開閉器選択手段と、
     前記「閉」開閉器選択手段により選択された開閉器数と同数の閉状態にある開閉器を、放射状の系統構成が得られるように、開状態にすべく選択する「開」開閉器選択手段と、
     前記「閉」開閉器選択手段により選択された開状態にある開閉器を閉状態に変更し、かつ、前記「開」開閉器選択手段により選択された閉状態にある開閉器を開状態に変更した結果として得られる各系統構成の送電損失を計算する送電損失計算手段と、
     前記送電損失計算手段により新たに計算された特定の系統構成の送電損失が、先に計算された別の系統構成の送電損失よりも低減しているかを判定する低減判定手段と、
     前記低減判定手段により前記特定の系統構成の送電損失が低減していると判定された場合に、当該特定の系統構成を最小送電損失系統候補として更新する更新手段と、
     最小送電損失系統候補から最小送電損失系統構成を決定する決定手段と、
     を備え、
     前記決定手段は、前記低減判定手段が、前記送電損失計算手段により計算された各系統構成の送電損失のいずれもが、最新の更新結果である前記最小送電損失系統候補の送電損失よりも低減していないと判定した場合に、当該最小送電損失系統候補を最小送電損失系統構成として決定することを特徴とする最小送電損失系統構成の決定装置。
    Among the system configurations in which the switching state of the switch is changed, a determination device for the minimum transmission loss system configuration for determining the minimum transmission loss system configuration that minimizes the transmission loss,
    “Closed” switch selection means for selecting two or more open switches from a plurality of switches to be closed so as to create one mesh system in the system configuration;
    “Open” switch selection means for selecting the number of switches in the closed state as many as the number of switches selected by the “closed” switch selection means to be opened so that a radial system configuration can be obtained. When,
    The open switch selected by the “closed” switch selection means is changed to the closed state, and the closed switch selected by the “open” switch selection means is changed to the open state. Transmission loss calculating means for calculating the transmission loss of each system configuration obtained as a result,
    A reduction determination unit that determines whether the transmission loss of the specific system configuration newly calculated by the transmission loss calculation unit is lower than the transmission loss of another system configuration calculated earlier;
    When it is determined by the reduction determination means that the power transmission loss of the specific system configuration is reduced, an update unit that updates the specific system configuration as a minimum power transmission loss system candidate;
    Determining means for determining the minimum transmission loss system configuration from the minimum transmission loss system candidates;
    With
    In the determination means, the reduction determination means reduces any transmission loss of each system configuration calculated by the transmission loss calculation means from the transmission loss of the minimum transmission loss system candidate that is the latest update result. When determining that the minimum transmission loss system configuration is not, the minimum transmission loss system configuration determining apparatus determines the minimum transmission loss system candidate as the minimum transmission loss system configuration.
  2.  前記「開」開閉器選択手段は、前記メッシュ状系統内の開閉器のうち、通過電流が最小の閉状態にある開閉器を逐次選択することを特徴とする請求項1に記載の最小送電損失系統構成の決定装置。 2. The minimum power transmission loss according to claim 1, wherein the “open” switch selection unit sequentially selects a switch in a closed state with a minimum passing current among the switches in the mesh system. System configuration determination device.
  3.  前記「開」開閉器選択手段は、系統の送電線の容量制約のもとで、通過電流が最小の閉状態にある開閉器を逐次選択することを特徴とする請求項2に記載の最小送電損失系統構成の決定装置。 3. The minimum power transmission according to claim 2, wherein the “open” switch selection means sequentially selects a switch in a closed state with a minimum passing current under a capacity restriction of a transmission line of the system. Loss system configuration determination device.
  4.  前記「閉」開閉器選択手段により選択される開状態にある開閉器の選択個数を制限する制限手段を備えたことを特徴とする請求項1に記載の最小送電損失系統構成の決定装置。 The apparatus for determining a minimum power transmission loss system configuration according to claim 1, further comprising a limiting unit that limits a selection number of switches in an open state selected by the "closed" switch selection unit.
  5.  開閉器の開閉状態が変更された系統構成のうち、送電損失が最小となる最小送電損失系統構成を決定する最小送電損失系統構成の決定装置であって、
     前記系統構成内で1つのメッシュ状系統を作成するように、複数の開閉器から開状態にある開閉器を閉状態にすべく選択する「閉」開閉器選択手段と、
     前記「閉」開閉器選択手段により選択される開閉器数を変更する開閉器数変更手段と、
     前記「閉」開閉器選択手段により選択された開閉器数と同数の閉状態にある開閉器を、放射状の系統構成が得られるように、開状態にすべく選択する「開」開閉器選択手段と、
     前記「閉」開閉器選択手段により選択された開状態にある開閉器を閉状態に変更し、かつ、前記「開」開閉器選択手段により選択された閉状態にある開閉器を開状態に変更した結果として得られる各系統構成の送電損失を計算する送電損失計算手段と、
     前記送電損失計算手段により新たに計算された特定の系統構成の送電損失が、先に計算された別の系統構成の送電損失よりも低減しているかを判定する低減判定手段と、
     前記低減判定手段により前記特定の系統構成の送電損失が低減していると判定された場合に、当該特定の系統構成を最小送電損失系統候補として更新する更新手段と、
     最小送電損失系統候補から最小送電損失系統構成を決定する決定手段と、
     を備え、
     前記決定手段は、前記低減判定手段が、前記送電損失計算手段により計算された各系統構成の送電損失のいずれもが、最新の更新結果である前記最小送電損失系統候補の送電損失よりも低減していないと判定した場合に、当該最小送電損失系統候補を最小送電損失系統構成として決定することを特徴とする最小送電損失系統構成の決定装置。
    Among the system configurations in which the switching state of the switch is changed, a determination device for the minimum transmission loss system configuration for determining the minimum transmission loss system configuration that minimizes the transmission loss,
    “Closed” switch selection means for selecting a switch in an open state from a plurality of switches to be closed so as to create one mesh-like system in the system configuration;
    Switch number changing means for changing the number of switches selected by the "closed" switch selecting means;
    “Open” switch selection means for selecting the number of switches in the closed state as many as the number of switches selected by the “closed” switch selection means to be opened so that a radial system configuration can be obtained. When,
    The open switch selected by the “closed” switch selection means is changed to the closed state, and the closed switch selected by the “open” switch selection means is changed to the open state. Transmission loss calculating means for calculating the transmission loss of each system configuration obtained as a result,
    A reduction determination unit that determines whether the transmission loss of the specific system configuration newly calculated by the transmission loss calculation unit is lower than the transmission loss of another system configuration calculated earlier;
    When it is determined by the reduction determination means that the power transmission loss of the specific system configuration is reduced, an update unit that updates the specific system configuration as a minimum power transmission loss system candidate;
    Determining means for determining the minimum transmission loss system configuration from the minimum transmission loss system candidates;
    With
    In the determination means, the reduction determination means reduces any transmission loss of each system configuration calculated by the transmission loss calculation means from the transmission loss of the minimum transmission loss system candidate that is the latest update result. When determining that the minimum transmission loss system configuration is not, the minimum transmission loss system configuration determining apparatus determines the minimum transmission loss system candidate as the minimum transmission loss system configuration.
  6.  前記開閉器数変更手段は、前記低減判定手段により前記特定の系統構成の送電損失が先に計算された別の系統構成の送電損失よりも低減していないと判定された場合に、前記「閉」開閉器選択手段が選択する開閉器数を増加させることを特徴とする請求項5に記載の最小送電損失系統構成の決定装置。 The switch number changing means, when it is determined by the reduction determining means that the transmission loss of the specific system configuration is not reduced more than the power transmission loss of another system configuration previously calculated, 6. The apparatus for determining a minimum transmission loss system configuration according to claim 5, wherein the number of switches selected by the switch selection means is increased.
  7.  ランダムに開閉器の開閉状態を変更することにより複数の初期系統を生成する初期系統生成手段を備え、
     前記「閉」開閉器選択手段は、前記初期系統生成手段により生成された各初期系統内で1つのメッシュ状系統を作成するように、開状態にある開閉器を選択することを特徴とする請求項1又は5に記載の最小送電損失系統構成の決定装置。
    An initial system generation means for generating a plurality of initial systems by randomly changing the switching state of the switch,
    The “closed” switch selection unit selects a switch in an open state so as to create one mesh system in each initial system generated by the initial system generation unit. Item 6. The apparatus for determining the minimum power transmission loss system configuration according to Item 1 or 5.
  8.  開閉器の開閉状態が変更された系統構成のうち、送電損失が最小となる最小送電損失系統構成を決定する最小送電損失系統構成の決定方法であって、
     前記系統構成内で1つのメッシュ状系統を作成するように、複数の開閉器から2個以上の開状態にある開閉器を閉状態にすべく選択する「閉」開閉器選択ステップと、
     前記「閉」開閉器選択ステップにより選択された開閉器数と同数の閉状態にある開閉器を、放射状の系統構成が得られるように、開状態にすべく選択する「開」開閉器選択ステップと、
     前記「閉」開閉器選択ステップにより選択された開状態にある開閉器を閉状態に変更し、かつ、前記「開」開閉器選択ステップにより選択された閉状態にある開閉器を開状態に変更した結果として得られる各系統構成の送電損失を計算する送電損失計算ステップと、
     前記送電損失計算ステップにより新たに計算された特定の系統構成の送電損失が、先に計算された別の系統構成の送電損失よりも低減しているかを判定する低減判定ステップと、
     前記低減判定ステップにより前記特定の系統構成の送電損失が低減していると判定された場合に、当該特定の系統構成を最小送電損失系統候補として更新する更新ステップと、
     最小送電損失系統候補から最小送電損失系統構成を決定する決定ステップと、
     を含み、
     前記決定ステップは、前記低減判定ステップで、前記送電損失計算ステップにより計算された各系統構成の送電損失のいずれもが、最新の更新結果である前記最小送電損失系統候補の送電損失よりも低減していないと判定した場合に、当該最小送電損失系統候補を最小送電損失系統構成として決定することを特徴とする最小送電損失系統構成の決定方法。
    Among the system configurations in which the switching state of the switch is changed, the minimum transmission loss system configuration determination method for determining the minimum transmission loss system configuration that minimizes the transmission loss,
    “Closed” switch selection step for selecting two or more open switches from a plurality of switches to be closed so as to create one mesh system in the system configuration;
    “Open” switch selection step for selecting the number of switches in the closed state equal to the number of switches selected in the “closed” switch selection step so that the switches are opened so as to obtain a radial system configuration. When,
    The switch in the open state selected by the “closed” switch selection step is changed to the closed state, and the switch in the closed state selected by the “open” switch selection step is changed to the open state. Transmission loss calculation step for calculating transmission loss of each system configuration obtained as a result,
    A reduction determination step for determining whether the power transmission loss of the specific system configuration newly calculated by the power transmission loss calculation step is lower than the power transmission loss of another system configuration calculated earlier;
    When it is determined that the power transmission loss of the specific system configuration is reduced by the reduction determination step, an update step of updating the specific system configuration as a minimum power transmission loss system candidate;
    A determination step for determining a minimum transmission loss system configuration from minimum transmission loss system candidates;
    Including
    In the determination step, the transmission loss of each system configuration calculated in the transmission loss calculation step is reduced more than the transmission loss of the minimum transmission loss system candidate that is the latest update result. A determination method of a minimum transmission loss system configuration, wherein, when it is determined that the minimum transmission loss system configuration is not determined, the minimum transmission loss system candidate is determined as a minimum transmission loss system configuration.
  9.  前記「開」開閉器選択ステップは、前記メッシュ状系統内の開閉器のうち、通過電流が最小の閉状態にある開閉器を逐次選択することを特徴とする請求項8に記載の最小送電損失系統構成の決定方法。 9. The minimum transmission loss according to claim 8, wherein the “open” switch selection step sequentially selects a switch in a closed state with a minimum passing current among the switches in the mesh system. System configuration determination method.
  10.  開閉器の開閉状態が変更された系統構成のうち、送電損失が最小となる最小送電損失系統構成を決定する最小送電損失系統構成の決定方法であって、
     前記系統構成内で1つのメッシュ状系統を作成するように、複数の開閉器から開状態にある開閉器を閉状態にすべく選択する「閉」開閉器選択ステップと、
     前記「閉」開閉器選択ステップにより選択される開閉器数を変更する開閉器数変更ステップと、
     前記「閉」開閉器選択ステップにより選択された開閉器数と同数の閉状態にある開閉器を、放射状の系統構成が得られるように、開状態にすべく選択する「開」開閉器選択ステップと、
     前記「閉」開閉器選択ステップにより選択された開状態にある開閉器を閉状態に変更し、かつ、前記「開」開閉器選択ステップにより選択された閉状態にある開閉器を開状態に変更した結果として得られる各系統構成の送電損失を計算する送電損失計算ステップと、
     前記送電損失計算ステップにより新たに計算された特定の系統構成の送電損失が、先に計算された別の系統構成の送電損失よりも低減しているかを判定する低減判定ステップと、
     前記低減判定ステップにより前記特定の系統構成の送電損失が低減していると判定された場合に、当該特定の系統構成を最小送電損失系統候補として更新する更新ステップと、
     最小送電損失系統候補から最小送電損失系統構成を決定する決定ステップと、
     を含み、
     前記決定ステップは、前記低減判定ステップで、前記送電損失計算ステップにより計算された各系統構成の送電損失のいずれもが、最新の更新結果である前記最小送電損失系統候補の送電損失よりも低減していないと判定した場合に、当該最小送電損失系統候補を最小送電損失系統構成として決定することを特徴とする最小送電損失系統構成の決定方法。
    Among the system configurations in which the switching state of the switch is changed, the minimum transmission loss system configuration determination method for determining the minimum transmission loss system configuration that minimizes the transmission loss,
    A “closed” switch selection step of selecting a switch in an open state from a plurality of switches to be closed so as to create one mesh-like system in the system configuration;
    A switch number changing step for changing the number of switches selected in the “closed” switch selection step;
    “Open” switch selection step for selecting the number of switches in the closed state equal to the number of switches selected in the “closed” switch selection step so that the switches are opened so as to obtain a radial system configuration. When,
    The switch in the open state selected by the “closed” switch selection step is changed to the closed state, and the switch in the closed state selected by the “open” switch selection step is changed to the open state. Transmission loss calculation step for calculating transmission loss of each system configuration obtained as a result,
    A reduction determination step for determining whether the power transmission loss of the specific system configuration newly calculated by the power transmission loss calculation step is lower than the power transmission loss of another system configuration calculated earlier;
    When it is determined that the power transmission loss of the specific system configuration is reduced by the reduction determination step, an update step of updating the specific system configuration as a minimum power transmission loss system candidate;
    A determination step for determining a minimum transmission loss system configuration from minimum transmission loss system candidates;
    Including
    In the determination step, the transmission loss of each system configuration calculated in the transmission loss calculation step is reduced more than the transmission loss of the minimum transmission loss system candidate that is the latest update result. A determination method of a minimum transmission loss system configuration, wherein, when it is determined that the minimum transmission loss system configuration is not determined, the minimum transmission loss system candidate is determined as a minimum transmission loss system configuration.
  11.  前記開閉器数変更ステップは、前記低減判定ステップにより前記特定の系統構成の送電損失が先に計算された別の系統構成の送電損失よりも低減していないと判定された場合に、前記「閉」開閉器選択ステップで選択する開閉器数を増加させることを特徴とする請求項10に記載の最小送電損失系統構成の決定方法。 The switch number changing step is performed when the reduction determining step determines that the transmission loss of the specific system configuration is not reduced more than the power transmission loss of another system configuration previously calculated. The method for determining the minimum power transmission loss system configuration according to claim 10, wherein the number of switches selected in the switch selection step is increased.
  12.  ランダムに開閉器の開閉状態を変更することにより複数の初期系統を生成する初期系統生成ステップを含み、
     前記「閉」開閉器選択ステップは、前記初期系統生成ステップにより生成された各初期系統内で1つのメッシュ状系統を作成するように、開状態にある開閉器を選択することを特徴とする請求項8又は10に記載の最小送電損失系統構成の決定方法。
    Including an initial system generation step of generating a plurality of initial systems by randomly changing the switching state of the switch,
    The “closed” switch selection step selects a switch in an open state so as to create one mesh system in each initial system generated by the initial system generation step. Item 11. The method for determining the minimum transmission loss system configuration according to Item 8 or 10.
  13.  コンピュータに、開閉器の開閉状態が変更された系統構成のうち、送電損失が最小となる最小送電損失系統構成を決定させる最小送電損失系統構成の決定プログラムであって、
     前記コンピュータに、
     前記系統構成内で1つのメッシュ状系統を作成するように、複数の開閉器から2個以上の開状態にある開閉器を閉状態にすべく選択する「閉」開閉器選択処理と、
     前記「閉」開閉器選択処理により選択された開閉器数と同数の閉状態にある開閉器を、放射状の系統構成が得られるように、開状態にすべく選択する「開」開閉器選択処理と、
     前記「閉」開閉器選択処理により選択された開状態にある開閉器を閉状態に変更し、かつ、前記「開」開閉器選択処理により選択された閉状態にある開閉器を開状態に変更した結果として得られる各系統構成の送電損失を計算する送電損失計算処理と、
     前記送電損失計算処理により新たに計算された特定の系統構成の送電損失が、先に計算された別の系統構成の送電損失よりも低減しているかを判定する低減判定処理と、
     前記低減判定処理により前記特定の系統構成の送電損失が低減していると判定された場合に、当該特定の系統構成を最小送電損失系統候補として更新する更新処理と、
     最小送電損失系統候補から最小送電損失系統構成を決定する決定処理と、
     を実行させ、
     前記決定処理は、前記低減判定処理で、前記送電損失計算処理により計算された各系統構成の送電損失のいずれもが、最新の更新結果である前記最小送電損失系統候補の送電損失よりも低減していないと判定した場合に、当該最小送電損失系統候補を最小送電損失系統構成として決定することを特徴とする最小送電損失系統構成の決定プログラム。
    A determination program for a minimum transmission loss system configuration that causes a computer to determine a minimum transmission loss system configuration that minimizes transmission loss among the system configurations in which the switching state of the switch is changed,
    In the computer,
    A “closed” switch selection process for selecting two or more open switches to be closed from a plurality of switches so as to create one mesh system in the system configuration;
    “Open” switch selection process for selecting the number of switches in the closed state equal to the number of switches selected by the “closed” switch selection process so that the switches are opened so as to obtain a radial system configuration. When,
    The switch in the open state selected by the “closed” switch selection process is changed to the closed state, and the switch in the closed state selected by the “open” switch selection process is changed to the open state. Transmission loss calculation processing for calculating the transmission loss of each system configuration obtained as a result,
    A reduction determination process for determining whether the power transmission loss of the specific system configuration newly calculated by the power transmission loss calculation process is lower than the power transmission loss of another system configuration calculated earlier;
    When it is determined by the reduction determination process that the power transmission loss of the specific system configuration is reduced, an update process for updating the specific system configuration as a minimum power transmission loss system candidate;
    A decision process for determining the minimum transmission loss system configuration from the minimum transmission loss system candidates;
    And execute
    In the determination process, any of the transmission losses of each system configuration calculated by the transmission loss calculation process in the reduction determination process is lower than the transmission loss of the minimum transmission loss system candidate that is the latest update result. When determining that the minimum transmission loss system configuration is not, the minimum transmission loss system configuration determination program determines the minimum transmission loss system candidate as the minimum transmission loss system configuration.
PCT/JP2009/002224 2008-05-20 2009-05-20 Decision device with minimum power transmission loss system, method, and program WO2009142011A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009801182235A CN102037627B (en) 2008-05-20 2009-05-20 Decision device with minimum power transmission loss system, method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-132521 2008-05-20
JP2008132521A JP5395367B2 (en) 2008-05-20 2008-05-20 Minimum transmission loss system configuration determination device, method and program

Publications (1)

Publication Number Publication Date
WO2009142011A1 true WO2009142011A1 (en) 2009-11-26

Family

ID=41339951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/002224 WO2009142011A1 (en) 2008-05-20 2009-05-20 Decision device with minimum power transmission loss system, method, and program

Country Status (3)

Country Link
JP (1) JP5395367B2 (en)
CN (1) CN102037627B (en)
WO (1) WO2009142011A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101246383B1 (en) 2011-09-27 2013-03-21 한국전력공사 Apparatus and method for considering load section characteristic of distribution system
KR101715778B1 (en) * 2015-10-29 2017-03-15 (주)에스엔 Method for measuring power dissitation in electric power grid
KR101926309B1 (en) * 2018-05-28 2018-12-06 이동률 Control Method of distribution automation system having dispersion generation
KR101926306B1 (en) * 2018-05-28 2018-12-06 이동률 Distribution Automation System
KR101926308B1 (en) * 2018-05-28 2018-12-06 이동률 Distribution automation system having dispersion generation
KR101926307B1 (en) * 2018-05-28 2019-03-07 (주)세니온 Control method of distribution Automation System
JP7303500B2 (en) * 2019-03-13 2023-07-05 株式会社明電舎 Distribution system controller

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63316637A (en) * 1987-06-19 1988-12-23 Tokyo Electric Power Co Inc:The Power transmission loss minimizing method
JPH04210735A (en) * 1990-11-30 1992-07-31 Toshiba Corp Power system controller
JPH05130736A (en) * 1991-07-11 1993-05-25 Kyushu Electric Power Co Inc Distribution system controller
JPH05344651A (en) * 1992-06-11 1993-12-24 Toshiba Corp Distribution system operating unit
JPH08308110A (en) * 1995-04-27 1996-11-22 Hitachi Ltd Controller for power distribution system
JPH1056737A (en) * 1996-08-07 1998-02-24 Toshiba Corp Distribution system operating equipment

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3364826B2 (en) * 1997-02-24 2003-01-08 株式会社日立製作所 Method and apparatus for creating distribution system configuration

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63316637A (en) * 1987-06-19 1988-12-23 Tokyo Electric Power Co Inc:The Power transmission loss minimizing method
JPH04210735A (en) * 1990-11-30 1992-07-31 Toshiba Corp Power system controller
JPH05130736A (en) * 1991-07-11 1993-05-25 Kyushu Electric Power Co Inc Distribution system controller
JPH05344651A (en) * 1992-06-11 1993-12-24 Toshiba Corp Distribution system operating unit
JPH08308110A (en) * 1995-04-27 1996-11-22 Hitachi Ltd Controller for power distribution system
JPH1056737A (en) * 1996-08-07 1998-02-24 Toshiba Corp Distribution system operating equipment

Also Published As

Publication number Publication date
JP2009284614A (en) 2009-12-03
CN102037627B (en) 2013-07-10
JP5395367B2 (en) 2014-01-22
CN102037627A (en) 2011-04-27

Similar Documents

Publication Publication Date Title
WO2009142011A1 (en) Decision device with minimum power transmission loss system, method, and program
Aydın et al. Solution to non-convex economic dispatch problem with valve point effects by incremental artificial bee colony with local search
da Silva et al. Transmission expansion planning optimization by adaptive multi-operator evolutionary algorithms
CN110995858B (en) Edge network request scheduling decision method based on deep Q network
US11593618B2 (en) Data processing apparatus, data processing method, and storage medium
US11669085B2 (en) Method and system for determining system settings for an industrial system
JP2019159637A (en) Optimization apparatus and method of controlling optimization apparatus
US11037061B2 (en) Adaptive cataclysms in genetic algorithms
US20150379075A1 (en) Maintaining diversity in multiple objective function solution optimization
Wang et al. A graph-based ant colony optimization approach for integrated process planning and scheduling
Li et al. Cost-oriented robotic assembly line balancing problem with setup times: multi-objective algorithms
WO2005048184A1 (en) Active learning method and system
CN111077768A (en) Optimization device and control method of optimization device
JP2023139287A (en) Information processing apparatus, information processing method, and program
WO2016151620A1 (en) Simulation system, simulation method, and simulation program
JP2020187453A (en) Optimization device and control method of optimization device
CN116167446B (en) Quantum computing processing method and device and electronic equipment
Mingas et al. A custom precision based architecture for accelerating parallel tempering mcmc on fpgas without introducing sampling error
Luo et al. Sampling-based adaptive bounding evolutionary algorithm for continuous optimization problems
Yavuz et al. Analysis and solution to the single-level batch production smoothing problem
Vieira et al. iSklearn: Automated Machine Learning with irace
CN112488831A (en) Block chain network transaction method and device, storage medium and electronic equipment
KR101462232B1 (en) Method and system for computing management criteria of warships using genetic algorithm
CN116151383B (en) Quantum computing processing method and device and electronic equipment
Shayeghi et al. Application of PSO and GA for transmission network expansion planning

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980118223.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09750373

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 8146/DELNP/2010

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09750373

Country of ref document: EP

Kind code of ref document: A1