JP2009284614A - Device, method, and program for determining system configuration with minimized transmission loss - Google Patents

Device, method, and program for determining system configuration with minimized transmission loss Download PDF

Info

Publication number
JP2009284614A
JP2009284614A JP2008132521A JP2008132521A JP2009284614A JP 2009284614 A JP2009284614 A JP 2009284614A JP 2008132521 A JP2008132521 A JP 2008132521A JP 2008132521 A JP2008132521 A JP 2008132521A JP 2009284614 A JP2009284614 A JP 2009284614A
Authority
JP
Japan
Prior art keywords
transmission loss
system configuration
switch
closed
minimum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008132521A
Other languages
Japanese (ja)
Other versions
JP5395367B2 (en
Inventor
Masahiko Murai
雅彦 村井
Yoko Kosaka
葉子 小坂
Takenori Kobayashi
武則 小林
Yumiko Kosakata
由美子 小坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2008132521A priority Critical patent/JP5395367B2/en
Priority to PCT/JP2009/002224 priority patent/WO2009142011A1/en
Priority to CN2009801182235A priority patent/CN102037627B/en
Publication of JP2009284614A publication Critical patent/JP2009284614A/en
Application granted granted Critical
Publication of JP5395367B2 publication Critical patent/JP5395367B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/20Information technology specific aspects, e.g. CAD, simulation, modelling, system security

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device, method, and program for determining a system configuration with minimized transmission loss wherein transmission loss smaller than with a branch exchange method and the configuration of a distribution system with this transmission loss can be determined in a practical calculation time. <P>SOLUTION: A "closed" switch selecting means 12 selects a combination of n (n≥2) unselected "open" switches to be brought to a "closed" state so that mesh systems becomes one in the present system configuration. The state of the switches is changed to the "closed" state. The power flow of the mesh system generated by changing the state to the "closed" state is computed by a load-flow computing means 13. A "open" switch selecting means 14 sequentially selects "closed" switches where the value of current passed through them in the power flow of the mesh system calculated by the load-flow computing means 13 as switches to be brought to an "open" state. The state of the switches is changed to the "open" state. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、配電系統の送電損失を決定する装置に係り、特に、実用的な計算時間で最小となる送電損失、及び当該送電損失を有する配電系統の構成を決定可能な最小送電損失系統構成の決定装置、方法及びプログラムに関する。   The present invention relates to an apparatus for determining a transmission loss of a distribution system, and in particular, a transmission loss that is minimum in practical calculation time, and a minimum transmission loss system configuration that can determine the configuration of a distribution system having the transmission loss. The present invention relates to a determination device, a method, and a program.

一般的に、配電系統の送電損失を最小化する系統構成を決定する方法としては、配電系統が放射状に構成され、かつ、系統内のフィーダーや開閉器の容量制約の下、送電損失が最小となるように、配電系統に設けられた開閉器の開閉状態を決定するものが知られている。下記に、このような配電系統の送電損失を最小とする配電系統構成の決定方法の一例を、図9〜13を参照して説明する。   In general, as a method of determining the system configuration that minimizes the transmission loss of the distribution system, the distribution system is configured radially and the transmission loss is minimized under the capacity constraints of feeders and switches in the system. Thus, there is known one that determines the open / close state of a switch provided in a power distribution system. Below, an example of the determination method of the distribution system configuration which minimizes the transmission loss of such a distribution system is demonstrated with reference to FIGS.

図9(a)は、5台の開閉器91〜95が放射状に配設された配電系統の構成図であり、開閉器91、94が「開」状態、開閉器92、93、95が「閉」状態となっている。また、図9(b)は、図9(a)における配電系統の区間番号9a〜9gに対応させた当該区間の負荷、及び区間のインピーダンスを示している。ここで、図9の配電系統の構成において、区間負荷が区間内で一様に分布するものとすると、各区間の送電損失は、下記の式により表される。   FIG. 9A is a configuration diagram of a power distribution system in which five switches 91 to 95 are radially arranged. The switches 91 and 94 are in the “open” state, and the switches 92, 93 and 95 are “ Closed state. Moreover, FIG.9 (b) has shown the load of the said area matched with the section numbers 9a-9g of the distribution system in Fig.9 (a), and the impedance of a section. Here, in the configuration of the power distribution system in FIG. 9, if the section load is uniformly distributed in the section, the transmission loss in each section is expressed by the following equation.

[数1]
ΔP=∫(R/L)I(x)dx=(R/L)∫(Iin−(x/L)Il)dx
=R(Iin−IinIl+Il/3)
ΔP:区間の送電損失
Iin:区間の入力電流[A]
Il:区間負荷[A]
L:区間の長さ[m]
R:区間インピーダンス[Ω]
x:入力端からの距離[m]
I(x):入力端からの距離x[m]地点における通過電流[A]
[Equation 1]
ΔP = ∫ (R / L) I (x) 2 dx = (R / L) ∫ (Iin− (x / L) Il) 2 dx
= R (Iin 2 -IinIl + Il 3/3)
ΔP: Section transmission loss Iin: Section input current [A]
Il: Section load [A]
L: Section length [m]
R: Section impedance [Ω]
x: Distance from input end [m]
I (x): passing current [A] at a distance x [m] from the input end

すなわち、図9の放射状に構成された配電系統の各区間の送電損失は、[数1]に対して図9(b)の負荷及びインピーダンスを代入することにより、図10のように算出することができる。なお、図9の配電系統の構成において送電損失が最小となる系統構成を決定するためには、この配電系統が放射状態を保つように、すべての開閉器91〜95の開閉状態に対して送電損失を計算し、全体の損失が最小となるように開閉器91〜95の開閉状態を決定する。   That is, the transmission loss in each section of the distribution system configured radially as shown in FIG. 9 is calculated as shown in FIG. 10 by substituting the load and impedance shown in FIG. 9B for [Equation 1]. Can do. In order to determine the system configuration that minimizes the power transmission loss in the configuration of the distribution system of FIG. 9, power is transmitted to the switching states of all the switches 91 to 95 so that the distribution system maintains a radiating state. The loss is calculated, and the switching states of the switches 91 to 95 are determined so that the total loss is minimized.

ここで、図11は、このような放射状に構成された配電系統における開閉器の開閉状態のすべての組み合わせを示す図であり、図12は、図11の各配電系統の構成に対応する送電損失を算出した結果である。図12によれば、送電損失の最小値は56.267Wであり、図11(f)が、最小の送電損失を有する配電系統の構成であることがわかる。   Here, FIG. 11 is a diagram showing all combinations of the switching states of the switches in such a radially configured distribution system, and FIG. 12 is a transmission loss corresponding to the configuration of each distribution system in FIG. It is the result of having calculated. According to FIG. 12, the minimum value of power transmission loss is 56.267 W, and it can be seen that FIG. 11 (f) shows the configuration of the distribution system having the minimum power transmission loss.

しかしながら、実際の大規模な配電系統において、すべての開閉器の開閉状態の組み合わせに対して送電損失を計算するこのような方法を適用すると、当該組み合わせは膨大となり、実用的な計算時間で送電損失が最小となる配電系統の構成を決定することは不可能であった。そのため、種々の方法により、送電損失を最小とする系統構成を求める決定装置が提案されている。   However, in an actual large-scale distribution system, applying this method of calculating transmission loss for all switch combinations of switches will result in an enormous number of combinations and transmission loss in practical calculation time. It was impossible to determine the distribution system configuration that minimizes the power distribution system. Therefore, a determination device that obtains a system configuration that minimizes power transmission loss by various methods has been proposed.

また、上記方法以外にも、例えば、配電系統の送電損失の最小化を図る系統構成の決定方法として、ブランチ交換法が提案されている(非特許文献1参照)。このブランチ交換法は、放射状の配電系統において、ある「開」状態の開閉器を「閉」状態に変更して1つのループを構成し、作成したループの潮流電流を計算することで開閉器のうち通過電流が最小となる開閉器を「開」状態とした系統構成を求め、この処理をすべての「開」状態の開閉器について繰り返し実施することにより求めた系統構成のうち、送電損失が最小となる系統構成を抽出するといった方法である。
S.Civanlar et.al,“Distribution Feeder Reconfiguration for Loss Reduction”,IEEE Trans.Power Delivery,Vol.3,No.3,1988
In addition to the above method, for example, a branch exchange method has been proposed as a system configuration determination method for minimizing transmission loss of a distribution system (see Non-Patent Document 1). In this branch exchange method, in a radial distribution system, a switch in an “open” state is changed to a “closed” state to form one loop, and the power flow current of the created loop is calculated to calculate the switch current. Of these, the system configuration in which the switch with the smallest passing current is set to the “open” state is determined and this process is repeated for all the switches in the “open” state. The system configuration is extracted.
S. Civanlar et. al, “Distribution Feeder Reconfiguration for Loss Reduction”, IEEE Trans. Power Delivery, Vol. 3, No. 3, 1988

ところで、上述したようなブランチ交換法による、送電損失を最小化する配電系統の構成の決定方法の一例を、図9、13、14を参照して以下に説明する。   By the way, an example of a method for determining the configuration of a distribution system that minimizes power transmission loss by the branch exchange method as described above will be described below with reference to FIGS.

まず、図9の配電系統に対してブランチ交換法を適用すると、「開」状態にある開閉器91を閉じることでループを作成し、このループ内の潮流電流を計算することで各開閉器91〜93、95を通過する電流を算出する。各開閉器91〜93、95の通過電流は、開閉器91が「開」状態にあった図9の系統構成の通過電流に対して、開閉器91を閉じることで当該開閉器91に流れる電流を、加えることにより算出する。   First, when the branch exchange method is applied to the distribution system of FIG. 9, a loop is created by closing the switch 91 in the “open” state, and each switch 91 is calculated by calculating a current flow in the loop. The current passing through ˜93, 95 is calculated. The passing currents of the switches 91 to 93 and 95 are the currents that flow through the switches 91 by closing the switches 91 with respect to the passing currents of the system configuration of FIG. 9 in which the switches 91 are in the “open” state. Is calculated by adding.

また、開閉器91の通過電流は、図9の状態の開閉器91の両端の電位差から、テブナンの法則を用いて算出することができる。なお、開閉器91の両端の電位差は、各区間の電圧降下Vd[V]を次式により計算することで求めている。   Further, the passing current of the switch 91 can be calculated using the Thevenin's law from the potential difference between both ends of the switch 91 in the state of FIG. The potential difference between both ends of the switch 91 is obtained by calculating the voltage drop Vd [V] in each section by the following equation.

[数2]
Vd=∫(R/L)I(x)dx=(R/L)∫(Iin−(x/L)Il)dx=R(Iin−Il/2)
[Equation 2]
Vd = ∫ (R / L) I (x) dx = (R / L) ∫ (Iin− (x / L) Il) dx = R (Iin−Il / 2)

この算出した各開閉器の区間の電圧降下Vdを基に開閉器91の両端の電位差を求め、テブナンの法則を利用して、開閉器91を閉じることで生じる電流を次式により算出する。   A potential difference between both ends of the switch 91 is obtained based on the calculated voltage drop Vd of each switch section, and a current generated by closing the switch 91 is calculated by the following formula using the Thevenin's law.

[数3]
ΔI=ΔV/Rloop
ΔI:開閉器を閉じることにより回路に流れる電流[A]
ΔV:開閉器両端の電位差[V]
Rloop:開閉器を閉じたときにできるループのインピーダンス[Ω]
[Equation 3]
ΔI = ΔV / Rloop
ΔI: current flowing in the circuit by closing the switch [A]
ΔV: Potential difference across the switch [V]
Rloop: Impedance [Ω] of the loop that can be generated when the switch is closed

ここで、図13は、図9の配電系統の各開閉器91〜95の通過電流と各区間の電圧降下を示している。すなわち、開閉器91の電位差は、
ΔV=−0.42−(−0.05−0.125−0.225−0.35)=0.33
となり、開閉器91を閉じることで生じる電流変化は、
ΔI=0.33/(0.028+0.01+0.01+0.01+0.01+0.01)=4.853[A]
となる。従って、開閉器91を閉じた後の開閉器91〜93、95の通過電流は図14のようになる。
Here, FIG. 13 shows the passing current of each switch 91 to 95 and the voltage drop in each section of the distribution system of FIG. That is, the potential difference of the switch 91 is
ΔV = −0.42-(− 0.05−0.125−0.225−0.35) = 0.33
The current change caused by closing the switch 91 is
ΔI = 0.33 / (0.028 + 0.01 + 0.01 + 0.01 + 0.01 + 0.01) = 4.853 [A]
It becomes. Therefore, the passing currents of the switches 91 to 93 and 95 after closing the switch 91 are as shown in FIG.

ブランチ交換法では、次に、ループ内において通過電流が最小となる開閉器を開くことで、新しく構成された放射状の配電系統の送電損失を計算する。つまり、図14によれば、通過電流が最小となる開閉器は開閉器91であるため、この開閉器91を「開」状態にする操作では系統構成は同じであり、送電損失は変化しない。   In the branch exchange method, the power transmission loss of the newly constructed radial distribution system is calculated by opening the switch that minimizes the passing current in the loop. That is, according to FIG. 14, the switch with the minimum passing current is the switch 91. Therefore, the system configuration is the same in the operation of setting the switch 91 in the “open” state, and the transmission loss does not change.

また、開閉器94に対して同様の処理、すなわち「開」状態とする操作を行うと、ループ系統の通過電流は図15のように算出される。ここで、図15によれば、通過電流が最小の開閉器は、やはり開閉器94となるので、配電系統の構成は同じであり、送電損失は変化しない。   Further, when a similar process is performed on the switch 94, that is, an operation for bringing the switch into the “open” state, the passing current of the loop system is calculated as shown in FIG. Here, according to FIG. 15, the switch with the smallest passing current is also the switch 94, so that the configuration of the power distribution system is the same and the transmission loss does not change.

以上のことから、図9の配電系統に対してブランチ交換法を適用すると、「開」状態の開閉器を一度に1つずつしか「閉」状態とすることができないので、送電損失が最小となる配電系統の構成を決定するのに多くの反復計算を要し、また、探索近傍が狭いので算出結果が局所最適解に陥り易い。そのため、図11(f)のような、送電損失が真の最小値となる系統構成を取得することができないでいた。   From the above, when the branch exchange method is applied to the distribution system of FIG. 9, only one switch in the “open” state can be put in the “closed” state at a time, so that the transmission loss is minimized. In order to determine the configuration of the distribution system, many iterative calculations are required, and since the search neighborhood is narrow, the calculation result tends to fall into a local optimal solution. For this reason, a system configuration in which the power transmission loss is a true minimum value as shown in FIG. 11F cannot be acquired.

本発明は、以上のような課題を解消するために提案されたものであって、その目的は、実用的な計算時間で、かつ、ブランチ交換法より小さい送電損失、及び当該送電損失を有する配電系統の構成を決定可能な最小送電損失系統構成の決定装置、方法及びプログラムを提供することにある。   The present invention has been proposed in order to solve the above-described problems, and its purpose is a practical calculation time and a power transmission loss smaller than the branch exchange method, and a power distribution having the power transmission loss. An object of the present invention is to provide an apparatus, a method, and a program for determining a minimum transmission loss system configuration capable of determining a system configuration.

上述した目的を達成するために、本発明は、開閉器の開閉状態が変更された系統構成のうち、送電損失が最小となる最小送電損失系統構成を決定する最小送電損失系統構成の決定装置であって、前記系統構成内で1つのメッシュ系統を作成するように、複数の開閉器から2個以上の開状態にある開閉器を閉状態にすべく選択する閉開閉器選択手段と、前記閉開閉器選択手段により選択された開閉器数と同数の閉状態にある開閉器を、放射状の系統構成が得られるように、開状態にすべく選択する開開閉器選択手段と、前記閉開閉器選択手段により選択された開状態にある開閉器を閉状態に変更し、かつ、前記開開閉器選択手段により選択された閉状態にある開閉器を開状態に変更した各系統構成の送電損失を計算する送電損失計算手段と、前記送電損失計算手段により計算された所定の系統構成の送電損失が、先に計算された別の系統構成の送電損失よりも低減するかを判定する低減判定手段と、前記低減判定手段により低減すると判定された場合に、低減した送電損失を有する系統構成を最小送電損失系統候補として更新する更新手段と、最小送電損失系統候補から最小送電損失系統構成を決定する決定手段と、を備え、前記決定手段は、前記低減判定手段が、前記送電損失計算手段により計算された各系統構成の送電損失のいずれもが、最新の更新状態にある前記最小送電損失系統候補の送電損失よりも低減しないと判定した場合に、当該最小送電損失系統候補を最小送電損失系統構成として決定することを特徴とする。   In order to achieve the above-described object, the present invention provides a minimum transmission loss system configuration determination device that determines a minimum transmission loss system configuration that minimizes a transmission loss among system configurations in which the switching state of the switch is changed. A closed switch selecting means for selecting two or more open switches from a plurality of switches to be closed so as to create one mesh system in the system configuration; Open switch selection means for selecting the number of switches in the closed state as many as the number of switches selected by the switch selection means to be in an open state so as to obtain a radial system configuration, and the closed switch The transmission loss of each system configuration in which the switch in the open state selected by the selection means is changed to the closed state, and the switch in the closed state selected by the open switch selection means is changed to the open state. Transmission loss calculation means to calculate and previous A reduction determination unit that determines whether the transmission loss of the predetermined system configuration calculated by the transmission loss calculation unit is lower than the transmission loss of another system configuration calculated earlier, and the reduction determination unit that determines that the transmission loss is reduced by the reduction determination unit Update means for updating a system configuration having a reduced transmission loss as a minimum transmission loss system candidate, and a determination means for determining a minimum transmission loss system configuration from the minimum transmission loss system candidate. The reduction determination means determines that none of the transmission losses of each system configuration calculated by the transmission loss calculation means is lower than the transmission loss of the minimum transmission loss system candidate in the latest updated state. In this case, the minimum transmission loss system candidate is determined as the minimum transmission loss system configuration.

また、前記開開閉器選択手段は、前記メッシュ系統内の開閉器のうち、通過電流が最小の閉状態にある開閉器を逐次選択することを特徴とする点も本発明の一態様である。   In addition, the open switch selection unit sequentially selects a switch in a closed state with a minimum passing current among the switches in the mesh system.

なお、前記閉開閉器選択手段は、複数の開状態にある開閉器を閉状態にすべく選択するだけでなく、単数を含めた開状態にある開閉器を選択することも可能であり、さらに、前記閉開閉器選択手段により選択される開閉器数を変更する開閉器数変更手段を備えることで、この選択される開閉器数を可変なものとしている点も本発明の一態様である。   The closed switch selection means can select not only a plurality of open switches to be closed, but also a single open switch including a single switch. Also, it is an aspect of the present invention that the number of switches to be selected is variable by providing the number of switches for switching to change the number of switches to be selected by the closed switch selection means.

また、ランダムに開閉器の開閉状態を変更することにより複数の初期系統を生成する初期系統生成手段を備え、前記閉開閉器選択手段は、前記初期系統生成手段により生成された各初期系統内で1つのメッシュ系統を作成するように、開状態にある開閉器を選択することを特徴とする点も本発明の一態様として包含する。   In addition, an initial system generation unit that generates a plurality of initial systems by randomly changing the switching state of the switch is provided, and the closed switch selection unit is included in each initial system generated by the initial system generation unit. The point which selects the switch in an open state so that one mesh system | strain may be created is also included as 1 aspect of this invention.

以上のような本発明によれば、複数の「開」状態の開閉器を一度に「閉」状態に変更し、それと同数の開閉器を「開」状態とすることにより、前述したブランチ交換法に比べ、広い範囲での探索が可能となるので、より小さい送電損失、及び当該送電損失を有する系統構成を決定することが可能な最小送電損失系統構成の決定装置、方法及びプログラムを提供することができる。   According to the present invention as described above, a plurality of "open" state switches are changed to the "closed" state at the same time, and the same number of switches are set to the "open" state, whereby the branch exchange method described above Compared to the above, it is possible to search in a wide range, and therefore, it is possible to provide a determination apparatus, a method, and a program for determining a minimum transmission loss system configuration capable of determining a smaller transmission loss and a system configuration having the transmission loss. Can do.

[1.第1の実施形態]
[構成]
次に、本発明の第1の実施形態に係る配電系統の送電損失が最小となる最小送電損失系統構成の決定装置の構成について、図1〜4を参照して以下に説明する。なお、図1は、第1の実施形態に係る最小送電損失系統構成の決定装置の構成を示すブロック図である。
[1. First Embodiment]
[Constitution]
Next, the configuration of the determination device for the minimum power transmission loss system configuration that minimizes the power transmission loss of the distribution system according to the first embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a block diagram illustrating the configuration of the minimum power loss system configuration determining apparatus according to the first embodiment.

この最小送電損失系統構成の決定装置は、図1の通り、演算手段1、入力手段2、記憶手段3、表示手段4、I/F手段5から構成されている。なお、I/F手段5は、配電系統監視制御装置6を介して、配電系統7に接続されている。   As shown in FIG. 1, the minimum power transmission loss system configuration determining apparatus includes a calculation unit 1, an input unit 2, a storage unit 3, a display unit 4, and an I / F unit 5. The I / F unit 5 is connected to the power distribution system 7 via the power distribution system monitoring control device 6.

この演算手段1は、具体的には、コンピュータのメインメモリ、それに記憶されたプログラム、そのプログラムによって制御されるCPU等により実現され、後述するような処理手段10〜17を有している。入力手段2は、ユーザの操作に応じた信号をコンピュータに入力するマウスやキーボード等の入力装置である。   Specifically, the computing means 1 is realized by a main memory of a computer, a program stored therein, a CPU controlled by the program, and the like, and has processing means 10 to 17 as will be described later. The input means 2 is an input device such as a mouse or a keyboard for inputting a signal corresponding to a user operation to the computer.

記憶手段3は、演算手段1における処理に必要な各種の系統情報データを予め記憶すると共に、演算手段1による算出結果を記憶するものであり、コンピュータの各種メモリや補助記憶装置等により実現される。なお、配電の系統情報データは、例えば、配電線の接続状態、インピーダンス、開閉器の開閉状態や負荷等の情報である。   The storage unit 3 stores in advance various system information data necessary for processing in the calculation unit 1 and stores the calculation result by the calculation unit 1 and is realized by various memories of the computer, an auxiliary storage device, and the like. . The distribution system information data is, for example, information such as the connection state of the distribution line, the impedance, the switching state of the switch, and the load.

表示手段4は、入力手段2を通じて入力されたデータや、記憶手段3に記憶されたデータ、及び演算手段1により処理された算出結果を、ユーザに対して表示するディスプレイ等の表示装置である。I/F手段5は、配電系統監視制御装置6を介して配電系統7の系統情報データ及び制御データを送受信する部分であり、受信した系統情報データは記憶手段3に記憶される。配電系統監視制御装置6は、配電系統7の監視制御を行う装置であり、配電系統7の計画、運用、制御に関する各種データを保持している。   The display unit 4 is a display device such as a display that displays data input through the input unit 2, data stored in the storage unit 3, and calculation results processed by the calculation unit 1 to the user. The I / F unit 5 is a part that transmits and receives system information data and control data of the distribution system 7 via the distribution system monitoring and control device 6, and the received system information data is stored in the storage unit 3. The power distribution system monitoring and control device 6 is a device that performs monitoring control of the power distribution system 7 and holds various data related to the planning, operation, and control of the power distribution system 7.

なお、上記演算手段1は、データ読出手段10、送電損失計算手段11、「閉」開閉器選択手段12、潮流計算手段13、「開」開閉器選択手段14、送電損失低減判定手段15、初期系統対比手段16、損失最小化構成更新手段17を備えている。   The computing means 1 includes a data reading means 10, a power transmission loss calculating means 11, a “closed” switch selecting means 12, a power flow calculating means 13, an “open” switch selecting means 14, a power transmission loss reduction determining means 15, an initial stage. System comparison means 16 and loss minimization configuration update means 17 are provided.

データ読出手段10は、記憶手段3から系統情報データ、すなわち、配電系統の構成、当該系統に設けられた開閉器の開閉状態、及び負荷やインピーダンスに関するデータ等を読み出す手段である。   The data reading means 10 is means for reading system information data from the storage means 3, that is, data relating to the configuration of the distribution system, the open / close state of the switch provided in the system, and the load and impedance.

送電損失計算手段11は、配電系統7に設けられた開閉器が開閉することにより変更した系統構成における送電損失を計算する。「閉」開閉器選択手段12は、配電系統7を構成する開閉器のうち「開」状態にある複数の開閉器から、「閉」状態に変更するn(n≧2)個の開閉器を選択する。   The power transmission loss calculation means 11 calculates the power transmission loss in the system configuration changed by opening and closing a switch provided in the distribution system 7. The “closed” switch selection means 12 selects n (n ≧ 2) switches that are changed from the plurality of switches in the “open” state to the “closed” state among the switches constituting the distribution system 7. select.

潮流計算手段13は、「閉」開閉器選択手段12により選択されたn個の開閉器を「閉」状態に変更することで作成されるメッシュ系統の電力潮流を計算する手段である。   The tidal current calculation means 13 is a means for calculating the power flow of the mesh system created by changing the n switches selected by the “closed” switch selection means 12 to the “closed” state.

「開」開閉器選択手段14は、「閉」開閉器選択手段12により選択されたn個の開閉器を「閉」状態に変更することにより作成されたメッシュ系統において、当該メッシュ系統を構成する「閉」状態の開閉器のうち「開」状態に変更すべきn個の開閉器を選択する。なお、この「開」開閉器選択手段14は、一例として、潮流計算手段13で計算したメッシュ系統の電力潮流により、通過する電流値が最小の開閉器を「開」状態にすべき開閉器として逐次選択する。   The “open” switch selecting means 14 constitutes the mesh system in the mesh system created by changing the n switches selected by the “closed” switch selecting means 12 to the “closed” state. Of the switches in the “closed” state, n switches to be changed to the “open” state are selected. As an example, the “open” switch selecting means 14 is a switch that should be set to the “open” state for the switch having the smallest value of the current passing through the power flow of the mesh system calculated by the power flow calculating means 13. Select sequentially.

送電損失低減判定手段15は、開閉器の開閉状態を変更した新たな系統構成に対して、それ以前の系統構成より送電損失が低減しているかを判定する手段である。例えば、送電損失計算手段11により計算された現時点の送電損失が、逐次更新される解候補と比較して低減しているかを判定する。   The power transmission loss reduction determining means 15 is a means for determining whether the power transmission loss is reduced with respect to a new system configuration in which the switching state of the switch is changed compared to the previous system configuration. For example, it is determined whether the current power transmission loss calculated by the power transmission loss calculating means 11 is reduced as compared with the solution candidates that are sequentially updated.

なお、この送電損失低減判定手段15は、現時点の送電損失が解候補より低減していると判定する場合に、当該現時点の送電損失を新たな解候補として記憶手段3を通じて記憶する。初期系統対比手段16は、解候補の送電損失が初期系統の送電損失より低減しているかを判定する手段である。   The power transmission loss reduction determining unit 15 stores the current power transmission loss as a new solution candidate through the storage unit 3 when determining that the current power transmission loss is lower than the solution candidate. The initial system comparison unit 16 is a unit that determines whether the transmission loss of the solution candidate is lower than the transmission loss of the initial system.

損失最小化構成更新手段17は、初期系統対比手段16により、解候補の送電損失が初期系統の送電損失より低減していると判定された場合に、この解候補の送電損失、及び当該送電損失を有する系統構成を、最小送電損失及び系統構成として更新し、記憶手段3に記憶する手段である。   The loss minimizing configuration updating unit 17, when the initial system comparison unit 16 determines that the transmission loss of the solution candidate is lower than the transmission loss of the initial system, the transmission loss of the solution candidate and the transmission loss Is updated as the minimum power transmission loss and the system configuration, and is stored in the storage unit 3.

[作用]
次に、図1の構成を有する最小送電損失系統構成の決定装置において、最小となる送電損失及び当該送電損失を有する系統構成の決定手順を、図2のフローチャートを参照して以下に説明する。
[Action]
Next, the procedure for determining the minimum transmission loss and the system configuration having the transmission loss in the minimum transmission loss system configuration determination apparatus having the configuration of FIG. 1 will be described below with reference to the flowchart of FIG.

図2によれば、まず、STEP201で、データ読出手段10が、記憶手段3から配電系統の構成、当該系統に設けられた開閉器の開閉状態、及び負荷やインピーダンスに関するデータ等の系統情報データを読み出し、これ以降の処理において利用するデータを準備する。ここで、初期段階で使用する系統構成を初期系統構成とし、これを解候補とする。また、この初期系統構成は放射状の配電系統を対象とするため、送電損失の最小化の対象となる配電系統も放射状の構成を有するものとなる。   According to FIG. 2, first, in STEP 201, the data reading means 10 obtains system information data such as data relating to the configuration of the power distribution system, the switching state of the switches provided in the system, and the load and impedance from the storage means 3. Read and prepare data to be used in the subsequent processing. Here, the system configuration used in the initial stage is the initial system configuration, and this is set as a solution candidate. Moreover, since this initial system configuration is directed to a radial distribution system, the distribution system that is the target of minimizing transmission loss also has a radial configuration.

ここで、STEP201では、初期化処理として、送電損失計算手段11により初期系統である解候補の送電損失を計算し、初期送電損失として記憶手段3に記憶する。この記憶手段3に記憶された初期送電損失を有する初期系統構成は、現在の配電系統における系統構成として採用され、後述する系統構成の更新処理を行う上での基準となる。   Here, in STEP 201, as an initialization process, the transmission loss calculation means 11 calculates the transmission loss of the solution candidate that is the initial system, and stores it in the storage means 3 as the initial transmission loss. The initial system configuration having the initial transmission loss stored in the storage unit 3 is adopted as the system configuration in the current distribution system, and serves as a reference for performing a system configuration update process to be described later.

STEP202では、「閉」開閉器選択手段12により、現在の系統構成において、「閉」状態とすべき、選択されていないn(n≧2)個の「開」状態の開閉器の組み合わせを選択する。ここで、「閉」開閉器選択手段12により選択するn個の開閉器の組は、開閉器を閉じることによって作成されるメッシュ系統が1つとなるように選択される。   In STEP 202, the “closed” switch selection means 12 selects a combination of n (n ≧ 2) “open” state switches that are not selected and should be in the “closed” state in the current system configuration. To do. Here, the set of n switches selected by the “closed” switch selection means 12 is selected so that one mesh system is created by closing the switch.

なお、送電損失を最小化する上で対象となる配電系統の規模が大きい場合には、当該配電系統におけるn個の「開」状態の開閉器の組み合わせが増加するので、計算時間の増大が懸念される。このような場合には、「閉」開閉器選択手段12は、選択するn個の開閉器の組数を制限する制限手段を備え、この制限手段により、例えば、開閉器両端の電位差が大きい当該開閉器を含む順に開閉器の組数を制限することができる。   In addition, when the scale of the target distribution system for minimizing transmission loss is large, the number of combinations of n “open” switches in the distribution system increases, which may increase the calculation time. Is done. In such a case, the “closed” switch selecting unit 12 includes a limiting unit that limits the number of n switches to be selected. By this limiting unit, for example, the potential difference between both ends of the switch is large. The number of sets of switches can be limited in the order that includes the switches.

ここで、この「閉」開閉器選択手段12がn個の「開」開閉器を選択すると、モデル上、当該「開」開閉器を「閉」状態に変更し、STEP203では、この「閉」状態に変更された場合に作成されるメッシュ系統の電力潮流が潮流計算手段13により計算される。   Here, when the “closed” switch selecting means 12 selects n “open” switches, the “open” switch is changed to the “closed” state on the model. In STEP 203, this “closed” switch is selected. The power flow of the mesh system created when the state is changed is calculated by the power flow calculation means 13.

STEP204では、「開」開閉器選択手段14が、作成されたメッシュ系統の「閉」状態の開閉器のうち「開」状態とすべき開閉器を一つ選択する。具体的には、STEP203で潮流計算手段13により計算されたメッシュ系統の電力潮流において、通過する電流値が最小となる「閉」状態の開閉器を「開」状態とすべき開閉器として選択する。特に、送電線の容量制約に基づいて通過電流が最小となる「閉」状態の開閉器が「開」状態とすべき開閉器として選択される。   In STEP 204, the “open” switch selecting means 14 selects one switch to be set to “open” among the switches in the “closed” state of the created mesh system. Specifically, in the power flow of the mesh system calculated by the power flow calculation means 13 in STEP 203, the switch in the “closed” state that minimizes the current value passing through is selected as the switch that should be in the “open” state. . In particular, a switch in the “closed” state that minimizes the passing current is selected as a switch that should be in the “open” state based on the capacity constraint of the transmission line.

なお、この「開」開閉器選択手段14が、n個の「閉」開閉器を選択すると、モデル上、当該「閉」開閉器を「開」状態に変更し、STEP205では、この「開」状態に変更された場合に作成される新たなメッシュ系統の電力潮流が潮流計算手段13により再度計算される。   When the “open” switch selecting unit 14 selects n “closed” switches, the “closed” switch is changed to an “open” state on the model. In STEP 205, this “open” switch is selected. The power flow of the new mesh system created when the state is changed is calculated again by the power flow calculation means 13.

ここで、STEP205にて、新たに計算される電力潮流に基づいて、「開」開閉器選択手段14により通過電流値が最小となる「閉」状態の開閉器を選択し、当該選択された開閉器を「開」状態に変更し、新たに作成されるメッシュ系統の電力潮流が潮流計算手段13を通じて計算されるといった処理が、n回繰り返される。   Here, in STEP 205, based on the newly calculated power flow, the “open” switch selection means 14 selects the switch in the “closed” state in which the passing current value is minimum, and the selected switch The process of changing the device to the “open” state and calculating the power flow of the newly created mesh system through the flow calculation means 13 is repeated n times.

すなわち、作成されたメッシュ系統の「閉」状態の開閉器のうち、「開」開閉器選択手段14は、n個の「閉」状態にある開閉器を1つずつ選択し、また、潮流計算手段13は、当該選択された開閉器を「開」状態に変更し、残ったメッシュ系統に対して電力潮流をn回計算する。   In other words, among the created “closed” state switches of the mesh system, the “open” switch selecting means 14 selects n “closed” state switches one by one, and calculates the power flow. The means 13 changes the selected switch to the “open” state, and calculates the power flow n times for the remaining mesh system.

STEP206では、送電損失計算手段11が、n回繰り返されたSTEP204、205の処理により再構成された放射状系統の送電損失を計算する。STEP207では、送電損失低減判定手段15が、送電損失計算手段11により計算された放射状系統の現時点の送電損失が、解候補の送電損失よりも低減しているかどうかを判定する。   In STEP 206, the power transmission loss calculation means 11 calculates the power transmission loss of the radial system reconfigured by the processing of STEPs 204 and 205 repeated n times. In STEP 207, the transmission loss reduction determination means 15 determines whether or not the current transmission loss of the radial system calculated by the transmission loss calculation means 11 is lower than the transmission loss of the solution candidate.

現時点の送電損失が解候補の送電損失より低減している場合は(STEP207のYES)、STEP208において、現時点の系統構成及び送電損失が新たな解候補並びにその送電損失として記憶手段を通じて記憶される。一方、現時点の送電損失が解候補の送電損失より低減していない場合は(STEP207のNO)、この送電損失及び当該送電損失を有する系統構成は解候補として記憶されることなく、STEP209の処理に移行する。   If the current transmission loss is lower than the transmission loss of the solution candidate (YES in STEP 207), in STEP 208, the current system configuration and transmission loss are stored as new solution candidates and the transmission loss through the storage means. On the other hand, if the current transmission loss is not reduced below the solution loss of the candidate solution (NO in STEP 207), the transmission loss and the system configuration having the transmission loss are not stored as solution candidates, and are processed in STEP 209. Transition.

STEP209では、「閉」開閉器選択手段12が、n回繰り返されたSTEP204、205の処理により構成された系統構成の「開」状態の開閉器の配置とは別の配置にあるn個の「開」状態の開閉器の組が存在するかを判定する。すなわち、他に選択されていないn個の「開」状態の開閉器の組が存在するかが判定される。   In STEP 209, the “closed” switch selecting means 12 has n “s” in different arrangements from the arrangement of the “open” state switches configured by the processing of STEPs 204 and 205 repeated n times. It is determined whether there is a set of switches in the “open” state. That is, it is determined whether there are n other “open” switch groups that are not selected.

このようなn個の「開」状態の開閉器の組が他に存在する場合には(STEP209のYES)、STEP202へ戻り、新たなn個の「開」開閉器の組が「閉」開閉器選択手段12により選択され、それ以降の処理が繰り返される。一方、n個の「開」状態の開閉器の組が他になかった場合には(STEP209のNO)、初期系統対比手段16により、STEP208における上記解候補の送電損失が初期系統の送電損失より低減しているかが判定される(STEP210)。   If there are other n “open” switch sets (YES in STEP 209), the process returns to STEP 202, and a new n “open” switch set is “closed” open / close. It is selected by the device selection means 12, and the subsequent processing is repeated. On the other hand, when there is no other set of n “open” switches (NO in STEP 209), the initial system comparison means 16 causes the transmission loss of the solution candidate in STEP 208 to be greater than the transmission loss of the initial system. It is determined whether it is reduced (STEP 210).

初期送電損失よりも小さいと判定された場合には(STEP210のYES)、この解候補及びその送電損失を初期系統構成及び初期送電損失として、損失最小化構成更新手段17が記憶手段3を通じて更新する(STEP211)。損失最小化構成更新手段17により更新されると、更新された初期系統構成及び初期送電損失を基準に、STEP202以降の処理が繰り返される。   When it is determined that it is smaller than the initial transmission loss (YES in STEP 210), the loss minimization configuration updating unit 17 updates the storage candidate 3 through the storage unit 3 with the solution candidate and the transmission loss as the initial system configuration and the initial transmission loss. (STEP 211). When updated by the loss minimization configuration updating means 17, the processing from STEP 202 onward is repeated based on the updated initial system configuration and initial transmission loss.

これに対し、解候補の送電損失が初期送電損失よりも小さいと判定されなくなった場合には(STEP210のNO)、現在の初期系統構成及び初期送電損失を最小送電損失系統構成及び最小送電損失として出力し(STEP212)、処理を終了する(本発明の「決定手段に対応」)。   On the other hand, when it is determined that the transmission loss of the solution candidate is smaller than the initial transmission loss (NO in STEP 210), the current initial system configuration and the initial transmission loss are set as the minimum transmission loss system configuration and the minimum transmission loss. Output (STEP 212), and the process ends ("corresponds to the determination means" of the present invention).

[実施例]
次に、従来技術で利用した図9、11を参照し、図2〜4に基づいて、第1の実施形態の具体的な実施例について以下に説明する。なお、図2の通り、図9(a)には、2つの「開」状態の開閉器しか存在しないため、n=2とする。
[Example]
Next, with reference to FIGS. 9 and 11 used in the prior art, a specific example of the first embodiment will be described below based on FIGS. As shown in FIG. 2, since only two “open” state switches exist in FIG. 9A, n = 2.

STEP201では、データ読出手段10により、記憶手段3から図9(a)のような配電系統の構成(初期系統構成)、及び図9(b)のような系統情報データを読み出し、初期化処理として、送電損失計算手段11により図9の初期系統構成である解候補の送電損失を計算し、図10に示すような57.567[W]を得る。なお、この送電損失を初期送電損失として記憶手段3に記憶する。   In STEP 201, the data reading means 10 reads the power distribution system configuration (initial system configuration) as shown in FIG. 9A and the system information data as shown in FIG. 9B from the storage means 3 as initialization processing. Then, the transmission loss calculation means 11 calculates the transmission loss of the solution candidate which is the initial system configuration of FIG. 9, and obtains 57.567 [W] as shown in FIG. This power transmission loss is stored in the storage means 3 as the initial power transmission loss.

STEP202では、「閉」開閉器選択手段12により、図9(a)の系統構成において、「閉」状態とすべき2個の「開」状態の開閉器の組み合わせが選択され、モデル上、当該2個の「開」開閉器を「閉」状態に変更される。そして、STEP203において、図3の通り、潮流計算手段13が、この「閉」状態に変更された場合に作成されるメッシュ系統の電力潮流を計算する。   In STEP 202, the “closed” switch selection means 12 selects a combination of two “open” state switches that should be in the “closed” state in the system configuration of FIG. Two “open” switches are changed to the “closed” state. In STEP 203, as shown in FIG. 3, the power flow calculation means 13 calculates the power flow of the mesh system created when the state is changed to the “closed” state.

STEP204では、「開」開閉器選択手段14により、通過電流が最小となる開閉器92が選択され、モデル上、当該開閉器92を「開」状態に変更することで図4のような系統構成が得られる。そして、STEP205では、この「開」状態に変更された場合に作成される図4の新たなメッシュ系統の電力潮流を潮流計算手段13が計算する。   In STEP 204, the “open” switch selecting means 14 selects the switch 92 that minimizes the passing current, and the system configuration as shown in FIG. Is obtained. In STEP 205, the power flow calculation means 13 calculates the power flow of the new mesh system of FIG. 4 created when the state is changed to the “open” state.

このようなSTEP204、205の処理が、計2回(n=2なので)繰り返されることにより、図4の系統構成において、通過電流値が最小となる開閉器95が「開」状態に変更され、図11(f)のようなメッシュ系統が作成され、潮流計算手段13によりこの作成された系統構成の電力潮流が計算される。   By repeating the processing of STEPs 204 and 205 a total of two times (since n = 2), the switch 95 having the smallest passing current value is changed to the “open” state in the system configuration of FIG. A mesh system as shown in FIG. 11 (f) is created, and the power flow of the created system configuration is calculated by the power flow calculation means 13.

STEP206では、送電損失計算手段11が、この新たに構成された系統構成の送電損失を計算することで、図12に示すように、図11(f)の系統構成に対応する送電損失56.267[A]を得る。   In STEP 206, the power transmission loss calculation means 11 calculates the power transmission loss of the newly configured system configuration, and as shown in FIG. 12, the power transmission loss 56.267 corresponding to the system configuration of FIG. [A] is obtained.

STEP207では、送電損失低減判定手段15が、送電損失計算手段11により計算された図11(f)の系統構成に対応する送電損失が、解候補の送電損失よりも低減しているかどうかを判定する。具体的には、送電損失低減判定手段15は、この系統構成の送電損失56.267[W]と、STEP201の初期化処理において送電損失計算手段11が算出した初期送電損失57.567[W](図10参照)とを対比することにより、現時点の送電損失が解候補の送電損失より低減していると判定する。なお、図12に示す通り、この送電損失56.267[W]より小さい送電損失を有する系統構成は存在しないので、他の「開」状態の開閉器の組が選択された場合においても、この図11(f)の系統構成の送電損失を下回る系統構成は存在しない。   In STEP 207, the power transmission loss reduction determining means 15 determines whether or not the power transmission loss corresponding to the system configuration of FIG. 11 (f) calculated by the power transmission loss calculating means 11 is lower than the solution loss of the solution candidate. . Specifically, the power transmission loss reduction determination unit 15 includes the power transmission loss 56.267 [W] of the system configuration and the initial power transmission loss 57.567 [W] calculated by the power transmission loss calculation unit 11 in the initialization process of STEP 201. By comparing (see FIG. 10), it is determined that the current transmission loss is lower than the solution loss of the solution candidate. As shown in FIG. 12, there is no system configuration having a transmission loss smaller than this transmission loss 56.267 [W], so even when another “open” switch set is selected, There is no system configuration below the transmission loss of the system configuration in FIG.

続いて、現時点の送電損失が解候補の送電損失より低減しているので(STEP207のYES)、STEP208において、この系統構成及び送電損失56.267[W]を新たな解候補並びにその送電損失として記憶手段を通じて記憶する。   Subsequently, since the current transmission loss is smaller than the transmission loss of the solution candidate (YES in STEP 207), in STEP 208, this system configuration and transmission loss 56.267 [W] are set as a new solution candidate and its transmission loss. Store through storage means.

STEP209では、「閉」開閉器選択手段12により、この図11(f)の系統構成に対して、別の配置を有する2個の「開」状態の開閉器の組が存在するかが判断される。このような2個の「開」状態の開閉器の組が他に存在する場合には(STEP209のYES)、STEP202へ戻り、新たな2個の「開」状態の開閉器の組が「閉」開閉器選択手段12により選択され、それ以降の処理が繰り返される。   In STEP 209, the “closed” switch selection means 12 determines whether there are two “open” switch groups having different arrangements with respect to the system configuration of FIG. The If there are other two “open” switch groups (YES in STEP 209), the process returns to STEP 202 and two new “open” switch groups are “closed”. “Selected by the switch selection means 12, and the subsequent processing is repeated.

一方、2個の「開」状態の開閉器の組が他に存在しない場合には(STEP209のNO)、初期系統対比手段16により、STEP208における上記解候補の送電損失が初期系統の送電損失より低減しているかが判定される(STEP210)。   On the other hand, when there is no other set of two “open” switches (NO in STEP 209), the initial system comparison means 16 causes the transmission loss of the solution candidate in STEP 208 to be greater than the transmission loss of the initial system. It is determined whether it is reduced (STEP 210).

初期送電損失よりも小さいと判定された場合には(STEP210のYES)、この解候補及びその送電損失を初期系統構成及び初期送電損失として、損失最小化構成更新手段17が記憶手段3を通じて更新する(STEP211)。損失最小化構成更新手段17により更新されると、更新された初期系統構成及び初期送電損失を基準に、STEP202以降の処理が繰り返される。   When it is determined that it is smaller than the initial transmission loss (YES in STEP 210), the loss minimization configuration updating unit 17 updates the storage candidate 3 through the storage unit 3 with the solution candidate and the transmission loss as the initial system configuration and the initial transmission loss. (STEP 211). When updated by the loss minimization configuration updating means 17, the processing from STEP 202 onward is repeated based on the updated initial system configuration and initial transmission loss.

これに対し、解候補の送電損失が初期送電損失よりも小さいと判定されなくなった場合には(STEP210のNO)、現在の初期系統構成及び初期送電損失を最小送電損失系統構成及び最小送電損失として出力し(STEP212)、処理を終了する。すなわち、図11(f)の系統構成が、送電損失の最小となる最小送電系統構成として出力される。   On the other hand, when it is determined that the transmission loss of the solution candidate is smaller than the initial transmission loss (NO in STEP 210), the current initial system configuration and the initial transmission loss are set as the minimum transmission loss system configuration and the minimum transmission loss. Output (STEP 212), the process is terminated. That is, the system configuration in FIG. 11F is output as the minimum power transmission system configuration that minimizes the power transmission loss.

[効果]
以上のような本実施形態によれば、複数の「開」状態の開閉器を一度に「閉」状態に変更し同数の開閉器を「開」状態とすることで探索範囲を広くすることが可能となり、より小さい送電損失、及び当該送電損失を有する系統構成を決定可能、かつ系統構成の決定に要する時間を短縮可能な最小送電損失系統構成の決定装置、方法及びプログラムを提供することができる。
[effect]
According to the present embodiment as described above, it is possible to widen the search range by changing a plurality of “open” state switches to the “closed” state at a time and setting the same number of switches to the “open” state. It is possible to provide a minimum transmission loss system configuration determining apparatus, method, and program capable of determining a smaller transmission loss and a system configuration having the transmission loss and reducing the time required to determine the system configuration. .

なお、上記実施形態における「開」開閉器選択手段14は、「開」状態すべき「閉」状態にある開閉器を1つずつ選択しているが、この態様に限定するものではなく、一度にn個の「閉」状態にある開閉器を選択し、「開」状態に変更する実施形態も本発明は包含する。   The “open” switch selecting means 14 in the above embodiment selects one switch in the “closed” state to be “open” one by one, but is not limited to this mode. The present invention also includes an embodiment in which n switches in the “closed” state are selected and changed to the “open” state.

[2.第2の実施形態]
[構成]
次に、本発明の第2の実施形態に係る配電系統の送電損失が最小となる最小送電損失系統構成の決定装置の構成について、図5を参照して以下に説明する。なお、図5は、送電損失の最小化を図るための第2の実施形態に係る最小送電損失系統構成の決定装置の構成を示すブロック図である。ここで、図5において、図1と同じ構成には同じ符号を用い、説明は省略する。
[2. Second Embodiment]
[Constitution]
Next, the configuration of the minimum transmission loss system configuration determining apparatus that minimizes the transmission loss of the distribution system according to the second embodiment of the present invention will be described below with reference to FIG. FIG. 5 is a block diagram showing a configuration of a determination apparatus for a minimum transmission loss system configuration according to the second embodiment for minimizing transmission loss. Here, in FIG. 5, the same components as those in FIG.

第2の実施形態では、第1の実施形態における図1の構成に加え、開閉器数変更手段18を備え、この開閉器数変更手段18は、「閉」開閉器選択手段12により一度に選択させる開閉器の数を変更するものである。特に、この開閉器数変更手段18は、選択される開閉器数が予め設定された所定の開閉器数であるn個に等しいかを判定し、選択される開閉器数がn個に満たない場合には、一度に選択させる開閉器数をn個まで1つずつ増加させる。   In the second embodiment, in addition to the configuration of FIG. 1 in the first embodiment, a switch number changing means 18 is provided. This switch number changing means 18 is selected at a time by the “closed” switch selecting means 12. The number of switches to be changed is changed. In particular, the switch number changing means 18 determines whether the number of selected switches is equal to n, which is a predetermined number of preset switches, and the number of selected switches is less than n. In this case, the number of switches to be selected at a time is increased by one up to n.

[作用]
次に、図5の構成を有する最小送電損失系統構成の決定装置において、最小となる送電損失及び当該送電損失を有する系統構成の決定手順を、図6のフローチャートを参照して以下に説明する。なお、図6は、第2の実施形態に係り、最小となる送電損失を有する系統構成の決定フローを示す図である。
[Action]
Next, the procedure for determining the minimum transmission loss and the system configuration having the transmission loss in the minimum transmission loss system configuration determining apparatus having the configuration of FIG. 5 will be described below with reference to the flowchart of FIG. FIG. 6 is a diagram illustrating a determination flow of a system configuration having the minimum power transmission loss according to the second embodiment.

まず、STEP601では、第1の実施形態と同様に、STEP201で、データ読出手段10が、記憶手段3から配電系統の構成、当該系統に設けられた開閉器の開閉状態、及び負荷やインピーダンスに関するデータ等の系統情報データを読み出し、これ以降の処理において利用するデータを準備する。ここで、初期段階で使用する系統構成を初期系統構成とし、これを解候補とする。   First, in STEP 601, as in the first embodiment, in STEP 201, the data reading means 10 receives data relating to the configuration of the power distribution system from the storage means 3, the switching state of the switch provided in the system, and the load and impedance. The system information data such as is read out, and data to be used in the subsequent processing is prepared. Here, the system configuration used in the initial stage is the initial system configuration, and this is set as a solution candidate.

また、初期化処理として、送電損失計算手段11により初期系統である解候補の送電損失を計算し、初期送電損失として記憶手段3に記憶する。この記憶手段3に記憶された初期送電損失を有する初期系統構成は、現在の配電系統における系統構成として採用され、後述する系統構成の更新処理を行う上での基準となる。   In addition, as an initialization process, the transmission loss calculation unit 11 calculates the transmission loss of the solution candidate that is the initial system, and stores it in the storage unit 3 as the initial transmission loss. The initial system configuration having the initial transmission loss stored in the storage unit 3 is adopted as the system configuration in the current distribution system, and serves as a reference for performing a system configuration update process to be described later.

ここで、STEP602において「閉」開閉器選択手段12が「閉」状態とすべき、選択されていないn(n≧1)個の「開」状態の開閉器を選択するにあたり、nの初期値をn=1としておく。そして、第1の実施形態と同様に、「閉」開閉器選択手段12により、「閉」状態とすべき選択されていない1個(始めは、n=1)の「開」状態の開閉器を選択する。   Here, in STEP 602, when selecting n (n ≧ 1) “open” state switches that are not selected, the “closed” switch selection unit 12 should be in the “closed” state. N = 1. Similarly to the first embodiment, the “closed” switch selection unit 12 selects one (open at first) “open” state switch that should not be in the “closed” state. Select.

なお、第1の実施形態と同様に、送電損失を最小化する上で対象とする配電系統の規模が大きいと、現在の系統構成におけるn個の「開」状態の開閉器の組が増加するので、計算時間の増大が懸念される。このような場合には、「閉」開閉器選択手段12は、選択するn個の開閉器の組数を制限する制限手段を備え、この制限手段により、例えば、開閉器両端の電位差が大きい当該開閉器を含む順に組数を制限することができる。   As in the first embodiment, when the scale of the distribution system targeted for minimizing transmission loss is large, a set of n “open” switches in the current system configuration increases. Therefore, there is a concern about an increase in calculation time. In such a case, the “closed” switch selecting unit 12 includes a limiting unit that limits the number of n switches to be selected. By this limiting unit, for example, the potential difference between both ends of the switch is large. The number of sets can be limited in the order including switches.

そして、この「閉」開閉器選択手段12が、1個の「開」開閉器(始めは、n=1)を選択すると、モデル上、当該「開」開閉器が「閉」状態に変更され、STEP603では、この「閉」状態に変更された場合に作成されるメッシュ系統の電力潮流が潮流計算手段13により計算される。   When this “closed” switch selecting means 12 selects one “open” switch (initially n = 1), the “open” switch is changed to the “closed” state on the model. In STEP 603, the power flow of the mesh system created when the state is changed to the “closed” state is calculated by the power flow calculation means 13.

STEP604では、作成されたメッシュ系統の「閉」状態の開閉器のうち、「開」開閉器選択手段14により「開」状態とすべき開閉器を1つ選択する。具体的には、STEP603で潮流計算手段13により計算されたメッシュ系統の電力潮流において、通過する電流値が最小となる「閉」状態の開閉器を「開」状態とすべき開閉器として選択する。特に、送電線の容量制約に基づいて通過電流が最小となる「閉」状態の開閉器が「開」状態とすべき開閉器として選択される。   In STEP 604, among the created “closed” state switches of the mesh system, the “open” switch selection unit 14 selects one switch to be set in the “open” state. Specifically, in the mesh system power flow calculated by the power flow calculation means 13 in STEP 603, the switch in the “closed” state that minimizes the value of the current passing through is selected as the switch to be set in the “open” state. . In particular, a switch in the “closed” state that minimizes the passing current is selected as a switch that should be in the “open” state based on the capacity constraint of the transmission line.

なお、この「開」開閉器選択手段14が、1個の「閉」開閉器を選択すると、モデル上、当該「閉」開閉器を「開」状態に変更し、STEP605では、この「開」状態に変更された場合に作成される新たなメッシュ系統の電力潮流が潮流計算手段13により計算される。STEP606では、送電損失計算手段11が、再構成された放射状系統の送電損失を計算し、STEP607において、送電損失低減判定手段15が、送電損失計算手段11により計算された放射状系統の現時点の送電損失が、解候補の送電損失よりも低減しているかどうかを判定する。   When the “open” switch selecting means 14 selects one “closed” switch, the “closed” switch is changed to the “open” state on the model. In STEP 605, this “open” switch is selected. The power flow of the new mesh system created when the state is changed is calculated by the power flow calculation means 13. In STEP 606, the power transmission loss calculation means 11 calculates the power transmission loss of the reconfigured radial system. In STEP 607, the power transmission loss reduction determination means 15 calculates the current power transmission loss of the radial system calculated by the power transmission loss calculation means 11. However, it is determined whether or not it is lower than the transmission loss of the solution candidate.

現時点の送電損失が解候補の送電損失より低減している場合は(STEP607のYES)、STEP608において、現時点の系統構成及び送電損失が新たな解候補並びにその送電損失として記憶手段を通じて記憶される。一方、現時点の送電損失が解候補の送電損失より低減していない場合は(STEP607のNO)、この送電損失及び当該送電損失を有する系統構成は解候補として記憶されることなく、STEP609の処理に移行する。   If the current transmission loss is lower than the transmission loss of the solution candidate (YES in STEP 607), in STEP 608, the current system configuration and transmission loss are stored as new solution candidates and the transmission loss through the storage unit. On the other hand, if the current transmission loss is not reduced below the candidate transmission loss (NO in STEP 607), the transmission loss and the system configuration having the transmission loss are not stored as solution candidates and are processed in STEP 609. Transition.

STEP609では、「閉」開閉器選択手段12が、構成された系統構成の「開」状態の開閉器の配置とは別の配置にある1個の「開」状態の開閉器の組が存在するかを判定する。すなわち、他に選択されていない1個の「開」状態の開閉器の組が存在するかが判定される。なお、STEP609において、n≧2の場合には、「閉」開閉器選択手段12は、STEP604、605の処理がn回繰り返されることで構成された系統構成のn個の「開」状態の開閉器の配置と別の配置にあるn個の「開」状態の開閉器の組が存在するかを判定する。   In STEP 609, there is one “open” switch group in which the “closed” switch selection means 12 is arranged differently from the arrangement of the “open” switch in the configured system configuration. Determine whether. That is, it is determined whether or not there is one other “open” switch group that is not selected. In STEP 609, when n ≧ 2, the “closed” switch selecting means 12 opens and closes n “open” states of the system configuration configured by repeating the processes of STEPs 604 and 605 n times. It is determined whether there is a set of n “open” switches in a different arrangement from the arrangement of the appliances.

このような1個の「開」状態の開閉器の組が他に存在する場合には(STEP609のYES)、STEP602へ戻り、新たな1個の「開」開閉器の組が「閉」開閉器選択手段12により選択され、それ以降の処理が繰り返される。一方、1個の「開」状態の開閉器の組が他になかった場合には(STEP609のNO)、初期系統対比手段16により、STEP608における上記解候補の送電損失が初期系統の送電損失より低減しているかが判定される(STEP610)。   If there is another such set of “open” switches (YES in STEP 609), the process returns to STEP 602, and one new “open” switch set is “closed” open / close. It is selected by the device selection means 12, and the subsequent processing is repeated. On the other hand, when there is no other switch set in the “open” state (NO in STEP 609), the initial system comparison means 16 causes the transmission loss of the solution candidate in STEP 608 to be greater than the transmission loss of the initial system. It is determined whether it is reduced (STEP 610).

初期送電損失よりも小さいと判定された場合には(STEP610のYES)、この解候補及びその送電損失を初期系統構成及び初期送電損失として、損失最小化構成更新手段17が記憶手段3を通じて更新する(STEP611)。損失最小化構成更新手段17により更新されると、更新された初期系統構成及び初期送電損失を基準に、STEP602以降の処理が繰り返される。   If it is determined that it is smaller than the initial transmission loss (YES in STEP 610), the loss minimizing configuration updating unit 17 updates the solution candidate and the transmission loss as the initial system configuration and the initial transmission loss through the storage unit 3. (STEP 611). When updated by the loss minimization configuration updating means 17, the processing after STEP 602 is repeated based on the updated initial system configuration and initial transmission loss.

これに対し、解候補の送電損失が初期送電損失よりも小さいと判定されなくなった場合には(STEP610のNO)、STEP612で、開閉器数変更手段18が、「閉」開閉器選択手段12により選択される開閉器の数が予め設定されたn個(予め設定した所定の開閉器数)に等しいかを判定する。   On the other hand, when it is not determined that the transmission loss of the solution candidate is smaller than the initial transmission loss (NO in STEP 610), the switch number changing means 18 is changed by the “closed” switch selecting means 12 in STEP 612. It is determined whether or not the number of selected switches is equal to a preset n (a predetermined number of preset switches).

この予め設定されたn個に満たない場合、例えばn≧2に設定されている場合には(STEP612のNO)、開閉器数変更手段18により、n=1から1つ増加させ、再びSTEP602に戻りそれ以降の処理を繰り返す。つまり、予め設定された「閉」開閉器選択手段12により選択される「開」状態にある開閉器数のn個まで、1から順にn回、上記STEP602〜611の処理が繰り返される。   If it is less than the preset number n, for example, if n ≧ 2 (NO in STEP 612), the switch number changing means 18 increases the number from n = 1 by 1, and then returns to STEP 602 again. Return and repeat the process. That is, the processing of STEPs 602 to 611 is repeated n times in order from 1 to the number of switches in the “open” state selected by the preset “closed” switch selection means 12.

なお、n≧2の場合のSTEP604、605の処理においては、第1の実施形態と同様に、計算された電力潮流に基づいて「開」開閉器選択手段14により通過電流値が最小となる「閉」状態の開閉器が選択されることで「開」状態に変更し、潮流計算手段13が新たに作成されるメッシュ系統の電力潮流を計算するといった処理がn回繰り返される。   In the processing of STEPs 604 and 605 in the case of n ≧ 2, as in the first embodiment, the “open” switch selection unit 14 minimizes the passing current value based on the calculated power flow. By selecting the switch in the “closed” state, the process is changed to the “open” state, and the power flow calculation means 13 calculates the power flow of the newly created mesh system n times.

STEP612において、開閉器数変更手段18が、「閉」開閉器選択手段12により選択される開閉器の数が予め設定されたn個に等しいと判定する場合には(STEP612のYES)、現在の初期系統構成及び初期送電損失を最小送電損失系統構成及び最小送電損失として出力し(STEP613)、処理を終了する。   In STEP612, when the switch number changing unit 18 determines that the number of switches selected by the “closed” switch selecting unit 12 is equal to the preset number n (YES in STEP612), The initial system configuration and the initial transmission loss are output as the minimum transmission loss system configuration and the minimum transmission loss (STEP 613), and the process is terminated.

[効果]
以上のような、本実施形態によれば、一度に「開」状態から「閉」状態に変更する開閉器の数を1から順に増加させることができるので探索範囲が拡大し、さらには、計算時間が実質的に大きくなる問題に対して、当該変更すべき開閉器の数が少ない初期段階においては最小となる送電損失を高速に算出でき、変更すべき開閉器の数が増加した段階においては徐々に送電損失の最小化の程度を向上させることが可能となる。
[effect]
According to the present embodiment as described above, the number of switches that are changed from the “open” state to the “closed” state at a time can be increased sequentially from 1, so that the search range is expanded, and further, calculation In the initial stage where the number of switches to be changed is small, the transmission loss that can be minimized can be calculated at high speed, while the number of switches to be changed has increased. It is possible to gradually improve the degree of minimization of transmission loss.

なお、本発明は、上記実施形態における開閉器数変更手段18は、「閉」開閉器選択手段12により選択される開閉器の数が予め設定されたn個に等しいかを判定し、この予め設定されたn個に満たない場合に開閉器数を増加させているが、これに限定するものではない。   In the present invention, the switch number changing means 18 in the above embodiment determines whether or not the number of switches selected by the “closed” switch selection means 12 is equal to a preset number n. The number of switches is increased when the set number is less than n, but is not limited to this.

具体的には、本発明は、送電損失計算手段11により計算された系統構成の送電損失が、送電損失低減判定手段15により解候補の送電損失より低減していないと判定された場合、あるいは初期系統対比手段16により初期送電損失より低減していないと判定された場合に、この開閉器数変更手段18が、「閉」開閉器選択手段12により選択させる開閉数を1つずつ増加させる実施形態を包含する。すなわち、「閉」開閉器選択手段12により選択される所定個の開閉器数において、送電損失計算手段11により計算される送電損失が低減しなくなる場合には、当該「閉」開閉器選択手段12により選択される開閉器数を増加させることで、より最小となる送電損失を探索することが可能となる。   Specifically, in the present invention, when the transmission loss of the system configuration calculated by the transmission loss calculation unit 11 is determined not to be lower than the transmission loss of the solution candidate by the transmission loss reduction determination unit 15, Embodiment in which the switch number changing means 18 increases the number of switches to be selected by the “closed” switch selecting means 12 one by one when the system comparison means 16 determines that the initial transmission loss has not been reduced. Is included. That is, when the power transmission loss calculated by the power transmission loss calculation unit 11 is not reduced in the predetermined number of switches selected by the “closed” switch selection unit 12, the “closed” switch selection unit 12. By increasing the number of switches selected by the above, it becomes possible to search for the minimum power transmission loss.

[3.第3の実施形態]
[構成]
次に、本発明の第3の実施形態に係る最小送電損失系統構成の決定装置の構成について、図7を参照して以下に説明する。なお、図7は、送電損失の最小化を図るための第3の実施形態に係る最小送電損失系統構成の決定装置を示すブロック図である。ここで、図7において、図1と同じ構成には同じ符号を用い、説明は省略する。
[3. Third Embodiment]
[Constitution]
Next, the configuration of the minimum transmission loss system configuration determining apparatus according to the third embodiment of the present invention will be described below with reference to FIG. FIG. 7 is a block diagram showing a determination apparatus for a minimum transmission loss system configuration according to the third embodiment for minimizing transmission loss. Here, in FIG. 7, the same components as those in FIG.

第3の実施形態では、第1の実施形態における図1の構成に加え、初期系統生成手段19、初期系統選択手段20、最小化構成選択手段21を備えている。   In the third embodiment, in addition to the configuration of FIG. 1 in the first embodiment, an initial system generation unit 19, an initial system selection unit 20, and a minimized configuration selection unit 21 are provided.

この初期系統生成手段19は、ある初期系統において、系統構成の異なる複数の初期系統を生成する手段である。また、初期系統選択手段20は、複数の初期系統から選択されていない初期系統を選択する手段であり、最小化構成選択手段21は、すべての初期系統構成に基づいて算出された送電損失が最小となる系統構成のうち、送電損失が最小のものを選択する手段である。   The initial system generation means 19 is a means for generating a plurality of initial systems having different system configurations in a certain initial system. The initial system selection means 20 is a means for selecting an initial system that has not been selected from a plurality of initial systems, and the minimized configuration selection means 21 has a minimum transmission loss calculated based on all initial system configurations. This is a means for selecting the system configuration having the smallest power transmission loss among the system configurations.

[作用]
次に、図7の構成を有する最小送電損失系統構成の決定装置において、最小となる送電損失及び当該送電損失を有する系統構成の決定手順を、図8のフローチャートを参照して以下に説明する。なお、図8は、第3の実施形態に係り、最小となる送電損失を有する系統構成の決定フローを示す図である。ここで、図2のフローチャートと同じ処理については説明を省略する。
[Action]
Next, the procedure for determining the minimum transmission loss and the system configuration having the transmission loss in the minimum transmission loss system configuration determining apparatus having the configuration of FIG. 7 will be described below with reference to the flowchart of FIG. FIG. 8 is a diagram illustrating a determination flow of a system configuration having a minimum power transmission loss according to the third embodiment. Here, the description of the same processing as the flowchart of FIG. 2 is omitted.

まず、STEP801では、第1の実施形態と同様に、データ読出手段10が、記憶手段3から配電系統の構成、当該系統に設けられた開閉器の開閉状態、及び負荷やインピーダンスに関するデータ等の系統情報データを読み出し、これ以降の処理において利用するデータを準備する。ここで、初期段階で使用する系統構成を初期系統構成とし、これを解候補とする。   First, in STEP 801, as in the first embodiment, the data reading unit 10 is configured to store a system such as a data distribution system configuration from the storage unit 3, a switching state of a switch provided in the system, and data related to a load and an impedance. Information data is read out and data to be used in the subsequent processing is prepared. Here, the system configuration used in the initial stage is the initial system configuration, and this is set as a solution candidate.

また、初期化処理として、送電損失計算手段11により初期系統である解候補の送電損失が計算され、初期送電損失として記憶手段3に記憶する。この記憶手段3に記憶された初期送電損失を有する初期系統構成は、現在の配電系統における系統構成として採用され、後述する系統構成の更新処理を行う上での基準となる。 As an initialization process, the transmission loss calculation means 11 calculates the transmission loss of the solution candidate that is the initial system, and stores it in the storage means 3 as the initial transmission loss. The initial system configuration having the initial transmission loss stored in the storage unit 3 is adopted as the system configuration in the current distribution system, and serves as a reference for performing a system configuration update process to be described later.

そして、STEP802では、読み出した初期系統に対して、初期系統生成手段19が複数の構成が異なる系統構成を作成し、送電損失計算手段11を通じて当該系統構成毎に初期送電損失を算出する。なお、初期系統生成手段19により作成される複数の初期系統構成は、例えば、初期系統に対して、ランダムに選択した「開」状態の開閉器を閉じ、構成されたメッシュ系統の中で、ランダムに選択した開閉器を開く、といった方法で作成される。   In STEP 802, the initial system generation unit 19 creates a plurality of different system configurations for the read initial system, and calculates the initial transmission loss for each system configuration through the transmission loss calculation unit 11. Note that the plurality of initial system configurations created by the initial system generation means 19 are, for example, that the randomly selected “open” state switch is closed with respect to the initial system, and the random mesh is configured in the configured mesh system. It is created by the method of opening the selected switch.

STEP803では、初期系統選択手段20が、初期系統生成手段19により作成された複数の初期系統構成のうち、選択されていない新たな系統構成を選択する。それ以降は、第1の実施形態における図2のSTEP202〜211の処理と同様の処理を実行することで、選択された初期系統構成に基づいて算出された最小送電損失及び最小送電損失系統構成を導き出すことができる(STEP804〜813)。   In STEP 803, the initial system selection unit 20 selects a new system configuration that has not been selected from among the plurality of initial system configurations created by the initial system generation unit 19. Thereafter, the minimum transmission loss and the minimum transmission loss system configuration calculated based on the selected initial system configuration are performed by executing the same processing as the processing of STEPs 202 to 211 in FIG. 2 in the first embodiment. Can be derived (STEP 804-813).

STEP814では、初期系統選択手段20により、送電損失の最小化処理を行っていない他の初期系統構成が存在するかが判定され、存在する場合には(STEP814のYES)、STEP803に移行することで新たな初期系統構成が選択される。   In STEP 814, the initial system selection means 20 determines whether there is another initial system configuration that has not been subjected to the power transmission loss minimizing process. If there is present (YES in STEP 814), the process proceeds to STEP 803. A new initial system configuration is selected.

初期系統選択手段20により、他の初期系統構成が存在しないと判定された場合には(STEP814のNO)、STEP815において、最小化構成選択手段21が、すべての初期系統構成に基づいて算出された送電損失のうち、最小の送電損失を有する系統構成を選択し、選択した系統構成及びその送電損失を最小送電損失系統構成及び最小送電損失として出力し、処理を終了する。   When the initial system selection unit 20 determines that no other initial system configuration exists (NO in STEP 814), in STEP 815, the minimized configuration selection unit 21 is calculated based on all initial system configurations. Among the transmission losses, the system configuration having the minimum transmission loss is selected, the selected system configuration and the transmission loss are output as the minimum transmission loss system configuration and the minimum transmission loss, and the process is terminated.

[効果]
以上のような本実施形態によれば、予め複数の初期系統構成を作成することができるので、各初期系統構成に対して最小となる送電損失を算出することが可能となり、送電損失の算出処理が局所最適解に陥ることを回避することができる。そのため、広範囲を探索の対象とすることができ、より送電損失の小さい系統構成を決定することが可能となる。
[effect]
According to the present embodiment as described above, since a plurality of initial system configurations can be created in advance, it is possible to calculate the minimum transmission loss for each initial system configuration, and the transmission loss calculation process Can be prevented from falling into a local optimal solution. Therefore, a wide range can be set as a search target, and a system configuration with a smaller power transmission loss can be determined.

なお、本発明は、この第3の実施形態に係る、系統構成の異なる複数の初期系統を生成する初期系統生成手段19と、複数の初期系統構成から選択されていない初期系統構成を選択する初期系統選択手段20と、すべての初期系統構成に基づいて算出された送電損失が最小となる系統構成のうち送電損失が最小のものを選択する最小化構成選択手段21と、を第2の実施形態に対して適用した実施形態も包含する。   The present invention relates to the initial system generation means 19 for generating a plurality of initial systems having different system configurations and an initial system configuration that is not selected from the plurality of initial system configurations according to the third embodiment. A system selection unit 20 and a minimization configuration selection unit 21 that selects a system configuration with the minimum power transmission loss among the system configurations with the minimum power transmission loss calculated based on all initial system configurations, according to the second embodiment. Embodiments applied to are also included.

具体的には、第2の実施形態において、STEP601で、データ読出手段10が、記憶手段3から配電系統の構成、当該系統に設けられた開閉器の開閉状態、及び負荷やインピーダンスに関するデータ等の系統情報データを読み出し、初期化処理として、初期系統生成手段19が複数の構成が異なる系統構成を作成し、送電損失計算手段11を通じて当該系統構成毎に初期送電損失を算出する。   Specifically, in the second embodiment, in STEP 601, the data reading unit 10 receives data such as the configuration of the power distribution system from the storage unit 3, the open / close state of the switch provided in the system, and data on the load and impedance. The system information data is read, and as an initialization process, the initial system generation unit 19 creates a plurality of different system configurations, and calculates the initial transmission loss for each system configuration through the transmission loss calculation unit 11.

そして、初期系統選択手段20が、初期系統生成手段19により作成された複数の初期系統構成のうち、選択されていない新たな系統構成を選択し、当該初期系統構成に基づいてSTEP602〜612までの処理が実行される。STEP612において、開閉器数変更手段18が、「閉」開閉器選択手段12により選択される開閉器の数が予め設定されたn(所定の閾値)に等しいと判定する場合には(STEP612のYES)、初期系統選択手段20により、送電損失の最小化処理を行っていない他の初期系統構成が存在するかが判定される。   Then, the initial system selection unit 20 selects a new system configuration that has not been selected from among the plurality of initial system configurations created by the initial system generation unit 19, and the steps from STEP602 to 612 are performed based on the initial system configuration. Processing is executed. In STEP612, when the switch number changing unit 18 determines that the number of switches selected by the “closed” switch selecting unit 12 is equal to a preset n (predetermined threshold) (YES in STEP612) ), The initial system selection means 20 determines whether there is another initial system configuration that has not been subjected to the power transmission loss minimization process.

初期系統選択手段20により、送電損失の最小化処理を行っていない他の初期系統構成が存在すると判定された場合には、初期系統選択手段20が、初期系統生成手段19により作成された複数の初期系統構成のうち、選択されていない新たな系統構成を選択することで、STEP602〜612までの処理が繰り返される。   When it is determined by the initial system selection unit 20 that there is another initial system configuration that has not been subjected to the power transmission loss minimization process, the initial system selection unit 20 includes a plurality of items created by the initial system generation unit 19. By selecting a new system configuration that is not selected from among the initial system configurations, the processing from STEPs 602 to 612 is repeated.

初期系統選択手段20により、他の初期系統構成が存在しないと判定された場合には、STEP613において、最小化構成選択手段21が、すべての初期系統構成に基づいて算出された送電損失のうち、最小の送電損失を有する系統構成を選択し、選択した系統構成及びその送電損失を最小送電損失系統構成及び最小送電損失として出力し、処理を終了する。   When it is determined by the initial system selection means 20 that no other initial system configuration exists, in STEP 613, the minimized configuration selection means 21 includes the transmission loss calculated based on all the initial system configurations. The system configuration having the minimum power transmission loss is selected, the selected system configuration and the power transmission loss are output as the minimum power transmission loss system configuration and the minimum power transmission loss, and the process ends.

本発明の第1の実施形態に係る最小送電損失系統構成の決定装置のブロック構成図。The block block diagram of the determination apparatus of the minimum power transmission loss system | strain structure which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る最小送電損失系統構成の決定装置の処理フローを示す図。The figure which shows the processing flow of the determination apparatus of the minimum power transmission loss system structure which concerns on the 1st Embodiment of this invention. 本発明による最小送電損失系統構成の決定過程を説明する図(1)。The figure (1) explaining the determination process of the minimum power transmission loss system structure by this invention. 本発明による最小送電損失系統構成の決定過程を説明する図(2)。The figure (2) explaining the determination process of the minimum power transmission loss system structure by this invention. 本発明の第2の実施形態に係る最小送電損失系統構成の決定装置のブロック構成図。The block block diagram of the determination apparatus of the minimum power transmission loss system structure which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る最小送電損失系統構成の決定装置の処理フローを示す図。The figure which shows the processing flow of the determination apparatus of the minimum power transmission loss system | strain structure which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る最小送電損失系統構成の決定装置のブロック構成図。The block block diagram of the determination apparatus of the minimum power transmission loss system | strain structure which concerns on the 3rd Embodiment of this invention. 本発明の第3の実施形態に係る最小送電損失系統構成の決定装置の処理フローを示す図。The figure which shows the processing flow of the determination apparatus of the minimum power transmission loss system structure which concerns on the 3rd Embodiment of this invention. 配電系統の一例を示す図。The figure which shows an example of a power distribution system. 配電系統の送電損失の計算の一例を示す図。The figure which shows an example of calculation of the transmission loss of a distribution system. 配電系統の開閉器の開閉状態に基づく複数の系統構成を示す図。The figure which shows the some system structure based on the switching state of the switch of a power distribution system. 配電系統の開閉器の開閉状態に基づく複数の系統構成の送電損失を示す図。The figure which shows the power transmission loss of the several system structure based on the switching state of the switch of a distribution system. 従来技術であるブランチ交換法による配電系統の最小送電損失決定過程を示す図(1)。The figure (1) which shows the minimum transmission loss determination process of the distribution system by the branch exchange method which is a prior art. 従来技術であるブランチ交換法による配電系統の最小送電損失決定過程を示す図(2)。The figure (2) which shows the minimum transmission loss determination process of the distribution system by the branch exchange method which is a prior art. 従来技術であるブランチ交換法による配電系統の最小送電損失決定過程を示す図(3)。The figure (3) which shows the minimum transmission loss determination process of the distribution system by the branch exchange method which is a prior art.

符号の説明Explanation of symbols

1…演算手段
2…入力手段
3…記憶手段
4…開閉器
4…表示手段
6…配電系統監視制御装置
7…配電系統
9a〜9g…区間番号
10…データ読出手段
11…送電損失計算手段
12…「閉」開閉器選択手段
13…潮流計算手段
14…「開」開閉器選択手段
15…送電損失低減判定手段
16…初期系統対比手段
17…損失最小化構成更新手段
18…開閉器数変更手段
19…初期系統生成手段
20…初期系統選択手段
21…最小化構成選択手段
91〜95…開閉器
DESCRIPTION OF SYMBOLS 1 ... Calculation means 2 ... Input means 3 ... Storage means 4 ... Switch 4 ... Display means 6 ... Distribution system monitoring control apparatus 7 ... Distribution system
9a to 9g ... Section number 10 ... Data reading means 11 ... Transmission loss calculation means 12 ... "Closed" switch selection means 13 ... Power flow calculation means 14 ... "Open" switch selection means 15 ... Transmission loss reduction determination means 16 ... Initial System comparison means 17 ... Loss minimization configuration update means 18 ... Switch number change means 19 ... Initial system generation means 20 ... Initial system selection means 21 ... Minimization configuration selection means 91 to 95 ... Switches

Claims (13)

開閉器の開閉状態が変更された系統構成のうち、送電損失が最小となる最小送電損失系統構成を決定する最小送電損失系統構成の決定装置であって、
前記系統構成内で1つのメッシュ系統を作成するように、複数の開閉器から2個以上の開状態にある開閉器を閉状態にすべく選択する閉開閉器選択手段と、
前記閉開閉器選択手段により選択された開閉器数と同数の閉状態にある開閉器を、放射状の系統構成が得られるように、開状態にすべく選択する開開閉器選択手段と、
前記閉開閉器選択手段により選択された開状態にある開閉器を閉状態に変更し、かつ、前記開開閉器選択手段により選択された閉状態にある開閉器を開状態に変更した各系統構成の送電損失を計算する送電損失計算手段と、
前記送電損失計算手段により計算された所定の系統構成の送電損失が、先に計算された別の系統構成の送電損失よりも低減するかを判定する低減判定手段と、
前記低減判定手段により低減すると判定された場合に、低減した送電損失を有する系統構成を最小送電損失系統候補として更新する更新手段と、
最小送電損失系統候補から最小送電損失系統構成を決定する決定手段と、
を備え、
前記決定手段は、前記低減判定手段が、前記送電損失計算手段により計算された各系統構成の送電損失のいずれもが、最新の更新状態にある前記最小送電損失系統候補の送電損失よりも低減しないと判定した場合に、当該最小送電損失系統候補を最小送電損失系統構成として決定することを特徴とする最小送電損失系統構成の決定装置。
Among the system configurations in which the switching state of the switch is changed, a determination device for the minimum transmission loss system configuration for determining the minimum transmission loss system configuration that minimizes the transmission loss,
Closed switch selection means for selecting two or more open switches from a plurality of switches to be closed so as to create one mesh system in the system configuration,
Open switch selection means for selecting the number of switches in the closed state as many as the number of switches selected by the closed switch selection means to be opened so as to obtain a radial system configuration;
Each system configuration in which the switch in the open state selected by the closed switch selection means is changed to the closed state, and the switch in the closed state selected by the open switch selection means is changed to the open state A transmission loss calculation means for calculating the transmission loss of
A reduction determination means for determining whether the transmission loss of the predetermined system configuration calculated by the power transmission loss calculation means is less than the power transmission loss of another system configuration calculated earlier;
An update unit that updates a system configuration having a reduced transmission loss as a minimum transmission loss system candidate when it is determined to be reduced by the reduction determination unit;
Determining means for determining the minimum transmission loss system configuration from the minimum transmission loss system candidates;
With
The determination means is such that the reduction determination means does not reduce any of the transmission losses of each system configuration calculated by the transmission loss calculation means than the transmission loss of the minimum transmission loss system candidate in the latest updated state. And determining the minimum power transmission loss system candidate as the minimum power transmission loss system configuration.
前記開開閉器選択手段は、前記メッシュ系統内の開閉器のうち、通過電流が最小の閉状態にある開閉器を逐次選択することを特徴とする請求項1に記載の最小送電損失系統構成の決定装置。   2. The minimum transmission loss system configuration according to claim 1, wherein the open switch selection unit sequentially selects a switch in a closed state with a minimum passing current among the switches in the mesh system. Decision device. 前記開開閉器選択手段は、系統の送電線の容量制約のもとで、通過電流が最小の閉状態にある開閉器を逐次選択することを特徴とする請求項2に記載の最小送電損失系統構成の決定装置。   3. The minimum transmission loss system according to claim 2, wherein the open switch selection unit sequentially selects a switch in a closed state with a minimum passing current under a capacity restriction of a transmission line of the system. Configuration determination device. 前記閉開閉器選択手段により選択される開状態にある開閉器の選択個数を制限する制限手段を備えたことを特徴とする請求項1に記載の最小送電損失系統構成の決定装置。   2. The apparatus for determining a minimum power transmission loss system configuration according to claim 1, further comprising limiting means for limiting a selected number of switches in an open state selected by the closed switch selecting means. 開閉器の開閉状態が変更された系統構成のうち、送電損失が最小となる最小送電損失系統構成を決定する最小送電損失系統構成の決定装置であって、
前記系統構成内で1つのメッシュ系統を作成するように、複数の開閉器から開状態にある開閉器を閉状態にすべく選択する閉開閉器選択手段と、
前記閉開閉器選択手段により選択される開閉器数を変更する開閉器数変更手段と、
前記閉開閉器選択手段により選択された開閉器数と同数の閉状態にある開閉器を、放射状の系統構成が得られるように、開状態にすべく選択する開開閉器選択手段と、
前記閉開閉器選択手段により選択された開状態にある開閉器を閉状態に変更し、かつ、前記開開閉器選択手段により選択された閉状態にある開閉器を開状態に変更した各系統構成の送電損失を計算する送電損失計算手段と、
前記送電損失計算手段により計算された所定の系統構成の送電損失が、先に計算された別の系統構成の送電損失よりも低減するかを判定する低減判定手段と、
前記低減判定手段により低減すると判定された場合に、低減した送電損失を有する系統構成を最小送電損失系統候補として更新する更新手段と、
最小送電損失系統候補から最小送電損失系統構成を決定する決定手段と、
を備え、
前記決定手段は、前記低減判定手段が、前記送電損失計算手段により計算された各系統構成の送電損失のいずれもが、最新の更新状態にある前記最小送電損失系統候補の送電損失よりも低減しないと判定した場合に、当該最小送電損失系統候補を最小送電損失系統構成として決定することを特徴とする最小送電損失系統構成の決定装置。
Among the system configurations in which the switching state of the switch is changed, a determination device for the minimum transmission loss system configuration for determining the minimum transmission loss system configuration that minimizes the transmission loss,
Closed switch selection means for selecting a switch in an open state from a plurality of switches to be closed so as to create one mesh system in the system configuration,
Switch number changing means for changing the number of switches selected by the closed switch selecting means;
Open switch selection means for selecting the number of switches in the closed state as many as the number of switches selected by the closed switch selection means to be opened so as to obtain a radial system configuration;
Each system configuration in which the switch in the open state selected by the closed switch selection means is changed to the closed state, and the switch in the closed state selected by the open switch selection means is changed to the open state A transmission loss calculation means for calculating the transmission loss of
A reduction determination means for determining whether the transmission loss of the predetermined system configuration calculated by the power transmission loss calculation means is less than the power transmission loss of another system configuration calculated earlier;
An update unit that updates a system configuration having a reduced transmission loss as a minimum transmission loss system candidate when it is determined to be reduced by the reduction determination unit;
Determining means for determining the minimum transmission loss system configuration from the minimum transmission loss system candidates;
With
The determination means is such that the reduction determination means does not reduce any of the transmission losses of each system configuration calculated by the transmission loss calculation means than the transmission loss of the minimum transmission loss system candidate in the latest updated state. And determining the minimum power transmission loss system candidate as the minimum power transmission loss system configuration.
前記開閉器数変更手段は、前記低減判定手段により所定の系統構成の送電損失が先に計算された別の系統構成の送電損失よりも低減しないと判定された場合に、前記閉開閉器選択手段が選択する開閉器数を増加させることを特徴とする請求項5に記載の最小送電損失系統構成の決定装置。   The switch number changing unit is configured to select the closed switch selection unit when the reduction determination unit determines that the transmission loss of the predetermined system configuration is not reduced more than the power transmission loss of another system configuration calculated previously. The apparatus for determining the minimum power transmission loss system configuration according to claim 5, wherein the number of switches to be selected is increased. ランダムに開閉器の開閉状態を変更することにより複数の初期系統を生成する初期系統生成手段を備え、
前記閉開閉器選択手段は、前記初期系統生成手段により生成された各初期系統内で1つのメッシュ系統を作成するように、開状態にある開閉器を選択することを特徴とする請求項1又は5に記載の最小送電損失系統構成の決定装置。
An initial system generation means for generating a plurality of initial systems by randomly changing the switching state of the switch,
The closed switch selection unit selects a switch in an open state so as to create one mesh system in each initial system generated by the initial system generation unit. 5. The apparatus for determining the minimum transmission loss system configuration according to 5.
開閉器の開閉状態が変更された系統構成のうち、送電損失が最小となる最小送電損失系統構成を決定する最小送電損失系統構成の決定方法であって、
前記系統構成内で1つのメッシュ系統を作成するように、複数の開閉器から2個以上の開状態にある開閉器を閉状態にすべく選択する閉開閉器選択ステップと、
前記閉開閉器選択ステップにより選択された開閉器数と同数の閉状態にある開閉器を、放射状の系統構成が得られるように、開状態にすべく選択する開開閉器選択ステップと、
前記閉開閉器選択ステップにより選択された開状態にある開閉器を閉状態に変更し、かつ、前記開開閉器選択ステップにより選択された閉状態にある開閉器を開状態に変更した各系統構成の送電損失を計算する送電損失計算ステップと、
前記送電損失計算ステップにより計算された所定の系統構成の送電損失が、先に計算された別の系統構成の送電損失よりも低減するかを判定する低減判定ステップと、
前記低減判定ステップにより低減すると判定された場合に、低減した送電損失を有する系統構成を最小送電損失系統候補として更新する更新ステップと、
最小送電損失系統候補から最小送電損失系統構成を決定する決定ステップと、
を含み、
前記決定ステップは、前記低減判定ステップで、前記送電損失計算ステップにより計算された各系統構成の送電損失のいずれもが、最新の更新状態にある前記最小送電損失系統候補の送電損失よりも低減しないと判定した場合に、当該最小送電損失系統候補を最小送電損失系統構成として決定することを特徴とする最小送電損失系統構成の決定方法。
Among the system configurations in which the switching state of the switch is changed, the minimum transmission loss system configuration determination method for determining the minimum transmission loss system configuration that minimizes the transmission loss,
A closed switch selection step of selecting two or more open switches from a plurality of switches to be closed so as to create one mesh system in the system configuration;
An open switch selection step for selecting the number of switches in the closed state equal to the number of switches selected in the closed switch selection step to be in an open state so as to obtain a radial system configuration;
Each system configuration in which the switch in the open state selected in the closed switch selection step is changed to the closed state, and the switch in the closed state selected in the open switch selection step is changed to the open state A transmission loss calculation step for calculating the transmission loss of
A reduction determination step for determining whether the transmission loss of the predetermined system configuration calculated by the power transmission loss calculation step is less than the power transmission loss of another system configuration calculated earlier;
An update step of updating a system configuration having a reduced transmission loss as a minimum transmission loss system candidate when it is determined to be reduced by the reduction determination step;
A determination step for determining a minimum transmission loss system configuration from minimum transmission loss system candidates;
Including
The determination step is the reduction determination step, and none of the transmission losses of each system configuration calculated by the transmission loss calculation step is reduced more than the transmission loss of the minimum transmission loss system candidate in the latest updated state. And determining the minimum transmission loss system configuration as the minimum transmission loss system configuration, when determining that the minimum transmission loss system configuration.
前記開開閉器選択ステップは、前記メッシュ系統内の開閉器のうち、通過電流が最小の閉状態にある開閉器を逐次選択することを特徴とする請求項8に記載の最小送電損失系統構成の決定方法。   9. The minimum transmission loss system configuration according to claim 8, wherein the open switch selection step sequentially selects a switch in a closed state with a minimum passing current among the switches in the mesh system. Decision method. 開閉器の開閉状態が変更された系統構成のうち、送電損失が最小となる最小送電損失系統構成を決定する最小送電損失系統構成の決定方法であって、
前記系統構成内で1つのメッシュ系統を作成するように、複数の開閉器から開状態にある開閉器を閉状態にすべく選択する閉開閉器選択ステップと、
前記閉開閉器選択ステップにより選択される開閉器数を変更する開閉器数変更ステップと、
前記閉開閉器選択ステップにより選択された開閉器数と同数の閉状態にある開閉器を、放射状の系統構成が得られるように、開状態にすべく選択する開開閉器選択ステップと、
前記閉開閉器選択ステップにより選択された開状態にある開閉器を閉状態に変更し、かつ、前記開開閉器選択ステップにより選択された閉状態にある開閉器を開状態に変更した各系統構成の送電損失を計算する送電損失計算ステップと、
前記送電損失計算ステップにより計算された所定の系統構成の送電損失が、先に計算された別の系統構成の送電損失よりも低減するかを判定する低減判定ステップと、
前記低減判定ステップにより低減すると判定された場合に、低減した送電損失を有する系統構成を最小送電損失系統候補として更新する更新ステップと、
最小送電損失系統候補から最小送電損失系統構成を決定する決定ステップと、
を含み、
前記決定ステップは、前記低減判定ステップで、前記送電損失計算ステップにより計算された各系統構成の送電損失のいずれもが、最新の更新状態にある前記最小送電損失系統候補の送電損失よりも低減しないと判定した場合に、当該最小送電損失系統候補を最小送電損失系統構成として決定することを特徴とする最小送電損失系統構成の決定方法。
Among the system configurations in which the switching state of the switch is changed, the minimum transmission loss system configuration determination method for determining the minimum transmission loss system configuration that minimizes the transmission loss,
A closed switch selection step of selecting a switch in an open state from a plurality of switches to be closed so as to create one mesh system in the system configuration; and
A switch number changing step for changing the number of switches selected by the closed switch selection step;
An open switch selection step for selecting the number of switches in the closed state equal to the number of switches selected in the closed switch selection step to be in an open state so as to obtain a radial system configuration;
Each system configuration in which the switch in the open state selected in the closed switch selection step is changed to the closed state, and the switch in the closed state selected in the open switch selection step is changed to the open state A transmission loss calculation step for calculating the transmission loss of
A reduction determination step for determining whether the transmission loss of the predetermined system configuration calculated by the power transmission loss calculation step is less than the power transmission loss of another system configuration calculated earlier;
An update step of updating a system configuration having a reduced transmission loss as a minimum transmission loss system candidate when it is determined to be reduced by the reduction determination step;
A determination step for determining a minimum transmission loss system configuration from minimum transmission loss system candidates;
Including
The determination step is the reduction determination step, and none of the transmission losses of each system configuration calculated by the transmission loss calculation step is reduced more than the transmission loss of the minimum transmission loss system candidate in the latest updated state. And determining the minimum transmission loss system configuration as the minimum transmission loss system configuration, when determining that the minimum transmission loss system configuration.
前記開閉器数変更ステップは、前記低減判定ステップにより所定の系統構成の送電損失が先に計算された別の系統構成の送電損失よりも低減しないと判定された場合に、前記閉開閉器選択ステップで選択する開閉器数を増加させることを特徴とする請求項10に記載の最小送電損失系統構成の決定方法。   When the switch number changing step determines that the transmission loss of a predetermined system configuration is not reduced more than the power transmission loss of another system configuration previously calculated by the reduction determination step, the closed switch selection step The method of determining the minimum transmission loss system configuration according to claim 10, wherein the number of switches to be selected is increased. ランダムに開閉器の開閉状態を変更することにより複数の初期系統を生成する初期系統生成ステップを含み、
前記閉開閉器選択ステップは、前記初期系統生成ステップにより生成された各初期系統内で1つのメッシュ系統を作成するように、開状態にある開閉器を選択することを特徴とする請求項8又は10に記載の最小送電損失系統構成の決定方法。
Including an initial system generation step of generating a plurality of initial systems by randomly changing the switching state of the switch,
9. The closed switch selection step selects a switch in an open state so as to create one mesh system in each initial system generated by the initial system generation step. 10. The method for determining the minimum transmission loss system configuration according to 10.
コンピュータに、開閉器の開閉状態が変更された系統構成のうち、送電損失が最小となる最小送電損失系統構成を決定させる最小送電損失系統構成の決定プログラムであって、
前記コンピュータに、
前記系統構成内で1つのメッシュ系統を作成するように、複数の開閉器から2個以上の開状態にある開閉器を閉状態にすべく選択する閉開閉器選択処理と、
前記閉開閉器選択処理により選択された開閉器数と同数の閉状態にある開閉器を、放射状の系統構成が得られるように、開状態にすべく選択する開開閉器選択処理と、
前記閉開閉器選択処理により選択された開状態にある開閉器を閉状態に変更し、かつ、前記開開閉器選択処理により選択された閉状態にある開閉器を開状態に変更した各系統構成の送電損失を計算する送電損失計算処理と、
前記送電損失計算処理により計算された所定の系統構成の送電損失が、先に計算された別の系統構成の送電損失よりも低減するかを判定する低減判定処理と、
前記低減判定処理により低減すると判定された場合に、低減した送電損失を有する系統構成を最小送電損失系統候補として更新する更新処理と、
最小送電損失系統候補から最小送電損失系統構成を決定する決定処理と、
を実行させ、
前記決定処理は、前記低減判定処理で、前記送電損失計算処理により計算された各系統構成の送電損失のいずれもが、最新の更新状態にある前記最小送電損失系統候補の送電損失よりも低減しないと判定した場合に、当該最小送電損失系統候補を最小送電損失系統構成として決定することを特徴とする最小送電損失系統構成の決定プログラム。
A determination program for a minimum transmission loss system configuration that causes a computer to determine a minimum transmission loss system configuration that minimizes transmission loss among the system configurations in which the switching state of the switch is changed,
In the computer,
A closed switch selection process for selecting two or more open switches from a plurality of switches to be closed so as to create one mesh system in the system configuration;
An open switch selection process for selecting the number of switches in the closed state equal to the number of switches selected by the closed switch selection process to be opened so that a radial system configuration is obtained; and
Each system configuration in which the switch in the open state selected by the closed switch selection process is changed to the closed state, and the switch in the closed state selected by the open switch selection process is changed to the open state Transmission loss calculation processing for calculating the transmission loss of
A reduction determination process for determining whether the power transmission loss of the predetermined system configuration calculated by the power transmission loss calculation process is less than the power transmission loss of another system configuration calculated earlier;
An update process for updating a system configuration having a reduced transmission loss as a minimum transmission loss system candidate when it is determined to be reduced by the reduction determination process;
A decision process for determining the minimum transmission loss system configuration from the minimum transmission loss system candidates;
And execute
The determination process is the reduction determination process, and none of the transmission losses of each system configuration calculated by the transmission loss calculation process is reduced more than the transmission loss of the minimum transmission loss system candidate in the latest updated state. And determining a minimum transmission loss system configuration as a minimum transmission loss system configuration, the minimum transmission loss system configuration determination program.
JP2008132521A 2008-05-20 2008-05-20 Minimum transmission loss system configuration determination device, method and program Expired - Fee Related JP5395367B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008132521A JP5395367B2 (en) 2008-05-20 2008-05-20 Minimum transmission loss system configuration determination device, method and program
PCT/JP2009/002224 WO2009142011A1 (en) 2008-05-20 2009-05-20 Decision device with minimum power transmission loss system, method, and program
CN2009801182235A CN102037627B (en) 2008-05-20 2009-05-20 Decision device with minimum power transmission loss system, method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008132521A JP5395367B2 (en) 2008-05-20 2008-05-20 Minimum transmission loss system configuration determination device, method and program

Publications (2)

Publication Number Publication Date
JP2009284614A true JP2009284614A (en) 2009-12-03
JP5395367B2 JP5395367B2 (en) 2014-01-22

Family

ID=41339951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008132521A Expired - Fee Related JP5395367B2 (en) 2008-05-20 2008-05-20 Minimum transmission loss system configuration determination device, method and program

Country Status (3)

Country Link
JP (1) JP5395367B2 (en)
CN (1) CN102037627B (en)
WO (1) WO2009142011A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101246383B1 (en) * 2011-09-27 2013-03-21 한국전력공사 Apparatus and method for considering load section characteristic of distribution system
KR101715778B1 (en) * 2015-10-29 2017-03-15 (주)에스엔 Method for measuring power dissitation in electric power grid
KR101926309B1 (en) * 2018-05-28 2018-12-06 이동률 Control Method of distribution automation system having dispersion generation
KR101926306B1 (en) * 2018-05-28 2018-12-06 이동률 Distribution Automation System
KR101926308B1 (en) * 2018-05-28 2018-12-06 이동률 Distribution automation system having dispersion generation
KR101926307B1 (en) * 2018-05-28 2019-03-07 (주)세니온 Control method of distribution Automation System
JP2020156311A (en) * 2019-03-13 2020-09-24 株式会社明電舎 Distribution system controlling device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04210735A (en) * 1990-11-30 1992-07-31 Toshiba Corp Power system controller
JPH05130736A (en) * 1991-07-11 1993-05-25 Kyushu Electric Power Co Inc Distribution system controller
JPH05344651A (en) * 1992-06-11 1993-12-24 Toshiba Corp Distribution system operating unit

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0685621B2 (en) * 1987-06-19 1994-10-26 東京電力株式会社 Transmission loss minimization method
JPH08308110A (en) * 1995-04-27 1996-11-22 Hitachi Ltd Controller for power distribution system
JPH1056737A (en) * 1996-08-07 1998-02-24 Toshiba Corp Distribution system operating equipment
JP3364826B2 (en) * 1997-02-24 2003-01-08 株式会社日立製作所 Method and apparatus for creating distribution system configuration

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04210735A (en) * 1990-11-30 1992-07-31 Toshiba Corp Power system controller
JPH05130736A (en) * 1991-07-11 1993-05-25 Kyushu Electric Power Co Inc Distribution system controller
JPH05344651A (en) * 1992-06-11 1993-12-24 Toshiba Corp Distribution system operating unit

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101246383B1 (en) * 2011-09-27 2013-03-21 한국전력공사 Apparatus and method for considering load section characteristic of distribution system
WO2013047931A1 (en) * 2011-09-27 2013-04-04 한국전력공사 Apparatus and method for minimizing distribution loss in consideration of section load characteristics of distribution system
US9673633B2 (en) 2011-09-27 2017-06-06 Korea Electric Power Corporation Apparatus and method for minimizing distribution loss in consideration of section load characteristics of distribution system
KR101715778B1 (en) * 2015-10-29 2017-03-15 (주)에스엔 Method for measuring power dissitation in electric power grid
KR101926309B1 (en) * 2018-05-28 2018-12-06 이동률 Control Method of distribution automation system having dispersion generation
KR101926306B1 (en) * 2018-05-28 2018-12-06 이동률 Distribution Automation System
KR101926308B1 (en) * 2018-05-28 2018-12-06 이동률 Distribution automation system having dispersion generation
KR101926307B1 (en) * 2018-05-28 2019-03-07 (주)세니온 Control method of distribution Automation System
JP2020156311A (en) * 2019-03-13 2020-09-24 株式会社明電舎 Distribution system controlling device
JP7303500B2 (en) 2019-03-13 2023-07-05 株式会社明電舎 Distribution system controller

Also Published As

Publication number Publication date
CN102037627B (en) 2013-07-10
CN102037627A (en) 2011-04-27
JP5395367B2 (en) 2014-01-22
WO2009142011A1 (en) 2009-11-26

Similar Documents

Publication Publication Date Title
JP5395367B2 (en) Minimum transmission loss system configuration determination device, method and program
Sivasubramani et al. Environmental/economic dispatch using multi-objective harmony search algorithm
Nuaekaew et al. Optimal reactive power dispatch problem using a two-archive multi-objective grey wolf optimizer
Tejani et al. Multiobjective adaptive symbiotic organisms search for truss optimization problems
Raut et al. An improved Elitist–Jaya algorithm for simultaneous network reconfiguration and DG allocation in power distribution systems
Romero et al. Analysis of heuristic algorithms for the transportation model in static and multistage planning in network expansion systems
da Silva et al. Transmission expansion planning optimization by adaptive multi-operator evolutionary algorithms
Lin et al. Minimizing makespan and total flowtime in permutation flowshops by a bi-objective multi-start simulated-annealing algorithm
Sanches et al. Multi-objective evolutionary algorithm for single and multiple fault service restoration in large-scale distribution systems
Sayah et al. Efficient hybrid optimization approach for emission constrained economic dispatch with nonsmooth cost curves
de Mendonca et al. Identification of relevant routes for static expansion planning of electric power transmission systems
Rao et al. Optimal conductor size selection in distribution systems using the harmony search algorithm with a differential operator
Lu et al. Path planning of mobile robot with path rule mining based on GA
Romero et al. Constructive heuristic algorithm in branch-and-bound structure applied to transmission network expansion planning
JP2021033341A (en) Optimization device and control method of optimization device
Johnson et al. Security-constrained optimal placement of PMUs using Crow Search Algorithm
JP2009157623A (en) System and method for circuit simulation
Nguyen A novel metaheuristic method based on artificial ecosystem-based optimization for optimization of network reconfiguration to reduce power loss
JP2000197270A (en) Method for determining optimum installing place of phase modifying equipment in power distributing system
JP2008219980A (en) Best state searching unit and distribution system loss reduction unit
Delbem et al. Optimal energy restoration in radial distribution systems using a genetic approach and graph chain representation
Zeblah et al. Efficient harmony search algorithm for multi-stages scheduling problem for power systems degradation
JP3809854B2 (en) Optimal settling method for voltage control devices in distribution systems.
Sulaima et al. A 16kV distribution network reconfiguration by using evolutionaring programming for loss minimizing
Sanches et al. Integrating relevant aspects of moeas to solve loss reduction problem in large-scale Distribution Systems

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130326

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131018

LAPS Cancellation because of no payment of annual fees