WO2009141979A1 - Air conditioning system - Google Patents

Air conditioning system Download PDF

Info

Publication number
WO2009141979A1
WO2009141979A1 PCT/JP2009/002125 JP2009002125W WO2009141979A1 WO 2009141979 A1 WO2009141979 A1 WO 2009141979A1 JP 2009002125 W JP2009002125 W JP 2009002125W WO 2009141979 A1 WO2009141979 A1 WO 2009141979A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
heat
heat transfer
heat exchanger
storage tank
Prior art date
Application number
PCT/JP2009/002125
Other languages
French (fr)
Japanese (ja)
Inventor
谷本啓介
川端克宏
浅井英明
川添政宣
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2009141979A1 publication Critical patent/WO2009141979A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0096Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater combined with domestic apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • F24D11/02Central heating systems using heat accumulated in storage masses using heat pumps
    • F24D11/0214Central heating systems using heat accumulated in storage masses using heat pumps water heating system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/02Domestic hot-water supply systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/06Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/16Waste heat
    • F24D2200/31Air conditioning systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/12Hot water central heating systems using heat pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

Disclosed is an air conditioning system (10) wherein an outdoor unit (15) is connected to an indoor-side circuit (70) in which heating water on the usage side is circulated. A cooling circuit (21) is provided in the outdoor unit (15). When the air conditioning system (10) is running in cooling mode, a cooling cycle is carried out in which a heating heat exchanger (82) acts as a condenser, and a heat exchanger (23) on the heat source side acts as an evaporator in the cooling circuit (21). The heating water which is heated by the heating heat exchanger (82) is conducted to the top end of a thermal storage tank (37), while some of the heating water cooled by the heat exchanger (23) on the heat source side is conducted to the bottom end of the thermal storage tank (37). High-temperature heating water is stored in the section close to the top end of the space inside the thermal storage tank (37), and low-temperature heating water is stored in the section close to the bottom end of the space inside the thermal storage tank (37).

Description

空調システムAir conditioning system
 本発明は、冷凍サイクルによって生成した冷熱を利用して室内を冷房する空調システムに関する。 The present invention relates to an air conditioning system that cools a room using cold heat generated by a refrigeration cycle.
 従来より、冷媒回路で冷媒を循環させて冷凍サイクルを行う空調システムが知られている。例えば、特許文献1には、冷媒回路の蒸発器とファンコイルユニットの間で水を循環させ、蒸発器からファンコイルユニットへ供給された冷水を利用して室内を冷房する空調システムが開示されている(特許文献1の図10を参照)。また、この特許文献1に開示された空調システムは、冷房運転中の冷媒回路の凝縮器で加熱された水をタンクに貯留し、タンク内の温水を給湯に利用するように構成されている。 Conventionally, an air conditioning system that performs a refrigeration cycle by circulating a refrigerant in a refrigerant circuit is known. For example, Patent Document 1 discloses an air conditioning system that circulates water between an evaporator of a refrigerant circuit and a fan coil unit, and cools the room using cold water supplied from the evaporator to the fan coil unit. (See FIG. 10 of Patent Document 1). In addition, the air conditioning system disclosed in Patent Document 1 is configured to store water heated in a condenser of a refrigerant circuit during cooling operation in a tank and use hot water in the tank for hot water supply.
特開2000-283599号公報JP 2000-283599 A
 ところで、冷媒回路の蒸発器からファンコイルユニット等へ冷水を供給する空調システムでは、冷水を貯留するための冷水タンクを設け、その冷水タンク内に冷熱を一時的に蓄えることが考えられる。このような冷水タンクを空調システムに設ければ、例えば冷房負荷の小さい夜間には冷水タンクに冷水を蓄え、冷房負荷の大きな昼間に冷水タンク内の冷水を冷房に利用することが可能となる。 By the way, in an air conditioning system that supplies cold water from an evaporator of a refrigerant circuit to a fan coil unit or the like, it is conceivable to provide a cold water tank for storing cold water and temporarily store cold heat in the cold water tank. If such a cold water tank is provided in the air conditioning system, for example, cold water can be stored in the cold water tank at night when the cooling load is small, and the cold water in the cold water tank can be used for cooling in the daytime when the cooling load is large.
 一方、上記特許文献1に開示された空調システムのように給湯を行うものでは、給湯用の温水を蓄えるための温水タンクが必要である。従って、この種の空調システムに上記の冷水タンクを追加すると、温水を蓄える温水タンクと冷水を蓄える冷水タンクの両方が一つの空調システムに設けられることとなり、空調システムの構成が複雑化してしまう。 On the other hand, in the case of supplying hot water like the air conditioning system disclosed in Patent Document 1, a hot water tank for storing hot water for hot water supply is necessary. Therefore, when the above-described cold water tank is added to this type of air conditioning system, both the hot water tank that stores hot water and the cold water tank that stores cold water are provided in one air conditioning system, and the configuration of the air conditioning system becomes complicated.
 本発明は、かかる点に鑑みてなされたものであり、その目的は、温熱と冷熱の両方を蓄えることのできる空調システムについて、その構成が複雑化するのを回避することにある。 The present invention has been made in view of such points, and an object thereof is to avoid complication of the configuration of an air conditioning system capable of storing both hot and cold.
 第1の発明は、利用側熱交換器(35)が接続されて内部を熱媒水が循環する熱搬送回路(30)を備え、上記利用側熱交換器(35)へ供給された熱媒水を利用して室内を冷房する冷房運転を行う空調システムを対象とする。そして、それぞれが冷媒を熱媒水と熱交換させる熱源側熱交換器(23)及び加熱用熱交換器(82)を備え、該加熱用熱交換器(82)が放熱器となって該熱源側熱交換器(23)が蒸発器となるように冷媒を循環させて冷凍サイクルを行う冷房給湯用動作を上記冷房運転中に行うように構成された冷媒回路(21)を備える一方、上記熱搬送回路(30)は、熱媒水を貯留するための貯水タンク(37)を備え、上記熱源側熱交換器(23)において冷却された熱媒水を上記貯水タンク(37)の下部へ供給する蓄冷熱動作と、上記貯水タンク(37)の下部に貯留された熱媒水を上記利用側熱交換器(35)へ供給する利用冷房動作と、上記加熱用熱交換器(82)において加熱された熱媒水を上記貯水タンク(37)の上部へ供給する湯沸かし動作と、上記貯水タンク(37)の上部に貯留された熱媒水を給湯用の温水として該貯水タンク(37)から流出させる出湯動作とを上記冷房運転中に実行可能となっているものである。 The first invention includes a heat transfer circuit (30) to which a heat transfer water is circulated and connected to the use side heat exchanger (35), and the heat transfer medium supplied to the use side heat exchanger (35). The target is an air conditioning system that uses water to cool the room. Each includes a heat source side heat exchanger (23) and a heating heat exchanger (82) for exchanging heat between the refrigerant and the heat transfer water, and the heating heat exchanger (82) serves as a radiator. While comprising a refrigerant circuit (21) configured to perform a cooling hot water supply operation for performing a refrigeration cycle by circulating a refrigerant so that the side heat exchanger (23) becomes an evaporator, The transfer circuit (30) includes a water storage tank (37) for storing heat transfer water, and supplies the heat transfer water cooled in the heat source side heat exchanger (23) to the lower part of the water storage tank (37). Cold heat storage operation, use cooling operation to supply the heat transfer water stored in the lower part of the water storage tank (37) to the use side heat exchanger (35), and heating in the heat heat exchanger (82) Water heating operation to supply the heated heat transfer water to the upper part of the water storage tank (37), and the water storage tank (37 The hot water operation stored in the upper part of the hot water supply water is allowed to flow out from the water storage tank (37) as hot water for hot water supply during the cooling operation.
 第1の発明では、空調システム(10)の冷房運転中に冷媒回路(21)が冷房給湯用動作を行う。冷媒回路(21)が冷房給湯用動作を実行している状態において、熱搬送回路(30)では、蒸発器として動作する熱源側熱交換器(23)において熱媒水が冷却され、放熱器として動作する加熱用熱交換器(82)において熱媒水が加熱される。熱搬送回路(30)が蓄冷熱動作を実行している状態では、熱源側熱交換器(23)において冷却された熱媒水が貯水タンク(37)の下部に送り込まれる。熱源側熱交換器(23)において冷却された熱媒水(即ち、低温の熱媒水)は、常温の熱媒水に比べて密度が大きいため、貯水タンク(37)の下部に溜まり込む。また、熱搬送回路(30)が湯沸かし動作を実行している状態では、加熱用熱交換器(82)において加熱された熱媒水が貯水タンク(37)の上部に送り込まれる。加熱用熱交換器(82)において加熱された熱媒水(即ち、高温の熱媒水)は、常温の熱媒水に比べて密度が小さいため、貯水タンク(37)の上部に溜まり込む。このように、貯水タンク(37)では、その下部に低温の熱媒水が貯留され、その上部に高温の熱媒水が貯留される。つまり、この発明の貯水タンク(37)には、冷熱と温熱の両方が蓄えられる。 In the first invention, the refrigerant circuit (21) performs an operation for cooling hot water supply during the cooling operation of the air conditioning system (10). In the state where the refrigerant circuit (21) is performing the operation for cooling and hot water supply, in the heat transfer circuit (30), the heat transfer water is cooled in the heat source side heat exchanger (23) operating as an evaporator, The heat transfer water is heated in the operating heat exchanger (82). In a state where the heat transfer circuit (30) is performing the cold storage heat operation, the heat transfer water cooled in the heat source side heat exchanger (23) is sent to the lower part of the water storage tank (37). The heat transfer water (that is, the low-temperature heat transfer water) cooled in the heat source side heat exchanger (23) has a higher density than the normal temperature heat transfer water, and therefore accumulates in the lower part of the water storage tank (37). Further, in the state where the heat transfer circuit (30) is performing the water boiling operation, the heat transfer water heated in the heating heat exchanger (82) is sent to the upper part of the water storage tank (37). The heat transfer water (that is, high-temperature heat transfer water) heated in the heating heat exchanger (82) has a lower density than the normal temperature heat transfer water, and therefore accumulates in the upper part of the water storage tank (37). Thus, in the water storage tank (37), the low-temperature heat transfer water is stored in the lower part, and the high-temperature heat transfer water is stored in the upper part. That is, both the cold heat and the warm heat are stored in the water storage tank (37) of the present invention.
 第2の発明は、上記第1の発明において、上記熱搬送回路(30)は、上記熱源側熱交換器(23)において冷却された熱媒水を上記利用側熱交換器(35)と上記貯水タンク(37)の下部の両方へ供給する動作を蓄冷熱動作として行い、上記熱源側熱交換器(23)において冷却された熱媒水と上記貯水タンク(37)の下部に貯留された熱媒水の両方を上記利用側熱交換器(35)へ供給する動作を利用冷房動作として行う一方、上記熱源側熱交換器(23)において冷却された熱媒水だけを上記利用側熱交換器(35)へ供給する通常冷房動作と、上記蓄冷熱動作と、上記利用冷房動作とを上記冷房運転中に選択的に実行するものである。 In a second aspect based on the first aspect, the heat transfer circuit (30) uses the heat transfer water cooled in the heat source side heat exchanger (23) as the heat transfer side water exchanger (35) and The operation to supply both of the lower part of the water storage tank (37) is performed as a cold storage heat operation, the heat transfer water cooled in the heat source side heat exchanger (23) and the heat stored in the lower part of the water storage tank (37). The operation of supplying both of the medium water to the use side heat exchanger (35) is performed as a use cooling operation, while only the heat transfer water cooled in the heat source side heat exchanger (23) is used as the use side heat exchanger. The normal cooling operation supplied to (35), the cold storage heat operation, and the use cooling operation are selectively executed during the cooling operation.
 第2の発明では、空調システム(10)の冷房運転中において、熱搬送回路(30)は、通常冷房動作と蓄冷熱動作と利用冷房動作とを選択的に行う。通常冷房動作では、冷媒回路(21)での冷凍サイクルによって得られた冷熱だけが室内の冷房に利用される。従って、通常冷房動作は、冷媒回路(21)で生成する冷熱量と室内の冷房負荷が均衡している状態で行うのに適している。一方、蓄冷熱動作では、冷媒回路(21)での冷凍サイクルによって得られた冷熱の一部が室内の冷房に利用され、その残りが貯水タンク(37)に蓄えられる。冷媒回路(21)で生成する冷熱量が室内の冷房負荷に対して多すぎる状態で蓄冷熱動作を行えば、余剰の冷熱が貯水タンク(37)に蓄えられる。また、利用冷房動作では、冷媒回路(21)での冷凍サイクルによって得られた冷熱の全てと、貯水タンク(37)に蓄えられた冷熱とが室内の冷房に利用される。冷媒回路(21)で生成する冷熱量が室内の冷房負荷に対して不足する状態で利用冷房動作を行えば、冷媒回路(21)で生成する冷熱量を増やさなくても、冷房負荷に見合った冷房能力が得られる。 In the second invention, during the cooling operation of the air conditioning system (10), the heat transfer circuit (30) selectively performs a normal cooling operation, a cold storage heat operation, and a use cooling operation. In the normal cooling operation, only the cooling heat obtained by the refrigeration cycle in the refrigerant circuit (21) is used for indoor cooling. Therefore, the normal cooling operation is suitable for performing in a state where the amount of heat generated by the refrigerant circuit (21) and the indoor cooling load are balanced. On the other hand, in the cold storage heat operation, part of the cold heat obtained by the refrigeration cycle in the refrigerant circuit (21) is used for indoor cooling, and the remainder is stored in the water storage tank (37). If the cold storage heat operation is performed in a state where the amount of cooling heat generated in the refrigerant circuit (21) is too much with respect to the indoor cooling load, excess cooling heat is stored in the water storage tank (37). In the use cooling operation, all of the cold heat obtained by the refrigeration cycle in the refrigerant circuit (21) and the cold heat stored in the water storage tank (37) are used for indoor cooling. If the cooling operation is performed in a state where the amount of heat generated by the refrigerant circuit (21) is insufficient with respect to the indoor cooling load, the amount of heat generated by the refrigerant circuit (21) can be met without increasing the amount of cooling heat. Cooling capacity is obtained.
 第3の発明は、上記第1又は第2の発明において、上記冷媒回路(21)は、冷媒を室外空気と熱交換させる室外熱交換器(25)を備え、該室外熱交換器(25)が放熱器となって上記熱源側熱交換器(23)が蒸発器となるように冷媒を循環させて冷凍サイクルを行う冷房専用動作と上記冷房給湯用動作とを選択的に実行するものである。 According to a third invention, in the first or second invention, the refrigerant circuit (21) includes an outdoor heat exchanger (25) for exchanging heat between the refrigerant and outdoor air, and the outdoor heat exchanger (25) The cooling-only operation and the cooling hot-water supply operation are selectively executed by circulating the refrigerant so that the heat source side heat exchanger (23) becomes an evaporator and the heat source side heat exchanger (23) becomes an evaporator. .
 第3の発明では、空調システム(10)の冷房運転中において、冷媒回路(21)が冷房専用動作と冷房給湯用動作とを選択的に行う。貯水タンク(37)に対する高温の熱媒水の供給と室内の冷房の両方が必要な場合は、冷媒回路(21)が冷房給湯用動作を行う。一方、貯水タンク(37)における高温の熱媒水の貯留量は充分だが室内を冷房する必要がある場合は、冷媒回路(21)が冷房専用動作を行う。冷房専用動作中の冷媒回路(21)の室外熱交換器(25)では、冷媒が室外空気に対して放熱する。 In the third invention, during the cooling operation of the air conditioning system (10), the refrigerant circuit (21) selectively performs the cooling only operation and the cooling hot water supply operation. When both the supply of high-temperature heat transfer water to the water storage tank (37) and the indoor cooling are required, the refrigerant circuit (21) performs an operation for cooling hot water supply. On the other hand, when the storage amount of the high-temperature heat transfer water in the water storage tank (37) is sufficient but the room needs to be cooled, the refrigerant circuit (21) performs the cooling only operation. In the outdoor heat exchanger (25) of the refrigerant circuit (21) during the cooling only operation, the refrigerant radiates heat to the outdoor air.
 第4の発明は、第1~第3の何れか一つの発明において、上記熱搬送回路(30)は、上記貯水タンク(37)の高さ方向の中央部に貯留された熱媒水を上記加熱用熱交換器(82)へ供給して該加熱用熱交換器(82)で加熱された熱媒水を上記貯水タンク(37)の上部へ供給する動作を上記湯沸かし動作として行うものである。 According to a fourth invention, in any one of the first to third inventions, the heat transfer circuit (30) uses the heat transfer water stored in the central portion in the height direction of the water storage tank (37) as described above. The operation of supplying the heat transfer water supplied to the heating heat exchanger (82) and heated by the heating heat exchanger (82) to the upper portion of the water storage tank (37) is performed as the boiling water operation. .
 第4の発明において、湯沸かし動作中の熱搬送回路(30)では、貯水タンク(37)の高さ方向の中央部に貯留された熱媒水が、加熱用熱交換器(82)において加熱された後に貯水タンク(37)の上部へ送り込まれる。貯水タンク(37)の内部空間では、加熱用熱交換器(82)へ向けて熱媒水が流出する位置よりも上側の部分に、加熱用熱交換器(82)において加熱された高温の熱媒水が貯留される。また、貯水タンク(37)の内部空間において、加熱用熱交換器(82)へ向けて熱媒水が流出する位置よりも下側の部分に貯留された低温の熱媒水は、その殆どが貯水タンク(37)内に留まる。 In the fourth aspect of the present invention, in the heat transfer circuit (30) during the boiling operation, the heat transfer water stored in the central portion in the height direction of the water storage tank (37) is heated in the heat exchanger (82) for heating. After that, it is sent to the upper part of the water storage tank (37). In the internal space of the water storage tank (37), the high-temperature heat heated in the heating heat exchanger (82) is located above the position where the heat transfer water flows toward the heating heat exchanger (82). Medium water is stored. Also, most of the low-temperature heat transfer water stored in the lower part of the internal space of the water storage tank (37) from the position where the heat transfer water flows out toward the heat exchanger for heating (82). Stays in the water tank (37).
 第5の発明は、上記第4の発明において、上記熱搬送回路(30)には、上記出湯動作中に上記貯水タンク(37)の高さ方向の中央部へ上水道から供給された水を送り込む給水通路(90)が設けられるものである。 In a fifth aspect based on the fourth aspect, water supplied from the water supply is fed into the heat transfer circuit (30) into the central portion in the height direction of the water storage tank (37) during the tapping operation. A water supply passage (90) is provided.
 第5の発明では、熱搬送回路(30)に給水通路(90)が設けられる。出湯動作中の熱搬送回路(30)では、貯水タンク(37)の上部に貯留された高温の熱媒水が給湯用の温水として給水栓等へ供給されると共に、給水通路(90)を通じて貯水タンク(37)へ水が補給される。その際、給水通路(90)は、貯水タンク(37)の内部空間のうち貯水タンク(37)の高さ方向の中央部へ水を導入する。 In the fifth invention, a water supply passage (90) is provided in the heat transfer circuit (30). In the heat transfer circuit (30) during the hot water supply operation, high-temperature heat transfer water stored in the upper part of the water storage tank (37) is supplied to the water faucet etc. as hot water for hot water supply, Water is supplied to the tank (37). At that time, the water supply passage (90) introduces water into the central portion in the height direction of the water storage tank (37) in the internal space of the water storage tank (37).
 第6の発明は、上記第3の発明において、上記利用側熱交換器(35)へ供給された熱媒水を利用して室内を暖房する暖房運転と上記冷房運転とを選択的に実行し、上記冷媒回路(21)は、上記熱源側熱交換器(23)が放熱器となって上記室外熱交換器(25)が蒸発器となるように冷媒を循環させて冷凍サイクルを行う暖房用動作を上記暖房運転中に行う一方、上記熱搬送回路(30)は、上記熱源側熱交換器(23)で加熱された熱媒水だけを上記利用側熱交換器(35)へ供給する通常暖房動作と、上記熱源側熱交換器(23)で加熱された熱媒水を上記利用側熱交換器(35)と上記貯水タンク(37)の上部の両方へ供給する蓄温熱動作と、上記熱源側熱交換器(23)で加熱された熱媒水と上記貯水タンク(37)の上部に貯留された熱媒水の両方を上記利用側熱交換器(35)へ供給する利用暖房動作とを上記暖房運転中に選択的に行うと共に、上記出湯動作を上記暖房運転中に実行可能となっているものである。 In a sixth aspect based on the third aspect, the heating operation of heating the room using the heat transfer water supplied to the use side heat exchanger (35) and the cooling operation are selectively executed. The refrigerant circuit (21) is used for heating that performs a refrigeration cycle by circulating refrigerant so that the heat source side heat exchanger (23) serves as a radiator and the outdoor heat exchanger (25) serves as an evaporator. While the operation is performed during the heating operation, the heat transfer circuit (30) normally supplies only the heat transfer water heated by the heat source side heat exchanger (23) to the use side heat exchanger (35). A heating operation, a heat storage heat operation for supplying heat medium water heated by the heat source side heat exchanger (23) to both the use side heat exchanger (35) and the upper part of the water storage tank (37), and the above Both the heat transfer water heated by the heat source side heat exchanger (23) and the heat transfer water stored in the upper part of the water storage tank (37) are used. And use heating operation is supplied to the side heat exchanger (35) performs selectively during the heating operation, the hot water operation those that become executable during the heating operation.
 第6の発明では、空調システム(10)が冷房運転と暖房運転を選択的に実行する。空調システム(10)の暖房運転中には、冷媒回路(21)が暖房用動作を行い、熱搬送回路(30)が通常暖房運転と蓄温熱動作と利用暖房運転とを選択的に行う。通常暖房動作では、冷媒回路(21)での冷凍サイクルによって得られた温熱だけが室内の暖房に利用される。従って、通常暖房動作は、冷媒回路(21)で生成する温熱量と室内の暖房負荷が均衡している状態で行うのに適している。一方、蓄温熱動作では、冷媒回路(21)での冷凍サイクルによって得られた温熱の一部が室内の暖房に利用され、その残りが貯水タンク(37)に蓄えられる。冷媒回路(21)で生成する温熱量が室内の暖房負荷に対して多すぎる状態で蓄温熱動作を行えば、余剰の温熱が貯水タンク(37)に蓄えられる。また、利用暖房動作では、冷媒回路(21)での冷凍サイクルによって得られた温熱の全てと、貯水タンク(37)に蓄えられた温熱とが室内の暖房に利用される。冷媒回路(21)で生成する温熱量が室内の暖房負荷に対して不足する状態で利用暖房動作を行えば、冷媒回路(21)で生成する温熱量を増やさなくても、暖房負荷に見合った暖房能力が得られる。 In the sixth invention, the air conditioning system (10) selectively performs the cooling operation and the heating operation. During the heating operation of the air conditioning system (10), the refrigerant circuit (21) performs a heating operation, and the heat transfer circuit (30) selectively performs a normal heating operation, a heat storage heat operation, and a use heating operation. In the normal heating operation, only the heat obtained by the refrigeration cycle in the refrigerant circuit (21) is used for indoor heating. Therefore, the normal heating operation is suitable for performing in a state where the amount of heat generated by the refrigerant circuit (21) and the indoor heating load are balanced. On the other hand, in the heat storage heat operation, part of the heat obtained by the refrigeration cycle in the refrigerant circuit (21) is used for room heating, and the rest is stored in the water storage tank (37). If the heat storage operation is performed in a state where the amount of heat generated by the refrigerant circuit (21) is too much for the indoor heating load, excess heat is stored in the water storage tank (37). In the use heating operation, all of the heat obtained by the refrigeration cycle in the refrigerant circuit (21) and the heat stored in the water storage tank (37) are used for room heating. If the heating operation is performed in a state where the amount of heat generated by the refrigerant circuit (21) is insufficient with respect to the indoor heating load, even if the amount of heat generated by the refrigerant circuit (21) is not increased, it is commensurate with the heating load. Heating capacity is obtained.
 第7の発明は、上記第6の発明において、上記熱搬送回路(30)は、上記冷房運転において行われる出湯動作中には上記貯水タンク(37)の高さ方向の中央部へ上水道から供給された水を送り込み、上記暖房運転において行われる出湯動作中には上記貯水タンク(37)の下部へ上水道から供給された水を送り込む給水通路(90)を備えており、上記冷房運転中には、上記貯水タンク(37)の高さ方向の中央部に貯留された熱媒水を上記加熱用熱交換器(82)へ供給して該加熱用熱交換器(82)において加熱された熱媒水を上記貯水タンク(37)の上部へ送る動作を湯沸かし動作として行い、上記暖房運転中には、上記貯水タンク(37)の下部に貯留された熱媒水を上記熱源側熱交換器(23)へ供給して該熱源側熱交換器(23)において加熱された熱媒水を上記貯水タンク(37)の上部へ送る動作を湯沸かし動作として行うものである。 In a seventh aspect based on the sixth aspect, the heat transfer circuit (30) supplies the water supply tank (37) from the water supply to the central portion in the height direction during the hot water operation performed in the cooling operation. The water supply passage (90) for feeding the water supplied from the water supply to the lower part of the water storage tank (37) is provided during the hot water operation performed in the heating operation. The heating medium stored in the central portion in the height direction of the water storage tank (37) is supplied to the heating heat exchanger (82) and heated in the heating heat exchanger (82). The operation of sending water to the upper portion of the water storage tank (37) is performed as a water heater operation. During the heating operation, the heat transfer water stored in the lower portion of the water storage tank (37) is transferred to the heat source side heat exchanger (23 ) And heated in the heat source side heat exchanger (23) The operation of sending the medium water to the upper part of the water storage tank (37) is performed as a water heater operation.
 第7の発明において、冷房運転中に湯沸かし動作を行っている熱搬送回路(30)では、貯水タンク(37)の高さ方向の中央部に貯留された熱媒水が、加熱用熱交換器(82)において加熱された後に貯水タンク(37)の上部へ送り込まれる。貯水タンク(37)の内部空間では、加熱用熱交換器(82)へ向けて熱媒水が流出する位置よりも上側の部分に、加熱用熱交換器(82)において加熱された熱媒水(即ち、高温の熱媒水)が貯留される。また、貯水タンク(37)の内部空間において、加熱用熱交換器(82)へ向けて熱媒水が流出する位置よりも下側の部分に貯留された低温の熱媒水は、その殆どが貯水タンク(37)内に留まる。一方、冷房運転中に出湯動作を行っている熱搬送回路(30)では、貯水タンク(37)の上部に貯留された高温の熱媒水が給湯用の温水として給水栓等へ供給されると共に、給水通路(90)を通じて貯水タンク(37)へ水が補給される。その際、給水通路(90)は、貯水タンク(37)の内部空間のうち貯水タンク(37)の高さ方向の中央部へ水を導入する。 In the seventh aspect of the present invention, in the heat transfer circuit (30) performing the water heating operation during the cooling operation, the heat transfer water stored in the central portion in the height direction of the water storage tank (37) is used as a heat exchanger for heating. After being heated in (82), it is sent to the upper part of the water storage tank (37). In the internal space of the water storage tank (37), the heat transfer water heated in the heating heat exchanger (82) is located above the position where the heat transfer water flows toward the heat exchanger (82) for heating. (That is, high-temperature heat transfer water) is stored. Also, most of the low-temperature heat transfer water stored in the lower part of the internal space of the water storage tank (37) from the position where the heat transfer water flows out toward the heat exchanger for heating (82). Stays in the water tank (37). On the other hand, in the heat transfer circuit (30) performing the hot water operation during the cooling operation, the high-temperature heat transfer water stored in the upper part of the water storage tank (37) is supplied as hot water for hot water supply to a water faucet or the like. Water is supplied to the water storage tank (37) through the water supply passage (90). At that time, the water supply passage (90) introduces water into the central portion in the height direction of the water storage tank (37) in the internal space of the water storage tank (37).
 また、第7の発明において、暖房運転中に湯沸かし動作を行っている熱搬送回路(30)では、貯水タンク(37)の下部に貯留された熱媒水が、熱源側熱交換器(23)において加熱された後に貯水タンク(37)の上部へ送り込まれる。貯水タンク(37)の内部空間では、熱源側熱交換器(23)へ向けて熱媒水が流出する位置よりも上側の部分に、熱源側熱交換器(23)において加熱された高温の熱媒水が貯留される。つまり、貯水タンク(37)の内部空間のほぼ全体に高温の熱媒水が貯留される。一方、暖房運転中に出湯動作を行っている熱搬送回路(30)では、貯水タンク(37)の上部に貯留された高温の熱媒水が給湯用の温水として給水栓等へ供給されると共に、給水通路(90)を通じて貯水タンク(37)へ水が補給される。その際、給水通路(90)は、貯水タンク(37)の内部空間のうちの下部へ水を導入する。 In the seventh aspect of the invention, in the heat transfer circuit (30) performing the water heating operation during the heating operation, the heat transfer water stored in the lower part of the water storage tank (37) is converted into the heat source side heat exchanger (23). And heated to the upper part of the water storage tank (37). In the internal space of the water storage tank (37), high-temperature heat heated in the heat source side heat exchanger (23) is located above the position where the heat transfer water flows toward the heat source side heat exchanger (23). Medium water is stored. That is, high-temperature heat transfer water is stored in almost the entire internal space of the water storage tank (37). On the other hand, in the heat transfer circuit (30) performing the hot water operation during the heating operation, the high-temperature heat transfer water stored in the upper part of the water storage tank (37) is supplied as hot water for hot water supply to a water faucet and the like. Water is supplied to the water storage tank (37) through the water supply passage (90). At that time, the water supply passage (90) introduces water into the lower part of the internal space of the water storage tank (37).
 本発明では、蒸発器として動作している熱源側熱交換器(23)において冷却された熱媒水(即ち、低温で密度の大きな熱媒水)を貯水タンク(37)の下部に供給し、放熱器として動作している加熱用熱交換器(82)において加熱された熱媒水(即ち、高温で密度の小さな熱媒水)を貯水タンク(37)の上部に供給している。このため、本発明の空調システム(10)では、一つの貯水タンク(37)に冷熱と温熱の両方を蓄えることが可能となる。従って、本発明によれば、冷熱を蓄えるためのタンクと温熱を蓄えるためのタンクを個別に空調システム(10)に設置する必要が無くなり、冷熱と温熱の両方を蓄えることを可能としつつ、空調システム(10)の構成を簡素に保つことができる。 In the present invention, heat medium water cooled in the heat source side heat exchanger (23) operating as an evaporator (that is, heat medium water having a low temperature and a high density) is supplied to the lower part of the water storage tank (37), Heat transfer water heated in the heating heat exchanger (82) operating as a radiator (ie, high temperature and low density heat transfer water) is supplied to the upper part of the water storage tank (37). For this reason, in the air conditioning system (10) of the present invention, it is possible to store both cold and hot heat in one water storage tank (37). Therefore, according to the present invention, there is no need to separately install a tank for storing cold heat and a tank for storing hot heat in the air conditioning system (10), and it is possible to store both cold and hot air while The configuration of the system (10) can be kept simple.
 上記第2の発明では、貯水タンク(37)を利用して空調システム(10)の冷房能力を調節することができる。つまり、冷媒回路(21)での冷凍サイクルによって得られる冷熱量が室内の冷房負荷に対して多すぎる場合に蓄冷熱動作を行えば、余剰の冷熱が貯水タンク(37)に蓄えられる。また、冷媒回路(21)での冷凍サイクルによって得られる冷熱量が室内の冷房負荷に対して不足する場合に利用冷房動作を行えば、冷凍サイクルによって得られる冷熱の不足分が貯水タンク(37)に蓄えられた冷熱によって補われる。従って、この発明によれば、冷媒回路(21)で生成する冷熱量を調節できない場合であっても、貯水タンク(37)を利用することによって空調システム(10)の冷房能力を冷房負荷に見合った値に設定することができる。 In the second aspect, the cooling capacity of the air conditioning system (10) can be adjusted using the water storage tank (37). That is, if the cold storage heat operation is performed when the amount of heat obtained by the refrigeration cycle in the refrigerant circuit (21) is too large for the indoor cooling load, excess cold heat is stored in the water storage tank (37). In addition, if the cooling operation is performed when the amount of cooling obtained by the refrigeration cycle in the refrigerant circuit (21) is insufficient with respect to the indoor cooling load, the shortage of cooling obtained by the refrigeration cycle is stored in the water storage tank (37). It is compensated by the cold energy stored in Therefore, according to the present invention, even when the amount of cooling heat generated in the refrigerant circuit (21) cannot be adjusted, the cooling capacity of the air conditioning system (10) is matched to the cooling load by using the water storage tank (37). Value can be set.
 上記第3の発明では、空調システム(10)の冷房運転中において、冷媒回路(21)が冷房専用動作と冷房給湯用動作とを選択的に行う。このため、貯水タンク(37)における高温の熱媒水の貯留量は充分な場合には、室外熱交換器(25)が放熱器として動作する冷房専用動作を冷媒回路(21)が行うことで、室内の冷房を継続して行うことができる。 In the third aspect of the invention, during the cooling operation of the air conditioning system (10), the refrigerant circuit (21) selectively performs the cooling only operation and the cooling hot water supply operation. For this reason, when the storage amount of the high-temperature heat transfer water in the water storage tank (37) is sufficient, the refrigerant circuit (21) performs the cooling only operation in which the outdoor heat exchanger (25) operates as a radiator. The room can be continuously cooled.
 上記第4の発明において、湯沸かし動作中の熱搬送回路(30)では、貯水タンク(37)の高さ方向の中央部に貯留された熱媒水が、加熱用熱交換器(82)において加熱された後に貯水タンク(37)の上部へ送り込まれる。従って、この発明によれば、貯水タンク(37)の下部に低温の熱媒水を保持しつつ、貯水タンク(37)の上部に貯留された高温の熱媒水の量を増やしてゆくことができる。 In the fourth aspect of the invention, in the heat transfer circuit (30) during the boiling operation, the heat transfer water stored in the central portion in the height direction of the water storage tank (37) is heated in the heating heat exchanger (82). After that, it is sent to the upper part of the water storage tank (37). Therefore, according to the present invention, the amount of the high-temperature heat transfer water stored in the upper part of the water storage tank (37) can be increased while holding the low-temperature heat transfer water in the lower part of the water storage tank (37). it can.
 上記第5の発明において、出湯動作中の熱搬送回路(30)では、貯水タンク(37)の高さ方向の中央部へ、上水道から供給された水が給水通路(90)を通って流入する。従って、この発明によれば、貯水タンク(37)の下部に低温の熱媒水を保持しつつ、出湯動作中に貯水タンク(37)へ熱媒水を補給することができる。 In the fifth aspect, in the heat transfer circuit (30) during the hot water operation, water supplied from the water supply flows into the central portion in the height direction of the water storage tank (37) through the water supply passage (90). . Therefore, according to the present invention, the heat transfer water can be replenished to the water storage tank (37) during the hot water operation while the low temperature heat transfer water is held in the lower part of the water storage tank (37).
 上記第6の発明では、貯水タンク(37)を利用して空調システム(10)の暖房能力を調節することができる。つまり、冷媒回路(21)での冷凍サイクルによって得られる温熱量が室内の暖房負荷に対して多すぎる場合に蓄温熱動作を行えば、余剰の温熱が貯水タンク(37)に蓄えられる。また、冷媒回路(21)での冷凍サイクルによって得られる温熱量が室内の暖房負荷に対して不足する場合に利用暖房動作を行えば、冷凍サイクルによって得られる温熱の不足分が温水タンクに蓄えられた温熱によって補われる。従って、この発明によれば、冷媒回路(21)で生成する温熱量を調節できない場合であっても、貯水タンク(37)を利用することによって空調システム(10)の暖房能力を暖房負荷に見合った値に設定することができる。 In the sixth invention, the heating capacity of the air conditioning system (10) can be adjusted using the water storage tank (37). That is, if the heat storage operation is performed when the amount of heat obtained by the refrigeration cycle in the refrigerant circuit (21) is too much for the indoor heating load, excess heat is stored in the water storage tank (37). If the heating operation is performed when the amount of heat obtained by the refrigeration cycle in the refrigerant circuit (21) is insufficient for the indoor heating load, the shortage of heat obtained by the refrigeration cycle is stored in the hot water tank. Supplemented by warm heat. Therefore, according to the present invention, even when the amount of heat generated in the refrigerant circuit (21) cannot be adjusted, the heating capacity of the air conditioning system (10) is matched to the heating load by using the water storage tank (37). Value can be set.
 上記第7の発明において、冷房運転中に湯沸かし動作を行っている熱搬送回路(30)では、貯水タンク(37)の高さ方向の中央部に貯留された熱媒水が、加熱用熱交換器(82)において加熱された後に貯水タンク(37)の上部へ送り込まれる。従って、この発明によれば、貯水タンク(37)の下部に低温の熱媒水を保持しつつ、貯水タンク(37)の上部に貯留された高温の熱媒水の量を増やすことができる。 In the seventh aspect of the invention, in the heat transfer circuit (30) performing the water boiling operation during the cooling operation, the heat transfer water stored in the central portion in the height direction of the water storage tank (37) is used for heat exchange for heating. After being heated in the vessel (82), it is fed into the upper part of the water storage tank (37). Therefore, according to the present invention, the amount of the high-temperature heat transfer water stored in the upper part of the water storage tank (37) can be increased while holding the low-temperature heat transfer water in the lower part of the water storage tank (37).
 また、この第7の発明において、冷房運転中に出湯動作を行っている熱搬送回路(30)では、貯水タンク(37)の高さ方向の中央部へ、上水道から供給された水が給水通路(90)を通って流入する。従って、この発明によれば、貯水タンク(37)の下部に低温の熱媒水を保持しつつ、出湯動作中に貯水タンク(37)へ熱媒水を補給することができる。 In the seventh aspect of the invention, in the heat transfer circuit (30) performing the hot water operation during the cooling operation, water supplied from the water supply is supplied to the central portion in the height direction of the water storage tank (37). Inflow through (90). Therefore, according to the present invention, the heat transfer water can be replenished to the water storage tank (37) during the hot water operation while the low temperature heat transfer water is held in the lower part of the water storage tank (37).
 また、この第7の発明において、暖房運転中に湯沸かし動作を行っている熱搬送回路(30)では、貯水タンク(37)の下部に貯留された熱媒水が、熱源側熱交換器(23)において加熱された後に貯水タンク(37)の上部へ送り込まれる。従って、この発明によれば、貯水タンク(37)に冷熱を蓄える必要がない暖房運転中には、貯水タンク(37)の内部空間の全体に高温の熱媒水を蓄えることができる。 In the seventh aspect of the present invention, in the heat transfer circuit (30) performing the water boiling operation during the heating operation, the heat transfer water stored in the lower part of the water storage tank (37) is transferred to the heat source side heat exchanger (23 ) And then sent to the upper part of the water storage tank (37). Therefore, according to the present invention, high-temperature heat transfer water can be stored in the entire internal space of the water storage tank (37) during the heating operation in which it is not necessary to store cold heat in the water storage tank (37).
図1は、実施形態の空調システムの構成を示す配管系統図である。FIG. 1 is a piping diagram showing the configuration of the air conditioning system of the embodiment. 図2は、通常冷房動作と湯沸かし動作を行う熱搬送回路における熱源側熱媒水の流れと、冷房給湯用動作を行う冷媒回路における冷媒の流れを示す空調システムの配管系統図である。FIG. 2 is a piping system diagram of an air conditioning system showing a flow of heat source side heat transfer water in a heat transfer circuit that performs a normal cooling operation and a boiling water operation, and a refrigerant flow in a refrigerant circuit that performs an operation for cooling hot water supply. 図3は、蓄冷熱動作と湯沸かし動作を行う熱搬送回路における熱源側熱媒水の流れと、冷房給湯用動作を行う冷媒回路における冷媒の流れを示す空調システムの配管系統図である。FIG. 3 is a piping system diagram of the air conditioning system showing the flow of heat source side heat transfer water in the heat transfer circuit that performs the cold storage heat operation and the hot water boiling operation, and the flow of the refrigerant in the refrigerant circuit that performs the cooling hot water supply operation. 図4は、利用冷房動作と湯沸かし動作を行う熱搬送回路における熱源側熱媒水の流れと、冷房給湯用動作を行う冷媒回路における冷媒の流れを示す空調システムの配管系統図である。FIG. 4 is a piping system diagram of the air conditioning system showing the flow of the heat source side heat transfer water in the heat transfer circuit that performs the use cooling operation and the hot water boiling operation, and the flow of the refrigerant in the refrigerant circuit that performs the cooling hot water supply operation. 図5は、通常冷房動作と出湯動作を行う熱搬送回路における熱源側熱媒水の流れと、冷房専用動作を行う冷媒回路における冷媒の流れを示す空調システムの配管系統図である。FIG. 5 is a piping system diagram of the air conditioning system showing the flow of heat-source-side heat transfer water in the heat transfer circuit that performs the normal cooling operation and the hot water operation, and the refrigerant flow in the refrigerant circuit that performs the cooling-only operation. 図6は、通常暖房動作を行う熱搬送回路における熱源側熱媒水の流れと、暖房用動作を行う冷媒回路における冷媒の流れを示す空調システムの配管系統図である。FIG. 6 is a piping system diagram of the air conditioning system showing the flow of heat-source-side heat transfer water in the heat transfer circuit that performs normal heating operation and the flow of refrigerant in the refrigerant circuit that performs heating operation. 図7は、蓄温熱動作を行う熱搬送回路における熱源側熱媒水の流れと、暖房用動作を行う冷媒回路における冷媒の流れを示す空調システムの配管系統図である。FIG. 7 is a piping system diagram of the air conditioning system showing the flow of the heat source side heat transfer water in the heat transfer circuit that performs the heat storage heat operation and the flow of the refrigerant in the refrigerant circuit that performs the heating operation. 図8は、利用暖房動作を行う熱搬送回路における熱源側熱媒水の流れと、暖房用動作を行う冷媒回路における冷媒の流れを示す空調システムの配管系統図である。FIG. 8 is a piping system diagram of the air conditioning system showing the flow of heat source side heat transfer water in the heat transfer circuit performing the heating operation and the flow of refrigerant in the refrigerant circuit performing the heating operation. 図9は、通常暖房動作と出湯動作を行う熱搬送回路における熱源側熱媒水の流れと、暖房用動作を行う冷媒回路における冷媒の流れを示す空調システムの配管系統図である。FIG. 9 is a piping system diagram of the air conditioning system showing the flow of the heat source side heat transfer water in the heat transfer circuit that performs the normal heating operation and the hot water operation, and the flow of the refrigerant in the refrigerant circuit that performs the heating operation.
 以下、本発明の実施形態を図面に基づいて詳細に説明する。本実施形態は、熱源装置である室外ユニット(15)と、利用側回路である室内側回路(70)とを備える空調システム(10)である。この空調システム(10)は、冷房運転と暖房運転を選択的に行うように構成されている。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The present embodiment is an air conditioning system (10) including an outdoor unit (15) that is a heat source device and an indoor circuit (70) that is a use side circuit. The air conditioning system (10) is configured to selectively perform a cooling operation and a heating operation.
 本実施形態の空調システム(10)は、例えば寒冷地の一般家庭に設置するのに適したものである。なお、この空調システム(10)において、室内側回路(70)は、既設のものであってもよい。つまり、例えばボイラが熱源として室内側回路(70)に接続された暖房システムが家屋等に設置されている場合において、熱源であるボイラに代えて室外ユニット(15)を室内側回路(70)に接続してもよい。 The air conditioning system (10) of the present embodiment is suitable for installation in a general household in a cold region, for example. In this air conditioning system (10), the indoor circuit (70) may be an existing one. That is, for example, when a heating system in which a boiler is connected to the indoor circuit (70) as a heat source is installed in a house or the like, the outdoor unit (15) is replaced with the indoor circuit (70) instead of the boiler that is the heat source. You may connect.
 図1に示すように、室外ユニット(15)には、冷媒回路(21)と、熱源側回路である熱搬送回路(30)とが設けられている。 As shown in FIG. 1, the outdoor unit (15) is provided with a refrigerant circuit (21) and a heat transfer circuit (30) which is a heat source side circuit.
 冷媒回路(21)は、冷媒が充填された閉回路である。この冷媒回路(21)には、いわゆるフロン冷媒が充填されている。冷媒回路(21)には、圧縮機(22)と、四方切換弁(27)と、熱源側熱交換器(23)と、膨張機構(24)と、室外熱交換器(25)とが設けられている。 The refrigerant circuit (21) is a closed circuit filled with refrigerant. This refrigerant circuit (21) is filled with a so-called chlorofluorocarbon refrigerant. The refrigerant circuit (21) includes a compressor (22), a four-way switching valve (27), a heat source side heat exchanger (23), an expansion mechanism (24), and an outdoor heat exchanger (25). It has been.
 冷媒回路(21)において、圧縮機(22)は、その吐出側が四方切換弁(27)の第1のポートに接続され、その吸入側が四方切換弁(27)の第2のポートに接続されている。この冷媒回路(21)では、四方切換弁(27)の第3のポートから第4のポートへ向かって順に、室外熱交換器(25)と膨張機構(24)と熱源側熱交換器(23)とが配置されている。また、この冷媒回路(21)では、四方切換弁(27)の第3のポートと室外熱交換器(25)の間に、第2冷媒用開閉弁(29b)が設けられている。 In the refrigerant circuit (21), the compressor (22) has its discharge side connected to the first port of the four-way switching valve (27) and its suction side connected to the second port of the four-way switching valve (27). Yes. In this refrigerant circuit (21), the outdoor heat exchanger (25), the expansion mechanism (24), and the heat source side heat exchanger (23) are sequentially arranged from the third port to the fourth port of the four-way switching valve (27). ) And are arranged. In the refrigerant circuit (21), a second refrigerant on-off valve (29b) is provided between the third port of the four-way switching valve (27) and the outdoor heat exchanger (25).
 更に、冷媒回路(21)には、加熱用管路(28)が設けられている。この加熱用管路(28)は、その一端が四方切換弁(27)の第3のポートと第2冷媒用開閉弁(29b)を繋ぐ配管に接続され、その他端が第2冷媒用開閉弁(29b)と室外熱交換器(25)を繋ぐ配管に接続されている。また、加熱用管路(28)には、その一端から他端へ向かって順に、第1冷媒用開閉弁(29a)と加熱用熱交換器(82)とが配置されている。 Furthermore, the refrigerant circuit (21) is provided with a heating pipe (28). One end of the heating pipe (28) is connected to a pipe connecting the third port of the four-way switching valve (27) and the second refrigerant on / off valve (29b), and the other end is connected to the second refrigerant on / off valve. (29b) and a pipe connecting the outdoor heat exchanger (25). In addition, a first refrigerant on-off valve (29a) and a heating heat exchanger (82) are arranged in order from the one end to the other end of the heating pipe (28).
 圧縮機(22)は、運転容量が固定の圧縮機である。つまり、圧縮機(22)に設けられた電動機は、常に一定の回転速度で運転される。圧縮機(22)は、空調システム(10)の運転中は停止することなく連続運転を行う。つまり、圧縮機(22)は、熱搬送回路(30)で水が循環している間は停止することなく連続運転を行う。 Compressor (22) is a compressor with a fixed operating capacity. That is, the electric motor provided in the compressor (22) is always operated at a constant rotational speed. The compressor (22) continuously operates without stopping during the operation of the air conditioning system (10). That is, the compressor (22) performs continuous operation without stopping while water is circulating in the heat transfer circuit (30).
 熱源側熱交換器(23)は、プレート式熱交換器であって、一次側通路(23a)と二次側通路(23b)とを複数ずつ備えている。熱源側熱交換器(23)は、一次側通路(23a)を流れる流体と、二次側通路(23b)を流れる流体とを熱交換させる。冷媒回路(21)には、熱源側熱交換器(23)の一次側通路(23a)が接続されている。 The heat source side heat exchanger (23) is a plate heat exchanger and includes a plurality of primary side passages (23a) and secondary side passages (23b). The heat source side heat exchanger (23) exchanges heat between the fluid flowing through the primary side passage (23a) and the fluid flowing through the secondary side passage (23b). A primary passage (23a) of the heat source side heat exchanger (23) is connected to the refrigerant circuit (21).
 四方切換弁(27)は、圧縮機(22)の吐出側が室外熱交換器(25)に連通して圧縮機(22)の吸入側が熱源側熱交換器(23)に連通する第1状態(図1に実線で示す状態)と、圧縮機(22)の吐出側が熱源側熱交換器(23)に連通して圧縮機(22)の吸入側が室外熱交換器(25)に連通する第2状態(図1に破線で示す状態)とに切り換わるように構成されている。 The four-way switching valve (27) is in a first state in which the discharge side of the compressor (22) communicates with the outdoor heat exchanger (25) and the suction side of the compressor (22) communicates with the heat source side heat exchanger (23) ( In the second state, the discharge side of the compressor (22) communicates with the heat source side heat exchanger (23), and the suction side of the compressor (22) communicates with the outdoor heat exchanger (25). It is configured to switch to a state (a state indicated by a broken line in FIG. 1).
 膨張機構(24)は、開度可変の電子膨張弁である。室外熱交換器(25)は、冷媒を空気と熱交換させるフィン・アンド・チューブ熱交換器である。室外熱交換器(25)の近傍には、室外熱交換器(25)に室外空気を送るための室外ファン(26)が設けられている。 The expansion mechanism (24) is an electronic expansion valve with variable opening. The outdoor heat exchanger (25) is a fin-and-tube heat exchanger that exchanges heat between the refrigerant and air. An outdoor fan (26) for sending outdoor air to the outdoor heat exchanger (25) is provided in the vicinity of the outdoor heat exchanger (25).
 加熱用熱交換器(82)は、プレート式熱交換器であって、一次側通路(82a)と二次側通路(82b)とを複数ずつ備えている。加熱用熱交換器(82)は、一次側通路(82a)を流れる流体と、二次側通路(82b)を流れる流体とを熱交換させる。冷媒回路(21)の加熱用管路(28)には、加熱用熱交換器(82)の一次側通路(82a)が接続されている。 The heating heat exchanger (82) is a plate heat exchanger, and includes a plurality of primary side passages (82a) and a plurality of secondary side passages (82b). The heating heat exchanger (82) exchanges heat between the fluid flowing through the primary side passage (82a) and the fluid flowing through the secondary side passage (82b). A primary passage (82a) of the heating heat exchanger (82) is connected to the heating pipe (28) of the refrigerant circuit (21).
 熱搬送回路(30)には、熱源側熱交換器(23)と、利用側熱交換器(35)と、貯水タンクである蓄熱タンク(37)とが設けられている。この熱搬送回路(30)では、熱源側熱媒水が流通する。 The heat transfer circuit (30) is provided with a heat source side heat exchanger (23), a use side heat exchanger (35), and a heat storage tank (37) which is a water storage tank. In the heat transfer circuit (30), the heat source side heat transfer water flows.
 利用側熱交換器(35)は、プレート式熱交換器であって、一次側通路(35a)と二次側通路(35b)とを複数ずつ備えている。利用側熱交換器(35)は、一次側通路(35a)を流れる流体と、二次側通路(35b)を流れる流体とを熱交換させる。熱搬送回路(30)には、利用側熱交換器(35)の一次側通路(35a)と、熱源側熱交換器(23)の二次側通路(23b)とが接続されている。また、利用側熱交換器(35)の二次側通路(35b)は、室内側回路(70)に接続されている。 The use side heat exchanger (35) is a plate heat exchanger and includes a plurality of primary side passages (35a) and a plurality of secondary side passages (35b). The use side heat exchanger (35) exchanges heat between the fluid flowing through the primary side passage (35a) and the fluid flowing through the secondary side passage (35b). A primary side passage (35a) of the use side heat exchanger (35) and a secondary side passage (23b) of the heat source side heat exchanger (23) are connected to the heat transfer circuit (30). Moreover, the secondary side channel | path (35b) of the utilization side heat exchanger (35) is connected to the indoor side circuit (70).
 熱搬送回路(30)には、供給通路(31a)と戻り通路(31b)とが設けられている。供給通路(31a)は、その一端が熱源側熱交換器(23)の二次側通路(23b)の出口端に接続され、その他端が利用側熱交換器(35)の一次側通路(35a)の入口端に接続されている。供給通路(31a)には、開閉自在の第1開閉弁(41)が設けられている。一方、戻り通路(31b)は、その一端が利用側熱交換器(35)の一次側通路(35a)の出口端に接続され、その他端が熱源側熱交換器(23)の二次側通路(23b)の入口端に接続されている。戻り通路(31b)には、吐出量が可変の主ポンプ(36)が設けられている。また、戻り通路(31b)のうち主ポンプ(36)の上流側の部分には、利用側熱交換器(35)から流出した熱源側熱媒水の温度を計測するための出口温度センサ(16)が設けられている。 The heat transfer circuit (30) is provided with a supply passage (31a) and a return passage (31b). One end of the supply passage (31a) is connected to the outlet end of the secondary passage (23b) of the heat source side heat exchanger (23), and the other end thereof is the primary passage (35a) of the use side heat exchanger (35). ) Is connected to the inlet end. The supply passage (31a) is provided with a first open / close valve (41) that can be freely opened and closed. On the other hand, one end of the return passage (31b) is connected to the outlet end of the primary passage (35a) of the use side heat exchanger (35), and the other end is the secondary passage of the heat source side heat exchanger (23). (23b) connected to the inlet end. The return passage (31b) is provided with a main pump (36) having a variable discharge amount. An outlet temperature sensor (16) for measuring the temperature of the heat-source-side heat transfer water flowing out from the use-side heat exchanger (35) is provided in the upstream portion of the main pump (36) in the return passage (31b). ) Is provided.
 蓄熱タンク(37)は、縦長の円筒状に形成された密閉容器である。蓄熱タンク(37)の内部空間は、その下端から上端に亘って連続した一つの空間となっている。蓄熱タンク(37)の内部空間は熱源側熱媒水で満たされており、その内部空間の上方ほど水温が高くなっている。蓄熱タンク(37)の頂部には、蓄熱タンク(37)の圧力を逃がすための逃し通路(57)が接続されている。逃し通路(57)には逃し弁(56)が設けられている。 The heat storage tank (37) is a sealed container formed in a vertically long cylindrical shape. The internal space of the heat storage tank (37) is a single continuous space from the lower end to the upper end. The internal space of the heat storage tank (37) is filled with the heat-source-side heat transfer water, and the water temperature is higher above the internal space. An escape passage (57) for releasing the pressure of the heat storage tank (37) is connected to the top of the heat storage tank (37). A relief valve (56) is provided in the relief passage (57).
 蓄熱タンク(37)には、共に蓄熱タンク(37)へ熱源側熱媒水を流入させるための通路である入口側通路(61)及び流入通路(66)が接続されている。また、蓄熱タンク(37)には、共に蓄熱タンク(37)から熱源側熱媒水を流出させるための通路である出湯通路(64)及び流出通路(67)が接続されている。 The heat storage tank (37) is connected to an inlet side passage (61) and an inflow passage (66) which are passages for allowing the heat source side heat transfer water to flow into the heat storage tank (37). The heat storage tank (37) is connected to a hot water supply passage (64) and an outflow passage (67), both of which are passages for allowing the heat source side heat transfer water to flow out of the heat storage tank (37).
 入口側通路(61)は、その一端側が第1分岐通路(61a)と第2分岐通路(61b)に分岐している。第1分岐通路(61a)は蓄熱タンク(37)の上端付近に接続され、第2分岐通路(61b)は蓄熱タンク(37)の下端付近に接続されている。また、第1分岐通路(61a)には開閉自在の第2開閉弁(42)が設けられ、第2分岐通路(61b)には開閉自在の第7開閉弁(47)が設けられている。入口側通路(61)の他端は、供給通路(31a)における熱源側熱交換器(23)と第1開閉弁(41)の間に接続されている。 The inlet side passage (61) has one end branched into a first branch passage (61a) and a second branch passage (61b). The first branch passage (61a) is connected near the upper end of the heat storage tank (37), and the second branch passage (61b) is connected near the lower end of the heat storage tank (37). The first branch passage (61a) is provided with a second openable / closable valve (42), and the second branch passage (61b) is provided with a seventh openable / closable valve (47). The other end of the inlet side passage (61) is connected between the heat source side heat exchanger (23) and the first on-off valve (41) in the supply passage (31a).
 流入通路(66)の一端は、戻り通路(31b)における主ポンプ(36)と熱源側熱交換器(23)の間に接続されている。流入通路(66)の他端は、蓄熱タンク(37)の側面のうち蓄熱タンク(37)の高さ方向の中央部分に接続されている。この流入通路(66)には、開閉自在の第10開閉弁(50)が設けられている。 One end of the inflow passage (66) is connected between the main pump (36) and the heat source side heat exchanger (23) in the return passage (31b). The other end of the inflow passage (66) is connected to a central portion in the height direction of the heat storage tank (37) among the side surfaces of the heat storage tank (37). The inflow passage (66) is provided with a tenth on-off valve (50) that can be freely opened and closed.
 出湯通路(64)の一端は、蓄熱タンク(37)の上端付近に接続されている。出湯通路(64)の他端は、供給通路(31a)における第1開閉弁(41)と利用側熱交換器(35)の間に接続されている。また、出湯通路(64)には、開閉自在の第5開閉弁(45)が設けられている。 One end of the hot water passage (64) is connected to the vicinity of the upper end of the heat storage tank (37). The other end of the hot water passage (64) is connected between the first on-off valve (41) and the use side heat exchanger (35) in the supply passage (31a). The hot water passage (64) is provided with a fifth open / close valve (45) that can be freely opened and closed.
 流出通路(67)の一端は、蓄熱タンク(37)の側面のうち蓄熱タンク(37)の高さ方向の中央部分に接続されている。流出通路(67)の他端は、戻り通路(31b)における利用側熱交換器(35)と主ポンプ(36)の間に接続されている。また、流出通路(67)には、開閉自在の第9開閉弁(49)が設けられている。 One end of the outflow passageway (67) is connected to the central portion in the height direction of the heat storage tank (37) on the side surface of the heat storage tank (37). The other end of the outflow passage (67) is connected between the use side heat exchanger (35) and the main pump (36) in the return passage (31b). The outflow passage (67) is provided with a ninth open / close valve (49) that can be freely opened and closed.
 戻り通路(31b)では、利用側熱交換器(35)と主ポンプ(36)の間に第1連通通路(62a)の一端が接続され、主ポンプ(36)と熱源側熱交換器(23)の間に第2連通通路(62b)の一端が接続されている。第1連通通路(62a)及び第2連通通路(62b)の他端は、合流通路(63)の一端に接続されている。合流通路(63)の他端は、蓄熱タンク(37)の底部に接続されている。第1連通通路(62a)は、蓄熱タンク(37)の下部を主ポンプ(36)の吸入側に連通させるための通路である。第1連通通路(62a)には、開閉自在の第4開閉弁(44)が設けられている。一方、第2連通通路(62b)は、蓄熱タンク(37)の下部を主ポンプ(36)の吐出側に連通させるための通路である。第2連通通路(62b)には、開閉自在の第3開閉弁(43)が設けられている。 In the return passage (31b), one end of the first communication passage (62a) is connected between the use side heat exchanger (35) and the main pump (36), and the main pump (36) and the heat source side heat exchanger (23 ) Is connected to one end of the second communication passage (62b). The other ends of the first communication passage (62a) and the second communication passage (62b) are connected to one end of the merge passage (63). The other end of the merge passage (63) is connected to the bottom of the heat storage tank (37). The first communication passage (62a) is a passage for communicating the lower part of the heat storage tank (37) to the suction side of the main pump (36). A fourth open / close valve (44) that can be freely opened and closed is provided in the first communication passage (62a). On the other hand, the second communication passage (62b) is a passage for communicating the lower part of the heat storage tank (37) to the discharge side of the main pump (36). A third open / close valve (43) that can be freely opened and closed is provided in the second communication passage (62b).
 合流通路(63)には、冷水用通路(65)の一端が接続されている。冷水用通路(65)の他端は、出湯通路(64)における第5開閉弁(45)の下流側に接続されている。また、冷水用通路(65)には、開閉自在の第8開閉弁(48)が設けられている。この冷水用通路(65)は、蓄熱タンク(37)の下部の熱源側熱媒水を利用側熱交換器(35)へ送るための通路である。 One end of a cold water passage (65) is connected to the confluence passage (63). The other end of the cold water passage (65) is connected to the downstream side of the fifth on-off valve (45) in the hot water passage (64). The cold water passage (65) is provided with an openable / closable eighth on-off valve (48). The cold water passage (65) is a passage for sending the heat source side heat transfer water below the heat storage tank (37) to the use side heat exchanger (35).
 熱搬送回路(30)には、湯沸かし用通路(80)が設けられている。湯沸かし用通路(80)の始端は、蓄熱タンク(37)の側面のうち蓄熱タンク(37)の高さ方向の中央部分に接続されている。湯沸かし用通路(80)の終端は、入口側通路(61)の第1分岐通路(61a)における第2開閉弁(42)の下流側に接続されている。つまり、湯沸かし用通路(80)の他端は、入口側通路(61)の第1分岐通路(61a)を介して、蓄熱タンク(37)の上端付近に接続されている。この湯沸かし用通路(80)には、その一端から他端へ向かって順に、副ポンプ(81)と、加熱用熱交換器(82)と、開閉自在の第6開閉弁(46)とが配置されている。加熱用熱交換器(82)は、その二次側通路(82b)が湯沸かし用通路(80)に接続されている。 The water path (80) is provided in the heat transfer circuit (30). The starting end of the water heating passage (80) is connected to the central portion in the height direction of the heat storage tank (37) among the side surfaces of the heat storage tank (37). The end of the hot water passage (80) is connected to the downstream side of the second on-off valve (42) in the first branch passage (61a) of the inlet side passage (61). That is, the other end of the hot water passage (80) is connected to the vicinity of the upper end of the heat storage tank (37) via the first branch passage (61a) of the inlet side passage (61). A sub pump (81), a heat exchanger (82) for heating, and a sixth openable / closable valve (46) that can be opened and closed are arranged in this water heater passage (80) in order from one end to the other end. Has been. The heating heat exchanger (82) has a secondary side passage (82b) connected to the hot water passage (80).
 熱搬送回路(30)には、給湯通路(85)が設けられている。給湯通路(85)の一端は、出湯通路(64)における蓄熱タンク(37)と第5開閉弁(45)の間に接続されている。給湯通路(85)の他端は、給水栓(87)に接続されている。また、給湯通路(85)の途中には、混合弁(86)が設けられている。 A hot water supply passage (85) is provided in the heat transfer circuit (30). One end of the hot water supply passage (85) is connected between the heat storage tank (37) and the fifth on-off valve (45) in the hot water supply passage (64). The other end of the hot water supply passage (85) is connected to the water tap (87). A mixing valve (86) is provided in the middle of the hot water supply passage (85).
 熱搬送回路(30)には、給水通路(90)が設けられている。給水通路(90)は、蓄熱タンク(37)を含む熱搬送回路(30)へ水を補給するための通路である。給水通路(90)は、主通路(94)と、第1分岐通路(91)と、第2分岐通路(92)と、第3分岐通路(93)とが設けられている。 The heat transfer circuit (30) has a water supply passage (90). The water supply passage (90) is a passage for supplying water to the heat transfer circuit (30) including the heat storage tank (37). The water supply passage (90) includes a main passage (94), a first branch passage (91), a second branch passage (92), and a third branch passage (93).
 主通路(94)の始端は、上水道等に接続されている。主通路(94)には、逆止弁(95)が設けられている。この逆止弁(95)は、主通路(94)の始端から終端へ向かう水の流通を許容し、主通路(94)の終端から始端へ向かう水の流通を阻止するように構成されている。 The beginning of the main passage (94) is connected to the water supply. A check valve (95) is provided in the main passage (94). The check valve (95) is configured to allow water to flow from the start end to the end of the main passage (94) and to block water flow from the end to the start end of the main passage (94). .
 第1分岐通路(91)及び第2分岐通路(92)の一端は、主通路(94)の終端に接続されている。第1分岐通路(91)の他端は、合流通路(63)に接続されている。この第1分岐通路(91)には、開閉自在の第1給水用開閉弁(96)が設けられている。一方、第2分岐通路(92)の他端は、蓄熱タンク(37)の側面のうち蓄熱タンク(37)の高さ方向の中央部分に接続されている。蓄熱タンク(37)に対する給水通路(90)の第2分岐通路(92)の接続位置は、蓄熱タンク(37)に対する湯沸かし用通路(80)の始端の接続位置と実質的に同じ高さとなっている。この第2分岐通路(92)には、開閉自在の第2給水用開閉弁(97)が設けられている。 One end of the first branch passage (91) and the second branch passage (92) is connected to the end of the main passage (94). The other end of the first branch passage (91) is connected to the merge passage (63). The first branch passage (91) is provided with a first water supply on / off valve (96) that can be opened and closed. On the other hand, the other end of the second branch passage (92) is connected to the central portion in the height direction of the heat storage tank (37) among the side surfaces of the heat storage tank (37). The connection position of the second branch passage (92) of the water supply passage (90) to the heat storage tank (37) is substantially the same height as the connection position of the start end of the water heating passage (80) to the heat storage tank (37). Yes. The second branch passage (92) is provided with a second water supply opening / closing valve (97) that can be freely opened and closed.
 第3分岐通路(93)は、その一端が主通路(94)における逆止弁(95)の上流側に接続され、その他端が混合弁(86)に接続されている。この混合弁(86)は、給水通路(90)の第3分岐通路(93)から給湯通路(85)へ流入する水の流量を調節可能に構成されている。 The third branch passage (93) has one end connected to the upstream side of the check valve (95) in the main passage (94) and the other end connected to the mixing valve (86). The mixing valve (86) is configured to be able to adjust the flow rate of water flowing from the third branch passage (93) of the water supply passage (90) into the hot water supply passage (85).
 コントローラ(55)は、熱搬送回路(30)に設けられた開閉弁(41~50,96,97)の開閉や、ポンプ(36,81)の運転制御を行うように構成されている。また、コントローラ(55)は、冷媒回路(21)に設けられた開閉弁(29a,29b)の開閉や、圧縮機(22)の運転制御、膨張機構(24)の開度調節、四方切換弁(27)の切り換え等を行うように構成されている。 The controller (55) is configured to open and close the on-off valves (41 to 50, 96, 97) provided in the heat transfer circuit (30) and to control the operation of the pump (36, 81). The controller (55) also opens and closes the on-off valves (29a, 29b) provided in the refrigerant circuit (21), controls the operation of the compressor (22), adjusts the opening degree of the expansion mechanism (24), and a four-way switching valve. It is configured to switch (27).
 室内側回路(70)は、利用側熱媒水が充填された閉回路である。室内側回路(70)には、空調用熱交換器である室内熱交換器(75)が複数設けられている。室内熱交換器(75)は、室内を区画する区画部材である床面材の裏側に設置される床暖房用のラジエータや、室内空間に設置されるラジエータである。 The indoor side circuit (70) is a closed circuit filled with use side heat transfer water. The indoor circuit (70) is provided with a plurality of indoor heat exchangers (75) that are heat exchangers for air conditioning. An indoor heat exchanger (75) is a radiator for floor heating installed in the back side of the floor material which is a division member which divides a room, and a radiator installed in indoor space.
 室内側回路(70)において、複数の室内熱交換器(75)は、互いに並列に接続されている。具体的に、室内側回路(70)では、利用側熱交換器(35)の二次側通路(35b)の出口端に供給側ヘッダ(73)が接続され、この供給側ヘッダ(73)に各室内熱交換器(75)の一端が接続されている。また、室内側回路(70)では、利用側熱交換器(35)の二次側通路(35b)の入口端に戻り側ヘッダ(74)が接続され、この戻り側ヘッダ(74)に各室内熱交換器(75)の他端が接続されている。 In the indoor circuit (70), the plurality of indoor heat exchangers (75) are connected in parallel to each other. Specifically, in the indoor side circuit (70), the supply side header (73) is connected to the outlet end of the secondary side passage (35b) of the use side heat exchanger (35), and the supply side header (73) One end of each indoor heat exchanger (75) is connected. In the indoor circuit (70), a return header (74) is connected to the inlet end of the secondary passage (35b) of the use side heat exchanger (35), and each return header (74) is connected to each indoor header (74). The other end of the heat exchanger (75) is connected.
 室内側回路(70)には、戻り側ヘッダ(74)と利用側熱交換器(35)の間に、室内用ポンプ(76)が設けられている。室内用ポンプ(76)の吐出流量は、一定値に設定されている。また、室内用ポンプ(76)の吸入側には、利用側熱媒水の体積変化を吸収するための密閉容器状の膨張タンク(78)が接続されている。 In the indoor circuit (70), an indoor pump (76) is provided between the return header (74) and the use side heat exchanger (35). The discharge flow rate of the indoor pump (76) is set to a constant value. Further, a closed container-like expansion tank (78) is connected to the suction side of the indoor pump (76) to absorb the volume change of the use-side heat transfer water.
  -空調システムの冷房運転-
 空調システム(10)の冷房運転について説明する。冷房運転中の空調システム(10)では、冷媒回路(21)の圧縮機(22)と、熱搬送回路(30)の主ポンプ(36)と、室内側回路(70)の室内用ポンプ(76)とが連続運転を行う。
-Air conditioning system cooling operation-
The cooling operation of the air conditioning system (10) will be described. In the air conditioning system (10) during the cooling operation, the compressor (22) of the refrigerant circuit (21), the main pump (36) of the heat transfer circuit (30), and the indoor pump (76) of the indoor circuit (70) ) And continuous operation.
 冷房運転中の空調システム(10)において、熱搬送回路(30)は、通常冷房動作と蓄冷熱動作と利用冷房動作とを選択的に行う。また、熱搬送回路(30)は、湯沸かし動作と出湯動作とを行う。この熱搬送回路(30)において、湯沸かし動作と出湯動作は、個別に独立して実行される。つまり、この熱搬送回路(30)では、湯沸かし動作と出湯動作の両方が同時に並行して実行される場合もあれば、湯沸かし動作と出湯動作の一方だけが実行される場合もあり、更には湯沸かし動作と出湯動作の両方が実行されない場合もある。また、この熱搬送回路(30)は、通常冷房動作中と蓄冷熱動作中と利用冷房動作中のそれぞれにおいて、湯沸かし動作と出湯動作とを実行可能である。 In the air conditioning system (10) during the cooling operation, the heat transfer circuit (30) selectively performs a normal cooling operation, a cold storage heat operation, and a use cooling operation. Further, the heat transfer circuit (30) performs a water heater operation and a hot water operation. In the heat transfer circuit (30), the water boiling operation and the hot water operation are performed independently. In other words, in this heat transfer circuit (30), both the water heater operation and the hot water operation may be executed simultaneously in parallel, or only one of the water heater operation and the hot water operation may be executed. There are cases where both the operation and the hot water operation are not executed. In addition, the heat transfer circuit (30) can perform a water boiling operation and a hot water discharge operation during the normal cooling operation, the cold storage heat operation, and the use cooling operation, respectively.
 冷房運転中の空調システム(10)において、冷媒回路(21)は、冷房給湯用動作と冷房専用動作とを選択的に行う。この冷媒回路(21)は、熱搬送回路(30)が湯沸かし動作を実行されている場合に冷房給湯用動作を行い、熱搬送回路(30)が湯沸かし動作を実行していない場合に冷房専用動作を行う。 In the air conditioning system (10) during the cooling operation, the refrigerant circuit (21) selectively performs a cooling hot water supply operation and a cooling dedicated operation. This refrigerant circuit (21) performs cooling hot water supply operation when the heat transfer circuit (30) is performing a water heater operation, and operates exclusively for cooling when the heat transfer circuit (30) is not performing a water heater operation. I do.
  〈室内側回路の動作〉
 室内側回路(70)の動作について説明する。冷房運転中の空調システム(10)において、室内側回路(70)は、熱搬送回路(30)及び冷媒回路(21)がどの様な動作を実行しているかに拘わらず、常に同じ動作を行う。
<Operation of indoor circuit>
The operation of the indoor circuit (70) will be described. In the air conditioning system (10) during the cooling operation, the indoor circuit (70) always performs the same operation regardless of the operations of the heat transfer circuit (30) and the refrigerant circuit (21). .
 冷房運転中において、室内側回路(70)では、室内用ポンプ(76)が運転され、利用側熱交換器(35)と室内熱交換器(75)の間を利用側熱媒水が循環する。具体的に、利用側熱交換器(35)の二次側通路(35b)へ流入した利用側熱媒水は、その一次側通路(35a)を流れる熱源側熱媒水によって冷却される。利用側熱交換器(35)で冷却された利用側熱媒水は、供給側ヘッダ(73)へ流入して各室内熱交換器(75)へ分配される。室内熱交換器(75)では、利用側熱媒水が吸熱し、利用側熱媒水の温度が上昇する。各室内熱交換器(75)で吸熱した利用側熱媒水は、戻り側ヘッダ(74)へ流入して合流してから室内用ポンプ(76)へ吸い込まれ、その後に利用側熱交換器(35)の二次側通路(35b)へ流入する。 During the cooling operation, in the indoor circuit (70), the indoor pump (76) is operated, and the utilization side heat transfer water circulates between the utilization side heat exchanger (35) and the indoor heat exchanger (75). . Specifically, the use side heat transfer water flowing into the secondary side passage (35b) of the use side heat exchanger (35) is cooled by the heat source side heat transfer water flowing through the primary side passage (35a). The utilization side heat transfer water cooled by the utilization side heat exchanger (35) flows into the supply side header (73) and is distributed to each indoor heat exchanger (75). In the indoor heat exchanger (75), the use-side heat transfer water absorbs heat, and the use-side heat transfer water temperature rises. The use-side heat transfer water absorbed by each indoor heat exchanger (75) flows into the return header (74), joins and is sucked into the indoor pump (76), and then the use-side heat exchanger ( It flows into the secondary passage (35b) of 35).
  〈冷媒回路の冷房給湯用動作、熱搬送回路の湯沸かし動作〉
 上述したように、冷房運転中の空調システム(10)では、冷媒回路(21)の冷房給湯用動作と、熱搬送回路(30)の湯沸かし動作とが同時に行われる。
<Cooling water supply operation of refrigerant circuit, Water heating operation of heat transfer circuit>
As described above, in the air conditioning system (10) during the cooling operation, the cooling hot water supply operation of the refrigerant circuit (21) and the hot water heating operation of the heat transfer circuit (30) are performed simultaneously.
 図2に示すように、冷房給湯用動作中の冷媒回路(21)では、四方切換弁(27)が第1状態(同図に実線で示す状態)に設定され、第1冷媒用開閉弁(29a)が開状態に設定され、第2冷媒用開閉弁(29b)が閉状態に設定される。また、冷媒回路(21)の冷房給湯用動作中には、室外ファン(26)が停止する。 As shown in FIG. 2, in the refrigerant circuit (21) during the cooling hot water supply operation, the four-way switching valve (27) is set to the first state (the state indicated by the solid line in FIG. 2), and the first refrigerant on-off valve ( 29a) is set to the open state, and the second refrigerant on-off valve (29b) is set to the closed state. Further, the outdoor fan (26) stops during the cooling hot water supply operation of the refrigerant circuit (21).
 冷房給湯用動作中の冷媒回路(21)では、加熱用熱交換器(82)が凝縮器として動作し、熱源側熱交換器(23)が蒸発器として動作する冷凍サイクルが行われる。具体的に、圧縮機(22)から吐出された冷媒は、加熱用熱交換器(82)の一次側通路(82a)へ流入し、その二次側通路(82b)を流れる熱源側熱媒水へ放熱して凝縮する。加熱用熱交換器(82)において凝縮した冷媒は、室外熱交換器(25)へ流入する。 In the refrigerant circuit (21) during the operation for cooling and hot water supply, a refrigeration cycle is performed in which the heating heat exchanger (82) operates as a condenser and the heat source side heat exchanger (23) operates as an evaporator. Specifically, the refrigerant discharged from the compressor (22) flows into the primary side passage (82a) of the heating heat exchanger (82) and flows through the secondary side passage (82b). Heat is condensed and condensed. The refrigerant condensed in the heating heat exchanger (82) flows into the outdoor heat exchanger (25).
 上述したように、冷房給湯動作中には、室外ファン(26)が停止している。従って、室外熱交換器(25)へ流入した冷媒は、室外空気と殆ど熱交換せずにほぼそのままの状態で室外熱交換器(25)から流出する。 As described above, the outdoor fan (26) is stopped during the cooling hot water supply operation. Therefore, the refrigerant that has flowed into the outdoor heat exchanger (25) flows out of the outdoor heat exchanger (25) almost as it is without exchanging heat with the outdoor air.
 室外熱交換器(25)から流出した冷媒は、膨張機構(24)を通過する際に膨張し、その後に熱源側熱交換器(23)の一次側通路(23a)へ流入する。熱源側熱交換器(23)において、冷媒は、その二次側通路(23b)を流れる熱源側熱媒水から吸熱して蒸発する。熱源側熱交換器(23)において蒸発した冷媒は、圧縮機(22)へ吸入されて圧縮される。 The refrigerant that has flowed out of the outdoor heat exchanger (25) expands when passing through the expansion mechanism (24), and then flows into the primary passage (23a) of the heat source side heat exchanger (23). In the heat source side heat exchanger (23), the refrigerant absorbs heat from the heat source side heat transfer water flowing through the secondary side passage (23b) and evaporates. The refrigerant evaporated in the heat source side heat exchanger (23) is sucked into the compressor (22) and compressed.
 湯沸かし動作中の湯沸かし用通路(80)では、第6開閉弁(46)が開状態に設定されると共に、副ポンプ(81)が運転される。この状態において、熱搬送回路(30)では、湯沸かし用通路(80)内を熱源側熱媒水が流通する。 In the hot water passage (80) during the hot water operation, the sixth on-off valve (46) is set to the open state and the sub pump (81) is operated. In this state, in the heat transfer circuit (30), the heat source side heat transfer water flows through the water heating passage (80).
 具体的に、副ポンプ(81)は、蓄熱タンク(37)内に貯留された熱源側熱媒水を吸い込む。その際、湯沸かし用通路(80)には、蓄熱タンク(37)の内部空間のうち蓄熱タンク(37)の高さ方向の中央部に存在する熱源側熱媒水が流入する。湯沸かし用通路(80)へ流入する熱源側熱媒水の温度は、例えば20~40℃程度の中温となっている。 Specifically, the sub pump (81) sucks in the heat source side heat transfer water stored in the heat storage tank (37). At that time, the heat source side heat transfer water that exists in the central portion in the height direction of the heat storage tank (37) in the internal space of the heat storage tank (37) flows into the hot water passage (80). The temperature of the heat-source-side heat transfer water flowing into the water heater passage (80) is, for example, about 20 to 40 ° C.
 湯沸かし用通路(80)へ流入した熱源側熱媒水は、加熱用熱交換器(82)の二次側通路(82b)へ流入し、その一次側通路(82a)を流れる冷媒によって加熱される。加熱用熱交換器(82)の二次側通路(82b)から流出する熱源側熱媒水の温度は、例えば80~90℃程度の高温となっている。加熱用熱交換器(82)から流出した熱源側熱媒水は、湯沸かし用通路(80)から入口側通路(61)の第1分岐通路(61a)へ流入し、その後に蓄熱タンク(37)の内部空間の上端付近へ送り込まれる。 The heat source side heat transfer water flowing into the water heater passage (80) flows into the secondary passage (82b) of the heating heat exchanger (82) and is heated by the refrigerant flowing through the primary passage (82a). . The temperature of the heat source side heat transfer water flowing out from the secondary side passage (82b) of the heating heat exchanger (82) is, for example, about 80 to 90 ° C. The heat source side heat transfer water flowing out of the heating heat exchanger (82) flows from the water heating passage (80) into the first branch passage (61a) of the inlet side passage (61), and then the heat storage tank (37). It is sent to near the upper end of the interior space.
  〈冷媒回路の冷房専用動作〉
 上述したように、冷房運転中の空調システム(10)では、冷媒回路(21)が冷房専用動作を行う場合がある。蓄熱タンク(37)内に貯留された高温(例えば80~90℃程度)の熱源側熱媒水の量が所定値に達すると、冷媒回路(21)の動作が冷房給湯用動作から冷房専用動作に切り換えられると共に、熱搬送回路(30)の湯沸かし動作が停止される。
<Cooling circuit dedicated operation>
As described above, in the air conditioning system (10) during the cooling operation, the refrigerant circuit (21) may perform the cooling only operation. When the amount of heat source side heat transfer water stored in the heat storage tank (37) reaches a predetermined value, the operation of the refrigerant circuit (21) changes from the cooling hot water supply operation to the cooling only operation. And the water heating operation of the heat transfer circuit (30) is stopped.
 図5に示すように、冷房専用動作中の冷媒回路(21)では、四方切換弁(27)が第1状態(同図に実線で示す状態)に設定され、第1冷媒用開閉弁(29a)が閉状態に設定され、第2冷媒用開閉弁(29b)が開状態に設定される。また、冷媒回路(21)の冷房専用動作中には、室外ファン(26)が運転される。 As shown in FIG. 5, in the refrigerant circuit (21) during the cooling only operation, the four-way switching valve (27) is set to the first state (the state indicated by the solid line in FIG. 5), and the first refrigerant on-off valve (29a ) Is set to the closed state, and the second refrigerant on-off valve (29b) is set to the open state. Further, during the cooling only operation of the refrigerant circuit (21), the outdoor fan (26) is operated.
 冷房専用動作中の冷媒回路(21)では、室外熱交換器(25)が凝縮器として動作し、熱源側熱交換器(23)が蒸発器として動作する冷凍サイクルが行われる。具体的に、圧縮機(22)から吐出された冷媒は、第2冷媒用開閉弁(29b)を通過後に室外熱交換器(25)へ流入し、室外ファン(26)によって送られた室外空気へ放熱して凝縮する。室外熱交換器(25)において凝縮した冷媒は、膨張機構(24)を通過する際に膨張し、その後に熱源側熱交換器(23)の一次側通路(23a)へ流入する。熱源側熱交換器(23)において、冷媒は、その二次側通路(23b)を流れる熱源側熱媒水から吸熱して蒸発する。熱源側熱交換器(23)において蒸発した冷媒は、圧縮機(22)へ吸入されて圧縮される。 In the refrigerant circuit (21) during the cooling only operation, a refrigeration cycle is performed in which the outdoor heat exchanger (25) operates as a condenser and the heat source side heat exchanger (23) operates as an evaporator. Specifically, the refrigerant discharged from the compressor (22) flows into the outdoor heat exchanger (25) after passing through the second refrigerant on-off valve (29b), and is sent by the outdoor fan (26). Heat is condensed and condensed. The refrigerant condensed in the outdoor heat exchanger (25) expands when passing through the expansion mechanism (24), and then flows into the primary passage (23a) of the heat source side heat exchanger (23). In the heat source side heat exchanger (23), the refrigerant absorbs heat from the heat source side heat transfer water flowing through the secondary side passage (23b) and evaporates. The refrigerant evaporated in the heat source side heat exchanger (23) is sucked into the compressor (22) and compressed.
  〈熱搬送回路の通常冷房動作〉
 図2に示すように、通常冷房動作では、第1開閉弁(41)が開状態に設定され、第2開閉弁(42)、第3開閉弁(43)、第4開閉弁(44)、第5開閉弁(45)、第7開閉弁(47)、第8開閉弁(48)、第9開閉弁(49)、及び第10開閉弁(50)が閉状態に設定される。通常冷房動作中において、熱搬送回路(30)では、熱源側熱交換器(23)において冷却された熱源側熱媒水だけが利用側熱交換器(35)へ供給される。
<Normal cooling operation of heat transfer circuit>
As shown in FIG. 2, in the normal cooling operation, the first on-off valve (41) is set in the open state, and the second on-off valve (42), the third on-off valve (43), the fourth on-off valve (44), The fifth on-off valve (45), the seventh on-off valve (47), the eighth on-off valve (48), the ninth on-off valve (49), and the tenth on-off valve (50) are set in the closed state. During the normal cooling operation, in the heat transfer circuit (30), only the heat source side heat transfer water cooled in the heat source side heat exchanger (23) is supplied to the use side heat exchanger (35).
 なお、第6開閉弁(46)の状態は、熱搬送回路(30)が湯沸かし動作を実行しているか否かによって異なる。図2に示すように熱搬送回路(30)が通常冷房動作と湯沸かし動作の両方を実行している場合は、第6開閉弁(46)が開状態に設定される。一方、熱搬送回路(30)が通常冷房動作を実行して湯沸かし動作を実行していない場合は、第6開閉弁(46)が閉状態に設定され、冷媒回路(21)が冷房専用動作を行う。 Note that the state of the sixth on-off valve (46) differs depending on whether or not the heat transfer circuit (30) is performing a water heating operation. As shown in FIG. 2, when the heat transfer circuit (30) is performing both the normal cooling operation and the kettle operation, the sixth on-off valve (46) is set to the open state. On the other hand, when the heat transfer circuit (30) performs the normal cooling operation and does not perform the water heating operation, the sixth on-off valve (46) is set to the closed state, and the refrigerant circuit (21) performs the cooling only operation. Do.
 通常冷房動作中の熱搬送回路(30)において、熱源側熱交換器(23)の二次側通路(23b)へ流入した熱源側熱媒水は、その一次側通路(23a)を流れる冷媒によって冷却される。熱源側熱交換器(23)で冷却された熱源側熱媒水は、供給通路(31a)を通って利用側熱交換器(35)の一次側通路(35a)へ流入する。利用側熱交換器(35)の一次側通路(35a)では、熱源側熱媒水が二次側通路(35b)の利用側熱媒水から吸熱し、熱源側熱媒水の温度が上昇する。利用側熱交換器(35)で吸熱した熱源側熱媒水は、戻り通路(31b)を通って主ポンプ(36)へ吸い込まれ、その後に熱源側熱交換器(23)の二次側通路(23b)へ流入する。 In the heat transfer circuit (30) during normal cooling operation, the heat source side heat transfer water flowing into the secondary side passage (23b) of the heat source side heat exchanger (23) is caused by the refrigerant flowing through the primary side passage (23a). To be cooled. The heat source side heat transfer water cooled by the heat source side heat exchanger (23) flows into the primary side passage (35a) of the utilization side heat exchanger (35) through the supply passage (31a). In the primary side passage (35a) of the use side heat exchanger (35), the heat source side heat transfer water absorbs heat from the use side heat transfer water in the secondary side passage (35b), and the temperature of the heat source side heat transfer water rises. . The heat source side heat transfer water absorbed by the use side heat exchanger (35) is sucked into the main pump (36) through the return passage (31b), and then the secondary side passage of the heat source side heat exchanger (23). (23b)
 通常冷房動作中は、冷媒回路(21)での冷凍サイクルにより生成した冷熱が熱源側熱媒水に付与され、熱源側熱媒水に付与された冷熱が更に利用側熱媒水に付与される。そして、利用側熱媒水に付与された冷熱が、室内の冷房に利用される。 During normal cooling operation, the cold generated by the refrigeration cycle in the refrigerant circuit (21) is given to the heat source side heat transfer water, and the cold given to the heat source side heat transfer water is further given to the use side heat transfer water. . And the cold heat provided to the utilization side heat transfer water is utilized for indoor cooling.
  〈熱搬送回路の蓄冷熱動作〉
 図3に示すように、蓄冷熱動作では、第1開閉弁(41)、第7開閉弁(47)、及び第9開閉弁(49)が開状態に設定され、第2開閉弁(42)、第3開閉弁(43)、第4開閉弁(44)、第5開閉弁(45)、第8開閉弁(48)、及び第10開閉弁(50)が閉状態に設定される。主ポンプ(36)の吐出流量は、通常冷房動作中と同じ値に設定される。蓄冷熱動作中において、熱搬送回路(30)では、熱源側熱交換器(23)において冷却された熱源側熱媒水が、利用側熱交換器(35)と蓄熱タンク(37)の両方へ供給される。
<Cool storage heat operation of heat transfer circuit>
As shown in FIG. 3, in the cold storage heat operation, the first on-off valve (41), the seventh on-off valve (47), and the ninth on-off valve (49) are set to the open state, and the second on-off valve (42) The third on-off valve (43), the fourth on-off valve (44), the fifth on-off valve (45), the eighth on-off valve (48), and the tenth on-off valve (50) are set in the closed state. The discharge flow rate of the main pump (36) is set to the same value as during normal cooling operation. During cold storage heat operation, in the heat transfer circuit (30), the heat source side heat transfer water cooled in the heat source side heat exchanger (23) is transferred to both the use side heat exchanger (35) and the heat storage tank (37). Supplied.
 なお、第6開閉弁(46)の状態は、熱搬送回路(30)が湯沸かし動作を実行しているか否かによって異なる。図3に示すように熱搬送回路(30)が蓄冷熱動作と湯沸かし動作の両方を実行している場合は、第6開閉弁(46)が開状態に設定される。一方、熱搬送回路(30)が蓄冷熱動作を実行して湯沸かし動作を実行していない場合は、第6開閉弁(46)が閉状態に設定され、冷媒回路(21)が冷房専用動作を行う。 Note that the state of the sixth on-off valve (46) differs depending on whether or not the heat transfer circuit (30) is performing a water heating operation. As shown in FIG. 3, when the heat transfer circuit (30) is performing both the cold storage heat operation and the kettle operation, the sixth on-off valve (46) is set to the open state. On the other hand, when the heat transfer circuit (30) performs the cold storage heat operation and does not perform the water boiling operation, the sixth on-off valve (46) is set to the closed state, and the refrigerant circuit (21) performs the cooling only operation. Do.
 蓄冷熱動作中の熱搬送回路(30)において、熱源側熱交換器(23)の二次側通路(23b)へ流入した熱源側熱媒水は、その一次側通路(23a)を流れる冷媒によって冷却される。熱源側熱交換器(23)において冷却された熱源側熱媒水は、その一部が供給通路(31a)を通って利用側熱交換器(35)の一次側通路(35a)へ流入し、残りが入口側通路(61)へ流入する。利用側熱交換器(35)の一次側通路(35a)へ流入した熱源側熱媒水は、通常冷房動作中と同様に、二次側通路(35b)の利用側熱媒水から吸熱した後に戻り通路(31b)へ流入する。 In the heat transfer circuit (30) during the cold storage heat operation, the heat source side heat transfer water flowing into the secondary side passage (23b) of the heat source side heat exchanger (23) is caused by the refrigerant flowing through the primary side passage (23a). To be cooled. A part of the heat-source-side heat transfer water cooled in the heat-source-side heat exchanger (23) flows through the supply passage (31a) into the primary-side passage (35a) of the use-side heat exchanger (35), The rest flows into the inlet passage (61). The heat source side heat transfer water flowing into the primary side passage (35a) of the use side heat exchanger (35) absorbs heat from the use side heat transfer water of the secondary side passage (35b), as in normal cooling operation. It flows into the return passage (31b).
 一方、入口側通路(61)へ流入した熱源側熱媒水は、その第2分岐通路(61b)を通って蓄熱タンク(37)の内部空間の下端部へ流入する。蓄熱タンク(37)からは、その内部空間の高さ方向の中央部に存在する熱源側熱媒水が、流出通路(67)へ押し出されてゆく。このため、蓄熱タンク(37)の内部空間では、低温(例えば5℃程度)の熱源側熱媒水の量が増加する。つまり、蓄熱タンク(37)に蓄えられる冷熱量が増加する。蓄熱タンク(37)から流出通路(67)へ流出する熱源側熱媒水の流量は、入口側通路(61)の第2分岐通路(61b)から蓄熱タンク(37)へ流入する熱源側熱媒水の流量と等しくなる。蓄熱タンク(37)から流出通路(67)へ流出した熱源側熱媒水は、利用側熱交換器(35)において吸熱した熱源側熱媒水と合流して主ポンプ(36)へ吸い込まれ、その後に熱源側熱交換器(23)の二次側通路(23b)へ流入する。 On the other hand, the heat-source-side heat transfer water flowing into the inlet-side passage (61) flows into the lower end portion of the internal space of the heat storage tank (37) through the second branch passage (61b). From the heat storage tank (37), the heat source side heat transfer water present at the center in the height direction of the internal space is pushed out to the outflow passage (67). For this reason, in the internal space of the heat storage tank (37), the amount of heat source side heat transfer water at a low temperature (for example, about 5 ° C.) increases. That is, the amount of cold heat stored in the heat storage tank (37) increases. The flow rate of the heat source side heat transfer water flowing out from the heat storage tank (37) to the outflow passage (67) is the heat source side heat transfer medium flowing into the heat storage tank (37) from the second branch passage (61b) of the inlet side passage (61). It becomes equal to the flow rate of water. The heat-source-side heat transfer water flowing out from the heat storage tank (37) to the outflow passage (67) joins the heat-source-side heat transfer water absorbed in the use-side heat exchanger (35) and is sucked into the main pump (36). After that, it flows into the secondary passage (23b) of the heat source side heat exchanger (23).
 蓄冷熱動作中は、冷媒回路(21)での冷凍サイクルにより生成した冷熱が熱源側熱媒水に付与される。熱源側熱媒水に付与された冷熱は、その一部が利用側熱媒水に付与されて室内の冷房に利用され、残りが蓄熱タンク(37)に蓄えられる。 During the cold storage heat operation, the cold generated by the refrigeration cycle in the refrigerant circuit (21) is given to the heat source side heat transfer water. A part of the cold energy given to the heat source side heat transfer water is given to the use side heat transfer water and used for indoor cooling, and the rest is stored in the heat storage tank (37).
  〈熱搬送回路の利用冷房動作〉
 図4に示すように、利用冷房動作では、第1開閉弁(41)、第8開閉弁(48)、及び第10開閉弁(50)が開状態に設定され、第2開閉弁(42)、第3開閉弁(43)、第4開閉弁(44)、第5開閉弁(45)、第7開閉弁(47)、及び第9開閉弁(49)が閉状態に設定される。主ポンプ(36)の吐出流量は、通常冷房動作中よりも大きな値に設定される。利用冷房動作中において、熱搬送回路(30)では、熱源側熱交換器(23)において冷却された熱源側熱媒水と、蓄熱タンク(37)内に貯留されている低温の熱源側熱媒水とが、利用側熱交換器(35)へ供給される。
<Cooling operation using heat transfer circuit>
As shown in FIG. 4, in the cooling operation, the first on-off valve (41), the eighth on-off valve (48), and the tenth on-off valve (50) are set to the open state, and the second on-off valve (42) The third on-off valve (43), the fourth on-off valve (44), the fifth on-off valve (45), the seventh on-off valve (47), and the ninth on-off valve (49) are set in a closed state. The discharge flow rate of the main pump (36) is set to a larger value than during normal cooling operation. During the use cooling operation, in the heat transfer circuit (30), the heat source side heat transfer water cooled in the heat source side heat exchanger (23) and the low temperature heat source side heat transfer medium stored in the heat storage tank (37). Water is supplied to the use side heat exchanger (35).
 なお、第6開閉弁(46)の状態は、熱搬送回路(30)が湯沸かし動作を実行しているか否かによって異なる。図4に示すように熱搬送回路(30)が利用冷房動作と湯沸かし動作の両方を実行している場合は、第6開閉弁(46)が開状態に設定される。一方、熱搬送回路(30)が利用冷房動作を実行して湯沸かし動作を実行していない場合は、第6開閉弁(46)が閉状態に設定され、冷媒回路(21)が冷房専用動作を行う。 Note that the state of the sixth on-off valve (46) differs depending on whether or not the heat transfer circuit (30) is performing a water heating operation. As shown in FIG. 4, when the heat transfer circuit (30) is performing both the use cooling operation and the kettle operation, the sixth on-off valve (46) is set to the open state. On the other hand, when the heat transfer circuit (30) performs the use cooling operation and does not perform the water heating operation, the sixth on-off valve (46) is set to the closed state, and the refrigerant circuit (21) performs the cooling only operation. Do.
 利用冷房動作中の熱搬送回路(30)において、熱源側熱交換器(23)の二次側通路(23b)へ流入した熱源側熱媒水は、その一次側通路(23a)を流れる冷媒によって冷却される。熱源側熱交換器(23)で冷却された熱源側熱媒水は、供給通路(31a)を通って利用側熱交換器(35)の一次側通路(35a)へ流入する。 In the heat transfer circuit (30) during the cooling operation, the heat-source-side heat transfer water flowing into the secondary-side passage (23b) of the heat-source-side heat exchanger (23) is cooled by the refrigerant flowing through the primary-side passage (23a). To be cooled. The heat source side heat transfer water cooled by the heat source side heat exchanger (23) flows into the primary side passage (35a) of the utilization side heat exchanger (35) through the supply passage (31a).
 一方、蓄熱タンク(37)には、その内部空間の高さ方向の中央部へ流入通路(66)から熱源側熱媒水が送り込まれる。このため、蓄熱タンク(37)からは、その内部空間の底部に存在する低温(例えば5℃程度)の熱源側熱媒水が、合流通路(63)へ押し出されてゆく。蓄熱タンク(37)から合流通路(63)へ流出した低温の熱源側熱媒水は、冷水用通路(65)を通って供給通路(31a)へ流れ込み、その後に利用側熱交換器(35)の一次側通路(35a)へ流入する。 On the other hand, the heat source side heat transfer water is fed into the heat storage tank (37) from the inflow passage (66) to the center in the height direction of the internal space. For this reason, from the heat storage tank (37), the low-temperature (for example, about 5 ° C.) heat source side heat transfer water present at the bottom of the internal space is pushed out to the junction passage (63). The low-temperature heat-source-side heat transfer water flowing out from the heat storage tank (37) to the junction passage (63) flows into the supply passage (31a) through the cold water passage (65), and then the use-side heat exchanger (35) Into the primary passage (35a).
 蓄熱タンク(37)の内部空間では、低温の熱源側熱媒水の量が減少する。つまり、蓄熱タンク(37)に蓄えられる冷熱量が減少する。蓄熱タンク(37)から合流通路(63)へ流出する熱源側熱媒水の流量は、流入通路(66)から蓄熱タンク(37)へ流入する熱源側熱媒水の流量と等しくなる。 In the internal space of the heat storage tank (37), the amount of low-temperature heat source side heat transfer water decreases. That is, the amount of cold heat stored in the heat storage tank (37) decreases. The flow rate of the heat source side heat transfer water flowing out from the heat storage tank (37) to the junction passage (63) is equal to the flow rate of the heat source side heat transfer water flowing into the heat storage tank (37) from the inflow passage (66).
 利用側熱交換器(35)の一次側通路(35a)へ流入した熱源側熱媒水は、通常冷房動作中と同様に、二次側通路(35b)の利用側熱媒水から吸熱した後に戻り通路(31b)へ流入する。戻り通路(31b)へ流入した熱源側熱媒水は、主ポンプ(36)へ吸い込まれる。主ポンプ(36)から吐出された熱源側熱媒水は、その一部が熱源側熱交換器(23)の二次側通路(23b)へ流入し、その残りが流入通路(66)を通って蓄熱タンク(37)へ流入する。熱源側熱交換器(23)の二次側通路(23b)へ流入した熱源側熱媒水は、通常冷房動作中と同様に、一次側通路(23a)の冷媒によって冷却される。 The heat source side heat transfer water flowing into the primary side passage (35a) of the use side heat exchanger (35) absorbs heat from the use side heat transfer water of the secondary side passage (35b), as in normal cooling operation. It flows into the return passage (31b). The heat source side heat transfer water flowing into the return passage (31b) is sucked into the main pump (36). Part of the heat source side heat transfer water discharged from the main pump (36) flows into the secondary side passage (23b) of the heat source side heat exchanger (23), and the rest passes through the inflow passage (66). Into the heat storage tank (37). The heat-source-side heat transfer water that has flowed into the secondary-side passage (23b) of the heat-source-side heat exchanger (23) is cooled by the refrigerant in the primary-side passage (23a) as in the normal cooling operation.
 利用冷房動作中は、冷媒回路(21)での冷凍サイクルにより生成した冷熱と、蓄熱タンク(37)に蓄えられていた冷熱の両方が利用側熱媒水に付与される。そして、利用側熱媒水に付与された冷熱が、室内の冷房に利用される。 During the use cooling operation, both the cold heat generated by the refrigeration cycle in the refrigerant circuit (21) and the cold heat stored in the heat storage tank (37) are given to the use-side heat transfer water. And the cold heat provided to the utilization side heat transfer water is utilized for indoor cooling.
  〈熱搬送回路の出湯動作〉
 冷房運転中に給水栓(87)が開かれた場合は、熱搬送回路(30)が出湯動作を行う。
<Tapping operation of heat transfer circuit>
When the water tap (87) is opened during the cooling operation, the heat transfer circuit (30) performs the hot water operation.
 図5に示すように、冷房運転中の熱搬送回路(30)では、第1給水用開閉弁(96)が閉状態に設定され、第2給水用開閉弁(97)が開状態に設定される。上水道から給水通路(90)の主通路(94)へ流入した常温の水は、その一部が第2分岐通路(92)へ流入し、残りが第3分岐通路(93)へ流入する。 As shown in FIG. 5, in the heat transfer circuit (30) during the cooling operation, the first water supply opening / closing valve (96) is set to the closed state, and the second water supply opening / closing valve (97) is set to the open state. The A portion of the normal temperature water that flows from the water supply into the main passage (94) of the water supply passage (90) flows into the second branch passage (92), and the rest flows into the third branch passage (93).
 第2分岐通路(92)へ流入した水は、蓄熱タンク(37)の内部空間のうち蓄熱タンク(37)の高さ方向の中央部へ流入する。このため、蓄熱タンク(37)の内部空間の上端部に存在する高温(例えば80~90℃程度)の熱源側熱媒水が、出湯通路(64)へ押し出される。 The water that has flowed into the second branch passage (92) flows into the central portion in the height direction of the heat storage tank (37) in the internal space of the heat storage tank (37). For this reason, high-temperature (for example, about 80 to 90 ° C.) heat source side heat transfer water present at the upper end of the internal space of the heat storage tank (37) is pushed out to the hot water passage (64).
 出湯通路(64)へ流入した高温の熱源側熱媒水は、給湯用の温水として給湯通路(85)へ流入し、給水栓(87)へ向かって流れる。その際、給湯通路(85)を流れる温水は、混合弁(86)を通過する際に第3分岐通路(93)から供給された常温の水と混合される。給水栓(87)において、第3分岐通路(93)から給湯通路(85)へ流入する常温の水の流量は、混合弁(86)から給水栓(87)へ向けて流出する温水の温度が所定の給湯設定温度となるように調節される。そして、給水栓(87)に対しては、給湯設定温度となった温水が供給される。 The high-temperature heat-source-side heat transfer water flowing into the hot water supply passage (64) flows into the hot water supply passage (85) as hot water for hot water supply and flows toward the water tap (87). At that time, the hot water flowing through the hot water supply passage (85) is mixed with normal temperature water supplied from the third branch passage (93) when passing through the mixing valve (86). In the water tap (87), the flow rate of room temperature water flowing from the third branch passage (93) into the hot water supply passage (85) is the temperature of the hot water flowing out from the mixing valve (86) toward the water tap (87). The temperature is adjusted to a predetermined hot water supply set temperature. And the hot water which became hot-water supply preset temperature is supplied with respect to a water tap (87).
  〈冷房運転中におけるコントローラの動作〉
 冷房運転中にコントローラ(55)が行う制御動作について説明する。コントローラ(55)には、出口温度センサ(16)の計測値(To)と、室内の設定温度(Ts)とが入力される。そして、コントローラ(55)は、入力されたこれらの値に基づいて通常冷房動作と蓄冷熱動作と利用冷房動作のうちの一つを選択し、選択した動作を熱搬送回路(30)に実行させるように構成されている。
<Operation of the controller during cooling operation>
A control operation performed by the controller (55) during the cooling operation will be described. The controller (55) receives the measured value (To) of the outlet temperature sensor (16) and the indoor set temperature (Ts). Then, the controller (55) selects one of the normal cooling operation, the cold storage heat operation, and the use cooling operation based on these input values, and causes the heat transfer circuit (30) to execute the selected operation. It is configured as follows.
 コントローラ(55)には、冷房運転中における熱搬送回路(30)の動作を選択するための第1判定値(T1c)及び第2判定値(T2c)が、予め設定されている。第1判定値(T1c)はプラスの値になっており、第2判定値(T2c)はマイナスの値になっている。また、第1判定値(T1c)と第2判定値(T2c)は、それぞれの絶対値が互いに等しくなっている。そして、コントローラ(55)は、出口温度センサ(16)の計測値(To)と室内の設定温度(Ts)との差(To-Ts)を、第1判定値(T1c)及び第2判定値(T2c)と比較し、その結果に基づいて通常冷房動作と蓄冷熱動作と利用冷房動作のうちの一つを選択する。 In the controller (55), a first determination value (T1c) and a second determination value (T2c) for selecting the operation of the heat transfer circuit (30) during the cooling operation are set in advance. The first determination value (T1c) is a positive value, and the second determination value (T2c) is a negative value. The first determination value (T1c) and the second determination value (T2c) have the same absolute value. Then, the controller (55) determines the difference (To−Ts) between the measured value (To) of the outlet temperature sensor (16) and the indoor set temperature (Ts) as the first determination value (T1c) and the second determination value. Compared with (T2c), based on the result, one of the normal cooling operation, the cold storage heat operation, and the use cooling operation is selected.
 コントローラ(55)は、下記の式1が成立する場合、つまり、利用側熱交換器(35)の一次側通路(35a)の出口における熱源側熱媒水の温度の実測値が基準範囲(T2c+Ts以上T1c+Ts以下の範囲)内の値であると判断した場合には、通常冷房動作を選択する。
   式1:T2c≦To-Ts≦T1c
When the following equation 1 is established, the controller (55) indicates that the measured value of the temperature of the heat source side heat transfer water at the outlet of the primary side passage (35a) of the use side heat exchanger (35) is within the reference range (T2c + Ts When it is determined that the value is within the range of T1c + Ts or less), the normal cooling operation is selected.
Formula 1: T2c≤To-Ts≤T1c
 上記の式1が成立する場合には、出口温度センサ(16)の計測値(To)と室内の設定温度(Ts)との差がそれほど大きくなく、室内熱交換器(75)の冷房能力が室内の冷房負荷と概ね均衡していると判断できる。そこで、この場合には、コントローラ(55)が通常冷房動作を選択する。コントローラ(55)は、通常冷房動作を選択すると、第1開閉弁(41)を開状態に設定し、第2開閉弁(42)、第3開閉弁(43)、第4開閉弁(44)、第5開閉弁(45)、第7開閉弁(47)、第8開閉弁(48)、第9開閉弁(49)、及び第10開閉弁(50)を閉状態に設定することによって、熱搬送回路(30)に通常冷房動作を実行させる。 When the above equation 1 is satisfied, the difference between the measured value (To) of the outlet temperature sensor (16) and the set temperature (Ts) in the room is not so large, and the cooling capacity of the indoor heat exchanger (75) is small. It can be judged that it is in general balance with the cooling load in the room. Therefore, in this case, the controller (55) selects the normal cooling operation. When the normal cooling operation is selected, the controller (55) sets the first on-off valve (41) to the open state, and the second on-off valve (42), the third on-off valve (43), and the fourth on-off valve (44). By setting the fifth on-off valve (45), the seventh on-off valve (47), the eighth on-off valve (48), the ninth on-off valve (49), and the tenth on-off valve (50) to the closed state, The heat transfer circuit (30) is caused to perform a normal cooling operation.
 コントローラ(55)は、下記の式2が成立する場合、つまり、利用側熱交換器(35)の一次側通路(35a)の出口における熱源側熱媒水の温度の実測値が基準範囲の上限値(T1c+Ts)を上回ると判断した場合には、利用冷房動作を選択する。
   式2:T1c<To-Ts
When the following equation 2 is established, the controller (55) indicates that the measured value of the heat source side heat transfer water temperature at the outlet of the primary side passage (35a) of the use side heat exchanger (35) is the upper limit of the reference range. When it is determined that the value (T1c + Ts) is exceeded, the use cooling operation is selected.
Formula 2: T1c <To-Ts
 上記の式2が成立する場合は、出口温度センサ(16)の計測値(To)が室内の設定温度(Ts)を大幅に上回っており、室内熱交換器(75)の冷房能力が室内の冷房負荷に対して小さすぎると判断できる。そこで、この場合には、コントローラ(55)が利用冷房動作を選択する。コントローラ(55)は、利用冷房動作を選択すると、第1開閉弁(41)、第8開閉弁(48)、及び第10開閉弁(50)を開状態に設定し、第2開閉弁(42)、第3開閉弁(43)、第4開閉弁(44)、第5開閉弁(45)、第7開閉弁(47)、及び第9開閉弁(49)を閉状態に設定することによって、熱搬送回路(30)に利用冷房動作を実行させる。また、コントローラ(55)は、主ポンプ(36)の吐出流量を通常冷房動作中よりも大きな値に設定する。 When the above equation 2 holds, the measured value (To) of the outlet temperature sensor (16) is significantly higher than the indoor set temperature (Ts), and the cooling capacity of the indoor heat exchanger (75) It can be determined that the cooling load is too small. Therefore, in this case, the controller (55) selects the use cooling operation. When the controller (55) selects the cooling operation, the controller opens the first on-off valve (41), the eighth on-off valve (48), and the tenth on-off valve (50), and opens the second on-off valve (42 ), The third on-off valve (43), the fourth on-off valve (44), the fifth on-off valve (45), the seventh on-off valve (47), and the ninth on-off valve (49) by setting them to the closed state. Then, the heat transfer circuit (30) is caused to perform a use cooling operation. In addition, the controller (55) sets the discharge flow rate of the main pump (36) to a larger value than during the normal cooling operation.
 コントローラ(55)は、下記の式3が成立する場合、つまり、各利用側熱交換器(35)を通過した水の温度が基準範囲の下限値(T2c+Ts)を下回ると判断した場合には、蓄冷熱動作を選択する。
   式3:To-Ts<T2c
If the controller (55) determines that the following Equation 3 is satisfied, that is, if the temperature of the water that has passed through each use side heat exchanger (35) is below the lower limit (T2c + Ts) of the reference range, Select cold storage heat operation.
Formula 3: To-Ts <T2c
 上記の式3が成立する場合は、出口温度センサ(16)の計測値(To)が室内の設定温度(Ts)を大幅に下回っており、室内熱交換器(75)の冷房能力が室内の冷房負荷に対して大きすぎると判断できる。そこで、この場合には、コントローラ(55)が蓄冷熱動作を選択する。コントローラ(55)は、蓄冷熱動作を選択すると、第1開閉弁(41)、第7開閉弁(47)、及び第9開閉弁(49)を開状態に設定し、第2開閉弁(42)、第3開閉弁(43)、第4開閉弁(44)、第5開閉弁(45)、第8開閉弁(48)、及び第10開閉弁(50)を閉状態に設定することによって、熱搬送回路(30)に蓄冷熱動作を実行させる。また、コントローラ(55)は、主ポンプ(36)の吐出流量を通常冷房動作中と同じ値に設定する。 When the above equation 3 holds, the measured value (To) of the outlet temperature sensor (16) is significantly lower than the indoor set temperature (Ts), and the cooling capacity of the indoor heat exchanger (75) It can be judged that it is too large for the cooling load. Therefore, in this case, the controller (55) selects the cold storage heat operation. When the controller (55) selects the regenerative heat operation, the controller (55) sets the first on-off valve (41), the seventh on-off valve (47), and the ninth on-off valve (49) to the open state, and the second on-off valve (42 ), The third on-off valve (43), the fourth on-off valve (44), the fifth on-off valve (45), the eighth on-off valve (48), and the tenth on-off valve (50) by setting them to the closed state. Then, the heat transfer circuit (30) is caused to perform a cold storage heat operation. The controller (55) sets the discharge flow rate of the main pump (36) to the same value as during normal cooling operation.
  -空調システムの暖房運転-
 空調システム(10)の暖房運転について説明する。暖房運転中の空調システム(10)では、冷媒回路(21)の圧縮機(22)と、熱搬送回路(30)の主ポンプ(36)と、室内側回路(70)の室内用ポンプ(76)とが連続運転を行う。
-Heating operation of air conditioning system-
The heating operation of the air conditioning system (10) will be described. In the air conditioning system (10) during heating operation, the compressor (22) of the refrigerant circuit (21), the main pump (36) of the heat transfer circuit (30), and the indoor pump (76) of the indoor circuit (70) ) And continuous operation.
 暖房運転中の空調システム(10)において、熱搬送回路(30)は、通常暖房動作と蓄温熱動作と利用暖房動作とを選択的に行う。また、熱搬送回路(30)は、湯沸かし動作と出湯動作とを行う。暖房運転中の熱搬送回路(30)は、蓄温熱動作と同じ動作を湯沸かし動作として行う。この熱搬送回路(30)において、湯沸かし動作と出湯動作は、個別に独立して実行される。つまり、この熱搬送回路(30)では、湯沸かし動作と出湯動作の両方が同時に並行して実行される場合もあれば、湯沸かし動作と出湯動作の一方だけが実行される場合もあり、更には湯沸かし動作と出湯動作の両方が実行されない場合もある。また、この熱搬送回路(30)では、通常暖房動作中と蓄温熱動作中と利用暖房動作中のそれぞれにおいて、出湯動作が実行され得る。 In the air conditioning system (10) during the heating operation, the heat transfer circuit (30) selectively performs a normal heating operation, a heat storage heat operation, and a use heating operation. Further, the heat transfer circuit (30) performs a water heater operation and a hot water operation. The heat transfer circuit (30) during the heating operation performs the same operation as the heat storage heat operation as a water heater operation. In the heat transfer circuit (30), the water boiling operation and the hot water operation are performed independently. In other words, in this heat transfer circuit (30), both the kettle operation and the tapping operation may be performed simultaneously in parallel, or only one of the kettle operation and the tapping operation may be performed. There are cases where both the operation and the hot water operation are not executed. Further, in the heat transfer circuit (30), the hot water discharge operation can be executed during each of the normal heating operation, the heat storage heat operation, and the use heating operation.
 暖房運転中の空調システム(10)において、冷媒回路(21)は、暖房用動作を行う。この冷媒回路(21)は、熱搬送回路(30)が何れの動作を行っている場合においても、暖房用動作を実行する。 In the air conditioning system (10) during the heating operation, the refrigerant circuit (21) performs a heating operation. The refrigerant circuit (21) performs the heating operation regardless of the operation of the heat transfer circuit (30).
  〈室内側回路の動作〉
 室内側回路(70)の動作について説明する。暖房運転中の空調システム(10)において、室内側回路(70)は、熱搬送回路(30)がどの様な動作を実行しているかに拘わらず、常に同じ動作を行う。
<Operation of indoor circuit>
The operation of the indoor circuit (70) will be described. In the air conditioning system (10) during the heating operation, the indoor circuit (70) always performs the same operation regardless of what operation the heat transfer circuit (30) performs.
 暖房運転中において、室内側回路(70)では、室内用ポンプ(76)が運転され、利用側熱交換器(35)と室内熱交換器(75)の間を利用側熱媒水が循環する。具体的に、利用側熱交換器(35)の二次側通路(35b)へ流入した利用側熱媒水は、その一次側通路(35a)を流れる熱源側熱媒水によって加熱される。利用側熱交換器(35)で加熱された利用側熱媒水は、供給側ヘッダ(73)へ流入して各室内熱交換器(75)へ分配される。室内熱交換器(75)では、利用側熱媒水が放熱し、利用側熱媒水の温度が低下する。各室内熱交換器(75)で放熱した利用側熱媒水は、戻り側ヘッダ(74)へ流入して合流してから室内用ポンプ(76)へ吸い込まれ、その後に利用側熱交換器(35)の二次側通路(35b)へ流入する。 During the heating operation, in the indoor circuit (70), the indoor pump (76) is operated, and the utilization side heat transfer water circulates between the utilization side heat exchanger (35) and the indoor heat exchanger (75). . Specifically, the use side heat transfer water flowing into the secondary side passage (35b) of the use side heat exchanger (35) is heated by the heat source side heat transfer water flowing through the primary side passage (35a). The utilization side heat transfer water heated by the utilization side heat exchanger (35) flows into the supply side header (73) and is distributed to each indoor heat exchanger (75). In the indoor heat exchanger (75), the use-side heat transfer water dissipates heat, and the temperature of the use-side heat transfer water decreases. The usage-side heat transfer water radiated by each indoor heat exchanger (75) flows into the return header (74), joins it, and is sucked into the indoor pump (76), and then the usage-side heat exchanger ( It flows into the secondary passage (35b) of 35).
  〈冷媒回路の暖房用動作〉
 冷媒回路(21)の動作について説明する。暖房運転中の空調システム(10)において、冷媒回路(21)は、常に暖房用動作を行う。つまり、この冷媒回路(21)は、熱搬送回路(30)がどの様な動作を実行しているかに拘わらず、暖房用動作だけを行う。
<Heating operation of refrigerant circuit>
The operation of the refrigerant circuit (21) will be described. In the air conditioning system (10) during the heating operation, the refrigerant circuit (21) always performs a heating operation. That is, the refrigerant circuit (21) performs only the heating operation regardless of the operation of the heat transfer circuit (30).
 図6に示すように、暖房用動作中の冷媒回路(21)では、四方切換弁(27)が第2状態(同図に実線で示す状態)に設定され、第1冷媒用開閉弁(29a)が閉状態に設定され、第2冷媒用開閉弁(29b)が開状態に設定される。また、冷媒回路(21)の暖房用動作中には、室外ファン(26)が運転される。 As shown in FIG. 6, in the refrigerant circuit (21) during the heating operation, the four-way switching valve (27) is set to the second state (the state indicated by the solid line in the figure), and the first refrigerant on-off valve (29a ) Is set to the closed state, and the second refrigerant on-off valve (29b) is set to the open state. Further, during the heating operation of the refrigerant circuit (21), the outdoor fan (26) is operated.
 暖房用動作中の冷媒回路(21)では、熱源側熱交換器(23)が凝縮器として動作し、室外熱交換器(25)が蒸発器として動作する冷凍サイクルが行われる。具体的に、圧縮機(22)から吐出された冷媒は、熱源側熱交換器(23)の一次側通路(23a)へ流入し、二次側通路(23b)の熱源側熱媒水へ放熱して凝縮する。熱源側熱交換器(23)において凝縮した冷媒は、膨張機構(24)を通過する際に膨張し、その後に室外熱交換器(25)において室外ファン(26)が送る室外空気から吸熱して蒸発する。室外熱交換器(25)で蒸発した冷媒は、圧縮機(22)に吸入されて圧縮される。 In the refrigerant circuit (21) during the heating operation, a refrigeration cycle in which the heat source side heat exchanger (23) operates as a condenser and the outdoor heat exchanger (25) operates as an evaporator is performed. Specifically, the refrigerant discharged from the compressor (22) flows into the primary side passage (23a) of the heat source side heat exchanger (23) and dissipates heat to the heat source side heat transfer water in the secondary side passage (23b). And condense. The refrigerant condensed in the heat source side heat exchanger (23) expands when passing through the expansion mechanism (24), and then absorbs heat from the outdoor air sent by the outdoor fan (26) in the outdoor heat exchanger (25). Evaporate. The refrigerant evaporated in the outdoor heat exchanger (25) is sucked into the compressor (22) and compressed.
  〈熱搬送回路の通常暖房動作〉
 図6に示すように、通常暖房動作では、第1開閉弁(41)が開状態に設定され、第2開閉弁(42)、第3開閉弁(43)、第4開閉弁(44)、第5開閉弁(45)、第6開閉弁(46)、第7開閉弁(47)、第8開閉弁(48)、第9開閉弁(49)、及び第10開閉弁(50)が閉状態に設定される。通常暖房動作中において、熱搬送回路(30)では、熱源側熱交換器(23)において加熱された熱源側熱媒水だけが利用側熱交換器(35)へ供給される。
<Normal heating operation of heat transfer circuit>
As shown in FIG. 6, in the normal heating operation, the first on-off valve (41) is set to the open state, and the second on-off valve (42), the third on-off valve (43), the fourth on-off valve (44), The fifth on-off valve (45), sixth on-off valve (46), seventh on-off valve (47), eighth on-off valve (48), ninth on-off valve (49), and tenth on-off valve (50) are closed. Set to state. During the normal heating operation, in the heat transfer circuit (30), only the heat source side heat transfer water heated in the heat source side heat exchanger (23) is supplied to the use side heat exchanger (35).
 通常暖房動作中の熱搬送回路(30)において、熱源側熱交換器(23)の二次側通路(23b)へ流入した熱源側熱媒水は、その一次側通路(23a)を流れる冷媒によって加熱される。熱源側熱交換器(23)で加熱された熱源側熱媒水は、供給通路(31a)を通って利用側熱交換器(35)の一次側通路(35a)へ流入する。利用側熱交換器(35)の一次側通路(35a)では、熱源側熱媒水が二次側通路(35b)の利用側熱媒水へ放熱し、熱源側熱媒水の温度が低下する。利用側熱交換器(35)で放熱した熱源側熱媒水は、戻り通路(31b)を通って主ポンプ(36)へ吸い込まれ、その後に熱源側熱交換器(23)の二次側通路(23b)へ流入する。 In the heat transfer circuit (30) during normal heating operation, the heat source side heat transfer water flowing into the secondary side passage (23b) of the heat source side heat exchanger (23) is caused by the refrigerant flowing through the primary side passage (23a). Heated. The heat source side heat transfer water heated by the heat source side heat exchanger (23) flows into the primary side passage (35a) of the use side heat exchanger (35) through the supply passage (31a). In the primary side passage (35a) of the use side heat exchanger (35), the heat source side heat transfer water dissipates heat to the use side heat transfer water of the secondary side passage (35b), and the temperature of the heat source side heat transfer water decreases. . The heat-source-side heat transfer water radiated by the use-side heat exchanger (35) is sucked into the main pump (36) through the return passage (31b), and then the secondary-side passage of the heat source-side heat exchanger (23) (23b)
 通常暖房動作中は、冷媒回路(21)での冷凍サイクルにより生成した温熱が熱源側熱媒水に付与され、熱源側熱媒水に付与された温熱が更に利用側熱媒水に付与される。そして、利用側熱媒水に付与された温熱が、室内の暖房に利用される。 During normal heating operation, the heat generated by the refrigeration cycle in the refrigerant circuit (21) is given to the heat source side heat transfer water, and the heat given to the heat source side heat transfer water is further given to the use side heat transfer water. . And the warm heat given to utilization side heat transfer water is used for indoor heating.
  〈熱搬送回路の蓄温熱動作と湯沸かし動作〉
 図7に示すように、蓄温熱動作では、第1開閉弁(41)、第2開閉弁(42)、及び第4開閉弁(44)が開状態に設定され、第3開閉弁(43)、第5開閉弁(45)、第6開閉弁(46)、第7開閉弁(47)、第8開閉弁(48)、第9開閉弁(49)、及び第10開閉弁(50)が閉状態に設定される。主ポンプ(36)の吐出流量は、通常暖房動作中と同じ値に設定される。蓄温熱動作中において、熱搬送回路(30)では、熱源側熱交換器(23)において加熱された熱源側熱媒水が、利用側熱交換器(35)と蓄熱タンク(37)の両方へ供給される。
<Thermal storage operation and water heater operation of the heat transfer circuit>
As shown in FIG. 7, in the heat storage heat operation, the first on-off valve (41), the second on-off valve (42), and the fourth on-off valve (44) are set in the open state, and the third on-off valve (43) A fifth on-off valve (45), a sixth on-off valve (46), a seventh on-off valve (47), an eighth on-off valve (48), a ninth on-off valve (49), and a tenth on-off valve (50). Set to the closed state. The discharge flow rate of the main pump (36) is set to the same value as during normal heating operation. During the heat storage heat operation, in the heat transfer circuit (30), the heat source side heat transfer water heated in the heat source side heat exchanger (23) is transferred to both the use side heat exchanger (35) and the heat storage tank (37). Supplied.
 蓄温熱動作中の熱搬送回路(30)において、熱源側熱交換器(23)の二次側通路(23b)へ流入した熱源側熱媒水は、その一次側通路(23a)を流れる冷媒によって加熱される。熱源側熱交換器(23)で加熱された熱源側熱媒水は、その一部が供給通路(31a)を通って利用側熱交換器(35)の一次側通路(35a)へ流入し、残りが入口側通路(61)へ流入する。利用側熱交換器(35)の一次側通路(35a)へ流入した熱源側熱媒水は、通常暖房動作中と同様に、二次側通路(35b)の利用側熱媒水へ放熱した後に戻り通路(31b)へ流入する。 In the heat transfer circuit (30) during the heat storage heat operation, the heat source side heat transfer water flowing into the secondary side passage (23b) of the heat source side heat exchanger (23) is caused by the refrigerant flowing through the primary side passage (23a). Heated. Part of the heat source side heat transfer water heated by the heat source side heat exchanger (23) flows into the primary side passage (35a) through the supply passage (31a), The rest flows into the inlet passage (61). After the heat source side heat transfer water flowing into the primary side passage (35a) of the use side heat exchanger (35) dissipates heat to the use side heat transfer water of the secondary side passage (35b) as in normal heating operation. It flows into the return passage (31b).
 一方、入口側通路(61)へ流入した熱源側熱媒水は、その第1分岐通路(61a)を通って蓄熱タンク(37)の内部空間の上端部へ流入する。蓄熱タンク(37)からは、その内部空間の底部に存在する低温の熱源側熱媒水が、合流通路(63)へ押し出されてゆく。このため、蓄熱タンク(37)の内部空間では、高温の熱源側熱媒水の量が増加する。つまり、蓄熱タンク(37)に蓄えられる温熱量が増加する。蓄熱タンク(37)から合流通路(63)へ流出する熱源側熱媒水の流量は、入口側通路(61)から蓄熱タンク(37)へ流入する熱源側熱媒水の流量と等しくなる。蓄熱タンク(37)から合流通路(63)へ流出した熱源側熱媒水は、利用側熱交換器(35)で放熱した熱源側熱媒水と合流して主ポンプ(36)へ吸い込まれ、その後に熱源側熱交換器(23)の二次側通路(23b)へ流入する。 On the other hand, the heat-source-side heat transfer water flowing into the inlet-side passage (61) flows into the upper end portion of the internal space of the heat storage tank (37) through the first branch passage (61a). From the heat storage tank (37), the low-temperature heat source side heat transfer water present at the bottom of the internal space is pushed out to the junction passage (63). For this reason, in the internal space of the heat storage tank (37), the amount of high-temperature heat source side heat transfer water increases. That is, the amount of heat stored in the heat storage tank (37) increases. The flow rate of the heat source side heat transfer water flowing out from the heat storage tank (37) to the junction passage (63) becomes equal to the flow rate of the heat source side heat transfer water flowing into the heat storage tank (37) from the inlet side passage (61). The heat-source-side heat transfer water flowing out from the heat storage tank (37) to the merge passage (63) joins the heat-source-side heat transfer water radiated by the use-side heat exchanger (35) and is sucked into the main pump (36). After that, it flows into the secondary passage (23b) of the heat source side heat exchanger (23).
 蓄温熱動作中は、冷媒回路(21)での冷凍サイクルにより生成した温熱が熱源側熱媒水に付与される。熱源側熱媒水に付与された温熱は、その一部が利用側熱媒水に付与されて室内の暖房に利用され、残りが蓄熱タンク(37)に蓄えられる。 During the heat storage heat operation, the heat generated by the refrigeration cycle in the refrigerant circuit (21) is given to the heat source side heat transfer water. A part of the heat given to the heat source side heat transfer water is given to the use side heat transfer water and used for indoor heating, and the rest is stored in the heat storage tank (37).
 上述したように、空調システム(10)の暖房運転において、熱搬送回路(30)は、蓄温熱動作と同じ動作を湯沸かし動作として行う。暖房運転中に熱搬送回路(30)が行う湯沸かし動作では、主ポンプ(36)の吐出流量が通常暖房動作中と同じ値に設定される。そして、熱源側熱交換器(23)において加熱された熱源側熱媒水の一部が、蓄熱タンク(37)に蓄えられる。 As described above, in the heating operation of the air conditioning system (10), the heat transfer circuit (30) performs the same operation as the heat storage heat operation as a water heater operation. In the kettle operation performed by the heat transfer circuit (30) during the heating operation, the discharge flow rate of the main pump (36) is set to the same value as during the normal heating operation. A part of the heat source side heat transfer water heated in the heat source side heat exchanger (23) is stored in the heat storage tank (37).
  〈熱搬送回路の利用暖房動作〉
 図8に示すように、利用暖房動作では、第1開閉弁(41)、第3開閉弁(43)、及び第5開閉弁(45)が開状態に設定され、第2開閉弁(42)、第4開閉弁(44)、第6開閉弁(46)、第7開閉弁(47)、第8開閉弁(48)、第9開閉弁(49)、及び第10開閉弁(50)が閉状態に設定される。主ポンプ(36)の吐出流量は、通常暖房動作中よりも大きな値に設定される。利用暖房動作中において、熱搬送回路(30)では、熱源側熱交換器(23)において加熱された熱源側熱媒水と、蓄熱タンク(37)内に貯留されている高温の熱源側熱媒水とが、利用側熱交換器(35)へ供給される。
<Use heating operation of heat transfer circuit>
As shown in FIG. 8, in the use heating operation, the first on-off valve (41), the third on-off valve (43), and the fifth on-off valve (45) are set to the open state, and the second on-off valve (42) A fourth on-off valve (44), a sixth on-off valve (46), a seventh on-off valve (47), an eighth on-off valve (48), a ninth on-off valve (49), and a tenth on-off valve (50). Set to the closed state. The discharge flow rate of the main pump (36) is set to a larger value than during normal heating operation. During the use heating operation, in the heat transfer circuit (30), the heat source side heat transfer water heated in the heat source side heat exchanger (23) and the high temperature heat source side heat transfer medium stored in the heat storage tank (37). Water is supplied to the use side heat exchanger (35).
 利用暖房動作中の熱搬送回路(30)において、熱源側熱交換器(23)の二次側通路(23b)へ流入した熱源側熱媒水は、その一次側通路(23a)を流れる冷媒によって加熱される。熱源側熱交換器(23)で加熱された熱源側熱媒水は、供給通路(31a)を通って利用側熱交換器(35)の一次側通路(35a)へ流入する。 In the heat transfer circuit (30) during the heating operation, the heat-source-side heat transfer water flowing into the secondary-side passage (23b) of the heat-source-side heat exchanger (23) is caused by the refrigerant flowing through the primary-side passage (23a). Heated. The heat source side heat transfer water heated by the heat source side heat exchanger (23) flows into the primary side passage (35a) of the use side heat exchanger (35) through the supply passage (31a).
 一方、蓄熱タンク(37)には、その内部空間の底部へ合流通路(63)から熱源側熱媒水が送り込まれる。このため、蓄熱タンク(37)からは、その内部空間の上部に存在する高温の熱源側熱媒水が、出湯通路(64)へ押し出されてゆく。蓄熱タンク(37)から出湯通路(64)へ流出した熱源側熱媒水は、利用側熱交換器(35)の一次側通路(35a)へ流入する。 On the other hand, the heat source side heat transfer water is fed into the heat storage tank (37) from the junction passage (63) to the bottom of the internal space. For this reason, from the heat storage tank (37), the high-temperature heat source side heat transfer water present in the upper part of the internal space is pushed out to the hot water passage (64). The heat source side heat transfer water flowing out from the heat storage tank (37) to the hot water passage (64) flows into the primary side passage (35a) of the use side heat exchanger (35).
 蓄熱タンク(37)の内部空間では、高温の熱源側熱媒水の量が減少する。つまり、蓄熱タンク(37)に蓄えられる温熱量が減少する。蓄熱タンク(37)から出湯通路(64)へ流出する熱源側熱媒水の流量は、合流通路(63)から蓄熱タンク(37)へ流入する熱源側熱媒水の流量と等しくなる。 In the internal space of the heat storage tank (37), the amount of high temperature heat source side heat transfer water decreases. That is, the amount of heat stored in the heat storage tank (37) decreases. The flow rate of the heat source side heat transfer water flowing out from the heat storage tank (37) to the hot water passage (64) is equal to the flow rate of the heat source side heat transfer water flowing into the heat storage tank (37) from the merge passage (63).
 利用側熱交換器(35)の一次側通路(35a)へ流入した熱源側熱媒水は、通常暖房動作中と同様に、二次側通路(35b)の利用側熱媒水へ放熱した後に戻り通路(31b)へ流入する。戻り通路(31b)へ流入した熱源側熱媒水は、主ポンプ(36)へ吸い込まれる。主ポンプ(36)から吐出された熱源側熱媒水は、その一部が熱源側熱交換器(23)の二次側通路(23b)へ流入し、その残りが合流通路(63)を通って蓄熱タンク(37)へ流入する。熱源側熱交換器(23)の二次側通路(23b)へ流入した熱源側熱媒水は、通常暖房動作中と同様に、一次側通路(23a)の冷媒によって加熱される。 After the heat source side heat transfer water flowing into the primary side passage (35a) of the use side heat exchanger (35) dissipates heat to the use side heat transfer water of the secondary side passage (35b) as in normal heating operation. It flows into the return passage (31b). The heat source side heat transfer water flowing into the return passage (31b) is sucked into the main pump (36). Part of the heat source side heat transfer water discharged from the main pump (36) flows into the secondary side passage (23b) of the heat source side heat exchanger (23), and the rest passes through the junction passage (63). Into the heat storage tank (37). The heat-source-side heat transfer water that has flowed into the secondary-side passage (23b) of the heat-source-side heat exchanger (23) is heated by the refrigerant in the primary-side passage (23a) as in the normal heating operation.
 利用暖房動作中は、冷媒回路(21)での冷凍サイクルにより生成した温熱と、蓄熱タンク(37)に蓄えられていた温熱の両方が利用側熱媒水に付与される。そして、利用側熱媒水に付与された温熱が、室内の暖房に利用される。 During use heating operation, both the heat generated by the refrigeration cycle in the refrigerant circuit (21) and the heat stored in the heat storage tank (37) are applied to the use-side heat transfer water. And the warm heat given to utilization side heat transfer water is used for indoor heating.
  〈熱搬送回路の出湯動作〉
 暖房運転中に給水栓(87)が開かれた場合は、熱搬送回路(30)が出湯動作を行う。
<Tapping operation of heat transfer circuit>
When the water tap (87) is opened during the heating operation, the heat transfer circuit (30) performs the hot water operation.
 図9に示すように、暖房運転中の熱搬送回路(30)では、第1給水用開閉弁(96)が開状態に設定され、第2給水用開閉弁(97)が閉状態に設定される。上水道から給水通路(90)の主通路(94)へ流入した常温の水は、その一部が第1分岐通路(91)へ流入し、残りが第3分岐通路(93)へ流入する。 As shown in FIG. 9, in the heat transfer circuit (30) during the heating operation, the first water supply on / off valve (96) is set in the open state, and the second water supply on / off valve (97) is set in the closed state. The A portion of normal temperature water that has flowed from the water supply into the main passage (94) of the water supply passage (90) flows into the first branch passage (91), and the rest flows into the third branch passage (93).
 第1分岐通路(91)へ流入した水は、合流通路(63)を通って蓄熱タンク(37)の内部空間の下端部へ流入する。このため、蓄熱タンク(37)の内部空間の上端部に存在する高温(例えば80~90℃程度)の熱源側熱媒水が、出湯通路(64)へ押し出される。 The water that has flowed into the first branch passage (91) flows into the lower end of the internal space of the heat storage tank (37) through the merge passage (63). For this reason, high-temperature (for example, about 80 to 90 ° C.) heat source side heat transfer water present at the upper end of the internal space of the heat storage tank (37) is pushed out to the hot water passage (64).
 出湯通路(64)へ流入した高温の熱源側熱媒水は、給湯用の温水として給湯通路(85)へ流入し、給水栓(87)へ向かって流れる。その際、給湯通路(85)を流れる温水は、混合弁(86)を通過する際に第3分岐通路(93)から供給された常温の水と混合される。給水栓(87)において、第3分岐通路(93)から給湯通路(85)へ流入する常温の水の流量は、混合弁(86)から給水栓(87)へ向けて流出する温水の温度が所定の給湯設定温度となるように調節される。そして、給水栓(87)に対しては、給湯設定温度となった温水が供給される。 The high-temperature heat-source-side heat transfer water flowing into the hot water supply passage (64) flows into the hot water supply passage (85) as hot water for hot water supply and flows toward the water tap (87). At that time, the hot water flowing through the hot water supply passage (85) is mixed with normal temperature water supplied from the third branch passage (93) when passing through the mixing valve (86). In the water tap (87), the flow rate of room temperature water flowing from the third branch passage (93) into the hot water supply passage (85) is the temperature of the hot water flowing out from the mixing valve (86) toward the water tap (87). The temperature is adjusted to a predetermined hot water supply set temperature. And the hot water which became hot-water supply preset temperature is supplied with respect to a water tap (87).
  〈暖房運転中におけるコントローラの動作〉
 暖房運転中にコントローラ(55)が行う制御動作について説明する。コントローラ(55)には、出口温度センサ(16)の計測値(To)と、室内の設定温度(Ts)とが入力される。そして、コントローラ(55)は、入力されたこれらの値に基づいて通常暖房動作と蓄温熱動作と利用暖房動作のうちの一つを選択し、選択した動作を熱搬送回路(30)に実行させるように構成されている。
<Operation of the controller during heating operation>
A control operation performed by the controller (55) during the heating operation will be described. The controller (55) receives the measured value (To) of the outlet temperature sensor (16) and the indoor set temperature (Ts). Then, the controller (55) selects one of the normal heating operation, the heat storage heat operation, and the use heating operation based on these input values, and causes the heat transfer circuit (30) to execute the selected operation. It is configured as follows.
 コントローラ(55)には、熱搬送回路(30)の動作を選択するための第1判定値(T1h)及び第2判定値(T2h)が、予め設定されている。第1判定値(T1h)はプラスの値になっており、第2判定値(T2h)はマイナスの値になっている。また、第1判定値(T1h)と第2判定値(T2h)は、それぞれの絶対値が互いに等しくなっている。そして、コントローラ(55)は、出口温度センサ(16)の計測値(To)と室内の設定温度(Ts)との差(To-Ts)を、第1判定値(T1h)及び第2判定値(T2h)と比較し、その結果に基づいて通常暖房動作と蓄温熱動作と利用暖房動作のうちの一つを選択する。 In the controller (55), a first determination value (T1h) and a second determination value (T2h) for selecting the operation of the heat transfer circuit (30) are set in advance. The first determination value (T1h) is a positive value, and the second determination value (T2h) is a negative value. Further, the first determination value (T1h) and the second determination value (T2h) have the same absolute value. Then, the controller (55) determines the difference (To−Ts) between the measured value (To) of the outlet temperature sensor (16) and the indoor set temperature (Ts) as the first determination value (T1h) and the second determination value. Compared with (T2h), one of the normal heating operation, the heat storage heat operation, and the use heating operation is selected based on the result.
 コントローラ(55)は、下記の式4が成立する場合、つまり、利用側熱交換器(35)の一次側通路(35a)の出口における熱源側熱媒水の温度の実測値が基準範囲(T2h+Ts以上T1h+Ts以下の範囲)内の値であると判断した場合には、通常暖房動作を選択する。
   式4:T2h≦To-Ts≦T1h
When the following equation 4 is established, the controller (55) indicates that the measured value of the temperature of the heat source side heat transfer water at the outlet of the primary side passage (35a) of the use side heat exchanger (35) is within the reference range (T2h + Ts When it is determined that the value is within the range of T1h + Ts or less, the normal heating operation is selected.
Formula 4: T2h ≦ To−Ts ≦ T1h
 上記の式4が成立する場合には、出口温度センサ(16)の計測値(To)と室内の設定温度(Ts)との差がそれほど大きくなく、室内熱交換器(75)の暖房能力が室内の暖房負荷と概ね均衡していると判断できる。そこで、この場合には、コントローラ(55)が通常暖房動作を選択する。コントローラ(55)は、通常暖房動作を選択すると、第1開閉弁(41)を開状態に設定し、第2開閉弁(42)、第3開閉弁(43)、第4開閉弁(44)、第5開閉弁(45)、第6開閉弁(46)、第7開閉弁(47)、第8開閉弁(48)、第9開閉弁(49)、及び第10開閉弁(50)を閉状態に設定することによって、熱搬送回路(30)に通常暖房動作を実行させる。 When the above equation 4 is satisfied, the difference between the measured value (To) of the outlet temperature sensor (16) and the indoor set temperature (Ts) is not so large, and the heating capacity of the indoor heat exchanger (75) is It can be judged that it is in general balance with the indoor heating load. Therefore, in this case, the controller (55) selects the normal heating operation. When the controller (55) selects the normal heating operation, the controller opens the first on-off valve (41), opens the second on-off valve (42), the third on-off valve (43), and the fourth on-off valve (44). The fifth on-off valve (45), the sixth on-off valve (46), the seventh on-off valve (47), the eighth on-off valve (48), the ninth on-off valve (49), and the tenth on-off valve (50). By setting the closed state, the heat transfer circuit (30) is caused to perform a normal heating operation.
 コントローラ(55)は、下記の式5が成立する場合、つまり、利用側熱交換器(35)の一次側通路(35a)の出口における熱源側熱媒水の温度の実測値が基準範囲の上限値(T1h+Ts)を上回ると判断した場合には、蓄温熱動作を選択する。
   式5:T1h<To-Ts
When the following equation 5 is established, the controller (55) means that the measured value of the temperature of the heat source side heat transfer water at the outlet of the primary side passage (35a) of the use side heat exchanger (35) is the upper limit of the reference range. When it is determined that the value (T1h + Ts) is exceeded, the heat storage heat operation is selected.
Formula 5: T1h <To-Ts
 上記の式5が成立する場合は、出口温度センサ(16)の計測値(To)が室内の設定温度(Ts)を大幅に上回っており、室内熱交換器(75)の暖房能力が室内の暖房負荷に対して大きすぎると判断できる。そこで、この場合には、コントローラ(55)が蓄温熱動作を選択する。コントローラ(55)は、蓄温熱動作を選択すると、第1開閉弁(41)、第2開閉弁(42)、及び第4開閉弁(44)を開状態に設定し、第3開閉弁(43)、第5開閉弁(45)、第6開閉弁(46)、第7開閉弁(47)、第8開閉弁(48)、第9開閉弁(49)、及び第10開閉弁(50)を閉状態に設定することによって、熱搬送回路(30)に蓄温熱動作を実行させる。また、コントローラ(55)は、主ポンプ(36)の吐出流量を通常暖房動作中と同じ値に設定する。 When the above equation 5 holds, the measured value (To) of the outlet temperature sensor (16) greatly exceeds the indoor set temperature (Ts), and the heating capacity of the indoor heat exchanger (75) is indoors. It can be determined that it is too large for the heating load. Therefore, in this case, the controller (55) selects the heat storage heat operation. When the controller (55) selects the heat storage heat operation, the controller sets the first on-off valve (41), the second on-off valve (42), and the fourth on-off valve (44) to the open state, and the third on-off valve (43 ), Fifth on-off valve (45), sixth on-off valve (46), seventh on-off valve (47), eighth on-off valve (48), ninth on-off valve (49), and tenth on-off valve (50) Is set to the closed state, thereby causing the heat transfer circuit (30) to execute the heat storage heat operation. The controller (55) sets the discharge flow rate of the main pump (36) to the same value as during normal heating operation.
 コントローラ(55)は、下記の式6が成立する場合、つまり、各利用側熱交換器(35)を通過した水の温度が基準範囲の下限値(T2h+Ts)を下回ると判断した場合には、利用暖房動作を選択する。
   式6:To-Ts<T2h
If the controller (55) determines that the following equation 6 holds, that is, if the temperature of the water that has passed through each use-side heat exchanger (35) falls below the lower limit (T2h + Ts) of the reference range, Select the heating operation.
Formula 6: To-Ts <T2h
 上記の式6が成立する場合は、出口温度センサ(16)の計測値(To)が室内の設定温度(Ts)を大幅に下回っており、室内熱交換器(75)の暖房能力が室内の暖房負荷に対して小さすぎると判断できる。そこで、この場合には、コントローラ(55)が利用暖房動作を選択する。コントローラ(55)は、利用暖房動作を選択すると、第1開閉弁(41)、第3開閉弁(43)、及び第5開閉弁(45)を開状態に設定し、第2開閉弁(42)、第4開閉弁(44)、第6開閉弁(46)、第7開閉弁(47)、第8開閉弁(48)、第9開閉弁(49)、及び第10開閉弁(50)を閉状態に設定することによって、熱搬送回路(30)に利用暖房動作を実行させる。また、コントローラ(55)は、主ポンプ(36)の吐出流量を通常暖房動作中よりも大きな値に設定する。 When the above equation 6 holds, the measured value (To) of the outlet temperature sensor (16) is significantly lower than the indoor set temperature (Ts), and the heating capacity of the indoor heat exchanger (75) is indoors. It can be judged that it is too small with respect to a heating load. Therefore, in this case, the controller (55) selects the use heating operation. When the controller (55) selects the use heating operation, the controller (55) sets the first on-off valve (41), the third on-off valve (43), and the fifth on-off valve (45) to the open state, and the second on-off valve (42 ), Fourth on-off valve (44), sixth on-off valve (46), seventh on-off valve (47), eighth on-off valve (48), ninth on-off valve (49), and tenth on-off valve (50) Is set to the closed state, thereby causing the heat transfer circuit (30) to execute the use heating operation. Further, the controller (55) sets the discharge flow rate of the main pump (36) to a larger value than during normal heating operation.
  -実施形態の効果-
 空調システム(10)の冷房運転中には、冷媒回路(21)が冷房給湯用動作を行う。冷媒回路(21)が冷房給湯用動作を実行している状態において、熱搬送回路(30)では、蒸発器として動作する熱源側熱交換器(23)において熱源側熱媒水が冷却され、凝縮器として動作する加熱用熱交換器(82)において熱源側熱媒水が加熱される。
-Effects of the embodiment-
During the cooling operation of the air conditioning system (10), the refrigerant circuit (21) performs an operation for cooling hot water supply. In the state where the refrigerant circuit (21) is performing the operation for cooling and hot water supply, in the heat transfer circuit (30), the heat source side heat transfer water is cooled and condensed in the heat source side heat exchanger (23) operating as an evaporator. The heat-source-side heat transfer water is heated in the heating heat exchanger (82) that operates as a heater.
 熱搬送回路(30)が蓄冷熱動作を実行している状態では、熱源側熱交換器(23)において冷却された熱源側熱媒水が蓄熱タンク(37)の下部に送り込まれる。熱源側熱交換器(23)において冷却された熱源側熱媒水(即ち、5℃前後の低温の熱源側熱媒水)は、常温の熱源側熱媒水に比べて密度が大きいため、蓄熱タンク(37)の下部に溜まり込む。 In the state where the heat transfer circuit (30) is performing the cold storage heat operation, the heat source side heat transfer water cooled in the heat source side heat exchanger (23) is sent to the lower part of the heat storage tank (37). The heat source side heat transfer water cooled in the heat source side heat exchanger (23) (that is, the heat source side heat transfer water at a low temperature of around 5 ° C.) has a higher density than the heat source side heat transfer water at room temperature. Accumulate in the lower part of the tank (37).
 また、冷房運転中に熱搬送回路(30)が湯沸かし動作を実行している状態では、加熱用熱交換器(82)において加熱された熱源側熱媒水が蓄熱タンク(37)の上部に送り込まれる。熱源側熱交換器(23)において加熱された熱源側熱媒水(即ち、80~90℃程度の高温の熱源側熱媒水)は、常温の熱源側熱媒水に比べて密度が小さいため、蓄熱タンク(37)の上部に溜まり込む。 Further, in the state where the heat transfer circuit (30) is performing the water heating operation during the cooling operation, the heat source side heat transfer water heated in the heat exchanger for heating (82) is sent to the upper part of the heat storage tank (37). It is. The heat source side heat transfer water heated in the heat source side heat exchanger (23) (that is, the heat source side heat transfer water having a high temperature of about 80 to 90 ° C.) has a lower density than the heat source side heat transfer water at room temperature. , Accumulated in the upper part of the heat storage tank (37).
 このように、蓄熱タンク(37)では、その下部に低温の熱源側熱媒水が貯留され、その上部に高温の熱源側熱媒水が貯留される。つまり、本実施形態の蓄熱タンク(37)には、冷熱と温熱の両方が蓄えられる。従って、本実施形態によれば、一つの蓄熱タンク(37)に冷熱と温熱の両方を蓄えることが可能となる。その結果、冷熱を蓄えるためのタンクと温熱を蓄えるためのタンクを個別に空調システム(10)に設置する必要が無くなり、冷熱と温熱の両方を蓄えることを可能としつつ、空調システム(10)の構成を簡素に保つことができる。 Thus, in the heat storage tank (37), the low-temperature heat source side heat transfer water is stored in the lower part, and the high temperature heat source side heat transfer water is stored in the upper part. That is, both the cold heat and the warm heat are stored in the heat storage tank (37) of the present embodiment. Therefore, according to this embodiment, it is possible to store both cold and hot heat in one heat storage tank (37). As a result, there is no need to separately install a tank for storing cold heat and a tank for storing hot heat in the air conditioning system (10), and it is possible to store both cold and hot heat while maintaining the air conditioning system (10). The configuration can be kept simple.
 また、本実施形態の空調システム(10)では、熱搬送回路(30)に給水通路(90)が設けられる。空調システム(10)の冷房運転中に出湯動作を行う熱搬送回路(30)では、蓄熱タンク(37)の上部に貯留された高温の熱媒水が給湯用の温水として給水栓(87)へ供給されると共に、給水通路(90)の第2分岐通路(92)を通じて蓄熱タンク(37)へ水が補給される。その際、給水通路(90)は、蓄熱タンク(37)の内部空間のうち蓄熱タンク(37)の高さ方向の中央部へ水を導入する。従って、本実施形態によれば、蓄熱タンク(37)の下部に低温の熱源側熱媒水を保持しつつ、出湯動作中に蓄熱タンク(37)へ水を補給することができる。 Further, in the air conditioning system (10) of the present embodiment, a water supply passage (90) is provided in the heat transfer circuit (30). In the heat transfer circuit (30) that performs the hot water operation during the cooling operation of the air conditioning system (10), the high-temperature heat transfer water stored in the upper part of the heat storage tank (37) is supplied to the water tap (87) as hot water for hot water supply. While being supplied, water is supplied to the heat storage tank (37) through the second branch passage (92) of the water supply passage (90). In that case, a water supply channel | path (90) introduce | transduces water into the center part of the height direction of a thermal storage tank (37) among the internal spaces of a thermal storage tank (37). Therefore, according to this embodiment, water can be replenished to the heat storage tank (37) during the hot water operation while holding the low-temperature heat source side heat transfer water in the lower part of the heat storage tank (37).
 また、暖房運転中の空調システム(10)において、湯沸かし動作を行っている熱搬送回路(30)では、蓄熱タンク(37)の下部に貯留された熱源側熱媒水が、熱源側熱交換器(23)において加熱された後に蓄熱タンク(37)の上部へ送り込まれる。従って、本実施形態によれば、蓄熱タンク(37)に冷熱を蓄える必要がない暖房運転中には、蓄熱タンク(37)の内部空間の全体に高温の熱媒水を蓄えることができる。 Further, in the heat transfer circuit (30) performing the water heating operation in the air conditioning system (10) during the heating operation, the heat source side heat transfer water stored in the lower part of the heat storage tank (37) is converted into the heat source side heat exchanger. After being heated in (23), it is sent to the upper part of the heat storage tank (37). Therefore, according to the present embodiment, high-temperature heat transfer water can be stored in the entire internal space of the heat storage tank (37) during the heating operation in which it is not necessary to store the cold heat in the heat storage tank (37).
 ところで、冷媒回路(21)での冷凍サイクルにより得られる冷熱量や温熱量は、冷媒回路(21)における冷媒の循環量によって決まる。一方、冷媒回路(21)における冷媒の循環量が変化すると、それに伴って冷凍サイクルの成績係数(COP)も変化する。その理由としては、熱交換器を通過する冷媒の流速が変化すると熱交換器の性能が変化することや、圧縮機の回転速度が変化すると圧縮機の効率が変化すること等が挙げられる。 Incidentally, the amount of cold and heat obtained by the refrigeration cycle in the refrigerant circuit (21) is determined by the amount of refrigerant circulating in the refrigerant circuit (21). On the other hand, when the refrigerant circulation amount in the refrigerant circuit (21) changes, the coefficient of performance (COP) of the refrigeration cycle also changes accordingly. The reason is that the performance of the heat exchanger changes when the flow rate of the refrigerant passing through the heat exchanger changes, or the efficiency of the compressor changes when the rotation speed of the compressor changes.
 一方、冷房能力の調節を冷凍サイクルによって得られる冷熱量の変更だけによって行う場合は、冷媒回路(21)における冷媒の循環量の変動幅が大きくなってしまう。同様に、暖房能力の調節を冷凍サイクルによって得られる温熱量の変更だけによって行う場合は、冷媒回路(21)における冷媒の循環量の変動幅が大きくなってしまう。その結果、冷媒回路(21)での冷媒の循環量(具体的には、圧縮機(22)の回転速度)を高い成績係数が得られない値に設定しなければならない時間が長くなり、室外ユニット(15)の運転効率が低下するおそれがあった。 On the other hand, when the cooling capacity is adjusted only by changing the amount of cooling obtained by the refrigeration cycle, the fluctuation range of the circulation amount of the refrigerant in the refrigerant circuit (21) becomes large. Similarly, when the heating capacity is adjusted only by changing the amount of heat obtained by the refrigeration cycle, the fluctuation range of the refrigerant circulation amount in the refrigerant circuit (21) becomes large. As a result, the amount of refrigerant circulating in the refrigerant circuit (21) (specifically, the rotational speed of the compressor (22)) must be set to a value that does not provide a high coefficient of performance, and the outdoor The operation efficiency of the unit (15) might be reduced.
 それに対し、本実施形態では、熱搬送回路(30)が通常冷房動作と蓄冷熱動作と利用冷房動作を選択的に行うように構成される。そして、冷凍サイクルで得られる冷熱量が冷房負荷と均衡する場合は通常冷房動作を、冷凍サイクルで得られる冷熱量が冷房負荷に対して多すぎる場合は蓄冷熱動作を、冷凍サイクルで得られる冷熱量が冷房負荷に対して少なすぎる場合は利用冷房動作をそれぞれ行えば、冷媒回路(21)で得られる冷熱量を能動的に調節できなくても、室内熱交換器(75)で得られる冷房能力を冷房負荷に応じて調節することが可能となる。 On the other hand, in this embodiment, the heat transfer circuit (30) is configured to selectively perform the normal cooling operation, the cold storage heat operation, and the use cooling operation. When the amount of heat obtained in the refrigeration cycle is balanced with the cooling load, normal cooling operation is performed.When the amount of heat obtained in the refrigeration cycle is too much for the cooling load, cold storage heat operation is performed. If the amount is too small for the cooling load, the cooling operation obtained by the indoor heat exchanger (75) can be achieved even if the amount of cooling heat obtained by the refrigerant circuit (21) cannot be actively adjusted by performing the respective cooling operations. The capacity can be adjusted according to the cooling load.
 また、本実施形態では、熱搬送回路(30)が通常暖房動作と蓄温熱動作と利用暖房動作を選択的に行うように構成される。そして、冷凍サイクルで得られる温熱量が暖房負荷と均衡する場合は通常暖房動作を、冷凍サイクルで得られる温熱量が暖房負荷に対して多すぎる場合は蓄温熱動作を、冷凍サイクルで得られる温熱量が暖房負荷に対して少なすぎる場合は利用暖房動作をそれぞれ行えば、冷媒回路(21)で得られる温熱量を能動的に調節できなくても、室内熱交換器(75)で得られる暖房能力を暖房負荷に応じて調節することが可能となる。 In the present embodiment, the heat transfer circuit (30) is configured to selectively perform the normal heating operation, the heat storage heat operation, and the use heating operation. When the amount of heat obtained in the refrigeration cycle is balanced with the heating load, normal heating operation is performed. When the amount of heat obtained in the refrigeration cycle is too much for the heating load, heat storage heat operation is performed. If the amount is too small relative to the heating load, the heating operation obtained by the indoor heat exchanger (75) can be achieved even if the amount of heat obtained by the refrigerant circuit (21) cannot be actively adjusted by performing the heating operation. The capacity can be adjusted according to the heating load.
 つまり、本実施形態によれば、冷媒回路(21)の圧縮機(22)の回転速度が固定されているにも拘わらず、室内熱交換器(75)で得られる空調能力を冷房負荷や暖房負荷に応じて調節できる。従って、本実施形態によれば、室内熱交換器(75)での冷房能力や暖房能力を調節可能にすると共に、圧縮機(22)の回転速度を高い成績係数が得られる値に保つことができ、室外ユニット(15)の運転効率を向上させることが可能となる。 In other words, according to the present embodiment, the air conditioning capacity obtained by the indoor heat exchanger (75) can be reduced by the cooling load or the heating even though the rotational speed of the compressor (22) of the refrigerant circuit (21) is fixed. It can be adjusted according to the load. Therefore, according to the present embodiment, the cooling capacity and heating capacity in the indoor heat exchanger (75) can be adjusted, and the rotation speed of the compressor (22) can be maintained at a value that provides a high coefficient of performance. It is possible to improve the operating efficiency of the outdoor unit (15).
  -実施形態の変形例1-
 上記実施形態において、冷媒回路(21)は、高圧が冷媒の臨界圧力よりも高い値に設定された冷凍サイクル(いわゆる超臨界サイクル)を行うように構成されていてもよい。その場合には、いわゆるフロン冷媒に代えて二酸化炭素を冷媒として冷媒回路(21)に充填するのが望ましい。本変形例の冷媒回路(21)では、冷房給湯用動作中には加熱用熱交換器(82)が、冷房専用動作中には室外熱交換器(25)が、暖房運転中には熱源側熱交換器(23)が、それぞれガスクーラとして動作する。
Modification 1 of Embodiment—
In the above embodiment, the refrigerant circuit (21) may be configured to perform a refrigeration cycle (so-called supercritical cycle) in which the high pressure is set to a value higher than the critical pressure of the refrigerant. In that case, it is desirable to fill the refrigerant circuit (21) with carbon dioxide as a refrigerant instead of the so-called chlorofluorocarbon refrigerant. In the refrigerant circuit (21) of this modification, the heat exchanger (82) for heating is used during the cooling hot water supply operation, the outdoor heat exchanger (25) is used during the cooling only operation, and the heat source side is used during the heating operation. Each heat exchanger (23) operates as a gas cooler.
  -実施形態の変形例2-
 上記実施形態において、室内側回路(70)は、内部を循環する利用側熱媒水が大気と接触しない閉回路となっているが、この室内側回路(70)は、内部を循環する利用側熱媒水が大気と接触する開放回路となっていてもよい。開放回路に構成された室内側回路(70)には、密閉容器状の膨張タンク(78)に代えて、内部の水面が大気と接触する開放タンクが接続される。
-Modification Example 2-
In the above embodiment, the indoor side circuit (70) is a closed circuit in which the use side heat transfer water circulating inside does not come into contact with the atmosphere, but the indoor side circuit (70) is used on the use side circulating inside. The heat transfer water may be an open circuit in contact with the atmosphere. The indoor side circuit (70) configured as an open circuit is connected to an open tank in which the water surface inside is in contact with the atmosphere, instead of the expansion container (78) in the form of a sealed container.
 なお、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。 In addition, the above embodiment is an essentially preferable example, and is not intended to limit the scope of the present invention, its application, or its use.
 以上説明したように、本発明は、空調システムに設けられる熱源装置について有用である。 As described above, the present invention is useful for a heat source device provided in an air conditioning system.
 10  空調システム
 21  冷媒回路
 23  熱源側熱交換器
 25  室外熱交換器
 30  熱搬送回路
 35  利用側熱交換器
 37  蓄熱タンク(貯水タンク)
 82  加熱用熱交換器
 90  給水通路
10 Air conditioning system 21 Refrigerant circuit 23 Heat source side heat exchanger 25 Outdoor heat exchanger 30 Heat transfer circuit 35 User side heat exchanger 37 Heat storage tank (water storage tank)
82 Heat exchanger for heating 90 Water supply passage

Claims (7)

  1.  利用側熱交換器(35)が接続されて内部を熱媒水が循環する熱搬送回路(30)を備え、上記利用側熱交換器(35)へ供給された熱媒水を利用して室内を冷房する冷房運転を行う空調システムであって、
     それぞれが冷媒を熱媒水と熱交換させる熱源側熱交換器(23)及び加熱用熱交換器(82)を備え、該加熱用熱交換器(82)が放熱器となって該熱源側熱交換器(23)が蒸発器となるように冷媒を循環させて冷凍サイクルを行う冷房給湯用動作を上記冷房運転中に行うように構成された冷媒回路(21)を備える一方、
     上記熱搬送回路(30)は、
      熱媒水を貯留するための貯水タンク(37)を備え、
      上記熱源側熱交換器(23)において冷却された熱媒水を上記貯水タンク(37)の下部へ供給する蓄冷熱動作と、上記貯水タンク(37)の下部に貯留された熱媒水を上記利用側熱交換器(35)へ供給する利用冷房動作と、上記加熱用熱交換器(82)において加熱された熱媒水を上記貯水タンク(37)の上部へ供給する湯沸かし動作と、上記貯水タンク(37)の上部に貯留された熱媒水を給湯用の温水として該貯水タンク(37)から流出させる出湯動作とを上記冷房運転中に実行可能となっている
    ことを特徴とする空調システム。
    It is equipped with a heat transfer circuit (30) through which the heat transfer water is circulated and connected to the use side heat exchanger (35), and is used indoors by using the heat transfer water supplied to the use side heat exchanger (35). An air conditioning system that performs cooling operation for cooling
    Each includes a heat source side heat exchanger (23) and a heating heat exchanger (82) for exchanging heat between the refrigerant and the heat transfer water, and the heating heat exchanger (82) serves as a heat radiator. While comprising a refrigerant circuit (21) configured to perform an operation for cooling hot water supply that performs a refrigeration cycle by circulating a refrigerant so that the exchanger (23) becomes an evaporator, during the cooling operation,
    The heat transfer circuit (30)
    It has a water storage tank (37) for storing heat transfer water,
    Cold storage heat operation for supplying the heat transfer water cooled in the heat source side heat exchanger (23) to the lower part of the water storage tank (37), and the heat transfer water stored in the lower part of the water storage tank (37) Use cooling operation for supplying to the use-side heat exchanger (35), boiling water operation for supplying the heat transfer water heated in the heating heat exchanger (82) to the upper part of the water storage tank (37), and the water storage An air conditioning system characterized in that a hot water discharge operation for causing the heat transfer water stored in the upper part of the tank (37) to flow out of the water storage tank (37) as hot water for hot water supply can be performed during the cooling operation. .
  2.  請求項1において、
     上記熱搬送回路(30)は、
      上記熱源側熱交換器(23)において冷却された熱媒水を上記利用側熱交換器(35)と上記貯水タンク(37)の下部の両方へ供給する動作を蓄冷熱動作として行い、上記熱源側熱交換器(23)において冷却された熱媒水と上記貯水タンク(37)の下部に貯留された熱媒水の両方を上記利用側熱交換器(35)へ供給する動作を利用冷房動作として行う一方、
      上記熱源側熱交換器(23)において冷却された熱媒水だけを上記利用側熱交換器(35)へ供給する通常冷房動作と、上記蓄冷熱動作と、上記利用冷房動作とを上記冷房運転中に選択的に実行する
    ことを特徴とする空調システム。
    In claim 1,
    The heat transfer circuit (30)
    The operation of supplying the heat medium water cooled in the heat source side heat exchanger (23) to both the use side heat exchanger (35) and the lower part of the water storage tank (37) is performed as a regenerative heat operation, and the heat source Cooling operation using the operation of supplying both the heat transfer water cooled in the side heat exchanger (23) and the heat transfer water stored in the lower part of the water storage tank (37) to the use side heat exchanger (35) While doing as
    The normal cooling operation for supplying only the heat medium water cooled in the heat source side heat exchanger (23) to the use side heat exchanger (35), the cold storage heat operation, and the use cooling operation are performed in the cooling operation. An air conditioning system characterized by being selectively executed during.
  3.  請求項1又は2において、
     上記冷媒回路(21)は、冷媒を室外空気と熱交換させる室外熱交換器(25)を備え、該室外熱交換器(25)が放熱器となって上記熱源側熱交換器(23)が蒸発器となるように冷媒を循環させて冷凍サイクルを行う冷房専用動作と上記冷房給湯用動作とを選択的に実行する
    ことを特徴とする空調システム。
    In claim 1 or 2,
    The refrigerant circuit (21) includes an outdoor heat exchanger (25) for exchanging heat between the refrigerant and outdoor air. The outdoor heat exchanger (25) serves as a radiator and the heat source side heat exchanger (23) An air conditioning system characterized by selectively performing a cooling only operation for circulating a refrigerant so as to become an evaporator and performing a refrigeration cycle and the cooling hot water supply operation.
  4.  請求項1又は2において、
     上記熱搬送回路(30)は、上記貯水タンク(37)の高さ方向の中央部に貯留された熱媒水を上記加熱用熱交換器(82)へ供給して該加熱用熱交換器(82)で加熱された熱媒水を上記貯水タンク(37)の上部へ供給する動作を上記湯沸かし動作として行う
    ことを特徴とする空調システム。
    In claim 1 or 2,
    The heat transfer circuit (30) supplies the heat transfer water stored in the central portion in the height direction of the water storage tank (37) to the heating heat exchanger (82) to supply the heating heat exchanger (82). 82) The air conditioning system characterized in that the operation of supplying the heat transfer water heated in step 82) to the upper portion of the water storage tank (37) is performed as the water heating operation.
  5.  請求項4において、
     上記熱搬送回路(30)には、上記出湯動作中に上記貯水タンク(37)の高さ方向の中央部へ上水道から供給された水を送り込む給水通路(90)が設けられている
    ことを特徴とする空調システム。
    In claim 4,
    The heat transfer circuit (30) is provided with a water supply passage (90) for feeding water supplied from the water supply to the central portion in the height direction of the water storage tank (37) during the hot water operation. Air conditioning system.
  6.  請求項3において、
     上記利用側熱交換器(35)へ供給された熱媒水を利用して室内を暖房する暖房運転と上記冷房運転とを選択的に実行し、
     上記冷媒回路(21)は、上記熱源側熱交換器(23)が放熱器となって上記室外熱交換器(25)が蒸発器となるように冷媒を循環させて冷凍サイクルを行う暖房用動作を上記暖房運転中に行う一方、
     上記熱搬送回路(30)は、
      上記熱源側熱交換器(23)で加熱された熱媒水だけを上記利用側熱交換器(35)へ供給する通常暖房動作と、上記熱源側熱交換器(23)で加熱された熱媒水を上記利用側熱交換器(35)と上記貯水タンク(37)の上部の両方へ供給する蓄温熱動作と、上記熱源側熱交換器(23)で加熱された熱媒水と上記貯水タンク(37)の上部に貯留された熱媒水の両方を上記利用側熱交換器(35)へ供給する利用暖房動作とを上記暖房運転中に選択的に行うと共に、
      上記出湯動作を上記暖房運転中に実行可能となっている
    ことを特徴とする空調システム。
    In claim 3,
    Selectively performing the heating operation for heating the room using the heat transfer water supplied to the use side heat exchanger (35) and the cooling operation,
    The refrigerant circuit (21) is a heating operation for performing a refrigeration cycle by circulating refrigerant so that the heat source side heat exchanger (23) serves as a radiator and the outdoor heat exchanger (25) serves as an evaporator. While performing the above heating operation,
    The heat transfer circuit (30)
    Normal heating operation for supplying only the heat medium water heated by the heat source side heat exchanger (23) to the use side heat exchanger (35), and the heat medium heated by the heat source side heat exchanger (23) Thermal storage heat operation for supplying water to both the use side heat exchanger (35) and the upper part of the water storage tank (37), heat transfer water heated by the heat source side heat exchanger (23), and the water storage tank (37) selectively performing a heating operation for supplying both of the heat transfer water stored in the upper part of the heating side heat exchanger (35) during the heating operation;
    An air conditioning system characterized in that the hot water operation can be performed during the heating operation.
  7.  請求項6において、
     上記熱搬送回路(30)は、
      上記冷房運転において行われる出湯動作中には上記貯水タンク(37)の高さ方向の中央部へ上水道から供給された水を送り込み、上記暖房運転において行われる出湯動作中には上記貯水タンク(37)の下部へ上水道から供給された水を送り込む給水通路(90)を備えており、
      上記冷房運転中には、上記貯水タンク(37)の高さ方向の中央部に貯留された熱媒水を上記加熱用熱交換器(82)へ供給して該加熱用熱交換器(82)において加熱された熱媒水を上記貯水タンク(37)の上部へ送る動作を湯沸かし動作として行い、
      上記暖房運転中には、上記貯水タンク(37)の下部に貯留された熱媒水を上記熱源側熱交換器(23)へ供給して該熱源側熱交換器(23)において加熱された熱媒水を上記貯水タンク(37)の上部へ送る動作を湯沸かし動作として行う
    ことを特徴とする空調システム。
    In claim 6,
    The heat transfer circuit (30)
    During the hot water operation performed in the cooling operation, water supplied from the water supply is sent to the central portion in the height direction of the water storage tank (37), and during the hot water operation performed in the heating operation, the water storage tank (37 ) With a water supply passage (90) that feeds water supplied from the water supply to the lower part of
    During the cooling operation, the heat transfer water stored in the central portion in the height direction of the water storage tank (37) is supplied to the heating heat exchanger (82) to supply the heating heat exchanger (82). The operation of sending the heat transfer water heated in the above to the upper part of the water storage tank (37) is performed as a water heater operation,
    During the heating operation, the heat transfer water stored in the lower part of the water storage tank (37) is supplied to the heat source side heat exchanger (23) to be heated in the heat source side heat exchanger (23). An air conditioning system characterized in that the operation of sending medium water to the upper part of the water storage tank (37) is performed as a water heater.
PCT/JP2009/002125 2008-05-21 2009-05-14 Air conditioning system WO2009141979A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008133244A JP5233405B2 (en) 2008-05-21 2008-05-21 Air conditioning system
JP2008-133244 2008-05-21

Publications (1)

Publication Number Publication Date
WO2009141979A1 true WO2009141979A1 (en) 2009-11-26

Family

ID=41339919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/002125 WO2009141979A1 (en) 2008-05-21 2009-05-14 Air conditioning system

Country Status (2)

Country Link
JP (1) JP5233405B2 (en)
WO (1) WO2009141979A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023149878A1 (en) * 2022-02-03 2023-08-10 Vilter Manufacturing Llc System and method for heating or cooling employing heat pump
WO2023149879A1 (en) * 2022-02-03 2023-08-10 Vilter Manufacturing Llc System and method for heating or cooling employing heat pump

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101788172B (en) * 2009-01-22 2012-07-25 珠海格力电器股份有限公司 Energy-storage air conditioning unit and working method thereof
JP5333557B2 (en) * 2011-09-30 2013-11-06 ダイキン工業株式会社 Hot water supply air conditioning system
JP5327308B2 (en) * 2011-09-30 2013-10-30 ダイキン工業株式会社 Hot water supply air conditioning system
KR101236597B1 (en) 2011-09-30 2013-02-22 한밭대학교 산학협력단 Air conditioning system for multi-usage
CN103629735A (en) * 2012-08-29 2014-03-12 昆山开思拓节能技术有限公司 Full-automatic central heat pump water heating device
IT201700123450A1 (en) * 2017-10-30 2019-04-30 Frigel Firenze S P A THERMODYNAMIC BALANCING SYSTEM OF THERMAL LOADS IN INDUSTRIAL PLANTS AND PROCESSES AND ITS METHOD
KR102018218B1 (en) * 2018-10-12 2019-09-04 김경환 Heating-cooling and water supply system for building construction

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09126500A (en) * 1995-10-30 1997-05-16 Mitsubishi Heavy Ind Ltd Heat storage type air-conditioner
JP2004257586A (en) * 2003-02-24 2004-09-16 Matsushita Electric Ind Co Ltd Refrigerator using carbon dioxide as refrigerant

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09126500A (en) * 1995-10-30 1997-05-16 Mitsubishi Heavy Ind Ltd Heat storage type air-conditioner
JP2004257586A (en) * 2003-02-24 2004-09-16 Matsushita Electric Ind Co Ltd Refrigerator using carbon dioxide as refrigerant

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023149878A1 (en) * 2022-02-03 2023-08-10 Vilter Manufacturing Llc System and method for heating or cooling employing heat pump
WO2023149879A1 (en) * 2022-02-03 2023-08-10 Vilter Manufacturing Llc System and method for heating or cooling employing heat pump

Also Published As

Publication number Publication date
JP2009281641A (en) 2009-12-03
JP5233405B2 (en) 2013-07-10

Similar Documents

Publication Publication Date Title
JP5233405B2 (en) Air conditioning system
KR100810870B1 (en) Hot-water supply device
CN203249455U (en) Air conditioning device
JP5752148B2 (en) Air conditioner
JP5784117B2 (en) Air conditioner
WO2013144996A1 (en) Air conditioning device
JP6095764B2 (en) Air conditioner
CN103080668B (en) Air-conditioning device
JP5855279B2 (en) Air conditioner
JP5595521B2 (en) Heat pump equipment
JP6000373B2 (en) Air conditioner
WO2009142004A1 (en) Heating system
WO2011048679A1 (en) Air conditioning device
KR20120042922A (en) Air conditioning/hotwater supply system and heat pump unit
KR101201131B1 (en) a indoor cooling and heating system
JP5955409B2 (en) Air conditioner
JP5391581B2 (en) Air conditioning and hot water supply system
JP4934413B2 (en) Air conditioner
JP5217624B2 (en) Heating system
JP2009281644A (en) Heating system
JP5333557B2 (en) Hot water supply air conditioning system
JP2009281642A (en) Heat source device of air conditioning system
JP4169453B2 (en) Hot water storage hot water source
JP2009281640A (en) Air conditioning system
JP4611577B2 (en) Heating device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09750341

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09750341

Country of ref document: EP

Kind code of ref document: A1